基本初等函数讲义超级全

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、一次函数

二、二次函数

(1)二次函数解析式的三种形式 ①一般式:2()(0)f x ax bx c a =++≠ ②极点式:2()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠ (2)求二次函数解析式的办法 ①已知三个点坐标时,宜用一般式.

②已知抛物线的极点坐标或与对称轴有关或与最年夜(小)值有关时,常使用极点式.

③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更便利.

(3)二次函数图象的性质

①.二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方

程为,2b

x a

=-极点坐标是24(,

)24b ac b a a -- ②那时0a >,抛物线开口向上,函数在(,]2b a -∞-

上递加,

在[,)2b

a

-+∞上递增,那时2b

x a

=-,2min 4()4ac b f x a -=

;那时0a <,抛物线开口向

下,函数在(,]2b a -∞-

上递增,在[,)2b a

-+∞上递加,那时2b

x a =-

,2

max 4()4ac b f x a

-=

三、幂函数

(1)幂函数的界说

一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数. (2)幂函数的图象

过定点:所有的幂函数在(0,)+∞都有界说,并且图象都通过点

(1,1).

四、指数函数

(1)根式的概念:如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做

a 的n 次方根.

(2)分数指数幂的概念

①正数的正分数指数幂的意义是:0,,,m

n

a a m n N +=>∈且

1)n >.0

的正分数指数幂即是0.

②正数的负分数指数幂的意义是:

1()0,,,m m n

n a

a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. (3)运算性质

①(0,,)r s r s a a a a r s R +⋅=>∈②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r ab a b a b r R =>>∈ (4)指数函数

五、对数函数 (1)对数的界说

①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作

log a x N =,其中a 叫做底数,N 叫做真数.

②正数和零没有对数.

③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. (2)几个重要的对数恒等式

log 10a =,log 1a a =,log b a a b =.

(3)经常使用对数与自然对数

经常使用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…).

(4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么

①加法:log log log ()a a a M N MN +=②减法:log log log a a a M

M N N

-= ③数乘:log log ()n a a n M

M n R =∈④log a N a N =

⑤log log (0,)b

n a a n M M b n R b

=≠∈ ⑥换底公式:log log (0,1)log b a b N

N b b a

=>≠且

(5)对数函数

(6)反函数的概念

设函数()y f x =的界说域为A ,值域为C ,从式子()y f x =中解出

x ,得式子()x y ϕ=.如果对y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=暗示x 是y

的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.

(7)反函数的求法

①确定反函数的界说域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;

③将1()x f y -=改写成1()y f x -=,并注明反函数的界说域. (8)反函数的性质

①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称. ②函数()y f x =的界说域、值域辨别是其反函数1()y f x -=的值域、界说域.

③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数

1()y f x -=的图象上.

④一般地,函数()y f x =要有反函数则它必须为单调函数. 例题

一、求二次函数的解析式 例1.抛物线2

44y x

x =--的极点坐标是()

A .(2,0)

B .(2,2)

C .(2,8)

D .(2,8)

例2.已知抛物线的极点为(-1,-2),且通过(1,10),则这条抛物线的表达式为()

A .()2

312y x =-- B .()2

312y x =-+

C. ()

2

312y x =+- D.()2

312y x =-+-

例3.抛物线y=2

22x mx m -++的极点在第三象限,试确定m 的取值

规模是()

A .m <-1或m >2

B .m <0或m >-1

C .-1<m <0

D .m <-1

例4.已知二次函数()f x 同时满足条件:(1)()()11f x f x +=-;(2)()f x 的最年夜值为15;(3)()0f x =的两根立方和即是17求()f x 的解析式

二、二次函数在特定区间上的最值问题

例5. 那时22x -≤≤,求函数223y x x =--的最年夜值和最小值. 例6.那时0x ≥,求函数(2)y x x =--的取值规模.

例7.那时1t x t ≤≤+,求函数21522

y x x =--的最小值(其中t 为常数). 三、幂函数

例8.下列函数在(),0-∞上为减函数的是()

A.13

y x = B.2y x = C.3y x = D.2y x -= 例9.下列幂函数中界说域为{}0x x >的是()

A.2

3

y x = B.32

y x = C.23

y x -= D.32

y x

-=

相关文档
最新文档