第二章拉压(3)
材料力学(机械类)第二章 轴向拉伸与压缩
二
章
拉伸压缩与剪切
1
பைடு நூலகம்
§2-1
轴向拉伸与压缩的概念和实例
轴向拉伸——轴力作用下,杆件伸长 (简称拉伸) 轴向压缩——轴力作用下,杆件缩短 (简称压缩)
2
拉、压的特点:
1.两端受力——沿轴线,大小相等,方向相反 2. 变形—— 沿轴线
3
§2-2 轴向拉伸或压缩时横截面上的内力和应力
1 、横截面上的内力
A3
2
l1 l2 y AA3 A3 A4 sin 30 tan 30 2 1.039 3.039mm
A
A A4
AA x2 y2 0.6 2 3.039 2 3.1mm
40
目录
例 2—5 截面积为 76.36mm² 的钢索绕过无摩擦的定滑轮 F=20kN,求刚索的应力和 C点的垂直位移。 (刚索的 E =177GPa,设横梁ABCD为刚梁)
16
§2-4
材料在拉伸时的力学性能
材料的力学性能是指材料在外力的作用下表现出的变 形和破坏等方面的特性。
现在要研究材料的整个力学性能(应力 —— 应变):
从受力很小
破坏
理论上——用简单描述复杂
工程上——为(材料组成的)构件当好医生
17
一、 低碳钢拉伸时的力学性能 (含碳量<0.3%的碳素钢)
力均匀分布于横截面上,σ等于常量。于是有:
N d A d A A
A A
得应力:
N A
F
FN
σ
10
例题2-2
A 1
45°
C
2
第二章_直杆的拉伸和压缩
F
1
FN1 A1
28.3103 202 106
4
90106 Pa 90MPa
2
FN2 A2
20103 152 106
89106Pa 89MPa
2.1.3 应变的概念
绝对变形ΔL, 相对变形或线应变:
L
L
伸长时ε为正,缩短时ε为负
2.2 拉伸和压缩时材料的力学性能
2.2.1 拉伸和压缩试验及材料的力学性能
1、强度校核:
max
N A
2、设计截面:
A
N
3、确定许可载荷: NA
目录
塑性材料 :以材料的屈服极限作为确定许用应力的基础。 变形特征:当杆内的最大工作应力达到材料的屈服极限时,沿 整个杆的横截面将同时发生塑性变形,影响杆的正常工作。 许 用内力的表示为:
对于一般构件的设计,ns规定为1.5到2.0 脆性材料 :以材料的断裂极限作为确定许用应力的基础。 变形特征:直到拉断也不发生明显的塑性变形,而且只有断裂 时才丧失工作能力。许用内力的表示为:
OA
BC
D
PA
PB
PC
PD
N1 A
BC
D
PA
PB
PC
PD
解: 求OA段内力N1:设置截面如图
X 0 N 1 P A P B P C P D 0
N 1 5 P 8 P 4 P P 0N1 2P
N2
BC
D
PB 同理,求得AB、BC、 CD段内力分别为:
N2= –3P N3= 5P N4= P
2.1.3 拉伸和压缩时横截面上的应力
FN F
AA
应力集中:在截面突变处应力局部增大的 现象
应力集中系数:k=σmax/σ
材料力学习题册答案-第2章-拉压
一、 选择题
1.图 1 所示拉杆的外表面上有一斜线,当拉杆变形时,斜线将(
A.平动
B.转动
C.不动
D.平动加转动
D)
2.轴向拉伸细长杆件如图 2 所示,则正确的说法是 ( C )
A.1-1、2-2 面上应力皆均匀分布 B.1-1、2-2 面上应力皆非均匀分布 C. 1-1 面上应力非均匀分布,2-2 面上应力均匀分布 D.1-1 面上应力均匀分布,2-2 面上应力非均匀分布
30KN 1
300mm
l1 解:(1) 轴力图如下
2
400mm
l2
10KN
-
40KN
50KN 3
400mm
l3
10KN
+
10KN
(2)
(3)右端面的位移
=
= 即右端面向左移动 0.204mm。
8.一杆系结构如图所示,试作图表示节点 C 的垂直位移,设 EA 为常数。
A
30
C
30 ΔL2 60 ΔL1
CD 段:σ3= =
Pa=25MPa
2.图为变截面圆钢杆 ABCD,已知 =20KN, = =35KN, = =300mm, =400mm,
D
3
C
P3
2
,绘出轴力图并求杆的最大最小应力。
B
1 P2
A
P1
l3 解:
-
50KN
l2 15KN
l1
20KN
+
AB 段:σ1=
=
=176.9MPa
BC 段:σ2=
反力均匀分布,圆柱承受轴向压力 P,则基座剪切面的剪力
。ห้องสมุดไป่ตู้
材料力学S02拉压
B
qx
l
C
F1
F1
23
第二章
轴向拉伸和压缩
拉压变形计算例题
例7: 支架,F=20kN, E=200GPa ,杆1截面d=0.022m, θ0=30°;杆2长度为l2=2m,截面为No.10工字钢, A2=1.435×10-3m2 。试计算结构中的最大应力和A点位 移。 d
B
(1)
FN 1
C
( 2)
l l
(a)
第二章
d
轴向拉伸和压缩
(b)
34
2. 低碳钢的拉伸力学性质
2.1 学习重点 材料的拉伸曲线(应力-应变或载荷-位移曲线) 重要参数 D 2.2 曲线 F 四个阶段: B 弹性,屈服 C 强化,颈缩 A
' '
轴向拉伸和压缩
F
b
b b
F
泊松比ν
第二章
l
20
拉压变形计算例题
F
例6: A 如图直径为d的圆截面的桩被外力F打入土中, 假设土对桩体的阻力为均匀分布,其线分布 B 集度为qx,土对桩头的阻力F1=0.3qxl,桩体 材料的弹性模量为E。试计算桩体最大应力 和总变形量。 q
F
O
x
x
该杆件上的载荷力系关于杆件中截面C反对称,FN的分 布关于杆件中截面C也是反对称的。
第二章 轴向拉伸和压缩 9
第三节
应力 拉压应力
Fi1
1. 应力 单位截面积上作用着的内力 平均应力 p ΔF
m
m
ΔA
ΔFn
ΔFt
一点应力
ΔA ΔF ΔF m n m t ΔA ΔA ΔF p lim ΔA 0 ΔA ΔF ΔF lim n lim t ΔA0 ΔA ΔA0 ΔA
材料力学 中国建筑工业出版社第二章 轴向拉压习题答案
2-1a 求图示各杆指截面的轴力,并作轴力图。
(c ')(e ')(d ')N (kN)205455(f ')解:方法一:截面法(1)用假想截面将整根杆切开,取截面的右边为研究对象,受力如图(b)、(c)、(d)、(e)所示。
列平衡方程求轴力: (b) 图:)(20020011拉kN N NX =→=-→=∑(c) 图:)(5252002520022压kN N NX -=-=→=--→=∑(d) 图:)(455025200502520033拉kN N NX =+-=→=-+-→=∑(e) 图:)(540502520040502520044拉kN N NX =-+-=→=--+-→=∑(2)杆的轴力图如图(f )所示。
方法二:简便方法。
(为方便理解起见,才画出可以不用画的 (b ‘)、(c ‘)、(d ‘)、(e ‘) 图,作题的时候可用手蒙住丢弃的部份,并把手处视为固定端)(1)因为轴力等于截面一侧所有外力的代数和:∑=一侧FN 。
故:)(201拉kN N =)(525202压kN N -=-=)(455025203拉kN N =+-=)(5405025204拉kN N =-+-=(2)杆的轴力图如图(f ‘)所示。
2-2b 作图示杆的轴力图。
(c)图:(b)图:(3)杆的轴力图如图(d )所示。
2-5 图示两根截面为100mm ⅹ100mm 的木柱,分别受到由横梁传来的外力作用。
试计算两柱上、中、下三段的应力。
(b)(c)(d)(f)题2-5-N图(kN)6108.5N图(kN)326.5-解:(1)梁与柱之间通过中间铰,可视中间铰为理想的光滑约束。
将各梁视为简支梁或外伸梁,柱可视为悬臂梁,受力如图所示。
列各梁、柱的平衡方程,可求中间铰对各梁、柱的约束反力,计算结果见上图。
(2)作柱的轴力图,如(e)、(f)所示。
(3)求柱各段的应力。
解:(1)用1-1截面将整个杆切开,取左边部分为研究对象;再用x -x 截面整个杆切开,取右边部分为研究对象,两脱离体受力如图(b)、(c),建立图示坐标。
材料力学第二章-轴向拉伸与压缩
1
2
P
P
1
2
FN1
3 P
3
P FN2
PP FN3
FN 1 P FN 2 0 FN 3 P
1
2
4、作内力图
P
P
P
3 P
1 FN
P
2
3
P x
[例2] 图示杆旳A、B、C、D点分别作用着大小为5P、8P、 4P、 P 旳力,方向如图,试画出杆旳轴力图。
OA PA
B PB
C PC
D PD
q
u 正应力旳正负号要求:
sx
sx sx
s
x
P
u 对变截面杆, 当截面变化缓慢时,横截面上旳 正应力也近似为均匀分布,可有:
s (x) FN (x)
A( x)
合力作用线必须与杆件轴线重叠;
圣维南原理
若用与外力系静力等 效旳合力替代原力系, 则这种替代对构件内应 力与应变旳影响只限于 原力系作用区域附近很 小旳范围内。 对于杆件,此范围相当 于横向尺寸旳1~1.5倍。
h
解: 1) BD杆内力N
取AC为研究对象,受力分析如图
mA 0 , (FNsinq ) (hctgq) Px 0
FN
Px
hcosq
2) BD杆旳最大应力: s max FN max PL A hAcosq
突变规律: 1、从左边开始,向左旳力产生正旳轴力,轴力图向上突变。 2、从右边开始,向右旳力产生正旳轴力,轴力图向上突变。 3、突变旳数值等于集中力旳大小。
即:离端面不远处,应力分布就成为均匀旳。
§2–3 直杆轴向拉压时斜截面上旳应力
一、斜截面上旳内力
n
02.3.应力·拉(压)杆内的应力解析
4
FF
90106 Pa 90MPa
x
s2
FN 2 A2
20103 152 106
FN1 28.38k9N106 PaFN289M20PkaN
第19页
武生院建筑工程学院:材料力学
第二章 轴向拉伸和压缩
Ⅲ. 拉(压)杆斜截面上的应力
k
F
F
k
k
F
F
斜截面上的内力: F F
k
变形假设:两平行的斜截面在杆受拉(压)而变形后仍相 互平行。
第二章 轴向拉伸和压缩
平均应力的定义
受力杆件(物体)某一截面的M点附近微面积ΔA上分布 内力的平均集度即平均应力, p F ,其方向和大小一般
m A
随所取ΔA的大小而不同。
F
M
A
第3页
武生院建筑工程学院:材料力学
第二章 轴向拉伸和压缩
总应力定义:
该截面上M点处分布内力的集度为
p
lim F
A0 A
武生院建筑工程学院:材料力学
第二章 轴向拉伸和压缩
ac
F
a
c
F
b
d
bd
3. 推论:拉(压)杆受力后任意两个横截面之间纵向线段 的伸长(缩短)变形是均匀的。由于假设材料是均匀的,而杆 的分布内力集度又与杆件纵向线段的变形相对应,因而杆件
横截面上的正应力s呈均匀分布,亦即横截面上各点处的正 应力s 都相等。由合力概念知:
第15页
武生院建筑工程学院:材料力学
第二章 轴向拉伸和压缩
例题2-3 已知薄壁圆环 d = 200 mm,δ= 5 mm,p = 2 MPa。试求薄壁圆环在内压力作用下径向截面上的拉应力。
材料力学(赵振伟)第二章 轴向拉压与压缩
正应变——微小线段单位长度的变形。
2021/7/13
45
x
[例] 已知:杆件的 E、A、F、a 。
F
求:△LAC、δB(B 截面位移)
A
εAB (AB 段的正应变)。
a
2F
F
解:1、画FN 图: 2、计算:
B
a
3F
C
FN
( 1 ) L F E N A L L A C L A B L B C E F A a E 3 F A a E 4 F A a
②材料承受荷载的能力。
2021/7/13
17
一、应力的概念
截面某点处内力分布的集度 在大多数情形下,工程构件的内力并非均匀分布,集度
的定义不仅准确而且重要,因为“破坏”或“失效”往往从 内力集度最大处开始。
2021/7/13
18
1、一般受力杆: F1
m
F3
F2
F1 F2
F4
m
△FT △F
c
△A
△FN
2、轴向拉压杆:
m
FN
F
——ΔA上的平均正应力
limFN dFN
F
0 dA
——C点处的正应力
ΔA △FN
C
σ
二、轴向拉压杆横截面上正应力的确定
推导的思路:实验→变形规律→应力的分布规律→应力的
计算公式
2021/7/13
21
1、实验: 变形前
受力后
F
F
2021/7/13
22
2、变形规律: 横向线——仍为平行的直线,且间距减小。
(2)B
LBC
3Fa EA
(3)2021A /7B /13 L L A A B BF a aE A E F A
材料力学02拉压
d h
2、试验仪器:万能材料试验机。
2、试验仪器:万能材料试验机工作原理图。
1上横梁 2立柱 3传感器 4移动横梁 5滚珠丝杠 变形测量 载荷测量
15光栅编码器
6上夹头
7试样 8下夹头 9工作平台 14引伸计 计算机
位移测量
12变压器
2、试验仪器:万能材料试验机工作原理图。
1. 变形规律试验及平面假设:
变形前
a c
b d
受载后
F
a´ c´
b´ d´
F
平面假设:原为平面的横截面在变形后仍为平面。 纵向纤维变形相同。 均匀材料、均匀变形,内力当然均匀分布。
2. 拉伸应力: P
s
FN
FN s A
轴力引起的正应力 —— s : 在横截面上均布。 3. 危险截面及最大工作应力: 危险截面:内力最大的截面或截面尺寸最小的面。 危险点:应力最大的点。
A
A 简图
F
截开:
F
F
代替: 平衡:
F
FN
A
x
F
0 FN F 0
FN F
轴力——轴向拉压杆的内力,用FN 表示。
轴力的正负规定: FN 与外法线同向,为正轴力(拉力) FN FN FN FN FN >0 FN <0
FN 与外法线反向,为负轴力(压力)
轴力图—— FN (x) 的图象表示。
Fx 0 Fy 0
解得 : FAC
FAC sin 45o FBC sin 30o FAC cos 45o FBC cos30o P
2P 2 6 FBC 2 2P 2 6
FAC
AC : s AC
FAC 103MPa A1
工程力学 第二章 轴向拉伸与压缩.
2 sin ( 2 cos 1 )ctg 3.9 103 m
B1 B B1 B3 B3 B
B B
B B12 B1 B 2 4.45 10 3 m
[例2-11] 薄壁管壁厚为,求壁厚变化和直径变化D。
解:1)求横截面上的正应力
dx
N ( x) l dx EA( x) l
例[2-4] 图示杆,1段为直径 d1=20mm的圆杆,2 段为边长a=25mm的方杆,3段为直径d3=12mm的圆杆。 已知2段杆内的应力σ 2=-30MPa,E=210GPa,求整个 杆的伸长△L
解: P 2 A2
30 25 18.75KN
N 1l Pl l1 l2 EA 2 EA cos l1 Pl cos 2 EA
[例2-8]求图示结构结点A 的垂直位移和水平位移。
解:
N1 P, N 2 0
Pl l1 , l2 0 EA Pl y l1 EA
N1
N2
Pl x l1ctg ctg EA
F
FN
FN F
F
F
CL2TU2
2.实验现象:
平截面假设
截面变形前后一直保持为平面,两个平行的截面之 间的纤维伸长相同。 3.平面假设:变形前为平面的横截面变形后仍为平面。 4.应力的计算 轴力垂直于横截面,所以其应力也仅仅是正应力。按 胡克定律:变形与力成正比。同一截面上各点变形相 同,其应力必然也相同。 FN (2-1) A 式中: A横截面的面积;FN该截面的轴力。 应力的符号:拉应力为正值应力,压缩应力为负 值应力。
1. 截面法的三个步骤 切: 代: 平:
F F F F
材料力学第二章+拉压
FN4
20kN
第二章 轴向拉伸和压缩
§2.2 内力计算
40kN A B 300 50
55kN 25kN C 500 D 400
20kN E
FN
(kN) 10
FN1=10kN (拉力) FN2=50kN (拉力) FN3= - 5kN (压力) FN4=20kN (拉力)
+
20
+
5
FNmax 50( kN ) 发生在BC段内任一横截面上
寸。)
第二章 轴向拉伸和压缩 圣维南原理:
§2.3 拉压杆的应力
在静力等效条件下,不同的加载方式只对加载处附近区 域的应力分布有影响,离开加载处较远的部分,其应力分布 并没有显著的差别。
第二章 轴向拉伸和压缩
§2.3 拉压杆的应力
例题2-3 试求此正方 形砖柱由于荷载引起的横 截面上的最大工作应力。 已知F = 50 kN。
FN
O
x
第二章 轴向拉伸和压缩
§2.2 内力计算
例题1
一等直杆其受力情况如图所示, 作杆的轴力图.
40kN A 600 B 300
55kN 25kN C 500 D 400
20kN E
第二章 轴向拉伸和压缩
40kN
§2.2 内力计算
55kN 25kN
300
20kN D 400
E
A
600
B
C
500
§2.2 内力计算
1、截面法
截开 在求内力的截面m-m 处, 假想地将杆截为两部分. 代替 取左部分为研究对象。弃去 右部分。弃去部分对研究对 象的作用,以截开面上的内 m F m FN m
F
m
第2章轴向拉压
第二章轴向拉伸和压缩§2-1 引言此类受轴向外力作用的等截面直杆称为拉杆或压杆。
受力特点:直杆受到一对大小相等,作用线与其轴线重合的外力F 作用。
变形特点:杆件发生纵向伸长或缩短。
F F F F 一、轴向拉压杆的受力特点、变形特点二、轴力及轴力图Ⅰ、内力内力——由于物体受外力作用而引起的其内部各质点间相互作用的力的改变量。
F F F F根据可变形固体的连续性假设可知,物体内部相邻部分之间的作用力是一个连续分布的内力系,我们所说的内力是该内力系的合成(力或力偶)求内力的一般方法——截面法(1)截开;(2)代替;(3)平衡。
步骤: FFmm (c) F N (a) FF m m (b) m m F N x 二、轴力及轴力图Ⅰ、内力---轴力可看出:杆件任一横截面上的内力,其作用线均与杆件的轴线重合,因而称之为轴力,用记号F N 表示。
F F +=N FF mm (c)F N (a) FF m m (b) m m F N x引起伸长变形的轴力为正——拉力(背离截面);引起压缩变形的轴力为负——压力(指向截面)。
轴力的符号规定:F F +=N FF mm (c)F N (a) FF m m (b) m m F N xFF -=N F N mm(c) F N (a) FF m m (b) mm F x F若用平行于杆轴线的坐标表示横截面的位置,用垂直于杆轴线的坐标表示横截面上轴力的数值,所绘出的图线可以表明轴力与截面位置的关系,称为轴力图。
FF F N 图F F FF N 图F注意:用截面法法求内力的过程中,在截面取分离体前,作用于物体上的外力(荷载)不能任意移动或用静力等效的相当力系替代。
F F(a)F F(b)F N =Fmmnn (a)FCB Am mFA(b)F N =Fnn B FA(c)n n mmF N =0(e)mmAF N =Fn n B(f)AFCB(d)F A例试作图示杆的轴力图。
材料力学第二章轴向拉伸与压缩习题答案
解:为一次超静定问题。
静力平衡条件:
: ①
变形协调方程:
即:
即: ②
由①②解得:
由于内压的作用,油缸盖与缸体将有分开的趋势,依靠六个螺栓将它们固定在一起。
油缸盖受到的压力为
由于6个螺栓均匀分布,每个螺栓承受的轴向力为
由螺栓的强度条件
≤
可得螺栓的直径应为
≥
3-3图示铰接结构由杆AB和AC组成,杆AC的长度为杆AB长度的两倍,横截面面积均为 。两杆的材料相同,许用应力 。试求结构的许用载荷 。
第二章
2-1试求图示直杆横截面1-1、2-2、3-3上的轴力,并画出轴力图。
2-2图示中部对称开槽直杆,试求横截面1-1和2-2上的正应力。
解:
1.轴力
由截面法可求得,杆各横截面上的轴力为
2.应力
MPa MPa
MPa MPa
2-3图示桅杆起重机,起重杆AB的横截面是外径为 、内径为 的圆环,钢丝绳BC的横截面面积为 。试求起重杆AB和钢丝绳BC横截面上的应力。
解:
由几何关系,有
取AC杆为研究对象
:
由此可知:当 时,
由 ≤
可得
≥
3-9图示联接销钉。已知 ,销钉的直径 ,材料的许用切应力 。试校核销钉的剪切强度,若强度不够,应改用多大直径的销钉。
解:
1.校核销钉的剪切强度
MPa MPa
∴销钉的剪切强度不够。
2.设计销钉的直径
由剪切强度条件 ≤ ,可得
材料力学 第二章 轴向拉压应力PPT课件
§2–1 拉压杆的内力 ·轴力与轴力图 §2–2 拉压杆的应力及强度条件 §2-3 材料在拉伸和压缩时的力学性质 §2-4 剪切与挤压的强度计算
§2–1 拉压杆的内力 · 轴力与轴力图
杆件在轴向荷载作用下,将发生轴向拉伸或压缩。
拉伸 F
F
压缩 F
F
×
一、拉压杆的内力——轴力
×
§2–3 应力集中的概念
拉压杆横截面的应力并不完全是均匀分布的,当横截面 上有孔或槽时,在截面曲率突变处的应力要比其它处的应力 大得多,这种现象称为应力集中。
P
P
P
P
P
×
五、拉压杆的强度条件
拉压杆在正常情况下不发生破坏的条件是:拉压杆的最
大工作应力(横截面的最大正应力)不超过材料的容许应
力。
max
FN3
Ⅲ 30k N
Ⅲ
×
FN3 300 FN3 30kN
例2 长为l ,重为W 的均质杆,上端固定,下端受一轴向拉
力P 作用,画该杆的轴力图。
轴力图
FN
P+W F x 0 ;F N P x 0
⊕
x
P
FN
PxPWx
l
x0 ;F NF N mi nP
P
P
x l;F NF N ma x P W
×
例3 画图示杆的轴力图。
3k N 2k N N 4k N 8kN
3k N ⊕ 1⊕kN
○-
1kN
轴力图
6k N ⊕
○-
4k N 8k N
轴力图
×
§2–2 拉压杆的应力及强度条件
一、横截面的正应力
拉压杆横截面上只有正应力而无剪应力,忽略应力集中 的影响,横截面上的正应力可视作均匀分布的,于是有
材料力学PPT第二章
Q235钢的主要强度指标:s = 240 MPa,
b = 390 MPa
低碳钢拉伸试件图片
试件拉伸破坏断口图片
结合压缩曲线得到结论:颈缩过程,材 料的力学性质发生变化
塑性指标
1.延伸率
l1 l 100%
l
2.断面收缩率
A A1 A
100%
l1----试件拉断后的长度
A1----试件拉断后断口处的最小 横截面面积
F 用截面法取节点B为研究对象
Fx 0 FN1 cos 45 FN 2 0
x
Fy 0 FN1 sin 45 F 0
FN1 28.3kN
FN 2 20kN
A
FN1 28.3kN FN 2 20kN
1
2、计算各杆件的应力。
45° B
C
2
FN1
F
y
FN 2 45° B x
F
a
c
b
d
F FN dA
bd
A
dA A
A
FN
A
A 1
45°
C
2
FN1
y
FN 2 45° B
F
例题2.2
图示结构,试求杆件AB、CB的
应力。已知 F=20kN;斜杆AB为直
径20mm的圆截面杆,水平杆CB为 15×15的方截面杆。
B 解:1、计算各杆件的轴力。 (设斜杆为1杆,水平杆为2杆)
≥5%—塑性材料 <5%—脆性材料 σ
Q235钢: 20% ~ 30% ≈60%
冷作硬化
O
应力-应变(σ-ε)图
注意:
(1) 低碳钢的s,b都还是以相应的抗力除以试
《材料力学拉压》PPT课件
各点线应变相同 F
F
根据静力平衡条件: F NdF A dAA
即
FN
A
FN
A
正负号规定:拉应力为正,压应力为负.
FN 的适用条件:
A
1、只适用于轴向拉伸与压缩杆件,即杆端处力的合 力作用线与杆件的轴线重合.
2、只适用于离杆件受力区域稍远处的横截面.
4、 实验验证
拉伸与压缩/横截面上的内力和应力
卸载
卸载定律:在卸载
过程中,应力与应
变满足线性关系.
p e
应变关系
e p
拉伸与压缩/材料的力学性能
低碳钢Q235拉伸时的力学行为
断裂 冷作<应变>硬化现象:
应力超过屈服极限后
卸 载 与
卸载,再次加载,材 料的比例极限提高,
再
再加载
而塑性降低的现象.
加
载
拉伸与压缩/材料的力学性能
名义屈服应力
p0.
n
(n>1) 引入安全系数的原因:
1、作用在构件上的外力常常估计不准确;构件的外形及所受 外力较复杂,计算时需进行简化,因此工作应力均有一定 程度的近似性;
2、材料均匀连续、各向同性假设与实际构件的出入,且小试样 还不能真实地反映所用材料的性质等.
构件拉压时的强度条件
maxFNAmax[]
拉伸与压缩/拉〔压〕时的强度计算
1.5m B
A 1
FN1
B
FN 2
F
2m
F
2
C
FFN2 cos 0 FN1 FN2 sin 0
解得
FN1
3 4
F(拉) ,
FN2
5 4
F(压)
材料力学轴向拉伸与压缩
第二章 轴向拉伸与压缩 2.2 杆旳变形
F
1.纵向变形 (1)纵向变形 (2) 纵向应变
b h
l l1
Δl l1 l
Δl
l
h1
F
b1
第二章 轴向拉伸与压缩
b
F
h
l l1
2.横向变形
h1
F
b1
(1)横向变形 (2)横向应变 3.泊松比
b b1 b
b1 b Δb
bb
A d 2 FN 4 [ ]
由此可得链环旳圆钢直径为
d
4F [ ]
4 12.5 103 3.14 45106
m=18.8mm
第二章 轴向拉伸与压缩
[例6]如图a所示,构造涉及钢杆1和铜杆2,A、B、C处为铰链连接。 在节点A悬挂一种G=20kN旳重物。钢杆AB旳横截面面A1=75 mm2, 铜杆旳横截面面积为A2=150 mm2 。材料旳许用应力分别为 ,
GB/T 228-2023 金属材料室温拉伸试验措施
原则拉伸试样:
标距: 试样工作段旳原始长度
要求标距: l 10 d 或者
l 5d
第二章 轴向拉伸与压缩
试验设备 (1)微机控制电子万能
试验机 (2)游标卡尺
第二章 轴向拉伸与压缩
试验设备
液压式
电子式
第二章 轴向拉伸与压缩
拉伸试验
第二章 轴向拉伸与压缩
第二章 轴向拉伸与压缩
应力非均布区 应力均布区 应力非均布区
圣维南原理
力作用于杆端旳分 布方式,只影响杆端 局部范围旳应力分布, 影响区约距杆端 1~2 倍杆旳横向尺寸。
端镶入底座,横向变形 受阻,杆应力非均匀分布。
第二章轴向拉伸和压缩
60 MPa
已知:薄壁圆环,长度为b,内径d=200mm,壁 厚δ=5mm,承受p=2MPa的内压力作用。 求:圆环径向截面上的拉应力
b
δ p
p
d
将钢环截开,取上半部为研究对象
Fy 0
p
0
得:
b d sin d
2 pb d 2FN
2FN 0 FN p
bd 2
ABC杆为圆杆,直径d=10mm
钢材的
F1 A
E 200GPa
0.28
F2 B
C F3
求:(1)杆的伸长 (2)BC 段变形后的直径
解: 作杆的轴力图 F1 A
F2 B
C F3
杆的横截面面积
FN(kN) 10
10
A 102 106 m2 78.5106 m2
4
l
内力 — 是一个分布力系,利用截面法求得 的是该分布力系的合力。
F1
F2
F3
Fn
应力 — 内力在一点的分布集度
通俗地说,应力就是单位面积上的内力。
2、平均应力
pm
F A
F 是矢量
pm 也是矢量
3、应力
p lim F A0 A
F1
F
C
A
F2
F1
p
C
称为C点的应力
F2
4、正应力和切应力
长度为1.2 m,BD杆为8号槽钢,长
F
度为1.6 m,F=60kN,
C
B
材料的 160MPa
3
4
求:(1)校核结构的强度
(2)计算B点的位移
D
解:
材料力学02(第二章 轴向拉压应力与材料的力学性能)
FN 2
A
F
1.校核强度
已知F, ,A1,A2, t , c
校核结构是否安全? 解:
F 1= t ? A1 sin F 2 = c ? A2 tan
2
L
FN ,max max [ ] (1)强度校核 A FN ,max A (2)截面选择 [ ] (3)计算许可荷载 FN,max A[ ]
强度条件的应用举例
1 2
L
(1) 求内力(节点A平衡) FN1= F sin
A
FN2= - F tan
FN1
F
(2) 求应力(A1,A2横截面积)
C 1m
B
A F
C y 1m
FN1
B A F
A F
x
FN2
解: (1)节点 A 的受力如图,其平衡方程为:
F F
x y
0 0
FN2 FN1 cos 30 0 FN1 sin 30 F 0
得 FN1 2F (拉) FN 2 1.732F (压)
(2)查型钢表得两杆的面积 杆AC 杆AB
例题2 . 钢板冲孔,已知t=5mm,d=18mm,剪切极限应力 τ0=400MPa,求冲力P的大小。
• 解:(1)内力分析: • 剪力: Fs=P • 剪切面面积:A=πd t
• (2)应力分析与强度计算: • τ= Fs/ A ≥τ0 • 由上解得: P ≥ τ0 πd t =113kN
例3 、一铆钉接头如图所示,铆钉和板用同一种材料制成, 铆钉的直径d=18mm,板厚t=10mm,其[τ]=80MPa, [σbs]=200MPa,[σ]=120MPa,试校核此接头部分的强度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
25
材料特性对应力集中的影响:
李禄昌
塑性材料有屈服变形阶段。
塑性材料制成的零件,在静载荷作用下,可以不考虑应 力集中的影响,但在比例极限内,仍有局部应力集中。
脆性材料制成的零件,应力集中的危害性较严重。至于 灰口铸铁,其内部的不均匀性、缺陷,往往是产生应力集中 的主要原因。
李禄昌
第2-7节 轴向拉压的变形能
固体受外力作用而变形。在变形过程中,外力所做的功将 转化为储存于固体内的能量。这种能量称为变形能或应变能。
外载荷由零开始缓 慢增加到P, P--Δl曲线 如图所示。
当拉力为P’时,杆件 变形为Δl’。如果拉力再 增加dp,杆件变形增加 为d(Δl)。
因位移d(Δl)而作的 功为:dW Pd(l)
18
解:静力平衡条件:
N1 N3
2 N1 cos N 2
变形协调条件: 杆1、3被压缩,杆2被拉长。
l2l1cosh引用胡克定律:
N2l cos N1l h EA EAcos
李禄昌
19
李禄昌
温度应力:对于静不定结构,由于温度变化而引起 的应力,称为温度应力。
例7 杆AB长为l ,面积为A ,材料的弹性模量E和线膨胀系数 , 求温度升高T 后杆温度应力。
解: (1)列平衡方程 解除约
束,设约束反力为RA 、RB ,列 方程: X 0, RA RB 0
得 : RA RB R
(2)列变形几何条件
lT 因温度引起的伸长
lR 因轴向压力引起的缩短
lT lR
20
(3) 列物理条件 lT T l
李禄昌
lR
Rl EA
(4) 建立补充方程
T l Rl R EA T
⑴、利用原始尺寸原理,不考虑变形,列出独立的静力平
衡方程。
⑵、利用胡克定律,列出物理方程。
l Nl
EA
⑶、画出变形几何关系图,列出变形协调方程。
总之,求解静不定问题需要综合考察平衡、变形和物理 三方面,这是分析静不定问题的基本方法。现举例说明求解 静不定问题的一般过程以及静不定结构的特性。
9
例题3 :求图示杆的支反力。 解:①、对杆件受力分析,列静力平衡条件:
mA 0
N1 2N2 3N3 3P (1)
变形协调条件:
l2 2l1 , l3 3l1
李禄昌
15
l2 2l1 , l3 3l1
即:
N2 l 2 N1l , N3l 3 N1l EA EA EA EA
李禄昌
N2 2N1 , N3 3N1 (2)
联立求解(1)和(2), 得:
N1
RA RB P (1)
②、变形协调条件:
l lAC lBC 0
③、利用胡克定律,列物理方程:
R A l1 RB l2 0 EA EA
由此得: RA l1 RB l2 (2)
联立求解(1)和(2), 得:
RA
l2 l
P
,
RB
l1 l
P
李禄昌
13
例题4:求图示结构结点A的垂直位移。 解:静力平衡条件:
零件在冲击载荷作用下或受到交变应力作用时,不论是 塑性材料还是脆性材料制成的零件,应力集中对零件的强度 都有严重的影响,往往是零件破坏的根源。
26
李禄昌
§2-10* 圆筒形薄壁容器的应力
壁厚为 t,平均直径为 D,t <<D
27
平均直径为 D
李禄昌
D2
N p 4
N pD Dt 4t
u dU
d
dV 0
u
1 Pl 2
1
Al 2
u
1
P2l
2
Al 2EA 2E
3
李禄昌
例题1:图示结构,已知两杆长为l,横截面积为A,材料的弹 性模量为E,试求在力P作用下节点A的位移。
解:⑴、外力所作的功 A 应等于两杆件内所积 蓄的变形能,即:
B N1
N2
U=W
(a)
C
W P
(b)
C
2
⑵、计算拉杆轴力:
因杆件外形突然变化而引起局部应力急剧增大的现象, 称为应力集中。
max
max
24
理论应力集中系数:
k max n
李禄昌
max
max :发生应力集中的截面上的最大应力 n :同一截面上按净面积算出的平均应力
结构对应力集中的影响:截面尺寸改变得越急剧、角越尖、 孔越小,应力集中的程度就越严重。
因而仅仅依靠静力平衡方程使无法确定全部未知力。这类问题 称为静不定问题。
未知力个数与独立的平衡方程数之差,称为静不定次数。在 静定结构上附加的约束称为多余约束,这种“多余”只是对保 证结构的平衡与几何不变性而言的,对于提高结构的强度、刚 度则是需要的。
6
李禄昌
7
李禄昌
8
李禄昌
2、静不定问题的解决办法:
N pl D sind
0
2
pDl
N pD
2tl 2t
28
作业一:2 --18、20、29 作业二:2 --39、44、52
李禄昌
29
小结
李禄昌
30
Y 0
N1
N2
P
2 cos
(c)
4
⑶、计算拉杆的变形能:
李禄昌
U
2
N 2l 2EA
(P
2 cos
EA
)2 l
P2l 4EA cos2
(d)
⑷、解得:
P
P 2l
2 4EA cos 2
Pl
2EAcos2
5
李禄昌
第2-8节 拉伸和压缩静不定问题
1 、 静不定的概念: 能用静力学平衡方程求解未知力的问题,称为静定问题。 由于未知力的个数多于所能提供的独立的平衡方程的数目,
在比例极限范围内,外载荷所作的功为: W
l
Pd (l)
0
1
李禄昌
l
W 0 Pd (l)
1 Pl 2
根据能量守恒定理:构件的 变形能U等于外力所作的功。
1
W U Pl
轴力
2
N 2l U
构件变形能计算公式
外力
2EA
外力方向 位移
2
李禄昌
单位体积内的变形能---比能(能密度)
它可以度量线弹性范围内材料吸收能量的能力。
只有在材料力学中,考虑构件变形问题时,才能解决静不定问题。
求解静不定问题,除了根据静力平衡条件列出平衡方程外,还必须 在多余约束处寻找各构件变形之间的关系,或者构件各部分变形之间 的关系,这种变形之间的关系称为变形协调关系或变形协调条件。进 而根据弹性范围内的力和变形之间关系(胡克定律),即物理条件, 建立补充方程。
解: 变形协调条件为
l
lT
lN
lT
Nl EA
12.5 106
12.5
38
N 12.5 200 109
A
1.2
103
N 75.8 MPa (压)
A
23
第2-9节 应力集中的概念
李禄昌
由于结构的需要,构件的截面尺寸往往会突然变化,例 如开孔、键槽、轴肩和螺纹等,局部的应力不再均匀分布而 急剧增大。
EA
(5)杆温度应力
R E T
A
为防止管道温度应力过
大顶坏两端装置而接入
管道的伸缩节
21
李禄昌
在外界因素(如温度)消除后而长期保持下 来的应力称为残余应力
(a)为钢板横截面 的温度分布情况
(b)焊后的变形情 况和残余应力
22
李禄昌 例题8 在温度为2℃时安装的铁轨,每段长度为12.5m,两 相邻段铁轨间预留的空隙为Δ=1.2mm,当夏天气温升为40℃ 时,铁轨内的温度应力为多少?已知:E=200GPa,线膨胀 系数α=12.5×10-6 1/℃。
3 14
P
,
N2
6 14
P
,
N3
9 14
P
16
联立求解(1)和(2), 得:
3
6
9
N1 14 P , N2 14 P , N3 14 P
杆3轴力为最大,其强度条件为:
3
N3 A3
9P 14 A
[ ]
P 14 [ ]A
9
[ P] 14 [ ]A
9
李禄昌
17
李禄昌
例题6 装配应力:对于静不定结构,由于加工制造 误差,在装配时往往产生较大应力。
N1 N3
2 N1 cos N 2 P
变形协调条件:
l1 l3 l2 cos 利用胡克定律,列物理方程:N1 N2 N3
N1l N3l N2l cos cos
EA EA EA
其它步骤略。
李禄昌
l1
14
例题5:刚性梁AD由1、2、 3杆悬挂,已知三杆材料相 同,许用应力为[σ],材料 的弹性模量为 E,杆长均为 l,横截面面积均为A,试求 结构的许可载荷[P]。 解:静力平衡条件: