铁路无线通信几个典型应用

铁路无线通信几个典型应用
铁路无线通信几个典型应用

无线通信在铁路上的几个典型应用截止到2012年底,国内全铁路总营业里程约9.8万公里,居世界铁路的第二位。高铁运营里程近8000公里,居世界铁路的第一位。无线通信设备装备率达100%,根据铁路中长期规划:2015年,全路总营业里程达到12万公里。

目前,无线通信在全路普遍使用,主要有:

1、450MHz无线列调系统,覆盖线路7万余公里,占总营业里程的80%

2、GSM-R无线通信系统,覆盖线路2万公里,占总营业里程的20%,2013年计划竣工投产的GSM-R线路约0.8万公里。

3、基于800MHZ的列车无线防护报警和客车尾部全防护装置部署完成。

4、以400、450mhZ为主的铁路专用无线通信业务广泛用于站场、站车间和区间养护维修、作业组织、安全防护领域,为提高效度、保障安全发挥的重大作用。

4、GPS和RFID技术在列车定位、车辆识别方面得到普遍应用

主要应用业务分类

无线通信在铁路上的几个典型应用

典型应用1:列车运行指挥调度语音通信

采用位置寻址、功能寻址、紧急呼叫、组呼等方式,在列车调度员、车站值班员、助理值班员、机车司机、运转车长、车辆乘务员、列车长等人员之间实现调度语音通信业务。

典型应用2:列车运行调度指挥信息传送

行车指挥信息:采用450MHZ或GPRS分组数据方式承载

向司机发送调度命令、进路预告、调车指令等信息;

列车向调度指挥系统发送车次号校核信息。

典型应用3:列车运行控制信息传送

列车控制类业务:现阶段采用GSM-R网络CSD电路数据方式:

1、高铁CTCS-3级列控系统车地数据通信

2、重载铁路多机车同步控制信息传送

3、高原铁路ITCS列控系统车地数据通信

典型应用4、列车运行安全监控信息传送

列车运行监控信息:采用GPRS分组数据方式承载:ATP设备状态监测

机车工况监控信息传送

工务线路监控信息传送(晃车信息)

高速铁路列车追踪预警

典型应用5:基于对讲系统的站场调车通信

典型应用6:区间语音通信类

无线电通信波段划分

波段划分 最早用于搜索雷达的电磁波波长为23cm,这一波段被定义为L波段(英语Long的字头),后来这一波段的中心波长变为22cm。当波长为10cm的电磁波被使用后,其波段被定义为S波段(英语Short的字头,意为比原有波长短的电磁波)。 在主要使用3cm电磁波的火控雷达出现后,3cm波长的电磁波被称为X波段,因为X代表座标上的某点。 为了结合X波段和S波段的优点,逐渐出现了使用中心波长为5cm的雷达,该波段被称为C波段(C 即Compromise,英语“结合”一词的字头)。 在英国人之后,德国人也开始独立开发自己的雷达,他们选择1.5cm作为自己雷达的中心波长。这一波长的电磁波就被称为K波段(K = Kurtz,德语中“短”的字头)。 “不幸”的是,德国人以其日尔曼民族特有的“精确性”选择的波长可以被水蒸气强烈吸收。结果这一波段的雷达不能在雨中和有雾的天气使用。战后设计的雷达为了避免这一吸收峰,通常使用比K波段波长略长(Ka,即英语K-above的缩写,意为在K波段之上)和略短(Ku,即英语K-under的缩写,意为在K波段之下)的波段。 最后,由于最早的雷达使用的是米波,这一波段被称为P波段(P为Previous的缩写,即英语“以往”的字头)。 该系统十分繁琐、而且使用不便。终于被一个以实际波长划分的波分波段系统取代,这两个系统的换算如下。 原P波段= 现A/B 波段 原L波段= 现C/D 波段 原S波段= 现E/F 波段 原C波段= 现G/H 波段 原X波段= 现I/J 波段 原K波段= 现K 波段 我国现用微波分波段代号 波段代号标称波长(cm)频率波长(cm)波长范围(cm) L 22 1-2 30-15 S 10 2-4 15-7.5 C 5 4-8 7.5-3.75 X 3 8-12 3.75-2.5 Ku 2 12-18 2.5-1.67 K 1.25 18-27 1.67-1.11 Ka 0.8 27-40 1.11-0.75 U 0.6 40-60 0.75-0.5 V 0.4 60-80 0.5-0.375 W 0.3 80-100 0.375-0.3

铁路综合无线通信设备读本

第四章 CIR的组成及主要功能 CIR是“机车综合无线通信设备”的简称,它是新一代的铁路无线通信车载设备,不但具备既有铁路无线列调机车电台的全部业务功能,还能够提供提速铁路无线调度命令接受、车次号校核、列尾风压查询等新业务功能,更是高速铁路GSM-R无线通信系统不可或缺的一员。 本章将对CIR设备的构成及功能进行详细介绍。 第一节机车无线通信概述 机车无线通信包括话音、数据等业务,随着通信技术的发展和业务需求的不断增加,机车无线通信的内容也得到了完善与发展,并形成了机车综合无线通信平台。 根据实际运用需求,机车综合无线通信设备的功能覆盖450MHz调度通信系统、800MHz列尾和列车安全预警系统、GSM-R数字移动通信系统、高速数据传输等。 第二节机车综合无线通信设备的构成 CIR由主机、操作显示终端(以下简称MMI)、送(受)话器、扬声器、打印终端、连接电缆、天馈单元及机车数据采集编码器等构成。设备构成原理框图见图4-1。 MMI包括显示器、送受话器、扬声器、按键、外部接口等。 主机包括机柜(含子架)、总线板、主控单元、电源单元、后备电源(蓄电池)单元、GPS单元、GSM-R话音单元、GSM-R数据单元、高速数据单元、记录单元、天馈单元、接口单元、450MHz机车电台单元(450MHz 调度命令单元)、800MHz列尾和列车安全预警车载电台(简称800MHz车载电台)单元等,各组成部分模块化,可根据功能要求进行模块配置。 其中450MHz机车电台、800MHz车载电台、天馈等单元安置在机柜内或单独放置。

图4-1 设备构成原理框图 一、主机 CIR包括机柜、A子架、B子架。A子架包括主控单元、电源单元、电池单元、卫星定位单元、GSM-R话音单元、GSM-R数据单元、高速数据单元、记录单元;B子架包括接口单元、450MHz机车电台单元、800MHz列尾和列车安全预警车载电台(简称800MHz车载电台)单元等,子架内各单元装配位置见图4-2。 图4-2 主机各单元装配示意图

铁路专用通信设备

铁路专用通信设备 1.GSM-R GSM-R机车综合无线通信设备 GSM-R是专门为铁路通信设计的综合专用数字移动通信系统,它基于GSM的基础设施及其提供的语音调度业务(ASCI),其中包含增强的多优先级预占和强拆(eMLPP)、语音组呼(VGCS)和语音广播(VBS),并提供铁路特有的调度业务,包括:功能寻址、功能号表示、接入矩阵和基于位置的寻址;并以此作为信息化平台,使铁路部门用户可以在此信息平台上开发各种铁路应用,GSM-R的业务模型可以概括为: GSM-R业务 = GSM业务 + 语音调度业务 + 铁路应用 HY-473库检电台 HY-473库检电台用于机车出入库时对机车综合无线通信设备(简称CIR)进行功能定性检测,以保证机车上线运行时CIR正常工作。机车综合无线通信库检设备可以工作在GPRS或450MHz工作模式,可对450MHz机车台、GSM-R功能、800MHz预警进行功能检测。系统由计算机、打印机、测试模块集、天馈线、测试控制软件组成。其中测试模块集可由GSM-R模块、录音单元、控制单元、450M模块、800M模块组成。 2.无线列调系统 调度总机 调度总机是列车无线调度通信系统中的地面固定设备,设置在调度所,通过四线制有线线路与车站台连接。 车站电台 B制式车站台是专门为铁路车站设计的通信设备。该设备采用了最新技术,操作简便,具有很多的专用功能。 便携式车站电台

便携式车站设备,主要用于与机车电台、车站电台及手持台进行通话。便携台可通过内置电池供电(电池容量为12安时),在无外接电源的情况下,可保证正常工作8小时以上,电池电量不足时有声光提示;便携台可用专用的外接充电电源对内置电池充电,电池充满后充电器有相应提示。此外,便携台还设有按键及指示灯,便于测试和使用。 通用机车台 本电台是通用式无线列调机车电台,它兼容B、C制式机车台的所有工作模式。安装在列车机车上,供司机使用。可用于机车与调度、车站、其它机车、车长之间通信联系。利用GPS全球卫星定位系统,按机车的运行位置,适时控制机车电台的通信方式的变更,使之改变到与地面通信设备一致的工作模式上,从而实现与地面通信设备正常通信的目的。当机车在GPS的弱场区(如山区或隧道内)运行时,不能通过GPS定位来进行工作模式的切换,该电台可以通过人工选择通信模式,保证机车可以与地面通信设备进行正常通信。 3.列调系统测试设备 调度命令出入库检测设备 调度命令出入库检测设备是用于铁路列车无线调度系统中对机车调度命令进行出/入库检测的装置。安装在机车入库点的附近,对机车的调度命令进行地面检测和车上检测,将检测的结果反馈给计算机在屏幕上显示出来,并存储该结果。管理人员可以按时间、机车号查询或统计数据,并可以打印、导出数据。 HY464-2型监测总机 该设备用于铁路无线列调系统,通过有线线路对调度区段内的车站台、中继器和调度总机进行监测,并将监测结果显示在CRT屏幕上或通过打印机进行打印。该设备可对四个区段内的车站台、中继器和调度总机进行监测,分为人工监测和自动监测两种方式。

移动通信频段划分以及介绍范文

移动通信频段划分 GSM通信频段:分为:GSM900 DCS1800 PCS1900(目前中国只用到GSM900和DCS1800两个频段) GSM900: 双工频率间隔:45MHZ 880~890(EGSM),890~915M(PGSM)移动台(手机)发送. 基站接收 925~935(EGSM),935~960M(PGSM)基站发送. 移动台(手机)接收 GSM900频段中我国政府批准使用的上行频率为885~915 MHz ,下行频率为935~960 MHz 移动GSM900频段为885~890(上行)/930~935(下行)(此频段属于EGSM),890~909(上行)/935~954(下行) (此频段属于PGSM),共24M 联通GSM900频段为909~915 (上行)/954~960(下行),共6M DCS1800: 双工频率间隔:90MHZ 1710~1785M 移动台(手机)发送. 基站接收 1805~1880M 基站发送. 移动台(手机)接收 GSM1800频段中我国政府批准使用的上行频率为1710~1755 MHz ,下行频率为 1805~1850 MHz,但未大量使用,特别是小城市 移动GSM1800频段为1710~1720(上行)/1805~1815(下行),共10M 联通GSM1800频段为1745~1755(上行)/1840~1850(下行) ,共10M TD-SCDMA(TDD): 核心频段: A频段:2010~2025MHz(原B频段),建设最好的,最早使用的,广泛室外使用的频段 F频段:1880~1920MHz(原A频段),考虑与小灵通干扰,应从低开始使用 E频率:2320~2370MHz(原C频段),主要室内使用,不室外使用,室内防止与WLAN 冲突,建议从低开始使用。 现在LTE实验网频段为:2320-2370MHz。 WCDMA(FDD)2100M频段:(具有TDD模式,但是没有商用)(标准4种850/900/1900/2100MHz)核心频段:1920~1980MHz,2110~2170MHz(分别用于上行和下行) 中国联通WCDMA分配的频率是1940~1955MHz(上行)/2130~2145MHz(下行),共 15MHz; CDMA2000(FDD)800M频段: 核心频段:815~849MHz,860~894MHz(分别用于上行和下行) 中国电信800M的频段:825-835 MHz(上行)/870-880 MHz(下行),共10MHz; 中国电信cdma2000分配的频率是1920~1935MHz(上行)/2110~2125MHz(下行),共15MHz; 1.EDGE的带宽与基站接入有关,以及与终端使用几个时隙有关,EDGE总8个时隙,但是为了防止干扰一般都没有用完8个时隙,最多分组数据4个时隙。 2.频段变化主要原因:900M满了会自动提升到1800M 或者:900M是语音,1800M是分组数据 3.EDGE各个区域的分布是不一致的,可能有的布局好有的布局不好。 4.GPRS的每个时隙速度大约20Kbps。

移动通信系统频点划分和频率规划

移动通信系统频点划分 一、GSM900(上下行差45MHz) 说明: GSM频率在890M~915M(上行),935M~960M(下行),频点为0~124,其中95为临界频点。分配给移动公司的890M~909M,分配给联通公司的为909M~915M。其中对应移动的频点为0~94,联通的频点为96~124。 E-GSM 说明: GSM频率在880M~890M(上行),925M~935M(下行),频点为975~1024,其中1024为临界频点。 分配给移动公司的885M~890M,未分配给联通公司。其中对应移动的频点为1000~1023。 二、GSM1800(上下行差95MHz) 说明: GSM频率在1710M~1785M(上行),1805M~1880M(下行),频点为512~886。 分配给移动公司的1710M~1720M、1725M~1735M共20M、100个频点(其中 1730-1735MHz/1825-1830MHz是07年信息产业部新批),而上海、广东、北京特殊分配了 1720M~1725M(据集团公司技术部2006年2月通信资源管理信息)。广西移动全网可使用的频点范围为512~562、586~636共100个频点,分配给联通公司的为1745M~1755M。(其中一些地市1735M-1745M已经被联通占用) 1、频道间隔 相邻两频点间隔为为200kHz,每个频点采用时分多址(TDMA)方式,分为8个时隙,既8个信道(全速率),如GSM采用半速率话音编码后,每个频点可容纳16个半速率信道,可使系统容量扩大一倍,但其代价必然是导致语音质量的降低。 2、频道配置 绝对频点号和频道标称中心频率的关系为: GSM900MHz频段: f1(n)=+(n-1)×(移动台发,基站收) fh(n)=f1(n)+45MHz(基站发,移动台收);n∈[1,124] GSMl800MHz频段为: f1(n)=+(n-512)×(移动台发,基站收)

铁路无线通信系统场强

铁路专用无线通信系统场强 和服务质量检测管理办法 第一章总则 第一条为科学评定铁路专用无线通信系统场强覆盖水平和 网络服务质量指标,规范场强和服务质量检测工作,根据《铁路 技术管理规程》及相关技术标准,制定本办法。 第二条专用无线通信系统是指铁路GSM -R 数字移动通信系统和450MHz 列车无线调度通信系统(以下简称“GSM -R 系统”和“无线列调系统”)。 第三条本办法所指场强覆盖和服务质量检测,是使用综合 检测车、电务试验车所装设的检测系统,对铁路专用无线通信系 统进行的场强覆盖检测和服务质量测试活动。 第四条本办法适用于对铁路专用无线通信系统日常动态检 查、系统调试和工程验收时对场强覆盖和服务质量进行的检测、 测试和质量评定。 第二章场强覆盖要求 第五条无线列调系统的场强覆盖,是在满足机车电台接收 机输出端电压信噪比不低于20dB 条件下,按95%的地点、时间 概率统计,测量接收机天线输入端的最小接收电平。最小接收电 平值应符合下列要求:

1. 非电气化铁路不低于0dBμ; 2. 电气化铁路不低于10dB μ(利用电务试验车测试)、6dB μ(利用动车组综合检测车测试)。 第六条GSM -R 系统的场强覆盖,是在满足系统规定的载干 比(C/I )和系统服务质量(QoS )条件下,按95%的地点、时间 概率统计,测量接收机天线输入端的最小接收电平。最小接收电 平值应符合下列要求: 1.承载列控类数据(CSD )业务GSM-R 系统,不低于-92dBm; 2.其他GSM-R 系统,不低于-98dBm。 第七条无线列调、GSM -R 系统的场强应保持连续覆盖。 第八条无线列调系统的场强覆盖还应满足下列规定: 1.两相邻车站电台的场强覆盖不小于两相邻电台之间距离 的二分之一,且至少有500m 重叠区; 2.对车站站间距不足5Km 的,两端车站电台的场强应相互覆 盖到对端站; 3.局间交界区车站电台的场强除满足上述规定外,还应连续覆盖至局界。 第九条根据场强覆盖需要,需跨越铁路局局界设置中继设 施的,由相邻铁路局通信主管部门协商确定技术方案和分工管理 界面。 第十条应严格控制无线通信系统的覆盖区,消除越区覆盖 现象,推进场强覆盖的精细管理。

2017铁路通信维护规则试题库

3 .《铁路通信维护规则》规定,屏蔽室应良好接地,接地电阻应( A ).A、不大于5 Q B、等于5 Q C、不大于10 Q D、等于 10Q 4 .《铁路通信维护规则》规定,屏蔽室的衰耗在使用频率范围内, 屏蔽衰耗(A ).A、不小于100db B、不小于80db C、不小于70db D、不小于65db 5 .《铁路通信维护规则》规定,固定设置的无线通信设备的接地电阻一般应(C ).A、小于5 Q B、小于15 Q C、小于10 Q D、小于20 Q 7 .无线列调检修工区对出入库机车电台进行逐一检修,确保机车电台(A )良好出库.A、100% B、95%C、98%D、99% 隧道内电缆支架的安装位置距离钢轨面高度一般为(A)m. 4.8 ?4.9 B、4.5 ?4.8 C、2.5 ?5 D、4.0 ?4.5 《铁路通信维护规则》规定,机车电台的驻波比为(B). 小于1.5 B、不大于1.5 C、小于2.0 D、不大于2.0 10 .《铁路通信维护规则》规定,400MHz 列调机车电台调制接收 带宽为(A). A、不小于2 X5KHZ B、6KHz C、15KHZ D、不小于5KHz 11.《铁路通信维护规则》规定,B、C制式的车站电台场强覆盖

范围应不少于两相邻车站电台之间距离的(C). A、1/5 B、2/5 C、1/2 D、1/3 12.《铁路通信维护规则》规定,按95%的地点和时间概率,非 电气化区段450MHz机车电台接收机输出端的电压信噪比不低于 20dB时,接收机的最小接收电平不小于(D ). A、10dB 止、6dB yC、3 dB 卩 三、判断题铁路专用无线通信障碍分为通信一类障碍和通信二类障碍两 1. 种(2)

铁路专用通信设备

铁路专用通信设备 1、GSM-R GSM-R机车综合无线通信设备 GSM-R就是专门为铁路通信设计的综合专用数字移动通信系统,它基于GSM的基础设施及其提供的语音调度业务(ASCI),其中包含增强的多优先级预占与强拆(eMLPP)、语音组呼(VGCS)与语音广播(VBS),并提供铁路特有的调度业务,包括:功能寻址、功能号表示、接入矩阵与基于位置的寻址;并以此作为信息化平台,使铁路部门用户可以在此信息平台上开发各种铁路应用,GSM-R的业务模型可以概括为: GSM-R业务 = GSM业务 + 语音调度业务 + 铁路应用 HY-473库检电台 HY-473库检电台用于机车出入库时对机车综合无线通信设备(简称CIR)进行功能定性检测,以保证机车上线运行时CIR正常工作。机车综合无线通信库检设备可以工作在GPRS或450MHz工作模式,可对450MHz机车台、GSM-R功能、800MHz预警进行功能检测。系统由计算机、打印机、测试模块集、天馈线、测试控制软件组成。其中测试模块集可由GSM-R模块、录音单元、控制单元、450M模块、800M模块组成。 2、无线列调系统 调度总机 调度总机就是列车无线调度通信系统中的地面固定设备,设置在调度所,通过四线制有线线路与车站台连接。 车站电台 B制式车站台就是专门为铁路车站设计的通信设备。该设备采用了最新技术,操作简便,具有很多的专用功能。 便携式车站电台

便携式车站设备,主要用于与机车电台、车站电台及手持台进行通话。便携台可通过内置电池供电(电池容量为12安时),在无外接电源的情况下,可保证正常工作8小时以上,电池电量不足时有声光提示;便携台可用专用的外接充电电源对内置电池充电,电池充满后充电器有相应提示。此外,便携台还设有按键及指示灯,便于测试与使用。 通用机车台 本电台就是通用式无线列调机车电台,它兼容B、C制式机车台的所有工作模式。安装在列车机车上,供司机使用。可用于机车与调度、车站、其它机车、车长之间通信联系。利用GPS全球卫星定位系统,按机车的运行位置,适时控制机车电台的通信方式的变更,使之改变到与地面通信设备一致的工作模式上,从而实现与地面通信设备正常通信的目的。当机车在GPS的弱场区(如山区或隧道内)运行时,不能通过GPS定位来进行工作模式的切换,该电台可以通过人工选择通信模式,保证机车可以与地面通信设备进行正常通信。 3、列调系统测试设备 调度命令出入库检测设备 调度命令出入库检测设备就是用于铁路列车无线调度系统中对机车调度命令进行出/入库检测的装置。安装在机车入库点的附近,对机车的调度命令进行地面检测与车上检测,将检测的结果反馈给计算机在屏幕上显示出来,并存储该结果。管理人员可以按时间、机车号查询或统计数据,并可以打印、导出数据。 HY464-2型监测总机 该设备用于铁路无线列调系统,通过有线线路对调度区段内的车站台、中继器与调度总机进行监测,并将监测结果显示在CRT屏幕上或通过打印机进行打印。该设备可对四个区段内的车站台、中继器与调度总机进行监测,分为人工监测与自动监测两种方式。 场强测试仪

铁路无线列车调度通信系统

铁路无线列车调度通信系统 铁路无线列车调度通信系统(railway radio train dispatch communication system)以铁路运输调度为目的,利用无线电波的传播,完成列车与调度中心之间或列车与列车之间通信的系统。简称无线列调。这是一种铁路专用的移动通信系统,是铁路调度通信系统的重要组成部分。组成包括调度所设备、沿线地面设备、移动电台设备、传输设备。 调度所设备包括调度总机、调度控制台、录音机以及监控总机等部分,供调度员与机车司机、车站值班员进行通话,必要时还可以进行数据通信。 沿线地面设备包括与传输设备相连的控制转接部分、收信机、发信机、双工器、传 输线和天线,以及调度分机等设备。 移动电台设备装载于运行列车上的无线通信设备,包括机车电台和车长电台。 传输设备用于把调度设备和沿线各地面固定电台连接起来,为信息传输提供音频通 道。 制式列车无线调度通信系统分为A,B,C 3种制式,采用150 MHz或450 MHz 频段,除个别呼叫采用数字编码外,其他呼叫信令均为模拟信令方式。为了解决弱场强区段通信问题,采用异频无线中继器。为了解决隧道中通信问题,采用150 MHz或450 MHz 频段漏泄 同轴电缆。 A制式系统适用于装设有调度集中设备的铁路干线,以调度员直接指挥司机为主的作业方式调度区间。采用有线、无线相结合的组网方式,基站电台与移动电台间的通信采用无线方式,调度所至基站电台的通信采用四线制音频话路构成。基站电台按场强覆盖合理设置,并具有跟踪功能以保证通信连续。调度员可以个别呼叫指定的司机,也能够识别司机的呼叫,还能够向调度区间内所有的机车司机发出呼叫(全呼)。调度员与司机之间除了话音通信外,还可以传输数据和指令,并能在调度所内打印和显示,以便及时掌握列车运行状态。为了保证系统正常工作,调度所设备应能对各基站电台进行集中监测和检测。在紧急情况下, 机车司机可以向调度员发出紧急呼叫。 B制式系统适用于繁忙的铁路干线,以车站值班员办理行车业务为主的方式,也采用有线、无线相结合的组网方式。车站电台与移动电台间的通信使用无线方式,调度所至车站电台的通信采用四线制音频话路构成。B系统应该优先满足调度员与司机间的通信。调度员呼叫司机时,先选呼运行列车最近的车站电台(选站),再呼叫该电台覆盖区内的所有机车电台(组呼),然后用话音叫出所有通话的司机,下达调度命令。调度员也可以通过各个车站电台呼叫调度区间内的所有司机(全呼)。机车司机在紧急情况下可向调度员发出紧急呼叫。车站值班员可以通过车站电台与其覆盖区内的司机、运转车长进行通话。有条件时,相邻车站值班员之间可以通过车站电台进行通话。在同一车站电台覆盖区内,司机与司机、车长与车长、司机与车长之间也可以进行单工通话,异频单工的通话则需要经车站电台转接。 B系统也可以经调度员人工转接进入铁路公务电话网。 C制式系统适用于以车站值班员办理行车业务为主的一般铁路线路和支线上,车站

无线通信的频率划分

ilent资料中无线频率划分 (1)W-CDMA(FDD):(UE/BS,ARFCN) IMT2000:1920~1980/2110~2170,10562~10838 PCS1900:1850~1910/1930~1990, 9662~9938&412&437&462&487&512&537&562&587&612&637&662&687 DCS1800:1710~1785/1805~1880,9037~9388 (2)TD-SCDMA China:1785~1805,1880~1900,1900~1920,2010~2025,2300~2400 3GPP:1900~1920,2010~2015 (3)HSDPA:(UE/BS) IMT2000:1920~1980/2110~2170(832~870MHz) PCS1900:1850~1910/1930~1990 DCS1800:1710~1785/1805~1880 (4)IS95A/B:(MS/BS) US/Korea:824~849/869~894 Japan:887~925/832~870 US:1850~1910/1930~1990 Korea:1750~1780/1840~1870 (5)CDMA2000(1xRTT,1xEV-DO,1xEV-DV):(MS/BS) IS95并增加 NMT450:411~483/421~493 GSM/GPRS/EDGE(UL/DL,ARFCN): GSM450:450.4~457.6MHz/460.4~467.6MHz,259~293 GSM480:478.8~486MHz/488.8~496MHz,306~340 GSM750:777~792MHz/747~762MHz,438~511 GSM850:824~849MHz/869~894MHz,128~251 E-GSM:880~915MHz/925~960MHz,975~1023&0~124——P_GSM基础上的扩展; P-GSM:890~915MHz/935~960MHz,1~124——最原始的124信道的GSM; R-GSM:876~915MHz/921~960MHz,955~1023&0~124——20信道的更加扩展?DCS:1710~1785MHz/1805~1880MHz,512~885 PCS:1850~1910MHz/1930~1990MHz,512~810 TETRA(MS/BS): 380~390,410~420,450~460,870~915MHz/390~400,420~430,460~470,915~950MHz Bluetooth:

铁路信号系统中无线通信技术的应用

龙源期刊网 https://www.360docs.net/doc/f2826511.html, 铁路信号系统中无线通信技术的应用 作者:张继龙 来源:《环球市场》2017年第15期 摘要:在列车的信号控制系统方面,因为轨道的信号所处的环境比较差,因此它的传输速率会比较低,还不可以支持高速铁路的快速发展。其中信号系统指能够保证高铁列车的安全和加快运行的速率。而信号系统是指控制着列车指挥与运行的设备,虽然它的投资总额在整个高速铁路工程中占的比率比较小,然而在一些方面有着十分关键的作用,比如加强通行力度、确定高速铁路的安全和提高工作者的坏境等。基于此,文章对铁路信号系统中无线通信技术的应用进行探讨。 关键词:铁路信号;无线通信技术;应用 在铁路建设中,通信系统的投资虽然不大,但是所发挥的作用不容忽视。由于轨道电路信息的传输速率慢、传输环境差、维护费用高,已经无法满足铁路的发展要求。而无线通信技术的出现,有效地解决了这一技术难题,提升了铁路的能源消耗,降低了系统成本。未来无线通信技术将会成为铁路信号系统发展中的一项重要技术。 1 无线通信技术特点 无线通信技术的主要特征有:①能够更稳定、有效地控制铁路的运行情况,不仅可以节省资源、降低能源消耗,还可以避免列车在运行状态下出现多次发动或者速度过快的问题;②在一些较为重要的控制系统中,根据自身情况、实际操作状态,列车进行自行调节,再通过利用计算机行辅助调整,从而能够有效加强铁路信号系统运行的安全性及其管理水平;③通过应用无线通信技术,能够减少中继设备的使用,如地面信号设备,从而减少了铁路信号系统的成本以及信号系统设备的保养、维护投入。 2 铁路信号系统中无线通信技术 2.1 充分考虑无线接入技术的临时调整性 结合电力无线通信的实际发展概况,可知其终端接入过程中存在着临时性问题,需要在无线通信信道使用中做出相应的调整,确保各种电力信息的正常传递与接收。在电力无线通信过程中,为了增强通信的安全性,需要设置用户登录验证形式,明确不同用户的访问权限,促使用户能够正常滴接入无线通信终端。受到这种机制的影响,对相关的数据信息传输安全性带来了潜在地威胁,加大了电力信息传输风险。 2.2 无线接入技术使用中的数据冲突问题

无线电频率划分与使用

1.频段划分及主要用途 名称甚低频低频中频高频甚高频超高频特高频 极高 频 符号VLF LF MF HF VHF UHF SHF EHF 频率3-30KH z 30-30 0KHz 0.3-3 MHz 3-30M Hz 30-300MHz 0.3-3GHz 3-30GHz 30-30 0GHz 波段超长波长波中波短波米波分米波厘米波 毫米 波 波长1KKm-1 00Km 10Km- 1Km 1Km-1 00m 100m- 10m 10m-1m 1m-0.1m 10cm-1cm 10mm- 1mm 传 播特性空间波 为主 地波 为主 地波 与天 波 天波 与地 波 空间波空间波空间波 空间 波 主要用途海岸潜 艇通 信;远 距离通 信;超 远距离 导航 越洋 通信; 中距 离通 信;地 下岩 层通 信;远 距离 导航 船用 通信; 业余 无线 电通 信;移 动通 信;中 距离 导航 远距 离短 波通 信;国 际定 点通 信 电离层散 射 (30-60MH z);流星 余迹通信; 人造电离 层通信 (30-144M Hz);对空 间飞行体 通信;移动 通信 小容量微波 中继通信; (352-420MH z);对流层 散射通信 (700-10000 MHz);中容 量微波通信 (1700-2400 MHz) 大容量微波 中继通信 (3600-4200 MHz);大容 量微波中继 通信 (5850-8500 MHz);数字 通信;卫星通 信;国际海事 卫星通信 (1500-1600 MHz) 再入 大气 层时 的通 信;波 导通 信 2.我国陆地移动无线电业务频率划分 29.7-48.5MHz 156.8375-167MHz 566-606MHz 64.5-72.5MHz(广播为主, 与广播业务公用)167-223MHz(以广播业务为 主,固定、移动业务为次) 798-960MHz(与广播公用) 72.5-74.6MHz 223-235MHz 1427-1535MHz 75.4-76MHz 335.4-399.9MHz 1668.4-2690MHz 137-144MHz 406.1-420MHz 4400-5000MHz

无线通信畅通

适应铁路发展需要保障铁路 无线通信畅通 摘要:经过全国铁路的6次提速,铁路专用无线系统在铁路运输发展中的作用越来越重要。由于铁路部门车速的提高及跨越式发展的需要,造成无线通信系统在运用中出现一些实际问题。本文就哈尔滨铁路局原齐齐哈尔铁路分局管内,因提速等原因造成无线系统方面的问题进行分析,并针对具体问题采取对应解决方案。 关键词:适应发展保障畅通 1997年4月至2007年4月全国铁路曾在120公里/小时的基础上,分线路先后6次大面积提速调图。经过经过这6次大提速,把干线上的列车时速进一步推到160公里或以上,部分区段列车最高时速可达200公里。哈尔滨铁路局管内的铁路营业里程4905公里、复线里程1930.4公里,铁路各运营部门都需要使用无线通信手段辅助提高运输效率,保障运输安全。铁路无线通信系统不仅要实现无线列车调度、铁路站场调车通信、铁路区间移动通信等话音通信功能,同时还承担了车次号传输、列车尾部风压数据传输、道口预(报)警等很多数据无线传输任务,在铁路运输安全生产中发挥着越来越重要的作用。但是,由于车速的大幅度提高及为适应哈局跨越式发展进行的中间站合并工作,造成哈局铁路无线通信系统在运用中出现一些实际问题,下面就原哈尔滨铁路局原齐齐哈尔铁路分局管内出现的一些新问题及解决方法分析如下: 1、列车提速产生问题的分析: 1.1大庆至让湖路间上行列车接近大庆站时,联控有时出现通不上话问题:1.1.1大庆站是一等站,在繁忙的滨洲线上无线车机联控作业频繁。由于铁路既有的单信道模拟制式无线通信设备主要是为满足话音通信设计的,长期以来一直存在着枢纽地区同频干扰严重,信道接入困难、语音不清晰和数据与话音争夺信道、相互干扰等问题。上述问题同时困扰着大庆站的无线车机联控作业。 1.1.2由于列车提速,大庆-让湖路属于滨洲干线重点提速区段,列车时速达到160公里,相当于每秒列车运行50米。机车联控距离是机车接近车站预告信号机的1000米处,也就是机车距车站2800-3000米处进行联控。原哈尔滨铁路局齐齐哈尔铁路分局管内该区段采用是400M C制式无线系统。每一次从乘务员拿起无线机车台送话器,到发射呼叫车站电台信令到接收到回铃音的时间是3.5秒,机车司机呼叫时间为3~5秒,车站电台从接收到机

机车综合无线通信设备

机车综合无线通信设备 系统组成: 机车综合无线通信设备由CIR主机、MMI操作显示终端、打印机、送受话器、扬声器、连接电缆、天馈单元等组成,分为WTZJ-I型机车综合无线通信设备(标准型)和WTZJ-II型机车综合无线通信设备(小型化)。 为保障机车综合无线通信设备的正常应用,我公司还配套有CIR出入库自动检测系统、CIR记录单元和放音装置、CIR记录单元数据分析系统等维护工具。 功能简述: 机车综合无线通信设备是我公司基于GSM-R数字移动通信技术、GPS全球定位技术、450MHz模拟无线电台通信技术等开发的综合车载通信设备。它与地面的GSM-R设备和450MHz设备共同组成一个完整的铁路综合无线通信网。 1. 司机只需操作一套设备,便可实现无线列调、调度命令传输、接收进路预告、无线车次号信息传输、列尾操作、800MH z预警等功能,将司机从繁杂的操作中解放出来。 2. 具有《列车无线调度通信系统制式及主要技术条件》(TB/T 3052)、《列车无线调度通用式机车电台主要技术条件(V2. 0)》规定的机车电台功能。 3. 具有450MHz机车电台承载的列车尾部风压、无线车次号、调度命令等数据信息传输功能。 4. 具有GSM-R调度通信功能。 5. 具有GSM-R通用数据传输功能,根据承载业务需要提供GPRS或电路方式数据传输链路。 6. 具有《800MHz列尾和列车安全预警系统主要技术条件(暂行)》中规定的车载电台功能。 7. 根据卫星定位信息自动转换GSM-R工作模式与450MHz工作模式并语音提示。 8. 具有上、下行线路分别设定工作模式转换点的功能。 9. 具有输出卫星定位原始信息、公用位置信息的功能。 10. 具有主、副MMI之间通话功能。 11. 具有话音、业务和状态信息记录及转储功能。 12. 具有整机自检和故障定位功能(故障定位到单元模块),包括450MHz机车电台单元、800MHz车载电台、GSM-R话音单元、GSM-R数据单元、记录单元、卫星定位单元、MMI、机车数据采集编码器、电池单元,并可将自检结果发送到出入库检测台。 13. 配备专用的库检设备,给设备维护人员提供完善的检测手段。

浅析铁路新一代无线通信技术LTE-R的应用及发展

浅析铁路新一代无线通信技术LTE-R的应用及发展 刘玥琛 摘要:不断发展的无线通信技术在铁路领域的应用,将不断优化铁路运能,对促进中国经济全面可持续发展具有深远意义。现有的GSM-R技术在抗干扰性、传输速率、容量和频谱限制、发展前景等方面均具有的局限性,本文对下一代国际先进且符合铁路运营规律的专用通信LTE-R 技术进行了研究,并对其性能、核心技术进行了详细分析。综述了LTE-R技术目前的研究实践以及未来中国铁路经济的发展方向。 关键词:无线通信GSM-R LTE-R 局限MIMOOFDM演进 1引言 作为目前我国铁路移动通信的主要应用技术,GSM-R技术以3GPP标准制式为基础,凭借其良好的组呼、强插,位置寻址及功能寻址等特性,能够迅速准确的诊断、传输数据信息,进而承载了大量的数据业务和语音通信业务,在我国得到了良好的发展和完善。 但是,随着全球经济一体化趋势的渐进和中国经济的强势崛起,高速铁路的发展也越来越迅速。为了满足乘客对高质量、高带宽通信业务的需求,国际铁路联盟提出了将现有窄带铁

路列控系统(GSM-R)向未来基于LTE的宽带铁路通信系统(LTE-R)平滑演进的方案。[1] 2 GSM-R的局限性分析 虽然GSM-R技术在我国得到了快速的发展和应用,但是作为第二代移动通信技术,GSM-R系统的电路域数据业务仅为2 400~9600bit/s,分组域数据业务的速率也仅能达到一百多kbit/s,它的频谱利用率和承载的数据速率也较低。这使得现有基于GSM-R的平台对承载视频监控、视频会议、铁路旅客移动信息服务等宽带业务的难度非常大。[2] 图1 GSM—R网络结构 2.1存在干扰问题 由于GSM-R网络与公众电信网络共用900 MHz(E-GSM)频段,因此GSM-R网络容易受到网外电磁干扰进而影响服务质量,尤其对列控业务存在非常明显的安全隐患。 2.2传输速率受限

列车无线调度通信

列车无线调度通信 Document number:PBGCG-0857-BTDO-0089-PTT1998

列车无线调度通信及设备维护铁路无线列车调度通信系统以铁路运输调度为目的,利用无线电波的传播,完成列车与调度中心之间或列车与列车之间通信的系统。简称无线列调。这是一种铁路专用的移动通信系统,是铁路调度通信系统的重要组成部分。 系统设备包括: 调度所设备、沿线地面设备、移动电台设备、传输设备。 调度所设备:包括调度总机、调度控制台、录音机以及监控总机等部分,供调度员与机车司机、车站值班员进行通话,必要时还可以进行数据通信。 沿线地面设备:包括与传输设备相连的控制转接部分、收信机、发信机、双工器、传输线和天线,以及调度分机等设备。 移动电台设备:装载于运行列车上的无线通信设备,包括机车电台和车长电台。 传输设备:用于把调度设备和沿线各地面固定电台连接起来,为信息传输提供音频通道。

制式: 列车无线调度通信系统分为A,B,C 3种制式,采用150 MHz或450 MHz 频段,除个别呼叫采用数字编码外,其他呼叫信令均为模拟信令方式。为了解决弱场强区段通信问题,采用异频无线中继器。为了解决隧道中通信问题,采用150 MHz 或450 MHz 频段漏泄同轴电缆。 A制式系统:适用于装设有调度集中设备的铁路干线,以调度员直接指挥司机为主的作业方式调度区间。采用有线、无线相结合的组网方式,基站电台与移动电台间的通信采用无线方式,调度所至基站电台的通信采用四线制音频话路构成。基站电台按场强覆盖合理设置,并具有跟踪功能以保证通信连续。调度员可以个别呼叫指定的司机,也能够识别司机的呼叫,还能够向调度区间内所有的机车司机发出呼叫(全呼)。调度员与司机之间除了话音通信外,还可以传输数据和指令,并能在调度所内打印和显示,以便及时掌握列车运行状态。为了保证系统正常工作,调度所设备应能对各基站电台进行集中和。在紧急情况下,机车司机可以向调度员发出紧急呼叫。 B制式系统:适用于繁忙的铁路干线,以车站值班员办理行车业务为主的方式,也采用有线、无线相结合的组网方式。车站电台与移动电台间的通信使用无线方式,调度所至车站电台的通信采用四线制音频话路构成。B系统应该优先满足调度员与司机间的通信。调度员呼叫司机时,先选呼运行列车最近的车站电台(选站),再呼叫该电台覆盖区内的所有机车电台(组呼),然后用话音叫出所有通话的司机,下达调度命令。调度员也可以通过各个车站电台呼叫调度区间内的所有司机(全呼)。机车司机在紧急情况下可向调度员发出紧急呼叫。车站值班员可以通过车站电台与其覆盖区内的司机、运转车长进行通话。有条件时,相邻车站值班员之间可以通过车站电台进行通话。在同一车站电台覆盖区内,司机与司机、车长与车长、司机与车长之间也可以进行单工通话,异频单工的通话则需要经车站电台转接。B系统也可以经调度员人工转接进入铁路公务电话网。

列车无线调度通信

列车无线调度通信及设备维护 铁路无线列车调度通信系统以铁路运输 调度为目的,利用无线电波的传播,完成列车 与调度中心之间或列车与列车之间通信的系 统。简称无线列调。这是一种铁路专用的移动 通信系统,是铁路调度通信系统的重要组成部 分。 系统设备包括: 调度所设备、沿线地面设备、移动电台设备、传输设备。 调度所设备:包括调度总机、调度控制台、录音机以及监控总机等部分,供调度员与机车司机、车站值班员进行通话,必要时还可以进行数据通信。 沿线地面设备:包括与传输设备相连的控制转接部分、收信机、发信机、双工器、传输线和天线,以及调度分机等设备。

移动电台设备:装载于运行列车上的无线通信设备,包括机车电台和车长电台。 传输设备:用于把调度设备和沿线各地面固定电台连接起来,为信息传输提供音频通道。 制式: 列车无线调度通信系统分为A,B,C 3种制式,采用150 MHz或450 MHz 频段,除个别呼叫采用数字编码外,其他呼叫信令均为模拟信令方式。为了解决弱场强区段通信问题,采用异频无线中继器。为了解决隧道中通信问题,采用150 MHz或450 MHz 频段漏泄同轴电缆。 A制式系统:适用于装设有调度集中设备的铁路干线,以调度员直接指挥司机为主的作业方式调度区间。采用有线、无线相结合的组网方式,基站电台与移动电台间的通信采用无线方式,调度所至基站电台的通信采用四线制音频话路构成。基站电台按场强覆盖合理设置,并具有跟踪功能以保证通信连续。调度员可以个别呼叫指定的司机,也能够识别司机的呼叫,还能够向调度区间内所有的机车司机发出呼叫(全呼)。调度员与司机之间除了话音通信外,还可以传输数据和指令,并能在调度所内打印和显示,以便及时掌握列车运行状态。为了保证系统正常工作,调度所设备应能对各基站电台进行集中监测和检测。在紧急情况下,机车司机可以向调度员发出紧急呼叫。 B制式系统:适用于繁忙的铁路干线,以车站值班员办理行车业务为主的方式,也采用有线、无线相结合的组网方式。车站电台与移动电台间的通信使用无线方式,调度所至车站电台的通信采用四线制音频话路构成。B系统应该优先满足调度员与司机间的通信。调度员呼叫司机时,先选呼运行列车最近的车站电台(选站),再呼叫该电台覆盖区内的所有机车电台(组呼),然后用话音叫出所有通话的司机,下达调度命令。调度员也可以通过各个车站电台呼叫调度区间内的所有司机(全呼)。机车司机在紧急情况下可向调度员发出紧急呼叫。车站值班员可以通过车站电台与其覆盖区内的司机、运转车长进行通话。有条件时,相邻车站值班员之间可以通过

列车无线调度通信

列车无线调度通信 Prepared on 24 November 2020

列车无线调度通信及设备维护铁路无线列车调度通信系统以铁路运输调度为目的,利用无线电波的传播,完成列车与调度中心之间或列车与列车之间通信的系统。简称无线列调。这是一种铁路专用的移动通信系统,是铁路调度通信系统的重要组成部分。 系统设备包括: 调度所设备、沿线地面设备、移动电台设备、传输设备。 调度所设备:包括调度总机、调度控制台、录音机以及监控总机等部分,供调度员与机车司机、车站值班员进行通话,必要时还可以进行数据通信。 沿线地面设备:包括与传输设备相连的控制转接部分、收信机、发信机、双工器、传输线和天线,以及调度分机等设备。 移动电台设备:装载于运行列车上的无线通信设备,包括机车电台和车长电台。 传输设备:用于把调度设备和沿线各地面固定电台连接起来,为信息传输提供音频通道。

制式: 列车无线调度通信系统分为A,B,C 3种制式,采用150 MHz或450 MHz 频段,除个别呼叫采用数字编码外,其他呼叫信令均为模拟信令方式。为了解决弱场强区段通信问题,采用异频无线中继器。为了解决隧道中通信问题,采用150 MHz 或450 MHz 频段漏泄同轴电缆。 A制式系统:适用于装设有调度集中设备的铁路干线,以调度员直接指挥司机为主的作业方式调度区间。采用有线、无线相结合的组网方式,基站电台与移动电台间的通信采用无线方式,调度所至基站电台的通信采用四线制音频话路构成。基站电台按场强覆盖合理设置,并具有跟踪功能以保证通信连续。调度员可以个别呼叫指定的司机,也能够识别司机的呼叫,还能够向调度区间内所有的机车司机发出呼叫(全呼)。调度员与司机之间除了话音通信外,还可以传输数据和指令,并能在调度所内打印和显示,以便及时掌握列车运行状态。为了保证系统正常工作,调度所设备应能对各基站电台进行集中和。在紧急情况下,机车司机可以向调度员发出紧急呼叫。 B制式系统:适用于繁忙的铁路干线,以车站值班员办理行车业务为主的方式,也采用有线、无线相结合的组网方式。车站电台与移动电台间的通信使用无线方式,调度所至车站电台的通信采用四线制音频话路构成。B系统应该优先满足调度员与司机间的通信。调度员呼叫司机时,先选呼运行列车最近的车站电台(选站),再呼叫该电台覆盖区内的所有机车电台(组呼),然后用话音叫出所有通话的司机,下达调度命令。调度员也可以通过各个车站电台呼叫调度区间内的所有司机(全呼)。机车司机在紧急情况下可向调度员发出紧急呼叫。车站值班员可以通过车站电台与其覆盖区内的司机、运转车长进行通话。有条件时,相邻车站值班员之间可以通过车站电台进行通话。在同一车站电台覆盖区内,司机与司机、车长与车长、司机与车长之间也可以进行单工通话,异频单工的通话则需要经车站电台转接。B系统也可以经调度员人工转接进入铁路公务电话网。

相关文档
最新文档