人教版七年级数学上册《二章 整式的加减 2.1 整式 2.1 整式(通用)》优质课教案_1
2024秋七年级数学上册第二章整式的加减2.2整式的加减2去括号教案(新版)新人教版
1.提供与本节课内容相关的拓展阅读材料:
《代数运算指南》:这本书详细介绍了代数的基本概念和运算方法,包括整式的加减、乘除等。通过阅读这本书,学生可以进一步加深对整式加减的理解和掌握。
《数学问题解决策略》:这本书提供了一系列的数学问题解决方法,包括代数问题的解决方法。学生可以通过阅读这本书,学习到更多的数学问题解决策略,提高解决问题的能力。
九.重点题型整理
1. 去括号
(1)如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。
例题:去括号:-(a + b)= -a - b
(2)如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
例题:去括号:-(a - b)= a - b
2. 合并同类项
(1)找出整式中的同类项,即具有相同字母和相同指数的项。
(2)解决实际问题,如计算购物找零、面积计算等。
例题:综合应用:计算购物找零:28 - 5(3 + 2) - 1 = 28 - 5*5 - 1 = 28 - 25 - 1 = 2
5. 整式加减的实际应用
(1)将整式加减应用于实际问题,如购物找零、计算面积等。
例题:实际应用:计算购物找零:32 - 5(4 + 2) = 32 - 5*6 = 32 - 30 = 2
在教学过程中,我发现学生们对去括号和合并同类项这两个重点内容的理解存在一定的困难。因此,我特别强调了这两个重点,并通过举例和比较来帮助学生理解。通过小组讨论和实践活动,学生们能够更好地将理论知识应用到实际问题中,提高了解决问题的能力。
在教学过程中,我也注意到了学生的参与度和互动情况。通过鼓励学生提问和参与小组讨论,我能够及时解答学生的疑问,帮助学生克服难点,提高学习效果。
【人教版】七年级数学上册:第二章《整式的加减》全章教学设计
课题: 2.1 整式(第 1 课时)一、教学目标1. 经历列单项式表示数量关系的过程,发展符号感.2. 知道单项式及其系数、次数的意义,会准确确定一个单项式的系数和次数.二、教学重点和难点1. 重点:列单项式表示数量关系,单项式及其系数、次数的意义.2.难点:列单项式表示数量关系 .三、教学过程(一)基本训练,巩固旧知1. 填空:幂x3的指数是,底数是;幂a2的指数是,底数是;幂 n 的指数是,底数是.(二)创设情境,导入新课师:前面我们学习了第一章有理数,从今天开始,我们要学习第二章整式的加减. (板书:第二章整式的加减)同学们自然会问:什么是整式?我们将在本节课和下节课学习什么是整式 . (板书: 2.1 整式)这节课我们首先学习整式的一种,叫单项式 . (板书:(单项式))(三)尝试指导,讲授新课师:什么样的式子是单项式呢?请大家看一个例子. (师出示下面的板书)一种笔记本售价是每本 2 元,那么买 2 本所需钱是元,买5本所需钱是元,买 10 本所需钱是元,买100本所需钱是元,买 x 本所需钱是元.师:(指板书)一种笔记本售价是每本 2 元,那么买 2 本所需钱是多少元?生: 4 元 . (师板书: 4)师:(指板书)那么买5 本所需钱是多少元?生: 10 元. (师板书: 10)师:(指板书)那么买10 本所需钱是多少元?买100 本所需钱是多少元?生: 20 元,200 元 . (师板书: 20,200 )师:(指板书)一种笔记本售价是每本 2 元,那么买 x 本所需钱是多少元?生:(多让几位同学发表看法)师:(指板书)一种笔记本售价是每本2 元,那么买 x 本所需钱是 2×x 元 . (边讲边板书:2×x)为了书写方便,(指乘号)通常将乘号写成“·”,(边讲边将“2×x”改为“ 2·x”)或者将乘号省略不写 . (边讲边用彩笔将“ 2·x ”改为“ 2x”) 2x 就表示 2×x.师:(板书: 2x 并指 2x)2x 就是一个单项式 . 单项式当然不只2x 这么一个,在现实生活中,存在大量的其它的单项式,同学们通过把下面的问题列成式子,就能找到大量的单项式 .(四)试探练习,回授调节2.填空:(1)一支铅笔的售价是 x 元,一支圆珠笔的售价是铅笔的 2.5 倍,一支圆珠笔的售价是元;(2)边长为 a 的正方形面积为;(3)边长为 a 正方体的体积为;(4)一辆汽车的速度是每小时v 千米,它 t 小时行驶的路程为千米;( 5)数 n 的相反数是.(生做题,师巡视指导,完成后,生报答案,如果必要,酌情讲解,并将2.5x ,a2,a3, vt ,- n 板书出来)(五)尝试指导,讲授新课师:(指准板书) 2x 是单项式, 2.5x , a2,a3,vt ,-n 这些式子也是单项式 . 现在请问:什么样的式子叫做单项式?生:(多让几名学生发表看法,要肯定学生回答中合理的部分)师:这些式子有一个共同的特点,什么特点呢?它们都是数字与字母的积. (指准式子) 2x 是数 2 与字母 x 的积, 2.5x 是数 2.5 与字母 x 的积 . a 2是数 1 与字母 a2的积, a3是数 1 与字母 a3的积, vt 是数 1 与字母 v、t 的积,- n 是数- 1 与字母 n 的积 .师:通过上面的分析,哪位同学知道:什么叫做单项式?生:师:数字与字母的积,这样的式子叫做单项式. (板书:数字与字母的积,这样的式子叫做单项式)师:需要指出的是,单独一个数或一个字母也是单项式. (板书:单独一个数或一个字母也是单项式)譬如,单独一个数5,-1,2008 等都是单项式;又譬如,2单独的一个字母x 也是单项式 .(六)试探练习,回授调节3.判断下列式子是不是单项式:(1)4x;(2)- 4x2 y;(3)3a2bc;(4)7.2 ;(5)a;(6)2+x.(七)尝试指导,讲授新课师:(板书:- 4x2y)我们都知道,- 4x2y 是单项式,(指准式子)它是数字-4 与字母 x2、y 的积,换一种说法,- 4 是数字因数, x2、y 是字母因数,我们把数字因数- 4 叫做这个单项式的系数 . (板书:的系数是- 4)师:(指已板书的单项式2x)哪位同学知道2x 这个单项式的系数?生: 2.(以下师让生回答已板书的其它单项式的系数)师:明确了单项式系数的概念,下面我们再来看单项式的次数的概念. (板书:次数)师:(指准- 4x2y)这个单项式含有两个字母,字母 x 指数是 2,字母 y 的指数是 1,所有字母的指数和是 3,我们把单项式- 4x2y 所有字母指数的和 3 叫做这个单项式的次数 . (板书:是 3)师:一个单项式的次数是几次,我们就把这个单项式叫做几次单项式. (指- 4x2y)这个单项式的次数是3,就叫做三次单项式 . (板书:是三次单项式)师:(指已板书的单项式2x)这个单项式的次数是几次?生:师:(指 2x)这个单项式只含有一个字母,x 的指数是 1,所以所有字母指数的和也是 1,所以这个单项式的次数是 1,这个单项式是一次单项式 .(以下师让生回答已板书的其它单项式的次数)(八)试探练习,回授调节4.填空:( 1)单项式 2a2的系数是,次数是,是次单项式;( 2)单项式- 1.2h 的系数是,次数是,是次单项式;( 3)单项式 x2y 的系数是,次数是,是次单项式;( 4)单项式- t 2的系数是,次数是,是次单项式;( 5)单项式 5a4b 的系数是,次数是,是次单项式;( 6)单项式 x 的系数是,次数是,是次单项式;( 7)单项式3xyz 的系数是,次数是,是次单项式;5( 8)单项式2vt,次数是,是次单项式 .的系数是35.用单项式填空:( 1)每包书有 12 册, n 包书有册;( 2)一个长方形的长是0.9 ,宽是 a,这个长方形的面积是;(3)全校学生总数是x,其中女生占总数48%,则女生人数是,男生人数是;(4)产量由 m千克增长 10%,就达到千克.(九)归纳小结,布置作业师:本节课我们学习了什么?学习了本节课你有什么收获?生:(多让几位同学概括总结)(作业: P59习题 1. )四、板书设计第二章整式的加减2.1 整式(单项式)232.5x , a,a , vt ,- n一种笔记本售价是每本 2 元叫做单项式那么单独一个数或一个字母也是单项式- 4x2y 的系数是- 4,次数是 3,是三次单项式课题: 2.1 整式(第 2 课时)一、教学目标1. 知道多项式及其项、常数项、次数的意义,会指出多项式的各项与多项式次数.2.知道整式的意义 .二、教学重点和难点1.重点:多项式及其项、常数项、次数的概念 .2.难点:指出多项式的各项 .三、教学过程(一)基本训练,巩固旧知1.判断正误:对的画“√” ,错的画“×” .(1)5y 是单项式;()(2)5y+1 是单项式;()(3)1是单项式;()3(4)单项式 ab 的系数是 0;()(5)单项式2ab()的系数是 2;3(6)单项式 xy2次数是 2;()(7)单项式 4xy2是三次单项式 .()2. 填空:青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段. 列车在冻土地段行驶速度是每小时100 千米,它 2 小时行驶的路程是千米,3小时行驶的路程是千米, t 小时行驶的路程是千米.3.用单项式填空:( 1)底边长为 a,高为 h 的三角形面积是;(2)一辆汽车从拉萨出发, 3 小时后到达相距 s 千米的尼木县城,这辆长途汽车的平均速度是;(3)一台电视机原价 a 元,现按原价的9 折(9 折就是 90%)出售,这台电视机现在的售价为元 .(二)创设情境,导入新课师:上节课我们学习了整式的一种:单项式,本节课我们学习整式的另一种:多项式 . (板书课题:整式(多项式))(三)尝试指导,讲授新课(师出示下面的板书)4x- 56x2-2x+ 7师:这两个式子是单项式吗?生:不是 .师:这两个式了有什么共同的特点?(稍停)它们都是几个单项式的和. 它们怎么都是几个单项式的和呢?师:(指 4x-5)4x-5 可以转化为 4x+ ( - 5) ,(板书:(4x+( -5) )),所以, 4x -5 可以看成是单项式4x 与- 5 的和 .师:(指 6x2- 2x+7)6x2-2x+7 可以转化为 6x2+ ( - 2x) +7, (板书:( 6x2+( -2x) +7))所以, 6x2-2x+7 可以看成是 6x2,- 2x,7 的和 .师:(指两个式子)所以这两个式子的共同特点都是几个单项式的和.师:几个单项式的和叫做多项式. 所以 4x-5 是多项式,(板书:多项式)6x2-2x +7 也是多项式 .(板书:多项式)师:(指准式子)在多项式中,每个单项式叫做多项式的项. 所以,多项式4x- 52的项是 4x,- 5. (板书:的项是 4x,- 5)多项式 6x -2x+ 7 的项有哪些?22生: 6x ,- 2x,7. (师板书:的项是 6x ,- 2x,7)师:不含字母的项,叫做常数项. 所以,(指准式子)多项式4x-5 的常数项是-5.(板书:常数项是-5)多项式 6x2-2x+7 的常数项是什么?生: 7. (板书:常数项是7)(四)试探练习,回授调节4.填空:( 1)多项式 x2+3x+ 4 是单项式,,常数项是2(2)多项式- x -3+x 是单项式,,的和,它的项是;,,的和,它的项是,,,2,常数项是;,的和,它的项是,,(3)多项式 m-1 是单项式常数项是;(4)多项式 2x+3y2-3xy2是单项式,,的和,它的项是,,.(五)尝试指导,讲授新课师:(指准 4x- 5)这个多项式有两项, 4x 这一项的次数是一次,常数项的次数是0 次. 次数最高项的次数是一次,我们就说多项式4x-5 的次数是一次 . (板书:次数是 1 次)师:(指准 6x2-2x+ 7)这个多项式有三项,6x2这一项的次数是二次,-2x 这一项的次数是一次,常数项的次数是 0 次. 次数最高项的次数是二次,我们就说多项式 6x2-2x+ 7 的次数是二次 . (板书:次数是 2 次)(六)试探练习,回授调节5. 填空:(1)多项式 3+2x2-4x 次数最高项是,次数最高项的次数是,这个多项式的次数是;3,次数最高项的次数是,这个多(2)多项式 m-1 次数最高项是项式的次数是;(3)多项式 2x- 3xy2+1 次数最高项是,次数最高项的次数是,这个多项式的次数是;(4)多项式 3x4-2x2y2次数最高项是,次数最高项的次数是,这个多项式的次数是.(七)归纳小结,布置作业师:本节课我们学习了整式的另一种,叫做多项式 . (指准板书)几个单项式的和叫做多项式 . 在多项式中,每个单项式叫做多项式的项 . 其中,不含字母的项叫做常数项 . 多项式中,次数最高项的次数,就是这个多项式的次数 . 单项式和多项式统称整式 . (板书:单项式和多项式统称整式)(作业: P76复习题 2. )四、板书设计2.1 整式(多项式)多项式 4x- 5(4x + ( - 5)) 的项是 4x, - 5,常数项是- 5,次数是 1 次多项式 6x 222,常数项是7,次数是 2 次- 2x+ 7(6x+ ( - 2x)+ 7) 的项是 6x , - 2x,7单项式和多项式统称整式课题: 2.1 整式(第 3 课时)一、教学目标1.巩固单项式、多项式的有关概念 .2.会列较简单的多项式表示数量关系,发展符号感 .二、教学重点和难点1.重点:列多项式表示数量关系 .2.难点:列多项式表示数量关系 .三、教学过程(一)基本训练,巩固旧知1. 填空:(1)单项式 3x 的系数是,次数是,是次单项式;(2)单项式πr 2的系数是,次数是,是次单项式;(3)单项式- x2y 的系数是,次数是,是次单项式;(4)单项式 a2b2的系数是,次数是,是次单项式 .22. 填空:( 1)多项式― x 2― 3x +4 的项是,最高次项是,常数项是,次数是;2,最高次项是,常数项是( 2)多项式 3- m 的项是,次数是;( 3)多项式 a3+ a2 b+ ab2的项是,最高次项是,次数是.3.判断正误:对的画 " √ " ,错的画 " ×".(1)多项式 3a- 5 的项是 3a,5;()(2)多项式 x3+x2y2的次数是 3 次;()(3)几个多项式的和仍是多项式;()(4)单项式和多项式统称整式 .()(二)创设情境,导入新课师:上节课,我们学习了多项式的概念,本节课我们要学习用多项式表示数量关系. 请看例 1.(三)尝试指导,讲授新课例 1 用多项式填空:(1)温度由 t 度下降 5 度后是度;( 2)甲数 x 的1与乙数 y 的1的和可以表示为;32( 3)如图,圆环的面积为.r(四)试探练习,回授调节4. 用多项式填空:R( 1)温度由- 3 度下降 t度后是度;(2)温度由- 3 度上升 t 度后是度;(3)一个数比 x 的 2 倍小 3,这个数为;(4)a 与 b 两数平方的和为;a(5)如图,三角尺的面积为.r5. 用整式填空:b( 1)体重由 x 千克增加 2 千克后是千克;( 2) 1 千克大米售价 1.2元, x 千克大米售价元;( 3) a, b 分别表示长方形的长与宽,则长方形的周长为;(4)a, b 分别表示梯形的上底和下底, h 表示梯形的高,则梯形的面积为;(5)买一个篮球需要 x 元,买一个排球需要y 元,买一个足球需要z 元,买 3个篮球、 5 个排球、 2 个足球共需元.(6)如图,是一所住宅的建筑平面图,这所住宅的建筑面积是x 米平方米 .x米6米4米6. 思考题:如图,搭 1 个正方形需要 4 根小棒,搭 2 个正方形需要根小棒,搭 3 个正方形需要根小棒,搭x 个正方形需要根小棒,搭2008 个正方形需要根小棒.(教学建议:对不少学生而言,这些练习可能有一定难度. 要给学生充分时间思考,要让学生安下心来做题,快者快做,慢者慢做,不要催学生,不要求所有学生完成所有练习,差生能真正独立思考完成二三小题就不错了,中下生能完成 4 题就很好了 . 老师要加强巡视指导,给各类学生以适当鼓励)(五)归纳小结,布置作业师:今天我们学习了什么?通过本节课学习,你有什么收获?生:(多让几位同学回答)(作业: P60习题 2. )四、板书设计例1课题: 2.2 整式的加减(第 1 课时)一、教学目标1. 经历同类项概念的形成过程,知道什么是同类项.2. 经历合并同类项法则的形成过程,会合并同类项.二、教学重点和难点1.重点:同类项的概念,合并同类项 .2.难点:同类项概念的形成 .三、教学过程(一)创设情境,导入新课师:前面我们学习了整式的概念,从本节课开始,我们学习整式的加减. (板书课题:2.2 整式的加减)整式的加减实质上就是合并同类项,本节课我们先来学习合并同类项 . (板书:(合并同类项))(二)尝试指导,讲授新课师:要合并同类项,我们首先要弄清什么是同类项 . 让我们一起来看下面的例子 .师: 5 个 x 加上 2 个 x 等于什么?(边讲边板书: 5x+2x=)生: 7 个 x. (师板书: 7x)2222师:- 5ab 加上 3ab 等于什么?(边讲边板书:-5ab +3ab =)师:根据分配律,- 5ab2+3ab2= ( - 5+ 3)ab 2(边讲边板书: ( - 5+ 3)ab 2)等于-2ab2 . (板书:=- 2ab2)师:(指准 5x+ 2x=7x)这个式子的左边是5x 与 2x 两项,右边只有 7x 一项,这就是说,左边的两项可以合并成右边的一项.师:(指准- 5ab2+ 3ab2=- 2ab2)这个式子的左边也有两项-5ab2,3ab2,右边只有一项- 2ab2,这就是说,左边的两项也可以合并成一项.师:(指式子)观察、分析这两个式子,请大家分组讨论这么一个问题:怎么样的两项可以合并成一项?(出示板书:怎么样的两项可以合并成一项?)(生分组讨论,师巡视指导)师:哪位同学知道怎么样的两项可以合并成一项?生:(多让几位同学发表看法)师:(在- 5ab2,3ab2下面划线,并指准)两项所含字母相同,-5ab2这一项所含字母是 a,b,3ab2这一项所含字母也是 a, b. (板书:所含字母相同) 2 2这一项字母 a 的指数也是 1;这一项字母 b 的指数是 2,这一项字母 b 的指数也是2. (板书:并且相同的字母的指数也相同)师:(指- 5ab2,3ab2)像这样所含字母相同,相同字母的指数也相同的项,叫做同类项 . (板书:的项,叫做同类项)师:现在,我们再回到原来的问题:怎么样的两项可以合并成一项?生:师:同类项可以合并成一项,而且只有同类项才可以合并成一项,不是同类项不能合并成一项 .(三)试探练习,回授调节1.判断下列各组的两项是不是同类项:( 1) 12x 与 2x;(2)2x2y与-5x2y;(3)2a与a2;(4)4xy 与 5yx;(5)4abc与4ab;(6)7xy2与7x2y;33(7)a 与 5 ;(8)-25与12.(由于- 25 与 12 可以合并成一项- 13,因此,常数项与常数项也是同类项)2.找出多项式 4x2-8x+ 5-3x2+6x-2 中的同类项:( 1) 4x2与是同类项;( 2)- 8x 与是同类项;( 3) 5 与是同类项.(四)尝试指导,讲授新课师:我们已经知道,同类项是可以合并在一起的合并成一项,叫做合并同类项.. (指板书的课题)把几个同类项师:(指板书的两个式子)从这两个式子,哪位同学知道怎么合并同类项?生:(多让几位同学发表看法)师:系数相加,字母部分不变. (板书:系数相加,字母部分不变)例 1合并下列各式的同类项:(1)xy2-1xy2;( 2)- 3ab+ba-2ab. 5(先让生尝试,师再板演讲解,讲解时要紧扣法则)3. 填空:( 1) 6x-4x=()x=;( 2)- 7ab+6ab= ()ab=;( 3) 10y2+y2= ()y 2 =;( 4)- 0.5a +2a- 3.5a =()a=.4. 合并下列各式的同类项:( 1)- 8x2-7x2=( 2)1xy- xy=3(3)- 4a2 b+ 4a2b=(4)1y-1y+2y=425.判断正误:对的画 " √" ,错的画 " ×".( 1) 3a2- 2a2= 1;()( 2)3y-y=3;()( 3) 5a+2b=7ab;()( 4) 7ab-7ba=0;()( 5)4x2y-2xy2= 2x2y;()( 6)3x2+2x3=5x5.()6. 思考题:如图,大圆的半径是 R,小圆的面积是大圆面积的4,则阴影部分的面9积为.R(五)归纳小结,布置作业. (指准- 5ab2+3ab2师:本节课,我们学习了什么是同类项及怎么合并同类项这个式子)所含字母相同,并且相同字母的指数也相同的项叫做同类项. 合并同类项的方法是系数相加,字母部分不变. 合并同类项的这个方法是根据什么得到的?生:(根据分配律)(作业: P66练习 1.2. )四、板书设计2.2 整式的加减(合并同类项)5x+2x=7x例 1-5ab2+ 3ab2=( -5+3)ab 2=- 2ab2怎样的两项可以合并成一项?叫做同类项 .系数相加,字母部分不变.课题: 2.2 整式的加减(第 2 课时)一、教学目标1.会合并多项式中的同类项 .2.会先合并同类项,再求多项式的值 .二、教学重点和难点1.重点:合并多项式中的同类项 .2.难点:把多项式中的同类项写在一起 .三、教学过程(一)基本训练,巩固旧知1.判断下列各组中的两项是不是同类项:(1)0.2x 2y 与 0.2xy 2;(3)mn与- nm;( 2)4abc 与 4ac;( 4)- 125 与 20.2.合并下列各式的同类项:(1) 4x2- 8x2=(2)- 3x2 y+ 2x2y=(3) 3xy2-2xy2=(4) 2x2+ x2-3x2=3.判断正误:对的画“√” ,错的画“×” .( 1)a+b=b+a;()(2)a- b= b- a;()(3)a- b=- b+a;()(4)x2+2-x=x2+x-2;()(5)x2+ 2- x= x2-x+2;()(6)x2+2-x=x+2-x2;()(7)x2+2-x=- x+2+x2.()(强调:交换多项式的项,要连同符号一起交换)(二)创设情境,导入新课师:上节课我们学习了什么是同类项及怎么合并同类项,本节课我们将学习如何合并多项式中的同类项 . 请看例 1.(三)尝试指导,讲授新课例 1 合并多项式 4x2+2x+7+ 3x-8x2-2 的同类项 .解: 4x2+2x+7+3x- 8x2-2第一步:划线,找出同类项;=4x2-8x2+2x+ 3x+7-2第二步:把找出的同类项写在一起;=- 4x2+5x+5第三步:合并同类项 .(第二步不宜加括号,第三步可直接算出结果,这样可能会简单些)(四)试探练习,回授调节4.合并下列各式的同类项:(1) a2-3a+ 8- 3a2+ 5a-7==(2)- 3x2 y- 2xy2+3xy2+2x2y==(3) 4a2+ 3b2+ 2ab-4a2-4b2==(五)尝试指导,讲授新课例 2求多项式 3a+abc-1c2-3a+1c2的值,其中,a=-1, b= 2,c =- 3. 336(先合并多项式的同类项,再代入数值,最后得到结果,解题格式要与教材相同)(六)试探练习,回授调节5.求多项式 2x2- 5x+x2+ 4x-3x2-2 的值,其中 x=1 . 2(五)归纳小结,布置作业师:本节课我们学习了合并多项式的同类项,合并多项式的同类项有三步,是哪三步?生:(作业: P71习题 1.P 76复习题 2. )四、板书设计例 1例2课题: 2.2 整式的加减(第 3 课时)一、教学目标1.经历去括号法则的形成过程,知道去括号法则 .2.会去括号 .二、教学重点和难点1.重点:去括号 .2.难点:去括号法则的形成过程 .三、教学过程(一)基本训练,巩固旧知1.合并下列多项式的同类项:(1) 8a+2b-5a- b=(2) 8x-3y+z-4x- 3y+2z=2.求多项式 3x2- 8x+2x3-13x2+ 2x-2x3+3 的值,其中 x=- 4.3. 填空:分配律是a(b +c) =,利用分配律可得:6(x - 3) =,- 6(x - 3) =.(二)创设情境,导入新课师:(板书: 8a+ 2b-(5a -b) )这个式子合并同类项的结果是什么?生: 3a+b.师:这个结果是错误的!为什么呢?因为这个式子中含有括号,(用彩笔标括号)要合并含有括号的式子的同类项,先要去括号 . 如何去括号呢?这就是我们这节课要学习的内容 . (板书课题: 2.2 整式的加减(去括号))(三)尝试指导,讲授新课师:如何去括号呢?先看两个去括号的例子.师:(板书: 6(x -3) =)利用分配律, 6(x -3) 等于什么?生: 6x-18. (师板书: 6x-18)师:(板书:- 6(x - 3) =)利用分配律,- 6(x -3) 等于什么?生:- 6x+18. (师板书:- 6x+ 18)师:从这两个例子,我们可以看到,(指准-6(x-3)=-6x+18)去括号实际上就是运用分配律,把括号外的因数分别乘括号内的各项 .(师板书:+ (x -3) =-(x-3)=)师:运用分配律,我们又怎么去掉(指式子)这两个式子中的括号呢?请大家自己动笔先试一试 . (生尝试,师巡视)师:(指+ (x -3) )这个式子不好用分配律,我们可以把+(x -3) 写成 1× (x -3) ,(边讲边板书: 1×(x -3) )这样就可以用分配律了,运用分配律得到的结果是什么?生: x-3. (师板书:= x-3)师:(指- (x - 3) )这个式子也不好用分配律,我们可以把-(x - 3) 写成 ( -1) ×(x - 3) ,(边讲边板书: ( -1) × (x -3) )这样就可以用分配律了,运用分配律得到的结果是什么?生:- x+ 3. (师板书:=- x+3)师:从上面的四个例子说明,去括号的过程实际上就是运用分配律的过程. 前两个式子(指 6(x -3) ,- 6(x -3) )是直接用分配律去括号,而后两个式子(指+ (x -3) ,- (x -3) )用分配律去括号比较麻烦,这就有必要寻找去括号的规律 .师:去掉中间过程,(擦掉中间过程,板书成+(x - 3) =x -3,- (x -3) =- x +3)得到+ (x -3) = x-3,- (x -3) =- x+3. 从这两个式子,同学们发现去括号有什么规律吗?(生分组讨论,师巡视指导)师:哪位同学发现了去括号的规律?生:(多让几位同学发表看法)师:从这两个式子,我们可以发现,(指准+ (x -3) =x-3)如果括号前是“+”号,去括号后括号里的各项都不变符号;(板书上面这句话)(指准- (x - 3) =-x+3)如果括号前是“-”号,去括号后括号里各项都改变符号 . (板书上面的这句话)请大家把这两句话读一遍 . (生读)例1 去括号:( 1) a+ (b +c-d) ;(2)a+(-b+c-d);( 3) a- (b +c-d) ;(4)a-(-b+c-d).(四)试探练习,回授调节4. 去括号:( 1) a+ (b -c) ;(2)a-(b-c);( 3) a- ( - b+ c) ;(4)a+(-b+c);( 5) (a +b) -c;(6)-(a+b)-c.(五)尝试指导,讲授新课例 2 先去括号,再合并同类项:( 1) 8a+2b- (5a -b) ;( 2) (5a -3b) -3(a 2- 2b).(生先尝试,师再板演讲解;(2)题除教材中的解法,也可以用分配律直接去掉括号)(六)试探练习,回授调节5.化简:(1)12(x -0.5) =(2)- 5(1 -1x) =5(3)- 5a+(3a -2) -(3a -7) =(4)1(9y - 3) +2(y +1) =3(七)归纳小结,布置作业师:本节课我们学习了如何去括号. (指准+ (x -3) =x-3)如果括号前是“+”号,去括号后括号里各项都不变符号;(指准- (x - 3) =- x+3)如果括号前是“-”号,去括号后括号里各项都改变符号;(指准- 6(x - 3) =- 6x+18)如果括号前是其它因数,那么用分配律可以直接去掉括号 .(作业: P71习题 2. )四、板书设计2.2 整式的加减(去括号)6(x - 3) = 6x- 18例 1例 2- 6(x -3)=- 6x+ 18+ (x -3)= x-3如果括号前是“+”号-(x -3) =- x+ 3如果括号前是“-”号课题: 2.2 整式的加减(第 4 课时)一、教学目标1.会进行整式加减运算 .2.会先进行整式的加减,再求值 .二、教学重点和难点1.重点:进行整式加减运算 .2.难点:求值 .三、教学过程(一)基本训练,巩固旧知1.判断正误:对的画“√” ,错的画“×” .( 1) a- (b -c+d) =a-b- c+ d;()( 2) a- (b +c) -d=a-b- c- d;()( 3) (a +b) - ( - c+ d) =a+b-c-d;()( 4)a+( -b+c-d) = a- b+ c- d;()( 5)- (a - b) +(c -d) =- a+ b- c+ d.()2. 去括号:( 1) (a +b) +(c - d) =( 2) (a +b) -(c - d) =( 3)- (a + b) -( -c-d) =( 4) (a -b) -( -c+d) =( 5)- (a - b) +( -c-d) =(6) a- ( - b+ c) -d=(二)创设情境,导入新课师:前面我们学习了合并同类项、去括号,本节课我们学习整式的加减. (板书课题:2.2 整式的加减)进行整式的加减运算,实际上就是做两件事,第一件事是去括号,第二件事是合并同类项 . 请看例 1.(三)尝试指导,讲授新课例1 计算:( 1) (2x -3y) +(5x +4y) ;(2)(8a-7b)-(4a-5b).(按去括号、合并同类项两步先让生尝试)例2 计算:(2a - 3b) +[4a -(3a -b)].(先去小括号)(四)试探练习,回授调节3.计算:(1) ( - x+ 2x2+ 5) +(4x 2- 3- 6x) ;(2) (3a 2-ab+7) - ( - 4a2+2ab+ 7) ;(3) (2a -3b) -[4a + (3a - b)].4. 填空:整式 x+y 与整式 x-y 的和为,差为.(五)尝试指导,讲授新课例3 求1x- 2(x -1y2) +( -3x+1y2) 值,其中 x=- 2,y=2. 23233(按教材格式板演)(六)试探练习,回授调节5.先化简,再求值:5(3a 2b-ab2) - (ab 2+3a2b) ,其中 a=1,b=1.23(七)归纳小结,布置作业师:本节课我们学习了整式的加减,进行整式的加减运算有两步,是哪两步?生:(作业: P 习题 3.4. )71四、板书设计2.2整式的加减例 1例 2例 3课题: 2.2 整式的加减(第 5 课时)一、教学目标1.会列式计算整式加减的文字题 .2.会列较简单的整式加减式子表示实际问题中的数量关系,发展符号感.二、教学重点和难点1.重点:列较简单的整式加减式子表示数量关系 .2.难点:列较简单的整式加减式子表示数量关系 .三、教学过程(一)创设情境,导入新课师:前面我们学习了如何进行整式加减运算,本节课我们学习几个与整式加减有关的例题,算作是对整式加减的一种应用 .(板书课题: 2.2 整式的加减(应用))请看例 1.(二)尝试指导,讲授新课例1 列式表示比 x 的 7 倍大 3 的数与比 x 的-2 倍小 5 的数,计算这两个数的差 .解:比 x 的 7 倍大 3 的数为 7x+3,比x 的- 2 倍小 5 的数为- 2x-5,这两个数的差为 (7x + 3) -( -2x-5) = 7x+3+2x+5= 9x+8(每一步都让学生尝试)(三)试探练习,回授调节1.求整式 8xy- x2+y2与 x2-y2+8xy 的差 .2.列式表示比 a 的 5 倍大 4 的数与比 a 的 2 倍小 3 的数,计算这两个数的和 .(四)尝试指导,讲授新课例2一种笔记本的单价是x元,圆珠笔的单价是y元.卓玛买这种笔记本3个,买圆珠笔 2 支;扎西买这种笔记本 4 个,买圆珠笔 3 支 . 买这些笔记本和圆珠笔,卓玛和扎西一共花费多少钱?(教学建议:按教材P69解法一解比较自然,要让学生充分熟悉题意,充分尝试的基础上再讲解,熟悉题意的工夫要下足,这是需要耐心的,可以通过读题、说题、画题、列表、实物展示等方式让学生熟悉题意)(五)试探练习,回授调节3. 某村土豆种植面积是 a 亩,白菜种植面积比土豆种植面积少8 亩,青稞种植面积是白菜种植面积的10 倍,问该村土豆、白菜、青稞一共种植多少亩.(六)尝试指导,讲授新课例3 两船从同一港口同时出发反向而行,甲船顺水,速度为每小时 (50 + a) 千米,乙船逆水,速度为每小时 (50 - a) 千米 .(1) 2 小时后两船相距多远?(2) 2 小时后甲船比乙船多航行多少千米?(解题格式与板材P67例题相同)(七)试探练习,回授调节4.填空:已知某轮船顺水航行速度为每小时 (a + y) 千米,逆水航行速度为每小时(a - y) 千米,(1)轮船顺水航行 3 小时,航行了千米;(2)轮船逆水航行 1.5 小时,航行了千米;(3)轮船顺水航行 3 小时,逆水航行 1.5 小时,一共航行了千米.(八)归纳小结,布置作业师:本节课我们学习了几个例题,例 2 例 3 都是和实际问题有关的 . 做这类应用题,关键是要静下心来,好好读题,好好画题——把题目的意思画出来,搞清题目的意思 . 做应用题还需来有信心和毅力,不要被题目吓倒!如果你真的动了脑筋,自己做出了一道题,那么再做第二道题、第三道题就有希望了 .(作业: P68练习 2.P 71习题 7. )四、板书设计2.2 整式的加减(应用)例 1例2例3。
七年级数学上册第二章整式的加减全章知识点总结新版新人教版
千里之行,始于足下。
七年级数学上册第二章整式的加减全章知识点总结新版新人教版以下是七年级数学上册第二章整式的加减的知识点总结(新人教版):1. 整式的概念:由常数和变量的乘积以及其和差的形式构成的代数式称为整式。
2. 整式的加法:将同类项相加,不同类项保持不变。
3. 同类项:具有相同字母,相同指数的项称为同类项。
4. 倍数和倍式:若正整数a能整除正整数b(即b/a的结果为整数),则a称为b的因数,b称为a的倍数。
a、b都是整数。
5. 同底数幂的加减法:同底数幂相加(或相减)时,保持底数不变,将指数相加(或相减)。
6. 整式的减法:先将被减整式中的各项取相反数,然后按照整式的加法规则进行加法运算。
7. 约束条件:表示一些情况下的特殊要求,一般用等式或不等式表示。
8. 字母运算规则:(1)相同字母的指数相加(或相减)。
(2)不同字母之间的运算,字母之间互不影响。
9. 整式化简:将整式中的同类项合并后,将不同字母之间的项单独放在一起。
第1页/共2页锲而不舍,金石可镂。
10. 内括号化简:使用分配律将多个内括号化简为单个内括号。
11. 外括号化简:使用分配律将外括号前的数分别与里面的每一项进行乘法运算。
12. 同底数幂的运算规则:(1)乘法:底数相同,指数相加。
(2)除法:底数相同,指数相减。
13. 括号内指数的运算规则:括号内的整个表达式的指数乘以括号外数的指数。
14. 幂的指数为负的意义:a的-n次方等于1除以a的n次方。
15. 合并同类项:将整式中相同的同类项相加或相减,得到的结果仍为整式。
16. 合并同底数幂:将整式中的同底数幂相加或相减,得到的结果仍为整式。
这些是七年级数学上册第二章整式的加减的知识点总结,希望对你有帮助!。
人教版七年级数学上册第二章《整式的加减》教案
人教版七年级数学上册第二章《整式的加减》教案一. 教材分析《整式的加减》是人教版七年级数学上册第二章的内容,主要包括整式的加减运算以及合并同类项的方法。
本节内容是学生学习代数初步知识的重要环节,为后续学习方程和不等式打下基础。
通过本节内容的学习,学生应该能够理解整式的加减运算法则,掌握合并同类项的方法,并能熟练进行整式的加减运算。
二. 学情分析七年级的学生已经掌握了实数的基本运算,具备了一定的逻辑思维能力。
但是,对于整式的加减运算和合并同类项的方法,学生可能还比较陌生,需要通过实例和练习来逐渐理解和掌握。
此外,学生可能对于代数式的运算规则还不够熟悉,需要教师在教学过程中进行引导和培养。
三. 教学目标1.理解整式的加减运算法则;2.掌握合并同类项的方法;3.能够熟练进行整式的加减运算;4.培养学生的逻辑思维能力和代数运算能力。
四. 教学重难点1.整式的加减运算法则;2.合并同类项的方法;3.整式的加减运算的实践应用。
五. 教学方法采用讲解法、示例法、练习法、讨论法等教学方法。
通过教师的讲解和示例,让学生理解整式的加减运算法则和合并同类项的方法,通过练习和讨论,让学生巩固所学知识,提高运算能力。
六. 教学准备教师准备教案、PPT、练习题等教学资源。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入整式的加减运算,例如:“已知两个数的和是20,差是5,求这两个数分别是多少?”让学生思考和讨论,引导学生认识到整式的加减运算的重要性。
2.呈现(15分钟)教师通过PPT展示整式的加减运算法则和合并同类项的方法,并进行讲解和示例。
例如,对于两个整式的加减运算,先将同类项合并,再进行加减运算。
同时,教师可以通过举例说明合并同类项的方法,如系数相加减,字母和字母的指数不变。
3.操练(15分钟)教师布置一些练习题,让学生独立完成。
例如,计算以下整式的和:(1)2x+ 3y - 4x + 5y;(2)4a^2 - 3a - 2a^2 + 5a。
新人教版七年级上册数学第二章《整式的加减》全章教案
第1课时:整式(1)教学内容:教科书第54—56页,2.1整式:1.单项式。
教学目标和要求:1.理解单项式及单项式系数、次数的概念。
2.会准确迅速地确定一个单项式的系数和次数。
3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
4.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。
教学重点和难点:重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。
难点:单项式概念的建立。
教学方法:分层次教学,讲授、练习相结合。
教学过程:一、复习引入:1、 列代数式(1)若正方形的边长为a ,则正方形的面积是 ;(2)若三角形一边长为a ,并且这边上的高为h ,则这个三角形的面积为 ;(3)若x 表示正方形棱长,则正方形的体积是 ;(4)若m 表示一个有理数,则它的相反数是 ;(5)小明从每月的零花钱中贮存x 元钱捐给希望工程,一年下来小明捐款 元。
(数学教学要紧密联系学生的生活实际,这是新课程标准所赋予的任务。
让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔,同时使学生受到较好的思想品德教育。
)2、 请学生说出所列代数式的意义。
3、 请学生观察所列代数式包含哪些运算,有何共同运算特征。
由小组讨论后,经小组推荐人员回答,教师适当点拨。
(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。
)二、讲授新课:1.单项式:通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并板书归纳得出的单项式的概念,即由数与字母的乘积组成的代数式称为单项式。
然后教师补充,单独一个数或一个字母也是单项式,如a ,5。
2.练习:判断下列各代数式哪些是单项式? (1)21 x ; (2)a bc ; (3)b 2; (4)-5a b 2; (5)y ; (6)-xy 2; (7)-5。
人教版七年级数学上册第二章《整式的加减》教学设计
人教版七年级数学上册第二章《整式的加减》教学设计一. 教材分析人教版七年级数学上册第二章《整式的加减》是学生在初中阶段首次接触整式运算的内容。
本章主要介绍整式的加减运算,包括同类项的定义、合并同类项的方法以及整式的加减法则。
通过本章的学习,学生能够掌握整式加减的基本运算方法,并为后续的代数学习打下基础。
二. 学情分析七年级的学生已经具备了一定的数学基础,对基本的数学运算有一定的了解。
但是,对于整式的加减运算,学生可能还存在一定的困难,特别是在理解同类项的定义和运用整式加减法则方面。
因此,在教学过程中,需要注重引导学生理解同类项的概念,并通过大量的例子让学生熟悉并掌握整式的加减运算方法。
三. 教学目标1.知识与技能目标:学生能够理解同类项的概念,掌握合并同类项的方法,能够运用整式加减法则进行简单的整式运算。
2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生的问题解决能力和合作能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,培养学生的耐心和细心。
四. 教学重难点1.教学重点:同类项的定义,合并同类项的方法,整式加减法则的应用。
2.教学难点:同类项的判断,整式加减运算的灵活运用。
五. 教学方法1.情境教学法:通过生活实例引入同类项的概念,激发学生的学习兴趣。
2.启发式教学法:通过提问引导学生思考,培养学生的问题解决能力。
3.合作学习法:通过小组讨论和合作,培养学生的合作能力和交流能力。
六. 教学准备1.教学PPT:制作精美的PPT,展示同类项的定义和整式加减运算的例子。
2.练习题:准备一些练习题,用于巩固学生的学习效果。
七. 教学过程1.导入(5分钟)利用生活实例,如购物时计算总价,引入同类项的概念,激发学生的学习兴趣。
2.呈现(10分钟)通过PPT展示同类项的定义和合并同类项的方法,让学生直观地理解同类项的概念,并学会如何合并同类项。
3.操练(10分钟)让学生通过小组合作,解决一些同类项的合并问题,巩固学生对同类项的理解和合并同类项的方法。
人教版数学七年级上册《 第二章 整式的加减 》教案
人教版数学七年级上册《第二章整式的加减》教案一. 教材分析人教版数学七年级上册《第二章整式的加减》是学生在学习了有理数、一元一次方程等知识后,进一步学习代数的基础。
这一章主要介绍整式的加减运算法则,通过学习,学生能够掌握整式的加减运算,并为后续的函数、方程等知识的学习打下基础。
本章内容贴近学生的生活实际,有利于激发学生的学习兴趣。
二. 学情分析七年级的学生已经掌握了有理数、一元一次方程等基础知识,具备了一定的逻辑思维能力。
但是,对于整式的加减运算,学生可能还存在着一定的困难,因此,在教学过程中,需要注重引导学生理解整式的加减运算法则,通过具体的例子,让学生能够熟练地进行整式的加减运算。
三. 教学目标1.知识与技能:理解整式的加减运算法则,能够进行简单的整式加减运算。
2.过程与方法:通过实例,培养学生的观察、分析、归纳能力,提高学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作精神,使学生感受到数学与生活的紧密联系。
四. 教学重难点1.重点:整式的加减运算法则。
2.难点:整式加减运算的灵活应用。
五. 教学方法采用问题驱动法、案例教学法、合作学习法等,引导学生主动探究,培养学生的动手操作能力和独立思考能力。
六. 教学准备1.教学素材:教材、多媒体课件、练习题。
2.教学工具:黑板、粉笔、多媒体设备。
七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,如购物时找零、制作标语等,引导学生发现这些问题都可以用整式的加减来解决,从而激发学生的学习兴趣。
2.呈现(10分钟)讲解整式的加减运算法则,通过具体的例子,让学生理解并掌握整式的加减运算。
3.操练(10分钟)让学生分组进行练习,互相讨论,教师巡回指导。
在此过程中,教师要注意发现学生的错误,并及时进行纠正。
4.巩固(10分钟)针对学生练习中出现的问题,进行讲解,让学生进一步巩固整式的加减运算。
5.拓展(10分钟)引导学生思考:如何将整式的加减运算应用到实际问题中?让学生举例说明。
七年级数学上册第二章整式的加减2.1整式第3课时学案设计新版新人教版
第二章 整式的加减2.1 整式 整式(第3课时)学习目标1.理解多项式、整式的概念,会确定一个多项式的项数和次数.2.通过实例列整式,提高分析问题、解决问题的能力.3.了解整式的实际背景,进一步感受字母表示数的意义.自主预习一、复习思考1.什么叫单项式?应注意什么问题呢?2.怎样确定一个单项式的系数和次数?-3aa 2c 7的系数、次数分别是多少?3.列式表示下列问题:(1)温度由t ℃下降5℃后是℃.(2)买一个篮球需要x (元),买一个排球需要y (元),买一个足球需要z (元),买3个篮球、5个排球、2个足球共需元.(3)如图1,三角尺的面积为.(4)如图2是一所住宅的建筑平面图,这所住宅的建筑面积是平方米.联系对比:上面列出的式子,它们是单项式吗?这些式子有什么共同特点?与单项式有什么关系?二、阅读思考(自读课本P 58内容,并思考下列问题) 1.几个单项式的和叫做.2.在多项式中,每个单项式叫做.3.在多项式中,不含字母的项叫做.4.在多项式中,,叫做这个多项式的次数.5.多项式的次数与单项式的次数有什么区别?6.请说出上面各多项式的次数和项. 三、应用新知练习1:下列整式中哪些是单项式?哪些是多项式?是单项式的指出系数和次数,是多项式的指出项和次数:-12a 2b ,a 4a 27,x 2+y 2-1,x ,32t 3,π3,3x 2-y+3xy 3+x 4-1,2x-y.练习2:1.单项式m 2n 2的系数是,次数是,m 2n 2是次单项式. 2.多项式x+y-z 是单项式,,的和,它是次项式.3.多项式3m 3-2m-5+m 2的常数项是,一次项是,二次项的系数是.4.如果-5xy m-1为四次单项式,则m=. 5.下列说法中,正确的是( )-2a 2y 3的系数是-2,次数是3a 的系数是0,次数是0C.-3x 2y+4x-1是三次三项式,常数项是1 -32ab 2的次数是2,系数是-926.判断题(1)-5ab 2的系数是5.( )(2)xy 2的系数是0.( ) (3)12πx 2的系数是12.( )(4)-ab 2c 的次数是2.( )7.(1)买单价为a 元的笔记本m 本,付出20元,应找回元.(2)如图,根据图中标注的数据,用式子表示图形中的阴影部分的面积是. 8.下列式子中哪些是单项式,哪些是多项式,哪些是整式?aa 3,5a ,-34xy 2z ,a ,x-y ,1a,0,3.14,-m+1.9.多项式-3a 2b 3+5a 2b 2-4ab-2共有几项,多项式的次数是多少?第三项是什么,它的系数和次数分别是多少?四、典例分析【例1】如图所示,用式子表示圆环的面积.当R=15cm,r=10cm 时,求圆环的面积(π取3.14).【例2】一条河流的水流速度为2.5千米/时,如果已知船在静水中的速度,那么船在这条河流中顺水行驶和逆水行驶的速度分别怎样表示?如果甲、乙两条船在静水中的速度分别是20千米/时和35千米/时,则它们在这条河流中的顺水行驶和逆水行驶的速度各是多少?五、课堂检测1.下列式子中,哪些是单项式?哪些是多项式?哪些是整式?3x ,2x-1,a +13,-ab ,-5,2a-1,3m-4n+m 2n.2.判断正误:(1)多项式-x 2y+2x 2-y 的次数是2.( ) (2)多项式-12-a+3a 2的一次项系数是1.( )(3)-x-y-z 是三次三项式.( ) 3.说出下列单项式的系数和次数. (1)20%m ;(2)3×105x 2y.4.(1)写出一个单项式,使它的系数是2,次数是3; (2)写出一个多项式,使它的项数是3,次数是4.5.下列关于24的次数说法正确的是( )6.一个关于字母x 的二次三项式的二次项系数为4,一次项系数为1,常数项为7,则这个二次三项式为.六、课后作业课本P 59习题2.1第3,5,6,8题. 七、备选中考试题(一)填空题 1.在式子-35ab ,2a 2y 3,a +92,-a 2bc ,1,x 3-2x+3,3a ,1a +1中,单项式是,多项式是.2.多项式-a 2y 3+2x-3是次项式,最高次项的系数是,常数项是.3.2x 2-3xy 2+x-1的各项分别为. (二)选择题4.一个五次多项式,它任何一项的次数( )5.下列说法正确的是( ) A.x 2+x 3是五次多项式 B.a +a 3不是多项式C.x 2-2是二次二项式D.xy 2-1是二次二项式 (三)列式表示6.n 为整数,不能被3整除的整数表示为.7.一个三位数,十位数字为x ,个位数字比十位数字少3,百位数字是个位数字的3倍,则这个三位数可表示为.8.某班有学生a 人,若每4人分成一组,有一组少2人,则所分组数是. 9.如图所示,阴影部分的面积表示为. 10.用火柴棒按下图的方式搭成三角形. (1)观察填表:(2)照这样下去,搭起的大三角形一条边用了根火柴棒,则小三角形有多少个? 参考答案 复习思考3.(1)t-5 (2)3x+5y+2z(3)12ab-πr 2(4)x 2+2x+18 应用新知练习1 单项式:多项式:多项式 x 2+y 2-1 3x 2-y+3xy 3+x 4-12x-y练习21.1 4 四2.xy-z 一 三3.-5 -2m 14.45.D6.(1)× (2)× (3)× (4)×7.(1)20-am (2)3a-m 28.单项式:aa 3,5a ,-34xy 2z ,a ,0,3.14;多项式:x-y ,-m+1;整式:aa 3,5a ,-34xy 2z ,a ,x-y ,0,3.14,-m+1.9.共有四项,多项式的次数是5,第三项是-4ab ,系数是-4,次数是2.【例1】圆环的面积是392.5cm 2. 【例2】甲船顺水行驶的速度是22.5千米/时,逆水行驶的速度为17.5千米/时;乙船顺水行驶的速度是37.5千米/时,逆水行驶的速度为32.5千米/时. 课堂检测1.3x ,-ab ,-5是单项式;2x-1,a +13,3m-4n+m 2n 是多项式;题中除2a-1以外都是整式.2.(1)× (2)× (3)×3.(1)系数是20%,次数是1;(2)系数是3×105,次数是3.4.答案不唯一,(1)如2xy 2,2xyz ,2y 3等;(2)如x 4+y+1,x 2y 2+xy+1等. 5.C6.4x 2+x+7 备选中考试题1.-35ab ,2a 2y 3,-a 2bc ,1a +92,x 3-2x+32.三 三 -13-33.2x 2,-3xy 2,x ,-1 4.D 5.C6.3n+1或3n+27.300(x-3)+10x+(x-3)8.a +249.ab-π·(a2)210.(1)小三角形个数依次是1,4,9,16,火柴棒总根数依次为3,9,18,30(2)n 2。
人教版七年级上(初一上)册数学教案:第二章 整式的加减
第二章 整式的加减2.1 整式 第1课时 用字母表示数学习内容:教科书第54—56页,2.1整式:1.单项式。
学习目标:1.理解单项式及单项式系数、次数的概念。
2.会准确迅速地确定一个单项式的系数和次数。
3.通过小组讨论、合作学习等方式,经历概念的形成过程,培养自主探索知识和合作交流能力。
学习重点和难点:重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。
难点:单项式概念的建立。
一、自主学习;1、先填空,再分析写出式子特点,与同伴交流。
(1)若正方形的边长为a ,则正方形的面积是 ;(2)若三角形一边长为a ,并且这边上的高为h ,则这个三角形的面积为 ; (3)若x 表示正方体棱长,则正方体的体积是 ; (4)若m 表示一个有理数,则它的相反数是 ;(5)小明从每月的零花钱中贮存x 元钱捐给希望工程,一年下来小明捐款 元。
2、观察以上式子的运算,有什么共同特点?3、单项式定义:由数与字母的乘积组成的代数式称为单项式。
[老师提示] 单独一个数或一个字母也是单项式,如a ,5,0。
4、练习:判断下列各代数式哪些是单项式?(1); (2)a bc ; (3)b 2; (4)-5a b 2; (5)y ; (6)-xy 2; (7)-5。
5、单项式系数和次数:21 x观察“1”中所列出的单项式,发现单项式是由数字因数和字母因数两部分组成。
单项式中的数字因数叫单项式的系数;单项式中所有字母指数的和叫单项式的次数。
说说四个单项式a 2h ,2πr ,a bc ,-m 的数字因数和字母因数及各个字母的指数?二、合作探究:1、教材p56例1:阅读例题,体会单项式及系数次数概念。
2、判断下列各代数式是否是单项式。
如不是,请说明理由;如是,请指出它的系数和次数。
①x +1; ②; ③πr 2; ④-a 2b 。
3、下面各题的判断是否正确?①-7xy 2的系数是7; ②-x 2y 3与x 3没有系数; ③-a b 3c 2的次数是0+3+2; ④-a 3的系数是-1; ⑤-32x 2y 3的次数是7; ⑥πr 2h 的系数是。
人教版七年级上册数学 第二章 整式的加减 整式(第一课时)
2.1 整式 (第1课时)
导入新知
问题引入
1. 路程、速度和时间的关系为: 时间×速度
路程 =________________. 2. 三角形的面积、底边长、底边上的高的关系为:
三角形的面积 =__底__×__高__÷__2____.
能否用代数式表示实际问题中的数量关系吗?
探究新知 知识点 3
用含有字母的式子表示规律
如图所示,搭一个正方形需要4根火柴棒.
……
(1)按上面的方式,搭2个正方形需要__7__根火柴棒, 搭3个正方形需要__1_0_根火柴棒.
(2)搭7个这样的正方形需要__2_2__根火柴棒.
探究新知
(3)搭100个这样的正方形需要多少根火柴棒?
…
第1个 第2个 4根 3根
6
xy 17 ab n 3x m
6
3
探究新知 知识点 2 用含字母的式子表示数量关系
【问题1】青藏铁路线上,在格尔木到拉萨之间有一段很长的冻 土地段.列车在冻土地段的行驶速度是100 km/h.列车在冻 土地段行驶时,根据已知数据求出列车行驶的路程.
(1)2 h行驶多少千米?3 h呢?8 h呢?t h呢? (2)字母t表示时间有什么意义?如果用v表示
10 ④除法运算写成分数形式,即除号改为分数线.
探究新知
(5)若每斤苹果3 1 元,则买m斤苹果需
10 m 3
元.
3
⑤带分数与字母相乘时,带分数要写成假分数的形式.
(6)某篮球运动员个子高,经测量他通常跨一步的距离1米, 若取向前为正,向后为负,那么他向前跨a步为 a 米,向后 跨a步为 米.
-a
教材作业 从课后习题中选取
【人教版】七年级数学上册:第二章《整式的加减》全章教学设计
: 2.1 整式(第 1 )一、教课目1. 列式表示数目关系的程,展符号感.2. 知道式及其系数、次数的意,会正确确立一个式的系数和次数.二、教课要点和点1. 要点:列式表示数目关系,式及其系数、次数的意.2.点:列式表示数目关系 . 三、教课程(一)基本,稳固旧知1. 填空:x3的指数是,底数是;a2的指数是,底数是; n 的指数是,底数是.(二)情境,入新:前方我学了第一章有理数,从今日开始,我要学第二章整式的加减. (板:第二章整式的加减)同学自然会:什么是整式?我将在本和下学什么是整式 . (板: 2.1 整式)我第一学整式的一种,叫式 . (板:(式))(三)指,授新:什么的式子是式呢?大家看一个例子. (出示下边的板)一种笔本售价是每本 2 元,那么 2 本所需是元,5本所需是元, 10 本所需是元,100本所需是元,x 本所需是元.:(指板)一种笔本售价是每本 2 元,那么 2 本所需是多少元?生: 4 元 . (板: 4):(指板)那么 5 本所需是多少元?生: 10 元. (板: 10):(指板)那么10 本所需是多少元?100 本所需是多少元?生: 20 元,200 元 . (板: 20,200 ):(指板)一种笔本售价是每本 2 元,那么 x 本所需是多少元?生:⋯⋯(多几位同学表见解):(指板)一种笔本售价是每本2 元,那么 x 本所需是 2×x 元 . (板:2×x)了写方便,(指乘号)往常将乘号写成“·”,(将“2×x”改“ 2·x”)或许将乘号省略不写 .(用彩笔将“ 2·x ”改“ 2x”) 2x 就表示 2×x.:(板: 2x 并指 2x)2x 就是一个式 . 式自然不仅2x 么一个,在生活中,存在大批的其余的式,同学通把下边的列成式子,就能找到大批的式 .(四)探,回授2.填空:(1)一支笔的售价是 x 元,一支珠笔的售价是笔的 2.5 倍,一支珠笔的售价是元;(2) a 的正方形面;(3) a 正方体的体;(4)一汽的速度是每小v 千米,它 t 小行的行程千米;( 5)数 n 的相反数是.(生做,巡指,达成后,生答案,假如必需,酌情解,并将2.5x ,a2,a3, vt ,- n 板出来)(五)指,授新:(指准板) 2x 是式, 2.5x , a2,a3,vt ,-n 些式子也是式 . 在:什么的式子叫做式?生:⋯⋯(多几名学生表见解,要必定学生回答中合理的部分):些式子有一个共同的特色,什么特色呢?它都是数字与字母的. (指准式子) 2x 是数2 与字母 x 的, 2.5x 是数 2.5 与字母 x 的 . a 2是数 1 与字母 a2的, a3是数 1 与字母 a3的, vt 是数 1 与字母 v、t 的,- n 是数- 1 与字母 n 的 .:通上边的剖析,哪位同学知道:什么叫做式?生:⋯⋯:数字与字母的,的式子叫做式. (板:数字与字母的,的式子叫做式):需要指出的是,唯一个数或一个字母也是式. (板:唯一个数或一5,-1,2008 等都是式;又比如,个字母也是式)比如,唯一个数2独的一个字母x 也是式 .(六)探,回授3.判断以下式子是否是式:(1)4x;(2)- 4x2 y;(3)3a2bc;(4)7.2 ;(5)a;(6)2+x.(七)指,授新:(板:- 4x2y)我都知道,- 4x2y 是式,(指准式子)它是数字- 4 与字母 x2、y 的,一种法,- 4 是数字因数, x2、y 是字母因数,我把数字因数- 4 叫做个式的系数 . (板:的系数是- 4):(指已板的式2x)哪位同学知道2x 个式的系数?生: 2.(以下生回答已板的其余式的系数):明确了式系数的观点,下边我再来看式的次数的观点. (板:次数):(指准- 4x2y)个式含有两个字母,字母 x 指数是 2,字母 y 的指数是 1,全部字母的指数和是 3,我把式- 4x2y 全部字母指数的和 3 叫做个式的次数 . (板:是 3):一个式的次数是几次,我就把个式叫做几次式. (指- 4x2y)个式的次数是3,就叫做三次式 . (板:是三次式):(指已板的式2x)个式的次数是几次?生:⋯⋯:(指 2x)个式只含有一个字母,x 的指数是 1,所以全部字母指数的和也是 1,所以个式的次数是 1,个式是一次式 .(以下生回答已板的其余式的次数)(八)探,回授4.填空:( 1)式 2a2的系数是,次数是,是次式;( 2)式- 1.2h 的系数是,次数是,是次式;( 3)式 x2y 的系数是,次数是,是次式;( 4)式- t 2的系数是,次数是,是次式;( 5)式 5a4b 的系数是,次数是,是次式;( 6)式 x 的系数是,次数是,是次式;( 7)式3xyz 的系数是,次数是,是次式;5( 8)式2vt,次数是,是次式 .的系数是35.用式填空:( 1)每包有 12 册, n 包有册;( 2)一个方形的是0.9 ,是 a,个方形的面是;(3)全校学生数是x,此中女生占数48%,女生人数是,男生人数是;(4)量由 m千克增 10%,就达到千克.(九)小,部署作:本我学了什么?学了本你有什么收?生:⋯⋯(多几位同学归纳)(作: P59 1. )四、板第二章整式的加减2.1 整式(式)232.5x , a,a , vt ,- n一种笔本售价是每本 2 元⋯⋯叫做式那么⋯⋯唯一个数或一个字母也是式- 4x2y 的系数是- 4,次数是 3,是三次式: 2.1 整式(第 2 )一、教课目1. 知道多式及其、常数、次数的意,会指出多式的各与多式次数.2.知道整式的意.二、教课要点和点1.要点:多式及其、常数、次数的观点 .2.点:指出多式的各 . 三、教课程(一)基本,稳固旧知1.判断正:的画“√” ,的画“×” .(1)5y 是式;()(2)5y+1 是式;()(3)1是式;()3(4)单项式 ab 的系数是 0;()(5)单项式2ab()的系数是 2;3(6)单项式 xy2次数是 2;()(7)单项式 4xy2是三次单项式 .()2. 填空:青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段. 列车在冻土地段行驶速度是每小时100 千米,它 2 小时行驶的行程是千米,3小时行驶的行程是千米, t 小时行驶的行程是千米.3.用单项式填空:( 1)底边长为 a,高为 h 的三角形面积是;(2)一辆汽车从拉萨出发, 3 小时后抵达相距 s 千米的尼木县城,这辆长途汽车的均匀速度是;(3)一台电视机原价 a 元,现按原价的9 折(9 折就是 90%)销售,这台电视机此刻的售价为元 .(二)创建情境,导入新课师:上节课我们学习了整式的一种:单项式,本节课我们学习整式的另一种:多项式 . (板书课题:整式(多项式))(三)试试指导,解说新课(师出示下边的板书)4x- 56x2-2x+ 7师:这两个式子是单项式吗?生:不是 .师:这两个式了有什么共同的特色?(稍停)它们都是几个单项式的和. 它们怎么都是几个单项式的和呢?师:(指 4x-5)4x-5 能够转变为 4x+ ( - 5) ,(板书:(4x+( -5) )),所以, 4x -5 能够当作是单项式4x 与- 5 的和 .师:(指 6x2- 2x+7)6x2-2x+7 能够转变为 6x2+ ( - 2x) +7, (板书:( 6x2+( -2x) +7))所以, 6x2-2x+7 能够当作是 6x2,- 2x,7 的和 .师:(指两个式子)所以这两个式子的共同特色都是几个单项式的和.师:几个单项式的和叫做多项式. 所以 4x-5 是多项式,(板书:多项式)6x2-2x +7 也是多项式 .(板书:多项式)师:(指准式子)在多项式中,每个单项式叫做多项式的项. 所以,多项式4x- 52的项是 4x,- 5. (板书:的项是 4x,- 5)多项式 6x -2x+ 7 的项有哪些?22生: 6x ,- 2x,7. (师板书:的项是 6x ,- 2x,7)师:不含字母的项,叫做常数项. 所以,(指准式子)多项式4x-5 的常数项是-5.(板书:常数项是-5)多项式 6x2-2x+7 的常数项是什么?生:7. (板书:常数项是7)(四)尝试练习,回授调理4.填空:( 1)多项式 x2+3x+ 4 是单项式,,常数项是2(2)多项式- x -3+x 是单项式,,的和,它的项是;,,的和,它的项是,,,2,常数项是;,的和,它的项是,,(3)多项式 m-1 是单项式常数项是;(4)多项式 2x+3y2-3xy2是单项式,,的和,它的项是,,.(五)试试指导,解说新课师:(指准 4x- 5)这个多项式有两项, 4x 这一项的次数是一次,常数项的次数是0 次. 次数最高项的次数是一次,我们就说多项式4x-5 的次数是一次 . (板书:次数是 1 次)师:(指准 6x2-2x+ 7)这个多项式有三项,6x2这一项的次数是二次,-2x 这一项的次数是一次,常数项的次数是 0 次. 次数最高项的次数是二次,我们就说多项式 6x2-2x+ 7 的次数是二次 . (板书:次数是 2 次)(六)尝试练习,回授调理5. 填空:(1)多项式 3+2x2-4x 次数最高项是,次数最高项的次数是,这个多项式的次数是;3,次数最高项的次数是,这个多(2)多项式 m-1 次数最高项是项式的次数是;(3)多项式 2x- 3xy2+1 次数最高项是,次数最高项的次数是,这个多项式的次数是;(4)多项式 3x4-2x2y2次数最高项是,次数最高项的次数是,这个多项式的次数是.(七)归纳小结,部署作业师:本节课我们学习了整式的另一种,叫做多项式 . (指准板书)几个单项式的和叫做多项式 . 在多项式中,每个单项式叫做多项式的项 . 此中,不含字母的项叫做常数项 . 多项式中,次数最高项的次数,就是这个多项式的次数 . 单项式和多项式统称整式 . (板书:单项式和多项式统称整式)(作业: P76复习题 2. )四、板书设计2.1 整式(多项式)多项式 4x- 5(4x + ( - 5)) 的项是 4x, - 5,常数项是- 5,次数是 1 次多项式 6x 222,常数项是7,次数是 2 次- 2x+ 7(6x+ ( - 2x)+ 7) 的项是 6x , - 2x,7单项式和多项式统称整式课题: 2.1 整式(第 3 课时)一、教课目的1.稳固单项式、多项式的相关观点 .2.会列较简单的多项式表示数目关系,发展符号感 .二、教课要点和难点1.要点:列多项式表示数目关系 .2.难点:列多项式表示数目关系 .三、教课过程(一)基本训练,稳固旧知1. 填空:(1)单项式 3x 的系数是,次数是,是次单项式;(2)单项式πr 2的系数是,次数是,是次单项式;(3)单项式- x2y 的系数是,次数是,是次单项式;(4)单项式 a2b2的系数是,次数是,是次单项式 .22. 填空:( 1)多项式― x 2― 3x +4 的项是,最高次项是,常数项是,次数是;2,最高次项是,常数项是( 2)多项式 3- m 的项是,次数是;( 3)多项式 a3+ a2 b+ ab2的项是,最高次项是,次数是.3.判断正误:对的画 " √ " ,错的画 " ×".(1)多项式 3a- 5 的项是 3a,5;()(2)多项式 x3+x2y2的次数是 3 次;()(3)几个多项式的和还是多项式;()(4)单项式和多项式统称整式 .()(二)创建情境,导入新课师:上节课,我们学习了多项式的观点,本节课我们要学惯用多项式表示数目关系. 请看例 1.(三)试试指导,解说新课例 1 用多项式填空:(1)温度由 t 度降落 5 度后是度;( 2)甲数 x 的1与乙数 y 的1的和能够表示为;32( 3)如图,圆环的面积为.r(四)尝试练习,回授调理4. 用多项式填空:R( 1)温度由- 3 度降落 t度后是度;(2)温度由- 3 度上涨 t 度后是度;(3)一个数比 x 的 2 倍小 3,这个数为;(4)a 与 b 两数平方的和为;a(5)如图,三角尺的面积为.r5. 用整式填空:b( 1)体重由 x 千克增添 2 千克后是千克;( 2) 1 千克大米售价 1.2元, x 千克大米售价元;( 3) a, b 分别表示长方形的长与宽,则长方形的周长为;(4)a, b 分别表示梯形的上底和下底, h 表示梯形的高,则梯形的面积为;(5)买一个篮球需要 x 元,买一个排球需要y 元,买一个足球需要z 元,买 3个篮球、 5 个排球、 2 个足球共需元.(6)如,是一所住所的建筑平面,所住x米6米所的建筑面是x 米平方米 .4米6. 思虑:如,搭 1 个正方形需要 4 根小棒,搭 2 个正方形需要根小棒,搭 3 个正方形需要根小棒,搭x 个正方形需要根小棒,搭2008 个正方形需要根小棒.(教课建:许多学生而言,些可能有必定度. 要学生充足思虑,要学生安下心来做,快者快做,慢者慢做,不要催学生,不要求全部学生达成全部,差生能真实独立思虑达成二三小就不了,中下生能达成 4 就很好了 . 老要加巡指,各学生以适合鼓舞)(五)小,部署作:今日我学了什么?通本学,你有什么收?生:⋯⋯(多几位同学回答)(作: P60 2. )四、板例 1: 2.2 整式的加减(第 1 )一、教课目1. 同观点的形成程,知道什么是同.2. 归并同法的形成程,会集并同.二、教课要点和点1.要点:同的观点,归并同 .2.点:同观点的形成 . 三、教课程(一)情境,入新:前方我学了整式的观点,从本开始,我学整式的加减. (板:2.2 整式的加减)整式的加减上就是归并同,本我先来学归并同 . (板:(归并同))(二)指,授新:要归并同,我第一要弄清什么是同 . 我一同来看下边的例子 . : 5 个 x 加上 2个 x 等于什么?(板: 5x+2x=)生: 7 个 x. (板: 7x)2222:- 5ab 加上 3ab 等于什么?(板:-5ab +3ab =):依据分派律,- 5ab2+3ab2= ( - 5+ 3)ab 2(板: ( - 5+ 3)ab 2)等于-2ab2 .(板:=- 2ab2):(指准 5x+ 2x=7x)个式子的左是5x 与 2x 两,右只有 7x 一,就是,左的两能够归并成右的一.:(指准- 5ab2+ 3ab2=- 2ab2)个式子的左也有两-5ab2,3ab2,右只有一- 2ab2,就是,左的两也能够归并成一.:(指式子)察、剖析两个式子,大家分么一个:怎么的两能够归并成一?(出示板:怎么的两能够归并成一?)(生疏,巡指):哪位同学知道怎么的两能够归并成一?生:⋯⋯(多几位同学表见解):(在- 5ab2,3ab2下边划,并指准)两所含字母相同,-5ab2一所含字母是 a,b,3ab2一所含字母也是 a, b. (板:所含字母相同) 2 2一字母 a 的指数也是 1;一字母 b 的指数是 2,一字母 b 的指数也是 2. (板:并且相同的字母的指数也相同):(指- 5ab2,3ab2)像所含字母相同,相同字母的指数也相同的,叫做同 . (板:的,叫做同):在,我再回到本来的:怎么的两能够归并成一?生:⋯⋯:同能够归并成一,并且只有同才能够归并成一,不是同不能归并成一 .(三)探,回授1.判断以下各的两是否是同:( 1) 12x 与 2x;(2)2x2y与-5x2y;(3)2a与a2;(4)4xy 与 5yx;(5)4abc与4ab;(6)7xy2与7x2y;33(7)a 与 5 ;(8)-25与12.(因为- 25 与 12 能够归并成一- 13,所以,常数与常数也是同)2.找出多式 4x2-8x+ 5-3x2+6x-2 中的同:( 1) 4x2与是同;( 2)- 8x 与是同;(3)5 与是同.(四)指,授新:我已知道,同是能够归并在一同的归并成一,叫做归并同.. (指板的)把几个同:(指板的两个式子)从两个式子,哪位同学知道怎么归并同?生:⋯⋯(多几位同学表见解):系数相加,字母部分不. (板:系数相加,字母部分不)例 1归并以下各式的同:(1)xy2-1xy2;( 2)- 3ab+ba-2ab. 5(先生,再板演解,解要扣法)3. 填空:( 1) 6x-4x=()x=;( 2)- 7ab+6ab= ()ab=;( 3) 10y2+y2= ()y 2 =;( 4)- 0.5a +2a- 3.5a =()a=.4. 归并以下各式的同:( 1)- 8x2-7x2=(2)1xy- xy=3(3)- 4a2 b+ 4a2b=(4)1y-1y+2y=425.判断正:的画 " √" ,的画 " ×".( 1) 3a2- 2a2= 1;()( 2)3y-y=3;()( 3) 5a+2b=7ab;()( 4) 7ab-7ba=0;()( 5)4x2y-2xy2= 2x2y;()( 6)3x2+2x3=5x5.()6. 思虑:如,大的半径是 R,小的面是大面的4,暗影部分的面9.R(五)小,部署作. (指准- 5ab2+3ab2:本,我学了什么是同及怎么归并同个式子)所含字母相同,并且相同字母的指数也相同的叫做同. 归并同的方法是系数相加,字母部分不. 归并同的个方法是依据什么获得的?生:⋯⋯(依据分派律)(作: P661.2. )四、板2.2 整式的加减(归并同)5x+2x=7x例 1-5ab2+ 3ab2=( -5+3)ab 2=- 2ab2怎的两能够归并成一?⋯⋯叫做同 .系数相加,字母部分不.: 2.2 整式的加减(第 2 )一、教课目1.会集并多式中的同 .2.会先归并同,再求多式的 .二、教课要点和难点1.要点:归并多项式中的同类项 .2.难点:把多项式中的同类项写在一同 .三、教课过程(一)基本训练,稳固旧知1.判断以下各组中的两项是否是同类项:(1)0.2x 2y 与 0.2xy 2;(3)mn与- nm;( 2)4abc 与 4ac;( 4)- 125 与 20.2.归并以下各式的同类项:(1) 4x2- 8x2=(2)- 3x2 y+ 2x2y=(3) 3xy2-2xy2=(4) 2x2+ x2-3x2=3.判断正误:对的画“√” ,错的画“×” .( 1)a+b=b+a;()(2)a- b= b- a;()(3)a- b=- b+a;()(4)x2+2-x=x2+x-2;()(5)x2+ 2- x= x2-x+2;()(6)x2+2-x=x+2-x2;()(7)x2+2-x=- x+2+x2.()(重申:互换多项式的项,要连同符号一同互换)(二)创建情境,导入新课师:上节课我们学习了什么是同类项及怎么归并同类项,本节课我们将学习怎样归并多项式中的同类项 . 请看例 1.(三)试试指导,解说新课例 1 归并多项式 4x2+2x+7+ 3x-8x2-2 的同类项 .解: 4x2+2x+7+3x- 8x2-2第一步:划线,找出同类项;=4x2-8x2+2x+ 3x+7-2第二步:把找出的同类项写在一同;=- 4x2+5x+5第三步:归并同类项 .(第二步不宜加括号,第三步可直接算出结果,这样可能会简单些)(四)尝试练习,回授调理4.归并以下各式的同类项:(1) a2-3a+ 8- 3a2+ 5a-7==(2)- 3x2 y- 2xy2+3xy2+2x2y==(3) 4a2+ 3b2+ 2ab-4a2-4b2==(五)试试指导,解说新课例 2求多式 3a+abc-1c2-3a+1c2的,此中,a=-1, b= 2,c =- 3. 336(先归并多式的同,再代入数,最后获得果,解格式要与教材相同)(六)探,回授5.求多式 2x2- 5x+x2+ 4x-3x2-2 的,此中 x=1 .2(五)小,部署作:本我学了归并多式的同,归并多式的同有三步,是哪三步?生:⋯⋯(作: P71 1.P 76复 2. )四、板例1例2: 2.2 整式的加减(第 3 )一、教课目1.去括号法的形成程,知道去括号法 .2.会去括号 .二、教课要点和点1.要点:去括号 .2.点:去括号法的形成程 . 三、教课程(一)基本,稳固旧知1.归并以下多式的同:(1) 8a+2b-5a- b=(2) 8x-3y+z-4x- 3y+2z=2.求多式 3x2- 8x+2x3-13x2+ 2x-2x3+3 的,此中 x=- 4.3. 填空:分派律是a(b +c) =,利用分派律可得:6(x - 3) =,- 6(x - 3) =.(二)情境,入新:(板: 8a+ 2b-(5a -b) )个式子归并同的果是什么?生: 3a+b.:个果是的!什么呢?因个式子中含有括号,(用彩笔括号)要归并含有括号的式子的同,先要去括号 . 怎样去括号呢?就是我要学的内容 . (板: 2.2 整式的加减(去括号))(三)指,授新:怎样去括号呢?先看两个去括号的例子.:(板: 6(x -3) =)利用分派律, 6(x -3) 等于什么?生: 6x-18. (板: 6x-18):(板:- 6(x - 3) =)利用分派律,- 6(x -3) 等于什么?生:- 6x+18. (板:- 6x+ 18):从两个例子,我能够看到,(指准-6(x-3)=-6x+18)去括号上就是运用分派律,把括号外的因数分乘括号内的各 .(板:+ (x -3) =-(x-3)=):运用分派律,我又怎么去掉(指式子)两个式子中的括号呢?大家自己笔先一 . (生,巡):(指+ (x -3) )个式子不好用分派律,我能够把+(x -3) 写成 1× (x -3) ,(板:1×(x -3) )就能够用分派律了,运用分派律获得的果是什么?生: x-3. (板:= x-3):(指- (x - 3) )个式子也不好用分派律,我能够把-(x - 3) 写成 ( -1) ×(x - 3) ,(板: ( -1) × (x -3) )就能够用分派律了,运用分派律获得的果是什么?生:- x+ 3. (板:=- x+3):从上边的四个例子明,去括号的程上就是运用分派律的程. 前两个式子(指 6(x -3) ,- 6(x -3) )是直接用分派律去括号,尔后两个式子(指+ (x - 3) ,- (x -3) )用分派律去括号比麻,就有必需找去括号的律 .:去掉中程,(擦掉中程,板成+(x - 3) =x -3,- (x -3) =- x +3)获得+ (x -3) = x-3,- (x -3) =- x+3. 从两个式子,同学去括号有什么律?(生疏,巡指):哪位同学了去括号的律?生:⋯⋯(多几位同学表见解):从两个式子,我能够,(指准+ (x -3) =x-3)假如括号前是“+”号,去括号后括号里的各都不符号;(板上边句)(指准- (x - 3) =-x+3)假如括号前是“-”号,去括号后括号里各都改符号 . (板上边的句)大家把两句一遍 . (生)例 1 去括号:( 1) a+ (b +c-d) ;(2)a+(-b+c-d);( 3) a- (b +c-d) ;(4)a-(-b+c-d).(四)探,回授4. 去括号:( 1) a+ (b -c) ;(2)a-(b-c);( 3) a- ( - b+ c) ;(4)a+(-b+c);( 5) (a +b) -c;(6)-(a+b)-c.(五)指,授新例 2 先去括号,再归并同:( 1) 8a+2b- (5a -b) ;( 2) (5a -3b) -3(a 2- 2b).(生先,再板演解;(2)除教材中的解法,也能够用分派律直接去掉括号)(六)探,回授5.化:(1)12(x -0.5) =(2)- 5(1 -1x) =5(3)- 5a+(3a -2) -(3a -7) =(4)1(9y - 3) +2(y +1) =3(七)归纳小结,部署作业师:本节课我们学习了怎样去括号. (指准+(x -3) =x-3)假如括号前是“+”号,去括号后括号里各项都不变符号;(指准-(x -3) =-x+3)假如括号前是“-”号,去括号后括号里各项都改变符号;(指准- 6(x - 3) =- 6x+18)假如括号前是其余因数,那么用分派律能够直接去掉括号 .(作业: P71习题 2. )四、板书设计2.2 整式的加减(去括号)6(x - 3) = 6x- 18例 1例 2- 6(x -3)=- 6x+ 18+ (x -3)= x-3假如括号前是“+”号⋯⋯-(x -3) =- x+ 3假如括号前是“-”号⋯⋯课题: 2.2 整式的加减(第 4 课时)一、教课目的1.会进行整式加减运算 .2.会先进行整式的加减,再求值 .二、教课要点和难点1.要点:进行整式加减运算 .2.难点:求值 .三、教课过程(一)基本训练,稳固旧知1.判断正误:对的画“√” ,错的画“×” .( 1) a- (b -c+d) =a-b- c+ d;()( 2) a- (b +c) -d=a-b- c- d;()( 3) (a +b) - ( - c+ d) =a+b-c-d;()( 4)a+( -b+c-d) = a- b+ c- d;()( 5)- (a - b) +(c -d) =- a+ b- c+ d.()2. 去括号:( 1) (a +b) +(c - d) =( 2) (a +b) -(c - d) =( 3)- (a + b) -( -c-d) =( 4) (a -b) -( -c+d) =( 5)- (a - b) +( -c-d) =(6) a- ( - b+ c) -d=(二)情境,入新:前方我学了归并同、去括号,本我学整式的加减. (板: 2.2 整式的加减)行整式的加减运算,上就是做两件事,第一件事是去括号,第二件事是归并同 . 看例 1.(三)指,授新例1 算:( 1) (2x -3y) +(5x +4y) ;(2)(8a-7b)-(4a-5b).(按去括号、归并同两步先生)例 2 算:(2a - 3b) +[4a -(3a -b)].(先去小括号)(四)探,回授3.算:(1) ( - x+ 2x2+ 5) +(4x 2- 3- 6x) ;(2) (3a 2-ab+7) - ( - 4a2+2ab+ 7) ;(3) (2a -3b) -[4a + (3a - b)].4. 填空:整式 x+y 与整式 x-y 的和,差.(五)指,授新例 3 求1x- 2(x -1y2) +( -3x+1y2) ,此中 x=- 2,y=2. 23233(按教材格式板演)(六)探,回授5.先化,再求:5(3a 2b-ab2) - (ab 2+3a2b) ,此中 a=1,b=1.23(七)小,部署作:本我学了整式的加减,行整式的加减运算有两步,是哪两步?生:⋯⋯(作: P3.4. )71四、板2.2整式的加减例 1例 2例 3: 2.2 整式的加减(第 5 )一、教课目1.会列式算整式加减的文字 .2.会列的整式加减式子表示中的数目关系,展符号感.二、教课要点和点1.要点:列的整式加减式子表示数目关系 .2.点:列的整式加减式子表示数目关系 . 三、教课程(一)创建情境,导入新课师:前方我们学习了怎样进行整式加减运算,本节课我们学习几个与整式加减有关的例题,算作是对整式加减的一种应用 .(板书课题: 2.2 整式的加减(应用))请看例 1.(二)试试指导,解说新课例 1 列式表示比 x 的 7 倍大 3 的数与比 x 的-2 倍小 5 的数,计算这两个数的差 . 解:比 x 的 7 倍大 3 的数为 7x+3,比 x 的- 2 倍小 5 的数为- 2x-5,这两个数的差为 (7x + 3) -( -2x-5) = 7x+3+2x+5= 9x+8(每一步都让学生试试)(三)尝试练习,回授调理1.求整式 8xy- x2+y2与 x2-y2+8xy 的差 .2.列式表示比 a 的 5 倍大 4 的数与比 a 的 2 倍小 3 的数,计算这两个数的和 .(四)试试指导,解说新课例2一种笔录本的单价是x元,圆珠笔的单价是y元.卓玛买这种笔录本3个,买圆珠笔 2 支;扎西买这种笔录本 4 个,买圆珠笔 3 支 . 买这些笔录本和圆珠笔,卓玛和扎西一共花销多少钱?(教课建议:按教材P69解法一解比较自然,要让学生充足熟习题意,充足试试的基础上再解说,熟习题意的时间要下足,这是需要耐心的,能够经过读题、说题、画题、列表、实物展现等方式让学生熟习题意)(五)尝试练习,回授调理3. 某村土豆栽种面积是 a 亩,白菜栽种面积比土豆栽种面积少8 亩,青稞栽种面积是白菜栽种面积的10 倍,问该村土豆、白菜、青稞一共栽种多少亩.(六)试试指导,解说新课例 3 两船从同一港口同时出发反向而行,甲船顺流,速度为每小时 (50 + a) 千米,乙船逆水,速度为每小时 (50 - a) 千米 .(1) 2 小时后两船相距多远?(2) 2 小时后甲船比乙船多航行多少千米?(解题格式与板材P67例题相同)(七)尝试练习,回授调理4.填空:已知某轮船顺流航行速度为每小时 (a + y) 千米,逆水航行速度为每小时(a - y) 千米,(1)轮船顺流航行 3 小时,航行了千米;(2)轮船逆水航行 1.5 小时,航行了千米;(3)轮船顺流航行 3 小时,逆水航行 1.5 小时,一共航行了千米.(八)归纳小结,部署作业师:本节课我们学习了几个例题,例 2 例 3 都是和实质问题相关的 . 做这种应用题,要点是要静下心来,好好读题,好好画题——把题目的意思画出来,搞清题目的意思 . 做应用题还需来有信心和毅力,不要被题目吓倒!假如你真的动了脑筋,自己做出了一道题,那么再做第二道题、第三道题就有希望了 .(作业: P68练习 2.P 71习题 7. )四、板书设计2.2 整式的加减(应用)例1例2例3:第二章整式的加减复(第1、 2 )一、教课目1.知道第二章整式的加减知构 .2.通基本,稳固第二章所学的基本内容 .3.通典型例和合运用,加深理解第二章所学的基本内容,展能力 . 二、教课要点和点1.要点:知构和基本 .2.点:典型例和合运用 . 三、教课程(一),完美知单项式归并同类项用字母列含字母整式a(b + c) = ab+ ac整式的加减表示数的式子多项式去括号(上边的知构,要合下边的解逐渐板出来):我已学完了第二章整式的加减,今日我就来复第二章. (板:第二章整式的加减复):第二章的内容不像第一章那么多,哪位同学能用几个字来归纳第二章的内容?生:⋯⋯(多几位学生):!整式的加减 . 因要学整式的加减,我学了归并同和去括号;因要学整式的加减,我学了什么是整式,以及式和多式 . 整式的加减是本章学的点,其余内容都是了学整式的加减做准的 . 那么,本章的内容是从什么地方开始,又是怎样一步一步走向“整式的加减”的呢?(出示下边的目)一本笔本售价 2 元, n 本需元.:本章的内容是从“用字母表示数”开始的. (板:用字母表示数)用字母表示数是什么意思?大家看个例子,(指板的目)一本笔本售价 2 元, n 本需多少元?里 n 本中的 n 就是用字母表示数, n 详细表示是什么数?可能是 0,可能是 1,2 , 3,4 等等 .就是用字母表示数的意思 .:有了表示数的字母,我就能够列出含字母的式子. (板:列含字母的式子)比如,在才的个例子中,(指板的目)一本笔本售价 2 元, n 本需2n 元. (板: 2n)里 2n 就是列出的含字母的式子.:在中,可能列出含各样各字母的式子,此中比的一种叫式 . (板:式)数字与字母的,的式子叫做式. (指板)2n 是一个式 . 学式需掌握式的系数、次数的观点.:在学式的基上,我又学了多式的观点. (板:多式)什么是多式呢?几个式的和叫做多式. 学多式需掌握多式的、常数、次数的观点 .:式是整式,多式也是整式,式和多式称整式. (板:整式):接着,我又学了归并同(板:归并同)和去括号.(板:去括号)归并同、去括号从表面上看,它干的是两件不相同的事,但出人不测的是,它都是依照分派律a(b +c) = ab+ac. (板: a(b + c) =ab+ac)分派律这个式子,从左到右看是去括号,(加箭头)从右到左看是归并同类项 .(加箭头)师:学习了归并同类项和去括号,实质上也就学了整式的加减. (板书:整式的加减)为何这样说呢?因为做整式的加减只有两个步骤,第一步是去括号,第二步是归并同类项 .师:(指板书出的知识构造图)这就是本章知识的线索,从字母表示数出发,终点是整式的加减 .(二)基本训练,掌握双基1.填空:(以下空你最好直接填,实在想不起来,你能够在教材中找,这些内容是需要你仔细理解的;先用铅笔填,校正时用其余笔填)(1)数字与字母的积,像这样的式子叫;单项式中的数字因数叫做单项式的;一个单项式中,全部字母的指数和叫做这个单项式的.(2)几个单项式的和叫做;此中,每个单项式叫做多项式的,不含字母的项叫做;多项式里次数最高项的次数,叫做这个多项式的.(3)与统称整式.(4)所含字母相同,并且相同字母的指数也相同的项叫做;归并同类项的方法是:系数,字母部分.(5)去括号的方法是:假如括号前方是“+”号,去括号后括号里各项都符号;假如括号前是“-”号,去括号后括号里各项都符号 .(6)几个整式相加减,假如有括号就先去括号,而后再2. 填空:( 1)单项式- 15ab 的系数是,次数是;22( 2)单项式 4a b 的系数是,次数是;.( 3)单项式3x2y的系数是,次数是. 53. 填空:2(2)多项式 a3-2a2b2+b3的项是,次数是4. 填空:( 1)全班学生总数是x,此中男生占总数的52%,则女生人数是;( 2)底边长为 6,高为 h 的三角形面积是;( 3)一台 a 元的电视机,降价30%后售价是元;( 4)一台 a 元的电视机,打七折销售,售价是元;( 5)温度由 t 度降落 8 度后是度;( 6)今年扎西 m岁,昨年扎西岁,5年后扎西岁;;.(7)某商铺上月收入为 a 元,本月的收入比上月的 2 倍还多 10 元,本月的收入是元;(8)西藏某景点的门票价钱是:成人10 元,学生 5 元 . 一个旅行团有成人学生 y 人,那么该旅行团对付元门票费;x 人,5.归并同类项:。
人教版数学七年级上册第二章《整式的加减》教学设计
人教版数学七年级上册第二章《整式的加减》教学设计一. 教材分析人教版数学七年级上册第二章《整式的加减》是学生进入初中阶段后接触到的第一个较为复杂的数学章节。
本章主要内容包括整式的加减运算,重点是让学生掌握整式加减的法则,并能够熟练进行整式的加减运算。
二. 学情分析学生在进入七年级之前,已经学习了实数、代数式等基础知识,对于整数和分数的加减运算已经有一定的掌握。
但是,对于整式的加减运算,学生可能还存在一定的困难,因此,在教学过程中,需要注重引导学生理解和掌握整式加减的法则,并通过大量的练习来提高学生的运算能力。
三. 教学目标1.让学生掌握整式加减的法则,并能够熟练进行整式的加减运算。
2.培养学生的逻辑思维能力和运算能力。
3.培养学生独立思考和合作交流的能力。
四. 教学重难点1.整式加减的法则的理解和掌握。
2.整式加减运算的技巧和方法。
五. 教学方法1.采用问题驱动的教学方法,通过引导学生解决实际问题,让学生理解和掌握整式加减的法则。
2.使用多媒体教学,通过动画和图形的方式,让学生更直观地理解整式加减的过程。
3.采用小组合作学习的方式,让学生在合作交流中提高自己的运算能力。
六. 教学准备1.多媒体教学设备。
2.教学课件和教学素材。
3.练习题和测试题。
七. 教学过程1.导入(5分钟)通过一个实际问题,引出整式加减的概念,激发学生的学习兴趣。
2.呈现(10分钟)通过多媒体课件,呈现整式加减的法则,引导学生理解和掌握。
3.操练(10分钟)让学生进行整式加减的运算练习,巩固所学知识。
4.巩固(10分钟)通过一些典型的例题,让学生进一步理解和掌握整式加减的法则。
5.拓展(10分钟)引导学生思考整式加减的运算规律,提高学生的逻辑思维能力。
6.小结(5分钟)对本节课的内容进行小结,让学生明确学习目标。
7.家庭作业(5分钟)布置一些整式加减的练习题,让学生巩固所学知识。
8.板书(5分钟)板书本节课的主要内容和重点知识点。
2024秋七年级数学上册第二章整式的加减2.1整式1用字母表示数说课稿(新版)新人教版
1. 硬件资源:多媒体教学设备、黑板、教具(包括代数符号卡片、整式示例卡片等)。
2. 软件资源:教学课件、数学软件(如几何画板、MathType等)。
3. 课程平台:学校教学管理系统、在线作业与测评系统。
4. 信息化资源:电子课本、教学视频、互动式数学学习软件。
5. 教学手段:讲授、小组讨论、互动提问、案例教学、实操演练、课后作业。
3. 例题3是整式去括号的题型,解答时要注意符号的变化。在去括号时,括号前的正号可以省略不写,括号前的负号在去掉括号后,括号内的各项都要变号。
4. 例题4是整式乘法的题型,解答时要注意分配律的运用。在乘法运算中,每一项都要分别乘以括号内的每一项。
5. 例题5是将整式应用到实际问题中的题型,解答时需要学生理解问题的实质,建立数学模型,并进行整式的运算。
例题6:整式的减法运算。
问题:计算整式5x^2-3x+2减去2x^2+4x-1的结果。
解答:5x^2-3x+2-(2x^2+4x-1)=(5x^2-2x^2)+(-3x-4x)+(2+1)=3x^2-7x+3。
例题7:整式的乘法运算(多项式乘多项式)。
问题:计算整式(x+3)(x+4)。
解答:(x+3)(x+4)=x*x+x*4+3*x+3*4=x^2+4x+3x+12=x^2+7x+12。
问题:已知A和B分别代表两个数,A=3,B=4,求A+B的值以及用字母表示的结果。
解答:A+B=3+4=7,用字母表示为A+B=7。
例题2:整式的合并同类项。
人教版数学七年级上册第2章整式的加减2.2.2整式的加减(教案)
4.培养数学运算技能:使学生熟练掌握整式的加减运算方法,提高运算速度和准确性,增强数学运算能力。
5.激发数学应用意识:将整式的加减应用于生活实际,激发学生对数学知识在实际问题中的应用意识,培养学以致用的能力。
另外,在小组讨论环节,我发现学生们积极参与,互相交流,这是一个很好的现象。但在引导讨论时,我发现自己提问的方式还有待改进,有时候问题不够明确,导致学生们在思考问题时有些迷茫。针对这一点,我将在以后的课堂上,尽量提出更具针对性和启发性的问题,引导学生深入思考。
在实践活动方面,学生们对于实验操作表现出很高的兴趣,但有些小组在操作过程中,对于整式的加减法则运用不够熟练。这说明我在实践教学环节还需要加强指导,让学生在实践中更好地掌握整式的加减。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了整式的加减的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对整式的加减的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解整式的加减的基本概念。整式的加减是指对含有同类项的多项式进行合并同类项的运算。它是代数运算的基础,对于解决实际问题具有重要意义。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何将购物时合并同类项实际情况转化为整式的加减运算,以及它如何帮助我们解决问题。
具体涉及以下知识点:
-同类项的定义及识别。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《整式》教学设计
教学目标:
知识与技能:
1.理解单项式、单项式的系数、单项式的次数的概念;2.能判断一个代数式是否为单项式;
3.会指出单项式的系数、单项式的次数。
过程与方法: 通过单项式、多项式和整式的概念,知道他们与代数式之间的关系和区别。
情感态度与价值观: 经历在具体情境中用代数式表示数量关系的过程,发展符号感。
学情分析
人们对具体事物的认识,一般要经历从具体到抽象,在从抽象到具体,不断往复,逐步提高的过程。
本节中,整式的概念、单项式的概念和次数,既是由数到式的抽象与升华,又是以后学习同类项,整式加减,乘除等知识的基础。
同时也为以后学习分式运算、一次方程和函数等知识奠定了基础。
另外,通过以往学习的经验,学生对单项式、单项式的系数、单项式的次数等概念的理解和掌握都有一定的难度。
更重要的是通过单项式的系数的不同表现形式的教学,培养学生的符号意识和有条理地思考和语言表达能力。
教学方法: 讲练结合法
重点难点
教学重点: 单项式、单项式的系数、单项式的次数的概念。
教学难点:单项式、单项式的系数、单项式的次数的概念。
教学过程
请根据下列情境书写代数式:
1.一辆汽车以60千米/时的速度行驶了c千米,则这辆汽车的行驶时间为______小时。
2.长方形的长为m,宽为n,则两个这样的长方形的面积是______。
教师出示幻灯片,学生思考,然后回答。
学生回答:或都正确,教师充分给予肯定。
学生解答,教师点评,并给予鼓励。
运用贴近学生生活的实例激发学生探究的兴趣。
感受代数式的实际背景。
同时启迪学生实际生活离不开数学。
3.电冰箱包装箱的形状是长方体,如果包装箱的底面形状是边长为a米的正方形,包装箱的高为h米,那么它的体积是______米3。
4.x的立方的相反数是______。
引入新课
我们看,是和的积,时2、m、n的积,是a2与b的积,是与x3的积,他们都是数字与字母的积,这样的代数式叫做单项式。
教师给出单项式的概念,引导学生理解概念。
学习单项式的定义。
通过讨论,让学生体验获得数学知识的感受。
讲授新课
请同学们分析一下,是单项式吗?是单项式吗?
请同学们分析x-y,x+y是单项式吗?师生讨论,因为可以看作,是和的积,所以是单项式,但是s与t的商,所以不是单项式。
总结:单项式的分母不允许出现字母。
师生讨论,他们是和、差不是积,所以不是单项式。
总结:单项式中只能由乘法运算,不能有其他运算。
激发学生热爱科学勇于探索的精神。
探究活动一
单项式中的数字因数叫做这个单项式的系数。
比如,2mn中2是数字因数,所以,这个单项式的系数是2。
请指出下列各式的系数:
100t,vt,-n
教师举例。
学生解答,教师点评。
学生讨论,教师指导。
学习单项式的系数的定义。
培养学生有条理的语言叙述能力。
通过实例,认识系数。
加深对系数的理解。
同时增强符号感。
“1”省略不写。
是数不是字母。
分数系数可以变形。
探究活动二
单项式中所有字母的次数的和叫做单项式的次数。
教师和学生共同探讨总结,学生复述。
学习单项式的次数的定义。
比如中a的次数是2,b的次数是1,所以,的次数是3。
教师举例,引导学生得出结论。
通过实例,认识次数。
请同学们说出下列单项式的次数:
,,,。
学生回答,教师点评。
加深对次数的认识。
a的次数是0 吗?学生讨论,教师点评。
当指数为1时省略,不是没有。
做一做
例2 请指出下列各单项式的系数和次数:
⑴;⑵。
学生解答,教师点评,并给予鼓励.在此,应重点关注符号。
加深对系数、次数的理解。
回顾与反思
活动4
1.什么是单项式?
2.单项式的系数有哪些特殊的变化方式?
3.没写指数的字母的指数是多少?
学生总结,教师点评并给予鼓励。
整理单项式的有关概念。
巩固与提高
1.请同学们做课后练习第1、2题。
2.作业:第1、2题。
3.复习巩固本节知识,并预习下一节。
学生解答,教师巡视。
板书设计:
整式
1.单项式的概念:
注意:(1)单项式的分母不允许出现字母。
(2)单项式中只能有乘法运算,不能有其他运算. 2.单项式的系数和系数:
注意:(1)符号不能丢;
(2)系数和次数是1时省略不写。
教学反思:本节从一组学生熟悉的生活中的具体问题出发,通过列代数式,既复习了旧知识,又为单项式概念的学习作好了铺垫,符合七年级学生的认知规律。
同时,学生经历在具体情境中用代数式表示数量关系的过程,发展了符号
感。
培养了学生的符号意识。
在教学过程中,教师还注重培养了学生有条理地思考和语言表达能力。
但在系数和指数的强化训练方面还有待加强。