带电粒子在有界匀强磁场中的运动知识点共21页

合集下载

带电粒子在有界匀强磁场中的运动

带电粒子在有界匀强磁场中的运动
息烽县第一中学物理组
廖红英
带电粒子在有界匀 强磁场中的运动
知识回顾
一、带电粒子在匀强磁场中运动形式
(1)V//B-------匀速直线运动 (2)V⊥B-------匀速圆周运动 (3)粒子运动方向与磁场有一夹角 (大于0度小于90度)-------轨迹为螺旋线
带电粒子在匀强磁场中 做匀速圆周运动,洛伦 兹力就是它做圆周运动 的向心力
(3)欲使粒子要打在极板上,
则粒子入射速度v应满足么条 件?
+q L
m
v
B
L
3、如图所示,在y<0的区域内存在匀强磁场,磁 场方向垂直纸面向外,磁感应强度为B。一个正电 子以速度v从O点射入磁场,入射方向在xy平面内, 与x轴正向的夹角为θ。若正电子射出磁场的位置 与O点的距离为L,求:
(1)正电子在匀强磁场中作圆周 运动的圆心角为多少?
(2)正电子作圆周运动的 半径为多少?
(3)正电子的电量和质量之比为多少?
(4)正电子在匀强磁场中运动的时间是多少?
思考:如果是负电子,那么,两种情况下的时间 之比为多少?
4、如图所示在磁感应强度为B,半径为r的圆
形匀强磁场区 ,一质量为m,电荷量为q的
带电粒子从A点沿半径方向以速度ν
射入磁场中,从C点射出,求:
(1)此粒子在磁场中做圆周运
动的半径是多少?
B v
(2)此粒子的电荷q与质量 m 之比。
MP l
ON
2、长为L的水平极板间,有垂直纸面向内的匀强磁场,如 图所示,磁场强度为B,板间距离也为L,板不带电,现有 质量为m,电量为q的带正电粒子(不计重力),从左边极 板间中点处垂直磁场以速度v平行极板射入磁场,求: (1)粒子刚好打在极板的左端点时的速度为多少? (2)粒子刚好打在极板上的右端点时的速度是多少?

带电粒子在有界磁场磁场中的运动

带电粒子在有界磁场磁场中的运动

d
αR O
过程模型:匀速圆周运动 规律:牛顿第二定律 + 圆周运动公式 条件:要求时间最短
t
s v
速度 v 不变,欲使穿过磁场时间最短,须使 s 有最 小值,则要求弦最短。
题1 一个垂直纸面向里的有界匀强磁场形 状如图所示,磁场宽度为 d。在垂直B的平面
内的A点,有一个电量为 -q、质量为 m、速
y B
如粒子带正电,则: 如粒子带负电,则:
60º v
60º
O 120º
x
A. 2mv qB
B. 2mvcosθ qB
C. 2mv(1-sinθ) qB
2mv(1-cosθ)
D. qB
M
D
C
θ θ θθ
P
N
θθ
练、 一个质量为m电荷量为q的带电粒子(不计重力)
从x轴上的P(a,0)点以速度v,沿与x正方向成60º的
束比荷为q/m=2 ×1011 C/kg的正离子,以不同角度α入射,
其中入射角 α =30º,且不经碰撞而直接从出射孔射出的
离子的速度v大小是 (
C)
αa
A.4×105 m/s B. 2×105 m/s
r
C. 4×106 m/s D. 2×106 m/s O′
O
解: 作入射速度的垂线与ab的垂直平分线交于 r
P
B v0
O
AQ
例、如图,A、B为水平放置的足够长的平行板,板间距离为
d =1.0×10-2m,A板上有一电子源P,Q点在P点正上方B
板上,在纸面内从P点向Q点发射速度在0~3.2×107m/s范
围内的电子。若垂直纸面内加一匀强磁场,磁感应强度
B=9.1×10-3T,已知电子质量 m=9.1×10-31kg ,电子电

第2讲 带电粒子在磁场中的运动 - 知识点

第2讲  带电粒子在磁场中的运动 - 知识点

提能点(四) 带电粒子在磁场中运动的临界极值问题(活化思维) 1.解答带电粒子在磁场中的临界极值问题的关键点 (1)关注题目中的“恰好”“最大”“最高”“至少”等关键词语,作为解题的
切入点。 (2)关注涉及临界点条件的几个结论 ①粒子刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切。 ②当速度 v 一定时,弧长越长,圆心角越大,则粒子在有界磁场中运动的时间
提能点(三) 带电粒子在有界匀强磁场中的圆周运动(题点精研)
解答带电粒子在有界匀强磁场中的圆周运动问题的三个“确定”
圆心的确定
半径的确定
时间的确定
①与速度方向垂直的直线过 基
利用轨迹对应圆心
圆心 本
利用平面几何 角 θ 或轨迹长度 L
②弦的垂直平分线过圆心 思
知识求半径 求时间
③轨迹圆弧与边界切点的法 路
1.粒子进出平行直线边界的磁场时,常见情形如图所示: 2.粒子在平行直线边界的磁场中运动时存在临界条件,如图 a、c、d 所示。
3.各图中粒子在磁场中的运动时间: (1)图 a 中粒子在磁场中运动的时间 t1=θBmq,t2=T2=πBmq。 (2)图 b 中粒子在磁场中运动的时间 t=θBmq。 (3)图 c 中粒子在磁场中运动的时间 t=1-πθT=1-πθ2Bπqm=2mBπq-θ。 (4)图 d 中粒子在磁场中运动的时间 t=πθT=2Bθqm。
带电粒子在三角形边界的磁场中运动时常常涉及临界问题。如图所示,正 △ABC 区域内有匀强磁场,某正粒子垂直于 AB 方向从 D 点进入磁场时,粒 子有如下两种可能的临界轨迹:
(1)粒子能从 AB 边射出的临界轨迹如图甲所示。 (2)粒子能从 AC 边射出的临界轨迹如图乙所示。
带电粒子在矩形(正方形)边界的磁场中运动时,可能会涉及与边界相 切、相交等临界问题,如图所示。

带电粒子在匀强磁场中的运动 课件

带电粒子在匀强磁场中的运动 课件

二、质谱仪
阅读教材第100页“例题”部分,了解质谱仪的结构和作用。
1.质谱仪的组成
由粒子源容器、加速电场、偏转磁场和底片组成。
2.质谱仪的用途
质谱仪最初是由汤姆生的学生阿斯顿设计的。他用质谱仪发现
了氖20和氖22,证实了同位素的存在。质谱仪是测量带电粒子的
质量和分析同位素的重要工具。
三、回旋加速器


B.两粒子都带负电,质量比 =4


1
C.两粒子都带正电,质量比 =

4

1
D.两粒子都带负电,质量比 =

4
A.两粒子都带正电,质量比
1

解析:由于 qa=qb、Eka=Ekb,动能 Ek=2mv2 和粒子偏转半径 r= ,
2 2 2
可得 m= 2 ,可见 m 与半径
k
r 的二次方成正比,故 ma∶mb=4∶1,
再根据左手定则判知粒子应带负电,故选 B。
答案:B
【例题2】如图所示,一束电荷量为e的电子以垂直于磁场方向
(磁感应强度为B)并垂直于磁场边界的速度v射入宽度为d的磁场中,
穿出磁场时速度方向和原来射入方向的夹角为θ=60°。求电子的
质量和穿越磁场的时间。
解析:过 M、N 作入射方向和出射方向的垂线,
两垂线交于 O 点,O 点即电子在磁场中做匀速圆周运动的圆心,
连结 ON,过 N 作 OM 的垂线,垂足为 P,如图所示。由直角三角形 OPN

2 3
知,电子的轨迹半径 r=sin60° = 3 d
2
由圆周运动知 evB=m
2 3
联立①②解得 m= 3 。
带电粒子在匀强磁场中的运动

带电粒子在有界匀强磁场中的运动归类解析

带电粒子在有界匀强磁场中的运动归类解析

带电粒子在有界匀强磁场中的运动归类解析一、单直线边界磁场1.进入型:带电粒子以一定速度υ垂直于磁感应强度B 进入磁场. 规律要点:(1)对称性:若带电粒子以与边界成θ角的速度进入磁场,则一定以与边界成θ角的速度离开磁场.如图1所示.(2)完整性:比荷相等的正、负带电粒子以相同速度进入同一匀强磁场,则它们运动的圆弧轨道恰构成一个完整的圆;正、负带电粒子以相同速度进入同一匀强磁场时,两粒子轨道圆弧对应的圆心角之和等于2πrad ,即2+-+=ϕϕπ,且2-=ϕθ(或2+=ϕθ).2.射出型:粒子源在磁场中,且可以向纸面内各个方向以相同速率发射同种带电粒子.规律要点:(以图2中带负电粒子的运动轨迹为例)(1)最值相切:当带电粒子的运动轨迹小于12圆周时且与边界相切(如图2中a 点),则切点为带电粒子不能射出磁场的最值点(或恰能射出磁场的临界点);(2)最值相交:当带电粒子的运动轨迹大于或等于12圆周时,直径与边界相交的点(图2中的b 点)为带电粒子射出边界的最远点.图2中,在ab 之间有带电粒子射出,设ab 距离为x ,粒子源到磁场边界的距离为d ,带电粒子的质量为m ,速度为υ,则m υr=Bqa O r-d二、双直线边界磁场规律要点:最值相切:当粒子源在一条边界上向纸面内各个方向以相同速率发射同一种粒子时,粒子能从另一边界射出的上、下最远点对应的轨道分别与两直线相切.图3所示.对称性:过粒子源S 的垂线为ab 的中垂线.在图3中,ab 之间有带电粒子射出,可求得ab=最值相切规律可推广到矩形区域磁场中.例1.一足够长的矩形区域abcd 内充满磁感应强度为B 、方向垂直纸面向里的匀强磁场,矩形区域的左边界ad 宽为L ,现从ad 中点O 垂直于磁场射入一带电粒子,速度大小为0υ方向与ad 边夹角为30°,如图4所示。

已知粒子的电荷量为q ,质量为m (重力不计)。

(1)若粒子带负电,且恰能从d 点射出磁场,求0υ的大小;(2)若粒子带正电,使粒子能从ab 边射出磁场,求0υ的取值范围以及此范围内粒子在磁场中运动时间t 的范围。

带电粒子在匀强磁场中的运动

带电粒子在匀强磁场中的运动

即 eUd2=evB1,代入 v 值得 U2=B1d
2eU1 m
(3)在 c 中,e 受洛伦兹力作用而做圆周运动,回
转半径 R=Bm2ve,代入 v 值得 R=B12
2U1m e
答案:(1)
2eU1 m
(2)B1d
2eU1 m
1 (3)B2
2U1m e
点评:解答此类问题要做到: (1)对带电粒子进行正确的受力分析和运动过程 分析. (2)选取合适的规律,建立方程求解.
[错误解法]由 Bqv0=mvR02,得 B=
mqvR0. 则
B

3×10-20×105 10-13× 3×10-1
T≈0.17T.
[错因点评]对公式中有关物理量不甚明了,在套
用公式 Bqv0=mRv20时,误将 R 的值代为磁场区域半径 之值了.
[正确解答]作进、出磁场点处 速度的垂线 PO、QO 得交点 O,O 点即粒子做圆周运动的圆心.据此
A.增大匀强电场间的加速电压 B.增大磁场的磁感应强度 C.增加周期性变化的电场的频率 D.增大 D 形金属盒的半径 答案:BD
解析:粒子最后射出时的旋转半径为 D 形盒的最 大半径 R,R=mqBv,Ek=12mv2=q22Bm2R2.可见,要增大 粒子的动能,应增大磁感应强度 B 和增大 D 形盒的 半径 R,故正确答案为 B、D.
︵ 作出运动轨迹如图中的PQ.此圆半 径为 PO,记为 r.
易知∠POQ=60°,则 r=PQ= 3R=0.3m. 由 Bqv0=mvr20得 B=mqvr0.则 B=3×101-01-3 ×20×0.1305T =0.1T.
[正确答案]0.1T
[感悟心语]像这种不太复杂的带电粒子在匀强磁 场中的圆周运动问题,解题要点在于作出带电粒子实 际运动的轨迹.方法有两种:

1.3带电粒子在匀强磁场中的运动

1.3带电粒子在匀强磁场中的运动
思路导引:
依据所给数据分别计算出带电粒子所受的重力和洛伦兹力,就可求出
所受重力与洛伦兹力之比。带电粒子在匀强磁场中受洛伦兹力并做匀速圆
周运动,由此可以求出粒子运动的轨道半径及周期。
完全解答:
重力与洛伦兹力之比
(1)粒子所受的重力
G= mg = 1.67×10-27kg×9.8 N= 1.64×10-26N
匀强磁场中。求电子做匀速圆周运动的轨道半径和周期。
解:洛伦兹力提供向心力,首先列:
2
v
qvB m
r
2πr
T
v
mv
9.110 31 1.6 10 6
2



.
55

10
m
r
19
4
1.6 10 2 10
qB
2m
T
qB
2 9.110 31
7


5
.
6875






洛伦兹力提供向心力
v2
qvB m
r



圆周运动的半径
mv
r
qB
粒子在匀强磁场中做匀速圆周运动的半径与它的质量、速度成
正比,与电荷量、磁感应强度成反比。
观察带电粒子的运动径迹
洛伦兹力演示仪示意图
洛伦兹力演示仪
励磁线圈
玻璃泡
电子枪
加速极电压
励磁电流
选择档
选择档
电子枪可以发射电子束
玻璃泡内充有稀薄的气体,在电
2 m
T
eB
电子在矩形磁场中沿圆弧从
a点运动到c点的时间

t
T

带电粒子在匀强磁场中的运动 课件

带电粒子在匀强磁场中的运动 课件
行并垂直于纸面向里。图中右边有一半径 R 为 0.1m、圆心为 O 的圆形区域内也
存在匀强磁场,磁感应强度大小为 B= 3 T ,方向垂直于纸面向里。一正离子 3
沿平行于金属板面,从 A 点垂直于磁场的方向射入平行金属板之间,沿直线射 出平行金属板之间的区域,并沿直径 CD 方向射入圆形磁场区域,最后从圆形区
【典型例题】(多选)如图所示,L1 和 L2 为平行虚线,L1 上方和 L2 下方有垂直纸面向里的 磁感应强度相同的匀强磁场,A、B 两点都在 L2 上。带电粒子 从 A 点以初速度 v 与 L2 成 30°角斜
向上射出,经偏转后正好过 B 点,经过 B 点时速度方向也斜向上,粒子重力不计。下列说法中正
只要带电粒子的速率满足 v=BE,即使电.性.不.同.,电.荷.不.同.,
也可沿直线穿出右侧小孔,而其他速率的粒子要么上偏,要么 下偏,无法穿出。因此利用这个装置可以用来选择某一速率的 带电粒子。
2.磁流体发电机 (1)磁流体发电是一项新兴技术,它可以把内能直接转化为电能。 (2)根据左手定则,如下图中的B板是发电机正极。 (3)磁流体发电机两极板间的距离为d,等粒子体速度为v,磁场磁感应强度为B,则两极板间能 达到的最大电势差U=Bdv。
带电粒子在匀强磁场中的运动
★重难点一:带电粒子在匀强磁场中的运动★
带电粒子在匀强磁场中的运动 1.用洛伦兹力演示仪观察电子的轨迹
(1)不加磁场时,观察到电子束的径迹是直线. (2)加上匀强磁场时,让电子束垂直射入磁场, 观察到的电子径迹是圆周. (3)保持电子的出射速度不变,改变磁场的磁感 应强度,发现磁感应强度变大,圆形径迹的半径变小. (4)保持磁场的磁感应强度不变,改变电子的出 射速度,发现电子的出射速度越大,圆形径迹的半径越 大.

带电粒子在匀强磁场中的运动

带电粒子在匀强磁场中的运动

〔思考与讨论〕
◎带电教粒材子在资匀料强分磁场析中做匀速圆周运动的圆半径,与粒
子的速度、磁场的磁感应强度有什么关系? 点拨: 由演示实验知,粒子做圆周运动的半径与速度、
磁感应强度有关系,分析可知,因洛伦兹力提供向心力,即 qvB=mrv2,可得:r=mqBv.
可见,粒子圆周运动的半径与速度大小成正比,与磁感 应强度 B 成反比.
质谱仪可以求出该粒子的比荷(电荷量与质量之比)mq =B22Ur2.
(2)回旋加速器 ①工作原理 利用电场对带电粒子的加速作用和磁场对
运a.动磁电场的荷作的用 偏 转 作 用 来 获 得 高 能 粒 子 , 这 些带电过粒程子在以某回一旋速度加垂速直器磁场的方核向心进入部匀件强磁——场两后,个在D 洛伦形兹盒力作和用其下间做匀的速窄圆缝周运内动完,其成周.期与速率、半径均无
(1)M点与坐标原点O间的距离; (2)粒子从P点运动到M点所用的时间.
解析:(1)带电粒子在匀强电场中做类平抛 运 负OP方动=l向,=12上在at1做x2,正初O方Q速=向2度上3为l=做零v匀0t1的,速a匀=直加qmE线速运运动动,,在设y 加 用解得速 的v度时0=大间小为6qmt为E1l,a;进粒入子磁从场P时点速运度动方到向Q与点x所轴 正方向的夹角为θ,则
解析: 粒子在电场中加速时,只有静电力做功,由动
能定理得 qU=12mv2,故EEkk12=qq12UU=qq12=12,同时也能求得 v = 2mqU,因为粒子在磁场中运动的轨迹半径 r=mqBv=qmB
2mqU=B1
2mqU,所以有rr12=
m1 q1 = 1 ,粒子做圆周运 m2 2 q2
动的周期 T=2qπBm,故TT21=mm12//qq12=12.

带电粒子在有界匀强磁场中的运动

带电粒子在有界匀强磁场中的运动

A、运动的时间相同
B 、运动的轨道半径相同 C 、重新回到边界时速度
大小和方向都相同

、重新回到边界的 与O点的距离相等


θ O
例2、如图所示,一束电子(电量为e)以速度V
垂直射入磁感应强度为B、宽度为d的匀强磁场,
穿透磁场时的速度与电子原来的入射方向的夹
角为 。3求0:0(1) 电子的质量m=? (2) 电子在
射入磁场,从P点射出磁场,入射方向在xy
平面内,与x轴正向夹角为 。求:
(1)该粒子射出磁场的位置。
(2)该粒子在磁场中运动的时间。(粒子
所受重力不计)
P
y
o
·
v ×××B×××××××××××××××××××××××××××××××××××0××××××
x
y V0
p
o
· × × × × × × × × × × × × × × × × × × × × × × x
××××××××××××××××××××××
××××××××××××××××××××××
× ×
× ×
× ×
× ×
× ×
× ×
× ×
× ×
× ×
× ×
× ×
××A××
× ×
× ×
× ×
× ×
× ×
× ×
× ×
× ×
× ×
B × × × × × × × × × × × × × × × × × × × × × ×
带电粒子在有界 匀强磁场中的运动(1)
简单回顾
一、带电粒子在匀强磁 场中的运动规律 1、带电粒子在匀强磁场中 运动 v B,只受洛伦兹 力作用,做匀速圆周运动. 2、洛伦兹力提供向心力:

带电粒子在有界匀强磁场中的运动-高考物理复习

带电粒子在有界匀强磁场中的运动-高考物理复习

√A.3
B.2
C.32
D.23
电子1、2在磁场中都做匀速圆周运动,根据题意 画出两电子的运动轨迹,如图所示,电子1垂直边 界射入磁场,从b点离开,则运动了半个圆周,ab 即为直径,c点为圆心; 电子2以相同速率垂直磁场方向射入磁场,经t2时间从a、b连线的中 点c离开磁场, 根据半径 r=mBqv可知,电子 1 和 2 的半径相等, 根据几何关系可知,△aOc为等边三角形,
粒子运动轨迹与 y 轴交点的纵坐标为 y=-2rcos 30° =-233d,故 D 错误.
考向4 带电粒子在多边形边界或角形区域磁场中运动
例4 (多选)(2023·河北石家庄市模拟)如图所示,△AOC为直角三角形,∠O
=90°,∠A=60°,AO=L,D为AC的中点.△AOC中存在垂直于纸面向里的匀
√C.若带电粒子与挡板碰撞,则受到挡板作用力的冲量 大小为5q2BL
√D.带电粒子在磁场中运动时间可能为3πqmB
若粒子带正电,粒子与挡板MN碰撞后恰好从 Q点射出,粒子运动轨迹如图甲所示, 设轨迹半径为 r2,由几何知识得 L2+(r2-0.5L)2 =r22,解得 r2=54L,根据牛顿第二定律得 qv2B=mvr222,解得 v2=54qmBL, 根据动量定理得 I=2mv2=5q2BL,故 A 错误,C 正确; 若粒子带负电,则粒子的运动轨迹如图乙所示, 粒子做圆周运动的半径为 r1=12L,由牛顿第二定律得 qv1B=mvr112,解得 v1=q2BmL,此时半径最小,速度也最小,故 B 错误;
2.平行边界(往往存在临界条件,如图所示)
3.圆形边界(进出磁场具有对称性) (1)沿径向射入必沿径向射出,如图甲所示. (2)不沿径向射入时,如图乙所示. 射入时粒子速度方向与半径的夹角为θ,射出磁场时速度方向与半径的 夹角也为θ.

带电粒子在有界磁场中的运动

带电粒子在有界磁场中的运动

带电粒子在有界磁场中的运动带电粒子在磁场中的运动一直是物理界研究的热门话题之一。

当带电粒子在磁场中运动时,它会受到洛伦兹力的影响,这个力的方向垂直于磁场的方向和粒子的速度方向,并且它的大小与粒子电荷的大小、粒子运动速度和磁场强度有关。

在有界磁场中,带电粒子的运动会受到限制,并且会形成某些特定的运动轨迹,这些轨迹的特征与磁场的形状和强度有关。

以下是对有界磁场中带电粒子运动的探讨。

一、磁场的基本概念磁场是指由带电粒子或磁化物质产生的物理现象。

磁场的大小与磁场中带电粒子的数量、粒子的电荷和速度、以及磁场的强度和形状有关。

磁场有两个重要的特征:方向和大小。

磁场的方向是指磁场力线的方向,如果一个带电粒子在磁场中运动,则它会沿着磁场力线运动。

磁场的大小用磁感应强度或磁场强度来描述,这些量的单位是特斯拉(T)或高斯(G)。

二、带电粒子在磁场中的运动当带电粒子进入磁场中时,它会受到洛伦兹力的作用,这个力的大小与带电粒子的电荷和速度有关,方向垂直于磁场的方向和粒子的速度方向。

由于这个力的方向与带电粒子的速度方向垂直,所以带电粒子会在垂直磁场方向上产生一定的偏移,这个偏移的大小与带电粒子的速度和磁场强度有关。

如果带电粒子的速度和磁场方向垂直,则它会产生一个圆周运动。

在圆周运动中,带电粒子的速度保持不变,而其运动方向会随着磁场方向的改变而改变。

圆周运动的半径与带电粒子的速度和磁场强度有关,可以用以下公式来计算:r =mv/qB,其中,m是带电粒子的质量,v是带电粒子的速度,q 是带电粒子的电荷,B是磁场强度。

当速度和磁场方向不垂直时,则带电粒子会既在垂直于磁场的方向上运动,也在磁场方向上运动。

在这种情况下,带电粒子的轨迹可以用螺旋线来描述。

三、有界磁场中带电粒子的运动在有界磁场中,带电粒子的运动会受到磁场的限制。

在一个有限大小的磁场中,带电粒子不可能一直进行圆周运动或螺旋线运动。

带电粒子的轨迹将会在磁场边界处进行反射,在某些情况下,带电粒子的哪些轨迹是允许的,哪些轨迹是禁止的,这与磁场的形状和强度有关。

带电粒子在匀强磁场中的运动(知识小结)

带电粒子在匀强磁场中的运动(知识小结)

带电粒子在匀强磁场中的运动(知识小结)一.带电粒子在磁场中的运动(1)带电粒子在磁场中运动时,若速度方向与磁感线平行,则粒子不受磁场力,做匀速直线运动;即 ① 为静止状态。

② 则粒子做匀速直线运动。

(2)若速度方向与磁感线垂直,带电粒子在匀强磁场中做匀速圆周运动,洛伦兹力起向心力作用。

(3)若速度方向与磁感线成任意角度,则带电粒子在与磁感线平行的方向上做匀速直线运动,在与磁感线垂直的方向上做匀速圆周运动,它们的合运动是螺线运动。

二、带电粒子在匀强磁场中的圆周运动1.运动分析:洛伦兹力提供向心力,使带电粒子在匀强磁场中做匀速圆周运动.(4)运动时间: (Θ 用弧度作单位 )1.只有垂直于磁感应强度方向进入匀强磁场的带电粒子,才能在磁场中做匀速圆周运动.2.带电粒子做匀速圆周运动的半径与带电粒子进入磁场时速率的大小有关,而周期与速率、半径都无关.三、带电粒子在有界匀强磁场中的匀速圆周运动(往往有临界和极值问题)(一)边界举例:1、直线边界(进出磁场有对称性)规律:如从同一直线边界射入的粒子,再从这一边射出时,速度与边界的夹角相等。

速度与边界的夹角等于圆弧所对圆心角的一半,并且如果把两个速度移到共点时,关于直线轴对称。

2、平行边界(往往有临界和极值问题)(在平行有界磁场里运动,轨迹与边界相切时,粒子恰好不射出边界)3、矩形边界磁场区域为正方形,从a 点沿ab 方向垂直射入匀强磁场:若从c 点射出,则圆心在d 处若从d 点射出,则圆心在ad 连线中点处4.圆形边界(从平面几何的角度看,是粒子轨迹圆与磁场边界圆的两圆相交问题。

)特殊情形:在圆形磁场内,沿径向射入时,必沿径向射出一般情形:磁场圆心O 和运动轨迹圆心O ′都在入射点和出射点连线AB 的中垂线上。

或者说两圆心连线OO ′与两个交点的连线AB 垂直。

(二)求解步骤:(1)定圆心、(2)连半径、(3)画轨迹、(4)作三角形.(5)据半径公式求半径,2.其特征方程为:F 洛=F 向. 3.三个基本公式: (1)向心力公式:qvB =m v 2R ; (2)半径公式:R =mv qB ; (3)周期和频率公式:T =2πm qB =1f ; 222m t qB m qB T θππθπθ==⨯=⨯v L =t再解三角形求其它量;或据三角形求半径,再据半径公式求其它量(6)求时间1、确定圆心的常用方法:(1)已知入射方向和出射方向(两点两方向)时,可以作通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心,如图3-6-6甲所示,P 为入射点,M 为出射点,O 为轨道圆心.(2)已知入射方向和出射点的位置时(两点一方向),可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心,如图3-6-6乙所示,P 为入射点,M 为出射点,O 为轨道圆心.(3)两条弦的中垂线(三点):如图3-6-7所示,带电粒子在匀强磁场中分别经过O 、A 、B 三点时,其圆心O ′在OA 、OB 的中垂线的交点上.(4)已知入射点、入射方向和圆周的一条切线:如图3-6-8所示,过入射点A 做v 垂线AO , 延长v 线与切线CD 交于C 点,做∠ACD 的角平分线交AO 于O 点,O 点即为圆心,求解临界问题常用到此法.(5)已知入射点,入射速度方向和半径大小2.求半径的常用方法 :由于已知条件的不同,求半径有两种方法:一是:利用向心力公式求半径;二是:利用平面几何知识求半径。

专题 带电粒子在有界匀强磁场中运动的多解问题

专题  带电粒子在有界匀强磁场中运动的多解问题

量为m,电量为q的带正电粒子(不计重力),
从左边极板间中点处垂直磁场以速度v平行极板
Lv
射入磁场,欲使粒子不打在极板上,则入射速
+q , m
B
度v应满足什么条件?
L 原因3.临界状态不唯一形成多解
任务二 带电粒子在有界匀强磁场中运动的多解问题
思考:造成带电粒子在有界匀强磁场中运动的多解问题 的原因?
原因1.磁场方向不确定形成多解
任务二 带电粒子在有界匀强磁场中运动的多解问题
思考:造成带电粒子在有界匀强磁场中运动的多解问题 的原因?
例2. 如图,在第I象限范围内有垂直xOy平面的匀强磁场B。质量为
m、电量大小为q的带电粒子(不计重力),在xOy平面里经原点O射
入磁场中,初速度为v0,且与x轴成60º角,
y
试分析计算:
B
带电粒子在磁场中运动时间多长?
60º v
原因2.带电粒子电性不确定形成多解
60º
O 120º
x
任务二 带电粒子在有界匀强磁场中运动的多解问题
思考:造成带电粒子在有界匀强磁场中运动的多解问题
的原因?
O
例3.如图,长为L的水平不带电极板间有垂直纸
面向内的匀强磁场B,板间距离也为L,现有质
例4.如图所示,边长为l的等边三角形ACD内、外分布着方向相反
的匀强磁场,磁感应强度大小均为B。顶点A处有一粒子源,能沿
∠CAD的平分线方向发射不同速度的粒子,粒子质量均为m,电
荷量均为+q,不计粒子重力。则粒子以下列
哪一速度发射时不能通过D点
qBl A. 4m
qBl B. 2m
√3qBl Cபைடு நூலகம் 4m
例1.如图所示,A点的粒子源在纸面内沿垂直OQ方向向上射出一束带负 电荷的粒子,粒子重力忽略不计.为把这束粒子约束在OP之下的区域, 可在∠POQ之间加垂直纸面的匀强磁场.已知OA间的距离为s,粒子比荷 为 q/m ,粒子运动的速率为v,OP与OQ间夹角为30°.则所加磁场的磁感 应强度B满足条件?

带电粒子在有界磁场中运动轨迹问题研究资料

带电粒子在有界磁场中运动轨迹问题研究资料

30°
L
x
y
O
P
v
由几何关系知 r=L/3 解得
30°
L
x
y
O
P
v
Q
O’
A
又由几何关系知磁场区域的半径为
(2) 粒子进入单边磁场时,入射速度与边界夹角等于出射速度与边界的夹角;
(1) 在圆形磁场区域内,沿径向射入的粒子,必沿径向射出.
O3
r
r
O4
r
r
O2
r
r
O1
r
r
O
S
一朵梅花
五.带电粒子在磁场中运动轨迹赏析
O1
O2
O3
L
d
一把球拍
a
a
O
x
y
v
v
P


t
B
-B0
B0
0
T
2T
一条波浪
a
a
O
x
P
v
O’
60°
a
b
x
y
O
30°
A B
例6、如图,一匀强磁场磁感应强度为B,方向向里,其边界是半径为R的圆。AB为圆的一直径。在A点有一粒子源向圆平面内的各个方向发射质量m、电量-q的粒子,粒子重力不计。(结果保留2位有效数字) (1)如果磁场的边界是弹性边界,粒子沿半径方向射入磁场,粒子的速度大小满足什么条件,可使粒子在磁场中绕行一周回到出发点,并求离子运动的时间。 (2)如果R=3cm、B=0.2T,在A点的粒子源向圆平面内的各个方向发射速度均为106m/s,比荷为108c/kg的粒子.试画出在磁场中运动时间最长的粒子的运动轨迹并求此粒子的运动的时间。 (3)在(2)中,如果粒子的初速度大 小均为3×105米/秒,求磁场中有粒子到 达的面积.

经典:带电粒子在匀强磁场中的运动规律

经典:带电粒子在匀强磁场中的运动规律

N
r
x
O
vM
12
解:做两条速度的延长线交于M点,过
M点做角平分线交y轴N点,以N为 圆心以r为半径做圆,切于两速度线, 切点分别为O、P
y
30º
v
P
质点圆周运动半径: r mv/qB
L
根据几何关系: rL/3
由上式解得: B3mv/qL
r
N
r
x
O
vM
13
小结:
一、带电粒子在匀强磁场中的运动规律 二.确定带电粒子在磁场中运动轨迹的方法
y
30º
v
L
v
x
O
11
例3
如图所示,一匀强磁场, 磁场方向垂直于xy平面,在xy 平面上磁场分布在以O为圆心
y
30º
v
P

的一个圆形区域内,一个质量
是m,带电量是q的带电粒子,
由原点O开始运动,初速度为v, L
r
方向沿x轴正方向,后来经过y 轴上的p点,此时速度方向和y 轴夹角为30º,p到O点的距离 是L,不计重力,求B的大小
度为B、宽度为d 的匀强磁场中,穿透磁场时速度方向与电子原来入 射方向的夹角是30°,则电子的质量是多少?穿过磁场的时间又是 多少?
解:电子运动轨迹如右图所示。
r mv eB
r
d s in 300
m2Bed/v 电子穿过磁场的时间为:
300 m d
t3600T6eB3v
v
d
f洛
30°
v
f洛
30°
洛伦兹力做向心力:qvB m2v/r
半径: r mv qB
周期: T 2r 2m
v qB
时间:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档