燃煤锅炉自动优化控制系统

燃煤锅炉自动优化控制系统
燃煤锅炉自动优化控制系统

X-NENG6000锅炉自动化控制系统

针对不同应用厂家,设备情况各不相同,对于原来没有变频器的我们配套XNENG-1大控制柜,内含变频器,工频变频切换回路;对于原来有变频器的我们配套XNENG-2小配电箱。采用DCS控制的节能柜。

一、浪费在哪里,您知道吗?

节能潜在点:人为因素

随着工业化的发展各企业对司炉工的需求量急增,应急的只经过了短时培训的司炉工纷纷应聘上岗,他们中间不乏有操作水平较高的司炉工,但更多的是操作水平一般,甚至连鼓风配风门都不会使用的炉工,他们可以使锅炉烧起来,也可以满足车间的生产要求,但是不知道如何使锅炉燃烧最好,最终以多用煤多耗电的代价来弥补操作水平不足。锅炉的燃烧在以下情况下有较大的节能空间。

间隙燃烧法:当工艺油温(导热油炉)或蒸汽压力(蒸气锅炉)低于下限设定值时,锅炉燃烧启动,当工艺油温或蒸汽压力高于上限设定值时,锅炉燃烧停止,经常性启停鼓风引风,使燃烧状况不稳定,浪费电浪费煤。因为煤中的固定碳的燃烧与火床温度,炉膛温度有很大的关系,火床和炉膛温度偏低时,燃烧速度会明显减慢,煤中的固定碳燃烧变得越加困难,炉渣含碳量增加,这样就使煤不能完全燃烧,热损失和排烟热损失增大,运行效益下降。不连续的燃烧,当引

风鼓风因超温或超压停下来,火床和炉膛温度会慢慢下降,等引风鼓风再启动时,火床和炉膛温度已相当低,煤的再燃烧有一个过程,只有等火床和炉膛温度升高到一定温度后,锅炉效率才会提高,但此时可能又会出现超温或超压停炉,这种燃烧方法导致炉膛平均温度长期偏低,很难使锅炉运行在最佳工况。

连续燃烧法:一般的调节方法是当负荷变大时,将炉排的速度加快,当负荷变小时,将炉排的速度放慢,这样调节可以使锅炉有一个连续燃烧的工况,但鼓风引风的风量不能跟随炉排的变化而变化,司炉工也不会频繁去调节鼓风和引风的风门,这就会造成当负荷大时炉排速度调快,鼓风量就会偏小,燃烧不完全;当负荷较小时炉排速度调慢,鼓风量就会显得偏大,就会有过剩的空气不参与燃烧而中和炉膛温度后由引风排出,造成能量的浪费。没有实现真正意义上的连续燃烧。

二、针对浪费现象,怎样才能解决?

节能潜在点:锅炉设备本身存在不足

绝大多数工业锅炉制造企业只重视锅炉本体的设计,对燃烧设备并不多加研究,在燃烧设备上存在的缺陷较多:

锅炉运行监测仪表不全

目前在用工业务锅炉配置的运行监测仪表不全,尤其缺少显示锅炉经济运行参数的仪表如炉膛负压,炉膛温度等等,因此,司炉工在调整锅炉运行时,往往由于缺少仪表显示数据,不能对锅炉的运行情况随时做出准确判断并实行相应的运行调整,难以使锅炉处于最佳运行工况。

自动化控制程度低

锅炉出厂的电控配置较低,大都采用简单的工频控制方式,或者变频手动调节方式。这种方式的自动化程度很低,锅炉燃烧状况的好坏完全依赖司炉工的操作水平,不但司炉工的劳动强度大,而且没有实现连续闭环控制,不能根据外界负荷变化来调节锅炉运行状态,无法使锅炉燃烧较快地适应工况的变动和处于连续稳定状态,锅炉的运行效率受到限制。

锅炉辅机配套问题

目前,许多锅炉的鼓引风机配套偏大,风机不能在高效率区域运行,锅炉运行工况变动时,只能靠挡板来调节风门的开度,这样就存在风阻和能量损失问题,由于电机转速是恒定不变的,减少了风门开度增加了风阻,风量虽然降低了,但风压随之增加了,在风门上的压力损耗会造成很大的电能浪费。

采用风煤比燃烧控制曲线特别在负荷经常变化的情况

下会显得更及时更经济更节能

燃烧控制亮点之一

-----风煤比燃烧控制曲线

风煤比控制意义

大家都知道,锅炉的燃烧效率,主要体现在配风和配煤,如果进风量太大,就会有过剩的空气中和炉膛的热量,使炉膛温度降低,煤中的固定碳燃烧不完全,炉渣含碳量增加,锅炉的热效率下降;如果进风量偏小,煤就不能充分燃烧,产生大量的CO,不经燃烧,直接排出,而且煤在炉排烧到尽头还是红煤渣,使煤碳燃烧不完全,造成燃煤的浪费。打个比喻,就像汽车的化油器,混合比太浓或

太淡,都会造成汽车的动力不足和浪费汽油。那么,如何能达到配风合理、燃烧最优,我们公司根据多年的实践经验,建立了一套风煤比燃烧曲线模型,适用于所有的工业燃煤锅炉。使客户的锅炉始终处于最佳燃烧状况,节电节煤。

风煤比曲线生成

根据不同的锅炉,在现场调试时,正常负荷和较小负荷时鼓风和炉排的频率输入计算机,计算机会根据系统内的风煤比模型自动生成对应该锅炉的风煤比曲线,在锅炉的实际运行中,鼓风会根据风煤比曲线自动跟随给煤量的变化而变化。锅炉负荷变大时,炉排的速度自动加快,计算机会自动依据风煤比曲线计算出鼓风频率,从而自动调大鼓风的风量;当负荷变小时,炉排的速度自动放慢,计算机会自动根据风煤比曲线计算出鼓风频率,从而自动调小鼓风的风量;这样就不会出现鼓风量时而偏大、时而偏小的现象。使锅炉始终处于最佳的燃烧工况。采用恒负压控制方式后风机的转速比以前变慢了炉膛温度比

以前变高了用电量比以前明显减少了

燃烧控制亮点之二

-----炉膛恒负压燃烧方式

炉膛负压控制意义

炉膛负压在锅炉燃烧控制中是一个很重要的参数,负压控制的好坏直接影响到锅炉的热效率,主要体现在:

□引风负压过大,会加大排烟速度,炽热的烟气与导热油管(水冷壁管)热交换时间偏短,同时锅炉后部出渣处和炉墙的漏风量加大,空气过剩系数上升导致炉膛温度降低;

□引风负压过大,会把炉膛的温度后移,使热量移向烟道,使排烟温度升高,使炉膛热量的利用率降低;

□引风负压过大,会造成引风出力过剩,而这过剩的出力需要增大电动机输出功率来弥补,浪费的将是大量的电能;

□引风量过小,会造成炉膛负压过小,甚至正压燃烧,这样容易烧坏炉门、炉墙,造成停炉停产。

恒负压控制原理

恒负压控制方式是采用传感器,实时检测炉膛内的实际负压,并转变成电信号送入计算机,当鼓风因外界负荷变化时,传感器将检测出炉膛负压的变化,计算机根据实际负压测量值与设定负压值相比较,输出一控制信号给引风变频器,调节引风机的转速使负压回复到设定值,从而始终保持炉膛负压恒定。连续燃烧控制模式使炽热的烟气与热媒体的热交换时间相对变长,排烟温度降低,热利用率变高,使燃烧更稳定,控制更平稳。

燃烧控制亮点之三

———连续燃烧控制模式

锅炉厂配套的控制柜一般是接触器控制的工频工作方式,燃烧时引风、鼓风都处于最快速度,烟道内烟气流速很快,炽热的烟气与锅炉导热油管(水冷管)的热交换时间相对就短,排烟温度相对偏高,热利用率较低。而且每次停炉后,炉膛温度和煤层温度下降很快,当锅炉再运行时,由于鼓风的进入和再燃烧有一个过程,炉膛温度会持续下降,需要较长时间才能把炉膛温度升上去,同时锅炉的频繁起停影响了电机的使用寿命,增加了启动能量损耗。

针对这种弊病,我们采用了先进的变频技术,微电脑计算机技术,按照锅炉的负荷需要自动调节炉排速度,同时根据风煤比曲线来控制鼓风引风的转速,使锅炉的燃烧力度根据负荷的变化而变化,使煤炭燃烧时间变长,烧尽烧透,同时由于引风鼓风速度变慢,烟道内烟气流速变慢,炽热的烟气与导热油管的热交换时间相对变长,排烟温度相对偏低,热利用率变高。

附:频率与功率、节电率一览表

信能公司通过多年的经验积累,不断完善,产品经历了几次升级,才有了现在的完善的控制系统,你选择了我们就等于请了一个锅炉燃烧专家,帮您省钱。

燃烧控制亮点四

我公司是专业从事锅炉节能改造的厂家,不但从节能上考虑锅炉运行的经济性,同时从控制上考虑锅炉运行的安全性、可靠性(工频-变频),控制品质的稳定性。

安全性

我公司设计控制柜的宗旨是安全第一,节能为主,除了原锅炉控制柜上应有的安全联锁保护功能都全部具有之外,又增添了一些新的保护功能。

导热油炉:循环泵运行连锁功能;低液位保护功能;低压差保护功能;超温保护功能;这些保护功能是原控制柜上应有的功能,我们都有,同时还从安全的角度增加了温度检测断线保护;温度异常保护等功能。

蒸汽锅炉:极低水位停炉功能;超压停炉功能,同时还增加了水泵异常保护功能。

控制品质稳定性

为了满足车间工艺生产要求,在锅炉负荷突然变化时应快速反应到燃烧控制上,增大或减少锅炉的燃烧力度,减少工艺油温或蒸气压力的波动,我们在软件设计中增加了很多自动调整锅炉燃烧力度的功能如超温自动调整功能,温差速度补偿功能,极低温度补尝功能,定时清灰功能等,这些功能的设置将使你的锅炉运行更平稳。

基于声波测温的电站锅炉燃烧优化控制系统

基于声波测温的电站锅炉燃烧优化控制系统 项目建议书 华北电力大学

一目前电站锅炉燃烧系统存在的问题 1.1 共性问题 1.1.1 两对矛盾需要解决 ①锅炉效率()与污染排放(NOx)之间的矛盾 当我们追求高的锅炉效率的时候,势必要使煤粉在炉充分燃烧。要达到这一目的,则需要提高炉燃烧温度以及使用较高的过量空气系数,而这两方面都会增加污染的排放。反之,则锅炉效率较低。炉的高温燃烧还会带来水冷壁结渣等事故的发生。因此需要在两者之间做出最佳的折中选择。 ②锅炉排烟热损失()和机械未完全燃烧热损失()之间的矛盾 对于锅炉效率影响最大的两项热损失—排烟热损失()和机械未完全燃烧热损失()—而言,也存在类似的矛盾。提高炉燃烧温度以及使用较高的过量空气系数,可以降低机械未完全燃烧热损失(),但是排烟热损失()则会随之增加。因此也需要在两者之间做出最佳的折中选择。 1.1.2 四个优化问题需要解决 ①锅炉效率()与污染排放(NOx)的联合优化 通过寻找最佳的二次风门和燃尽风门组合,建立良好的炉燃烧空气动力场,可以达到锅炉效率()与污染排放(NOx)的共赢。 ②锅炉排烟热损失()和机械未完全燃烧热损失()的联合优化 通过寻找最佳的烟气含氧量(O2)设定值,可以达到锅炉排烟热损失()和机械未完全燃烧热损失()的共赢。 ③汽温控制方案的优化 联合调节燃烧器和喷水,尽量使用燃烧器摆角等方式来调节汽温而减少减温水的使用量,可以较大幅度的提高机组热效率。 ④防止炉结渣的优化 这可以通过以下方法实现:一是寻找最佳的煤粉和二次风门、燃尽风门的组合,调整均衡燃烧,防治火焰偏斜;二是调节炉膛出口温度目标值;三是组织合理的吹灰优化。 1.1.3 炉膛三个参数的测量需要解决

智能电网节能优化调度系统

智能电网节能优化调度系统 王朝明[1][2],马春生[2] (东南大学江苏南京 210096)[1] (南京软核科技江苏南京 210019)[2] 摘 要:本文基于智能电网和节能发电调度背景下,针对现代地区电网调度的特点,提出了智能电网节能优化调度系统,本系统由电网经济运行控制系统、分布式无功电压优化控制系统、能耗在线监测及综合降损分析系统、分布式电源优化调度和大用户优化调度等多个模块构成。通过该系统,地区电网能够实现有功无功的联合优化控制,在智能电网调度的正常模式下,实现电网在安全约束条件下的经济运行。 关键词:节能优化调度,节能发电调度,智能电网,经济运行,无功电压优化,在线线损 0 引言 经济调度的目标是在保证电网安全运行的前提下,尽可能提高电网运行的经济性。传统的经济调度一般只考虑当前运行方式的安全性约束,而不考虑预想故障条件下的安全性约束,从而使问题大大简化,数值计算简单迅速,其结果则可能导致调度后电网因不满足预想故障条件下的安全性约束而进入预警状态,下一断面又需进行预防控制以消除预警状态,从而出现控制振荡现象。为避免出现上述情况,在经济调度问题中应加入预想故障条件下的安全性约束。其求解可在传统经济调度结果的基础上,借鉴预防控制问题的求解方法加以实现。 在智能电网环境下,要求各级调度在安全可靠、经济环保、运行效率等多个目标下进行优化调度,要求传统的调度转为以节能、环保、经济为目标,以公正友好的方式接纳各种电源,能够兼顾多目标优化、灵活协调、安全可靠。在智能电网环境下,传统的经济调度要转变为节能优化调度,调度员也只有在节能优化调度帮助下才能达到智能电网的要求。 在节能发电调度和智能电网的背景下,智能电网节能优化调度是地区电网经济运行的综合决策平台,为地调提供了智能电网下、节能环境下地区电网经济运行整体解决方案。它以系统安全运行为约束条件,以降损节能为目标进行经济调度。1地区电网节能优化调度系统的定位 1.1与省网节能发电调度的关系 为实现节能减排目标,引导电源结构向高效率、低污染方向发展,2007年8月,国家发展和改革委员会等部门提出了《节能发电调度办法(试行)》(以下简称《办法》),要求改革现行发电调度方式,开展节能发电调度[1]。 节能发电调度是指在保障电力可靠供应的前提下,按照节能、经济的原则,优先调度可再生发电资源,按机组能耗和污染物排放水平由低到高排序,依次调用化石类发电资源,最大限度地减少能源、资源消耗和污染物排放。节能调度的基本原则是:以确保电力系统安全稳定运行和连续供电为前提,以节能、环保为目标,通过对各类发电机组按能耗和污染物排放水平排序,以分省排序、区域内优化、区域间协调的方式,实施优化调度,并与电力市场建设工作相结合,充分发挥电力市场的作用,努力做到单位电能生产中能耗和污染物排放最少。 目前节能发电调度主要在广东、贵州、四川、江苏和河南五个省份进行试点。由于受到金融危机的影响,节能发电调度的试点遇到不少阻力。但是,节能降耗和污染减排是“十一五”期间一项全社会任务,是构建和谐社会的重要因素。国家在“十一五”规划中提出2010年单位GDP能耗下降20%,这个任务非常艰巨。因此随着经济复苏,节能发电调度的试点会不断推进。 节能发电调度是从省调层面,以降损节能为目标,对大型发电机、高耗能机组、新能源进行优化调度。地区电网作为省级电网的子网,同样需要降损节能。两者有机配合才能真正实现降损节能的目标。 1.2与智能调度的关系 近年来,智能电网是国际电力业界的热门话题,被认为是改变未来电力系统面貌的电网发展模式。我国国家电网公司已明确提出要“建设坚强的智能电网”的规划。 目前,在扩大内需的大背景下,智能电网的

交通信号控制优化服务解决方案

交通信号控制优化服务解决方案 1概述 交通信号控制优化服务是借助专业团队对交通信号控制方面进行挖掘,以更加有效地缓解目前由于机动车数量过快增长而造成路网交通运行压力增大,道路硬件资源增长严重失衡这一问题。具体服务内容包括: ?对交通信号控制理论及相关技术进行总结,规范信号优化工作流程,落实责任,建立统一化与个性化相结合的交通信号管理模式,保证交通信号合理运行,满足各种条件下道路交通参与者的通行需要。 ?通过对相关路口进行周期性调查,及时发现存在不足并予以改善、跟踪,从而不断提高其运行水平。 ?通过路口排查和调研,对有条件进行协调控制的路口设计协调控制方案,降低协调控制路口的行车延误,提高交叉口服务能力。 ?以周报、月报和专项分析报告总结归纳工作开展情况及完成效果,有计划性的回检评价历史优化路口,提炼可取之处及考虑不周的地方,对未来将有可能发生变化的交叉口或路段有一定预测性。 2服务内容 2.1交通信号管理基础工作 (1)交通信号控制理论及相关技术总结 交通信号控制理论及相关技术的总结包括对交通信号控制相关理论的总结和对现今主流信号控制模式及方法的总结2部分内容。 ?对交通信号控制相关理论的总结 包括对信号控制涉及的相关参数的总结、对通过能力的总结及对信号路口对车流停滞作用的总结3部分内容。 ?对现今主流信号控制模式及方法的总结 包括对单点信号控制模式与方法的总结、对交通信号子区划分的模式与方法的总结、对主干道交通信号协调控制模式与方法的总结、对同类型交通信号路口协调控制模式与方法的总结、对长距离交通信号协调控制模式与方法的总结以及

对区域协调控制模式与方法的总结六大类涵盖点、线、面三个层次的信号控制与协调方法的相关技术理论的总结。 在对交通信号控制相关理论的总结基础上,根据各地市信号路口特点,重点对适用该地信号控制特点的信号控制模式及方法进行总结。 ?单点信号控制 主要包括单点定时信号控制、单点感应信号控制和单点自适应信号控制三种方式。针对信号控制路口常用的单点信号控制方法有Webster等方法。 ?交通信号子区划分 主要基于距离原则、车流特征原则、周期原则的子区划分原则及其相关的关联度判断方法、合理周期范围判断方法的划分方法总结。 ?主干道交通信号协调控制 主要包括单向绿波协调控制、对称双向绿波协调控制、非对称双向绿波协调控制的方法。针对不同地市信号控制路口不同的流量特征可选用相对应的主干道信号协调控制方法。 ?同类型交通信号路口协调控制 主要针对信号路口饱和度同类型及其基础上的潮汐特征同类型进行交通信号路口同类型的判定分析,归纳与其相对应的信号控制适用方法。 ?长距离交通信号协调 主要对相邻路口间距离较长的信号路口及交通信号路口数较多的整体距离较长的协调控制方法进行研究,针对长距离交通信号协调的分类归纳相对应的协调模式及方法。 ?区域协调控制 交通区域协调控制是二维上的控制,它通过将绿波协调控制的路口利用组合叠加的方式,对各信号控制路口的信号周期、绿信比以及路口间的相位差进行优化,以减小延误、提高路网通行效率的信号控制方法。当前交通信号区域协调控制的方法主要可以分为结合调控的协调方法、基于延误的协调方法和基于绿波带优化的协调方法。 通过全面深入的了解信号控制的基础理论及信号控制主流模式及技术方法,掌握前沿技术,归纳出适用性强的主流核心技术规范,为交通信号控制优化提供

连续系统的最优控制

第6章 连续系统的最优控制 6.1 最优化问题 6.2 最优控制的变分法求解 6.3 线性系统二次型性能指标的最优控制 1、线性系统有限时间最优状态调节系统 ◆二次型性能指标 设受控系统对平衡点的增量方程为 ()()()()()x t A t x t B t u t ?=?+?,00()x t x ?=? 简记为 ()()()()()x t A t x t B t u t =+,00()x t x = 最优状态调节是指:对上述系统,在时间区间0[,]f t t t ∈,

寻求最优状态反馈控制,使初始状态偏差00()x t x =迅速衰减,且同时使二次型性能泛函 11()()[()()()()]d 22f t t t t f f f x u t J x t Q x t x t Q x t u t Q u t t =++? * min f x u J J J J J =++→= 式中 ()0f n n Q ?≥——终端加权矩阵。 ()0x n n Q ?≥——状态加权矩阵。 ()0u r r Q ?>——控制加权矩阵。 三个加权矩阵均为对称矩阵,为简单,一般取为对角矩 阵。 ●1()()2 t f f f f J x t Q x t =表示对终端状态偏差即稳态控制精度的限制。当1 diag[]f f fn Q q q =,2 1 1()2n f fi i f i J q x t ==∑

●0 1()()d 2f t t x x t J x t Q x t t =?表示对控制过程中状态偏差衰减速度的要求。当1 diag[]x x xn Q q q =,0 2 11()d 2f t n x xi i i t J q x t t ==∑? ●0 1()()d 2f t t u u t J u t Q u t t =?表示对控制过程中所消耗的能量的限制,以避免状态偏差过快衰减导致控制量超过允许数值。当 1 diag[]u u ur Q q q =,0 2 11()d 2f t r u ui i i t J q u t t ==∑?,2()i u t 可理解为功率。 实际上,在性能指标中,x J 已经对控制的稳态精度有所要求。当对稳态精度有更高的要求时,才增加f J 项。 由上可知,上述二次型性能指标的物理意义是,在整个时间区间0[,]f t t t ∈,特别是终值时刻f t t =上状态变量尽量接近于0

锅炉APC先进过程优化控制解决方案

专业服务,创造价值 循环流化床锅炉APC先进过程 优化控制解决方案 2013-11-13

1 公司简介 集团(中控)始创于是中国领先的自动化与信息化技术、产品、解决方案供应商,业务涉及工厂自动化、公用工程信息化、装备自动化等领域。公司是中控科技集团的核心成员企业,致力于工厂自动化领域的现场总线与控制系统以及流程模拟仿真系统的研究开发、生产制造、市场营销及工程服务。 2 行业背景 2.1 行业现状 循环流化床(CFB)燃烧技术是最近几十年发展起来的一种新型燃烧技术,由于循环流化床锅炉具有燃料适应性广、燃烧效率高、高效脱硫的特点,因此近年来有了很大的发展,我国的循环流化床也经历了小型、中型、大型三个发展阶段,循环流化床能够解决我国燃烧锅炉存在包括环境问题在内的诸多现实问题,因此中国将成为循环流化床锅炉最大的商业市场。 2.2 行业难点 由于循环流化床锅炉燃料是在流化状态下燃烧,锅炉燃烧系统惯性大,各个变量之间相互影响,加上有飞灰循环等影响因素,因此CFB锅炉燃烧系统是一个大滞后、强耦合,多干扰的复杂非线性系统,自动燃烧优化控制难度较大,是业内公认的控制难点。 鉴于循环流化床锅炉燃烧的复杂性和特殊性,对一般煤粉锅炉和其他过程控制对象行之有效的常规控制方法,已难保证循环流化床锅炉各项控制指标的实现。有别于常规控制,中控锅炉APC先进控制解决方案采用多变量模型预测控制、专家规则控制等智能控制策略,能够更好地结合专家经验的同时克服系统大滞后、强耦合、多干扰等控制难点,可以较好地实现CFB锅炉系统安全高效率的燃烧自动控制,各项指标稳定度大幅提升,经济效益比较可观。

3 项目可行性分析 3.1 现场概述 贵公司炉机系统属中小型循环流化床多炉多机系统,实行母管制运行方式。 一次检测仪表性能良好,风机调节为挡板和变频控制,主汽温度挡板调节,除挡板调节死区稍大外,其余执行器调节死区小于1%,即执行器死区情况基本满足优化控制需求。 流化床控制系统采用中控DCS系统,DCS上配置传统的PID自动控制回路中,汽包水位控制回路、给煤控制、一次风控制、二次风控制、引风控制、减温水控制等大部分回路,现场均由操作人员手动操作。 3.2 优化空间 3.2.1 数据分析 对现场DCS数据进行取样分析,以#炉为例,数据包选取年10月1日至年10月20日,总计20天的数据,进行离线统计分析,主要分析主汽压力、主汽温度、烟氧含量、炉膛负压、床层温度、床层压差六个指标的平均值与平均波动幅度两项特性值。如下表所示: 序号指标平均值平均波动范围备注 1 主汽压力8.3MPa +0.5Mpa 2 主汽温度540℃+0.5℃ 3 烟氧含量 3.5% +1% 氧量较低 4 炉膛负压10Pa +120Pa 5 床层温度955℃+15℃床温较高 6 床层压差8.9KPa +0.3KPa 通过数据统计结果分析可知,由于现场燃煤的挥发分较高,氧量平均值较低,同时床温已经较高,因此燃烧效率本身提高空间就有限了,但各指标的平稳度还是有提升空间的,同时通过综合调整,可适当提高锅炉的传热效率,从而进一步

控制系统节能优化技术研究与应用探讨

控制系统节能优化技术研究与应用探讨 发表时间:2019-09-18T08:58:11.450Z 来源:《电力设备》2019年第7期作者:许明阳朱秀春 [导读] 摘要:燃煤电厂在生产过程中一般通过运行操作优化(运行调度)、主辅机设备节能改造来提高机组经济性,本文通过分析火电厂节能降耗管理措施现状及发展趋势,提出了通过控制系统节能优化技术降低机组能耗的思路,为热控技术管理提供新的理念和方向。 (华润电力(贺州)有限公司广西贺州 542709) 摘要:燃煤电厂在生产过程中一般通过运行操作优化(运行调度)、主辅机设备节能改造来提高机组经济性,本文通过分析火电厂节能降耗管理措施现状及发展趋势,提出了通过控制系统节能优化技术降低机组能耗的思路,为热控技术管理提供新的理念和方向。 关键词:控制系统节能优化、自动寻优控制、机组协调控制、自动控制节能化 1.概述 在传统燃煤电厂的生产运营管理中,降低机组能耗的措施主要通过运行操作调整、主辅机设备节能改造来实现,然而工艺设备节能改造需要投入大量的改造费用,且经过多年设备优化、调整优化,机务设备、运行调整在节能方面各种方式似乎已用尽,电厂生产运营节能管理该朝哪个方向发展成为了电厂经营管理日夜思索的问题。 2.控制系统节能技术研究探讨 对于火力发电厂来说,考核机组节能降耗关键指标为发电煤耗、厂用电率,要确保上述2个指标处于最低值,机组必须稳定在最佳经济工况运行。 2.2火电厂关键控制系统节能技术概述 2.2.1协调控制系统节能优化 2.2.1.1协调控制系统优化节能优化之“稳”、“准”原则 只要确保控制系统“稳”、“准”即可达到机组节能效果,因此机组协调控制系统需要不断持续改进,提高控制系统稳定性、准确性,将相关控制对象参数控制在机组最佳经济运行工况即可获得巨大的节能效果。 2.2.1.2协调控制系统优化节能优化之“细”原则 2.2.2送风控制系统 笔者所在电厂机组配置双进双出磨煤机制粉系统,根据其制粉系统特点,风量指令是通过负荷指令-风量函数F (x)后,进入超前滞后、惯性环节得到初始的送风指令,回路中的超前滞后环节的采用是为了满足先加风后加煤设置,以满足炉膛的燃烧过程。 对于送风控制系统优化相对比较简单,只需通过试验摸索最佳负荷指令-风量函数F (x),并结合氧量校正回路优化即可将风量需求控制更加精准,达到降低送、引风机电耗,降低排烟损失和减少NO x排放。 2.2.3氧量自动寻优校正回路 负荷指令产生的风量指令还需考虑到实际煤种的变化情况,常规处理在控制回路中增加氧量校正的环节,以确保燃烧的稳定性和经济性,过高氧量会造成送、引风机电耗增加,锅炉排烟损失增大,同时NOx含量升高,增加下游脱硝设备运行损耗及液氨投量;过低氧量会造成锅炉燃烧不充分、烟气飞灰含碳及COe等不完全燃烧损失增大,同时燃烧产生大量COe对炉膛炉管有腐蚀作用,因此,合适氧量校正曲线对机组运行的稳定性和经济性尤为重要,氧量校正曲线优化对于机组节能具有重要作用。 2.2.4 一次风压自动寻优 一次风压控制回路策略一般采用定压或者根据机组负荷滑压方式,然而不管哪一种都是不经济的。 对于一次风压控制系统节能优化,可通过磨煤机入口风压、风量变化,结合机组负荷指令,在线计算一次风压目标值,实现一次风压自动寻优控制。 2.2.5加热器水位自动寻优控制 由于部分机组的水位给定值不科学,需要进行水位调整试验,确定合理的运行水位。试验方法很简单,机组运行平稳后,保持各参数不变,逐步提高加热器水位,观察疏水温度下降情况,当水位提高到疏水温度不再降低时,说明此时已无蒸汽进入水封,然后再考虑适当裕量即为最低水位值,而高水位则以不淹没排空气管为限。同时可在此基础上引入加热器端差等有关运行参数,在线修正加热器运行水位定值,实现自动寻优控制。 3.控制系统节能技术实例 贺州电厂先期于2014年展开“协调控制节能优化技术”、“氧量手动寻优控制”的研究,对相关控制回路进行了初步节能优化,从数据统计看取得了非常可观节能成果,主要优化内容如下: 3.1通过试验寻找锅炉最佳氧量控制模型,对燃烧控制系统氧量动态数学模型进行修正;优化后锅炉燃烧过剩空气系数控制更加精确,提高燃烧效率,降低送、引风机厂用电,使控制系统更佳节能。 3.2贺州电厂制粉系统配置了双进双出磨煤机,入炉煤量无法直接测量,因此采用了软测量模型计算入炉煤量;本次优化对双进双出磨煤机料位与入炉煤量的动态特性数学模型进行深度优化,为负荷风挡板控制系统、协调控制系统控制模型优化提供新的理论依据。使用新模型后,提高入炉煤软测量的准确性,使原软测量偏差30~50吨降低至5~13吨,使控制系统入炉煤量控制更加精准。 3.3对协调控制系统子系统“锅炉主控”比例、积分实施变参数控制策略,解决了原控制系统周期性波动问题;在主汽压力控制回路中增加变负荷过程中压力设定值的自适应产生算法回路,以改善机组变负荷过程中的压力调节品质。 3.4对协调控制汽机指令进行相应的修改,增加机组负荷指令对应函数的前馈量;增加压力解耦控制回,提高主要压力控制品质。 3.5根据南方电网两个考核细则标准,结合机组运营现状,优化一次调频控制回路模型,提高一次调频动作合格率。 3.6优化后降低了送、引风机厂用电率 2014年3月、9月分别对贺州电厂#2、1机组氧量控制动态数学模型进行优化设计后,对锅炉燃烧过剩空气系数控制更加精确,送、引风机电耗大幅降低。 4.优化后控制系统调节品质指标 贺州电厂在对协调控制系统进行节能优化后,各主要技术考核指标均优于1000MW级机组调节系统动、稳态偏差行业标准优良指标。

600MW机组协调控制系统优化-5页文档资料

600MW机组协调控制系统优化 1 机组概况 河北国华沧东发电有限责任公司一期工程为两台600MW亚临界燃煤发电机组。汽机岛由上海汽轮机厂供货,锅炉岛由上海锅炉厂供货。 2 协调控制系统控制原理 协调控制的设计方案是以锅炉跟随为基础的协调控制系统,原设计机组采用定-滑-定运行方式,从0到27%为定压方式运行,27%到77%负荷区间为滑压运行方式,77%以上为定压运行方式。 锅炉主控输出指令由以下几个部分组成:1)机组负荷指令给定值信号;2)机组负荷指令给定值的微分信号;3)机组负荷指令目标值的微分信号;4)机组滑压设定值的微分信号;5)频差信号;6)压力设定值与实际值偏差的微分信号;7)锅炉主汽压力PID调节器输出信号。 其中,机组负荷指令给定值信号为锅炉主控制器的主前馈信号,其他微分前馈用于在机组负荷升降过程中提高锅炉主控制器的响应速度,压力设定值与实际值偏差的微分信号用于在主汽压力与设定值偏差过大时快速动作锅炉主控制器帮助调节主汽压力。 在机组负荷指令变化的初期汽机侧调门是基本不变的,因为送到汽机控制器的机组负荷指令要经过一个四阶滞后,延时时间t为锅炉产生蒸汽时间的0.2倍。经过四阶惯性环节延迟后的负荷指令还要加上压力拉回回路计算的结果,再与实际负荷值进行偏差运行,偏差值经PID回路计算后做为汽机主控的输出送往DEH控制系统控制阀门开度。汽机主控输出指令由以下几个部分组成:1)机组负荷指令给定值经过四阶惯性延迟;2)锅

炉主控送来的机组负荷指令给定值的一阶微分信号;3)频差信号;4)主汽压力偏差信号即压力拉回回路;5)实际负荷值。 以上信号1-4相加后同实际负荷求偏差送入汽机主控PID调节器,PID 调节器的输出来控制汽轮机调速汽门的开度。压力拉回回路就是计算设定压力与实际压力的偏差,当偏差值超过规定值后(原设计为±1.8%),就将这个偏差值经过处理放大后叠加到负荷命令回路中。举例来说,当升负荷时,根据滑压曲线首先要增大压力设定值,如果在升负荷过程中,实际压力比设定压力低出太多,超过规定值,就会产生一个负数加到负荷命令上,从而减小负荷命令,减小调门开度,以便于增大实际压力,当实际压力与设定压力偏差小于规定值时,该值输出为0。降负荷时也起到同样道理,因为该回路具有将压力拉回作用,因此称之为压力拉回回路。一次调频功能就是当电网频率低于或高于某个限值时,不通过协调控制回路产生命令,直接将信号作用到汽机控制器负荷调节回路,使机组负荷迅速变化以响应电网需要。 3 存在问题 #1、#2机组协调控制系统在2007年机组投入商业运营后基本能满足现场生产的需要,但是在负荷升降和遇到机组吹灰或燃料等扰动的情况下,主汽压力、温度的摆动幅度过大,导致汽包水位剧烈波动。同时快速负荷变化能力差,负荷命令变化后机组实际负荷响应慢,达不到调度中心对投运AGC机组的要求。 AGC投入合格标准:1)AGC机组负荷调节速率(MW/分钟)不小于机组额定出力的1.5%;2)机组投入AGC控制时,出力调整迟延时间应小于

火力发电厂自动控制优化对机组节能的应用浅析

火力发电厂自动控制优化对机组节能的应用浅析 发表时间:2019-03-12T14:31:20.963Z 来源:《电力设备》2018年第28期作者:李星华 [导读] 摘要:随着时代的快速发展及社会生产力的逐渐提升,自改革开放后,社会经济取得了显著发展。 (广西投资集团方元电力股份有限公司来宾电厂广西来宾 546138) 摘要:随着时代的快速发展及社会生产力的逐渐提升,自改革开放后,社会经济取得了显著发展。节能降耗是社会经济长远发展中的核心内容,针对保护社会经济迅速、稳定发展有着显著作用。文章以火力发电厂为研究对象,通过研究其智能化控制对机组能耗的影响,制定出了火力发电厂机组设施的智能控制优化策略。 关键词:火力发电厂;自动控制;机组降耗;运用分析 为了满足国家节能降耗的具体需要,火力发电厂应当结合自身的具体发展状况,基于满足其今后节能发展趋势的角度着手,做好机组的减排工作,从本质上推动火力发电厂的可持续发展。 1、智能控制对机组降耗的影响 1.1汽轮机信息电液控制平台(DEH)的阀门控制模式优化方法 DEH系统属于分布式控制平台(DCS)的主要构成部分,通过采用专业性很强的计算机技术来操控火力发电设施内的汽轮机运速、汽轮机的智能周期及负荷,进而实现同DCS系统的信息共享。 通过对汽轮机现行的控制方式进行完善、改进,这是减少其机组能耗的有效途径。经对汽轮机顺序开关的调节方式展开流量特性测试,并求出汽轮机内不同开关的流量,绘制出各流量特征曲线,进而实现DSC与DEH系统结合的重新优化及变更,减少机组能耗。此外,为了让汽轮机开关流量特征与之满足要求以得到减少机组能耗的目的,各火力发电厂能够通过采用大数据数据计算方式,来优化汽轮机器的定滑曲线与阀门启动的顺序,进而缺少机组智能发电量控制平台和一次调频具有优良的调节功能。 1.2主汽压力智能控制对机组能耗的影响 火力发电厂内的设备在运行阶段,若负荷较低且煤的质量不好时,将会极大影响到汽轮器的负荷性能。而且,还对智能滑压器在机组内的运行造成不良影响。在机组进行智能滑压运行过程,由于主汽压力的参数实际值小于理论值,所以,主汽压力的智能控制对机组的能耗会有一定的作用,但是,该作用的范围很小。但就整体而言,在采取智能滑压运作模式后,机组在经济效益和能耗方面均有明显改进。此外,采用调节主汽压力的控制方案及控制参数,可以对滑压运行中的阀门开度及运行方式进行合理判断,在以降低机组能耗而实现机组运行低投资目的的基础上,也有效提升了机组运行的稳定性。 1.3汽温智能操控对机组能耗的影响 汽温过高会给机组的运行带来很严重的安全故障,可能造成机组的过热器与再热器管道出现爆管现象;但汽温过低就会加大机组端部蒸汽湿度,使蒸汽机叶片受到腐蚀,从而令蒸汽管道出现动荡,加大了产生水冲击的几率,所以,提高汽温智能控制性能,是目前发电厂经营的焦点。目前,较为科学的控制方法是采用串级调节平台调整为机组的过热器,利用双回路的技术控制系统,从而实现机组降耗。 汽温的反复变化,除了影响机组运行安全外,还影响到机组的经济效益,主再热蒸汽气温每减少1℃,则增加能耗约0.03- 0.04g/kWh。提升智能控制的可靠性与稳定性,能够把锅炉主再热蒸汽气温保证在压上限运转,并降低主再热蒸汽降温水的用量,进而达到节能减排的目的。 2.完善给水结构控制模式 在低负荷过程,并列运转的给水泵常常产生“抢水”与最小流量阀反复开关的情况,极大影响机组的安全、可靠运行,由此,需要合理调节给水泵最低流量阀操控模式与保护定值,在保证给水泵稳定运行的前提下全面减少能耗。 针对电动给水泵的完善,就要思考电泵备用操控流程,当汽泵停电后使电泵通过智能并入且带负荷,同时根据机组的给水配置原则进行自动给水,从而满足相关设施的需水量。在优化改进电动给水泵的智能控制模式时,要以认真仔细考虑电泵联启智能控制顺序为基础,明确电泵联启的时段与增/减水的比值,且根据电动机水泵的响应时间,确保在汽泵停电后,系统可以达到智能联启并进入智能运行。采用电动给水泵智能控制,除了可以减少操控相关设施时产生失误现象的几率外,还给汽泵停电后机组运行的稳定性带来了一定的保证。 优化给水控制平台,实现给水泵智能启停功能与给水泵智能并/退泵功能。根据设备“无电泵启动”的思想,在主机启动与停机阶段,将采取厂用辅助蒸汽母管和2台给泵汽轮机的输汽管道,直接引进辅助蒸汽以冲转小汽机,通过汽动泵为锅炉提供水量,然后搭配锅炉省煤器入口给水流量管理小旁路的升级与小汽机操控方法的调整,如此一来,机组启停环节就不再依靠电动给水泵了。 3.一次机组的智能操控方法优化 采用一次机组对风煤比展开调节,是实现低能耗、减少火力发电厂能耗率的主要途径。当前,比较科学的一次机组自动操控设施是双进双出磨煤器,其基本运行原理是,在各个机组内分别安装4各磨,但在每个磨的驱动和非驱动两端搭配2台负荷风门,利用负荷风门带走煤粉,进而达到锅炉燃烧原料的要求。此外,相关电能控制者通过定压操控一次机组,能够调整负荷风煤比经负荷风门的大小,通过详细分析一次机组及风机负荷和具体供煤量之间的联系,并采用一次风机来调整风煤比的实际需求,在减少火力发电厂能耗的基础上,还全面提升了机组中的燃煤率。 4.改进凝泵变频降耗 在确保凝结水泵、给水泵和其他设施稳定运行的前提下,找出适当的凝泵出口水压、凝结水精清理系统出口水压参数,尽量减少凝结水泵能耗。在逻辑设计方面确保机组全负荷段工作时智能的稳定投入,其中,良好的操控逻辑是分段操控,在低负荷与启停阶段,凝泵变频操控凝泵出口水压确保降温水等客户要求,而除氧器水位调整站采取三冲量操控除氧器水位。中高负荷过程,就切换到凝泵变频三冲量操控除氧器水位,原除氧气水位调节阀操控凝泵出口水压,该压力能够是一个以负荷为基础的分段函数。针对2台凝泵共用1台变频器时,要考虑到任何1台凝泵工频时要切换到除氧器主调操控除氧器水位的模式。 5.火检冷却风机操控改进 火检冷却风机是火电机组内的关键构成部分,其能够很好的冷却火检端部,进而确保锅炉的正常稳定。在工业生产阶段,因为火检端部通常被安装在炉膛中,所以火检端部的温度相对偏高,为确保火检端部的正常应用,一般在锅炉火焰监控系统内安装2台火检风机,且使之自动化运行,进而保证锅炉的稳定运转状态。要求相关研究者有效结合各种理论知识与实践情况,进而顺利开展火检冷却风机智能操控

#蒸汽锅炉控制系统技术方案

DL-1000燃煤蒸汽锅炉控制系统技术方案 设计依据和原则 1.依据客户北京昌科供暖中心有关45t/h、35t/h、20t/h燃煤蒸汽锅炉控制系统的要求,并按照自控装置系统必须科学、合理、成熟、安全可靠、稳定、可扩展以及性价比高的原则进行设计。 2.符合以下规范与标准: 《蒸汽锅炉安全技术监察规程》1996; 《锅炉房设计规范》GB50041-92; 《工业锅炉监测与控制装置的配置标准》DB31/T72-1999; 《工业锅炉热工试验规范》GB10180-88; 《电气装置安装工程施工及验收规范》GB50303-2002; 《低压电器基本标准》GB1497-93; 《工业自动化仪表工程施工及验收规范》GBJ50093-2003。 1.0系统概述 本系统为DL-1000分散型集中控制系统,是集控制技术,通讯技术于一体,是当今控制系统的主流机型。可完成调节控制,联锁保护,顺序控制,数据采集等任务。人机接口采用触摸屏及上位机进行实时监控。运用多媒体技术,具有3D动画、全中文显示、声光提示等丰富多彩的人机互动界面,能直观地显示锅炉和燃烧的实际情况及燃烧负荷状态,各运行数据实时动感地显示在彩色触摸屏上,使锅炉的运行状态一目了然,操作更直观、更简便。该系统具有良好的互联性和开放性,留有充分的升级和后备功能,满足IEC61158和EN50170标准的要求。并且具有在恶劣工作环境下安全可靠运行和全视角直观显示锅炉系统工作状态的优点。 1.1 硬件 1.1.1 概述 本方案所配置的系统硬件均是有现场运行实绩的,先进可靠的和使用以微处理器为基础的分散型硬件。 1.1.2 处理器模件(PLC CPU226) PLC为可编程逻辑控制器,是一种以微处理器为基础,综合了现代计算机技术、自动控制技术和通讯技术发展起来的一种通用的工业自动控制装置,由于它拥有体积小、功能强、程序设计简单、维护方便等众多优点,特别是它适应恶劣工业环境的能力和它的高可靠性,使它的应用越来越广泛。 其主要负责数字量的数据处理和运行(控制),数据高速公路通讯管理和过程输入/输

能源管理系统优化

能源管理系统优化 瓦房店轴承集团有限责任公司 主创人:江忠元陈家君 主要参与人:孙永生赵玮高显华初勇 节约能源、降低消耗、保护资源是国家实施可持续发展战略的重要组成部分,而对于加入WTO融入国际经济一体化的中国国有企业,如何提高核心竞争力,在激烈的市场竞争中立于不败之地,是摆在我们面前一个十分紧迫的话题。瓦轴集团公司近几年来紧紧围绕增强市场竞争力、降低成本、提高经济效益、实现集约式发展这一目标,在多年实践探索的基础上,以现代化管理思想为指导,采用科学配套的现代管理方法和手段建立系统高效的节能管理体系,并在生产经营实践中不断优化,取得了较好的效果,使公司能源管理实现了系统化、科学化、高效化。 一、选题依据 瓦轴集团公司是一个年耗标准煤12.5万吨,能耗总价值达1.2亿元,占产品制造成本的12%左右。其中耗煤7.8万吨标煤,耗电11072万千瓦时,耗焦碳250吨,耗成品油2千吨,热力消耗25670百万千焦。万元产值综合能耗为1.03吨标煤。由此可见,能源消耗在企业产品成本中占有举足轻重的地位,加强能源管理,实现节能降耗已势在必行。 在能源管理工作中,虽然公司在管理水平、管理方法、指标水平上居于国内先进水平,但与国际先进水平相比,与企业参与国际市场竞争的要求相比,与企业“十五”发展目标要求相比,尚有较大差距。存在的主要问题是:

──节能理念上的差距。从节能主体上说,节约能源无论从能动性还是经济适用上都是积极的,要求企业经营者和员工都有必须具有主动节能意识,而目前员工已习惯于传统的被动式节约能源意识和思维定势。 ──人员责任上的差距。随着企业技术进步步伐的加快,现代企业能源管理更需要精通能源技术,熟练运用现货管理方法,具备全部节能理念的复合型、知识型管理人才。而我们在这方面的人才十分短缺,已不适应节能工作的需要。 ──技术工艺上的差距。节能新技术、新工艺未能很好地应用于生产经营中,造成企业能源利用率相对较低,主要耗能产品单耗太高。 ──装备上的差距。近几年虽然进行了较大力度的设备改造,但由于资金等原因仍缺少先进的节能型设备,普遍使用的是七、八十年代的机床,装备水平低。 ──管理体制上的差距。虽然进行了能源管理体制改革,但在运行过程中仍缺乏科学、规范、高效的系统性管理模式,能源管理体系不完善。 鉴于上述问题,我们从公司实际出发,在对能源管理系统进行自检的基础上,以能源管理系统优化为目标,以系统工程为主,配套应用多项现代化管理方法,实现能源管理系统的改善。 系统工程是以科学的观点和现化数学的方法,在充分调动人的积极因素的基础上对系统进行组织和管理,使其在总体上达到最优的目标。应用系统工程的理论来指导建立能源管理系统,进行系统设计,使能源管理体系更系统性,以达到整体优化的状态。能源管理的追求目标就是在不断优化单

基于synchro的干线协调控制及优化

基于synchro的干线协调控制及优化 1概述 1.1研究背景 不同等级城市道路组成的交叉口在功能、类型和信号控制等方面都有不同的设置。本报告中研究的内容为南北方向未央路与东西方向凤城二路、凤城三路、凤城四路凤城五路的协调控制,其中,未央路为干线。 1?2研究过程 研究过程主要分为以下部分: (1)对未央路-凤城二路交叉口及未央路-凤城五路交通流量调查; (2)根据调查的流量对未央路-凤城三路交叉口及未央路-凤城四路交叉口交通流量配平; (3)用Synchro对配平数据进行检验; (4)用Synchro对干线协调控制进行优化; (5)比较干线协调控制定时信号控制和感应信号控制两个方案; (6)得出结论,给出意见。 2现状调查与分析 2.1现状调查 2.1.1交通量调查 对干线中未央路-凤城五路交叉口、未央路-凤城二路交叉口的车道数、车道宽度、交通流量进行调查。具体见表2-1、表2-2和图2-1。 未央路凤城二路 进口机动车(pcu) 左直右总量 南进口22416082002112 北进口12412921S41600 西进口2161006409前 东进口200216168504 表2-1交叉口断面基础数据调查

未央路--- 凤城五路 进口机动车(pen) 左直右总量 南进口174103822S1440 北进口14414403901974 西进口216100640956 东进口2045526641420 表2-2交叉口断面基础数据调查 图2-1交叉口分布 2.1.2断面形式调查 未央路为双向八车道,设有左转车道,凤城二路为双向八车道,设左转车道,凤城三路、凤城四路、凤城五路均为双向四车道,不设置专左或者专右车道。 3synchro 应用 3. “synchro 简介 Sy nchro软件是一套完整的城市路网信号配时分析与优化的仿真软件;与“道路通行能力手册(HCM2000) ”完全兼容,可与“道路通行能力分析软件(HCS)” 及“车流仿真软件(SimTraffic)”相互衔接来整合使用,并且具备与传统交通仿真软件CORSIM,TRANSYT-7F等的接口,它生成的优化信号配时方案可以直接输入到Vissim软件中进行微观仿真。Synchro软件既具有直观的图形显示,又具有较强的计算

优化火电厂自动控制系统的策略

优化火电厂自动控制系统的策略 近年来,虽然我国的火电自动控制系统取得了一些成绩,但是还是存 有很多不足和有待完善的地方,为了我国火电厂自动控制系统的使用 范围和实施方针得到进一步落实,必须对当前的自动控制系统实行全 面系统的分析和评估,对现阶段存有的问题提出相对应的解决方案, 逐步优化和完善,这样才能把火电厂自动控制系统更好地应用到实际 工作中去,使自动化控制系统的作用得到更大的发挥。 1自动控制系统的含义 自动控制系统,顾名思义就是说在生产过程中使用全自动机械化的生 产器械取代人工来实行生产,在这个过程中,生产程序都是预先设计 好的,自动按照设立的标准和原则完成生产操作。自动控制系统的出现,不但体现了我国科技水平的提升,而且是火电行业实现自动化的 必经之路。 2自动控制系统的应用势在必行 自动控制系统主要是指对生产工序中机组主机、燃烧系统、公用系统、辅助设备、热工系统、等所有方面实行的一种科学设置,在设置过程 中会制定出相对应的原则和标准,按照这套原则和标准对生产过程实 行实施监督和操作,这样一来,不但节约了时间,提升了效率,而且 能够使整个经济效益都上升到一个新的高度。当前我国的工业锅炉普 遍使用的原材料都是煤炭,在煤炭燃烧过程中,过产生大量影响空气 质量的有害元素,同时也存有着煤炭燃烧率低,煤炭资源浪费的情况。如果再工业锅炉的使用中投入使用自动控制系统,那么不但能够减少 操作过程中的人力配置,节省燃料,还能够降低工业锅炉对环境的污染,使整个运作过程更加的科学和完善。 自动控制指的是对辅助设备,主机以及公用系统这三大方面的自动化 控制。在工业锅炉中的自动控制,最主要就是热力控制以及燃烧量控制。燃烧量控制的具体含义及运行模式:热力控制系统是对压力、液

2016锅炉优化控制系统项目设计方案

浙江开化合成材料有限公司循环流化床锅炉优化控制项目 实 施 方 :案 2016年5月

浙江开化合成材料有限公司

目录 一、项目背景 (3) 二、锅炉优化控制需求分析 (3) 三、锅炉优化控制方案 (4) (1)锅炉燃烧系统控制的优化 (5) (2)汽水系统控制的优化 (5) (3)面向煤耗的燃烧的优化 (6) (4)炉况智能诊断专家控制优化 (6) 四、项目投资预算 (7) 五、项目实施周期计划 (8) 六、劳动卫生及工业安全 (8) 七、项目建设目标 (9)

八、项目效益评估 (9)

循环流化床锅炉优化控制项目实施方案 一、项目背景 浙江开化合成材料有限公司(以下简称“开化合成”)有两台循环流化床锅炉,设计规模分别为35t/hr、45t/hr,正常运行过程中,一台锅炉运行,另外一台备用,满足全厂所有生产装置的用汽需求。随着能源成本的上升和国家对于节能减排要求的提高,企业对于锅炉的节能技改需求日益迫切。 目前,开化合成循环流化床锅炉已采用中控JX300-XP系统实现了集散控制,但由于 蒸汽锅炉是一个分布参数、非线性、时变、大滞后和多变量耦合的复杂系统,DCS系统中的常规控制策略难以达到理想的控制效果,除减温减压系统实现了自动控制外,绝大多数 控制回路仍处于手动操作状态,自动化水平低,炉膛温度、烟气含氧量、主蒸汽压力、炉膛压力、汽包液位、除氧器液位等关键工艺指标运行平稳性差,能耗偏高。 二、锅炉优化控制需求分析 开化合成锅炉运行调整的任务是根据生产装置用汽的需求,实时的对蒸汽压力、蒸 汽温度、蒸汽流量进行调整。其主要控制系统可分为三大部分:燃烧控制系统、给水控制系统和减温减压控制系统。目前,减温减压控制系统已实现了自动控制,其他各系统均处于手动控制状态。燃烧控制系统的任务是提供适当的燃料量,并辅以适当的送风量,保证燃料和风以适当的比例充分混和燃烧,并维持稳定的炉膛温度、蒸汽压力、烟气含氧量等主要工艺指标,在此基础上平稳控制蒸汽流量,以快速满足蒸汽压力变化需求。另外,为了保证炉膛安全,一般使炉膛压力维持微负压,炉膛压力太高则会向外喷火,影响安全性和经济性,炉膛压力太低,则会使冷空气进入,降低经济性。 鉴于锅炉本身的复杂性,锅炉过程控制存在以下几个难点: (1)系统存在严重耦合,如燃料量的变化不仅影响蒸汽压力和汽包水位,还会影响过热蒸汽温度和烟气含氧量等。 (2)存在不确定时滞,如燃料量的变化对蒸汽温度、压力、汽包水位等的影响有不同的滞后,这些时滞的大小还随着负荷状况的改变而改变。 (3)蒸汽需求量的不确定性变化,由于需要供应蒸汽的生产装置较多,装置内发生 不确定性因素导致装置用汽量的变化频率较高,随机性较高,尤其是合成反应装置用汽系

循环流化床锅炉燃烧过程自动控制的优化方法

循环流化床锅炉燃烧过程自动控制的优化方法循环流化床锅炉CFB的控制系统的现状 目前,国内中、大型循环流化床锅炉CFB(CirculatingFluidizeBed)投运数量越来越多,这些电厂一般采用DCS(DistributedControlSystem:分散控制系统)进行机组运行控制。DCS控制系统应用于煤粉锅炉经验已经很成熟,而且自动化水平、安全性都比较高。对于国内的循环流化床锅炉,目前的DCS控制系统现状基本是套用煤粉炉的DCS控制逻辑,只是稍加改动;另外基于国内电厂基建现状,多数机组都是在抢工期的情况下投运的,所以留给控制系统研究人员的研究时间几乎没有。然而循环流化床锅炉的燃烧机理十分复杂,循环流化床锅炉的设计尚处于经验设计阶段,系统中变量之间的耦合比较紧密,而且具有严重的非线性。循环流化床锅炉热工自动控制,特别是燃烧自动控制方面的问题已成为其进一步推广应用的主要障碍,循环流化床锅炉的运行自动化已成为其走向实用的关键之一。 在机组基建调试期间,大家对于控制系统一般都是只要能保证锅炉正常启动和停运就行了,至于控制系统的优化、逻辑的优化、自动的投入与优化、锅炉保护的设定等都是简单地在煤粉炉的控制理念下做一些简单修改。然而,循环流化床锅炉和煤粉锅炉从燃烧机理上说有很大的区别,这就决定了控制逻辑及理念应该有很大的不同。所以套用煤粉锅炉的控制理念往往不能适合循环流化床锅炉。这也就是目前为什么许多循环流化床锅炉很多自动投不上、许多保护不敢投,从

而造成循环流化床锅炉的运行人员数量多,劳动强度高,效率低下等,而且锅炉的运行也极为不稳定。这就给我们的制造厂、电厂及试验研究人员提出了一个课题:如何使DCS控制系统更加适合循环流化床锅炉。 循环流化床锅炉燃烧过程自动控制的特点 循环流化床锅炉不同于煤粉炉,其控制回路多,系统比较复杂,控制系统一般包括以下主要回路:汽包水位控制;过热汽温控制;燃料控制;风量及烟气含氧量控制;炉膛负压控制;床层温度控制;料层高度控制;循环灰控制。对于汽包水位控制和过热汽温控制特性与通常的煤粉炉相同,在此不予以分析,只对与循环流化床锅炉燃烧相关的控制系统的特点进行分析。循环流化床锅炉燃烧过程自动控制的基本任务是使送入锅炉内的燃煤燃烧所提供的热量适应锅炉蒸汽负荷的需要,同时还要保证锅炉安全经济运行,燃烧控制系统的任务归纳起来有如下几个方面: 2.1.维持主蒸汽压力稳定。汽压的变化表示锅炉的蒸汽量与负荷的耗汽量不匹配,需要相应地改变燃料的供给量,以改变锅炉的蒸发量。 2.2.保证锅炉燃烧过程的经济性。改变燃料量的同时,相应地调节送风量,使之与燃料量匹配,保证锅炉燃烧的经济性. 2.3.引风量与送风量相配合以保证炉膛压力在正常的范围内,保证炉膛的安全运行;

相关文档
最新文档