第二轮专题 训练(7)指数函数和对数函数
2023高考数学二轮复习专项训练《指数函数》(含解析)
2023高考数学二轮复习专项训练《指数函数》一 、单选题(本大题共12小题,共60分)1.(5分)某工厂2005年某种产品的年产量为a,,若该产品年增长率为x ,则2010年该厂这种产品的年产量为y ,那么x 与y 的函数关系式是( )A. y=10axB. y= 10x aC. y = a(1+10%)xD. y = a(1+x)52.(5分)把函数y =2x 的图象向右平移t 个单位长度,所得图象对应的函数解析式为y =2x 3,则t =( )A. 12B. log 23C. log 32D. √33.(5分)设a >0,b >0,化简(a 23b 13).(−a 12b 12)÷(13a 16b 56)的结果是( )A. −13a 23B. −3a 23C. −13aD. −3a4.(5分)某地为了保持水土资源,实行退耕还林,如果2013年退耕8万公顷,以后每年比上一年增加10%,那么2018年需退耕( )A. 8×1.14万公顷B. 8×1.15万公顷C. 8×1.16万公顷D. 8×1.13万公顷5.(5分)下列运算正确的是( )A. a2•a3=a6B. (x5)2=x7C. (-3c )2=9c2D. (a-2b )2=a2-2ab+4b26.(5分)给出下列结论,其中正确的序号是( )A. 当a <0时,(a 2)32=a 3 B. √a n n=|a|C. 函数y =(x −2)12−(3x −7)0的定义域是(2,+∞) D. √63=√64127.(5分)已知3x −3−y ⩾5−x −5y 成立,则下列正确的是( )A. x +y ⩽0B. x +y ⩾0C. x −y ⩾0D. x −y ⩽08.(5分)已知集合A ={ x |1<2x ⩽4},B ={ x |x >1},则A ∩B =( )A. { x |1⩽x <2}B. { x |1<x ⩽2}C. { x |0<x ⩽2}D. { x |0⩽x <2}9.(5分)三个数0.76,60.7,log 0.76的大小关系为( )A. log 0.76<0.76<60.7B. 0.76<60.7<log 0.76C. log 0.76<60.7<0.76D. 0.76<log 0.76<60.710.(5分)下列运算中,正确的是( )A. x 3⋅x 2=x 5B. x +x 2=x 3C. 2x 3÷x 2=xD. (x2)3=x 3211.(5分)化3√3√3√3为分数指数幂结果是( )A. 3 78B. 3 158C. 3 74D. 3 17812.(5分)下列判断正确的是( )A. 1.61.5>1.62B. 0.50.2>0.50.3C. 1.60.2<0.53.2D. log 20.5>log 32二 、填空题(本大题共6小题,共30分)13.(5分)log √22√2+log 23⋅log 34= ______ ,当a <0时,√a 2⋅3a 3⋅a −1= ______ . 14.(5分)(279)0.5+0.1−2+(21027)3−π0=__________;lg √2+lg 3−lg √10lg 1.8=__________15.(5分)若√9a 2−6a +1=3a −1,则实数a 的取值范围是________. 16.(5分)若x ⋅log 32=1,则2x +2−x =________________.17.(5分)已知函数f(x)为R 上的奇函数且x <0时f(x)=(12)x −7,则不等式f(x)<1的解集为 ______ .18.(5分)解方程:52x −6×5x +5=0的解集为__________. 三 、解答题(本大题共6小题,共72分) 19.(12分)计算下列各式的结果: (1)lo g 53+lo g 5115+(lo g 3315).(lo g √2216);(2)(6+2√5)12+8−23×(94)−12−(0.01)12−(√5−2)−1.20.(12分)计算下列各式的值:(1)log 4√8+≶50+≶2+5 log 53+(−9.8)0; (2)(2764) 23−(254)0.5+(0.008) −23×25.21.(12分)求值:(1)√49−(278)−13+(π−1)0;(2)4a 23b −13÷(−23a −13b −13)(a >0, b >0).22.(12分)22-1.(1)√259−(827)13−(π+e )0+(14)−12; lg √10.(−lg 10);23.(12分)求值与化简:(1)(179)12+(32)−1−√(√3−2)2; (2)2lg 6−lg 31+12lg 0.36+13lg 8+2log 24−log 29×log 32.24.(12分)已知函数y =f(x)的图象与g(x)=log a x(a >0,且a ≠1)的图象关于x 轴对称,且g(x)的图象过(4,2)点. (Ⅰ)求函数f(x)的解析式;(Ⅱ)若f(x −1)>f(5−x),求x 的取值范围. 四 、多选题(本大题共6小题,共30分)25.(5分)已知实数a ,b 满足log 3a −log 3b <(13)a −(13)b ,则下列结论正确的是 ( )A. a<bB. 1a <1bC. 2a−b <1D. ln(b −a)>026.(5分)下列判断正确的有( )A. √(π−4)2=π−4B. 0∈{−1,0,2}C. cos 1°>sin π6D. y =(√x)2与y =x 是同一个函数27.(5分) 已知集合M ={(x,y)|y =f(x)},若对于任意实数对(x 1,y 1)∈M ,存在(x 2,y 2)∈M ,使x 1x 2+y 1y 2=0成立,则称集合M 是“垂直对点集”;下列四个集合中,是“垂直对点集”的是()A. M ={(x,y)|y =1x 2} B. M ={(x,y)|y =sinx +1} C. M ={(x,y)|y =2x −2} D. M ={(x,y)|y =log 2x}28.(5分)下列说法不正确的是( )A. 命题“∀x > 0,2x > 1”的否定为“∀x ⩽0,2x ⩽1”B. “xy > 0”是“x +y > 0”的充要条件C. “α=β”是“sinα=sinβ”成立的充分不必要条件D. 若“1 x 3”的必要不充分条件是“m−2 x m+2”,则实数m 的取值范围是[1,3] 29.(5分)已知x >0,y >0,lg 2x +lg 8y =lg 2,则1x +13y( )A. 有最小值4B. 有最小值−4C. 有最大值4D. 无最大值30.(5分)函数f (x )是指数函数,则下列等式中正确的是()A. f(x +y)=f(x)f(y)B. f(x −y)=f(x)f(y)C. f(xy )=f(x)−f(y) D. f(nx)=[f(x)]n (n ∈Q)答案和解析1.【答案】D;【解析】因为2005年年底的产量为a,年平均增长率为x,则2011年年底产量为a+ax=a(1+x),2010年年底的产量为a(1+x)+a(1+x)x=a(1+x)(1+x)=a(1+x)2,由此得出,从2005年年底开始,每一年年底的产量构成以a为首项,以1+x为公比的等比数列,以2005年年底的产量a为首项,则2010年年底的产量为a5所以,2011年年底的产量y=a(1+x)5.故选D。
(完整版)指数函数对数函数专练习题(含答案).docx
指数函数及其性质1.指数函数概念一般地,函数叫做指数函数,其中是自变量,函数的定义域为.2.指数函数函数性质:函数名称定义图象定义域值域过定点奇偶性单调性函数值的变化情况变化对图象的影响指数函数函数且叫做指数函数图象过定点,即当时,.非奇非偶在上是增函数在上是减函数在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向看图象,逐渐减小 .对数函数及其性质1.对数函数定义一般地,函数叫做对数函数,其中是自变量,函数的定义域.2.对数函数性质:函数名称定义函数对数函数且叫做对数函数图象定义域值域过定点奇偶性图象过定点,即当非奇非偶时,.单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从顺时针方向看图象,看图象,逐渐减小 .逐渐增大;在第四象限内,从顺时针方向指数函数习题一、选择题aa ≤ b,则函数 f ( x ) =1?2x 的图象大致为 ()1.定义运算 a ?b =>b a b2.函数 f ( x ) = x 2-bx + c 满足 f (1 + x ) =f (1 - x ) 且 f (0) =3,则 f ( b x ) 与 f ( c x ) 的大小关系是()xxA . f ( b ) ≤ f ( c ) x xB . f ( b ) ≥ f ( c )xxC . f ( b )> f ( c )D .大小关系随 x 的不同而不同3.函数 y = |2 x - 1| 在区间A . ( - 1,+∞ )C . ( - 1,1)( k - 1, k + 1) 内不单调,则 k 的取值范围是 ()B . ( -∞, 1)D . (0,2)4.设函数 f ( x ) =ln [( x -1)(2 -x)] 的定义域是 ,函数 ( ) = lg(x - 2x -1) 的定义域是 ,Ag xaB若 ?,则正数a 的取值范围 ()ABA . a >3B . a ≥ 3C . a > 5D . a ≥ 5.已知函数 f (x = 3- a x -3, x ≤ 7,若数列 { a n 满足 a n = f (n )(n ∈ * ,且 {a n }是递5 ) a x - 6, x >7. } N) 增数列,则实数a 的取值范围是 ()A . [ 9, 3)B . ( 9, 3) 44C . (2,3)D . (1,3)2x16.已知 a >0 且 a ≠ 1,f ( x ) = x - a ,当 x ∈ ( - 1,1) 时,均有 f ( x )< 2,则实数 a 的取值范围 是( )1 1 A . (0 , 2] ∪ [2 ,+∞ ) B . [ 4, 1) ∪ (1,4]11C . [ 2, 1) ∪ (1,2]D . (0 , 4) ∪ [4 ,+∞ )二、填空题xa7.函数 y = a ( a >0,且 a ≠ 1) 在 [1,2] 上的最大值比最小值大 2,则 a 的值是 ________.8.若曲线 | y | = 2 x + 1 与直线 y =b 没有公共点,则b 的取值范围是 ________.| x|的定义域为9. (2011 ·滨州模拟 ) 定义:区间 [x 1,x 2 ]( x 1<x 2) 的长度为 x 2- x 1. 已知函数 y = 2 [a , b] ,值域为 [1,2] ,则区间 [a , b] 的长度的最大值与最小值的差为 ________.三、解答题10.求函数y=2x2 3x 4 的定义域、值域和单调区间.11.(2011 ·银川模拟 ) 若函数y=a2x+ 2a x-1( a>0 且a≠ 1) 在x∈ [- 1,1]上的最大值为14,求a 的值.12.已知函数f (x) = 3x,(a+ 2) = 18, (x) =λ·3ax-4x的定义域为 [0,1] .f g(1)求 a 的值;(2) 若函数g( x) 在区间 [0,1] 上是单调递减函数,求实数λ的取值范围.1. 解析:由? = a a≤ b x2x x≤0,b a>b x>0 .1答案: A2. 解析:∵f (1 +x) =f (1 -x) ,∴f ( x) 的对称轴为直线x=1,由此得 b=2.又 f (0)=3,∴c=3.∴f ( x)在(-∞,1)上递减,在(1,+∞)上递增.x≥2x≥ 1,∴ (3 x) ≥(2 x) .若 x≥0,则3f f若 x<0,则3x<2x<1,∴f (3x)> f (2x).∴f (3x)≥ f (2x).答案: A3.解析:由于函数 y=|2x-1|在(-∞,0)内单调递减,在(0,+∞)内单调递增,而函数在区间 ( k- 1,k+ 1) 内不单调,所以有答案: Ck-1<0<k+1,解得-1<k<1.4.解析:由题意得: A=(1,2)x x>1x x>1在(1,2)上恒成立,即,a- 2且 a>2,由 A? B知 a- 2x x上恒成立,令x x xln a-2xln2>0 ,所以函数a-2 - 1>0 在 (1,2)u( x)=a- 2- 1,则u′( x) =au ( x ) 在 (1,2) 上单调递增,则 u ( x )> u (1) = a - 3,即 a ≥ 3.答案: B*f ( n ) 为增函数,5. 解析: 数列 { a } 满足 a = f ( n )( n ∈ N ) ,则函数nna >18- 6- ) × 7- 3,所以 3- a >0注意 a>(3,解得 2<a <3.aa8-6> 3- a × 7-3答案: C1 2x1 21 x x21的图象,6. 解析: f ( x )<? x -a < ? x - <a ,考查函数 y = a与 y =x - 2222当 a >1 时,必有 a-1≥1,即 1<a ≤ 2,21 1当 0<a <1 时,必有 a ≥ ,即 ≤a <1,2 2 1 综上, 2≤ a <1 或 1<a ≤ 2. 答案: C7. 解析: 当 a >1 时, y x在 [1,2] 上单调递增,故 2a3x= a a - a = ,得 a = . 当 0<a <1 时, y = a2 22a在 [1,2] 上单调递减,故 a -a = 2,得 a = 2. 故 a =2或 2.1131 3答案: 2或28. 解析: 分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.x+1 与直线 y = b 的图象如图所示,由图象可得:如果x+ 1 与直线 y = b曲线 | y | = 2 | y | = 2没有公共点,则 b 应满足的条件是 b ∈ [- 1,1] .答案: [- 1,1]9. 解析: 如图满足条件的区间 [a , b] ,当 a =- 1, b = 0 或 a = 0, b = 1 时区间长度最小,最小值为 1,当 a =- 1,b = 1 时区间长度最大,最大值为2,故其差为 1.答案: 110. 解: 要使函数有意义,则只需- x 2-3x + 4≥ 0,即 x 2+ 3x -4≤ 0,解得- 4≤ x ≤ 1.∴函数的定义域为 { x | -4≤ x ≤ 1} .223225 令 t =- x - 3x + 4,则 t =- x - 3x + 4=- ( x + ) +4,2253∴当-4≤ x ≤ 1 时, t max = 4 ,此时 x =- 2, t min = 0,此时 x =- 4 或 x =1.∴0≤t ≤ 25 . ∴0≤ -x 2- 3x + 4≤ 5 .4 2∴函数 y = ( 1)x 23 x4的值域为 [ 2 , 1] .8223 225由 t =- x - 3x + 4=- ( x + )+4( - 4≤ x ≤ 1) 可知,23当- 4≤ x ≤- 2时, t 是增函数,3当- 2≤ x ≤1 时, t 是减函数.根据复合函数的单调性知:y = ( 1 )x 23 x 4在 [ - 4,- 3 3] 上是减函数,在 [ - ,1] 上是增函数.22 233∴函数的单调增区间是 [ - 2, 1] ,单调减区间是 [ - 4,- 2] . 11. 解: 令x22tt >0y= t+ 2t1= ( t+ 1)2,其对称轴为t =- 1.该二次函数a = ,∴ ,则--在[ - 1,+ ∞ ) 上是增函数.x12①若 a >1,∵x ∈ [ - 1,1] ,∴t = a ∈ [ a , a ] ,故当 t = a ,即 x =1 时, y max =a + 2a - 1=14,解得 a = 3( a =- 5 舍去 ) .②若 0<a <1,∵x ∈ [ - 1,1] ,∴ = x∈1 1=-时,a [ a , ] ,故当 t = ,即 1t a ax12y max = (a + 1) - 2= 14.11∴a =3或- 5( 舍去 ) .1综上可得 a = 3 或 3.12. 解: 法一: (1) 由已知得 a2 aa =log 32.3 += 18? 3 = 2?(2) 此时 g ( x ) = λ·2x - 4 x ,设 0≤ x 1<x 2≤ 1,因为 g ( x ) 在区间 [0,1] 上是单调减函数,所以 g ( x ) - g ( x ) = (2 x - 2x )( λ- 2x - 2x )>0 恒成立,即 λ<2x + 2x 恒成立.1 2 1 2 2 1 2 1由于 2x 2+ 2x 1>2 + 2 = 2,所以实数 λ的取值范围是λ≤ 2.法二: (1) 同法一.(2) 此时 g ( x ) = λ·2x - 4x ,因为 g ( x ) 在区间 [0,1] 上是单调减函数,所以有 g ′( x ) = λln2 ·2x - ln4 ·4x = ln2 [- 2 ·(2x )2+ λ·2x] ≤0 成立.x2 设 2 = u ∈ [1,2] ,上式成立等价于-2u+ λu ≤0 恒成立.因为 u ∈ [1,2] ,只需 λ≤2u 恒成立,所以实数 λ的取值范围是λ≤ 2.对数与对数函数同步练习一、选择题1、已知 3a2 ,那么 log3 8 2log 3 6 用 a 表示是()A 、 a 2B 、 5a2C 、 3a (1 a)2D 、 3a a 22、 2log a (M 2N ) log a Mlog a N ,则M的值为()A 、1NB 、4C 、1D 、 4 或 1413 、 已 知 x 2 y 2 1, x0, y 0 , 且 log a (1 x) m,log a n,则 log a y 等 于1 x()A 、 m nB 、 m nC 、 1m nD 、 1m n224、如果方程 lg 2 x (lg5lg 7)lgx lg5 glg 7 0 的两根是 ,,则 g的值是()A 、 lg5 glg 7B 、 lg35C 、 35D 、13515、已知 log 7[log 3 (log 2 x)] 0,那么 x2等于( )A 、1B 、13 C 、1D 、1322 2336、函数 ylg2 1 的图像关于()1 xA 、 x 轴对称B 、 y 轴对称C 、原点对称D 、直线 yx 对称7、函数 ylog (2 x 1) 3x2 的定义域是()A 、 2,1 U 1,B 、 1,1 U 1,32C 、 2,D 、 1,328、函数 ylog 1 (x 2 6x17) 的值域是()2A 、 RB 、 8,C 、, 3D 、 3,9、若 log m 9 log n 9 0 ,那么 m, n 满足的条件是( )A 、 m n 1B 、 n m 1C 、 0 n m 1D 、 0 m n 110、 log a 2 1,则 a 的取值范围是()3A 、 0, 2U 1,B 、 2,C 、 2,1D 、 0, 2U 2,3333 311、下列函数中,在 0,2 上为增函数的是()A 、 ylog 1 ( x1)B 、 y log 2 x 2 12C 、 ylog 2 1D 、 ylog 1 ( x 2 4x 5)x212、已知 g( x) log a x+1 ( a 0且a 1) 在 10, 上有 g( x)0 ,则 f ( x)a x 1 是( )A 、在 ,0上是增加的 B 、在 ,0 上是减少的C 、在, 1 上是增加的D 、在,0 上是减少的二、填空题13、若 log a 2 m,log a 3 n, a 2 m n 。
指数函数与对数函数练习题(含详解)
指数函数1.指数函数概念一般地,函数叫做指数函数,其中是自变量,函数的定义域为.2.指数函数函数性质:函数名称指数函数定义函数且叫做指数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向看图象,逐渐减小.对数函数及其性质1.对数函数定义一般地,函数叫做对数函数,其中是自变量,函数的定义域.2.对数函数性质:函数名称对数函数定义函数且叫做对数函数图象定义域值域过定点图象过定点,即当时,.奇偶性 非奇非偶单调性 在上是增函数在上是减函数函数值的 变化情况变化对图象的影响在第一象限内,从顺时针方向看图象,逐渐增大;在第四象限内,从顺时针方向看图象,逐渐减小.指数函数习题一、选择题1.定义运算a ⊗b =⎩⎨⎧a a ≤bb a >b,则函数f (x )=1⊗2x 的图象大致为( )2.函数f (x )=x 2-bx +c 满足f (1+x )=f (1-x )且f (0)=3,则f (b x )与f (c x )的大小关系是( ) A .f (b x )≤f (c x )B .f (b x )≥f (c x) C .f (b x )>f (c x )D .大小关系随x 的不同而不同3.函数y =|2x-1|在区间(k -1,k +1)内不单调,则k 的取值范围是( ) A .(-1,+∞) B .(-∞,1) C .(-1,1) D .(0,2)4.设函数f (x )=ln[(x -1)(2-x )]的定义域是A ,函数g (x )=lg(a x-2x-1)的定义域是B ,若A ⊆B ,则正数a 的取值范围( )A .a >3B .a ≥3C .a > 5D .a ≥ 55.已知函数f (x )=⎩⎨⎧3-a x -3,x ≤7,a x -6,x >7.若数列{a n }满足a n =f (n )(n ∈N *),且{a n }是递增数列,则实数a 的取值范围是( )A .[94,3)B .(94,3)C .(2,3)D .(1,3)6.已知a >0且a ≠1,f (x )=x 2-a x,当x ∈(-1,1)时,均有f (x )<12,则实数a 的取值范围是( )A .(0,12]∪[2,+∞)B .[14,1)∪(1,4]C .[12,1)∪(1,2]D .(0,14)∪[4,+∞)二、填空题7.函数y =a x (a >0,且a ≠1)在[1,2]上的最大值比最小值大a2,则a 的值是________.8.若曲线|y |=2x +1与直线y =b 没有公共点,则b 的取值范围是________.9.(2011·滨州模拟)定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =2|x |的定义域为[a ,b ],值域为[1,2],则区间[a ,b ]的长度的最大值与最小值的差为________. 三、解答题 10.求函数y =2342x x ---+的定义域、值域和单调区间.11.(2011·银川模拟)若函数y =a 2x+2a x-1(a >0且a ≠1)在x ∈[-1,1]上的最大值为14,求a 的值. 12.已知函数f (x )=3x ,f (a +2)=18,g (x )=λ·3ax -4x 的定义域为[0,1]. (1)求a 的值;(2)若函数g (x )在区间[0,1]上是单调递减函数,求实数λ的取值范围.1.解析:由a ⊗b =⎩⎨⎧a a ≤bb a >b得f (x )=1⊗2x=⎩⎨⎧2xx ≤0,1x >0.答案:A2. 解析:∵f (1+x )=f (1-x ),∴f (x )的对称轴为直线x =1,由此得b =2. 又f (0)=3,∴c =3.∴f (x )在(-∞,1)上递减,在(1,+∞)上递增.若x ≥0,则3x ≥2x ≥1,∴f (3x )≥f (2x). 若x <0,则3x <2x <1,∴f (3x )>f (2x ). ∴f (3x )≥f (2x ). 答案:A3.解析:由于函数y =|2x -1|在(-∞,0)内单调递减,在(0,+∞)内单调递增,而函数在区间(k -1,k +1)内不单调,所以有k -1<0<k +1,解得-1<k <1. 答案:C4. 解析:由题意得:A =(1,2),a x -2x >1且a >2,由A ⊆B 知a x -2x >1在(1,2)上恒成立,即a x -2x-1>0在(1,2)上恒成立,令u (x )=a x -2x -1,则u ′(x )=a x ln a -2x ln2>0,所以函数u (x )在(1,2)上单调递增,则u (x )>u (1)=a -3,即a ≥3. 答案:B5. 解析:数列{a n }满足a n =f (n )(n ∈N *),则函数f (n )为增函数,注意a 8-6>(3-a )×7-3,所以⎩⎨⎧a >13-a >0a 8-6>3-a×7-3,解得2<a <3.答案:C6. 解析:f (x )<12⇔x 2-a x <12⇔x 2-12<a x ,考查函数y =a x 与y =x 2-12的图象,当a >1时,必有a -1≥12,即1<a ≤2,当0<a <1时,必有a ≥12,即12≤a <1,综上,12≤a <1或1<a ≤2.答案:C7. 解析:当a >1时,y =a x 在[1,2]上单调递增,故a 2-a =a 2,得a =32.当0<a <1时,y =a x在[1,2]上单调递减,故a -a 2=a 2,得a =12.故a =12或32.答案:12或328. 解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.曲线|y |=2x +1与直线y =b 的图象如图所示,由图象可得:如果|y |=2x +1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1].答案:[-1,1]9. 解析:如图满足条件的区间[a ,b ],当a =-1,b =0或a =0,b =1时区间长度最小,最小值为1,当a =-1,b =1时区间长度最大,最大值为2,故其差为1. 答案:110. 解:要使函数有意义,则只需-x 2-3x +4≥0,即x 2+3x -4≤0,解得-4≤x ≤1. ∴函数的定义域为{x |-4≤x ≤1}.令t =-x 2-3x +4,则t =-x 2-3x +4=-(x +32)2+254,∴当-4≤x ≤1时,t max =254,此时x =-32,t min =0,此时x =-4或x =1.∴0≤t ≤254.∴0≤-x 2-3x +4≤52. ∴函数y =2341()2x x --+的值域为[28,1]. 由t =-x 2-3x +4=-(x +32)2+254(-4≤x ≤1)可知,当-4≤x ≤-32时,t 是增函数,当-32≤x ≤1时,t 是减函数.根据复合函数的单调性知:y =2341()2x x --+在[-4,-32]上是减函数,在[-32,1]上是增函数.∴函数的单调增区间是[-32,1],单调减区间是[-4,-32].11. 解:令a x =t ,∴t >0,则y =t 2+2t -1=(t +1)2-2,其对称轴为t =-1.该二次函数在[-1,+∞)上是增函数.①若a >1,∵x ∈[-1,1],∴t =a x ∈[1a,a ],故当t =a ,即x =1时,y max =a 2+2a -1=14,解得a =3(a=-5舍去).②若0<a <1,∵x ∈[-1,1],∴t =a x ∈[a ,1a ],故当t =1a,即x =-1时,y max =(1a+1)2-2=14.∴a =13或-15(舍去).综上可得a =3或13.12. 解:法一:(1)由已知得3a +2=18⇒3a=2⇒a =log 32. (2)此时g (x )=λ·2x -4x , 设0≤x 1<x 2≤1,因为g (x )在区间[0,1]上是单调减函数,所以g (x 1)-g (x 2)=(2x 1-2x 2)(λ-2x 2-2x 1)>0恒成立,即λ<2x 2+2x 1恒成立. 由于2x 2+2x 1>20+20=2,所以实数λ的取值范围是λ≤2. 法二:(1)同法一.(2)此时g (x )=λ·2x -4x ,因为g (x )在区间[0,1]上是单调减函数,所以有g ′(x )=λln2·2x -ln4·4x =ln2[-2·(2x )2+λ·2x]≤0成立. 设2x =u ∈[1,2],上式成立等价于-2u 2+λu ≤0恒成立. 因为u ∈[1,2],只需λ≤2u 恒成立, 所以实数λ的取值范围是λ≤2.对数函数同步练习一、选择题1、已知32a =,那么33log 82log 6-用a 表示是( )A 、2a -B 、52a -C 、23(1)a a -+D 、 23a a -2、2log (2)log log a a a M N M N -=+,则NM的值为( ) A 、41 B 、4 C 、1 D 、4或13、已知221,0,0x y x y +=>>,且1log (1),log ,log 1y a aa x m n x+==-则等于( ) A 、m n + B 、m n - C 、()12m n + D 、()12m n -4、如果方程2lg (lg5lg 7)lg lg5lg 70x x +++=的两根是,αβ,则αβ的值是( ) A 、lg5lg7 B 、lg35 C 、35 D 、351 5、已知732log [log (log )]0x =,那么12x -等于( ) A 、13B C D 6、函数2lg 11y x ⎛⎫=-⎪+⎝⎭的图像关于( ) A 、x 轴对称 B 、y 轴对称 C 、原点对称 D 、直线y x =对称 7、函数(21)log x y -= )A 、()2,11,3⎛⎫+∞ ⎪⎝⎭B 、()1,11,2⎛⎫+∞ ⎪⎝⎭C 、2,3⎛⎫+∞ ⎪⎝⎭D 、1,2⎛⎫+∞ ⎪⎝⎭8、函数212log (617)y x x =-+的值域是( )A 、RB 、[)8,+∞C 、(),3-∞-D 、[)3,+∞ 9、若log 9log 90m n <<,那么,m n 满足的条件是( )A 、 1 m n >>B 、1n m >>C 、01n m <<<D 、01m n <<< 10、2log 13a <,则a 的取值范围是( )A 、()20,1,3⎛⎫+∞ ⎪⎝⎭B 、2,3⎛⎫+∞ ⎪⎝⎭C 、2,13⎛⎫ ⎪⎝⎭D 、220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭11、下列函数中,在()0,2上为增函数的是( )A 、12log (1)y x =+ B 、2log y =C 、21log y x= D 、2log (45)y x x =-+12、已知()log x+1 (01)a g x a a =>≠且在()10-,上有()0g x >,则1()x f x a +=是( )A 、在(),0-∞上是增加的B 、在(),0-∞上是减少的C 、在(),1-∞-上是增加的D 、在(),0-∞上是减少的 二、填空题13、若2log 2,log 3,m n a a m n a +=== 。
指数函数与对数函数专项训练(解析版)
指数函数与对数函数专项训练一、单选题1.(23-24高一下·云南玉溪·期末)函数()()2lg 35f x x x =-的定义域为()A .()0,∞+B .50,3⎛⎫⎪C .()5,0,3∞∞⎛⎫-⋃+ ⎪D .5,3⎛⎫+∞ ⎪【答案】C【详解】由题意知,2350x x ->,即(35)0x x ->,所以0x <或53x >.故选:C.2.(23-24高一上·云南昭通·期末)函数()327x f x x =+-的零点所在的区间是()A .()0,1B .31,2⎛⎫ ⎪⎝⎭C .3,22⎛⎫⎪D .()2,3【答案】B【详解】∵3x y =和27y x =-均在R 上单调递增,∴()327x f x x =+-在R 上单调递增;又()12f =-,327402f ⎛⎫=-> ⎪⎝⎭,∴()f x 在31,2⎛⎫ ⎪⎝⎭上有唯一的零点,故选:B.3.(23-24高一上·云南昆明·期末)滇池是云南省面积最大的高原淡水湖,一段时间曾由于人类活动的加剧,滇池水质恶化,藻类水华事件频发.在适当的条件下,藻类的生长会进入指数增长阶段.滇池外海北部某年从1月到7月的水华面积占比符合指数增长,其模型为23 1.65x y -=⨯.经研究“以鱼控藻”模式能有效控制藻类水华.如果3月开始向滇池投放一定量的鱼群后,鱼群消耗水华面积占比呈现一次函数 5.213.5y x =-,将两函数模型放在同期进行比较,如图所示.下列说法正确的是(参考数据:671.6520.2,1.6533.3≈≈)()A .水华面积占比每月增长率为1.65B .如果不采取有效措施,到8月水华的面积占比就会达到60%左右C .“以鱼控藻”模式并没有对水华面积占比减少起到作用D .7月后滇池藻类水华会因“以鱼控藻”模式得到彻底治理【答案】B【详解】对于A ,由于模型23 1.65x y -=⨯呈指数增长,故A 错误;对于B ,当8x =时,8220.63 1.605326.y -⨯==⨯≈,故B 正确;对于C ,因为鱼群消耗水华面积占比呈现一次函数 5.213.5y x =-,所以“以鱼控藻”模式对水华面积占比减少起到作用,故C 错误;对于D ,由两函数模型放在同期进行比较的图象可知,7月后滇池藻类水华并不会因“以鱼控藻”模式得到彻底治理,故D 错误.故选:B.4.(23-24高一上·云南昭通·期末)()()1log 14a f x x =-+(0a >且1a ≠)的图象恒过定点M ,幂函数()g x 过点M ,则12g ⎛⎫⎪⎝⎭为()A .1B .2C .3D .4【答案】D【详解】()()1log 14a f x x =-+,令11x -=,得2x =,()124f =,则()()1log 14a f x x =-+(0a >且1a ≠)恒过定点12,4M ⎛⎫⎪⎝⎭,设()g x x α=,则124α=,即2α=-,即()2g x x -=,∴142g ⎛⎫= ⎪⎝⎭,故选:D.5.(23-24高一下·云南楚雄·期末)已知0.320.3lo g 3,2,lo g 2a b c -===,则()A .c b a <<B .<<b c aC .<<c a bD .a b c<<【答案】A【详解】因为2log y x =在(0,)+∞上单调递增,且234<<,所以222log 2log 3log 4<<,所以21log 32<<,即12a <<,因为2x y =在R 上递增,且0.30-<,所以0.300221-<<=,即01b <<,因为0.3log y x =在(0,)+∞上单调递减,且12<,所以0.30.3log 1log 2>,所以0.3log 20<,即0c <,所以c b a <<.故选:A6.(23-24高一上·云南·期末)若()21()ln 1||f x x x =+-,设()0.3(3),(ln2),2a f b f c f =-==,则a ,b ,c 的大小关系为()A .c a b >>B .b c a >>C .a b c >>D .a c b>>【答案】D【详解】由题意知()(),00,x ∈-∞⋃+∞,由()()()21ln 1f x x f x x⎡⎤-=-+-=⎣⎦-,所以()f x 为偶函数,图象关于y 轴对称,当0x >时,由复合函数的单调性法则知()f x 随x 的增大而增大,即()0,x ∈+∞,()21()ln 1||f x x x =+-单调递增,因为()()33a f f =-=,()0.3(ln2),2b f c f ==,且00.3112222=<<=,0ln2lne 1<<=,所以0.3ln 223<<,所以()()()0.3ln223f f f <<-,即b c a <<,也就是a c b >>.故选:D7.(23-24高一下·云南·期末)设222,0()log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若关于x 的方程2[()](2)()20f x a f x a -++=恰有5个不同实数解,则实数a 的取值范围是()A .[]1,2B .(2,3]C .()2,+∞D .()3,+∞【答案】B【详解】方程2[()](2)()20f x a f x a -++=化为[()2][()]0f x f x a --=,解得()2f x =或()f x a =,函数()f x 在(,0]-∞上单调递增,函数值的集合为(2,3],在(0,1]上单调递减,函数值的集合为[0,)+∞,在[1,)+∞上单调递增,函数值的集合为[0,)+∞,在同一坐标系内作出直线2,y y a ==与函数()y f x =的图象,显然直线2y =与函数()y f x =的图象有两个交点,由关于x 的方程2[()](2)()20f x a f x a -++=恰有5个不同实数解,则直线y a =与函数()y f x =的图象有3个交点,此时23a <≤,所以实数a 的取值范围是(2,3].故选:B8.(23-24高一下·云南昆明·期末)若()12:lo g 11,:39a p a q --<<,则p 是q 的()条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要【答案】A【详解】对于()22:log 11log 2p a -<=,则012a <-<,解得13a <<;对于1:39a q -<,则12a -<,解得3a <;因为{}|13a a <<是{}|3a a <的真子集,所以p 是q 的充分不必要条件.故选:A.二、多选题9.(23-24高一上·云南迪庆·期末)已知函数()()2ln 2f x x x =-,则下列结论正确的是()A .函数()f x 的单调递增区间是[)1,+∞B .函数()f x 的值域是RC .函数()f x 的图象关于1x =对称D .不等式()ln 3f x <的解集是()1,3-【答案】BC【详解】对于A ,当1x =时,2210x x -=-<,此时()()2ln 2f x x x =-无意义,故A 错误;对于B ,由于()22y g x x x ==-的值域为[)1,-+∞,满足()[)0,1,+∞⊆-+∞,所以函数()f x 的值域是R ,故B 正确;对于C ,由题意()()()22ln 2ln 11f x x x x ⎡⎤=-=--⎣⎦,且定义域为()(),02,-∞+∞ ,它满足()()()21ln 11f x x f x+=-=-,即函数()f x 的图象关于1x =对称,故C 正确;对于D ,由于()f x 的定义域为()(),02,-∞+∞ ,故D 错误.故选:BC.10.(23-24高一上·云南昆明·期末)已知函数2212,0()2|log ,0x x x f x x x ⎧--≤⎪=⎨⎪⎩,若1234x x x x <<<,且()()()()1234fx fx fx fx ===,则下列结论中正确的是()A .122x x +=-B .1204x x <<C .()41,4x ∈D .342x x +的取值范围是332,4⎡⎫⎪⎢⎣⎭【答案】BC【详解】作出函数2212,0()2|log ,0x x x f x x x ⎧--≤⎪=⎨⎪⎩的图像如图.对于选项A,根据二次函数的对称性知,12()224x x +=⨯=--,故A 项错误;对于选项B ,因120x x <<,由上述分析知124x x +=-,则21212120()()()42x x x x x x --<=-⋅-≤=,因12x x ≠,故有1204x x <<,即B 项正确;对于选项C ,如图,因0x ≤时,2211()2(2)2222f x x x x =--=-++≤,0x >时,2()|log |f x x =,依题意须使20|log |2x <<,由2|log |0x >得1x ≠,由2|log |2x <解得:144x <<,故有3411,144x x <<<<,即C项正确;对于选项D ,由图知2324log log x x -=,可得341x x =,故431x x =,则343322x x x x ++=,3114x <<,不妨设21,(,1)4y x x x =+∈,显然函数2y x x =+在(1,14)上单调递减,故23334x x <+<,即342x x +的取值范围是(333,4),故D 项错误.故选:BC.11.(23-24高一上·云南昆明·期末)关于函数()ln f x x x =+,以下结论正确的是()A .方程()0f x =有唯一的实数解c ,且(0,1)c ∈B .对,0,()()()x y f xy f x f y ∀>=+恒成立C .对()1212,0x x x x ∀>≠,都有()()1212f x f x x x ->-D .对12,0x x ∀>,均有()()121222f x f x x x f ++⎛⎫≤⎪【答案】AC【详解】A 选项,由于1y x =在R 上单调递增,2ln y x =在()0,∞+上单调递增,故()ln f x x x =+在定义域()0,∞+上单调递增,又()11ln 30,11033f f ⎛⎫=-<=> ⎪⎝⎭,故由零点存在性定理可得,方程()0f x =有唯一的实数解c ,且(0,1)c ∈,A 正确;B 选项,()ln f xy xy xy =+,()()ln ln ln f x f y x x y y x y xy +=+++=++,显然,0x y ∀>,由于xy 与x y +不一定相等,故()()f x f y +与()f xy 不一定相等,B 错误;C 选项,由A 选项可知,()ln f x x x =+在定义域()0,∞+上单调递增,对()1212,0x x x x ∀>≠,都有()()12120f x f x x x ->-,C 正确;D 选项,12,0x x ∀>,均有121212ln 222x xx x x x f +++⎛⎫=+ ⎪⎝⎭,()()12112212121212ln ln ln ln 22222f x f x x x x x x x x x x x x x ++++++==+=+,由于12122x x x x +≥,当且仅当12x x =时,等号成立,故1212ln ln 2x x x x +≥,即()()121222f x f x x x f ++⎛⎫≥ ⎪⎝⎭,D 错误.故选:AC 三、填空题12.(23-24高一上·云南昆明·期末)()()2,(1)29,1x a x f x x ax a x ⎧>⎪=⎨-++-≤⎪⎩是R 上的单调递增函数,则实数a 的取值范围为.【答案】[]2,5【详解】因为在R 递增,则112129a a a a a⎧⎪⎪≥⎨⎪-++-≤⎪⎩>,解得:25a ≤≤,故答案为:[]2,513.(23-24高一下·云南昆明·期末)设函数()ln(1)f x x =+,2()g x x a =-+,若曲线()y f x =与曲线()y g x =有两个交点,则实数a 的取值范围是.【答案】(0,)+∞【详解】当0x ≥时,()ln(1),f x x =+当0x <时()ln(1),f x x =-+函数图象示意图为则2()g x x a =-+与()ln (1)f x x =+有两个零点知a 的取值范围是(0,)+∞.故答案为:(0,).+∞14.(23-24高一下·云南玉溪·期末)苏格兰数学家纳皮尔(J.Napier ,1550-1617)在研究天文学的过程中,经过对运算体系的多年研究后发明的对数,为当时的天文学家处理“大数”的计算大大缩短了时间.即就是任何一个正实数N 可以表示成10(110,)n N a a n =⨯≤<∈Z ,则lg lg (0lg 1)N n a a =+≤<,这样我们可以知道N 的位数为1n +.已知正整数M ,若10M 是10位数,则M 的值为.(参考数据:0.9 1.1107.94,1012.56≈≈)【答案】8或9【详解】依题意可得910101010M ≤<,两边取常用对数可得91010lg10lg lg10M ≤<,即910lg 10M ≤<,所以0.9lg 1M ≤<,即0.91010M ≤<,又M 为正整数,所以8M =或9M =.故答案为:8或9四、解答题15.(23-24高一上·云南昆明·期末)设函数()log (3)(,10a f x x a =-+>且1)a ≠.(1)若(12)3f =,解不等式()0f x >;(2)若()f x 在[4,5]上的最大值与最小值之差为1,求a 的值.【答案】(1)10(,)3+∞(2)2a =或12a =【详解】(1)由(12)3f =可得log (123)13a -+=,解得3a =,即3()log (3)1,(3)f x x x =-+>,则()0f x >,即3log (3)10x -+>,即310,1333x x x >⎧⎪∴>⎨->⎪⎩,故不等式()0f x >的解集为10(,)3+∞;(2)由于()f x 在[4,5]上的最大值与最小值之差为1,故log 11(log 21)1a a +-+=,即log 21,2a a =∴=或12a =,即a 的值为2a =或12a =.16.(23-24高一上·云南昭通·期末)化简求值:(1)()13103420.027π4160.49--++;(2)ln22311lg125lg40.1e log 9log 1632-+++⨯.【答案】(1)8(2)9【详解】(1)()13103420.027π4160.49--++()()()1313423420.3120.7⎡⎤⎡⎤⎡⎤=-++⎣⎦⎣⎦⎣⎦0.3180.78=-++=;(2)ln22311lg125lg4lg 0.1e log 9log 1632-++++⨯3211112lg34lg2lg5lg23222lg2lg3=+-++⨯lg 5lg28=++9=.17.(23-24高一上·云南·期末)已知定义域为R 的函数()11333xx m f x +-⋅=+是奇函数.(1)求m 的值并利用定义证明函数()f x 的单调性;(2)若对于任意t ∈R ,不等式()()22620f t t f t k -+-<恒成立,求实数k 的取值范围.【答案】(1)1m =,证明见解析(2)3k <-【详解】(1)因为()f x 是奇函数,函数的定义域为R ,所以(0)0f =,所以1033m-=+,所以1m =,经检验满足()()f x f x -=-易知()11312133331x x x f x +-⎛⎫==-+ ⎪++⎝⎭设12x x <,则2112122(33)()()3(31)(31)x x x x f x f x --=++因为3x y =在实数集上是增函数,故12()()0f x f x ->.所以()f x 在R 上是单调减函数(2)由(1)知()f x 在(,)-∞+∞上为减函数.又因为()f x 是奇函数,所以()()22620f t t f t k -+-<等价于()()2262f t t f k t-<-,因为()f x 为减函数,由上式可得:2262t t k t ->-.即对一切t R ∈有:2360t t k -->,从而判别式361203k k ∆=+<⇒<-.所以k 的取值范围是3k <-.18.(23-24高一下·云南昆明·期末)已知函数1()xx f x a a ⎛⎫=- ⎪⎝⎭ (0a >且1a ≠).(1)讨论()f x 的单调性(不需证明);(2)若2a =,(ⅰ)解不等式3()2≤f x x;(ⅱ)若21()(22))2(x g f x t x x f +=-+在区间[]1,1-上的最小值为74-,求t 的值.【答案】(1)答案见解析(2)(ⅰ)(](],10,1-∞-⋃;(ⅱ)2t =-或2t =【详解】(1)若1a >,则1()()x xf x a a=-在R 上单调递增;若01a <<,则1()()x xf x a a=-在R 上单调递减.(2)(ⅰ)3()2≤f x x ,即132()022xx x --≤,设13()2()22xx g x x=--,则(1)0g =,()()g x g x -=-,所以()g x 为奇函数,当0x >时,()g x 单调递增,由()(1)g x g ≤,解得01x <≤,根据奇函数的性质,当0x <时,()(1)g x g ≤的解为1x ≤-,综上所述,3()2≤f x x的解集为(](],10,1-∞-⋃.(ⅱ)2122()2(2)2()222(22)x x x x x g x f x tf x t +--=-+=++-,令22x x m --=,因为[]1,1x ∈-,则33,22m ⎡⎤∈-⎢⎥⎣⎦,所以2()()22g x h m m tm ==++,其图象为开口向上,对称轴为m t=-的抛物线,①当32t -≤-,即32t ≥时,min 39177()()3232444h m h t t =-=-+=-=-,解得2t =.②当3322t -<-<,即3322t -<<时,222min 7()()2224h m h t t t t =-=-+=-+=-,解得1152t =,2152t =-矛盾.③当32t -≥,即32t ≤-时,min 39177()()3232444h m h t t ==++=+=-,解得2t =-.综上所述,2t =-或2t =.19.(23-24高一上·云南昆明·期末)函数()e (0)x f x mx m =-<.(1)求(1)f -和(0)f 的值,判断()f x 的单调性并用定义加以证明;(2)设0x 是函数()f x 的一个零点,当1em <-时,()02f x k >,求整数k 的最大值.【答案】(1)1(1)e f m --=+,(0)1f =,()f x 在定义域R 上单调递增,证明见解析,(2)整数k 的最大值为1-【详解】(1)1(1)e f m --=+,(0)1f =,判断()f x 在定义域R 上单调递增,证明如下:在R 上任取1x ,2x ,且12x x <,则1212121212()()e (e )(e e )()x x x x f x f x mx mx m x x -=---=---,因为12x x <,0m <,所以12e e x x <,120x x -<,0m ->,所以12e e 0x x -<,12()0m x x --<,所以1212(e e )()0x x m x x ---<,即12())0(f x f x -<,所以12()()f x f x <,所以()f x 在定义域R 上单调递增.(2)由题意得0()0f x =,即00e 0x mx -=,1em <-,则10e m +<,即0(1)0()f f x -<=,由()f x 是R 上的增函数,所以01x -<,又0(0)10()f f x =>=,所以010x -<<,0200(2)e 2x f x mx =-002e 2e x x =-,令01e (ext =∈,1),则22()2(1)1g t t t t =-=--,所以()g t 在1(e ,1)上单调递减,所以()()11g t g >=-,即0(2)1f x >-,当1em <-时,0(2)f x k >,所以1k ≤-,所以整数k 的最大值为1-.。
指数函数对数函数专项训练
指数函数对数函数专项训练一、介绍指数函数和对数函数是高中数学中的重要概念,它们在数理化学、经济学、生物学等学科中都有广泛的应用。
本文将对指数函数和对数函数进行深入探讨,包括其定义、性质、图像、运算规律以及实际应用等方面。
二、指数函数1. 定义指数函数是以底数为常数的函数,自变量位于实数集上。
一般形式为:f(x)=a x,其中a是底数,x是自变量,f(x)是函数值。
底数a必须是一个正实数且不等于1。
2. 图像和性质•当底数a>1时,指数函数的图像呈现上升趋势,且在x=0处经过点(0, 1)。
•当底数0<a<1时,指数函数的图像呈现下降趋势,且在x=0处经过点(0,1)。
•指数函数的性质包括:增减性、奇偶性、单调性和零点等。
3. 运算规律指数函数有一些重要的运算规律,如指数相乘、指数相除、指数相加、指数相减等。
这些运算规律可以简化指数函数的计算。
三、对数函数1. 定义对数函数是指以某个正实数为底数的函数。
对数函数的定义与指数函数是互逆的。
一般形式为:f(x)=log a x,其中a是底数,x是自变量,f(x)是函数值。
2. 图像和性质•对数函数的图像呈现递增趋势,与指数函数的图像相互关联。
•对数函数的性质包括:定义域、值域、奇偶性、单调性等。
3. 运算规律对数函数有一些重要的运算规律,如对数乘法法则、对数除法法则、对数加法法则、对数减法法则等。
这些运算规律可以简化对数函数的计算。
四、指数函数和对数函数的关系1. 指数函数和对数函数的互逆关系指数函数和对数函数是一对互逆函数,即指数函数和对数函数可以互相抵消。
例如,a log a x=x和log a(a x)=x。
2. 指数函数和对数函数的性质指数函数和对数函数具有一些重要的性质: - f(x)=a x和g(x)=log a x是一对互为反函数的函数; - 两个函数的图像关于y=x对称; - 指数函数和对数函数的复合函数为x本身; - 指数函数和对数函数的性质可以相互推导。
指数函数与对数函数(讲义)
(一)基础知识回顾:1.二次函数:当¹a 0时,y =ax 2+bx +c 或f (x )=ax 2+bx +c 称为关于x 的二次函数,其对称轴为直线x =-a b 2,另外配方可得f (x )=a (x -x 0)2+f (x 0),其中x 0=-ab 2,下同。
,下同。
2.二次函数的性质:当a >0时,f (x )的图象开口向上,在区间(-∞,x 0]上随自变量x 增大函数值减小(简称递减),在[x 0, -∞)上随自变量增大函数值增大(简称递增)∞)上随自变量增大函数值增大(简称递增)。
当a <0时,情况相反。
情况相反。
3.当a >0时,方程f (x )=0即ax 2+bx +c =0…①和不等式ax 2+bx +c >0…②及ax 2+bx +c <0…③与函数f (x )的关系如下(记△=b 2-4ac )。
1)当△>0时,方程①有两个不等实根,设x 1,x 2(x 1<x 2),不等式②和不等式③的解集分别是{x |x <x 1或x >x 2}和{x |x 1<x <x 2},二次函数f (x )图象与x 轴有两个不同的交点,f (x )还可写成f (x )=a (x -x 1)(x -x 2). 2)当△=0时,方程①有两个相等的实根x 1=x 2=x 0=ab2-,不等式②和不等式③的解集分别是{x |x ab2-¹}和空集Æ,f (x )的图象与x 轴有唯一公共点。
轴有唯一公共点。
3)当△<0时,方程①无解,不等式②和不等式③的解集分别是R 和Æ.f (x )图象与x 轴无公共点。
共点。
当a <0时,请读者自己分析。
时,请读者自己分析。
4.二次函数的最值:若a >0,当x =x 0时,f (x )取最小值f (x 0)=ab ac 442-,若a <0,则当x =x 0=a b 2-时,f (x )取最大值f (x 0)=ab ac 442-.对于给定区间[m,n ]上的二次函数f (x )=ax 2+bx +c (a >0),当x 0∈[m, n ]时,f (x )在[m, n ]上的最小值为f (x 0); 当x 0<m 时。
指数函数和对数函数练习题
指数函数和对数函数练习题指数函数和对数函数练习题一、选择题1.下列函数:①y=3x2(xN+);②y=5x(xN+);③y=3x+1(xN+);④y=32x(xN+),其中正整数指数函数的个数为() A.0B.1C.2D.3【解析】由正整数指数函数的定义知,只有②中的函数是正整数指数函数.【答案】 B2.函数f(x)=(14)x,xN+,则f(2)等于()A.2 B.8C.16 D.116【解析】∵f(x)=(14x)xN+,f(2)=(14)2=116.【答案】 D3.(2013阜阳检测)若正整数指数函数过点(2,4),则它的解析式为()A.y=(-2)x B.y=2xC.y=(12)x D.y=(-12)x【解析】设y=ax(a>0且a1),由4=a2得a=2.【答案】 B4.正整数指数函数f(x)=(a+1)x是N+上的减函数,则a的取值范围是()A.a B.-10C.01 D.a-1【解析】∵函数f(x)=(a+1)x是正整数指数函数,且f(x)为减函数,0a+11,-10.【答案】 B5.由于生产电脑的成本不断降低,若每年电脑价格降低13,设现在的电脑价格为8 100元,则3年后的`价格可降为()A.2 400元 B.2 700元C.3 000元 D.3 600元【解析】 1年后价格为8 100(1-13)=8 10023=5 400(元),2年后价格为5 400(1-13)=5 40023=3 600(元),3年后价格为3 600(1-13)=3 60023=2 400(元).【答案】 A二、填空题6.已知正整数指数函数y=(m2+m+1)(15)x(xN+),则m=______.【解析】由题意得m2+m+1=1,解得m=0或m=-1,所以m的值是0或-1.【答案】 0或-17.比较下列数值的大小:(1)(2)3________(2)5;(2)(23)2________(23)4.【解析】由正整数指数函数的单调性知,(2)3(2)5,(23)2(23)4.【答案】 (1) (2)8.据某校环保小组调查,某区垃圾量的年增长率为b,2012年产生的垃圾量为a吨,由此预测,该区下一年的垃圾量为________吨,2020年的垃圾量为________吨.【解析】由题意知,下一年的垃圾量为a(1+b),从2012年到2020年共经过了8年,故2020年的垃圾量为a(1+b)8.【答案】 a(1+b) a(1+b)8三、解答题9.已知正整数指数函数f(x)=(3m2-7m+3)mx,xN+是减函数,求实数m的值.【解】由题意,得3m2-7m+3=1,解得m=13或m=2,又f(x)是减函数,则01,所以m=13.10.已知正整数指数函数f(x)的图像经过点(3,27),(1)求函数f(x)的解析式;(2)求f(5);(3)函数f(x)有最值吗?若有,试求出;若无,说明原因.【解】 (1)设正整数指数函数为f(x)=ax(a0,a1,xN+),因为函数f(x)的图像经过点(3,27),所以f(3)=27,即a3=27,解得a=3,所以函数f(x)的解析式为f(x)=3x(xN+).(2)f(5)=35=243.(3)∵f(x)的定义域为N+,且在定义域上单调递增,f(x)有最小值,最小值是f(1)=3;f(x)无最大值.11.某种细菌每隔两小时分裂一次(每一个细菌分裂成两个,分裂所需时间忽略不计),研究开始时有两个细菌,在研究过程中不断进行分裂,细菌总数y是研究时间t的函数,记作y=f(t).(1)写出函数y=f(t)的定义域和值域;(2)在坐标系中画出y=f(t)(06)的图像;(3)写出研究进行到n小时(n0,nZ)时,细菌的总个数(用关于n的式子表示).【解】 (1)y=f(t)的定义域为{t|t0},值域为{y|y=2m,mN+)};(2)06时,f(t)为一分段函数,y=2,02,4,24,8,46.图像如图所示.(3)n为偶数且n0时,y=2n2+1;n为奇数且n0时,y=2n-12+1.。
指数函数与对数函数的综合试题
指数函数与对数函数的综合试题一、指数函数与对数函数的基本概念指数函数与对数函数是高中数学中的重要概念,它们在各个领域中广泛应用。
指数函数可表示为f(x) = a^x,其中a为一个常数,并且a 不等于0且不等于1。
对数函数的一般形式为g(x) = logax,其中a为一个正实数且不等于1。
二、指数函数与对数函数的性质1. 指数函数的定义域为全体实数,值域为正实数集合。
2. 对数函数的定义域为正实数集合,值域为全体实数。
3. 指数函数的图像是递增的,且必过点(0,1)。
4. 对数函数的图像是递增的,且必过点(1,0)。
5. 指数函数与对数函数是互逆函数,即f(g(x)) = x,g(f(x)) = x,其中f(x)为指数函数,g(x)为对数函数。
三、指数函数与对数函数的综合试题1. 指数函数部分:(1) 试求指数函数y = 3^x的对称轴、最值和零点。
解答:对称轴的概念只适用于二次函数,因此该题无对称轴。
最值为正无穷,因为指数函数y = 3^x的图像是递增且无上界的。
零点为x = 0,因为3^0 = 1。
(2) 已知指数函数y = 2^(x+1)与直线y = 7交于点A和点B,求点A 和点B的坐标。
解答:将y = 2^(x+1)与y = 7联立,得到2^(x+1) = 7。
化简为2^x = 7/2。
由此可得x = log2(7/2)。
代入指数函数中,得到y =2^(log2(7/2)+1)。
计算可得点A的坐标为(log2(7/2), 7),点B的坐标为(log2(7/2)+1, 7)。
2. 对数函数部分:(1) 已知对数函数y = log3(x-2)与直线y = -1交于点C,求点C的横坐标。
解答:将y = log3(x-2)与y = -1联立,得到log3(x-2) = -1。
去除对数记号,得到3^(-1) = x - 2。
化简为1/3 = x - 2,解得x = 7/3。
因此点C的横坐标为7/3。
指数函数、对数函数、幂函数基本性质练习(含答案)
1、用根式的形式表示下列各式)0(>a 151a = 232a- =2、用分数指数幂的形式表示下列各式: 134y x = 2)0(2>=m mm3、求下列各式的值 12325= 232254-⎛⎫⎪⎝⎭=4、解下列方程 11318x - = 2151243=-x1、下列函数是指数函数的是 填序号1xy 4= 24x y = 3xy )4(-= 424x y =..2、函数)1,0(12≠>=-a a a y x 的图象必过定点 ..3、若指数函数xa y )12(+=在R 上是增函数;求实数a 的取值范围 ..4、如果指数函数xa x f )1()(-=是R 上的单调减函数;那么a 取值范围是 A 、2<a B 、2>a C 、21<<a D 、10<<a5、下列关系中;正确的是A 、5131)21()21(> B 、2.01.022> C 、2.01.022--> D 、115311()()22- - >6、比较下列各组数大小:10.53.1 2.33.1 20.323-⎛⎫⎪⎝⎭0.2423-⎛⎫⎪⎝⎭3 2.52.3- 0.10.2-7、函数xx f 10)(=在区间1-;2上的最大值为 ;最小值为 .. 函数xx f 1.0)(=在区间1-;2上的最大值为 ;最小值为 ..8、求满足下列条件的实数x 的范围:182>x22.05<x9、已知下列不等式;试比较n m ,的大小:1nm22< 2nm 2.02.0< 3)10(<<<a a a n m10、若指数函数)1,0(≠>=a a a y x的图象经过点)2,1(-;求该函数的表达式并指出它的定义域、值域和单调区间..11、函数x y ⎪⎭⎫ ⎝⎛=31的图象与xy -⎪⎭⎫⎝⎛=31的图象关于 对称..12、已知函数)1,0(≠>=a a a y x在[]2,1上的最大值比最小值多2;求a 的值 ..13、已知函数)(x f =122+-x x a是奇函数;求a 的值 ..14、已知)(x f y =是定义在R 上的奇函数;且当0<x 时;xx f 21)(+=;求此函数的解析式..对数第11份1、将下列指数式改写成对数式11624= 2205=a答案为:1 2 2、将下列对数式改写成指数式13125log 5= 210log 2a =-答案为:1 2 3、求下列各式的值164log 2= 227log 9 = 30001.0lg = 41lg = 59log 3= 69log 31= 78log 32=4、此题有着广泛的应用;望大家引起高度的重视已知.,0,1,0R b N a a ∈>≠>12log a a =_________ 5log a a =_________ 3log -a a =_________ 51log a a =________一般地;ba a log =__________2证明:N a Na =log5、已知0>a ;且1≠a ;m a =2log ;n a =3log ;求n m a +2的值..6、1对数的真数大于0; 2若0>a 且1≠a ;则01log =a ; 3若0>a 且1≠a ;则1log =a a ;4若0>a 且1≠a ;则33log =a a;以上四个命题中;正确的命题是 7、若33log =x ;则=x8、若)1(log 3a -有意义;则a 的范围是 9、已知48log 2=x ;求x 的值10、已知0)](lg [log log 25=x ;求x 的值对数第12份1、下列等式中;正确的是___________________________.. 131log 3= 210log 3=303log 3= 413log 3=53log 53log 252= 612lg 20lg =-7481log 3= 824log 21=2、设1,0≠>a a 且;下列等式中;正确的是________________________.. 1)0,0(log log )(log >>+=+N M N M N M a a a 2)0,0(log log )(log >>-=-N M NM N M a a a3)0,0(log log log >>=N M NMN M a a a4)0,0(log log log >>=-N M NMN M a a3、求下列各式的值1)42(log 532⨯=__________2125log 5=__________31)01.0lg(10lg 2lg 25lg 21-+++=__________ 45log 38log 932log 2log 25333-+- =__________525lg 50lg 2lg 20lg 5lg -⋅-⋅=__________ 61lg 872lg 49lg 2167lg214lg +-+-=__________ 750lg 2lg )5(lg 2⋅+=__________85lg 2lg 3)5(lg )2(lg 33⋅++=__________ 4、已知b a ==3lg ,2lg ;试用b a ,表示下列各对数.. 1108lg =__________ 22518lg=__________ 5、1求32log 9log 38⨯的值__________;28log 7log 6log 5log 4log 3log 765432⨯⨯⨯⨯⨯=__________6、设3643==yx ;求yx 12+的值__________.. 7、若nm 110log ,2lg 3==;则6log 5等于 ..对数函数第13份1、求下列函数的定义域: 1)4(log 2x y -= 2)1,0(1log ≠>-=a a x y a 3)12(log 2+=x y411lg-=x y 5)1(log )(31-=x x f 6)3(log )()1(x x f x -=- 答案为1 2 3 4 5 6 2、比较下列各组数中两个值的大小:133log 5.4log 5.5⎽⎽⎽⎽⎽ 21133log log e π⎽⎽⎽⎽⎽3lg 0.02lg3.12⎽⎽⎽⎽⎽ 4ln 0.55ln 0.56⎽⎽⎽⎽⎽ 52log 7⎽⎽⎽⎽⎽4log 50 676log 5log 7⎽⎽⎽⎽⎽ 75.0log 7.0⎽⎽⎽⎽⎽ 1.17.080.5log 0.3;0.3log 3;3log 2 97.0log 2 7.0log 3 7.0log 2.0 答案为8 93、已知函数x y a )1(log -=在),0(+∞上为增函数;则a 的取值范围是 ..4、设函数)1(log 2-=x y ;若[]2,1∈y ;则∈x5、已知||lg )(x x f =;设)2(),3(f b f a =-=;则a 与b 的大小关系是 ..6、求下列函数的值域1 )1lg(2+=x y 2)8(log 25.0+-=x y对数函数2第14份1、已知5log,5.0log ,6.0log 325.0===c b a ;则c b a ,,的大小 ..2、函数0(3)3(log >+-=a x y a 且)1≠a 恒过定点 ..3、将函数)2(log 3+=x y 的图象向 得到函数x y 3log =的图象;将明函数3log 2y x =+的图象向 得到函数x y 3log =的图象..4、1函数1lg 1lg )(++-=x x x f 的奇偶性是 .. 2函数()1()log (0,1)111a xf x a a x x+=>≠-<<-的奇偶性为5、若函数x x f 21log )(=;则)3(),31(),41(-f f f 的大小关系为 ..6、已知函数)1,0(log ≠>=a a x y a 在]4,2[∈x 上的最大值比最小值多1;求实数a 的值 ..幂函数第15份幂函数的性质A 、xy 2= B 、2x y -=C 、x y 2log =D 、21-=xy2、写出下列函数的定义域;判断其奇偶性12x y =的定义域 ;奇偶性为 23x y =的定义域 ;奇偶性为 321x y =的定义域 ;奇偶性为 431x y =的定义域 ;奇偶性为 51-=x y 的定义域 ;奇偶性为3、若一个幂函数)(x f 的图象过点)41,2(;则)(x f 的解析式为4、比较下列各组数的大小 17.17.14.3____5.3 23.03.03.1___2.1 36.16.15.2___4.2--5、已知函数12+=m x y 在区间()+∞,0上是增函数;求实数m 的取值范围为 ..6、已知函数2221()(1)m m f x m m x --=++是幂函数;求实数m 的值为 ..函数与零点第16份1、证明:1函数462++=x x y 有两个不同的零点;2函数13)(3-+=x x x f 在区间0;1上有零点2、二次函数243y x x =-+的零点为 ..3、若方程方程2570x x a --=的一个根在区间1-;0内;另一个在区间1;2内;求实数a 的取值范围 ..二分法第17份1、设0x 是方程062ln =-+x x 的近似解;且),(0b a x ∈;1=-a b ;z b a ∈,;则b a ,的值分别为 、2、函数x x y 26ln +-=的零点一定位于如下哪个区间A 、()2,1B 、()3,2C 、()4,3D 、()6,53、已知函数()35xf x x =+-的零点[]0,x a b ∈;且1b a -=;a ;b N *∈;则a b += .4、根据表格中的数据;可以判定方程20xe x --=的一个根所在的区间 为5、函数()lg 3f x x x =+-的零点在区间(,1)m m +()m Z ∈内;则m = .6、用二分法求函数43)(--=x x f x 的一个零点;其参考数据如下:据此数据;可得方程043=--x x的一个近似解精确到0.01为 7、利用计算器;列出自变量和函数值的对应值如下表:那么方程22xx =的一个根位于下列区间的分数指数幂第9份答案12、33222,x y m3、1125 281254、1512 216指数函数第10份答案1、12、1,12⎛⎫⎪⎝⎭3、12a >- 4、C5、C6、,,<<<7、11100,,10,10100 8、13(2)1x x ><-9、1m n <2m n >3m n >10、12xy ⎛⎫= ⎪⎝⎭;定义域R;值域()0,+∞单调减区间(),-∞+∞11、y 轴12、213、114、12,0()0,012,0xx x f x x x -⎧+<⎪==⎨⎪-->⎩对数第11份答案1、略2、略3、1623234-405262-7354、12;5;3-;15;b 2略5、126、123478、1a <9、10、100对数第12份答案1、45672、43、1132337241-51-607181 4、123a b +2322a b +-5、1103236、17、1m n m+- 对数函数第13份答案1、1{}|4x x <2{}|1x x > 31|2x x ⎧⎫>-⎨⎬⎩⎭4{}|1x x >5{}|12x x <≤6{}|132x x x <<≠且2、1<2<3<4<5<6<7>80.5log 0.3>3log 2>0.3log 3; 92log 0.7<3log 0.7<7.0log 2.03、2a >4、[]3,55、a b >6、1[)0,+∞2{}|3y y ≥- 对数函数2第14份答案1、c a b >>2、()4,33、向右平移2各单位;向下平移2各单位4、1偶函数2奇函数5、11()()(3)43f f f >>-6、122或 幂函数第15份答案1、D2、略3、1R;偶函数;2R;奇函数;3{}|0x x ≥;非奇非偶函数;4R;奇函数;5{}|0x x ≠;奇函数;6{}|0x x ≠;偶函数4、245、{}|0x x >6、原点7、减8、B 9、C10、D 11、2()f x x -=12、,,><> 13、12m >-14 函数与零点第16份答案1、 略2、 3;13、解:令2()57f x x x a =--则根据题意得(1)057012(0)000(1)0202(2)0201406f a a f a a f a a f a a ->⇒+->⇒<⎧⎪<⇒-<⇒>⎪⎨<⇒--<⇒>-⎪⎪>⇒-->⇒<⎩ 06a ∴<<二分法第17份答案1、2;32、B3、3其中1,2a b ==4、1;25、26、1.567、(1.8,2.2)。
2023-2024学年高考数学指数函数与对数函数专项练习题(含答案)
2024....二、多选题.函数,若对任意实数、,,则下列结论错误的是()(32log f x x x =++a b 0a b +>A .方程有且只有6个不同的解B .方程()()0f g x =解C .方程有且只有5个不同的解D .方程()()0f f x =解的零点个数为 .()4log =-y f x x16.已知函数,若方程有4个不同的实根,,,22log (1),13()1357,322x x f x x x x ⎧-<≤⎪=⎨-+>⎪⎩()34f x =1x 2x 3x 且,则.4x 1234x x x x <<<()341211x x x x ⎛⎫++=⎪⎝⎭答案:1.C【分析】根据函数的单调性,借助中间值比较大小.【详解】因为函数在单调递增,且,所以,即,2log y x =()0,∞+π2>22log π>log 21=1a >因为函数在单调递减,且,所以,即,0.5log y x =()0,∞+π1>0.50.5log π<log 1=00b <因为函数在单调递增,且,所以,即,πxy =(),-∞+∞20-<200<ππ1-<=01c <<所以,a c b >>故选:C 2.A【分析】由提供的数据知,描述西红柿种植成本与上市时间的变化关系函数不可能是单Q t 调函数,故选取二次函数进行描述,将表格所提供的三组数据代入,即得函2Q at bt c =++Q 数解析式,进而求解.【详解】因为随着时间的增加,种植成本先减少后增加,所以函数不单调,所以选取,且开口向上,2Q at bt c =++将表格中的三组数据分别代入,2Q at bt c =++得解得116360060,8410000100,11632400180,a b c a b c a b c =++⎧⎪=++⎨⎪=++⎩0.01,2.4,224,a b c =⎧⎪=-⎨⎪=⎩即,对称轴,开口向上,20.01 2.4224Q t t =-+ 2.412020.01t -=-=⨯在对称轴处即120天时函数取最小值.∴t =西红柿种植成本最低时的上市天数是120天.∴故选:A.3.C【分析】由指数函数的性质分别对和的情况讨论单调性并求值域,从而列方程组01a <<1a >即可得到答案.【详解】函数(且)的值域为,2x y a =-0a >1,11a x ≠-≤≤5,13⎡⎤-⎢⎥⎣⎦又由指数函数的单调性可知,当时,函数在上单调递减,值域是01a <<2xy a =-[]1,1-12,2a a -⎡⎤--⎣⎦所以有,即,解得;110152321a a a -<<⎧⎪⎪-=-⎨⎪-=⎪⎩101133a a a -<<⎧⎪⎪=⎨⎪=⎪⎩13a =当时,函数在上单调递增,值域是1a >2x y a =-[]1,1-12,2a a -⎡⎤--⎣⎦所以有,即 ,解得.11152321a a a ->⎧⎪⎪-=-⎨⎪-=⎪⎩11133a a a ->⎧⎪⎪=⎨⎪=⎪⎩3a =综上所述,或.13a =3a =故选:C.4.B【分析】结合已知条件,利用抽象函数的定义域以及对数、分式的定义域求法求解即可.【详解】因为函数的定义域是,()f x [1,2022]所以对于有:,(1)()lg f x g x x +=1120220lg 0x x x ≤+≤⎧⎪>⎨⎪≠⎩解得:且,02021x <≤1x ≠故函数的定义域是,()()1ln f x g x x+=(01)(1],,2021⋃故选:B .5.A【分析】根据题意,求得,得到,结合零点的存在性定理,3()0,(2)02f f >>3(1)()02f f ⋅<即可求解.【详解】由函数,且,可得,()348f x x x =+-()()10,30f f <>3()70,(2)2602f f =>=>所以,根据零点的存在性定理,3(1)()02f f ⋅<可得方程的近似解落在区间为.3480x x +-=31,2⎛⎫⎪⎝⎭故选:A.6.C【分析】根据给定条件,可得函数在R 上单调递增,再利用分段函数及对数函数单调性()f x 列出不等式求解即得.【详解】函数的定义域为R ,(2)1,1()log ,1a a x x f x x x --≤⎧=⎨>⎩由对任意,都有,得函数在R 上单调递增,12x x ≠1212()()f x f x x x ->-()f x 于是,解得,20130a a a ->⎧⎪>⎨⎪-≤⎩23a <≤所以实数的取值范围为.a (]2,3故选:C 7.B【分析】利用对数的换底公式和运算法则即可得解.【详解】,,,230x y k ==>Q 23log ,log x k y k ==∴11log 2,log 3k k x y ∴==,,则.12log 2log 3log 61k k k x y ∴=+=+=∴26k =6k =故选:B.8.A【分析】由函数的定义域排除C ,由函数的奇偶性排除D ,由特殊的函数值排除B ,结合奇偶性和单调性判断A.【详解】由得,则函数的定义域为,排除选项C ;30x ->33x -<<()ln 3y x =-()3,3-又,所以为偶函数,则图象关于y 轴对称,排除选项D ;()()ln 3ln 3x x --=-()ln 3y x =-当时,,排除选项B ,52x =1ln 02y =<因为为偶函数,且当时,函数单调递减,()ln 3y x =-30x >>()()ln 3ln 3y x x =-=-选项A 中图象符合.故选:A 9.ACD【分析】分析函数的奇偶性与单调性,由已知可得出,结合函数的奇偶性()f x a b >-()f x与单调性可得出合适的选项.【详解】令,对任意的,,即,()()22log 1g x x x =++x ∈R 21x x x+>≥-210x x ++>所以,函数的定义域为,()g x R 则.()()()()2222221log 1log 1log1g x x x x x g x x x⎛⎫-=+--=+-==- ⎪⎝⎭++所以,函数是定义域为的奇函数,()g x R 因为函数、为上的增函数,1u x =221u x =+[)0,∞+所以,内层函数在上为增函数,21u x x =++[)0,∞+外层函数在上为增函数,2log y u =()0,∞+所以,函数在上为增函数,()()22log 1g x x x =++[)0,∞+由于函数是定义域为的奇函数,则该函数在上为增函数,()g x R (],0-∞所以,函数在上单调递增,()()22log 1g x x x =++R 因为的定义域为,则,()f x R ()()()()()33f x x g x x g x f x -=-+-=--=-所以,函数为奇函数,()f x 又因为函数为上的增函数,所以,函数在上单调递增.3y x =R ()f x R 因为,所以,则,即,A 错B 对,0a b +>a b >-()()()f a f b f b >-=-()()0f a f b +>又、的大小不确定,故CD 错.a b 故选:ACD.方法点睛:函数的三个性质:单调性、奇偶性和周期性,在高考中一般不会单独命题,而是常将它们综合在一起考查,其中单调性与奇偶性结合、周期性与抽象函数相结合,并结合奇偶性求函数值,多以选择题、填空题的形式呈现,且主要有以下几种命题角度;(1)函数的单调性与奇偶性相结合,注意函数的单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性相结合,此类问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内求解;(3)周期性、奇偶性与单调性相结合,解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.10.ABC【分析】根据题意,由函数的定义,只需满足集合中的每一个元素在集合中都有唯一一P Q 个元素与之对应即可,再结合选项逐一分析,即可得到结果.【详解】选项A ,,集合中的每一个元素在集合中都有唯一一个元素与之1:2f x y x→=P Q 对应,故A 正确;选项B ,,集合中的每一个元素在集合中都有唯一一个元素与之对应,故13:f x y x →=P Q B 正确;选项C ,,集合中的每一个元素在集合中都有唯一一个元素与之对应,1:2xf x y ⎛⎫→= ⎪⎝⎭P Q 故C 正确;选项D ,,集合中的1,在集合中没有元素与之对应,故D 错误;:ln f x y x →=P Q 故选:ABC 11.ABD【分析】根据奇偶性的定义即可判断A,根据基本函数的单调性即可判断BC ,根据反函数的性质即可判断D.【详解】对于A ,定义域为,关于原点对称,又由于()f x R ()()e e e e ,,22x x x xf x f x --++=-=,所以为偶函数,A 正确,()()=f x f x -()f x 对于B ,,由于函数在单调递增,所以在()e 121e 1e 1x x x f x -==-++e 1xy =+x ∈R 1e 1x y =+单调递减,因此在单调递增,B 正确,x ∈R ()21e 1xf x =-+x ∈R 对于C ,由于函数为定义域上的偶函数,当时,在区间上单调递lg y x=0x >lg y x =()0,∞+增,故C 错误,对于D ,由于函数与互为反函数,所以两者图象关于,D 正13xy ⎛⎫= ⎪⎝⎭133log log y x x ==-y x =确,故选:ABD 12.ACD【分析】令,结合图象可得有3个不同的解,,,不妨设,()t x g =()0f t =1t 2t 3t 123t t t <<则可知,,,令,结合图象可得有2个不同的解121t -<<-2t =312t <<()m f x =()0g m =,,不妨设,则可知,,再数形结合求出复合函数的解的1m 2m 12m m <121m -<<-201m <<个数.【详解】A 选项,令,结合图象可得有3个不同的解,,,()t x g =()0f t =1t 2t 3t 不妨设,则可知,,,123t t t <<121t -<<-20t =312t <<由图可知有2个不同的解,有2个不同的解,有2个不同的解,()1g x t =()2g x t =()3g x t =即有6个不同的解,A 正确;()()0f g x =B 选项,令,结合图象可得有2个不同的解,,()m f x =()0g m =1m 2m 不妨设,则可知,,12m m <121m -<<-201m <<由图可知有1个解,有3个不同的解,()1f x m =()2f x m =即有4个不同的解,B 错误;()()0g f x =C 选项,令,结合图象可得有3个不同的解,,()m f x =()0f m =1m 2m 3m 且,,,121m -<<-20m =312m <<由图可知有1个解,有3个不同的解,有1个解,()1f x m =()2f x m =()3f x m =即有5个不同的解,C 正确;()()0f f x =D 选项,令,结合图象可得有两个不同的解,()t x g =()0g t =1t2t 不妨设,则可知,,12t t <121t -<<-201t <<由图可知有2个不同的解,有2个不同的解,()1g x t =()2g x t =即有4个不同的解,D 正确.()()0g g x =故选:ACD .13.193【分析】利用位数的定义,结合对数运算法则即可得解.k故答案为.14。
指数函数和对数函数复习(有详细知识点和习题详解)
一、指数的性质 (一)整数指数幂1.整数指数幂概念:an na a a a 个⋅⋅⋅= )(*∈N n ()010a a =≠ ()10,nnaa n N a-*=≠∈ 2.整数指数幂的运算性质:(1)(),mnm na a am n Z +⋅=∈ (2)()(),nm mn a a m n Z =∈(3)()()n n nab a b n Z =⋅∈其中m n m nm na a a aa--÷=⋅=, ()1nn n n nn a a a b a b b b --⎛⎫=⋅=⋅= ⎪⎝⎭.3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a ()*∈>Nn n ,1,那么这个数叫做a 的n 次方根,即: 若a xn=,则x 叫做a 的n 次方根, ()*∈>N n n ,1例如:27的3次方根3273=, 27-的3次方根3273-=-,32的5次方根2325=, 32-的5次方根2325-=-.说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0<n a ;②若n 是偶数,且0>a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作:n a -;(例如:8的平方根228±=± 16的4次方根2164±=±)③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根;④()*∈>=Nn n n,100 0=;⑤式子na 叫根式,n 叫根指数,a 叫被开方数。
∴na =..4.a 的n 次方根的性质一般地,若n 是奇数,则a a n n =;若n 是偶数,则⎩⎨⎧<-≥==00a aa aa a nn.5.例题分析:例1.求下列各式的值:(1)()338- (2)()210- (3)()443π- (4)()()b a b a >-2解:略。
指数函数和对数函数练习题
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载指数函数和对数函数练习题地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容第三章指数函数和对数函数§1正整数指数函数§2指数扩充及其运算性质1.正整数指数函数函数y=ax(a>0,a≠1,x∈N+)叫作________指数函数;形如y=kax(k∈R,a>0,且a≠1)的函数称为________函数.2.分数指数幂(1)分数指数幂的定义:给定正实数a,对于任意给定的整数m,n(m,n互素),存在唯一的正实数b,使得bn=am,我们把b叫作a的 eq \f(m,n) 次幂,记作b=;(2)正分数指数幂写成根式形式:= eq \r(n,am) (a>0);(3)规定正数的负分数指数幂的意义是:=__________________(a>0,m、n∈N+,且n>1);(4)0的正分数指数幂等于____,0的负分数指数幂__________.3.有理数指数幂的运算性质(1)aman=________(a>0);(2)(am)n=________(a>0);(3)(ab)n=________(a>0,b>0).一、选择题1.下列说法中:①16的4次方根是2;② eq \r(4,16) 的运算结果是±2;③当n为大于1的奇数时, eq \r(n,a) 对任意a∈R都有意义;④当n 为大于1的偶数时, eq \r(n,a) 只有当a≥0时才有意义.其中正确的是( )A.①③④ B.②③④ C.②③ D.③④2.若2<a<3,化简 eq \r(2-a2) + eq \r(4,3-a4) 的结果是( )A.5-2a B.2a-5 C.1 D.-13.在(- eq \f(1,2) )-1、、、2-1中,最大的是( )A.(- eq \f(1,2) )-1 B. C. D.2-14.化简 eq \r(3,a\r(a)) 的结果是( )A.a B. C.a2 D.5.下列各式成立的是( )A. eq \r(3,m2+n2) = B.( eq \f(b,a) )2=C. eq \r(6,-32) =D. eq \r(\r(3,4)) =6.下列结论中,正确的个数是( )①当a<0时,=a3;② eq \r(n,an) =|a|(n>0);③函数y=-(3x-7)0的定义域是(2,+∞);④若100a=5,10b=2,则2a+b=1.A.0 B.1C.2 D.3二、填空题7. eq \r(6\f(1,4)) - eq \r(3,3\f(3,8)) + eq \r(3,0.125) 的值为________.8.若a>0,且ax=3,ay=5,则=________.9.若x>0,则(2+)(2-)-4·(x-)=________.三、解答题10.(1)化简: eq \r(3,xy2·\r(xy-1)) · eq \r(xy) ·(xy)-1(xy≠0);(2)计算:+ eq \f(-40,\r(2)) + eq \f(1,\r(2)-1) - eq \r(1-\r(5)0) ·.11.设-3<x<3,求 eq \r(x2-2x+1) - eq \r(x2+6x+9) 的值.12.化简:÷(1-2 eq \r(3,\f(b,a)) )× eq \r(3,a) .13.若x>0,y>0,且x- eq \r(xy) -2y=0,求 eq \f(2x-\r(xy),y +2\r(xy)) 的值.§3指数函数(一)1.指数函数的概念一般地,________________叫做指数函数,其中x是自变量,函数的定义域是____.2.指数函数y=ax(a>0,且a≠1)的图像和性质一、选择题1.下列以x为自变量的函数中,是指数函数的是( )A.y=(-4)x B.y=πxC.y=-4x D.y=ax+2(a>0且a≠1) 2.函数f(x)=(a2-3a+3)ax是指数函数,则有( )A.a=1或a=2 B.a=1C.a=2 D.a>0且a≠13.函数y=a|x|(a>1)的图像是( )4.已知f(x)为R上的奇函数,当x<0时,f(x)=3x,那么f(2)的值为( )A.-9 B. eq \f(1,9)C.- eq \f(1,9) D.95.如图是指数函数①y=ax;②y=bx;③y=cx;④y=dx的图像,则a、b、c、d与1的大小关系是( )A.a<b<1<c<dB.b<a<1<d<cC.1<a<b<c<dD.a<b<1<d<c6.函数y=( eq \f(1,2) )x-2的图像必过( )A.第一、二、三象限 B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限二、填空题7.函数f(x)=ax的图像经过点(2,4),则f(-3)的值为________.8.若函数y=ax-(b-1)(a>0,a≠1)的图像不经过第二象限,则a,b必满足条件________.9.函数y=8-23-x(x≥0)的值域是________.三、解答题10.比较下列各组数中两个值的大小:(1)0.2-1.5和0.2-1.7;(2)和;(3)2-1.5和30.2.11.2000年10月18日,美国某城市的日报以醒目标题刊登了一条消息:“市政委员会今天宣布:本市垃圾的体积达到50 000 m3”,副标题是:“垃圾的体积每三年增加一倍”.如果把3年作为垃圾体积加倍的周期,请你根据下面关于垃圾的体积V(m3)与垃圾体积的加倍的周期(3年)数n的关系的表格,回答下列问题.(1)设想城市垃圾的体积每3年继续加倍,问24年后该市垃圾的体积是多少?(2)根据报纸所述的信息,你估计3年前垃圾的体积是多少?(3)如果n=-2,这时的n,V表示什么信息?(4)写出n与V的函数关系式,并画出函数图像(横轴取n轴).(5)曲线可能与横轴相交吗?为什么?能力提升12.定义运算a⊕b= eq \b\lc\{\rc\(\a\vs4\al\co1(a a≤b,b a>b)) ,则函数f(x)=1⊕2x的图像是( )13.定义在区间(0,+∞)上的函数f(x)满足对任意的实数x,y都有f(xy)=yf(x).(1)求f(1)的值;(2)若f( eq \f(1,2) )>0,解不等式f(ax)>0.(其中字母a为常数).§3指数函数(二)1.下列一定是指数函数的是( )A.y=-3x B.y=xx(x>0,且x≠1)C.y=(a-2)x(a>3) D.y=(1- eq \r(2) )x 2.指数函数y=ax与y=bx的图像如图,则( )A.a<0,b<0 B.a<0,b>0C.0<a<1,b>1 D.0<a<1,0<b<13.函数y=πx的值域是( )A.(0,+∞) B.[0,+∞)C.R D.(-∞,0)4.若( eq \f(1,2) )2a+1<( eq \f(1,2) )3-2a,则实数a的取值范围是( )A.(1,+∞) B.( eq \f(1,2) ,+∞) C.(-∞,1) D.(-∞, eq \f(1,2) ) 5.设 eq \f(1,3) <( eq \f(1,3) )b<( eq \f(1,3) )a<1,则( ) A.aa<ab<ba B.aa<ba<abC.ab<aa<ba D.ab<ba<aa6.若指数函数f(x)=(a+1)x是R上的减函数,那么a的取值范围为( )A.a<2 B.a>2C.-1<a<0 D.0<a<1一、选择题1.设P={y|y=x2,x∈R},Q={y|y=2x,x∈R},则( )A.QP B.QPC.P∩Q={2,4} D.P∩Q={(2,4)}2.函数y= eq \r(16-4x) 的值域是( )A.[0,+∞) B.[0,4] C.[0,4) D.(0,4)3.函数y=ax在[0,1]上的最大值与最小值的和为3,则函数y=2ax-1在[0,1]上的最大值是( )A.6 B.1 C.3 D. eq\f(3,2)4.若函数f(x)=3x+3-x与g(x)=3x-3-x的定义域均为R,则( ) A.f(x)与g(x)均为偶函数 B.f(x)为偶函数,g(x)为奇函数C.f(x)与g(x)均为奇函数 D.f(x)为奇函数,g(x)为偶函数5.函数y=f(x)的图像与函数g(x)=ex+2的图像关于原点对称,则f(x)的表达式为( )A.f(x)=-ex-2 B.f(x)=-e-x+2C.f(x)=-e-x-2 D.f(x)=e-x+26.已知a=,b=,c=,则a,b,c三个数的大小关系是( )A.c<a<b B.c<b<aC.a<b<c D.b<a<c二、填空题7.春天来了,某池塘中的荷花枝繁叶茂,已知每一天新长出荷叶覆盖水面面积是前一天的2倍,若荷叶20天可以完全长满池塘水面,当荷叶刚好覆盖水面面积一半时,荷叶已生长了________天.8.已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=1-2-x,则不等式f(x)<- eq \f(1,2) 的解集是________________.9.函数y=的单调递增区间是________.三、解答题10.(1)设f(x)=2u,u=g(x),g(x)是R上的单调增函数,试判断f(x)的单调性;(2)求函数y=的单调区间.11.函数f(x)=4x-2x+1+3的定义域为[- eq \f(1,2) , eq\f(1,2) ].(1)设t=2x,求t的取值范围;(2)求函数f(x)的值域.能力提升12.函数y=2x-x2的图像大致是( )13.已知函数f(x)= eq \f(2x-1,2x+1) .(1)求f[f(0)+4]的值;(2)求证:f(x)在R上是增函数;(3)解不等式:0<f(x-2)< eq \f(15,17) .习题课1.下列函数中,指数函数的个数是( )①y=2·3x;②y=3x+1;③y=3x;④y=x3.A.0 B.1 C.2 D.32.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)等于( )A.-3 B.-1 C.1 D.33.对于每一个实数x,f(x)是y=2x与y=-x+1这两个函数中的较小者,则f(x)的最大值是( )A.1 B.0C.-1 D.无最大值4.将 eq \r(2\r(2)) 化成指数式为________.5.已知a=40.2,b=80.1,c=( eq \f(1,2) )-0.5,则a,b,c的大小顺序为________.6.已知+=3,求x+ eq \f(1,x) 的值.一、选择题1.的值为( )A. eq \r(2) B.- eq \r(2) C. eq\f(\r(2),2) D.- eq \f(\r(2),2)2.化简 eq \r(3,a-b3) + eq \r(a-2b2) 的结果是( ) A.3b-2a B.2a-3bC.b或2a-3b D.b3.若0<x<1,则2x,( eq \f(1,2) )x,(0.2)x之间的大小关系是( ) A.2x<(0.2)x<( eq \f(1,2) )x B.2x<( eq\f(1,2) )x<(0.2)xC.( eq \f(1,2) )x<(0.2)x<2xD.(0.2)x<( eq \f(1,2) )x<2x4.若函数则f(-3)的值为( )A. eq \f(1,8)B. eq\f(1,2)C.2 D.85.函数f(x)=ax-b的图像如图所示,其中a,b均为常数,则下列结论正确的是( )A.a>1,b>0B.a>1,b<0C.0<a<1,b>0D.0<a<1,b<06.函数f(x)= eq \f(4x+1,2x) 的图像( )A.关于原点对称B.关于直线y=x对称C.关于x轴对称D.关于y轴对称二、填空题7.计算:-(- eq \f(1,4) )0+160.75+=________________.8.已知10m=4,10n=9,则=________.9.函数y=1-3x(x∈[-1,2])的值域是________.三、解答题10.比较下列各组中两个数的大小:(1)0.63.5和0.63.7;(2)( eq \r(2) )-1.2和( eq \r(2) )-1.4;(3)和;(4)π-2和( eq \f(1,3) )-1.311.函数f(x)=ax(a>0,且a≠1)在区间[1,2]上的最大值比最小值大 eq \f(a,2) ,求a的值.能力提升12.已知f(x)= eq \f(a,a2-1) (ax-a-x)(a>0且a≠1),讨论f(x)的单调性.13.根据函数y=|2x-1|的图像,判断当实数m为何值时,方程|2x-1|=m无解?有一解?有两解?§4对数(一)1.对数的概念如果ab=N(a>0,且a≠1),那么数b叫做______________,记作__________,其中a叫做__________,N叫做________.2.常用对数与自然对数通常将以10为底的对数叫做__________,以e为底的对数叫做__________,log10N可简记为________,logeN简记为________.3.对数与指数的关系若a>0,且a≠1,则ax=N⇔logaN=____.对数恒等式:=____;logaax=____(a>0,且a≠1).4.对数的性质(1)1的对数为____;(2)底的对数为____;(3)零和负数________.一、选择题1.有下列说法:①零和负数没有对数;②任何一个指数式都可以化成对数式;③以10为底的对数叫做常用对数;④以e为底的对数叫做自然对数.其中正确命题的个数为( )A.1 B.2C.3 D.42.有以下四个结论:①lg(lg10)=0;②ln(ln e)=0;③若10=lg x,则x=100;④若e=ln x,则x=e2.其中正确的是( )A.①③ B.②④C.①② D.③④3.在b=log(a-2)(5-a)中,实数a的取值范围是( )A.a>5或a<2 B.2<a<5 C.2<a<3或3<a<5 D.3<a<44.方程= eq \f(1,4) 的解是( )A.x= eq \f(1,9) B.x= eq\f(\r(3),3)C.x= eq \r(3) D.x=95.若loga eq \r(5,b) =c,则下列关系式中正确的是( )A.b=a5c B.b5=acC.b=5ac D.b=c5a6.的值为( )A.6 B. eq \f(7,2)C.8 D. eq \f(3,7)二、填空题7.已知log7[log3(log2x)]=0,那么=________.8.若log2(logx9)=1,则x=________.9.已知lg a=2.431 0,lg b=1.431 0,则 eq \f(b,a) =________.三、解答题10.(1)将下列指数式写成对数式:①10-3= eq \f(1,1 000) ;②0.53=0.125;③( eq \r(2) -1)-1= eq \r(2) +1.(2)将下列对数式写成指数式:①log26=2.585 0;②log30.8=-0.203 1;③lg 3=0.477 1.11.已知logax=4,logay=5,求A=的值.能力提升12.若loga3=m,loga5=n,则a2m+n的值是( )A.15 B.75C.45 D.22513.(1)先将下列式子改写成指数式,再求各式中x的值:①log2x=- eq \f(2,5) ;②logx3=- eq \f(1,3) .(2)已知6a=8,试用a表示下列各式:①log68;②log62;③log26.§4对数(二)1.对数的运算性质如果a>0,且a≠1,M>0,N>0,则:(1)loga(MN)=________________;(2)loga eq \f(M,N) =________;(3)logaMn=__________(n∈R).2.对数换底公式logbN= eq \f(logaN,logab) (a,b>0,a,b≠1,N>0);特别地:logab·logba=____(a>0,且a≠1,b>0,且b≠1).一、选择题1.下列式子中成立的是(假定各式均有意义)( )A.logax·logay=loga(x+y) B.(logax)n=nlogaxC. eq \f(logax,n) =loga eq \r(n,x)D. eq \f(logax,logay) =logax-logay2.计算:log916·log881的值为( )A.18 B. eq \f(1,18) C. eq \f(8,3) D. eq \f(3,8)3.若log5 eq \f(1,3) ·log36·log6x=2,则x等于( )A.9 B. eq \f(1,9) C.25D. eq \f(1,25)4.已知3a=5b=A,若 eq \f(1,a) + eq \f(1,b) =2,则A等于( )A.15 B. eq \r(15) C.± eq \r(15)D.2255.已知log89=a,log25=b,则lg 3等于( )A. eq \f(a,b-1)B. eq \f(3,2b-1)C. eq\f(3a,2b+1) D. eq \f(3a-1,2b)6.若lg a,lg b是方程2x2-4x+1=0的两个根,则(lg eq\f(a,b) )2的值等于( )A.2 B. eq \f(1,2) C.4 D. eq\f(1,4)二、填空题7.2log510+log50.25+( eq \r(3,25) - eq \r(125) )÷ eq\r(4,25) =______________.8.(lg 5)2+lg 2·lg 50=________.9.2008年5月12日,四川汶川发生里氏8.0级特大地震,给人民的生命财产造成了巨大的损失.里氏地震的等级最早是在1935年由美国加州理工学院的地震学家里特判定的.它与震源中心释放的能量(热能和动能)大小有关.震级M= eq \f(2,3) lg E-3.2,其中E(焦耳)为以地震波的形式释放出的能量.如果里氏6.0级地震释放的能量相当于1颗美国在二战时投放在广岛的原子弹的能量,那么汶川大地震所释放的能量相当于________颗广岛原子弹.三、解答题10.(1)计算:lg eq \f(1,2) -lg eq \f(5,8) +lg 12.5-log89·log34;(2)已知3a=4b=36,求 eq \f(2,a) + eq \f(1,b) 的值.11.若a、b是方程2(lg x)2-lg x4+1=0的两个实根,求lg(ab)·(logab+logba)的值.能力提升12.下列给出了x与10x的七组近似对应值:假设在上表的各组对应值中,有且仅有一组是错误的,它是第________组.( )A.二 B.四C.五 D.七13.一种放射性物质不断变化为其他物质,每经过一年的剩余质量约是原来的75%,估计约经过多少年,该物质的剩余量是原来的 eq \f(1,3) ?(结果保留1位有效数字)(lg 2≈0.301 0,lg 3≈0.477 1)§5对数函数(一)1.对数函数的定义:一般地,我们把______________________________叫做对数函数,其中x是自变量,函数的定义域是________.________为常用对数函数;y=________为自然对数函数.2.对数函数的图像与性质3.反函数对数函数y=logax(a>0且a≠1)和指数函数____________________互为反函数.一、选择题1.函数y= eq \r(log2x-2) 的定义域是( )A.(3,+∞) B.[3,+∞) C.(4,+∞) D.[4,+∞)2.设集合M={y|y=( eq \f(1,2) )x,x∈[0,+∞)},N={y|y=log2x,x∈(0,1]},则集合M∪N是( )A.(-∞,0)∪[1,+∞) B.[0,+∞)C.(-∞,1] D.(-∞,0)∪(0,1)3.已知函数f(x)=log2(x+1),若f(α)=1,则α等于( )A.0 B.1 C.2 D.3 4.函数f(x)=|log3x|的图像是( )5.已知对数函数f(x)=logax(a>0,a≠1),且过点(9,2),f(x)的反函数记为y=g(x),则g(x)的解析式是( )A.g(x)=4x B.g(x)=2x C.g(x)=9x D.g(x)=3x6.若loga eq \f(2,3) <1,则a的取值范围是( )A.(0, eq \f(2,3) ) B.( eq \f(2,3) ,+∞) C.( eq \f(2,3) ,1) D.(0, eq \f(2,3) )∪(1,+∞)二、填空题7.如果函数f(x)=(3-a)x,g(x)=logax的增减性相同,则a的取值范围是________.8.已知函数y=loga(x-3)-1的图像恒过定点P,则点P的坐标是________.9.给出函数,则f(log23)=________.三、解答题10.求下列函数的定义域与值域:(1)y=log2(x-2);(2)y=log4(x2+8).11.已知函数f(x)=loga(1+x),g(x)=loga(1-x),(a>0,且a≠1).(1)设a=2,函数f(x)的定义域为[3,63],求函数f(x)的最值.(2)求使f(x)-g(x)>0的x的取值范围.能力提升12.已知图中曲线C1,C2,C3,C4分别是函数y=x,y=x,y=x,y=x 的图像,则a1,a2,a3,a4的大小关系是( )A.a4<a3<a2<a1 B.a3<a4<a1<a2 C.a2<a1<a3<a4D.a3<a4<a2<a113.若不等式x2-logmx<0在(0, eq \f(1,2) )内恒成立,求实数m的取值范围.§5对数函数(二)1.函数y=logax的图像如图所示,则实数a的可能取值是( )A.5 B. eq \f(1,5)C. eq \f(1,e)D. eq \f(1,2)2.下列各组函数中,表示同一函数的是( )A.y= eq \r(x2) 和y=( eq \r(x) )2B.|y|=|x|和y3=x3C.y=logax2和y=2logaxD.y=x和y=logaax3.若函数y=f(x)的定义域是[2,4],则y=f(x)的定义域是( )A.[ eq \f(1,2) ,1] B.[4,16]C.[ eq \f(1,16) , eq \f(1,4) ] D.[2,4]4.函数f(x)=log2(3x+1)的值域为( )A.(0,+∞) B.[0,+∞)C.(1,+∞) D.[1,+∞)5.函数f(x)=loga(x+b)(a>0且a≠1)的图像经过(-1,0)和(0,1)两点,则f(2)=________.6.函数y=loga(x-2)+1(a>0且a≠1)恒过定点________________________________________________________________________.一、选择题1.设a=log54,b=(log53)2,c=log45,则( )A.a<c<b B.b<c<aC.a<b<c D.b<a<c2.已知函数y=f(2x)的定义域为[-1,1],则函数y=f(log2x)的定义域为( )A.[-1,1] B.[ eq \f(1,2) ,2]C.[1,2] D.[ eq \r(2) ,4]3.函数f(x)=loga|x|(a>0且a≠1)且f(8)=3,则有( )A.f(2)>f(-2) B.f(1)>f(2)C.f(-3)>f(-2) D.f(-3)>f(-4)4.函数f(x)=ax+loga(x+1)在[0,1]上的最大值与最小值之和为a,则a的值为( )A. eq \f(1,4)B. eq \f(1,2) C.2 D.45.已知函数f(x)=lg eq \f(1-x,1+x) ,若f(a)=b,则f(-a)等于( )A.b B.-bC. eq \f(1,b) D.- eq \f(1,b)6.函数y=3x(-1≤x<0)的反函数是( )A.y=x(x>0) B.y=log3x(x>0)C.y=log3x( eq \f(1,3) ≤x<1) D.y=x( eq\f(1,3) ≤x<1)二、填空题7.函数f(x)=lg(2x-b),若x≥1时,f(x)≥0恒成立,则b应满足的条件是________.8.函数y=logax当x>2时恒有|y|>1,则a的取值范围是________.9.若loga2<2,则实数a的取值范围是______________.三、解答题10.已知f(x)=loga(3-ax)在x∈[0,2]上单调递减,求a的取值范围.11.已知函数f(x)= eq \f(1-ax,x-1) 的图像关于原点对称,其中a 为常数.(1)求a的值;(2)若当x∈(1,+∞)时,f(x)+(x-1)<m恒成立.求实数m的取值范围.能力提升12.若函数f(x)=loga(x2-ax+ eq \f(1,2) )有最小值,则实数a的取值范围是( )A.(0,1) B.(0,1)∪(1, eq \r(2) ) C.(1, eq \r(2) ) D.[ eq \r(2) ,+∞)13.已知logm4<logn4,比较m与n的大小.习题课1.已知m=0.95.1,n=5.10.9,p=log0.95.1,则这三个数的大小关系是( )A.m<n<p B.m<p<nC.p<m<n D.p<n<m2.已知0<a<1,logam<logan<0,则( )A.1<n<m B.1<m<n C.m<n<1 D.n<m<13.函数y= eq \r(x-1) + eq \f(1,lg2-x) 的定义域是( ) A.(1,2) B.[1,4]C.[1,2) D.(1,2]4.给定函数①y=,②y=(x+1),③y=|x-1|,④y=2x+1,其中在区间(0,1)上单调递减的函数序号是( )A.①② B.②③ C.③④ D.①④5.设函数f(x)=loga|x|,则f(a+1)与f(2)的大小关系是________________.6.若log32=a,则log38-2log36=________.一、选择题1.下列不等号连接错误的一组是( )A.log0.52.7>log0.52.8 B.log34>log65 C.log34>log56 D.logπe>logeπ2.若log37·log29·log49m=log4 eq \f(1,2) ,则m等于( )A. eq \f(1,4)B. eq \f(\r(2),2)C. eq \r(2) D.43.设函数若f(3)=2,f(-2)=0,则b等于( )A.0 B.-1 C.1 D.24.若函数f(x)=loga(2x2+x)(a>0,a≠1)在区间(0, eq \f(1,2) )内恒有f(x)>0,则f(x)的单调递增区间为( )A.(-∞,- eq \f(1,4) ) B.(- eq \f(1,4) ,+∞) C.(0,+∞) D.(-∞,- eq \f(1,2) )5.若函数若f(a)>f(-a),则实数a的取值范围是( )A.(-1,0)∪(0,1) B.(-∞,-1)∪(1,+∞)C.(-1,0)∪(1,+∞) D.(-∞,-1)∪(0,1)6.已知f(x)是定义在R上的奇函数,f(x)在(0,+∞)上是增函数,且f( eq \f(1,3) )=0,则不等式f(x)<0的解集为( )A.(0, eq \f(1,2) ) B.( eq\f(1,2) ,+∞)C.( eq \f(1,2) ,1)∪(2,+∞) D.(0, eq\f(1,2) )∪(2,+∞)二、填空题7.已知loga(ab)= eq \f(1,p) ,则logab eq \f(a,b) =________.8.若log236=a,log210=b,则log215=________.9.设函数若f(a)= eq \f(1,8) ,则f(a+6)=________.三、解答题10.已知集合A={x|x<-2或x>3},B={x|log4(x+a)<1},若A∩B=∅,求实数a的取值范围.11.抽气机每次抽出容器内空气的60%,要使容器内的空气少于原来的0.1%,则至少要抽几次?(lg 2≈0.301 0)能力提升12.设a>0,a≠1,函数f(x)=loga(x2-2x+3)有最小值,求不等式loga(x-1)>0的解集.13.已知函数f(x)=loga(1+x),其中a>1.(1)比较 eq \f(1,2) [f(0)+f(1)]与f( eq \f(1,2) )的大小;(2)探索 eq \f(1,2) [f(x1-1)+f(x2-1)]≤f( eq \f(x1+x2,2) -1)对任意x1>0,x2>0恒成立.§6指数函数、幂函数、对数函数增长的比较1.当a>1时,指数函数y=ax是________,并且当a越大时,其函数值增长越____.2.当a>1时,对数函数y=logax(x>0)是________,并且当a越小时,其函数值________.3.当x>0,n>1时,幂函数y=xn是________,并且当x>1时,n越大,其函数值__________.一、选择题1.今有一组数据如下:现准备了如下四个答案,哪个函数最接近这组数据( )A.v=log2t B.v=t C.v= eq \f(t2-1,2) D.v=2t-22.从山顶到山下的招待所的距离为20千米.某人从山顶以4千米/时的速度到山下的招待所,他与招待所的距离s(千米)与时间t(小时)的函数关系用图像表示为( )3.某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y与时间x的关系,可选用( )A.一次函数 B.二次函数 C.指数型函数 D.对数型函数4.某自行车存车处在某天的存车量为4 000辆次,存车费为:变速车0.3元/辆次,普通车0.2元/辆次.若当天普通车存车数为x辆次,存车费总收入为y元,则y关于x的函数关系式为( )A.y=0.2x(0≤x≤4 000) B.y=0.5x(0≤x≤4 000)C.y=-0.1x+1 200(0≤x≤4 000) D.y=0.1x+1 200(0≤x≤4000)5.已知f(x)=x2-bx+c且f(0)=3,f(1+x)=f(1-x),则有( )A.f(bx)≥f(cx) B.f(bx)≤f(cx) C.f(bx)<f(cx)D.f(bx),f(cx)大小不定6.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为l1=5.06x-0.15x2和l2=2x,其中x为销售量(单位:辆).若该公司在这两地共销售15辆车,则可能获得的最大利润是( )A.45.606 B.45.6 C.45.56 D.45.51二、填空题7.一种专门侵占内存的计算机病毒,开机时占据内存2KB,然后每3分钟自身复制一次,复制后所占内存是原来的2倍,那么开机后经过________分钟,该病毒占据64MB内存(1MB=210KB).8.近几年由于北京房价的上涨,引起了二手房市场交易的火爆.房子几乎没有变化,但价格却上涨了,小张在2010年以80万元的价格购得一套新房子,假设这10年来价格年膨胀率不变,那么到2020年,这所房子的价格y(万元)与价格年膨胀率x之间的函数关系式是________.三、解答题9.用模型f(x)=ax+b来描述某企业每季度的利润f(x)(亿元)和生产成本投入x(亿元)的关系.统计表明,当每季度投入1(亿元)时利润y1=1(亿元),当每季度投入2(亿元)时利润y2=2(亿元),当每季度投入3(亿元)时利润y3=2(亿元).又定义:当f(x)使[f(1)-y1]2+[f(2)-y2]2+[f(3)-y3]2的数值最小时为最佳模型.(1)当b= eq \f(2,3) ,求相应的a使f(x)=ax+b成为最佳模型;(2)根据题(1)得到的最佳模型,请预测每季度投入4(亿元)时利润y4(亿元)的值.10.根据市场调查,某种商品在最近的40天内的价格f(t)与时间t满足关系f(t)=,销售量g(t)与时间t满足关系g(t)=- eq \f(1,3) t+ eq\f(43,3) (0≤t≤40,t∈N).求这种商品的日销售额(销售量与价格之积)的最大值.11.某商品在近30天内每件的销售价格p(元)与时间t(天)的函数关系是p=该商品的日销售量Q(件)与时间t(天)的函数关系式为Q=-t+40(0<t≤30,t∈N),求这种商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?能力提升12.某种商品进价每个80元,零售价每个100元,为了促销拟采取买一个这种商品,赠送一个小礼品的办法,实践表明:礼品价值为1元时,销售量增加10%,且在一定范围内,礼品价值为(n+1)元时,比礼品价值为n元(n∈N+)时的销售量增加10%.(1)写出礼品价值为n元时,利润yn(元)与n的函数关系式;(2)请你设计礼品价值,以使商店获得最大利润.13.已知桶1与桶2通过水管相连如图所示,开始时桶1中有a L水,t min后剩余的水符合指数衰减函数y1=ae-nt,那么桶2中的水就是y2=a-ae-nt,假定5 min后,桶1中的水与桶2中的水相等,那么再过多长时间桶1中的水只有 eq \f(a,4) L?第三章章末检测一、选择题(本大题共12小题,每小题5分,共60分)1.已知函数f(x)=lg(4-x)的定义域为M,函数g(x)= eq \r(0.5x-4) 的值域为N,则M∩N等于( )A.M B.NC.[0,4) D.[0,+∞)2.函数y=3|x|-1的定义域为[-1,2],则函数的值域为( )A.[2,8] B.[0,8]C.[1,8] D.[-1,8]3.已知f(3x)=log2 eq \r(\f(9x+1,2)) ,则f(1)的值为( )A.1 B.2 C.-1 D. eq\f(1,2)4.等于( )A.7 B.10 C.6 D. eq\f(9,2)5.若100a=5,10b=2,则2a+b等于( )A.0 B.1C.2 D.36.比较、23.1、的大小关系是( )A.23.1<< B.<23.1<C.<<23.1 D.<<23.17.式子 eq \f(log89,log23) 的值为( )A. eq \f(2,3)B. eq \f(3,2)C.2 D.38.已知ab>0,下面四个等式中:①lg(ab)=lg a+lg b;②lg eq \f(a,b) =lg a-lg b;③ eq \f(1,2) lg( eq \f(a,b) )2=lg eq \f(a,b) ;④lg(ab)= eq \f(1,logab10) .其中正确的个数为( )A.0 B.1 C.2 D.39.为了得到函数y=lg eq \f(x+3,10) 的图像,只需把函数y=lg x 的图像上所有的点( )A.向左平移3个单位长度,再向上平移1个单位长度B.向右平移3个单位长度,再向上平移1个单位长度C.向左平移3个单位长度,再向下平移1个单位长度D.向右平移3个单位长度,再向下平移1个单位长度10.函数y=2x与y=x2的图像的交点个数是( )A.0 B.1C.2 D.311.设偶函数f(x)满足f(x)=2x-4(x≥0),则{x|f(x-2)>0}等于( ) A.{x|x<-2或x>4} B.{x|x<0或x>4}C.{x|x<0或x>6} D.{x|x<-2或x>2}12.函数f(x)=a|x+1|(a>0,a≠1)的值域为[1,+∞),则f(-4)与f(1)的关系是( )A.f(-4)>f(1) B.f(-4)=f(1)C.f(-4)<f(1) D.不能确定二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数f(x)= eq \b\lc\{\rc\ (\a\vs4\al\co1(\f(1,2)x,x≥4f x+1, x<4)) ,则f(2+log23)的值为______.14.函数f(x)=loga eq \f(3-x,3+x) (a>0且a≠1),f(2)=3,则f(-2)的值为________.15.函数y=(x2-3x+2)的单调递增区间为______________.16.设0≤x≤2,则函数y=-3·2x+5的最大值是________,最小值是________.三、解答题(本大题共6小题,共70分)17.(10分)已知指数函数f(x)=ax(a>0且a≠1).(1)求f(x)的反函数g(x)的解析式;(2)解不等式:g(x)≤loga(2-3x).18.(12分)已知函数f(x)=2a·4x-2x-1.(1)当a=1时,求函数f(x)在x∈[-3,0]的值域;(2)若关于x的方程f(x)=0有解,求a的取值范围.19.(12分)已知x>1且x≠ eq \f(4,3) ,f(x)=1+logx3,g(x)=2logx2,试比较f(x)与g(x)的大小.20.(12分)设函数f(x)=log2(4x)·log2(2x), eq \f(1,4) ≤x≤4,(1)若t=log2x,求t的取值范围;(2)求f(x)的最值,并写出最值时对应的x的值.21.(12分)已知f(x)=loga eq \f(1+x,1-x) (a>0,a≠1).(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明;(3)求使f(x)>0的x的取值范围.22.(12分)已知定义域为R的函数f(x)= eq \f(-2x+b,2x+1+2) 是奇函数.(1)求b的值;(2)判断函数f(x)的单调性;(3)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.。
指数函数与对数函数专项学习的学习的练习含标准标准答案.doc
指数函数与对数函数专项练习3 52 2 53 252a ( ) ,b ( ),c ( )1 设 555 ,则 a , b , c 的大小关系是 [](A ) a > c > b( B )a > b > c(C ) c > a > b(D ) b > c > alog b x2 函数 y=ax2+ bx||≠ 0, | a | ≠ | b |) 在同一直角坐标系中的图像可能与 y=a(ab是[ ]1 123. 设 255bm ,且 a b,则m[ ](A )10( B ) 10( C )20( D ) 10014. 设 a=log 32,b=In2,c=5 2A. a<b<cB. b<c<a, 则 []C. c<a<b D . c<b<a5 . 已知函数 f ( x ) | lg x |. 若 a b 且,f ( a )f (b ) ,则 a b的取值范围是 [ ](A)(1,) (B)[1,) (C) (2,)(D)[2,)6. 函数fx log 2 3x1的值域为 [ ]A.0,B.0,C.1,1,D.7. 下列四类函数中, 个有性质 “对任意的 x>0,y>0,函数 f(x) 满足 f ( x + y )= f ( x )f ( y )”的是[](A )幂函数 ( B )对数函数(C )指数函数( D )余弦函数8.函数 y=log2x 的图象大致是 []PS(A)(B) (C)(D), (25,则8. 设alog log 5 3),c log 4 [ ] 5 4 b(A)a<c<b (B) b<c<a (C) a<b<c(D) b<a<c9. 已知函数 f (x)log 1 (x 1), 若 f ( )1,=[ ](A)0(B)1(C)2(D)310. 函数 y 16 4x的值域是[ ](A )[0,)(B) [0, 4](C)[0, 4)(D)(0, 4)11. 若 a log 3 π, b log 7 6, c log 2 0.8 ,则()A . a b cB . b a cC . c a bD . b c a12. 下面不等式成立的是 ( )A . log 3 2 log 2 3 log 2 5B. log 3 2 log 2 5log 2 3C . log 2 3 log 3 2 log 2 5D. log 2 3 log 2 5log 3 213. 若 0x y 1 ,则 ( )A . 3y3xB . log x 3 log y 3C . log 4 x log 4 yD. ( 1) x( 1) y1log a 5 , z4414. 已知 0a 1 , x log a 2 log a 3 , ylog a 21 log a 3 ,则2( )A . x y zB . z y xC . y x zD . z x y15. 若 x(e 1,1), a ln x , b 2ln x , c ln 3 x ,则()A . a < b < cB . c < a < bC . b <a < cD . b < c < a16. 已知函数f ( x ) log (2 xb 1)( a 0 1)的图象如图所示,则 a ,b 满足的关系是a, a yxO1()A.0 a C.0 b 11b 1 B.0 b a 1 1a 1 D.0 a1b 1 118.已知函数y a2 x2a x1(a1)在区间[-1,1]上的最大值是14,求a的值.19. 已知f ( x)2m 是奇函数,求常数m的值;3x 120. 已知函数 f(x) = a x 1 (a>0 且 a≠ 1).a x 1(1) 求 f(x) 的定义域;(2) 讨论 f(x) 的奇偶性; (3) 讨论 f(x) 的单调性 .指数函数与对数函数专项练习参考答案1) A2y ( 2 )x5在 x 0 时是减函数, 所以cb 。
指数函数和对数函数综合题目与答案
指数函数、幂函数、对数函数增长的比较,指数函数和对数函数综合指数函数、幂函数、对数函数增长的比较【要点链接】1.指数函数、幂函数、对数函数增长的比较:对数函数增长比较缓慢,指数函数增长的速度最快.2.要能熟练掌握指数函数、幂函数、对数函数的图像,并能利用它们的图像的增减情况解决 一些问题. 【随堂练习】 一、选择题1.下列函数中随x 的增大而增大速度最快的是( )A .1100xy e =B .100ln y x =C .100y x =D .1002x y =⨯ 2.若1122a a -<,则a 的取值范围是( )A .1a ≥B .0a >C .01a <<D .01a ≤≤3.xx f 2)(=,xx g 3)(=,xx h )21()(=,当x ∈(-)0,∞时,它们的函数值的大小关系是( )A .)()()(x f x g x h <<B .)()()(x h x f x g <<C .)()()(x f x h x g <<D .)()()(x h x g x f <<4.若b x <<1,2)(log x a b =,x c a log =,则a 、b 、c 的关系是( )A .c b a <<B .b c a <<C .a b c <<D .b a c <<二、填空题5.函数xe y x x y x y x y ====,ln ,,32在区间(1,)+∞增长较快的一个是__________. 6.若a >0,b >0,ab >1,a 21log =ln2,则log a b 与a 21log 的关系是_________________.7.函数2x y =与xy 2=的图象的交点的个数为____________.三、解答题8.比较下列各数的大小: 52)2(-、21)23(-、3)31(-、54)32(-.9.设方程222x x =-在(0,1)内的实数根为m ,求证当x m >时,222x x >-.答案1.A 指数增长最快.2.C 在同一坐标系内画出幂函数21x y =及21-=xy 的图象,注意定义域,可知10<<a .3.B 在同一坐标系内画出xx f 2)(=,xx g 3)(=,xx h )21()(=的图象,观察图象可知.4.D b x <<1,则0log log 1b b x b <<=,则10<<a ,则01log log =<a a x , 可知b a c <<<<10.5.xy e = 指数增长最快.6.log a b <a 21log 由a 21log =ln20>,则10<<a ,而ab >1,则1>b ,则0log <b a ,而0log 21>a ,则log a b <a 21log .7.3 在同一坐标系内作出函数2x y =与xy 2=的图象,显然在0<x 时有一交点, 又2=x 时,2222=,3=x 时,3223>,4=x 时,4224=,而随着x 的增大,指数函数增长的速度更快了,则知共有3个不同的交点.8.解: 52)2(-=522、21)23(-=21)32(、3)31(-=-271、54)32(-=54)32(.∵52)2(->1、3)31(-<0,而21)23(-、54)32(-均在0到1之间.考查指数函数y =x)32(在实数集上递减,所以21)32(>54)32(.则52)2(->21)23(->54)32(->3)31(-.9.证明:设函数2()22x f x x =+-,方程222x x =-在(0,1)内的实数根为m , 知()f x 在(0,1)有解x m =,则()0f m =.用定义容易证明()f x 在(0,)+∞上是增函数,所以()()0f x f m >=,即2()220x f x x =+->,所以当x m >时,222x x >-.备选题1.设7210625.0=y ,74203.0=y ,7832.0=y ,则( )A .123y y y >>B .132y y y >>C .213y y y >>D .123y y y >>1.B 74125.0=y ,74304.0=y ,而幂函数74x y =在0>x 上为增函数,则132y y y >>.2.图中曲线是对数函数y =log a x 的图象,已知a 取101,53,54,3四个值,则相应于C 1, C2, C 3,C 4的a 值依次为( )A .101,53,34,3 B .53,101,34,3C .101,53,3,34D .53,101,3,342.C 作直线1=y ,与四个函数的图象各有一个交点,从左至右的底数是逐渐增大的,则知则相应于 C 1,C 2, C 3,C 4的a 值依次为101,53,3,34.指数函数复习【要点链接】1.掌握指数的运算法则;2.熟练掌握指数函数的图像,并会灵活运用指数函数的性质,会解决一些较为复杂的 有关于指数函数复合的问题. 【随堂练习】 一、选择题1.函数a y x+=2的图象一定经过( )A .第一象限B .第二象限C .第三象限D .第四象限2.已知三个实数a ,ab a =,bc a =,其中10<<a ,则这三个数之间的大小关系是( )A .b a c <<B .a b c <<C .a c b <<D .c a b << 3.设1()()2xf x =,x ∈R ,那么()f x 是( )A .奇函数且在(0,)+∞上是增函数B .偶函数且在(0,)+∞上是增函数C .奇函数且在(0,)+∞上是减函数D .偶函数且在(0,)+∞上是减函数 4.函数121xy =-的值域是( ) A .(,1)-∞ B .(,1)(0,)-∞-+∞ C .(1,)-+∞ D .(,0)(0,)-∞+∞二、填空题5.若函数()f x =_______________.6.函数xa a a x f )33()(2+-=是指数函数,则a 的值为_________. 7.方程2|x |=2-x 的实数解有_________个.三、解答题8.已知()2xf x =,()g x 是一次函数,并且点(2,2)在函数[()]f g x 的图象上,点(2,5)在函数[()]g f x 的图象上,求()g x 的解析式.9.若函数y =1212·---xx aa 为奇函数. (1)确定a 的值;(2)求函数的定义域;(3)讨论函数的单调性.答案1.A 当0=a ,图象不过三、四象限,当1-=a ,图象不过第一象限.而由图象知函数a y x+=2的图象总经过第一象限.2.C 由10<<a ,得101=<<a a a a,则1<<b a ,所以1a a a ba>>,即a c b <<.3.D 因为函数1()()2x f x ==⎪⎩⎪⎨⎧≥)0(,2)0(,)21(<x x x x,图象如下图.由图象可知答案显然是D .4.B 令12-=xt ,02>x,则12->x,又作为分母,则1->t 且0≠t ,画出ty 1=的图象,则1->t 且0≠t 时值域是(,1)(0,)-∞-+∞. 5.(,0]-∞ 由1-2x 0≥ 得2x ≤1,则x ≤0.6.2 知1332=+-a a , 0>a 且1≠a ,解得2=a .7.2 在同一坐标系内画出y=2|x | 和 y=2-x 的图象,由图象知有两个不同交点. 8.解:∵()g x 是一次函数,可设为)0()(≠+=k b kx x g , 则[()]f g x b kx +=2,点(2,2)在函数[()]f g x 的图象上, 可得b k +=222,得12=+b k .又可得[()]g f x b k x+⋅=2,由点(2,5)在函数[()]g f x 的图象上, 可得b k +=45.由以上两式解得3,2-==b k , ∴()23g x x =-.9.解:先将函数y =1212·---x x a a 化简为y =121--x a . (1)由奇函数的定义,可得f (-x )+f (x )=0,即121---x a +121--x a =0,∴2a +xx 2121--=0,∴a =-21. (2)∵y =-21-121-x ,∴x 2-1≠0.∴函数y =-21-121-x 定义域为{x |x ≠0}.(3)当x >0时,设0<x 1<x 2,则y 1-y 2=1212-x -1211-x =)12)(12(221221---x x x x . ∵0<x 1<x 2,∴1<12x<22x.∴12x-22x<0,12x-1>0,22x-1>0.∴y 1-y 2<0,因此y =-21-121-x 在(0,+∞)上递增. 同样可以得出y =-21-121-x 在(-∞,0)上递增.备选题1.函数(1)xy a a =>在区间[0,1]上的最大值是4,则a 的值是( )A .2B .3C .4D .51.C 函数(1)xy a a =>在区间[0,1]上为增函数,则最大值是=1a 4,则4=a .2.函数y =xx a 22-(a >1)的定义域___________,值域___________. 2. {x |x ≥2,或x ≤0} {y |y ≥1}由022≥-x x ,得定义域为{x |x ≥2,或x ≤0}; 此时022≥-x x ,则值域为{y |y ≥1}.对数函数【要点链接】1.掌握对数的运算法则;2.熟练掌握对数函数的图像,并会灵活运用对数函数的性质,会解决一些较为复杂的 有关于对数函数复合的问题. 【随堂练习】 一、选择题1.4123log =x,则x 等于( ) A .91=x B .33=x C .3=x D .9=x2.函数y =lg (x-12-1)的图象关于( )A .y 轴对称B .x 轴对称C .原点对称D .直线y =x 对称3.已知log 0log log 31212>==+x x x a a a, 0<a<1,则x 1、x 2、x 3的大小关系是( )A .x 3<x 2<x 1B .x 2<x 1<x 3C .x 1<x 3<x 2D .x 2<x 3<x 14.若函数1()log ()(011a f x a a x =>≠+且)的定义域和值域都是[0,1],则a 等于( )A .12B C .2 D .2二、填空题5.函数23log 12-=-x y x 的定义域是 .6.设函数()f x 满足21()1()log 2f x f x =+⋅,则(2)f = . 7.已知3log 21=a ,31log 21=b ,21log 31=c ,则a 、b 、c 按大小关系排列为___________.三、解答题8.若)(x f 3log 1x +=, )(x g 2log 2x =,试比较)(x f 与)(x g 的大小.9.若不等式0log 2<-x x m 在(0,21)内恒成立,求实数m 的取值范围.答案1.A 2l o g 24123-==x,则2log 3-=x ,则9132==-x . 2.C y =lg (x -12-1)=xx-+11lg ,易证)()(x f x f -=-,所以为奇函数,则图象关于原点对称.3.D ∵0<a<1,∴a<1<a+1<a2,∴x 2<1<x 3<x 1.4.A 10≤≤x 时,11121≤+≤x ,要使值域也是[0,1],就有0)(≥x f ,则10<<a ,则)(x f 在[0,1]为增函数,则01log =a ,121log =a ,解得=a 12.5.2(,1)(1,)3+∞ 可知023>-x ,012>-x 且112≠-x ,解得32>x 且1≠x .6.23由已知得2log )21(1)21(2⋅+=f f ,则21)21(=f ,则x x f 2log 211)(⋅+=,则=⋅+=2log 211)2(2f 23.7.b c a <<03log 2<-=a ,13log 2>=b ,2log 3=c ,则10<<c ,那么有b c a <<.8.解:43log 4log )3(log )()(xx x g x f x x x =-=-.当10<<x 时,1430<<x ,则043log >xx ,则)()(x g x f >;当34=x 时,143=x ,则)()(x g x f =;当341<<x 时,1430<<x ,则043log <xx ,则)()(x g x f <;当34>x 时,143>x ,则043log >x x ,则)()(x g x f >.9.解:由0log 2<-x x m 得x x m log 2<.在同一坐标系中作2x y =和x y m log =的图象.要使x x m log 2<在(0,21)内恒成立, 只要x y m log =在(0,21)内的图象在2x y =的上方,于是0<m<1.∵x=21时y=x 2=41,∴只要x=21时21log m y =≥41. ∴21≤m 41,即161≤m. 又0<m<1,∴所求实数m 的取值范围161≤m<1.备选题1.下列函数中,是奇函数,又在定义域内为减函数的是( )A .1()2xy = B .xy 1=C .)(log 3x y -=D .3x y -= 1.D A 、C 是非奇非偶函数,B 是奇函数,但在定义域内不为减函数,则选D .2.10002.11=a,10000112.0=b,则=-ba 11( ) A .1 B .2 C .3 D .42.A2.11log 11000=a ,0112.0log 11000=b , 则11000log 0112.02.11log 1110001000===-b a .3.如果函数()(3)xf x a =-,()log a g x x =它们的增减性相同,则a 的取值范围是______________. 3.21<<a由03>-a 且13≠-a ,及0>a 且1≠a ,得10<<a ,或21<<a ,或32<<a .当10<<a 或32<<a 时,)(x f 与)(x g 一增一减,当21<<a 时,)(x f 与)(x g 都为增函数.同步测试题 A 组一、选择题1.已知32a=,那么33log 82log 6-用a 表示是( )A .2a -B .52a -C .23(1)a a -+ D .23a a -2.若函数)(log b x y a +=(0>a 且1≠a )的图象过两点)0,1(-和)1,0(,则 ( )A . 2,2==b a B .2,2==b aC .1,2==b aD .2,2==b a3.已知(),()log xa f x a g x x ==,(01)a a >≠且,若(3)(3)0f g ⋅< , 则()f x 与()g x 同一坐标系内的图象可能是( )4.若函数xx f 211)(+=,则)(x f 在R 上是( ) A .单调递减,无最小值 B .单调递减,有最小值 C .单调递增,无最大值 D .单调递增,有最大值5.设指数函数)1,0()(≠>=a a a x f x,则下列等式中不正确的是( )A .f (x +y )=f(x )·f (y )B .)()(y f x f y x f =-)( C .)()]([)(Q n x f nx f n∈= D .)()]([·)]([])[(+∈=N n y f x f xy f nn n6.函数f (x )=log a 1+x ,在(-1,0)上有f (x )>0,那么( )A .f (x )(- ∞,0)上是增函数B .f (x )在(-∞,0)上是减函数C .f (x )在(-∞,-1)上是增函数D .f (x )在(-∞,-1)上是减函数二、填空题7.已知函数⎩⎨⎧=x x x f 3log )(2)0()0(≤>x x ,则1[()]4f f = .8.直线x=a(a>0)与函数y=(31)x ,y=(21)x ,y=2x ,y=10x的图像依次交于A 、B 、C 、D 四点,则这四点从上到下的排列次序是 .9.已知)23(log )(221x x x f --=,则值域是 ;单调增区间是 .三、解答题10.求函数10(|1|)(≠>-+=a a a a x f xx且)最小值.11.已知函数),()(,0|,lg |)(b f a f b a x x f ><<=且如果证明:1<ab .12.已知函数()m mx x x f --=221log )(.(1)若m =1,求函数)(x f 的定义域;(2)若函数)(x f 的值域为R ,求实数m 的取值范围;(3)若函数)(x f 在区间()31,-∞-上是增函数,求实数m 的取值范围.B 组一、选择题1.已知函数y=kx 与y=12log x 图象的交点横坐标为2,则k 的值为( )A . 12- B .14 C .12 D .14-2.已知函数b a y x+=的图象不经过第一象限,则下列选项正确是( )A .2,21-==b a B .3,2-==b a C .1,21==b a D .0,3==b a3.若函数)10(log )(<<=a x x f a 在区间]2,[a a 上的最大值是最小值的3倍,则a 的值 为( )A .14 B .2 C .4 D .124.若函数()11x mf x e =+-是奇函数,则m 的值是( )A .0B .21C .1D .2二、填空题5.如图,开始时桶1中有a 升水,t 分钟后剩余的水符合指数衰减曲线1nt y ae -=,那么桶2中水就是2nty a ae -=-.假设过5分钟时桶1和桶2的水相等,则再经过______ 分钟桶1中的水只有8a .6.已知y =a log (2-ax )在[0,1]上是x 的减函数, 则a 的取值范围是__________.三、解答题7.已知函数xxa b y 22++=(a 、b 是常数且a>0,a ≠1)在区间[-23,0]上有y max =3, y min =25,试求a 和b 的值.8.设函数2221()log log (1)log ()1x f x x p x x +=+-+--.)1(>p (1)求()f x 的定义域;(2)()f x 是否存在最大值或最小值?如果存在,请把它求出来;若不存在,请说明理由.答案A 组1.A 32a=,则2log 3=a ,33log 82log 6-=+-=)2log 1(22log 3332a -. 2.B 由已知可得)1(log 0-=b a ,则2=b ,又2log log 1a a b ==,则2=a . 3.C (3)(3)0f g ⋅<,则(3)0g <,则10<<a ,则()f x 与()g x 都为减函数.4.A 121>+x,则12110<+<x,则)(x f 无最大值,也无最小值, 而显然)(x f 为减函数5.D 逐个验证可知D 不正确6.D 01<<-x 时,110<+<x ,而f (x )>0,则10<<a ,画出f (x )=log a 1+x 的图象,知f (x )在(-∞,-1)上是减函数.7.91241l o g )41(2-==f ,则913)]41([2==-f f . 8.D 、C 、B 、A 画出图象可知.9.[)+∞-,2,[)1,1-有0232>--x x ,则13<<-x ,在1-=x 时223x x --有最大值4, 令223x x t --=,则40≤<t ,则24log log 2121-=≥t ,则值域是[)+∞-,2,在[)1,1-上,223x x t --=递减,则)23(log )(221x x x f --=单调增区间是[)1,1-.10.解:当1>a 时,⎩⎨⎧<≥-=)0(,1)0(,12)(x x a x f x 画出图象,知此时1)(min =x f .当10<<a 时,⎩⎨⎧>≤-=)0(,1)0(,12)(x x a x f x 画出图象,知此时1)(min =x f .由以上讨论知函数10(|1|)(≠>-+=a a a a x f xx 且)最小值为1.11.证明:画出函数x x f lg )(=的图象,可以看出在]1,0(上为减函数,在),1[+∞上为增函数, ∵b a <<0时有)()(b f a f >,则不可能有b a <≤1, 则只有10≤<<b a 及b a ≤<<10这两种情况. 若10≤<<b a ,显然1<ab ;若b a ≤<<10,则)()(b f a f >化为b a lg lg >,则b a lg lg >-,则0lg lg <+b a ,0)lg(<ab ,可得1<ab . 由以上讨论知,总有1<ab .12.解:(1)方程012=--x x 的根为251±=x , 所以012>--x x 的解为251-<x 或251+>x ,于是函数的定义域为),251()251,(+∞+⋃--∞. (2)因为函数的值域为R ,所以(){}m mx x u u --=⊆+∞2,0,故04042≥-≤⇒≥+=∆m m m m 或.(3)欲使函数在区间()31,-∞-上是增函数,则只须()()⎪⎩⎪⎨⎧≥----≤-031312312m m m ⎩⎨⎧≤-≥⇒2322m m , 所以2322≤≤-m .B 组1.A 由y=12log x ,当2=x 时,1-=y ,代入y=kx 中,有k 21=-,则21-=k .2.A 当2,21-==b a 时,2)21(-=x y ,其图象是x y )21(=的图象向下平移了2个 单位,则就不会经过第一象限了.3.C 知)(x f 在]2,[a a 上为减函数,则最大值是1log =a a ,最小值是2log 1)2(log a a a +=,则)2log 1(31a +=,则322log -=a , 23log 2-=a ,42223==-a . 4.D 由)()(x f x f -=-,得1111---=-+-x x e m e m ,则112--=-+x x x e m e me , 可得112---=x x x e m e me ,则2=m . 5.10 根据题设条件得:55n n ae a ae --=-,所以512n e -=. 令8nt a ae -=,则18nt e -=,所以3151()2nt n e e --==, 所以t=15.15-5=10(分钟),即再经过10分钟桶1中的水就只有8a . 6.a ∈(1,2)a >0且a ≠1⇒μ(x )=2-ax 是减函数,要使y =a log (2-ax )是减函数,则a >1,又2-ax >0⇒a <x2(0<x 1≤)⇒a <2,所以a ∈(1,2) 7.解:令u =x 2+2x =(x +1)2-1 x ∈[-23,0] , ∴当x =-1时,u min =-1 ; 当x =0时,u max =0 ..233222233225310)2222531)10110⎪⎪⎩⎪⎪⎨⎧==⎩⎨⎧==⎪⎪⎩⎪⎪⎨⎧==⎪⎩⎪⎨⎧=+=+<<⎩⎨⎧==⎪⎩⎪⎨⎧=+=+>--b a b a b a a b a b a b a a b a b a 或综上得解得时当解得时当 8.解:(1)由⎪⎪⎩⎪⎪⎨⎧>->->-+001011x p x x x 得1x x p >⎧⎨<⎩, 所以f (x )的定义域为(1,p ). (2)∵22221(1)()log [(1)()]log [()]24p p f x x p x x -+=+-=--+. ∴当112p -≤,即13p <≤时,()f x 既无最大值又无最小值;当112p p -<<,即3p >时,当12p x -=时,()f x 有最大值22(1)log 4p +, 但没有最小值.综上可知:当13p <≤时,()f x 既无最大值又无最小值;当3p >时,()f x 有最大值22(1)log 4p +,但没有最小值.备选题1.若log 4[log 3(log 2x )]=0,则21-x 等于( )A .42B .22C .8D .41.A 依题意可得x =8,则21-x =42.2.函数|,12|)(-=x x f 若a <b <c ,且)()()(b f c f a f >>,则下面四个式子中成立的是()A .0,0,0<<<c b aB .0,0,0>≥<c b aC .c a 22<-D .222<+a c2.D 画出函数|12|)(-=x x f 的图象,可知a <0,c >0,所以2a -1<0, 2c -1>0,又由)()(c f a f >,得1-2a >2c -1,所以222<+a c .3.比较log 20.4,log 30.4,log 40.4的大小.3.解:∵对数函数y =log 0.4x 在(0,+∞)上是减函数,∴log 0.44<log 0.43<log 0.42<log 0.41=0.又反比例函数y =x 1在(-∞,0)上也是减函数.所以2log 14.0<3log 14.0<4log 14.0,即log 20.4<log 30.4<log 40.4.4.已知函数x x f 2)(=.(1)判断函数)(x f 的奇偶性;(2)把)(x f 的图像经过怎样的变换,能得到函数22)(+=x x g 的图像;(3)在直角坐标系下作出函数)(x g 的图像.4.解:(1)函数)(x f 定义域为R ,又 ()22()x x f x f x --===,∴函数)(x f 为偶函数.(2)把)(x f 的图像向左平移2个单位得到.(3)函数)(x f 的图像如右图所示.。
高考数学二轮复习 指数函数和对数函数
高考数学二轮复习 指数函数和对数函数一.知识整理: 基本概念及相关知识点:1、对数、对数的底数、真数:一般地,如果a (a >0,a ≠1)的b 次幂等于N ,就是a b=N ,那么数b 叫做以a 为底N 的对数,记为log a N =b .a 叫做对数的底数.N 叫做真数.负数和零没有对数.2、常用对数:通常将以10为底的对数叫做常用对数.3、自然对数:以e 为底的对数叫自然对数,N 的自然对数log a N 简记作ln N .4、对数的运算性质:如果a >0,a ≠1,M >0,N >0,那么(1)log a (MN )=log a M +log a N ; (2)NMa log =log a M -log a N ; (3)log a M n=n log a M (n ∈R ). 5、对数换底公式: bNN a a b log log log(a >0,a ≠1,b >0,b ≠1,N >0)6、指数函数:函数y =a x(a >0且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域是R . 7、指数函数的图象与性质:a >1 0<a <1图 像(1)定义域:R (2)值域:(0+∞)(3)过点(0,1),即x =0时,y =1 (4)在R 上是增函数(4)在R 上是减函数8、对数函数:函数y = log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 9、对数函数的图象与性质:a >1 0<a <1图 像性 质(1)定义域:(0,+∞) (2)值域:R(3)过点(1,0),即x =1时,y =0 (4)在(0,+∞)上是增函数(4)在(0,+∞)上是减函数10、指数方程与对数方程:在指数里含有未知数的方程叫做指数方程.在对数符号后面含有未知数的方程叫做对数方程.它们都属于超越方程,一般不可用初等方法求解. 11、最简单的指数方程:xa =b (a >0,a ≠1,b >0),它的解是x =a log b 12、最简单的对数方程:a log x =b (a >0,a ≠1),它的解是x =ba 概念辨析: 1.指数函数(1) 指数函数的定义:函数y =a x叫做指数函数,其中a 是一个大于零且不等于1的常量.函数的定义域是实数集R .在定义中,必须注意:①指数函数的形状,例如y =-2x,121+⎪⎭⎫ ⎝⎛=x y 都不能认为是指数函数,它们都是有关指数函数的复合函数;②指数函数的底在应用时的范围;③指数函数的定义域在求复合函数定义域的应用.(2) 在函数y =a x中规定底数a >0且a ≠1的理由:如果a =0,则当x >0时,a x恒等于0;当x ≤0时,a x无意义. 如果a <0,比如y =(-4)x ,这时对于41=x ,21=x ,等等,在实数范围内,函数值不存在. 如果a =1,y =1x=1是一个常量,对它就没有研究的必要.为了避免上述情况,所以规定底数a >0且a ≠1.(3) 指数函数y =a x在其底数a >1及0<a <1这两种情况下图象特征和性质如下:底数a >1 0<a <1图象xyOy=1y=a x (a>1)xyOy=1y=a x (0<a<1)性质①定义域 (-∞,+∞)②值域 (0,+∞).图象都位于x 轴上方且以x 轴为渐近线函数值的分布情况 ③当时x =0,y =1.图象都经过点(0,1) .④当x >0时,y >1当x <0时,0<y <1 ④当x >0时,0<y <1 当x<0时,y >1单调性⑤在(-∞,+∞)上是增函数⑤在(-∞,+∞)上是减函数注:① 注意根据图象记忆和应用性质:② 性质④可表述为:若(a -1)x >0,则a x>1;若(a -1)x <0,则0<a x<1. ③ 性质③实际上是性质④与性质②的推论. 2.对数(1) 对数的定义:如果a (a >0且a ≠1)的b 次幂等于N ,就是a b=N ,那么数b 就叫做以a 为底N 的对数,记作log a N =b ,其中a 叫做对数的底数,N 叫做真数,log a N 也叫做对数式.(2) 指数式与对数式的互化a b =N b =log a N (a >0且a ≠1,N >0)(3) 对数恒等式:N a Na =log (a >0,a ≠1,N >0)(4) 对数的性质:① 负数和零没有对数. ② 1的对数是零,即log a 1=0. ③ 底的对数等于1,即log a a =1. (5) 对数运算法则(a >0且a ≠1,M >0,N >0)① log a (MN )= log a M +log a N ② N M NMa a alog log log -=③ M n M a na log log =(n ∈R ) ④M nM a nalog 1log =(n ∈R ,n ≠0) (6) 对数换底公式:bNN a a b log log log =(a >0,a ≠1,b >0,b ≠1,N >0)推论:ab b a log 1log =b mnb a n a m log log =(7) 常用对数与自然对数.① 常用对数既是以10为底的对数,简记为lg N (N >0).② 自然对数即是以无理数e =2.71828…为底的对数,简记为ln N (N >0). (8)对可化为形如)(x f a=)(x g a(a >0,a ≠1)的指数方程,可转化为它的同解方程f (x )=g (x )求解;因为当且仅当幂指数相等时同底的幂相等.而对可化为形如a log f (x )= a log g (x )(a >0,a ≠1)的对数方程,在转化为方程f (x )=g (x )求解时,必须把所得的解代回原方程检验;因为从前者变为后者时,x 的取值范围可能扩大,有可能产生增根.某些指数方程与对数方程可以分别化为关于xa 与a log x 的可解方程,这时可用换元法先求出xa 与a log x 的值,再求x 的值;特别对形如x a2+b ·xa +c =0,可用换元法化为二次方程,先求出xa 或a log x ,再求x .但解对数方程时,始终要注意变形的同解性. 二.课堂练习:1.设a ,b ,c 都是正数,且3a=4b =6c ,那么 [ ]2.已知1<x <d , 令a=(x d log )2, b=2log x d , c=()x d d log log ,则[ ].A .a <b <cB .a <c <bC .c <b <aD .c <a <b3.已知y=loga(2-ax)在[0,1]上是x 的减函数,则a 的取值范围是 [ ].A .(0,1)B .(1,2)C .(0,2)D .(2,+∞)4 定义在(-∞,+∞)上的任意函数f (x )都可以表示成一个奇函数g (x )和一个偶函数h (x )之和,如果f (x )=lg(10x+1),其中x ∈(-∞,+∞),那么( )A g (x )=x , h (x )=lg(10x +10-x+2)B g (x )=21[lg(10x +1)+x ],h (x )= 21[lg(10x+1)-x ] C g (x )=2x ,h (x )=lg(10x +1)-2x D g (x )=-2x ,h (x )=lg(10x+1)+2x5 当a >1时,函数y =log a x 和y =(1-a )x 的图象只可能是( )A1oyx B1oyx C1oy x D1oyx6.若函数 a x f x+-=131)((a ≠0)是奇函数,则满足65)(=x f 的x 的取值集合为( ). (A) { log 32 } (B) { 1 } (C) {2 log 32 }(D) φ7.已知函数f ( x )的图象关于坐标原点成中心对称图形,且x < 0时,xx f ⎪⎭⎫⎝⎛=31)(,那么⎪⎭⎫⎝⎛21f 的值等于( ). (A)33(B) 3- (C) 3(D) 33-8.若2145-⎪⎭⎫⎝⎛=m ,3156-⎪⎭⎫ ⎝⎛=n , 2156-⎪⎭⎫⎝⎛=p ,则( ). (A) m < p < n (B) n < m < p (C) p < m < n(D) n < p < m9.函数y = log 2x 与)4(log 21x y =的图象( ).(A )关于直线x = 1对称 (B )关于直线y = x 对称 (C )关于直线y =-1对称 (D )关于直线y = 1对称10.函数5log log 2241++⎪⎪⎭⎫⎝⎛=x x y 在区间[2,4]上的最大值是( )(A) 4(B) 7(C)423 (D)4111.已知 -1≤x ≤2,则函数f(x)=3+2·3x+1-9x 的最大值为 最小值为 ; 12.方程 9-x-2·31-x= 27的解集为_____________________________.13.方程 log x (3x +4)=2的解集为__________________________.14.函数⎪⎭⎫⎝⎛-=12log 2x y 的反函数是________. 15.已知函数f (x )=log a (2-ax )在[0,1]上是x 的减函数,则实数a 的取值范围是____________. 16.方程log 2(9-2x)=3-x 的解集是__________. 17.已知函数()()0,1,022log <≠>-+=b a a bx bx x f a(1)求函数f(x)的定义域; (2)判断函数f(x)的奇偶性,并说明理由; (3)指出函数f(x)的单调区间; (4)求函数f(x)的反函数f-1(x).18.设10<<a ,函数()33log +-=x x x f a的定义域为[]n m ,,值域为[()1log -n a , ()1log -m a ]. (1)求证: m >3;(2)求a 的取值范围.19.已知函数f(x)=lg(ax-b x )(a >1>b >0).(1)求y=f(x)的定义域;(2)在函数y=f(x)的图象上是否存在不同的两点,使过这两点的直线平行于x 轴.20.函数f(x)=x a log 在区间[2,+∞)上总有|f(x)|>1成立,求实数a 的取值范围.21.已知函数f(x)=()12log 22++x ax . (1)若f(x)的定义域是R ,求实数a 的取值范围; (2)若f(x)的值域为R ,求实数a 的取值范围.22.已知函数()()()1,01log 2≠>--=a a x x x f a(1)求f(x)的定义域; (2)指出f(x)的单调性,并证明你的结论; (3)求满足f(x)<2的x 的取值范围.三.课后练习:1.设5x=1.5,(0.5)y =0.75,则x ,y 满足 [ ]. A .x >0,y >0 B .x <0,y <0 C .x >0,y <0 D .x <0,y >0 2.若loga2<logb2<0,则正确的大小关系是 [ ]. A .0<a <b <1 B .0<b <a <1 C .a >b >1 D .b >a >1 3.如果0<a <1,且x >y >1,则下列不等式中正确的是 [ ].A .a x <a yB .x a log >y a logC .x a ->y a -D .xa >y a4.函数()x f 的定义域是[]1,1-,那么函数⎪⎪⎭⎫ ⎝⎛x f 21log 的定义域是 [ ]A .⎥⎦⎤⎢⎣⎡2,21B .(0,2]C .[2,+∞)D .⎥⎦⎤⎝⎛21,05.若0<a <1, 则函数f(x)=loga(x+4)的图象一定不通过 [ ]. A .第一象限 B .第二象限 C .第三象限 D .第四象限6.使函数y=log2(x2-2|x|)的单调递增的区间是 [ ]. A .(-∞,-2) B .(0,1) C .(0,2) D .(2,+∞)7.已知logab=-2,那么 a+b 的最小值是 [ ].A .2233B .2323C .233D .3228.函数5log log 21241+-⎪⎪⎭⎫ ⎝⎛=x x y 在区间[]4,2上的最小值是 [ ].A .4B .8C .423 D .419.已知奇函数f(x)满足f(x-1)=f(x+2)对任意x ∈R 成立,并且当()1,0∈x 时,()13-=xx f ,那么⎪⎪⎭⎫ ⎝⎛36log 31f 的值为 [ ] A .31-B .31C .34D .34- 10.函数f(x)=loga(a-ax)(a >0,a ≠1)的定义域为_____;值域为_____.11.若函数()1211-⎪⎭⎫ ⎝⎛=+x x f 的反函数为()x g ,则()1+x g 的解析式为12.设12>>>a b a ,则a b abb a blog ,log ,log 从小到大的顺序是 13.已知0<a <1,那么x 的方程x a =|x a log |的实根的个数是______.14.已知函数()x x f 3log 2+=,x ∈[1,9],则()[]()22x f x f y +=的最大值是______.15.已知函数()()a ax x x f 3log 221+-=在区间[)+∞,2上是减函数,则实数a 的取值范围是______.17.已知实数p ,q 满足()()()1lg 2lg log lg 3++-=q q p ,试求实数p 的取值范围.18.已知函数f(x)=ax 在闭区间[-2,2]上的函数值总小于2,求实数a 的取值范围.19.设a ∈R ,试讨论关于x 的方程lg(x-1)+lg(3-x)=lg(a-x)的实数解的个数.20.已知函数()()()x p x x x x f -+-+-+=222log 1log 11log (1)求f(x)的定义域;(2)求f(x)的值域.21.设0<a <1,x 和y 满足3log log 3log =-+y a x x x a .如果y 有最大值42,求这时a 和x 的值.答案提示:课堂练习:1.B2.D3.B4 解析 由题意 g (x )+h (x )=lg(10x+1) ①又g (-x )+h (-x )=lg(10-x +1) 即-g (x )+h (x )=lg(10-x+1) ②由①②得 g (x )=2x ,h (x )=lg(10x+1)-2x 答案 C 5 解析 当a >1时,函数y =log a x 的图象只能在A 和C 中选,又a >1时,y =(1-a )x 为减函数 答案 B6. C .由 f ( x )是奇函数,故f (-1)=-f ( 1 ),即⎪⎭⎫⎝⎛+--=+--a a 1311311,解得 21=a .于是21131)(+-=x x f . 65)(=x f ,即6521131=+-x,化简得 3x= 4 .因此 x =2 log 32 . 7.B . f ( x )为奇函数. 331212121-=⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛-f f .8.A .由函数 xy ⎪⎭⎫⎝⎛=56在R 上是增函数,可得 n > p ,从而否定(B )、(D ).又函数 21-=xy 在(0,+∞)上是减函数,可得m < p .9.C .在函数y = log 2x 图象上取一点P (1,0).可求得P 点关于直线x = 1的对称点为Q 1(1,0),P 点关于直线y = x 的对称点为Q 2(0,1),P 点关于直线y =-1的对称点为Q 3(1,-2),P 点关于直线y = 1的对称点为Q 4(1,2).经验证,其中只有Q 3点在函数)4(log 21x y =的图象上.10.D 11. 当t=3即x=1时,f(x)取最大值12,当t=9即 x=2时,f(x)取最小值-24. 12.{ -2 }.方程可化为 (3-x )2-6 (3-x)-27 = 0 .13.{ 4 } .解:x 2 = 3x + 4,并注意 x > 0,x ≠ 1. 14.y =2x +1+2 15.(1,2) 16.{0,3}.17. 所以f(x)的定义域为{x|x <2b 或x >-2b}.(2)对f(x)定义域内任意x ,有所以f(x)为奇函数.当a>1时在(0,+∞)上是增函数;当0<a<1时,在(0,+∞)上是减函数.它的单调性直观观察可得,如图2,于是有当a>1时,f(x)在(-∞,2b)上,在(-2b,+∞)上都是增函数,当0<a<1时,f(x)在(-∞,2b)上,在(-2b,+∞)上都是减函数.18.n>m,又由函数值域可知n>1,m>1,所以n>m>3,故m>3得证.y=logau为减函数,所以y=f(x)在[m,n]上为减函数,从而f(x)的值域为[f(n),ax2+(2a-1)x+3-3a=019.分析此题第(2)问是从几何角度探索函数图象的特征,但此函数图象并不会画,也不易画出,因此应转化为代数角度探索该函数相关的性质.(0,+∞).(2)先证f(x)在(0, +∞)上是增函数.任取0<x1<x2,由a>1>b>0,知ax1<ax2,bx1>bx2,所以0<ax1-bx1<ax2-bx2.因此 lg(ax1-bx1)<lg(ax2-bx2),即f(x1)<f(x2).所以f(x)在(0,+∞)上是增函数.假设函数y=f(x)的图象上存在不同的两点A(x1,y1),B(x2,y2),使直线AB平行于x轴,则x1≠x2,y1=y2.这与f(x)在(0,+∞)上是增函数(y1=y2则x1=x2)相矛盾.故在函数f(x)的图象上不存在不同的两点,使过这两点的直线平行于x轴.20.解依题意f(x)=logax在[2,+∞)上总有|f(x)|>1成立|logax|>1对任意x∈[2,+∞)都成立logax>1或logax<-1对任x∈[2,+∞)总成立y=logax在[2,+∞)上的最小值大于1或y=logax在[2,+∞)的最大值小于-1.而函数y=logax(x≥2)只有a>1有最小值loga2,只有当0<a<1时,有最大值loga2,于是有21.当a=0时,不等式化为2x+1>0,显然不合题意;综上可得,当a>1时,f(x) 的定义域是R.当a=0时,函数为u=2x+1,值域为R.符合题意;解得0<a≤1.综上所述当0≤a≤1时,f(x)的值域为R.课后作业:1.A 2.B 3.C 4.A 5.A 6.D 7.A 8.C 9.A10.a>1时(-∞,1),0<a<1时,(1,+∞);a>1时(-∞,1),0<a<1时,(1,+∞).11.()12log 2-+-x 12.b a aba b blog log log << 13.2 14.13 15.-4<a ≤420.(1)(1,p);(2)当p >3时,f(x)的值域为(-∞,2log2(p+1)-2];当1<p ≤3时,f(x)的值域为(-∞,1+log2(p-1))。
指数函数与对数函数的关系(反函数)
y
y=x y=3x-2
x 0
x+2 y= 3
想一想:函数y=3x-2的图象和它的反函数
x+2 y= 的图象之间有什么关系? 3
求函数反函数的步骤: 1 反解 2 x与y互换
3 求原函数的值域
4 写出反函数及它的定义域
y Q(a,b) (0,1) O
y=2x y=x P(b,a) (1,0)
点(a,b)在函数y=f(x)的图像上
b=f(a)
点(b,a)在反函数y=f-1(x) 的图像上
a=f-1(b)
例5:已知函数( f x) x 2 ( 1 x 2) 求出f (4)的值。
1
解:令 x 1 4,解之得:x 5
2
又 x 2, x 5.
点(a,b)在函数y=f(x)的图像上
x (1)y=5
2 2y . 3
x
解(1)指数函数y=5x,它的底数是5 它的反函数是对数函数 y=log5x; (2)指数函数
2 y 3
x
,它的底数是
3
它的反函数是对数函数 y log2 x
2 3
,
练习 1.说出下列各组函数之间的关系: (1)y=10x和y=lgx; 互为反函数, (2)y=2x和y=log2x; 定义域和值域互换, 对应法则互逆 (3)y=ex和y=lnx.
指数函数与对数函数 的关系
问题1: 指数函数y=ax与对数函数y=loga x(a>0,a≠1) 有什么关系?
y=ax
指数换对数
x=loga y
交换x,y
y=loga x
对应法则互逆
指数函数y=ax与对数函数x=loga y(a>0,a≠1) 有什么关系?
指数函数和对数函数复习(有详细知识点和习题详解)
指数函数和对数函数复习(有详细知识点和习题详解)一、指数的性质一)整数指数幂整数指数幂的概念是指:a的n次方等于a乘以a的n-1次方,其中a不等于0,n为正整数。
另外,a的-n次方等于1除以a的n次方,其中a不等于0,n为正整数。
整数指数幂的运算性质包括:(1)a的m次方乘以a的n次方等于a的m+n次方;(2)a的n次方的m次方等于a的mn次方;(3)a乘以b的n次方等于a的n次方乘以b的n次方。
其中,a除以a的n次方等于a的n-1次方,a的m-n次方等于a的m除以a的n次方,an次方根的概念是指,如果一个数的n次方等于a,那么这个数叫做a的n次方根,记作x=√a。
例如,27的3次方根等于3,-27的3次方根等于-3,32的5次方根等于2,-32的5次方根等于-2.a的n次方根的性质包括:如果n是奇数,则a的n次方根等于a;如果n是偶数且a大于等于0,则a的正的n次方根等于a,a的负的n次方根等于负的a;如果n是偶数且a小于0,则a的n次方根没有意义,即负数没有偶次方根。
二)例题分析例1:求下列各式的值:(1)3的-8次方;(2)(-10)的2次方;(3)4的(3-π)次方;(4)(a-b)的2次方,其中a大于b。
例2:已知a小于b且n大于1,n为正整数,化简n[(a-b)/(a+b)]。
例3:计算:7+40+7-40.例4:求值:(59/24)+(59-45)/24 + 25×(5-2)/24.解:略。
二)分数指数幂1.分数指数幂当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式,例如:$5\sqrt[10]{a^5}=a^{\frac{1}{2}}$,$3\sqrt[12]{a^3}=a^{\frac{1}{4}}$。
当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式,例如:$\sqrt[4]{a^5}=a^{\frac{5}{4}}$。
规定:1)正数的正分数指数幂的意义是$a^{\frac{p}{q}}=\sqrt[q]{a^p}$。
第7讲指数函数与对数函数(学生版)
第7讲 指数函数与对数函数一.基础知识回顾1.指数函数的定义:函数 叫作指数函数,自变量x 在指数位置上,底数a ( )的常量.2.指数函数的图象与性质y =a x a >1 0<a <1图象定义域值域性质 过定点( )当x >0时, ; 当x <0时, 当x >0时, 当x <0时, ;在R 上是 函数 在R 上是 函数3. 当0<a <1时,指数函数的底数越小函数图像越接近坐标轴,当a >1,指数函数的底数越大函数图像越接近坐标轴4.对数函数的定义:一般地,我们把函数 (a>0,a≠1)叫作对数函数,a 叫作对数函数的 ,x 是 5.对数函数的图象与性质a >1 0<a <1图象性 质 定义域:值域:过点 ,即x =1时,y =0当x >1时, 当0<x <1时, 当x >1时,当0<x <1时,是(0,+∞)上的 函数 是(0,+∞)上的 函数6.当0<a 大函数图像越接近坐标轴7.反函数:指数函数y =a x 与对数函数y =log a x 互为反函数,它们的图象关于直线 对称.二.典例精析题型一:指数函数的性质及应用例1:(1)已知a =32)21(,b =234-,c =31)21(,则下列关系式中正确的是( ) A .c <a <b B .b <a <c C .a <c <b D .a <b <c(2)设偶函数f (x )满足f (x )=2x -4(x ≥0),则{x |f (x -2)>0}=( )A .{x |x <-2或x >4}B .{x |x <0或x >4}C .{x |x <0或x >6}D .{x |x <-2或x >2}(3)函数f (x )=⎝⎛⎭⎫12-x 2+2x +1的单调减区间为______.变式训练1:(1)已知a =2,b ,c ,则( )A .a >b >cB .a >c >bC .c >a >bD .b >c >a(2)已知函数y =2-x 2 +ax +1在区间(-∞,3)内递增,则a 的取值范围为 .(3)函数f (x )=⎝⎛⎭⎫14x -⎝⎛⎭⎫12x +1在x ∈[-3,2]上的值域是________题型二:指数型函数的综合问题例2:已知f (x )=a a 2-1(a x -a -x )(a >0且a ≠1). (1)判断f (x )的奇偶性;(2)讨论f (x )的单调性;(3)当x ∈[-1,1]时f (x )≥b 恒成立,求b 的取值范围.变式迁移2:已知函数f (x )=(12x -1+12)x 3. (1) 求f (x )的定义域;(2)证明:f (-x )=f (x ); (3)证明:f (x )>0.题型三:对数函数的性质及应用 例3:已知a =231-,b =log 312,c =log 3121,则( ) A .a >b >c B .a >c >b C .c >a >b D .c >b >a(2)定义在R 上的偶函数f (x )在[0,+∞)上递增,f (13)=0,则满足)(log 81x f >0的x 的取值范围是( )A .(0,+∞)B .(0,12)∪(2,+∞)C .(0,18)∪(12,2)D .(0,12) (3)已知函数f (x )=lg ax +a -2x在区间[1,2]上是增函数,则实数a 的取值范围是______ 变式训练3:(1)设函数f (x )=log a |x |在(-∞,0)上单调递增,则f (a +1)与f (2) 的大小关系是( A )A .f (a +1)>f (2)B .f (a +1)<f (2)C .f (a +1)=f (2)D .不能确定(2)已知函数f (x )=a x +log a x (a >0,a ≠1)在[1,2]上的最大值与最小值之和为log a 2+6,则a 的值为( C )A.12B.14C .2D .4 (3)已知函数f (x )=ln(1-a 2x )的定义域是(1,+∞),则实数a 的值为________. 题型四:对数型函数的综合问题例4:已知函数f (x )=log a (x +1)-log a (1-x ),a >0且a ≠1.(1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明;(3)若a >1时,求使f (x )>0的x 的解集.变式训练4:已知f (x )=2+log 3x ,x ∈[1,9],求y =[f (x )]2+f (x 2)的最大值及y 取最大值时x 的值.三.方法规律总结2.比较两个指数幂大小时,尽量化同底数或同指数,当底数相同,指数不同时,构造同一指数函数,然后比较大小;当指数相同,底数不同时,构造两个指数函数,利用图象比较大小.3.指数函数在同一直角坐标系中的图象的相对位置与底数大小的关系如图所示,则0<c <d <1<a <b .在y 轴右侧,图象从上到下相应的底数由大变小;在y 轴左侧,图象从下到上相应的底数由大变小;即无论在y 轴的左侧还是右侧,底数按逆时针方向变大.4.求解与对数函数有关的复合函数的单调性的步骤:(1)确定定义域;(2)弄清函数是由哪些基本初等函数复合而成的,将复合函数分解成基本初等函数y =f (u ),u =g (x );(3)分别确定这两个函数的单调区间;(4)若这两个函数同增或同减,则y =f (g (x ))为增函数,若一增一减,则y =f (g (x ))为减函数,即“同增异减”.5.用对数函数的性质比较大小:(1)同底数的两个对数值的大小比较例如,比较log a f (x )与log a g (x )的大小,其中a >0且a ≠1.①若a >1,则log a f (x )>log a g (x )⇔f (x )>g (x )>0.②若0<a <1,则log a f (x )>log a g (x )⇔0<f (x )<g (x ).(2)同真数的对数值大小关系如图:图象在x 轴上方的部分自左向右底逐渐增大,即0<c <d <1<a <b .6.常见对数方程式或对数不等式的解法:(1)形如log a f (x )=log a g (x )(a >0且a ≠1)等价于f (x )=g (x ),但要注意验根.对于log a f (x )>log a g (x )等价于0<a <1时,⎪⎩⎪⎨⎧<>>);()(,0)(,0)(x g x f x g x f a >1时,⎪⎩⎪⎨⎧>>>).()(,0)(,0)(x g x f x g x f (2)形如F (log a x )=0、F (log a x )>0或F (log a x )<0,一般采用换元法求解.四.课后练习作业一.选择题1.函数f (x )=ln (x +3)1-2x的定义域是( ) A .(-3,0) B .(-3,0] C .(-∞,-3)∪(0,+∞) D .(-∞,-3)∪(-3,0)2.若函数y =f (x )是函数y =a x (a >0且a ≠1)的反函数,且f (2)=1,则f (x )=( )A .log 31x B.12x C . log 2x D .2x -23.在同一坐标系中,函数y =2x 与y =⎝⎛⎭⎫12x 的图象之间的关系是( ) A .关于y 轴对称 B .关于x 轴对称C .关于原点对称 D .关于直线y =x 对称4.已知f (x )=3x -b (2≤x ≤4,b 为常数)的图象经过点(2,1),则f (x )的值域为( )A .[9,81]B .[3,9]C .[1,9]D .[1,+∞)5.函数f (x )=a |x +1|(a >0,a ≠1)的值域为[1,+∞),则f (-4)与f (1)的关系是( )A 不确定.B .f (-4)=f (1)C .f (-4)<f (1)D f (-4)>f (1)6.函数y =⎝⎛⎭⎫12x +1的图象关于直线y =x 对称的图象大致是( )7.当x ∈(-∞,-1]时,不等式(m 2-m )·4x -2x<0恒成立,则实数m 的取值范围是( )A .(-2,1)B .(-4,3)C .(-1,2)D .(-3,4)8.已知函数f (x )=ln e x -e -x2,则f (x )是( ) A .非奇非偶函数,且在(0,+∞)上单调递增B .奇函数,且在R 上单调递增C .非奇非偶函数,且在(0,+∞)上单调递减D .偶函数,且在R 上单调递减9.设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝⎛⎭⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( )A.q =r <pB.p =r <qC.q =r >pD.p =r >q10.已知函数f (x )=log a (2x -a )在区间⎣⎡⎦⎤12,23上恒有f (x )>0,则实数a 的取值范围是( B )A. ⎣⎡⎭⎫13,1B. ⎝⎛⎭⎫13,1C.⎝⎛⎭⎫23,1D.⎣⎡⎭⎫23,1 11.偶函数f (x )满足f (x -1)=f (x +1),且在x ∈[0,1]时,f (x )=x ,则关于x 的方程f (x )=⎝⎛⎭⎫110x在x ∈[0,4]上解的个数是( B )A .0B .4C .6D .812.已知函数f (x )=e x +m e x +1,若对于任意a ,b ,c ∈R ,都有f (a )+f (b )>f (c )成立,则实数m 的取值范围是( )A.⎣⎡⎦⎤12,2B.[0,1] C .[1,2] D.⎣⎡⎦⎤12,1 二.填空题13.已知正数a 满足a 2-2a -3=0,函数f (x )=a x ,若实数m 、n 满足f (m )>f (n ),则m 、n 的大小关系为________.14.已知函数f (x )=a 2x -4+n (a >0且a ≠1)的图象恒过定点P (m ,2),则m +n =________.15.函数y =log 3(x 2-2x )的单调减区间是________.16.已知函数f (x )=|log 2x |,正实数m ,n 满足m <n ,且f (m )=f (n ),若f (x )在区间[m 2,n ]上的最大值为2,则n +m =________.三.解答题17.已知定义域为R 的函数f (x )=-2x +b 2x +1+a是奇函数.(1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.18.已知函数f (x )=⎝⎛⎭⎫13ax 2-4x +3.(1)若a =-1,求f (x )的单调区间;(2)若f (x )有最大值3,求a 的值;(3)若f (x )的值域是(0,+∞),求a 的值.19.已知函数f (x )=log 4(ax 2+2x +3).(1)若f (1)=1,求f (x )的单调区间;(2)是否存在实数a ,使f (x )的最小值为0?若存在,求出a 的值;若不存在,说明理由.20.已知函数f (x )=lg(a x -b x )(a >1>b >0).(1)求y =f (x )的定义域;(2)在函数y =f (x )的图象上是否存在不同的两点,使得过这两点的直线平行于x 轴;(3)当a ,b 满足什么条件时,f (x )在(1,+∞)上恒取正值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学(第 二 轮)专 题 训 练第七讲: 指数函数和对数函数学校 学号 班级 姓名知能目标1. 理解分数指数幂的概念, 掌握有理指数幂的运算性质. 掌握指数函数的概念、图象和性质.2. 理解对数的概念, 掌握对数的运算性质. 掌握对数函数的概念、图象和性质.3. 能够运用指数函数和对数函数的性质解决某些简单的实际问题.综合脉络1. 以指数函数、对数函数为中心的综合网络2. 指数式与对数式有如下关系(指数式化为对数式或对数式化为指数式的重要依据):0a (N logb N aab>=⇔=且)1a ≠指数函数与对数函数互为反函数, 它们的图象关于直线x y =对称, 指数函数与对数函数 的性质见下表:3. 指数函数,对数函数是高考重点之一指数函数,对数函数是两类重要的基本初等函数, 高考中既考查双基, 又考查对蕴含其中的函 数思想、等价转化、分类讨论等思想方法的理解与运用. 因此应做到能熟练掌握它们的图象与性 质并能进行一定的综合运用. (一) 典型例题讲解: 例1.设a >0, f (x)=xxea ae-是R 上的奇函数.(1) 求a 的值;(2) 试判断f (x )的反函数f -1 (x)的奇偶性与单调性.例2. 是否存在实数a, 使函数f (x )=)x ax (log 2a -在区间]4 ,2[上是增函数? 如果存在,说明a 可以取哪些值; 如果不存在, 请说明理由.例3. 已知x 满足≤+6x2aa4x 2x aa+++)1a ,0a ( ≠>, 函数y =)ax (logxa 1log2a12a⋅的值域为]0 ,81[-, 求a 的值.(二) 专题测试与练习: 一. 选择题1. 设0x >且) (0,b a, ,1b a x x ∞+∈<<, 则a 、b 的大小关系是 ( ) A. 1a b << B. 1b a << C. a b 1<< D. b a 1<<2. 如果1a 0<<, 那么下列不等式中正确的是 ( )A. 2131)a 1()a 1(->- B. )a 1(log )a 1(+- C. 23)a 1()a 1(+>- D. 1)a 1()a 1(>-+3. 已知x 1是方程3x lg x =+的一个根, 2x 是方程310x x =+的一个根, 那么21x x +的值 是 ( ) A. 6 B. 3 C. 2 D. 14. ,0z log log log y log log log x log log log 324243432===则z y x ++的值为 ( )A. 50B. 58C. 89D. 1115. 当1a >时, 在同一坐标系中, 函数x a y -=与=y x loga的图象是图中的 ( )6. 若函数)x (f 与=)x (g x) 21(的图象关于直线x y =对称, 则)x 4(f 2-的单调递增区间是( )A. ]2 ,2(-B. ) ,0[∞+C. )2 ,0[D. ]0 ,(-∞二. 填空题7. 已知522xx=+-, 则=+-xx88 .8. 若函数=y 2x log 2+的反函数定义域为),3(∞+ , 则此函数的定义域为 .9. 已知=y )ax 3(log a -在]2 ,0[上是x 的减函数, 则a 的取值范围是 .10.函数=)x (f )1a ,0a (a x≠>在]2 ,1[上的最大值比最小值大2a , 则a 的值为 .三. 解答题11. 设 1x 0 <<, 试比较|)x 1(log a -|与|)x 1(log a +|的大小.12. 已知函数12x )x (f -=的反函数为)x (f 1-, )1x 3(log )x (g 4+=.(1) 若≤-)x (f 1)x (g ,求x 的取值范围D;(2) 设函数)x (f21)x (g )x (H 1--=,当∈x D 时, 求函数)x (H 的值域.13. 已知常数1a >, 变数x 、y 有关系3y logx loga log3xax=-+.(1)若t a x =)0t ( ≠, 试以a 、t 表示y ;(2)若t 在) ,1[∞+内变化时, y 有最小值8, 求此时a 和x 的值各为多少?14. 已知函数=)x (f ,329xx ⋅-判断f (x)是否有反函数? 若有, 求出反函数; 若没有, 怎么改变定义域后就有反函数了?指数函数和对数函数解答(一) 典型例题例1 (1) 因为)x (f 在R 上是奇函数, 所以)0a (1a 0a a10)0(f >=⇒=-⇒=,(2) =-⇒∈++=--)x (f)R x (24x x ln)x (f121=-=++-24x x ln2=++24x x ln2)x (f 1--, ∴)x (f1-为奇函数.用定义法可证)x (f 1-为单调增函数.(也可用原函数证明) 例2 设x ax)x (u 2-=, 对称轴a21x =.(1) 当1a >时, 1a 0)2(u 2a 21>⇒⎪⎩⎪⎨⎧>≤;(2) 当1a 0<<时, 81a 00)4(u 4a 21≤<⇒⎪⎩⎪⎨⎧>≥. 综上所述: 1a >例3 由≤+6x 2a a 4x 2x a a +++0)a a )(a a ()1a ,0a (4x 2x ≤--⇒≠> ]4,2[x ∈⇒ 由y =)ax (logxa 1log2a12a⋅81)23x (log 21y 2a-+=⇒⇒-∈]0,81[y 1x log 2081)23x (log2181a 2a-≤≤-⇒≤-+≤-, ,4x 2≤≤ ① 当1a >时, 为x log a 单调增函数, 22log a -≥∴且∅⇒-≤14log a② 当1a 0<<时, 为x log a单调减函数, 12loga-≤∴且.21a 24loga=⇒-≥(二) 专题测试与练习一. 选择题二. 填空题7. 110 ; 8. ;),2(∞+ 9. ;)23,1( 10. .2321或三. 解答题11. 21x 11x 101x 0<+<⇒<-<⇒<< , 0x1x)x 1(x112>-=+--, )x 1(x11+>-∴⇒>+--=+-=+-∴1|)x 1lg(x 11lg||)x 1lg()x 1lg(||)x 1(log ||)x 1(log |a a |)x 1(log a -|>|)x 1(log a +|.12. (1))1x )(1x (log )x (f)1y (log x 1y 212y 212x x ->+=∴+=-=∴-=-即())1x 3(log 21)1x (log )1x 3(log )1x (log )x (g x f22421+≤+∴+≤+∴≤-⎪⎩⎪⎨⎧>+>++≤+∴01x 301x 1x 3)1x (2}1x 0|x {D 1x 0≤≤=∴≤≤∴(2) 1x 1x 3log21)x (H 2++=]1,0[x ∈, ]21,0[)x (H ]2,1[1x 231x 1x 3 ∈∴∈+-=++13. (1) .3y logt 1t t33y loga loga log 3,a x aataattt=-+⇒=-+∴=)0t (ay 3t 3t y log3t 3t 2a2≠=⇒+-=∴+-.(2) 43)23t (2ay +-=),1[23t ∞+∈=23t =∴时, 16a 28a 8y 343min =⇒==⇒=.6416x 23==14. )03(1)13(32)3()x (f x2xx2x>--=⋅-=令0x 013x=⇒=-, 所以当013x≥-或013x<-时存在反函数,即0x ≥或0x <时(或它的子集)存在反函数,①当0x ≥时, 即013x≥-⇒1y 13)13(1y x 2x +=-⇒-=+∴)1x ( ),1x 1(log )x (f31-≥++=-②当0x <时, 即013x<-⇒1y 13)13(1y x 2x +-=-⇒-=+∴)1x (, )1x 1(log )x (f31->+-=-。