氢原子光谱 ppt课件

合集下载

18.3 氢原子光谱(45张PPT)

18.3 氢原子光谱(45张PPT)

分布。
C 在研究太阳光谱时发现太阳光谱中有许多暗线, 这说明了太阳内部缺少对应的元素。
D 在研究太阳光谱时发现太阳光谱中有许多暗线, 这些暗线与某些元素的特征谱线相对应,这说明 了太阳大气层内存在对应的元素。
随堂练习
1. 对原子光谱,下列说法正确 的是(ACD).
A.原子光谱是不连续的
B.由于原子都是由原子核 和电子组成的,所以各种原 子的原子光谱是相同的
X射线照射激发荧光, 通过分析荧光判断越王 勾践宝剑的成分.
(5)意义:原子光谱的不连续性反映出原子结构的不 连续性,所以光谱分析也可以用于探索原子的结构。
------光谱分析还为深入原子世界打开了道路。近代原 子物理学正式从原子光谱的研究中开始的。
研究原子结构规律有两条途径:
1.利用高能粒子轰击原子—轰出未知粒子来 研究(高能物理);
σ其它谱系
三、经典理论的困难
三、经典理论的困难
卢瑟福的原子核式模型正确地指出了原子核的存在,很好地解释了α粒子散射实验。
卢瑟福原子核式模型无法解释原子光谱的分立特征
原子核式结构模型与经典电磁理论的矛盾
核外电子绕核运动
辐射电磁波
电子轨道半径连续变小
原子不稳定 辐射电磁波频率连续变化 事实上:原子是稳定的 原子光谱是线状谱,频率不变
《波尔的原子模型》预习问题:
【问题1】什么是轨道量子化?什么是能量量子化? 【问题2】什么是能级?什么是基态?什么是激发态? 【问题3】什么是跃迁?什么是频率条件? 【问题4】画出氢原子n=1、2、3、4的能级图。
谱是线状谱
太阳光谱是吸收光谱,不连续 稀薄的氢气和钠蒸汽产生 的是原子光谱为线状谱
白光通过钠蒸汽产生的光谱是

氢原子光谱课件

氢原子光谱课件

氢原子光谱课件引言氢原子光谱是量子力学和原子物理学领域的基础内容,对于理解原子结构、光谱现象以及化学键的形成具有重要意义。

本课件旨在介绍氢原子光谱的基本原理、实验观测和理论解释,帮助读者深入理解氢原子的能级结构和光谱特性。

一、氢原子的基本结构1.1电子轨道和量子数氢原子由一个质子和一个电子组成,电子围绕质子旋转。

根据量子力学的原理,电子在氢原子中只能存在于特定的轨道上,这些轨道被称为能级。

每个能级由主量子数n来描述,n的取值为正整数。

1.2能级和能级跃迁氢原子的能级可以用公式E_n=-13.6eV/n^2来表示,其中E_n 是第n能级的能量,单位为电子伏特(eV)。

当电子从一个能级跃迁到另一个能级时,会吸收或发射一定频率的光子,这个频率与能级之间的能量差有关。

二、氢原子光谱的实验观测2.1光谱仪和光谱图氢原子光谱可以通过光谱仪进行观测。

光谱仪将入射光分解成不同频率的光谱线,并将这些光谱线投射到感光材料上,形成光谱图。

通过观察光谱图,可以得知氢原子的能级结构和光谱特性。

2.2巴尔末公式实验观测到的氢原子光谱线可以通过巴尔末公式来描述,公式为1/λ=R_H(1/n1^21/n2^2),其中λ是光谱线的波长,R_H是里德伯常数,n1和n2是两个能级的主量子数。

巴尔末公式可以准确地预测氢原子光谱线的位置。

三、氢原子光谱的理论解释3.1玻尔模型1913年,尼尔斯·玻尔提出了氢原子的量子理论模型,即玻尔模型。

该模型假设电子在氢原子中只能存在于特定的轨道上,每个轨道对应一个能级。

当电子从一个能级跃迁到另一个能级时,会吸收或发射一定频率的光子。

3.2量子力学解释1925年,海森堡、薛定谔和狄拉克等人发展了量子力学理论,为氢原子光谱提供了更为精确的解释。

量子力学认为,电子在氢原子中的状态可以用波函数来描述,波函数的平方表示电子在空间中的概率分布。

通过解薛定谔方程,可以得到氢原子的能级和波函数。

四、结论氢原子光谱是量子力学和原子物理学的基础内容,对于理解原子结构、光谱现象以及化学键的形成具有重要意义。

氢原子光谱 课件

氢原子光谱   课件

相对应.即某种原子发出的光与吸收的光的频率是特定的, 因此吸收光谱中的暗线也是该元素原子的特征谱线.
2.光谱分析.
由于每种原子都有自己的特征谱线,因此可以根据光 谱来鉴别物质和确定它的化学组成,这种方法叫作光谱分 析.
做光谱分析时,可以利用明线光谱,也可利用吸收光 谱.这种方法的优点是非常灵敏而且迅速.某种元素在
的,这意味着,某种物质的原子可从其明线光谱加以鉴 别.因此称某种元素原子的明线光谱的谱线为这种元素原子 的特征谱线.
(2)吸收光谱——高温物体发出的白光通过温度较低的 物质时,某些波长的光被该物质吸收后产生的光谱.这种光 谱的特点是在连续光谱的背景上由若干条暗线组成的.例如 太阳光谱就是太阳内部发出的强光经温度较低的太阳大气层 时产生的吸收光谱.实验表明,各种原子的吸收光谱中的每 一条暗线都跟该原子的明线光谱中的一条明线
(2)巴耳末公式. 氢原子光谱在可见光区域的 14 条谱线满足巴耳末公式 1λ=R212-n12,n=3,4,5,…
R 称为里德伯常量,实验测得 R=1.10×107 m -1,巴耳末公式说明氢原子光谱的波长只能取分立 值,不能取连续值.
氢原子光谱在红外光和紫外光区域的其他谱 线满足与巴耳末公式类似的其他公式,如莱曼系在 紫外光区,公式为1λ=R112-n12,n=2,3,4,….
(2)经典物理学无法解释原子光谱的分立特征.
根据经典电磁理论,电子辐射的电磁波的频率就 是它绕核转动的频率.电子越转能量越小,它离原子 核就越来越近,转得也就越来越快,这个变化是连续 的,也就是说,我们应该看到原子辐射出各种频率 (波长)的光,即原子的光谱应该总是连续的,而实际 上我们看到的是分立的线状谱.
②明线光谱——只含有一系列分立的亮线的光谱.它是由 游离状态的原子发射的,因此也叫原子光谱.稀薄气体或 金属的蒸气的发射光谱是明线光谱.实验证明,每种元素 的原子都有一定特征的明线光谱.可以使用光谱管观察稀 薄气体发光时的明线光谱.不同元素的原子产生的明线光 谱是不同的,但同种元素原子产生的明线光谱是相同

第二章 氢原子的光谱与能级

第二章 氢原子的光谱与能级

(a)
♣用波尔理论解释上面公式,并计算RH值: ·从En→Em的跃迁产生的辐射频率,满足:
hvm,n En Em
·由上式可知:
v
1
m ,n
vm ,n c
1 hc
( En
Em )
♣将能量公式(★★)代入上式,即得:
2 2me4 1 1
v (40 )2 h3c n2 m2
♣与经验公式(a)相比较,可知:
碰撞
• GA空间:动能足 够大的电子通过, 到达A极
• 测量接收极电流与 加速电压间的关系
K
GA
Hg蒸汽
A
V
13.9V
9.0V
A

4.1V


0
KG间加速电压(V)
当电子的加速电压为4.9V时,即电子的动能达到
4.9eV时,可以使Hg原子由于吸收电子的能量而从
基态跃迁到最近的激发态。
4.9V为Hg的第一激发电势
2、波尔氢原子模型:
(a) 电子稳定轨道的半径和速度:
♣由圆周运动规律可
得:
mvn2 rn
Ze2
40rn2
(1)
mv r n ♣由角动量量子可
得:
nn
(2)
♣由(1),(2)两式可得:
r a ♣稳定轨道半径: n
40n2 2
me2Z
n2 0Z
♣稳定轨道速度:
v Ze2
Z
n 40 n n
名称




波长(Å) 6562.10 4860.74 4340.10 4101.20
颜色

深绿


2、氢的Balmer线系

第63讲氢原子光谱原子能级

第63讲氢原子光谱原子能级

第63讲氢原子光谱原子能级第63讲氢原子光谱原子能级考情剖析考查内容考纲要求考查年份考查详情能力要求氢原子光谱氢原子的能级结构、能级公式Ⅰ弱项清单轨道跃迁时电子动能、电势能的变化关系,及一群与一个的区别.知识整合一、电子的发现英国的物理学家________发现了电子.引发了对原子中正负电荷如何分布的研究.二、氢原子光谱1.光谱(1)光谱用光栅或棱镜可以把光按波长展开,获得光的________(频率)和强度分布的记录,即光谱.(2)光谱分类有些光谱是一条条的______,这样的光谱叫做线状谱.有的光谱是连在一起的________,这样的光谱叫做连续谱.(3)氢原子光谱的实验规律氢原子光谱是________谱.巴耳末线系是氢原子光谱在可见光区的谱线,其波长公式1λ=________,(n=3,4,5,…×107m-1,n为量子数.核式结构模型正确的解释了α粒子散射实验的结果,但是,经典物理学既无法解释原子的稳定性,又无法解释氢原子光谱的分立特性.三、玻尔理论玻尔提出了自己的原子结构假说,成功的解释了原子的稳定性及氢原子光谱的分立特性.(1)轨道量子化:电子绕原子核运动的轨道的半径不是任意的,只有当半径的大小符合一定条件时,这样的轨道才是可能的.电子的轨道是量子化的.电子在这些轨道上绕核的转动是稳定的,不产生电磁辐射.(2)能量量子化:当电子在不同的轨道上运动时,原子处于不同的状态,原子在不同的状态中具有不同的能量.因此原子的能量是量子化的.这些量子化的能量值叫做________.原子中这些具有确定能量的稳定状态,称为________.能量最低的状态叫做________,其他的状态叫做________.原子只能处于一系列不连续的轨道和能量状态中,在这些能量状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量,保持稳定状态.(3)跃迁频率条件:原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即hν=________.×10-34J·s)四、氢原子的能级、半径公式1.氢原子的能级和轨道半径(1)氢原子的能级公式:E n=E1n2(n=1,2,3,…),其中E1为基态能量,其数值为E1=-13.6 eV.(2)氢原子的半径公式:r n=n2r1(n=1,2,3,…),其中r1为基态半径,又称玻尔半径,其数值为r1×10-10m.方法技巧考点能级跃迁与光谱线1.对氢原子的能级图的理解氢原子能级图的意义:(1)能级图中的横线表示氢原子可能的能量状态——定态.相邻横线间的距离不相等,表示相邻的能级差不等,量子数越大,相邻的能级差越小.(2)横线左端的数字“1,2,3…”表示量子数,右端的数字“…”表示氢原子的能级.(3)带箭头的竖线表示原子由较高能级向较低能级跃迁,原子跃迁条件为:hν=E m-E n.2.关于能级跃迁的五点说明(1)当光子能量大于或等于13.6 eV时,也可以被处于基态的氢原子吸收,使氢原子电离;当处于基态的氢原子吸收的光子能量大于13.6 eV,氢原子电离后,电子具有一定的初动能.(2)电子动能:电子绕氢原子核运动时静电力提供向心力,即k e 2r 2=m v 2r ,所以E k n =k e 22r n ,随r 增大而减小.(3)电势能:当轨道半径减小时,静电力做正功,电势能减少;反之,轨道半径增大时,电势能增加.(4)原子能量:E n =E p n +E k n =E 1n 2,随n 增大而增大,其中E 1=-13.6 eV .(5)一群氢原子处于量子数为n 的激发态时,可能辐射出的光谱线条数:N =C 2n =n (n -1)2. 3.原子跃迁的两种类型(1)原子吸收光子的能量时,原子将由低能级态跃迁到高能级态.但只吸收能量为能级差的光子,原子发光时是由高能级态向低能级态跃迁,发出的光子能量仍为能级差.(2)实物粒子和原子作用而使原子激发或电离,是通过实物粒子和原子碰撞来实现的.在碰撞过程中,实物粒子的动能可以全部或部分地被原子吸收,所以只要入射粒子的动能大于或等于原子某两个能级差值,就可以使原子受激发而跃迁到较高的能级;当入射粒子的动能大于原子在某能级的能量值时,也可以使原子电离.【典型例题1】 (17年苏锡常镇二模)由玻尔原子理论,氦离子He +能级如图所示,电子在n =3轨道上比在n =4轨道上离氦核的距离________(选填“大”或“小”).当大量处在n =3的激发态的He +发生跃迁时,所发射的谱线有________条.【学习建议】 熟悉谱线的计算公式N =C 2n =n (n -1)2. (17年苏锡常镇一模)欧洲核子研究中心的科学家通过大型强子对撞机俘获了少量反氢原子.反氢原子是由一个反质子和一个围绕它运动的正电子组成.反质子和质子具有相同的质量,且带着等量异种电荷.反氢原子和氢原子具有相同的能级,其原子能级如图所示.(1)根据玻尔原子结构理论,反氢原子n =3轨道处的电势比n =4轨道处的电势________(选填“高”或“低”);正电子处在n =3轨道上运动的动能比处在n =4轨道上的动能________(选填“大”或“小”).(2)上题中,若有一静止的反氢原子从n =2的激发态跃迁到基态.已知光子动量p 与能量E之间满足关系式P =E c×10-19 C ,光速c =3×108 m /s .求①放出光子的能量.②放出光子时反氢原子获得的反冲动量大小.【学习建议】 熟悉原子跃迁时,静电力做功与电势能变化的关系,熟悉静电力提供向心力推导动能与轨道半径的关系.【典型例题2】 (17年南京二模)汞原子的能级图如图所示,现让光子能量为E 的一束光照射到大量处于基态的汞原子上,汞原子能发出3种不同频率的光,那么入射光光子的能量为________eV ,发出光的最大波长为________m .×10-34 J ·s ,计算结果保留两位有效数字)当堂检测 1.(多选)下列说法中正确的是( )A .氢原子从激发态向基态跃迁时能辐射各种频率的光子B.玻尔理论能解释氢原子光谱C.一个氢原子从n=3的激发态跃迁到基态时,能辐射3个光子D.一群氢原子从n=3的激发态跃迁到基态时,能辐射3种频率的光子第2题图2.如图所示,某原子的三个能级的能量分别为E1、E2和E3.a、b、c为原子跃迁所发出的三种波长的光,下列判断正确的是()A.E1>E2>E3B.E3-E2>E2-E1C.b的波长最长D.c的频率最高3.可见光光子的能量在1.61 eV~3.10 eV范围内.若氢原子从高能级跃迁到低能级,根据氢原子能级图(如图所示)可判断()第3题图A.从n=4能级跃迁到n=3能级时发出可见光B.从n=3能级跃迁到n=2能级时发出可见光C.从n=2能级跃迁到n=1能级时发出可见光D.从n=4能级跃迁到n=1能级时发出可见光4.(16年苏北四市三模)如图所示为氢原子的能级图,n为量子数.若氢原子由n=3跃迁到n =2的过程释放出的光子恰好能使某种金属产生光电效应,则一群处于n=4的氢原子在向基态跃迁时,产生的光子中有__________种频率的光子能使该金属产生光电效应,其中光电子的最大初动能E km=________eV.第4题图5.(17年扬州一模)氢原子的能级图如图所示,原子从能级n=4向n=2跃迁所放出的光子正好使某种金属材料发生光电效应.求:(1)该金属的逸出功.(2)原子从能级n=4向n=1跃迁所放出的光子照射该金属,产生的光电子的最大初动能.第5题图第十四章 原子 原子核第63讲 氢原子光谱 原子能级知识整合 基础自测一、汤姆生二、1.(1)波长 (2)亮线 光带 (3)线状 R (122-1n2) 三、 (2)能级 定态 基态 激发态 (3) E m -E n方法技巧·典型例题1· 小 3 【解析】 能级越低离核越近,3轨道比4轨道离核更近.大量的处于n =3能级的氦离子发生跃迁时,所发射的谱线有3→2、3→1、2→1,共有3条.·变式训练·(1)低 大 (2)①10.2 eV ②×10-27 kg ·m/s 【解析】 反质子带负电,产生的电场方向由无限远处指向负电荷,沿着电场线的方向电势逐渐降低,所以轨道半径越小,离反质子越近,电势越低;根据k e 2r2=m v 2r 可知,轨道半径越小速率越大,则动能越大.跃迁释放光子能量E=E2-E1=10.2 eV,光子动量p=E c×10-27 kg·m/s,根据动量守恒,反冲动量与光子动量大小相等,方向相反,即p′=p×10-27 kg·m/s.·×10-7【解析】大量的处于第二激发态的汞原子能发生3种不同频率的光,则入射光的能量为E=E3-E1=7.7 eV;波长最大的,频率最小,所以3轨道跃迁到2轨道波长最大,E3-E2=h cλ,所以λ×10-7 m.当堂检测1.BD【解析】当氢原子从激发态向基态跃迁时,据玻尔理论:ΔE=E m-E n,可知氢原子只能辐射、吸收特定频率的光子.一个光子辐射时最多只能n-1;一群光子才是N=C2n=n⎝⎛⎭⎫n-12,玻尔理论解释了原子光谱.2.D【解析】结合题图和电子跃迁时发出的光子的能量为E=E m-E n可知E c=E a+E b,能量差E3-E2等于光子a的能量,能量差E2-E1等于光子b的能量,能量差E3-E1等于光子c的能量,那么c对应的能量最大,而a对应的能量最小,因:E1<E2<E3,且E n=E1n2,则有E3-E2<E2-E1故AB错误;又E n=hcλ,c光的频率最高,a光的波长最长,故C错误,D正确.3.B【解析】四个选项中,只有B选项的能级差在1.61 eV~3.10 eV范围内,故B选项正确.4.510.86【解析】氢原子从第3能级向第2能级时,发出光子的能量为1.89 eV,从第4能级向基态跃迁发出6种频率的光子,其中光子能量大于或等于1.89 eV的有5种.从第4能级直接跃迁到基态的光子产生光电效应时,对应的最大初动能最大,为E k=hν-W0=(E4-E1)-(E3-E2)=10.86 eV.5. (1)2.55 eV(2)10.2 eV【解析】(1)原子从能级n=4向n=2跃迁所放出的光子的能量为3.40-0.85=2.55 eV,当光子能量等于逸出功时,恰好发生光电效应,所以逸出功为2.55 eV.(2)从能级n=4向n=1跃迁所放出的光子能量为13.6-0.85=12.75 eV,根据光电效应方程得,最大初动能为E km=12.75-2.55=10.2 eV.。

氢原子光谱ppt课件

氢原子光谱ppt课件

03
氢原子光谱实验观测与分析
氢原子光谱实验装置介绍
光源
氢原子灯或放电管,产生氢原子 光谱。
单色仪
将复合光分解为单色光,并可选 择特定波长的光通过。
光探测器
如光电倍增管或CCD,将光信号 转换为电信号进行记录和分析。
数据采集与处理系统
对实验数据进行采集、处理和分 析,得出实验结果。
氢原子光谱观测方法
氢原子光谱研究挑战与机遇
实验技术挑战
01
尽管精密测量技术取得了显著进展,但进一步提高测量精度仍
面临诸多挑战,如如何消除系统误差、提高信噪比等。
理论模型挑战
02
现有理论模型在描述某些复杂现象时仍存在一定局限性,需要
进一步完善和发展。
交叉学科机遇
03
氢原子光谱研究与粒子物理、宇宙学等领域密切相关,这些领
04
氢原子光谱理论解释与应用
薛定谔方程与波函数概念
薛定谔方程
描述了微观粒子状态随时间变化 的规律,是量子力学的基本方程
之一。
波函数
量子力学中用来描述粒子状态的函 数,其模平方表示粒子在特定位置 被发现的概率。
量子数
描述原子或分子中电子运动状态的 参数,如主量子数、角量子数等。
氢原子光谱理论解释
玻尔模型
玻尔提出的氢原子模型,假设电子在 特定轨道上运动,且能量是量子化的。
能量级与光谱线
选择定则
解释了为何只有特定能级间的跃迁才 会产生光谱线,如偶极跃迁选择定则 等。
氢原子光谱由一系列分立的谱线组成, 对应着电子在不同能级间的跃迁。
氢原子光谱在物理、化学等领域应用
01
02
03
04
原子钟
利用氢原子光谱的稳定性和精 确性,制成高精度原子钟,用

氢原子光谱PPT教学课件

氢原子光谱PPT教学课件
R 称为“普适气体常数 ”
代入: PV PoVo M PoVmol
T
To
M mol To
理想气体物态方程: PV M RT M mol
阿伏伽德罗常数: N A 6.022 1023 mol 1
玻耳兹曼常数: k R 1.38 1023 (J K 1) NA
设:分子质量为 m,气体分子数为N,分子数密度 n。
单个分子速率不可预知,大量分子的速率分布是遵 循统计规律,是确定的,这个规律也叫麦克斯韦速 率分布律。
氢原子光谱
引言
每种原子、分子都有其特征光谱。因此分析其特征 光谱,对研究不同原子、分子及其结构有着重大的意义。 光谱学已成为光学的一个重要分支,并被广泛用于科研 和生产中。
氢原子是最简单的原子,其光谱线在按波长(或波 数)大小的排列次序上显示出简单的规律性。研究原子 结构,很自然氢原子首先被关注。
热现象
热学的研究方法:
1.宏观法. 最基本的实验规律逻辑推理(运用数学) ------称为热力学。
优点:可靠、普遍。 缺点:未揭示微观本质。 2.微观法.
物质的微观结构 + 统计方法 ------称为统计力学 其初级理论称为气体分子运动论(气体动理论) 优点:揭示了热现象的微观本质。 缺点:可靠性、普遍性差。
宏观法与微观法相辅相成。
气体动理论 §1 分子运动的基本概念
一.热力学系统 热力学研究的对象----热力学系统. 热力学系统以外的物体称为外界。 孤立系统:系统和外界完全隔绝的系统
例:若汽缸内气体为系统,其它为外界
二.系统状态的描述 微观量:分子的质量、速度、动量、能量等。
在宏观上不能直接进行测量和观察。 宏观量: 温度、压强、体积等。
2

氢原子光谱

氢原子光谱
精细结构特点
在光谱上表现为谱线的分裂和位移,可通过高分辨率光谱仪 进行观测。
氢原子光谱超精细结构探讨
超精细结构成因
在精细结构的基础上,由于原子核自旋与电子总角动量的耦合,导致能级进一步分裂。
超精细结构特点
在光谱上表现为谱线的更细微分裂和位移,需要更高精度的观测手段进行探测。
总结
氢原子光谱是量子力学和原子物理领域的重要研究对象,其性质和特点包括多个线系、精 细结构和超精细结构等。通过对氢原子光谱的深入研究,可以揭示原子内部结构和能级分 布的奥秘,为现代物理学的发展提供重要支撑。
02
氢原子光谱实验方法
氢原子光谱实验装置
光源
提供足够能量的光源,如钨丝 灯或激光器,以激发氢原子。
分光仪
将光源发出的光分成不同波长 的光谱。
探测器
用于检测分光后各波长光的强 度,如光电倍增管或CCD。
数据采集与处理系统
记录并处理实验数据,如计算 机和专用软件。
氢原子光谱实验步骤
1. 准备实验装置
量子力学对氢原子光谱解释
波函数与概率密度
量子力学用波函数描述电子状态,波函数的模平方表示电子在空间 中出现的概率密度。
能级与跃迁
量子力学中的能级概念与玻尔理论相似,但更为精确。电子在不同 能级间跃迁时,同样会发射或吸收光子。
选择定则
量子力学中的选择定则规定了哪些能级间的跃迁是允许的,从而解释 了氢原子光谱的特定结构。
氢原子光谱研究前景展望
• 高精度测量技术的发展:随着实验技术的不断进步,未来有望实现更高精度的氢原子光谱测量,从而更深入地 揭示原子结构和相互作用的奥秘。
• 新理论模型的探索:尽管现有的理论模型能够很好地解释氢原子光谱,但仍存在一些尚未解决的问题,如高阶 效应的处理、相对论和量子电动力学的结合等。未来有望通过发展新的理论模型,更准确地描述氢原子光谱。

18-3氢原子光谱34张ppt

18-3氢原子光谱34张ppt

2.光谱分析
由于每种原子都有自己的特征谱线,因此可 以根据光谱来鉴别物质和确定它的化学组成, 这种方法叫做光谱分析。
做光谱分析时,可以利用明线光谱,也可利 用吸收光谱。这种方法的优点是非常灵敏而 且迅速。某种元素在物质中的含量达10-10 g, 就可以从光谱中发现它的特征谱线将其检查 出来。
①连续光谱:由连续分布的一切波长的光(单 色光)组成的光谱。炽热的固体、液体和高压 气体的发射光谱是连续光谱。如电灯丝发出 的光、炽热的钢水发出的光都是连续光谱。
②明线光谱:只含有一些不连续的亮线的光 谱。它是由游离状态的原子发射的,因此也 叫原子光谱。稀薄气体或金属的蒸气的发射 的光谱就是明线光谱。实验证明,每种元素 的原子都有一定特征的明线光谱。不同元素 的原子产生的明线光谱是不同的,但同种元 素的原子产生的明线光谱是相同的,这意味 着,某种物质的原子可从其明线光谱加以鉴 别。因此称某些元素的原子的明线光谱的谱 线为这种元素原子的特征谱线。
【答案】B、C
对发射光谱和吸收光谱的理解
(1)有的物体能自行发光,由它直接产生的光 形成的光谱叫做发射光谱。发射光谱可分为 三种不同类别的光谱:线状光谱、带状光谱 和连续光谱。线状光谱主要产生于原子,由 一些不连续的亮线组成;带状光谱主要产生 于分子由一些密集的某个波长范围内的光组 成;连续光谱则主要产生于白炽的固体、液 体或高压气体受激发发射电磁辐射,由连续 分布的一切波长的光组成。
( ) A.太阳表面大气层中缺少相应的元素 B.太阳内部缺少相应的元素 C.太阳表面大气层中存在着相应的元素 D.太阳内部存在着相应的元素
解析:太阳光谱是吸收光谱,太阳内部射出 的光线含有各种颜色的光;当阳光穿过太阳 大气层时,大气层中的元素会吸收它自己特 征谱线的光,然后再发射出去,不过这次是 向四面八方发射,所以到达地球的谱线看起 来就弱了;研究太阳光谱可知太阳大气层中 有哪些元素,故C正确。

第二章,氢原子光谱

第二章,氢原子光谱

Back
Next
第五节:玻尔理论的推广
玻尔—索末非模型 碱金属的光谱 Back
第五节:玻尔理论的推广
玻尔—索末非模型
碱金属的光谱
Next
第五节:玻尔理论的推广
玻尔—索末非模型
碱金属的光谱
Back
Next
第五节:玻尔理论的推广
原子实是一个球形对称的 结构,它里边的原子核带 有Ze正电荷和(Z-1)e负 电荷,在原子最外层运动 的价电子好象是处在一个 单位正电荷的库仑场中, 当价电子运动到靠近原子 实时,由于价电子的电场 作用,原子实中带正电的 原子核与带负电的电子的 中心会发生微小的偏移, 于是负电的中心不再在原 子核上,形成一个电偶极 子。这就是原子实的极化。
rnn2a 0
c vnn
n1 ,2 ,3 ,K
a0 4m πee0h22 0.53Å 玻尔半径
En
1 2n2
e2 4π0a0
e2 1 精细结构常数 4π0hc 137
1 2n2
m e
2c 2
n 1 E 1 1 3 . 6 e V r 1 a 0 基态(ground state)
n 2 激发态(excited state)
质心系
核系
En
1 2n2
Z 2e2 4π0a0
1 2n2
Z
2
2c 2
rnn Z 2a0
vnZ nc n1 ,2 ,3 ,K
r1n
me rn
n2
Z
4π0h2
mee2
e4
1
RM4π4π02h3c1m e MR
R1 0 7m 1 M 1 .0 9 73 7 3 1
1 1H 1 .0 9 67 7 58 1 2D 1 .0 9 70 7 42 1 3T 1 .0 9 7 1 7 35 4 2H e 1 .0 9 72 2 27 3 7L i2 1 .0 9 72 8 80 9 4H e3 1 .0 9 73 0 70

高中物理课件第2章 第4节 氢原子光谱与能级结构

高中物理课件第2章 第4节 氢原子光谱与能级结构

[后思考]
被测电阻值越大,流过电流表表头的电流越小,电流的大小与被测电阻的阻
值成反比,这种说法对吗?为什么?
【提示】
电流I=
E Rx+R+Rg+r
,Rx越大,电流越小,但二者不是反比关
系.
[合作探讨]



图2-8-2
如图2-8-2所示,甲、乙、丙分别为欧姆表红黑表笔短接、红黑表笔断开、被
测电阻为Rx所对应的电路图.
[再判断] 1.氢原子光谱是不连续的,是由若干频率的光组成的.( √ ) 2.由于原子都是由原子核和核外电子组成的,所以各种原子的原子光谱是相 同的.( × ) 3.由于不同元素的原子结构不同,所以不同元素的原子光谱也不相同.(√ )
[后思考] 氢原子光谱有什么特征,不同区域的特征光谱满足的规律是否相同? 【提示】 氢原子光谱是分立的线状谱.它在可见光区的谱线满足巴耳末公 式,在红外和紫外光区的其他谱线也都满足与巴耳末公式类似的关系式.
[后思考] 玻尔理论的成功和局限是什么?
【提示】 成功之处在于引入了量子化的观念,局限之处在于保留了经典粒 子的观念,把电子的运动看做是经典力作用下的轨道运动.
[核心点击] 1.成功方面 (1)运用经典理论和量子化观念确定了氢原子的各个定态的能量并由此画出能 级图. (2)处于激发态的氢原子向低能级跃迁辐射出光子,辐射光子的能量与实际符 合的很好,由于能级是分立的,辐射光子的波长也是不连续的. (3)不仅成功地解释了氢光谱的巴尔末系,计算出了里德伯常数,而且,玻尔 理论还预言了当时尚未发现的氢原子的其他光谱线系,这些线系后来相继被发 现,也都跟玻尔理论的预言相符.
[先填空]
1.理论推导
按照玻尔原子理论,氢原子的电子从能量较高的能级跃迁到n=2的能级上

第三节氢原子光谱

第三节氢原子光谱


R(
1 22

1 n2
)
n=3,4,5,6……
其中R称为里德伯常量
R 1.097 10 m 对于氢原子
7
-1
注意表达的顺序,因为不同
的原子,该常数也不同.
氢原子光谱的实验规律
H
H H H
H
656.3n m 486.1n m 434.1nm 410.2nm 364.6nm
n=3
n=4
不同的m对应不同的谱系;当m一定时,每 T (n)

式中
T
(m)

R m2

T
(n)

R n2
称为光谱项
6、原子光谱
氢原子光谱只是众多原子光谱中最简单的一种,下图列出 了钠、氦和汞等原子的光谱。
科学家观察了大量的 原子光谱,发现每种原子都有 自己特定的原子光谱。不同的原子,其原子光谱均不相同, 因而,原子光谱被称为原子的“指纹”。我们可以通过对 光谱的分析鉴别不同的原子,确定物体的化学组成并发现 新元素。


1 R( 42

1 n2
)
n=5,6,7,8……
普丰德系(红外区)1 R( 1 1 ) n=6,7,8,9……

52
n2
简称为莱巴帕布普. 请标出课本图3-3-4中帕邢系的4.5.6.7;强调n越小,波长越大
3、广义巴尔末公式
1


1 R( m2

1 n2 )
式中 m与n都是正整数,且 n > m.
莱区 用曼发一系现个(了简紫氢单原的外子公区的式)其表他示1线。系,R这(些11线2 系也n和12巴)耳n末=系2,一3样,可4,以5,…

氢原子光谱

氢原子光谱

根据玻尔的第二个假设,原子系统中 电子从较高能级Wn,跃迁到较低能级Wk时, 发出单色光,其频率为(图2)
两谱系.这些谱系,的确都在氢原子光谱中观 察到,而且有些还是在玻尔理论发表以后先从理 论上计算出来,然后才通过实验找到的.在k=1时 所表示的谱系在光谱的远紫外部分,称为赖曼系. k=3所表示的谱系在红外部分,称为帕邢系.k=4 和k=5所表示的谱系也都在红外范围,分别称为布 喇开系和普芳德系.在某一瞬时,一个氢原子只 能发射一个一定频率的光子,这一频率相应于一 条谱线,不同的受激氢原子才能发射不同的谱线. 实验中观察到的是大量不同受激状态的原子所发 射光的组合,所以能观察到大量的谱线.[1]
按照经典物理学,核外电子受到原子的库仑引力 的作用,不可能是静止的,它一定是以一定的速 度绕核转动.既然电子在运动,它的电磁场就在 变化,而变化的电磁场会激发电磁波.也就是说, 它将把自己绕核转动的能量以电磁波的形式辐射 出去.因此,电子绕核转动这个系统是不稳定的, 电子会失去能量,最后一头栽在原子核上.但是 事实不是这样,原子是个很稳定的系统. ②连续光谱与明线光谱的矛盾
根据经典电磁理论,电子辐射的电磁波的频率, 就是它绕核转动的频率.电子越转能量越小,它 离原子核就越来越近,转的也就越来越快.这个 变化是连续的,也就是说,我们应该看到原子辐 射的各种频率(波长)的光,即原子的光谱应该 总是连续的.而实际上我们看到的是分立的线状 谱. 这些矛盾说明,尽管经典物理学理论可以很 好地应用于宏观物体,但它不能用于解释原子世 界的现象,引入新观念是必要的.
(2)当原子从一个具有较大能量E2的定态 跃迁到另一个能量较低的定态E1时,它辐 射出具有一定频率的光子,光子的能量为 这一假设确定了原子发光的频率—— 它就是频率假设.

高中物理精品课件:氢原子光谱

高中物理精品课件:氢原子光谱

特点: 光谱是分立的亮线(只含几种特定频率的光)
可见 光区
2020-2021学年度下学期
长沙市长郡中学
三、氢 原 子 光 谱
2020-2021学年度下学期
长沙市长郡中学
三、氢 原 子 光 谱
可 见 光 区
2020-2021学年度下学期
长沙市长郡中学
三、氢 原 子 光 谱


光 区
巴耳末系是氢光谱在可见光区的谱线,
长沙市长郡中学
三、氢 原 子 光 谱
氢原子是最简单的原子,其光谱也最简单。
2020-2021学年度下学期
长沙市长郡中学
三、氢 原 子 光 谱
氢原子是最简单的原子,其光谱也最简单。
特点: 光谱是分立的亮线(只含几种特定频率的光)
2020-2021学年度下学期
长沙市长郡中学
三、氢 原 子 光 谱
氢原子是最简单的原子,其光谱也最简单。
2020-2021学年度下学期
长沙市长郡中学
四、 经典理论的困难
1. 矛盾一: 无法解释原子的稳定性 2. 矛盾二: 无法解释原子光谱的分立性
核外电子绕核运动
辐射电磁波
电子轨道半径连续变小
原子不稳定 事实上:
原子是稳定的
2020-2021学年度下学期
辐射电磁波频率连续变化 辐射电磁波频率只是 某些确定值
的光被物质吸收后产生的光谱
吸收光谱中每一条暗线都跟该种原子的发射光 谱中的一条明线相对应
吸收光谱中的暗 谱线,也是原子 的特征谱线。
2020-2021学年度下学期
太阳的光谱 长沙市长郡中学
太阳光谱是吸收 光谱
二、 光 谱 分 析
2020-2021学年度下学期
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PPT课件
2
原子结构的探索
关于原子的结构,人们提出各种不同的模型,
经公认的是1911年卢瑟福在 粒子散射实验基础上
提出的核式结构,即原子是由带正电的原子核和核 外作轨道运动的电子组成。
卢瑟福原子有核模型:
① 原子的中心是原子核,几乎占有原子的 全部质量,集中了原子中全部的正电荷。
② 电子绕原子核旋转。 ③ 原子核的体积比原子的体积小得多。
表示的氢原子光谱公式。
PPT课件
7
巴尔末公式


B
n2 n2 22
1890 年瑞典物理学家里德伯提出了一个用波数
表示的氢原子光谱公式
波数:单位长度内所包含的完整波形数目。
~ 1
1 n2 4
B
n2

4 B

1 22

1 n2

令 R 4 B
巴尔末公式
为里德伯常数 R 1.0967758107m1
莱曼系
巴尔末系 布拉开系
氢原子光谱不是不相关的,而是有内在联系的。 表现在其波数可用一普遍公式来表示:
~

R
1 m2

1 n2

(广义巴尔末公式)
式中:m 1,2,3 n取从(m+1)开始的正整数,即
n m 1, m 2, m 3,
对应一个m就构成一个谱线系。
Байду номын сангаас
~

R
1 22

1 n2

n 3,4,5,
氢原子光谱的其它谱线,也先后被发现。一个
在紫外区,由莱曼发现,还有三个在红外区,分别
由帕邢、布喇开、普方德发现。
PPT课件
8
紫外 莱曼系:
~

R
1 12

1 n2

n 2,3,4,
可见光
巴尔末系:~
R
每一谱线的波数都等于P两PT课项件 的差数。
10
令:T (m )

R m2
,
R T(n) n2
~

R
1 m2

1 n2

有: ~ T(m) T(n) T(m),T(n) 称为光谱项。
氢原子光谱的规律:
1)光谱是线状的,谱线有一定位置。这就是说,谱 线有确定的波长值,而且彼此是分立的。
H: 红色 656.210nm; Hg : 青色 434.010nm;
Hb :深绿 486.074nm Hd ;紫色 410.120nm
当n=7,8,9,10,为四条紫外部分谱线。
氢原子巴尔末线系
H
Hb Hg Hd H
n 3 4 5

656 .3 486 .3
364 .56nm
1890 年瑞典物理学家里德伯提出了一个用波数
玻尔的氢原子理论的三个重要假设:
定态假设 频率条件假设 量子化条件假设
PPT课件
13
二、玻尔的氢原子理论
1、玻尔的基本假设:
1) 定态假设:原子中的电子只能在一些特定的、半径不 连续的轨道上作圆周运动,而不辐射电磁波,这时原子 处于稳定状态(简称定态),并具有一定的能量。
氢 放 电 管
2~3 kV 光 源
光阑
三棱镜 (或光栅)
全息干板
记录原子光谱原理示意图
PPT课件
5
一、氢原子光谱的实验规律
氢原子是最简单的原子,其光谱也最简单。
很早,人们就发现氢气放电管获得的氢原子光谱, 在可见光范围内有四条谱线。
H: 红色 656.210nm; Hb ;深绿 486.074nm Hg : 青色 434.010nm; Hd ;紫色 410.120nm
1 22

1 n2

红外区:
帕邢系:
~

R
1 32

1 n2

布喇开系:
~

R
1 42

1 n2

n 3,4,5,
n 4,5,6,
n 5,6,7,
普方德系:
~

RPP5T1课2件
1 n2

n 6,7,8,
9
帕邢系 普方德系
2)谱线间有一定的关系,例如谱线构成一个谱线系, 它们的波长可以用一个公式表达出来,不同系的谱 线有些也有关系,例如有共同的光谱项。
3)每一谱线的波数都可以表达为二光谱项之差:
~ T(m) T(n) (里兹合并原理)
任一条谱线的波数都等于该元素所固有的许多光 谱项中的两项之差, 这是P里PT课兹件 在1908年发现的。 11
1885 年瑞士数学家巴耳末把氢原子在可见光的谱 线归纳为巴耳末公式:
巴尔末公式


B
n2 n2 22
(n 3,4,5,6,)
常数 B 36PP4T.课5件7nm
6
巴尔末公式


B
n2 n2 22
(n 3,4,5,6)
当 n=3,4,5,6,为四条可见光谱线H、Hb、Hg、Hd
原子半径~10-10m,原子核半径10-14 ~10-15m
原子核式结构模型的建立,只肯定了原子核的存
在,但还不知道原子核外电子的情况。
PPT课件
3
19世纪80年代,光谱学的发展,使人们意识到 光谱规律实质是显示了原子内在的机理。
光谱是电磁辐射(不论是在可见光区域还是在不 可见光区域)的波长成分和强度分布的记录。有时只 是波长成分的记录。
光谱可分为三类:线状光谱,带状光谱,连续 光谱。连续光谱是固体加热时发出的,带状光谱是 分子所发出的,而线状光谱是原子所发出的。
每一种元素都有它自己特有的光谱线,原子谱 线“携带”着大量有关原子内部结构或原子能态变 化特色的“信息”。
通过研究光谱,就可以研究原子内部的结构,并 通过原子光谱的实验数据PP来T课件检验原子理论的正确性。4
21.3
氢原子光谱的实验规律 玻尔理论
PPT课件
1
除了黑体辐射、光电效应及康普顿散射外,经 典物理还在原子的结构和原子光谱的谱线规律上, 遇到重大困难。
1897年,人们发现了电子,并从实验中知道,电 子是所有原子的基本组成部分。在这之后,物理学的 中心问题就是探索原子内部的奥秘。
原子发光是重要的原子现象之一,对原子光谱的 研究是了解原子内部结构的重要手段之一。
卢瑟福的原子有核模型的困难
经典电磁理论: ①原子发射的光谱应该是连续光谱。 ②电子会落到原子核上。
e
v
F
r + e
实验事实:原子是稳定的; 原子所发射的光谱是线状的, 且具有一定的规律。
e
e +
PPT课件
12
~

R
1 m2

1 n2

1913年,玻尔在卢瑟福的有核模型的基础上, 推广了普朗克和爱因斯坦的量子概念,并引用到原 子中来。并结合原子光谱的实验规律,提出了关于 氢原子模型的三个假设,奠定了原子结构的量子理 论基础。为此他获得1922年诺贝尔物理学奖。
相关文档
最新文档