北师大版七年级数学下册 第一章 整式的除法 综合测试题 (含答案)

合集下载

北师大版七年级数学下册 第一章 整式的乘除 1.1~1.3 计算综合专项训练(word版含答案)

北师大版七年级数学下册 第一章 整式的乘除 1.1~1.3 计算综合专项训练(word版含答案)

北师大版七年级数学下册第一章整式的乘除1.1~1.3计算综合专项训练1.计算:(1)a2•a3(2)(﹣a2)3(3)a10÷a9(4)(﹣bc)4÷(﹣bc)22.计算:(1)x2•x5﹣x3•x4;(2)m3•m3+m•m5;(3)a•a3•a2+a2•a4;(4)x2•x4+x3•x2•x.3.计算:(1)x3•x3;(2)m2•m3;(3)a3+a3;(4)x2•x2•x2;(5)102•10•105;(6)y3•y2•y4.4.计算:(1)(﹣x)3•x2•(﹣x)4;(2)﹣(﹣a)2•(﹣a)7•(﹣a)4(3)(﹣b)4•(﹣b)2﹣(﹣b)5•(﹣b);(4)(﹣x)7•(﹣x)2﹣(﹣x)4•x5.5.计算:(1)a3•a2•a (2).6.计算:(﹣x)•(﹣x)2•(﹣x)3+(﹣x)•(﹣x)5.7.计算:(a﹣b)3•(b﹣a)3+[2(a﹣b)2]3.8.计算:y3•(﹣y)•(﹣y)5•(﹣y)2.9.计算:(1)(﹣8)2011•(﹣0.125)2012;(2)(a﹣b)5(b﹣a)3.10.计算:a3•a•a5+a4•a2•a3.11.计算;(1)x•x2•x3+(x2)3﹣2(x3)2;(2)[(x2)3]2﹣3(x2•x3•x)2;(3)(﹣2a n b3n)2+(a2b6)n;(4)(﹣3x3)2﹣(﹣x2)3+(﹣2x)2﹣(﹣x)3.12.计算:(1)59×0.28;(2)×(3)22×42×5613.计算:(1)(﹣8)12×83 (2)210×410 (3)(m4)2+m5•m3(4)﹣[(2a﹣b)4]2 (5)(3xy2)2 (6)(a﹣b)5(b﹣a)3(1)﹣12008×|﹣.(2).15.计算:(1)()﹣1+(﹣2)3×(π﹣2)0;(2)(﹣a2)3﹣a2•a4+(﹣2a4)2÷a2.16.计算:(1)(y2)3÷y6•y (2)y4+(y2)4÷y4﹣(﹣y2)217.计算:﹣()2×9﹣2×(﹣)÷+4×(﹣0.5)2(1)(﹣1)2019+(π﹣3.14)0﹣()﹣1.(2)(﹣2x2y)3﹣(﹣2x3y)2+6x6y3+2x6y219.计算(1)(m﹣n)2•(n﹣m)3•(n﹣m)4(2)(b2n)3(b3)4n÷(b5)n+1(3)(a2)3﹣a3•a3+(2a3)2;(4)(﹣4a m+1)3÷[2(2a m)2•a].20.计算:(1)(﹣2ab)•(﹣3ab)3(2)5x2•(3x3)2(4)(﹣0.16)•(﹣10b2)3(4)(2×10n)(×10n)21.计算:()100×(1)100×(0.5×3)2019×(﹣2×)2020.22.计算:(1)﹣2﹣17﹣(﹣27)+(﹣10);(2)﹣;(4)a2﹣2(a2﹣3ab)﹣ab;(4)a•a5+(﹣2a3)2+(﹣3a2)3;(5)解方程:3(2x﹣1)=2x+3;(6)解方程:.答案提示1.解:(1)a2•a3=a5;(2)(﹣a2)3=﹣a6;(3)a10÷a9=a(a≠0);(4)(﹣bc)4÷(﹣bc)2=b2c2;2.解:(1)x2•x5﹣x3•x4=x7﹣x7=0;(2)m3•m3+m•m5=m6+m6=2m6;(3)a•a3•a2+a2•a4=a1+3+2+a2+4=a6+a6=2a6;(4)x2•x4+x3•x2•x=x6+x6=2x6.3.解:(1)x3•x3=x3+3=x6;(2)m2•m3=m2+3=m5;(3)a3+a3=2a3;(4)x2•x2•x2=x2+2+2=x6;(5)102•10•105=102+1+5=108;(6)y3•y2•y4=y3+2+4=y9.4.解:(1)(﹣x)3•x2•(﹣x)4=﹣x3•x2•x4=﹣x9;(2)﹣(﹣a)2•(﹣a)7•(﹣a)4=﹣a2•(﹣a7)•a4=a13;(3)(﹣b)4•(﹣b)2﹣(﹣b)5•(﹣b)=b4•b2﹣(﹣b5)•(﹣b)=b6﹣b6=0;(4)(﹣x)7•(﹣x)2﹣(﹣x)4•x5=(﹣x7)•x2﹣x4•x5=﹣x9﹣x9=﹣2x9.5.解:(1)原式=a3+2+1=a6;(2)原式=(﹣)2008×()2008×(﹣)=﹣.6.解:原式=﹣x•x2•(﹣x3)﹣x•(﹣x5)=x6+x6=2x6.7.解:原式=﹣(a﹣b)6+8(a﹣b)6=7(a﹣b)68.解:原式=y3•(﹣y)•(﹣y)5•y2=y3•(﹣y)•(﹣y5)•y2=y3•y•y5•y2=y3+1+5+2=y11.9.解:(1)原式=(﹣8)2011•(﹣)2011•(﹣),=[﹣8×(﹣)]2011×(﹣),=1×(﹣),=﹣;(2)原式=(a﹣b)5•[﹣(a﹣b)]3=﹣(a﹣b)8.10.解:a3•a•a5+a4•a2•a3=a9+a9=2a9.11.解:(1)原式=x6+x6﹣2x6=0;(2)原式=(x6)2﹣3(x6)2=x12﹣3x12=﹣2x12;(3)原式=4a2n b6n+a2n b6n=5a2n b6n;(4)原式=9x6﹣(﹣x6)+4x2﹣(﹣x3)=9x6+x6+4x2+x3=10x6+x3+4x2.12.解:(1)59×0.28=(5×0.2)8×5=1×5=5;(2)(﹣)9×()9=[(﹣)×]9=(﹣1)9=﹣1;(3)22×42×56=22×52×42×54=(2×5)2×42×252=102×(4×25)2=102×1002=102×104=106.13.解:(1)(﹣8)12×83=812×83=815;(2)210×410=210×(22)10=210×220=230;(3)(m4)2+m5•m3=m8+m8=2m8;(4)﹣[(2a﹣b)4]2=﹣(2a﹣b)8;(5)(3xy2)2=9x2y4;(6)(a﹣b)5(b﹣a)3=﹣(a﹣b)5(a﹣b)3=﹣(a﹣b)8.14.解:(1)原式=﹣1×+1﹣=﹣+=0;(2)原式=224×()8﹣()100×()100×=(2×)24﹣(×)100×=1﹣=﹣.15.解:(1)原式=3+(﹣8)×1=﹣5;(2)原式=﹣a6﹣a6+4a6=2a6.16.解:(1)(y2)3÷y6•y=y6÷y6•y=y;(2)y4+(y2)4÷y4﹣(﹣y2)2=y4+y8÷y4﹣y4=y4+y4﹣y4=y4.17.解:=×××+4×=+1=118.解:(1)原式=﹣1+1﹣3=﹣3;(2)原式=﹣8x6y3﹣4x6y2+6x6y3+2x6y2=﹣2x6y3﹣2x6y2.19.解:(1)(m﹣n)2•(n﹣m)3•(n﹣m)4=(n﹣m)2+3+4,=(n﹣m)9;(2)(b2n)3(b3)4n÷(b5)n+1=b6n•b12n÷b5n+5=b6n+12n﹣5n﹣5=b13n﹣5;(3)(a2)3﹣a3•a3+(2a3)2=a6﹣a6+4a6=4a6;(4)(﹣4a m+1)3÷[2(2a m)2•a]=﹣64a3m+3÷8a2m+1=﹣8a m+220.解:(1)(﹣2ab)•(﹣3ab)3=(﹣2ab)•(﹣27a3b3)=54a4b4;(2)5x2•(3x3)2=5x2•(9x6)=45x8;(3)(﹣0.16)•(﹣1000b6)=160b6;(4)(2×10n)(×10n)=102n.21.解:原式=×===.22.解:(1)﹣2﹣17﹣(﹣27)+(﹣10)=﹣19+27﹣10=﹣2;﹣(2)==;(3)a2﹣2(a2﹣3ab)﹣ab=a2﹣2a2+6ab﹣ab=﹣a2+5ab;(4)a•a5+(﹣2a3)2+(﹣3a2)3=a6+4a6﹣27a6=﹣22a6;(5)解方程:3(2x﹣1)=2x+3去括号,得6x﹣3=2x+3移项,得6x﹣2x=3+3合并同类项,得4x=6系数化为1,得;(6)解方程:去分母,得2(x+3)=4﹣(2x﹣1)去括号,得2x+6=4﹣2x+1移项,得2x+2x=4+1﹣6合并同类项,得4x=﹣1系数化为1,得.。

北师大版七年级下册数学第一章 整式的乘除含答案(满分必刷)

北师大版七年级下册数学第一章 整式的乘除含答案(满分必刷)

北师大版七年级下册数学第一章整式的乘除含答案一、单选题(共15题,共计45分)1、计算:()A. B. C. D.2、下列运算正确的是()A. B. C. D.3、下列计算正确的是()A.x 3•x 4=x 12B.4x 4÷2x 2=2x 2C.|a|=aD.(﹣xy 2)3=x 3y 64、下列运算错误的是()A.(﹣a 3)2=a 6B.a 2+3a 2=4a 2C.2a 3•3a 2=6a 5D.3a3÷2a=a 25、下列计算正确的是( )A.2 a+3 b=5 abB. =±6C. a6÷ a2=a4D.(2 ab2) 3=6 a3b56、下列计算正确的是()A.(2a)3÷a=8a 2B.C.(a﹣b)2=a 2﹣b2 D.-47、计算(a3)2•a2的结果是()A. a 7B. a 8C. a 10D. a 118、下列运算正确的是()A.a 3·a 2=a 6B.a -2=-C.D.(a+2)(a-2)=a 2+49、下列计算正确的是()A. B. C. D.10、下列运算中,正确的是()A. B. C. D.11、计算的结果是()A. B. C. D.12、下列运算中,正确的是()A. B. C. D.13、下列计算正确的是()A.a 3+a 2=2a 5B.(2ab 2)3=6a 3b 6C.2a 2b•3ab 2=6a 2b3 D.x 3y 2÷(﹣2x 2y)=﹣xy14、3﹣2等于()A.9B.﹣C.D.﹣915、计算a3⋅a2正确的是()A.aB.C.D.二、填空题(共10题,共计30分)16、若3x+2y﹣2=0,则等于________.17、“白日不到处,青春恰自来.苔花如米小,也学牡丹开.”若苔花的花粉直径约为0.0000084米,则数据0.0000084可以用科学记数法表示为________.18、已知是函数与的一个交点,则的值为________.19、若a x=3,则a3x=________;若3m=5,3n=2,则3m+2n=________.20、若 (2x+5)-3有意义,则x满足的条件是________.21、计算:a6÷a﹣2的结果是________22、已知a m=3,a n=2,则a m+n=________.23、若的计算结果中不含的一次项,则的值是________.24、若|x﹣1|+(y+2)2=0,则(x+y)2017=________.25、已知A=2x,B是多项式,在计算B+A时,小马虎同学把B+A看成B÷A,结果得x+,则B+A=________三、解答题(共5题,共计25分)26、已知(x+y)2=25,xy= ,求x﹣y的值.27、已知关于的多项式与的积不含二次项和三次项,求常数、的值.28、若1+2+3+…+n=a ,求代数式(x n y)•(x n-1y2)•(x n-2y3)•…•(x2y n-1)•(xy n)的值.29、如图,在某住房小区的建设中,为了提高业主的直居环境,小区准备在一个长为(4a+3b)米,宽为(2a+3b)米的长方形草坪上修建两条宽为b米的通道.问剩余草坪的面积是多少平方米?30、有些大数值问题可以通过用字母代替数,转化成整式问题来解决,请先阅读下面的解题过程,再解答后面的问题.例:若x=123456789×123456786,y=123456788×123456787,试比较x、y的大小.解:设123456788=a,那么x=(a+1)(a-2)=a2-a-2,y=a(a-1)=a2-a,∵x-y=(a2-a-2)-(a2-a)=-2<0,∴x<y.看完后,你学到这种方法了吗?再亲自试一试吧,你准行!问题:计算1.35×0.35×2.7-1.353-1.35×0.352.参考答案一、单选题(共15题,共计45分)1、C2、A3、B4、D5、C6、A7、B8、C9、C10、D11、B12、D13、D14、C15、B二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。

(北师大版)北京市七年级数学下册第一单元《整式的乘除》检测题(包含答案解析)

(北师大版)北京市七年级数学下册第一单元《整式的乘除》检测题(包含答案解析)

一、选择题1.如图(1),把一个长为m ,宽为n 的长方形(m >n )沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( )A .2m n -B .m ﹣nC .2mD .2n 2.若x 2+5x +m =(x +n )2,则m ,n 的值分别为( ). A .m =254,n =52 B .m =254,n =5 C .m =25,n =5 D .m =5,n =52 3.若x 2+kx +16能写成一个多项式的平方形式,则k 的值为( ) A .±8 B .8 C .±4 D .44.已知长方形ABCD ,AD AB >,10AD =,将两张边长分别为a 和b (a b >)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为1S ,图2中阴影部分的面积为2S .当213S S b -=时,AB 的值是( )A .7B .8C .9D .105.下列运算中正确的是( )A .235x y xy +=B .()3253x y x y =C .826x x x ÷=D .32622x x x ⋅= 6.若2,32,,m n a b m n ==为正整数,则3102m n +的值等于( )A .32a bB .23a bC .32a b +D .32a b + 7.黄种人头发直径约为85微米,已知1纳米=10-3微米,数据“85微米”用科学记数法可以表示为( )A .38.510-⨯纳米B .38.510⨯纳米C .48.510⨯纳米D .48.510-⨯纳米 8.下列计算中,错误的是( )A .()()2131319x x x -+=-B .221124a a a ⎛⎫-=-+ ⎪⎝⎭ C .()()x y a b ax ay bx by --=--+D .()m x y m my -+=-+9.计算下列各式,结果为5x 的是( )A .()32xB .102x x ÷C .23x x ⋅D .6x x - 10.()()()2483212121+++···()32211++的个位数是( )A .4B .5C .6D .8 11.计算()3222()m m m -÷⋅的结果是( ) A .2m -B .22mC .28m -D .8m - 12.计算()233a a ⋅的结果是( ) A .9a B .8a C .11a D .18a二、填空题13.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了()n a b +(n 为正整数)的展开式(按a 的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应222()2a b a ab b +=++展开式中的系数;第四行的四个数1,3,3,1,恰好对应着+=+++33223()33a b a a b ab b 展开式中的系数等等.根据上面的规律,写出5()a b +的展开式:5()a b +=_________.利用上面的规律计算:5432252102102521-⨯+⨯-⨯+⨯-=_________.14.已知a b m -=,4ab =-,化简()()22a b -+的结果是__________.15.若221231ax bx x x ++-+与的积不含x 的一次项和二次项,则a+b=______________.16.计算:(﹣2x )3(﹣xy 2)=_____,(﹣23a 5b 7)÷32a 5b 5=_____. 17.计算:248(21)(21)(21)(21)1+++++=___________.18.计算:()221842a b abab -÷=(-)________.19.观察下列各式:(a ﹣b )(a +b )=a 2﹣b 2(a ﹣b )(a 2+ab +b 2)=a 3﹣b 3(a ﹣b )(a 3+a 2b +ab 2+b 3)=a 4﹣b 4………这些等式反映出多项式乘法的某种运算规律.当n 为正整数,且n ≥2时,请你猜想: (a ﹣b )(a n ﹣1+a n ﹣2b +a n ﹣3b 2+……+a 2b n ﹣3+ab n ﹣2+b n ﹣1)=______________.20.若0a >,且2x a =,3y a =,则x y a +的值等于________.三、解答题21.计算题(1)()031321()223⎛⎫-+---⨯- ⎪⎝⎭ (2) 22222222353a b c a bc a c ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭22.计算:2(2)()()2(2)3x y x y x y x x y x ⎡⎤-+-+--÷⎣⎦.23.先化简,再求值: ()()()()()2442225x y x y x y x y x y x ⎡⎤+--+-+-÷⎣⎦,其中x ,y 满足()2320x y ++-=.24.在日历上,我们可以发现其中某些数满足一定的规律,如下图是2021年1月份的日历,我们任意用一个22⨯的方框框出4个数,将其中4个位置上的数两两交叉相乘,再用较大的数减去较小的数,你发现了什么规律?(1)图中方框框出的四个数,按照题目所说的计算规律,结果为______.(2)换一个位置试一下,是否有同样的规律?如果有,请你利用整式的运算对你发现的规律加以证明;如果没有,请说明理由.25.(1)2020151(23)(1)2-⎛⎫--+- ⎪⎝⎭;(2)()()223234a b b c ab ⋅-÷ 26.已知a +b =7,ab =11,求代数式211()22a ab b --的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】此题的等量关系:大正方形的面积=原长方形的面积+小正方形的面积.特别注意剪拼前后的图形面积相等.【详解】解:设去掉的小正方形的边长为x ,则有()22n x mn x +=+, 解得:2m n x -=. 故选:A .【点睛】本题考查同学们拼接剪切的动手能力,解决此类问题一定要联系方程来解决. 2.A解析:A【分析】根据完全平方公式和整式的性质计算,得到m 和n 的关系式,通过计算即可得到答案.【详解】∵x 2+5x+m =(x+n )2=x 2+2nx+n 2∴2n =5,m =n 2∴m =254,n =52故选:A .【点睛】 本题考查了整式、乘法公式、一元一次方程、乘方的知识;解题的关键是熟练掌握整式、完全平方公式的性质,从而完成求解.3.A解析:A【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k 的值.【详解】解:∵x2+kx+16=x2+kx+42,x2+kx+16能写成一个多项式的平方形式,∴kx=±2•x•4,解得k=±8.故选:A.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.4.A解析:A【分析】利用面积的和差分别表示出S1和S2,然后利用整式的混合运算计算它们的差,再由S2-S1=3b,AD=10,列出方程求得AB便可.【详解】解:S1=(AB-a)•a+(CD-b)(AD-a)=(AB-a)•a+(AB-b)(AD-a),S2=AB(AD-a)+(a-b)(AB-a),∴S2-S1=AB(AD-a)+(a-b)(AB-a)-(AB-a)•a-(AB-b)(AD-a)=(AD-a)(AB-AB+b)+(AB-a)(a-b-a)=b•AD-ab-b•AB+ab=b(AD-AB),∵S2-S1=3b,AD=10,∴b(10-AB)=3b,∴AB=7.故选:A.【点睛】本题考查了列代数式,整式的混合运算,整体思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来.也考查了正方形的性质.5.C解析:C【分析】按照合并同类项,幂的运算法则计算判断即可.【详解】∵2x与3y不是同类项,∴无法计算,∴选项A错误;∵()3263=,x y x y∴选项B错误;∵88262x x x x -==÷,∴选项C 正确;∵32325222x x x x +⋅==,∴选项D 错误;故选C.【点睛】本题考查了幂的基本运算,准确掌握幂的运算法则,并规范求解是解题的关键. 6.A解析:A【分析】根据同底数幂的乘法法则和幂的乘方法则的逆运用,即可求解.【详解】∵2,32m n a b ==,∴3102m n +=31022m n ⨯=()()31022n m ⨯=()()23232n m ⎡⎤⨯⎣⎦=32a b , 故选A .【点睛】本题主要考查同底数幂的乘法法则和幂的乘方法则的逆运用,熟练掌握同底数幂的乘法法则和幂的乘方法则是解题的关键.7.C解析:C【分析】把微米转化为纳米,再写成科学记数法即可.【详解】解:85微米=38510-÷纳米=85×103纳米=8.5×104纳米.故选:C .【点睛】本题考查了单位转换和科学记数法,科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.8.D解析:D【分析】根据平方差公式、完全平方公式、多项式乘以多项式法、单项式乘以多项式依次求出每个式子的值,再判断即可.【详解】A. ()()2131319x x x -+=-,计算正确,不符合题意; B. 221124a a a ⎛⎫-=-+ ⎪⎝⎭,计算正确,不符合题意;C. ()()x y a b ax ay bx by --=--+,计算正确,不符合题意;D. ()m x y mx my -+=--,计算错误,符合题意;故选D .【点睛】本题考查了平方差公式、完全平方公式、多项式乘以多项式法、单项式乘以多项式,能正确求出每个式子的值是解此题的关键.9.C解析:C【分析】分别计算每个选项然后进行判断即可.【详解】A 、()326x x =,选项错误;B 、1028x x x =÷,选项错误;C 、235x x x ,选项正确;D 、6x x -不能得到5x ,选项错误.故选:C【点睛】此题考查同底数幂的运算,熟练掌握运算法则是解题的关键.10.C解析:C【分析】原式中的3变形为22-1,反复利用平方差公式计算即可得到结果.【详解】解:3(22+1)(24+1)(28+1)…(232+1)+1=(22-1)(22+1)(24+1)(28+1)…(232+1)+1=(24-1)(24+1)(28+1)…(232+1)+1…=264-1+1=264,∵21=2,22=4,23=8,24=16,25=32,…,∴个位上数字以2,4,8,6为循环节循环,∵64÷4=16,∴264个位上数字为6,即原式个位上数字为6.故选:C .【点睛】本题考查了平方差公式,熟练掌握平方差公式是解本题的关键.11.C解析:C【分析】先分别计算积的乘方运算,再利用单项式除以单项式法则计算即可.【详解】解:()3222()m m m -÷⋅ =()468m m -÷=()468m m -÷ =28m -,故选:C .【点睛】本题考查单项式除以单项式,积的乘方运算.在做本题时需注意运算顺序,先计算积的乘方,再算除法.12.A解析:A【分析】根据幂的乘方运算、同底数幂的乘法法则即可得.【详解】原式63a a =⋅,9a =,故选:A .【点睛】本题考查了幂的乘方、同底数幂的乘法,熟练掌握各运算法则是解题关键.二、填空题13.a5+5a4b+10a3b2+10a2b3+5ab4+b51【分析】(1)直接根据图示规律写出图中的数字再写出(a+b )5的展开式;(2)发现这一组式子中是2与-1的和的5次幂由(1)中的结论得:2解析:a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5 1【分析】(1)直接根据图示规律写出图中的数字,再写出(a+b )5的展开式;(2)发现这一组式子中是2与-1的和的5次幂,由(1)中的结论得:25-5×24+10×23-10×22+5×2-1=(2-1)5,计算出结果.【详解】解:(1)如图,则(a+b )5=a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5;(2)25-5×24+10×23-10×22+5×2-1.=25+5×24×(-1)+10×23×(-1)2+10×22×(-1)3+5×2×(-1)4+(-1)5=(2-1)5=1.【点睛】本题考查了完全式的n 次方,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应(a+b )n 中,相同字母a 的指数是从高到低,相同字母b 的指数是从低到高.14.【分析】根据多项式乘以多项式展开在把已知式子代入求解即可;【详解】由题可知∵∴原式;故答案是:【点睛】本题主要考查了整式的化简和代数式求值准确化简计算是解题的关键解析:28m -【分析】根据多项式乘以多项式展开,在把已知式子代入求解即可;【详解】由题可知()()()2222424-+=+--=+--a b ab a b ab a b ,∵a b m -=,4ab =-,∴原式42428m m =-+-=-;故答案是:28m -.【点睛】本题主要考查了整式的化简和代数式求值,准确化简计算是解题的关键.15.10【分析】根据多项式乘多项式的法则展开在根据题意列出关于ab 的方程进而即可求解【详解】=2ax4-3ax3+ax2+2bx3-3bx2+bx+2x2-3x+1∵和的积不含x 的一次项和二次项∴a-3解析:10【分析】根据多项式乘多项式的法则展开,在根据题意,列出关于a ,b 的方程,进而即可求解.【详解】22(1)(231)ax bx x x ++⋅-+=2ax 4-3ax 3+ax 2+2bx 3-3bx 2+bx+2x 2-3x+1∵21ax bx ++和2231x x -+的积不含x 的一次项和二次项,∴a-3b+2=0且b-3=0,∴a=7且b=3,∴a+b=10,故答案是:10.【点睛】本题主要考查多项式乘多项式的法则,根据多项式不含x 的一次项和二次项,列出方程,是解题的关键.16.8x4y2【分析】直接利用积的乘方运算法则以及整式的除法运算法则分别计算得出答案【详解】解:(﹣2x )3(﹣xy2)=﹣8x3•(﹣xy2)=8x4y2(﹣a5b7)÷a5b5=a5﹣5b7﹣5=故解析:8x 4y 2 249b -【分析】直接利用积的乘方运算法则以及整式的除法运算法则分别计算得出答案.【详解】解:(﹣2x )3(﹣xy 2)=﹣8x 3•(﹣xy 2)=8x 4y 2, (﹣23a 5b 7)÷32a 5b 5 =2233-⨯a 5﹣5b 7﹣5 =249b -. 故答案为:8x 4y 2;249b -. 【点睛】本题考查了整式的乘除运算,掌握相关运算法则是关键.17.216【分析】在原来的算式前面乘上(2-1)根据平方差公式进行计算即可求解【详解】原式======216故答案是:216【点睛】本题主要考查有理数的运算掌握平方差公式是解题的关键解析:216【分析】在原来的算式前面乘上(2-1),根据平方差公式,进行计算,即可求解.【详解】原式=248(21)(21)(21)(21)(21)1-+++++=2248(21)(21)(21)(21)1-++++=448(21)(21)(21)1-+++=88(21)(21)1-++=16(21)1-+=216.故答案是:216.【点睛】本题主要考查有理数的运算,掌握平方差公式,是解题的关键.18.【分析】直接根据多项式除单项式运算法则计算即可【详解】解:==故答案为:【点睛】本题主要考查了多项式除以单项式灵活运用多项式除以单项式的运算法则成为解答本题的关键解析:-168a b +【分析】直接根据多项式除单项式运算法则计算即可.【详解】解:()221842a b abab -÷(-) =22118422a b ab ab ab ÷-÷(-)(-) =-168a b +.故答案为:-168a b +.【点睛】本题主要考查了多项式除以单项式,灵活运用多项式除以单项式的运算法则成为解答本题的关键.19.an ﹣bn 【分析】根据所给信息可知各个等式的左边两因式中一项为(a-b )另一项每一项的次数均为n-1而且按照字母a 的降幂排列故可得答案【详解】解:由题意当n=1时有(a ﹣b )(a+b )=a2﹣b2;解析:a n ﹣b n【分析】根据所给信息,可知各个等式的左边两因式中,一项为(a-b ),另一项每一项的次数均为n-1,而且按照字母a 的降幂排列,故可得答案.【详解】解:由题意,当n=1时,有(a ﹣b )(a +b )=a 2﹣b 2;当n=2时,有(a ﹣b )(a 2+ab +b 2)=a 3﹣b 3;当n=3时,有(a ﹣b )(a 3+a 2b +ab 2+b 3)=a 4﹣b 4;所以得到(a ﹣b )(a n ﹣1+a n ﹣2b +a n ﹣3b 2+……+a 2b n ﹣3+ab n ﹣2+b n ﹣1)=a n ﹣b n .故答案为:a n ﹣b n .【点睛】本题的考点是归纳推理,主要考查信息的处理,关键是根据所给信息,可知两因式中,一项为(a-b ),另一项每一项的次数均为n-1,而且按照字母a 的降幂排列.20.6【分析】根据同底数幂的乘法法则求解【详解】故答案为:6【点睛】本题考查了同底数幂的乘法解答本题的关键是掌握同底数幂的乘法法则:同底数幂相乘底数不变指数相加解析:6【分析】根据同底数幂的乘法法则求解.【详解】·236x y x y a a a +==⨯= .故答案为:6.【点睛】本题考查了同底数幂的乘法,解答本题的关键是掌握同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.三、解答题21.(1)16;(2)235b c b -+. 【分析】(1)根据乘方,绝对值,零指数幂的知识换件,然后在计算即可;(2)运用整式的除法,直接计算即可.【详解】解:(1)()031321()223⎛⎫-+---⨯- ⎪⎝⎭ ()1211()23=-+-⨯- 1223=-+ 16= (2) 22222222353a b c a bc a c ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭ 22222223532a b c a bc a c ⎛⎫⎛⎫=-⨯- ⎪ ⎪⎝⎭⎝⎭ 22222222352332a b c a bc a c a c ⎛⎫⎛⎫=⨯--⨯- ⎪ ⎪⎝⎭⎝⎭235b c b =-+ 【点睛】本题考查了有理数运算和整式的混合运算,熟悉相关运算法则是解题的关键.22.x【分析】根据完全平方公式、平方差公式、单项式乘多项式的法则计算后合并同类项,然后再利用单项式除以单项式的法则进行计算.【详解】解:原式=()2222244243x xy y x y x xy x -++--+÷=233x x ÷=x【点睛】本题考查整式的混合运算,熟练运用运算法则是解题的关键.23.22x y -+,10【分析】首先利用平方差公式、完全平方公式、多项式乘以多项式计算中括号里面的式子,再合并同类项,化简后,计算括号外的除法,最后代入x 、y 的值即可.【详解】解:原式()()222222164425210x y x xy y x xy xy y x ⎡⎤=--++--+-÷⎣⎦()2222221644210420x y x xy y x xy xy y x =-----+-+÷()222x xy x =-+÷22x y =-+.∵()230x +=,∴30x +=,20y -=,∴3x =-,2y =.∴原式()23226410=-⨯-+⨯=+=.【点睛】本题主要考查了整式的混合运算,关键是掌握整式乘、除、加、减的各种运算法则. 24.(1)7;(2)有同样的规律,(a+1)(a+7)-a(a+8)=7,理由见解析【分析】(1)根据题意列出算式11×5-4×12,再进一步计算即可;(2)如换为3,4,10,11,按要求计算即可;设方框框出的四个数分别为a ,a+1,a+7,a+8,列出算式(a+1)(a+7)-a(a+8),再进一步计算即可得.【详解】(1)11×5-4×12=55-48=7,故答案为:7;(2)换为3,4,10,11,则10×4-3×11=40-33=7;设方框框出的四个数分别为a ,a+1,a+7,a+8,则(a+1)(a+7)-a(a+8)=a 2+7a+a+7-a 2-8a=7.【点睛】本题主要考查整式的混合运算,解题的关键是根据题意列出算式,并熟练掌握整式的混合运算顺序和运算法则.25.(1)4-;(2)32ac -; 【分析】(1)由零指数幂、负整数指数幂、以及乘方的运算法则进行计算,即可得到答案; (2)由单项式乘以单项式,单项式除以单项式进行计算,即可得到答案.【详解】解:(1)2020151(1)2-⎛⎫--+- ⎪⎝⎭=141--=4-;(2)()()223234a b b c ab⋅-÷=2336(4)a b c ab -÷ =32ac -; 【点睛】 本题考查了单项式乘以单项式,单项式除以单项式,零指数幂、负整数指数幂、以及乘方的运算法则,解题的关键是掌握运算法则进行解题.26.8【分析】由完全平方公式的变形,先把代数式进行化简,然后把a +b =7,ab =11,代入计算,即可得到答案.【详解】 解:211()22a a b b -- =22111222a ab b -+ =221)1(22ab b a -+ =223(2221)ab b a ab ++-=23)1(22ab b a -+, ∵a +b =7,ab =11, ∴原式=214933711822223⨯-⨯=-=. 【点睛】 本题考查了整式的加减,完全平方公式的变形求值,解题的关键是熟练掌握运算法则,正确的进行化简.。

北师大版七年级数学下册 第一章 整式的乘除 专题练习(含答案)

北师大版七年级数学下册 第一章 整式的乘除 专题练习(含答案)

第一章 整式的乘除练习题一、选择题1.下列运算正确的是( ) A .a 5·a 2=a 10 B .a 3÷a =a 2 C .2a +a =2a 2 D .(a 2)3=a 52.已知a m =2,a n =3,则a 3m +2n 的值是( ) A .24 B .36 C .72 D .6.3.已知a =-0.32,b =-3-2,c =(-13)-2,d =(-13)0,比较a ,b ,c ,d 的大小关系,则有( )A .a <b <c <dB .a <d <c <bC .b <a <d <cD .c <a <d <b4.若(-2x +a )(x -1)中不含x 的一次项,则( ) A .a =1 B .a =-1 C .a =-2 D .a =25.若a -b =2,则a 2-b 2-4b 的值是( ) A .2 B .0 C .4 D .66.下列整式乘法运算,正确的是()A.(x-y)(y+x)=x2-y2B.(a+3)2=a2+9C.(a+b)(-a-b)=a2-b2D.(x-y)2=x2-y27.若长方形的面积是3a2-3ab+6a,一边长为3a,则它的周长为()A.2a-b+2 B.8a-2bC.8a-2b+4 D.4a-b+2二、填空题8.计算:(-8)2 021×0.1252 020+(π-3.14)0-(12)-1的结果为________.9.如图,现有A,C两类正方形卡片和B类长方形卡片各若干张,用它们可以拼成一些新的长方形.如果要拼成一个长为(3a+2b),宽为(a+b)的长方形,那么需要B类长方形卡片________张.10.计算:(2+1)×(22+1)×(24+1)×(28+1)=_________(结果可用幂的形式表示).11.若正有理数m 使二次三项式x 2-2mx +36是一个完全平方式,则m =_______.三、解答题 12.计算:(1)-a 2·a ·(-a )3+(-a 3)2+(-2a 2)3; (2)(x 2y 3)-2·xy 2÷(x 2y )-1; (3)(x +2)(2x 2-5x -3)-2x (x 2-1); (4)(2x +y +1)(2x +y -1); (5)(3x 2y -xy 2+12xy )÷(-12xy ).13.先化简,再求值:[(2a +b )(2a -b )-(2a -b )2-b (a -2b ]÷2a ,其中a =12 019,b =23.14.化简求值:[(x -4y )(x +4y )-(x -3y )2+y 2]÷(-2y ),其中x =-1,y =13.15.请先观察下列算式,再填空: 32-12=8×1;52-32=8×2.①72-52=8×_______;②92-(_______)2=8×4;③(______)2-92=8×5;④132-(_______)2=8×_______;…(1)通过观察归纳,你知道上述规律的一般形式吗?请把你的猜想写出来.(2)你能运用本章所学的平方差公式来说明你的猜想的正确性吗?16.对于一个图形,通过两种不同的方法计算它们的面积,可以得到一个数学等式,如由图1可以得到(a+b)2=a2+2ab+b2.请解答下列问题:(1)根据图1的数学等式,写出图2表示的数学等式;(2)若a+b+c=10,ab+ac+bc=35,用上面得到的数学等式乘a2+b2+c2的值;(3)小明同学用图3中的x张边长为a的正方形,y张边长为b的正方形,z张边长为a,b的长方形拼出一个面积为(a+7b)(9a+4b)的长方形,求(x+y+z)的值.参考答案一、选择题1.B2.C3.C4.C5. C6.A7.C二、填空题8.-99. 510.216-111.±6三、解答题12.解:(1)原式=a6+a6-8a6=-6a6.(2)原式=x-4y-6·xy2÷(x-2y-1)=x-1y-3.(3)原式=2x3-5x2-3x+4x2-10x-6-2x3+2x=-x2-11x-6.(4)原式=(2x+y)2-1=4x2+y2+4xy-1.(5)原式=-6x+2y-1.13.解: 原式=(4a 2-b 2-4a 2+4ab -b 2-ab +2b 2)÷2a =3ab ÷2a =32b . 当b =23时, 原式=32×23=1. 14.解: 原式=(x 2-16y 2-x 2+6xy -9y 2+y 2)÷(-2y ) =(-24y 2+6xy )÷(-2y ) =12y -3x .当x =-1,y =13时,原式=12×13-3×(-1)=7. 15. ① 3 ② 7 ③ 11 ④ 11 6解: (1)(2n +1)2-(2n -1)2=8n (n 为自然数且n ≥1). (2)原式可变为(2n +1+2n -1)(2n +1-2n +1)=4n ×28n .16.解:(1)∵图2中正方形的面积有两种算法:①(a+b+c)2;②a2+b2+c2+2ab+2ac+2bc.∴(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.(2)∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,∴a2+b2+c2=(a+b+c)2-2ab-2ac-2bc=102-2×35=30.(3)由题可知,所拼图形的面积:(a+7b)(9a+4b)=9a2+4ab+63ab+28b2=9a2+67ab+28b2,∴xa2+yb2+zab中x=9,y=28,z=67.x+y+z=9+28+67=104.。

北师大版数学七年级下册第一章整式的乘除 测试卷及答案

北师大版数学七年级下册第一章整式的乘除 测试卷及答案

北师大版七年级数学下册第一章整式的乘除一、单选题1.计算(a3)2的结果是( )A.a5B.a6C.a8D.a9 2.下列计算正确的是( )A.a3-a2=a B.a2·a3=a6C.(3a)3=9a3D.(a2)2=a4 3.已知x+y﹣4=0,则2y•2x的值是()A.16 B.﹣16 C.18D.84.下列运算正确的是( )A.﹣2x2﹣3x2=﹣5x2B.6x2y3+2xy2=3xyC.2x3•3x2=6x6D.(a+b)2=a2﹣2ab+b25.下列计算正确的是( )A.a3•a=a3B.(2a+b)2=4a2+b2C.a8b÷a2=a4b D.(﹣3ab3)2=9a2b66.下列各式:①(x-2y)(2y+x);②(x-2y)(-x-2y);③(-x-2y)(x+2y);④(x-2y)(-x+2y).其中能用平方差公式计算的是()A.①②B.①③C.②③D.②④7.如果x2+10x+_____=(x+5)2,横线处填( )A.5 B.10 C.25 D.±108.若a+b=5,ab=﹣24,则a2+b2的值等于()A.73 B.49 C.43 D.239.已知a=96,b=314,c=275,则a、b、c的大小关系是( )A.a>b>c B.a>c>b C.c>b>a D.b>c>a10.观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b )10的展开式第三项的系数是( )A .36B .45C .55D .66二、填空题11.如果x n y 4与2xy m 相乘的结果是2x 5y 7,那么mn=_____.12.若162482m m ⋅⋅=,则m = ______ .13.若3x =12,3y =4,则3x ﹣y =_____.14.3108与2144的大小关系是__________15.已知长方形的面积为4a 2-4b 2,如果它的一边长为a+b ,则它的周长为______.16.若4x 2+2(k-3)x+9是完全平方式,则k=______.17.已知x 2+y 2+10=2x +6y ,则x 21+21y 的值为_______18.已知△ABC 的三边长为整数a ,b ,c ,且满足a 2+b 2-6a-4b +13=0,则c 为______三、解答题19.化简:(x 4)3+(x 3)4﹣2x 4•x 820.化简:4(a+2)(a+1)-7(a+3)(a -3)21.化简:(x 3)2÷x 2÷x+x 3•(﹣x)2•(﹣x 2)22.化简:[a(a 2b 2-ab)-b(-a 3b-a 2)]÷a 2b23.化简:(x+2)(x-2)+(3x-1)(3x+1).24.化简:(a ﹣2b ﹣3c)(a ﹣2b+3c)25.化简:(2a+1)2﹣(2a+1)(﹣1+2a)26.化简:(x-1)2(x+1)2-1.27.(1)如图是用4个全等的长方形拼成的一个“回形”正方形,图中阴影部分面积用2种方法表示可得一个等式,这个等式为______.(2)若(4x﹣y)2=9,(4x+y)2=169,求xy的值.28.若我们规定三角“”表示为:abc;方框“”表示为:(x m+y n).例如:=1×19×3÷(24+31)=3.请根据这个规定解答下列问题:(1)计算:= ______;(2)代数式为完全平方式,则k= ______;(3)解方程:=6x2+7.参考答案1.B【解析】试题分析:(a3)2=a6,故选B.考点:幂的乘方与积的乘方.2.D【解析】A.a3与a2不能合并,故A错误;B. a2⋅a3=a5,故B错误;C. (3a)3=27a3,故C错误;D. (a2)2=a4,故D正确.故选D.3.A【解析】∵x+y-4=0,∴x+y=4,∴2y·2x=2x+y=24=16. 故选A.点睛:a m·a n=a m+n.4.A【解析】【分析】根据合并同类项法则、单项式乘单项式法则、完全平方公式逐一判断即可.【详解】A、-2x2-3x2=-5x2,此选项正确;B、6x2y3与2xy2不是同类项,不能合并,此选项错误;C、2x3•3x2=6x5,此选项错误;D、(a+b)2=a2+2ab+b2,此选项错误;故选A.【点睛】本题主要考查合并同类项、单项式乘单项式、完全平方公式,熟练掌握法则和公式是解题的关键.5.D【解析】【分析】根据同底数幂的除法、完全平方公式、单项式除以单项式进行计算即可.【详解】A. a3•a=a4,故A错误;B. (2a+b)2=4a2+b2+4ab,故B错误;C. a8b÷a2=a6b,故C错误;D. (﹣3ab3)2=9a2b6,故D正确;故选D.【点睛】本题考查的是整式的计算,熟练掌握计算法则是解题的关键.6.A【解析】试题分析:将4个算式进行变形,看那个算式符合(a+b)(a﹣b)的形式,由此即可得出结论.解:①(x﹣2y)(2y+x)=(x﹣2y)(x+2y)=x2﹣4y2;②(x﹣2y)(﹣x﹣2y)=﹣(x﹣2y)(x+2y)=4y2﹣x2;③(﹣x﹣2y)(x+2y)=﹣(x+2y)(x+2y)=﹣(x+2y)2;④(x﹣2y)(﹣x+2y)=﹣(x﹣2y)(x﹣2y)=﹣(x﹣2y)2;∴能用平方差公式计算的是①②.故选A.点评:本题考查了平方差公式,解题的关键是将四个算式进行变形,再与平方差公式进行比对.本题属于基础题,难度不大,解决该题型题目时,牢记平分差公式是解题的关键.7.C【解析】试题解析:设需要填空的数为A,则原式为:x2+10x+A=(x+5)2.∴x2+10x+A=x2+10x+25,∴A=25.故选C.8.A【解析】∵a+b=5,∴a2+2ab+b2=25,∵ab=﹣24,∴a2+b2=25+2×24=73,故选A.【点睛】本题考查了完全平方公式的应用,熟记完全平方公式是解题的关键.9.C【解析】【分析】27=315,易得答案.根据幂的乘方可得:a=69=312,c=5【详解】27=315,因为a=69=312,b=143,c=5所以,c>b>a故选C【点睛】本题考核知识点:幂的乘方. 解题关键点:熟记幂的乘方公式.10.B【解析】【分析】归纳总结得到展开式中第三项系数即可.【详解】解:解:(a+b )2=a 2+2ab+b 2;(a+b )3=a 3+3a 2b+3ab 2+b 3;(a+b )4=a 4+4a 3b+6a 2b 2+4ab 3+b 4;(a+b )5=a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5;(a+b )6=a 6+6a 5b+15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6;(a+b )7=a 7+7a 6b+21a 5b 2+35a 4b 3+35a 3b 4+21a 2b 5+7ab 6+b 7;第8个式子系数分别为:1,8,28,56,70,56,28,8,1;第9个式子系数分别为:1,9,36,84,126,126,84,36,9,1;第10个式子系数分别为:1,10,45,120,210,252,210,120,45,10,1,则(a+b )10的展开式第三项的系数为45.故选B .【点睛】本题考查了完全平方公式的规律,根据给的式子得出规律是解题的关键.11.12【解析】41457222n m n m x y xy x y x y ++⋅== ,∴n +1=5,m +4=7,解得:m =3,n =4,∴mn =12.故答案为12.12.3【解析】【分析】先将4m 、8m 化成底数为2的幂,然后利用同底数幂的乘法求解即可.【详解】∵248m m ⋅⋅=23511622222m m m +⨯⨯==,∴m=3.故答案为:3.【点睛】此题主要考查了同底数幂相乘的运算方法以及幂的逆运算,熟练掌握运算法则是解题的关键.13.3【解析】【分析】首先应用含3x,3y的代数式表示3x-y,然后将3x,3y的值代入即可求解.【详解】解:∵3x=12,3y=4,∴3x-y=3x÷3y,=12÷4,=3.故答案为:3.【点睛】本题主要考查同底数幂的除法性质的逆用,熟练掌握运算性质并灵活运用是解题的关键.14.3108>2144【解析】【分析】把3108和2144化为指数相同的形式,然后比较底数的大小.【详解】解:3108=(33)36=2736,2144=(24)36=1636,∵27>16,∴2736>1636,即3108>2144.故答案为3108>2144.【点睛】本题考查了幂的乘方,解答本题的关键是掌握幂的乘方的运算法则.【解析】【分析】直接利用多项式除法运算法计算得出其边长,进而得出答案.【详解】由题意得,长方形的另一边长为:(4a2-4b2)÷(a+b)=4a-4b,∴该长方形的周长为:(4a-4b+a+b)×2=10a-6b,故:应填10a-6b【点睛】本题主要考查多项式的除法运算,解题关键是正确掌握运算法则.16.9或﹣3【解析】原式可化为(2x)2+2(k-3)x+32,又∵4x2+2(k-3)x+9是完全平方式,∴4x2+2(k-3)x+9=(2x±3)2,∴4x2+2(k-3)x+9=4x2±12x+9,∴2(k-3)=±12,解得:k=9或-3,故答案为9或-3.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,熟记完全平方公式对解题非常重要.17.64【解析】∵x2+y2+10=2x+6y,∴x2+y2+10-2x-6y=0,∴(x-1)2+(y-3)2=0,∵(x-1)2≥0,(y-3)2≥0,∴x-1=0,y-3=0,解得:x=1,y=3;∴x21+21y=121+21×3=63+1=64,故答案为:64.18.2或3或4【解析】【分析】由a2+b2-6a-4b+13=0,,得(a-3)2+(b-2)2=0,求得a、b的值,再根据三角形的三边关系定理求得c的取值范围,根据c为整数即可求得c值.【详解】∵a2+b2-6a-4b+13=0,∴(a-3)2+(b-2)2=0,∴a-3=0,b-2=0,解得a=3,b=2,∵1<c<5,且c为整数,∴c=2、3、4,故答案为:2或3或4.【点睛】本题主要考查了非负数的性质、完全平方公式、三角形三边关系,根据非负数的性质求得a、b的值,再利用三角形的三边关系确定c的值是解决此类题目的基本思路.19.0【解析】【分析】直接利用整式运算法-乘方的运算则计算得出答案.【详解】解:原式=x12+x12-2x12=0【点睛】本题主要考查整式的混合运算,正确运用整式运算法-乘方的运算是解答题目的关键. 20.-3a2+12a+71【解析】【分析】根据整式四则混合运算的顺序和法则计算即可.【详解】解:4(a+2)(a+1)-7(a+3)(a-3)=4(a2+3a+2)-7(a2-9)=4a2+12a+8-7a2+63=-3a2+12a+71.故答案为:-3a2+12a+71.【点睛】本题考查了整式的混合运算.21.x3﹣x7【解析】【分析】直接利用整式运算法则-乘方的运算计算得出答案.【详解】(x3)2÷x2÷x+x3•(﹣x)2•(﹣x2)=x6÷x2÷x-x3•x2•x2=x6-2-1-x3+2+2= x3﹣x7【点睛】本题主要考查整式的混合运算,正确运用整式运算法-乘方的运算是解答题目的关键. 22.2ab【解析】【分析】先算乘法,再合并同类项,最后算除法.【详解】解:[a(a2b2-ab)-b(-a3b-a2)]÷a2b=(a3b2-a2b+a3b2+a2b)÷a2b=2a3b2÷a2b=2ab.故答案为:2ab.【点睛】本题考查了整式的混合运算,能正确根据整式的运算法则进行化简是解此题的关键.23.10 x2-5.【解析】【分析】根据平方差公式以及整式的运算法则即可求出答案.【详解】原式= x 2-4 +9 x 2-1=10 x 2-5.【点睛】本题考查了平方差公式,解答本题的关键是掌握平方差公式的形式,这是需要我们熟练记忆的内容,属于基础题型.24.a 2+4b 2﹣4ab ﹣9c 2【解析】【分析】原式利用平方差公式化简,再利用完全平方公式展开即可得到结果.【详解】原式=[][]a 2b 3c a 2b 3c ---+=22a 2b 3c ()-- =222449a b ab c +--.故答案为222449a b ab c +--.【点睛】本题考查平方差公式,完全平方公式.25.4a+2【解析】【分析】运用完全平方和公式、多项式乘多项式法则去括号后,再合并同类项即可.【详解】(2a+1)2﹣(2a+1)(﹣1+2a)=4a 2+4a+1-4a 2+1=4a+2【点睛】考查了整式的混合运算,解本题的关键运用完全平方和公式((a+b)2=a2+2ab+b2)和多项式乘多项式法则((a+b)(c+d)=ac+ad+bc+bd).26.x4-2x2.【解析】【分析】先利用平方差公式进行计算,然后利用完全平方公式进行计算.【详解】解:(x-1)2(x+1)2-1=[(x-1)(x+1)]2-1=(x2-1)2-1=x4-2x2+1-1=x4-2x2.故答案为:x4-2x2.【点睛】本题考查了利用平方差公式和完全平方公式对整式进行化简.27.(1)4ab;(2)10.【解析】【分析】(1)根据长方形面积公式列①式,根据面积差列②式,得出结论;(2)由(1)的结论得出(2x+y)2-(2x-y)2=8xy,把已知条件代入即可.【详解】(1)S阴影=4S长方形=4ab①,S阴影=S大正方形-S空白小正方形=(a+b)2-(b-a)2②,由①②得:(a+b)2-(a-b)2=4ab,故答案为:(a+b)2-(a-b)2=4ab;(2)∵(4x+y)2-(4x-y)2=16xy,∴16xy=169-9,∴xy=10.【点睛】本题考查了完全平方公式几何意义的理解,此题有机地把代数与几何图形联系在一起,利用几何图形的面积公式直接得出或由其图形的和或差得出.28.(1)32-;(2)±3;(3)x=-4.【解析】【详解】解:(1) =[2×(-3)×1]÷[(-1)4+31] =-6÷4 =-32.故答案为32 -;(2)=[x2+(3y)2]+xk•2y =x2+9y2+2kxy,∵代数式为完全平方式,∴2k=±6,解得k=±3.故答案为±3;(3)=6x2+7,(3x-2)(3x+2)]-[(x+2)(3x-2)+32]=6x2+7,解得x=-4.。

北师大版七年级数学下册第一章整式的乘除单元测试题含答案

北师大版七年级数学下册第一章整式的乘除单元测试题含答案

北师大版七年级数学下册第一章整式的乘除单元测试题含答案北师大版七年级数学下册第一章整式的乘除单元测试题一.选择题(共10小题,每小题3分,共30分)1.计算:x^3·x^2等于()A。

2B。

x^5C。

2x^5D。

2x^62.下列运算正确的是()A。

x^2·x^3=a^6B。

(x^3)^2=x^6C。

(-3x)^3=27x^3D。

x^4+x^5=x^93.下列计算结果为a^6的是()A。

a^8-a^2B。

a^12÷a^2C。

a^3·a^2D。

(a^2)^34.若(x+2m)(x-8)中不含有x的一次项,则m的值为()A。

4B。

-4C。

0D。

4或-45.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”。

如4=2^2-2^2,12=4^2-2^2,20=6^2-4^2,因此4,12,20都是“神秘数”,则下面哪个数是“神秘数”()A。

56B。

66C。

76D。

866.下列各式,能用平方差公式计算的是()A。

(2a+b)(2b-a)B。

(a+b)^2C。

(2a-3b)(-2a+3b)D。

(-a-2b)(-a+2b)7.若x^2+(m-3)x+16是完全平方式,则m的值是()A。

-5B。

11C。

-5或11D。

-11或58.已知a+b=2,ab=-2,则a^2+b^2=()A。

4B。

8C。

-4D。

99.下列运算中,正确的是()A。

a^2+a^2=2a^4B。

(a-b)^2=a^2-b^2C。

(-x^6)·(-x)^2=x^8D。

(-2a^2b)^3÷4a^5=-2ab^310.在长方形ABCD内,将两张边长分别为a和b(a≥b)的正方形纸片图1、图2两种放置(图1,图2中两张正方形纸片均有部分重叠),长方形未被这两张正形纸片覆盖的部分用阴影表示,若图1中阴影部分的面积为S1,图2中阴影部分的面积和为S2,则关S1,S2的大小关系表述正确的是()A。

北师大版七年级数学下册《第一章整式的乘除》单元测试题(含答案)

北师大版七年级数学下册《第一章整式的乘除》单元测试题(含答案)

北师大版七年级数学下册《第一章整式的乘除》单元测试题(含答案)814.简化:(2a-3b)(-a+b)=________.2a^2+7ab-3b^215.若x=3,y=5,则x^2+y^2=________.3416.已知函数f(x)=2x-3,则f(5)=________.7三、解答题(共52分)17.(6分)已知a,b是正整数,且a+b=10,求a和b的值。

解:根据题意,得到方程a+b=10,移项得到a=10-b。

由于a和b都是正整数,所以b最小为1,最大为9.代入方程可得到a的取值分别为9、8、7、6、5、4、3、2、1.因此,a和b的值可能为(9,1),(8,2),(7,3),(6,4),(5,5),(4,6),(3,7),(2,8),(1,9)。

18.(6分)已知函数f(x)=2x+1,求f(3)和f(a+1)。

解:代入x=3,可得到f(3)=2×3+1=7.代入x=a+1,可得到f(a+1)=2(a+1)+1=2a+3.19.(8分)已知直角三角形的斜边长为5,一条直角边长为3,求另一条直角边长。

解:设另一条直角边长为x,则根据勾股定理可得到x^2+3^2=5^2,即x^2=16,因此x=4.20.(8分)已知等差数列的前两项为3和7,公差为4,求第10项的值。

解:设等差数列的第10项为a10,则根据等差数列的通项公式可得到a10=3+4×(10-1)=39.21.(12分)已知函数f(x)=x^2-2x+1,求f(x+1)和f(x-1)。

解:代入x+1,可得到f(x+1)=(x+1)^2-2(x+1)+1=x^2+2x+1=f(x)+4x。

代入x-1,可得到f(x-1)=(x-1)^2-2(x-1)+1=x^2-4x+1=f(x)-4x。

因此,f(x+1)=f(x)+4x,f(x-1)=f(x)-4x。

14.计算:(3a-2b)·(2b+3a) = 12a^2 - 4b^215.若a+b=5,ab=2,则(a+b)^2 = 2516.如图4,有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙。

北师大版七年级下册--第一章-整式的乘除---单元测试题-含答案

北师大版七年级下册--第一章-整式的乘除---单元测试题-含答案

北师大版七年级下册第一章整式的乘除单元测试题一、选择题1 •下列计算正确的是()3 2 2 3 6A. a — a = aB. a a = a3 3 2、2 4C. (3a) = 9aD. (a ) = a2. PM2.5是指大气中直径小于或等于 0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A . 0.25 X0—3B. 0.25 X0—4C . 2.5 X0—5 D. 2.5 X0—63 . 若 102a= x,10b= y,则 104a+ 23的值为()A . xy B. 2xyC .2 2xy D.2xy4 . 下列各式中不能用平方差公式进行计算的是( )A . (m— n )(m+ n) B. (—x—y)( —x—y)C . / 4 4 4 | 4、(x — y )(x +y)D. (a3—b3)(b3+a3)5. 2x y g 3xy+ y3)的计算结果是()A .2 43 2 | 22x y — x y + x y B. —x2y+ 2x2y4C . 2x y + x y — 6x y D. —6x3y2+ 2x2y6.下列计算中正确的是()A. (— 2a2b3)十—2ab)= a2b22 4 2 2 2B. (— 2a b)十一2ab) = a b1C. 2 a bc^a b=4c1 2, 3D. ga b c 讯一5abc) = 5b7.已知 a+ b= m, ab= — 4,化简(a — 2)(b— 2)的结果是()A . 6B . 2m— 8C. 2m D . — 2m8 .算式999032 + 888052 + 777072之值的十位数字为()A . 1B . 2、填空题9. (1)若 2m = 3,2n = 5,则 4m+n⑵若3x= 4,0 = 7,则3x为的值为_________ .10._______________________________ 计算:(4a— b2)2= .11.____________________________________ 计算:20152— 2X2015X2014+ 20142 = .12. 已知 P = 3xy— 8x+ 1,Q= x— 2xy— 2,当 x^0时,3P— 2Q= 7 恒成立,则 y 的值为13 .如果a与b异号,那么(a+ b)2与(a— b)2的大小关系是三、解答题14. 计算:"八 3 2「7 ,2、z 2 3(1) m m + m 讯一m )+ (m );2 23 42(2) (x — 2xy) 9x — (9xy — 12x y ) -3xy.15. 计算:(1) (3a+ 5b — 2c)(3a — 5b— 2c);(2) (x+ 1)(x2— 1)(x— 1).16. 如图,要设计一幅长为3xcm、宽为2ycm的长方形图案,其中有两横两竖的彩条,横彩条的宽度为acm,竖彩条的宽度为bcm,问空白区域的面积是多少?17. 试说明:两个连续奇数的积加上1, 一定是一个偶数的平方.18. 当x、y为何值时,代数式x2 + y2+ 4x— 6y+ 15有最小值?并求出最小值.。

北师大版数学七年级下册数学第一章整式的乘除练习(含答案)

北师大版数学七年级下册数学第一章整式的乘除练习(含答案)

第一章 整式的乘除一、单选题1.若3x =4,3y =6,则3x+y 的值是( )A .24B .10C .3D .22.计算23(2)a -的结果是( )A .56a -B .66a -C .68aD .68a -3.下列计算正确的是( )A .224a a a +=B .326a a a ⋅=C .624a a a ÷=D .23249()a b a b -=4.把多项式x 2+ax+b 分解因式,得(x+1)(x-3),则a 、b 的值分别是( )A .a=2,b=3B .a=-2,b=-3C .a=-2,b=3D .a=2,b=-35.要使()22(21)x ax x ++-的结果中不含2x 项,则常数a 的值为( ) A .0 B .12 C .1 D .-26.下列算式能用平方差公式计算的是( )A .(2+)(2)a b b a -B .(21)(21)x x +--C .()()m n m n +-D .(3)(3)x y x y --+7.如果二次三项式x 2﹣16x+m 2是一个完全平方式,那么m 的值是( )A .±8B .4C .±4D .88.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙)。

那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( )A .()222a b a b -=-B .()2222a b a ab b +=++ C .()2222a b a ab b -=-+ D .()()22a b a b a b -=+- 9.计算:3432(2)12a b a b ⋅÷的结果是( )A .216bB .232bC .223bD .2223b a10.若3x 2﹣5x +1=0,则5x (3x ﹣2)﹣(3x +1)(3x ﹣1)=( )A .﹣1B .0C .1D .﹣2二、填空题11.若832221a -⨯⨯=,则a 的值为________.12.若()()1x x a ++展开是一个二次二项式,则a=_______.13.如图,从一个边长为a 的正方形的一角上剪去一个边长为b (a>b )的正方形,则剩余(阴影)部分正好能够表示一个乘法公式,则这个乘法公式是_____(用含a ,b 的等式表示).14.已知(2019﹣a )2+(a ﹣2017)2=7,则代数式(2019﹣a )(a ﹣2017)的值是_____.三、解答题15.(1)若4a +3b =3,求92a •27b .(2)已知3×9m ×27m =321,求m 的值 16.计算:(1)-102n ×100×(-10)2n -1;(2)[(-a )·(-b )2·a 2b 3c ]2;(3)(x 3)2÷x 2÷x -x 3÷(-x )4·(-x 4);(4)(-9)3×32()3-×353n a n ∴=-+; (5)x n +1·x n -1·x ÷x m ;(6)a 2·a 3-(-a 2)3-2a ·(a 2)3-2[(a 3)3÷a 3].17.如图是某居民小区内的一个长方形花园,花园的长为40m ,宽为30m ,在它的四个角各建一个同样大小的正方形观光休息亭,四周建有与休息亭等宽的观光大道,其余部分(图中阴影部分)种植花草.若正方形观光休息亭的边长为a m ,则种植花草部分的面积为多少?18.(1)计算并观察下列各式:(x -1)(x +1)= ;(x -1)( 2x +x +1)= ;(x -1)( 3x +2x +x +1)= ;(2)从上面的算式及计算结果,你发现了什么?请根据你发现的规律直接写下面的空格.(x -1) =6x -1; (3)利用你发现的规律计算:65432(1)(1)x x x x x x x -++++++= ;(4)利用该规律计算:2320191555...5+++++.19.图1,是一个长为2m ,宽为2n 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的面积为 ;(2)观察图2,三个代数式()2m n +,()2m n -,mn 之间的等量关系是 ; (3)若6x y +=-, 2.75xy =,求x y -; (4)观察图3,你能得到怎样的代数恒等式呢?答案1.A2.D3.C4.B5.B6.C7.A8.D9.C10.A11.5-12.-1或013.()()22a b a b a b -=+- 1415 416. (1) 104n +1;(2) a 6b 10c 2;(3) 2x 3;(4) 8;(5) x 2n -m +1;(6)-2a 7-a 6+a 5.17.(4a 2-140a+1200)平方米18.(1)x2−1;x3−1;x4−1(2)(x5+x4+x3+x2+x+1)(3)x7−1(4)14(52020−1)19.(1)()2m n-;(2)()()224m n m n mn+=-+;(3)5x y-=±;(4)()()22 223m n m n m mn n++=++。

北师大版七年级数学下册第一章 整式的乘除练习(含答案)

北师大版七年级数学下册第一章 整式的乘除练习(含答案)

第一章 整式的乘除一、单选题1.计算23()a a -⋅的结果正确的是( )A .6a -B .6aC .5a -D .5a2.如果()31293n =,则n 的值是( )A .4B .3C .2D .13.计算(-m 2n )3的结果是( )A .5m n -B .63m nC .63m n -D .53m n -4.下列运算正确的是( )A .a 3•a 4=a 12B .(a 3)2=a 5C .(3a 2)3=27a 6D .a 6÷a 3=a 25.计算:23(2)a a •-=( )A .312a -B .27a -C .312aD .27a6.现规定一种运算:a※b=ab+a -b ,其中 a ,b 为有理数,则 a※b+(b -a )※b 等于( )A .a 2- bB .b 2- aC .b 2D .b 2- b7.若()()3x a x +-的积中不含x 的一次项,则a 的值是( )A .0B .3C .-3D .3或-38.已知12020a x =+,11920b x =+,12120c x =+,那么代数式222a b c ab bc ac ++---的值是( ).A .4B .3C .2D .19.如图,边长为a 的大正方形剪去一个边长为b 的小正方形后,将剩余部分通过割补拼成新的图形.根据图形能验证的等式为( )A .()222a b a b -=-B .()()22a b a b a b -=+-C .()2222a b a ab b -=-+D .()2222a b a ab b +=++ 10.图(1)是一个长为2m ,宽为2n (m >n )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A .2mnB .(m+n )2C .(m -n )2D .m 2-n 2二、填空题11.计算(-23)2017×(112)2018=______. 12.计算:()()3121m m --=_____13.已知实数m 满足x 2-3x+1=0,则代数式221m m +的值等于____. 14.化简:6(7+1)(72+1)(74+1)(78+1)(716+1)+1=______.三、解答题15.计算:(1)3222132a b c a b ⨯. (2)()22121(4)x x x x x +----(); 16.(1)若35a =,310b =,则3a b +的值. (2)已知3a b +=,225a b +=,求ab 的值.17.如图,在长方形ABCD 中,放入6个形状和大小都相同的小长方形,已知小长方形的长为a ,宽为b ,且a >b .(1)用含a 、b 的代数式表示长方形ABCD 的长AD 、宽AB ;(2)用含a 、b 的代数式表示阴影部分的面积.18.某同学化简()()()2a a b a b a b +-+-出现了错误,解答过程如下:原式=()2222a ab a b +-- (第一步)=2222a ab a b +--(第二步)=22ab b -(第三步)(1)该同学解答过程从第_____步开始出错,错误原因是______________________;(2)写出正确的解答过程.19.已知a +b =1,ab =﹣1,设S 1=a +b ,S 2=a 2+b 2,S 3=a 3+b 3,…,S n =a n +b n (1)计算S 2.(2)请阅读下面计算S 3的过程:()()()()()()()()()()()33332222323222222222a b a b b a b a a b a b a b a b a b b a a b a a b b b a ab b a a b b a ab a b +=++-+-=+++-+=+++-+=++-+∵a +b =1,ab =﹣1∵S 3=a 3+b 3=(a +b )(a 2+b 2)﹣ab (a +b )=1×S 2﹣(﹣1)=S 2+1= . 你读懂了吗?请你先填空完成(2)中S 3的计算结果,再用你学到的方法计算S 4 (3)试写出S n ﹣2,S n ﹣1,S n 三者之间的数量关系式(不要求证明,且n 是不小于2的自然数),根据得出的数量关系计算S 7答案1.D2.C3.C4.C5.C6.D7.B8.B9.B10.C11.-11212.2651m m -+13.7.14.73215.(1)5313a b c ;(2)3294x x -+- 16.(1)50;(2)217.(1)AD=a+2b ,AB=a+b ;(2)a 2-3ab+2b 2 18.(1)二,去括号时2b -没变号;(2)22ab b +19.(1)3;(2)4,S 4=7;(3)S n ﹣2+S n ﹣1=S n ,S 7=29。

北师大版七年级数学下册单元测试卷第一章 整式的乘除附答案

北师大版七年级数学下册单元测试卷第一章 整式的乘除附答案

第一章整式的乘除一、选择题(共15小题;共60分)1. 计算的结果等于A. B. D. 没有意义2. 下列计算正确的是A. B.C. D.3. 计算:C. D. 不能确定4. 下列计算中正确的是A. B. C. D.5. 下列各式中,正确的是A. B.C. D.6. 下列运算正确的是A. B.C. D.7. 如果是一个完全平方式,则等于A. B. C. D.8. 若,则,的值分别为A. ,B. ,C. ,D. ,9. 下列计算正确的是A. B. C. D.10. 下列说法正确的是A. B.C. D.11. 地球的体积约为立方千米,太阳的体积约为立方千米,地球的体积约是太阳体积的倍数是A. B. C. D.12. 若,,则的值为A. B. C. D.13. 纳米相当于根头发丝直径的六万分之一.则利用科学记数法来表示,头发丝的半径是A. 万纳米B. 纳米C. 米D. 米14. 当时,的值为15. 某人将看成了一个填数游戏式:.于是,他在每个框中各填写了一个两位数与,结果发现,所得到的六位数恰是一个完全立方数.则A. B. C. D.二、填空题(共8小题;共32分)16. 计算:.17. 计算:.18. 计算.19. 计算:.20. 已知,则.21. 计算:.22. 已知,则.23. 若,,则.三、解答题(共5小题;共58分)24. 计算下列各式,并用幂的形式表示结果.(1).(2).(3).(4).25. 计算:.26. 计算:27. 如图,某市有一块长为米,宽为米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当,时的绿化面积.28. 计算:(1).(2).答案第一部分1. B2. B3. A4. B 【解析】因为;;;,所以只有选项B正确.5. B6. B7. D8. B9. B10. D11. B 【解析】地球的体积约为立方千米,太阳的体积约为立方千米,地球的体积约是太阳体积的倍数是:.12. B13. D14. D 【解析】.当时,.15. D第二部分16.17.18.19.21.【解析】22.23.第三部分24. (1).(2).(3).(4).25.26. 原式27. .当,时,.28. (1).(2).。

北师大版数学七年级下册第一章整式的乘除 测试题及答案

北师大版数学七年级下册第一章整式的乘除 测试题及答案

北师大版七年级数学下册第一章 整式的乘除一、单选题1.计算(-a 3)2的结果是 ( )A .-a 5B .a 5C .a 6D .-a 6 2.下列计算正确的是( )A .(a 3)2=a 5B .a 2+a 5=a 7C .(ab)3=ab 3D .a 2•a 5=a 7 3.下列运算正确的是( )A .(a 4)3=a 7B .a 4÷a 3=a 2C .(3a ﹣b)2=9a 2﹣b 2D .-a 4•a 6=﹣a 10 4.若(x+2)(x ﹣1)=x 2+mx+n ,则m+n=( )A .1B .-2C .-1D .25.下列运算正确的是( )A .5m+2m=7m 2B .﹣2m 2•m 3=2m 5C .(﹣a 2b )3=﹣a 6b 3D .(b+2a )(2a ﹣b )=b 2﹣4a 26.已知x 2-y 2=6,x-y=1,则x+y 等于( )A .2B .3C .4D .67.若m+n=3,则2m 2+4mn+2n 2﹣6的值为( )A .12B .6C .3D .08.设M=(x ﹣3)(x ﹣7),N=(x ﹣2)(x ﹣8),则M 与N 的关系为( )A .M <NB .M >NC .M=ND .不能确定 9.若实数x,y,z 满足()()()240x z x y y z ----=,则下列式子一定成立的是( )A .x+y+z=0B .x+y-2z=0C .y+z-2x=0D .z+x-2y=0 10.有3张边长为a 的正方形纸片,4张边长分别为a 、b (b >a )的矩形纸片,5张边长为b 的正方形纸片,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),则拼成的正方形的边长最长可以为 A .a+bB .2a+bC .3a+bD .a+2b二、填空题11.若35,32x y ==,则23x y +为__________12.计算 -a×(-a)2×(-a)3=______13.计算7x ÷4x 的结果等于____________. 14.计算:201734()×2018113(﹣)=___________. 15.如图,矩形ABCD 的面积为 (用含x 的代数式表示).16.已知长方形的面积为4a 2-4b 2,如果它的一边长为a+b ,则它的周长为______.17.如果22(1)4x m x +-+是一个完全平方式,则m =__________.18.请先观察下列算式,再填空:32-12=8×1,52-32=8×2,72-52=8×3;92-72=8×4,…,通过观察归纳,写出用n(n 为正整数)反映这种规律的一般结论:_______________________三、解答题19.化简:(﹣2a 2)2•a 4﹣(5a 4)2.20.化简:(x 4)3+(x 3)4﹣2x 4•x 821.化简:(a+b)(a 2﹣ab+b 2);22.化简:x(4x +3y)-(2x +y)(2x -y)23.化简:(a ﹣2b ﹣3c)(a ﹣2b+3c)24.化简:(x+3)2-(x-1)(x-2).25.若M=(x-3)(x-5),N=(x-2)(x-6),则M与N的大小关系为______ .26.若x+y=3,且(x+2)(y+2)=12.(1)求xy的值;(2)求x2+3xy+y2的值.27.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20都是“神秘数”(1)28和2012这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(k取正数)是神秘数吗?为什么?参考答案1.C【解析】【分析】根据幂的乘方法则:幂的乘方,底数不变,指数相乘.即可得出结果【详解】()236-=,故选C.a a【点睛】本题考查幂的乘方,本题属于基础应用题,只需学生熟练掌握幂的乘方法则,即可完成. 2.D【解析】【分析】直接利用幂的乘方运算法则以及合并同类项法则、积的乘方运算法则分别化简求出答案.【详解】A.32()=6a,故此选项错误;aB.25+,不是同类项,不能合并,故此选项错误;a aC.333ab a b(),故此选项错误;=D.257=,正确.a a a故选D.【点睛】本题考查幂的乘方与积的乘方, 合并同类项, 同底数幂的乘法.3.D【解析】【分析】根据积的乘方,同底数幂的除法,完全平方公式,同底数幂的乘法分别求出每个式子的值,再判断即可.【详解】A.4312a a =(),故本选项错误;B.43a a a ÷=,故本选项错误;C.2223a b 96a ab b -=-+(),故本选项错误;D.4610a a a -=-,故本选项正确.故选D. 【点睛】本题考查完全平方公式, 同底数幂的乘法, 幂的乘方与积的乘方, 同底数幂的除法.4.C【解析】试题分析:依据多项式乘以多项式的法则,进行计算(x+2)(x-1)=2x +x ﹣2 =2x +mx+n ,然后对照各项的系数即可求出m=1,n=﹣2,所以m+n=1﹣2=﹣1.故选C考点:多项式乘多项式5.C【解析】试题分析:选项 A ,根据合并同类项法则可得5m+2m=(5+2)m=7m ,错误;选项B ,依据单项式乘单项式法则可得﹣2m 2•m 3=﹣2m 5,错误;选项C ,根据积的乘方法则可得(﹣a 2b )3=﹣a 6b 3,正确;选项D ,根据平方差公式可得(b+2a )(2a ﹣b )=(2a+b )(2a ﹣b )=4a 2﹣b 2,错误.故答案选C .考点:幂的乘方与积的乘方;合并同类项;单项式乘单项式;平方差公式.6.D【解析】【分析】已知第一个等式左边利用平方差公式分解后,将x -y =1代入计算即可求出x +y 的值.【详解】∵x 2﹣y 2=(x +y )(x −y )=6,x −y =1,∴x +y =6.【点睛】本题考查的是平方差公式,熟练掌握平方差公式是解题的关键.7.A【解析】【分析】根据完全平方公式,将2m 2+4mn+2n 2改写成22()m n +,然后把已知条件代入即可.【详解】∵m+n=3,∴222426m mn n ++-,=22()6m n +-,=18-6=12,故选A.【点睛】本题考查了完全平方公式,能够将2m 2+4mn+2n 2改写成22()m n +,并熟练掌握公式是解决本题的关键.8.B【解析】由于M=(x-3)(x-7)=x 2-10x+21,N=(x-2)(x-8)=x 2-10x+16,可以通过比较M 与N 的差得出结果.解:∵M=(x-3)(x-7)=x 2-10x+21,N=(x-2)(x-8)=x 2-10x+16,M-N=(x 2-10x+21)-(x 2-10x+16)=5,∴M>N .故选B .“点睛”本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项,掌握多项式乘以多项式的法则是解题的关键.9.D∵(x ﹣z )2﹣4(x ﹣y )(y ﹣z )=0,∴x 2+z 2﹣2xz ﹣4xy+4xz+4y 2﹣4yz=0,∴x 2+z 2+2xz ﹣4xy+4y 2﹣4yz=0,∴(x+z )2﹣4y (x+z )+4y 2=0,∴(x+z ﹣2y )2=0, ∴z+x ﹣2y=0.故选D .10.D【解析】试题分析:3张边长为a 的正方形纸片的面积是3a 2,4张边长分别为a 、b (b >a )的矩形纸片的面积是4ab ,5张边长为b 的正方形纸片的面积是5b 2,∵a 2+4ab+4b 2=(a+2b )2,∴拼成的正方形的边长最长可以为(a+2b ,.故选D .11.20【解析】【分析】根据幂的乘方和积的乘方的运算法则得出22333x y x y +=(),代入求出即可.【详解】∵3x =5,32y =,∴2223335220x y x y +==⨯= .故答案为:20.【点睛】本题考查幂的乘方与积的乘方,同底数幂的乘法.12.6a【解析】【分析】根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,计算即可.【详解】23a a a -⨯-⨯-()()=123a a a -⨯-⨯-=6a -()=6a .故答案为:6a .【点睛】本题考查同底数幂的乘法.13.3x【解析】【分析】根据同底数幂的除法法则:同底数幂相除,底数不变,指数相减,计算即可.【详解】7x ÷4x =74x -=3x .故答案为:3x .【点睛】本题考查同底数幂的除法.14.43【解析】【分析】 先把原式化为201734()×20174433()⨯,再根据有理数的乘方法则计算.【详解】201734()×2018113(﹣) =201734()×201843() =201734()×20174433()⨯ =2017344433⨯⨯() =143⨯=43. 故答案为:43 . 【点睛】本题考查幂的乘方与积的乘方,同底数幂的乘法.15.x 2+5x+6【解析】试题分析:根据面积的计算法则可得:S=(x+3)(x+2)=+5x+6.考点:多项式的乘法计算16.10a-6b【解析】【分析】直接利用多项式除法运算法计算得出其边长,进而得出答案.【详解】由题意得,长方形的另一边长为:(4a 2-4b 2)÷(a+b )=4a-4b,∴该长方形的周长为:(4a-4b+a+b )×2=10a-6b , 故:应填 10a-6b【点睛】本题主要考查多项式的除法运算,解题关键是正确掌握运算法则.17.-1或3【解析】【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m 的值.【详解】解:∵22(1)4x m x +-+=222(1)2x m x +-+, ∴2(m-1)x=±2×x×2,解得m=-1或m=3.故答案为:-1或3【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.18.(2n +1)2-(2n -1)2=8n【解析】【分析】结合题意可知,题目中等式左边的被减数和减数的底数都是连续的奇数的平方差,等式的右边是8的倍数,第一个式子是8的1倍,第二个式子是8的2倍,第三个式子是8的3倍,依此得出规律.【详解】由题意,可得等式左边的被减数和减数的底数都是连续的奇数的平方差,等式的右边是8的倍数,第一个式子是8的1倍,第二个式子是8的2倍,第三个式子是8的3倍,…,∴用n(n 为正整数)反映这种规律的一般结论为()()222121n n +--=8n .故答案为:()()222121n n +--=8n .【点睛】本题考查规律型:数字的变化类.19.﹣21a 8【解析】【分析】根据积的乘方等于乘方的积,可得单项式的乘法,根据单项式的乘法,可得同类项,根据合并同类项,可得答案.【详解】原式=444825a a a -=48825a a -=821a -.故答案为:821a -.【点睛】本题考查单项式乘单项式, 幂的乘方与积的乘方,合并同类项.20.0【解析】【分析】直接利用整式运算法-乘方的运算则计算得出答案.【详解】解:原式=x12+x12-2x12=0【点睛】本题主要考查整式的混合运算,正确运用整式运算法-乘方的运算是解答题目的关键. 21.a3﹣b3.【解析】【分析】根据多项式乘法法则进行化简.【详解】原式=a3+a2b+ab2﹣a2b﹣ab2﹣b3=a3﹣b3.【点睛】本题主要考查了多项式乘法法则,熟练掌握多项式乘法法则是本题解题的关键.22.-3xy+y2【解析】【分析】原式第一项利用单项式乘以多项式法则计算,第二项利用平方差公式化简,去括号合并即可得到结果.【详解】原式=4x2-3xy﹣(4x2-y2)=4x2-3xy﹣4x2+y2=-3xy+y2.【点睛】本题考查了整式的混合运算,熟练掌握运算法则是解答本题的关键.23.a2+4b2﹣4ab﹣9c2【解析】【分析】原式利用平方差公式化简,再利用完全平方公式展开即可得到结果.【详解】原式=[][]a 2b 3c a 2b 3c ---+=22a 2b 3c ()--=222449a b ab c +--.故答案为222449a b ab c +--.【点睛】本题考查平方差公式,完全平方公式.24.9x+7【解析】【分析】根据完全平方公式和多项式乘多项式的法则先把原式进行化简,再合并即可.【详解】原式=226x 92x x 2x x ++---+()=226x 92x x 2x x ++-++-=9x+7.故答案为:9x+7.【点睛】本题考查整式的混合运算.25.M >N【解析】【分析】根据多项式乘多项式的法则先把M 、N 进行化简,再比较M,N 的大小.【详解】M=(x-3)(x-5)=223x 5x 158x 15x x --+=-+,N=(x-2)(x-6)=222x 6x 128x 12x x --+=-+,所以M >N.故答案为M>N.【点睛】本题考查整式的乘法,比较大小.26.(1)2;(2)11【解析】【分析】(1)先去括号,再整体代入即可求出答案;(2)先配方变形,再整体代入,即可求出答案.【详解】解:(1)∵x+y=3,(x+2)(y+2)=12,∴xy+2x+2y+4=12,∴xy+2(x+y)=8,∴xy+2×3=8,∴xy=2;(2)∵x+y=3,xy=2,∴x2+3xy+y2=(x+y)2+xy=32+2=11.【点睛】本题考查了整式的混合运算和完全平方公式的应用,题目是一道比较典型的题目,难度适中.k+是4的倍数(3)8k不能整除8k+427.(1)28和2012是神秘数(2)84【解析】【分析】(1)根据“神秘数”的定义,设这两个连续偶数分别为2m,2m+2,列方程求出m的值即可得答案;(2)根据“神秘数”的定义可知(2n)2-(2n-2)2=4(2n-1),即可得答案;(3)由(2)可知“神秘数”是4的倍数,但一定不是8的倍数,而连续两个奇数的平方差一定是8的倍数,即可得答案.【详解】(1)设设这两个连续偶数分别为2m,2m+2,则根据题意得:(2m+2)2-(2m)2=28,8m+4=28,m=3,∴2m=6,2m+2=8,即82-62=28,∴28是“神秘数”.(2m+2)2-(2m)2=2012,8m+4=2012,m=501,∴2m=1002∴2012是“神秘数”.(2)是;理由如下:∵(2n)2-(2n-2)2=4(2n-1),∴由这两个连续偶数构造的神秘数是4的倍数.(3)由(2)可知“神秘数”可表示为4(2n-1),∵2n-1是奇数,∴4(2n-1)是4的倍数,但一定不是8的倍数,设两个连续的奇数为2n-1和2n+1,则(2n+1)2-(2n-1)2=8n.∴连续两个奇数的平方差是8的倍数,∴连续两个奇数的平方差不是“神秘数”.【点睛】本题首先考查了阅读能力、探究推理能力.对知识点的考查,主要是平方差公式的灵活应用。

精品解析北师大版七年级数学下册第一章整式的乘除综合练习试卷(含答案解析)

精品解析北师大版七年级数学下册第一章整式的乘除综合练习试卷(含答案解析)

北师大版七年级数学下册第一章整式的乘除综合练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若2434a a b ++-=-,那么-a b 的值是( ).A .5B .5-C .1D .72、下列计算中,正确的是( )A .()2224a b a b +=+B .44a a a ⋅=C .623a a a ÷= D .()2362ab a b = 3、下列运算正确的是( )A .236a a a ⋅=B .352()a a =C .222()ab a b =D .632a a a ÷= 4、下列计算正确的是( )A .532-=ab a bB .()224239a b a b -=C .()222a b a b -=-D .2222a b b a += 5、下列计算正确的是( )A .a 3·a 2=aB .a 3·a 2=a 5C .a 3·a 2=a 6D .a 3·a 2=a 96、观察:()()2111x x x -+=-,()()23111x x x x -++=-,()()413211x x x x x -+++=-,据此规律,当()()5432110x x x x x x -+++++=时,代数式20211x -的值为( )A .1B .0C .1或1-D .0或2-7、下列各式,能用平方差公式计算的是( )A .(2a +b )(2b ﹣a )B .(﹣a ﹣2b )(﹣a +2b )C .(2a ﹣3b )(﹣2a +3b )D .(113a +)(﹣113a -) 8、下列各式中,计算结果为6a 的是( )A .()42aB .7a a ÷C .82a a -D .23a a ⋅ 9、已知26m =,23n =,则2m n +=( )A .2B .3C .9D .18 10、三个数02,23-,()13--中,负数的个数是( )A .0个B .1个C .2个D .3个第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、填上适当的数使等式成立:x 2+8x +______=(x +______)2.2、如果x 2-mx +16是一个完全平方式,那么m 的值为________.3、若2a b +=,21ab =,则22a b +=________.4、已知2532x y +-=,则432⋅=x y _______.5、(9a 2﹣6ab )÷3a =_____.三、解答题(5小题,每小题10分,共计50分)1、计算:(1)(2x +3y )(2x ﹣3y )﹣(x ﹣2y )(4x +y )(2)(x ﹣3)(3x ﹣4)﹣(x ﹣2)22、完全平方公式:()2222a b a ab b ±=±+适当的变形,可以解决很多的数学问题.例如:若3,1a b ab +==,求22a b +的值.解:因为3,1a b ab +==所以()29,22a b ab +== 所以2229,22a b ab ab ++==得227a b +=.根据上面的解题思路与方法,解决下列问题:(1)若228,40x y x y +=+=,求xy 的值;(2)若()()458x x --=,则()22()45x x -+-= ; (3)如图,点C 是线段AB 上的一点,以AC BC 、为边向两边作正方形,设6AB =,两正方形的面积和1218S S +=,求图中阴影部分面积.3、计算:2(3)(32)(2)x y x y x y -+--.4、化简或计算下列各题(1)22234()()xy x y x y -⋅÷ ; (2)(2)(37)a b a b +-.5、计算(1)3843()()x x x ⋅-⋅-;(2)2333221()()3a b a b -+-;(3)3510(0.310)(0.410)-⨯-⨯⨯⨯;(4)()()3522b a a b --; (5)()()2363353a a a -+-⋅;-参考答案-一、单选题1、B【分析】原式移项后,利用完全平方式变形,得到平方和绝对值的和形式,进而求得a 、b 值,即可得解.∵2434a a b ++-=-, ∴24430a a b +++-=, ∴2(2)30a b ++-=,∴20a +=,3b -=0,解得:a =-2,b =3,则235a b -=--=-,故选:B【点睛】此题考查了完全平方公式的运用,掌握完全平方公式是解答此题的关键.2、D【分析】根据完全平方公式可判断A ,根据同底数幂的乘法同底数幂相乘底数不变指数相加可判断B ,根据同底数幂除法运算法则同底数幂相乘底数不变指数相减可判断C ,根据积的乘方每个因式分别乘方与幂的乘方法则底数不变指数相乘可判断D .【详解】A. ()22222444a b a ab b a b +=++≠+,故选项A 不正确;B. 454a a a a ⋅=≠,故选项B 不正确;C. 664322a a a a a -=≠÷=,故选项C 不正确;D. ()()2236232a b a b a b ==,故选项D 正确. 故选:D .本题考查整式中幂指数运算与乘法公式,掌握整式中幂指数运算与乘法公式是解题关键.3、C【分析】根据同底数幂的乘除法法则以及积的乘方法则,幂的乘方法则,逐一判断选项,即可.【详解】解:A. 235⋅=,故该选项错误,a a aB. 236a a=,故该选项错误,()C. 222=,故该选项正确,()ab a bD. 633a a a÷=,故该选项错误,故选C.【点睛】本题主要考查同底数幂的乘除法法则以及积的乘方法则,熟练掌握上述法则是解题的关键.4、B【分析】根据积的乘方、完全平方公式、同类项的合并等知识即可作出判断.【详解】解:选项A与D,相加的两项不是同类项,故不能相加,故错误;B选项,根据积的乘方可得正确;D选项,()222-=-+,故错误;a b a ab b2故选:B本题考查了积的乘方、完全平方公式、同类项的合并,掌握它们是关键.5、B【分析】根据同底数幂乘法的计算法则求解判断即可.【详解】解:A 、a 3·a 2=a 5,计算错误,不符合题意;B 、a 3·a 2=a 5,计算正确,符合题意;C 、a 3·a 2=a 5,计算错误,不符合题意;D 、a 3·a 2=a 5,计算错误,不符合题意;故选B .【点睛】本题主要考查了同底数幂的乘法,熟知相关计算法则是解题的关键.6、D【分析】由已知等式为0确定出x 的值,代入原式计算即可得到结果.【详解】解:()()5432110x x x x x x -+++++=. 根据规律得:610x -=.61x ∴=.32()1x ∴=.1x ∴=±.当1x =时,原式2021110=-=.当1x =-时,原式()2021112=--=-.故选:D .【点睛】本题考查通过规律解决数学问题,发现规律,求出x 的值是求解本题的关键.7、B【分析】根据平方差公式为22()()a b a b a b +-=-逐项判断即可.【详解】A .既没有相同项,也没有相反项,不能用平方差公式进行计算,故本选项不符合题意;B .原式[][]()2()2a b a b =---+,符合平方差公式,故本选项符合题意;C .原式(23)(23)a b a b =---,只有相同项,没有相反项,不符合平方差公式,故本选项不符合题意;D .原式11(1)(1)33a a -++只有相同项,没有相反项,不符合平方差公式,故本选项不符合题意; 故选:B .【点睛】本题考查平方差公式,掌握平方差公式为22()()a b a b a b +-=-是解答本题的关键.8、B【分析】根据幂的运算法则即可求解.【详解】A. ()42a=8a,故错误;B. 7a a÷=6a,正确;C. 82-不能计算,故错误;a aD. 23a a⋅=5a,故错误;故选B.【点睛】此题主要考查幂的运算,解题的关键是熟知其运算法则.9、D【分析】根据同底数幂的乘法逆运算进行整理,再代入求值即可.【详解】n=,解:∵26m=,23∴2226318+=⋅=⨯=.m n m n故选:D.【点睛】本题主要考查求代数式的值,同底数幂乘法的逆用,解题的关键是把式子整理成整体代入的形式.10、B【分析】先计算各数,并与0比较大小,根据比0小的个数得出结论即可.【详解】解:021=>0,2211339-==>0,()111333--==--<0, 负数的个数是1个,故选:B .【点睛】本题考查有理数的幂运算,零指数幂,负指数幂,掌握有理数的幂运算,零指数幂,负指数幂,和比较大小是解题关键.二、填空题1、16 4【分析】根据完全平方公式的形式求解即可.【详解】解:∵()228164x x x ++=+,∴横线上填的数为16和4,故答案为:16;4.【点睛】此题考查了完全平方公式的形式,解题的关键是熟练掌握完全平方公式的形式.完全平方公式:222()2a b a ab b +=++,222()2a b a ab b -=-+. 2、±8【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m 的值.【详解】解:∵x 2-mx +16=x 2-mx +42,∴m=±2×4,解得m=±8.故答案为:±8.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.3、3【分析】由题意直接运用完全平方公式进行变形,进而整体代入即可得出答案.【详解】解:222+=+-=-=.a b a b ab()2413故答案为:3.【点睛】本题考查已知式子求代数式的值和完全平方公式,熟练掌握222+=+-是解题的关键.()2a b a b ab4、32【分析】根据幂的乘方进行解答即可.【详解】解:由2x+5y-3=2可得:2x+5y=5,所以4x•32y=22x+5y=25=32,故答案为:32.【点睛】本题考查幂的乘方,关键是根据幂的乘方法则解答.5、3a-2b-2b +3a【分析】根据多项式除以单项式的除法法则计算即可.【详解】解:(9a2-6ab)÷3a=9a2÷3a-6ab÷3a=3a-2b.故答案为:3a-2b【点睛】本题考查了整式的除法,熟记多项式除以单项式的除法法则是解题的关键.三、解答题1、(1)7xy﹣7y2(2)2x2﹣9x+8【分析】(1)根据整式的乘法运算法则及乘法公式即可化简求解;(2)根据整式的乘法运算法则及乘法公式即可化简求解.【详解】(1)(2x+3y)(2x﹣3y)﹣(x﹣2y)(4x+y)=(2x)2﹣(3y)2﹣(4x2+xy﹣8xy﹣2y2)=4x2﹣9y2﹣4x2﹣xy+8xy+2y2=7xy﹣7y2.(2)解:原式=3x2﹣9x﹣4x+12﹣(x2﹣4x+4)=3x2﹣13x+12﹣x2+4x﹣4=2x 2﹣9x +8.【点睛】此题主要考查整式的乘法运算,解题的关键是熟知其运算法则及公式的运用.2、(1)12xy =;(2)17;(3)92【分析】(1)仿照题意,利用完全平方公式求值即可;(2)先求出()()54541x x x x ---=--+=,然后仿照题意利用完全平方公式求解即可; (3)设AC 的长为a ,BC 的长为b ,则AB =AC +BC =a +b =6,()222236a b a ab b +=++=,由1218S S +=,得到2218a b +=,由此仿照题意,利用完全平方公式求解即可.【详解】解:(1)∵8x y +=,2240x y +=,∴()22864x y +==,∴22264x xy y ++=,∴()222222644024xy x xy y x y =++-+=-=,∴12xy =;(2)∵()()458x x --=,()()54541x x x x ---=--+=,∴()()()()()()22254524551x x x x x x ---=----+-=⎡⎤⎣⎦,()()41625x x --=, ∴()()()22452(45117)x x x x -+-=--+=,故答案为:17;(3)设AC 的长为a ,BC 的长为b ,∴AB =AC +BC =a +b =6,∴()222236a b a ab b +=++= ∵1218S S +=,∴2218a b +=,∴()()222218ab a b a b =+-+=, ∴1922ab =,又∵四边形BCFG 是正方形,∴CF =CB , ∴1119=2222S AC CF AC BC ab ⋅=⋅==阴影.【点睛】本题主要考查了完全平方公式的变形求值,解题的关键在于能够准确读懂题意.3、2237x xy y ---【分析】直接利用乘法公式以及整式的混合运算法则计算得出答案.【详解】解:2(3)(32)(2)x y x y x y -+--,()2222329644x xy xy y x xy y =+----+, 2222329644x xy xy y x xy y =+---+-,2237x xy y =---【点睛】本题主要考查了整式的混合运算,正确应用多项式的乘法法则及完全平方公式是解题的关键.4、(1)xy ;(2)22314a ab b --【分析】(1)原式利用幂的乘方与积的乘方运算法则计算,再利用单项式乘除单项式法则计算即可求出值;(2)利用多项式乘多项式,再合并即可.【详解】解:(1)22234()()xy x y x y -⋅÷=24234()x y x y x y ⋅÷=4534()x y x y ÷=xy ;(2)(2)(37)a b a b +-=2237614a ab ab b -+-=22314a ab b --.【点睛】本题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.5、(1)37x -;(2)6964127a b a b -+; (3)81.210⨯;(4)8(2)a b --;(5)122a -.【分析】(1)由题意利用幂的乘方和积的乘方以及同底数幂的乘法进行计算即可;(2)由题意利用幂的乘方和积的乘方以及合并同类项原则进行计算即可;(3)由题意直接利用同底数幂的乘法进行计算即可;(4)由题意直接利用同底数幂的乘法进行计算即可;(5)由题意利用幂的乘方和积的乘方以及合并同类项原则进行计算即可.(1)解:3843241237()()x x x x x x x ⋅-⋅-=-⋅⋅=-.(2) 解:233322696411()()327a b a b a b a b -+-=-+. (3)解:()()35358100.3100.410100.30.41010 1.210-⨯-⨯⨯⨯=⨯⨯⨯⨯=⨯.(4)解:35358(2)(2)(2)(2)(2)b a a b a b a b a b --=---=--.(5)解:62333129312(5)(3)25272a a a a a a a -+-⋅=-⋅=-.【点睛】本题考查整式的乘法运算,熟练掌握幂的四则运算法则是解题的关键.。

北师大版数学七年级下册第一章 整式的乘除 综合测试含答案

北师大版数学七年级下册第一章 整式的乘除 综合测试含答案

北师大版数学七年级下册第一章综合测试含答案 班级 姓名 学号 得分一、选择题(共10小题,每小题3分,共30分)温馨提示:每小题四个答案中只有一个是正确的,请把正确的答案选出来! 1.下列运算正确的是( )A. 954a a a =+B. 33333a a a a =⋅⋅ C. 954632a a a =⨯ D. ()743a a =-=⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-20122012532135.2( )A. 1-B. 1C. 0D. 1997 3.设()()A b a b a +-=+223535,则A=( )A. 30abB. 60abC. 15abD. 12ab 4.已知,3,5=-=+xy y x 则=+22y x ( )A. 25. B 25- C 19 D 、19-5.已知,5,3==bax x 则=-ba x23( ) A 、2527 B 、109 C 、53D 、526. .如图,甲、乙、丙、丁四位同学给出了四 种表示该长方形面积的多项式:①(2a +b )(m +n ); ②2a (m +n )+b (m +n ); ③m (2a +b )+n (2a +b ); ④2am +2an +bm +bn , 你认为其中正确的有A 、①②B 、③④C 、①②③D 、①②③④ ( )7.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( ) A 、 –3B 、3C 、0D 、18.已知.(a+b)2=9,ab= -112 ,则a²+b 2的值等于( )A 、84B 、78C 、12D 、6 9.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)的结果是( )nm a baA .a 8+2a 4b 4+b 8B .a 8-2a 4b 4+b 8C .a 8+b 8D .a 8-b 810.已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为 ( )A 、Q P >B 、Q P =C 、Q P <D 、不能确定二、填空题(共6小题,每小题4分,共24分)温馨提示:填空题必须是将最简洁最正确的答案填在空格处! 11.设12142++mx x 是一个完全平方式,则m =_______。

北师大版七年级数学下册第一章《整式的乘除》单元综合测试卷(含答案)

北师大版七年级数学下册第一章《整式的乘除》单元综合测试卷(含答案)

人教版七年级数学下册第1章 整式的乘除单元综合测试卷(时间90分钟,满分120分)一、选择题(共10小题,3*10=30)1.计算(-a 2)3的结果是( )A .a 5B .a 6C .-a 5D .-a 62.如果9x 2+kx +25是一个完全平方式,那么k 的值是( )A .30B .±30C .15D .±153.人体中成熟的红细胞的平均直径为0.000 007 7 m ,用科学记数法表示为( )A .7.7×10-5 mB .77×10-6 mC .77×10-5 mD .7.7×10-6 m4.下列运算正确的是( )A .x 2·x 3=x 6B .x 2y·2xy =2x 3yC .(-3xy)2=9x 2y 2D .x 6÷x 3=x 25.下列各式计算正确的是( )A .(a +b)(a -b)=a 2+b 2B .(-a -b)(a -b)=a 2-b 2C .(12-m)2=14-m +m 2D .(-m +n)2=m 2+2mn +n 26. 若x 2-x -m =(x -m)(x +1)且x≠0,则m 等于( )A .-1B .0C .1D .27.我们约定a ⊗b =10a ×10b ,如2⊗3=102×103=105,那么4⊗8为( )A .32B .1032C .1012D .12108.已知a m =2,a n =12,则a 2m +3n 的值为( )A .6 B.12 C .2 D.1129.若a =-0.32,b =-3-2,c =⎝⎛⎭⎫-13-2,d =⎝⎛⎭⎫-130,则a ,b ,c ,d 的大小关系是()A .a <b <c <dB .b <a <d <cC .a <d <c <bD .c <a <d <b10.已知a +b =m ,ab =-4,化简(a -2)(b -2)的结果是( )A .6B .2m -8C .2mD .-2m二.填空题(共8小题,3*8=24)11.计算:(1)2x 3·(-3x)2= ;(2)(-18a 2b +10b 2)÷(-2b)= .12. 如果x +y =-1,x -y =8,那么代数式x 2-y 2的值是________.13.把(6×105)2的结果用科学记数法表示为__________.14.若a -b =1,则代数式a 2-b 2-2b 的值为________.15.当x =-2时,代数式ax 3+bx +1的值是2021,那么当x =2时,代数式ax 3+bx +1的值是__________.16.计算:(7x 2y 3z +8x 3y 2)÷4x 2y 2=______________.17.用边长为2a 和a 的两个正方形拼成如图所示图形,则图中阴影部分的面积为_________.18.若3x =a ,9y =b ,则3x -2y 的值为________.三.解答题(共7小题, 66分)19.(8分) 计算:(1)(-1)2020+(π-3.14)0-(13)-1;(2)(a +1)2-a 2.20.(8分小明与小亮在做游戏时,两人各报一个整式,小明报的整式作为被除式,小亮报的整式作为除式,要求商式必须为2xy.(1)若小明报的是(x 3y -2xy 2),小亮应报什么整式?(2)若小明报3x 2,小亮能报出一个整式吗?说说你的理由.21.(8分) 计算:(1)(-12ab)(23ab2-2ab+43b);(2)(2x-y-z)(y-2x-z);22.(10分) 小操找来一张挂历纸包数学课本.已知课本长为a厘米,宽为b厘米,厚为c厘米,小操想将课本封面与封底的每一边都包进去2厘米.问小操应在挂历纸上剪下一块多大面积的长方形?23.(10分)若x+y=3,且(x+2)(y+2)=12.(1)求xy的值;(2)求x2+3xy+y2的值.24.(10分)数学课上,老师出了这样一道题:先化简,再求值:(2x+y)(2x-y)-(2x-y)2+2y2,其中xy=2 020.小亮一看,题中没有给出x和y的值,只给出了xy的值,所以小亮认为根据题中条件不可能求出题目的值.你认为小亮的说法正确吗?请说明理由.25.(12分) (1)正方形的边长增大5 cm,面积增大75 cm2,求原正方形的边长及面积;(2)正方形的一边增加4 cm,邻边减少4 cm,所得长方形的面积与这个正方形的边长减少2 cm所得的正方形的面积相等,求原正方形的边长.参考答案1-5 DBDCC 6-10DCBBD11. 18x 5,9a 2-5b12.-813. 3.6×1011.14. 115. -201916. 74yz +2x 18.a b17. 2a 219. (1)解:原式=1+1-3=-1(2)解:原式=(a +1+a)(a +1-a)=2a +120. 解:(1)(x 3y -2xy 2)÷2xy =12x 2-y ,所以小亮应报的整式为12x 2-y. (2)小亮不能报出一个整式,因为3x 2÷2xy 的结果不是整式,所以看小亮能否报出整式,只要看被除式÷商式是否为整式即可.21. 解:(1)原式=-12ab·23ab 2+⎝⎛⎭⎫-12ab ·(-2ab)+⎝⎛⎭⎫-12ab ·43b =-13a 2b 3+a 2b 2-23ab 2 (2)原式=[-z +(2x -y)]·[-z -(2x -y)]=(-z)2-(2x -y)2=z 2-(4x 2-4xy +y 2)=z 2-4x 2+4xy -y 2;22. 解:需要在挂历纸上剪下一块长为(2b +c +4)厘米,宽为(a +4)厘米的长方形.所以面积为(2b +c +4)·(a +4)=2ab +ac +4a +8b +4c +16(平方厘米).23. 解:(1)∵x +y =3,(x +2)(y +2)=12,∴xy +2x +2y +4=12,∴xy +2(x +y)=8,∴xy +2×3=8,∴xy =2.(2)∵x +y =3,xy =2,∴x 2+3xy +y 2=(x +y)2+xy=32+2=11.24. 解:不正确.理由如下:因为(2x+y)(2x-y)-(2x-y)2+2y2=4x2-y2-4x2+4xy-y2+2y2=4xy.所以,当xy=2 020时,原式=4×2 020=8 080.25. 解:(1)设原正方形的边长为x cm,由题意得(x+5)2-x2=75,解得x=5,则原正方形的边长为5 cm,面积为25 cm2 (2)设原正方形的边长为y cm,由题意得(y+4)(y-4)=(y-2)2,解得y=5,则原正方形的边长为5 cm。

北师大版七年级数学下册 第一章 整式的乘除 单元检测试题(有答案)

北师大版七年级数学下册  第一章 整式的乘除  单元检测试题(有答案)

第一章整式的乘除单元检测试题班级:_____________姓名:_____________一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 下列运算中正确的是()A.b3⋅b3=2b3B.x2⋅x3=x6C.(a5)2=a7D.a5÷a2=a32. 若x+y=3且xy=1,则代数式(1+x)(1+y)的值等于()A.−1B.1C.5D.33. 计算(−2a2)2的结果是()A.2a4B.−2a4C.4a4D.−4a44. 下列计算中正确的是()A.a2⋅a3=a6B.a10÷a5=a2C.(a2)3=a5D.(−ab3)2=a2b65. 计算(−x3)2+(−x2)3等于()A.0B.−2x6C.2x6D.−2x56. 已知,则x的值为()A.±1B.−1或2C.1或2D.0或−17. 下列计算中:①a6÷a=a3;①y5÷y2=y7;①a3÷a=a3;①(−c)4÷(−c)2=−c2;①x10÷(x4÷x2)=x8.其中错误的个数有()A.3个B.4个C.5个D.6个8. 下列运算正确的是()A.x3+x2=x5B.a3⋅a4=a12C.(−x3)2÷x5=1D.(−xy)3⋅(−xy)−2=−xy9. 下列运算中正确的是()A.x2÷x8=x−4B.a⋅a2=a2C.(a3)2=a6D.(3a)3=9a310. 定义一种新的运算“*”:a∗b=a b,如3∗2=32,则2∗(−3)=()A.−6B.16C.8 D.18二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 用科学计数法表示0.0000907=________.12. 计算a(b−c)−b(c−a)+c(a−b)=________.13. 若x m=6,x n=9,则2x3m x2n+(x m⋅x n)2⋅x n的值为________.14. −x⋅(−x)2•(−x2)=________,若(y−2)(y+m)=y2+ny+8,则m+n的值为________.15. 计算:(−12xy)3⋅(−2xy)2的结果等于________.16. 已知:x2+mx+n=(x−5)(x+4),则m=________,n=________.17. 若−5x3⋅(x2+ax+5)的结果中不含x4项,则a=________.18. 已知(x−3)(x+8)=x2+mx+n,则m=________,n=________.19. 若(x−3)(x+4)=x2−mx+n,则m2n=________.20. (2+1)(22+1)(24+1)(28+1)(216+1)+1=________.三、解答题(本题共计6 小题,共计60分,)21. 计算:(1)(2a−23b)(−2a−23b)(2)(−x−2y)2(3)(2x+y)(2x−y)−(2x−y)222. 先化简,再求值:(x+3)(x−3)+(x+4)2,其中x=1.23. 如图,在边长为a的正方形中剪去一个边长为b小正方形(a>b),把剩下的部分拼成一个梯形,请利用甲、乙两图验证我们本学期学过的一个乘法公式.24. 如图,有三种卡片,其中边长为a的正方形卡片1张,长、宽分别为a、b的正方形4张,边长为b 的正方形卡片4张,若用这9张卡片拼成一个正方形,求该正方形的面积.25. 如图,有相邻的两块长方形土地,大小如图所示(a>100,单位m),出售土地的价格有如下两种不同方式:方式一:左边大的长方形土地x万元/m2,右边小的长方形土地y万元/m2;万元/m2方式二:全部土地x+y2(1)分别求出按方式一、二的价格出售全部的土地的收入是多少万元?(2)比较按方式一、二的价格出售全部土地的收入的大小关系.26. 如图a是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均匀分成四块小长方形,然后按图b 形状拼成一个正方形.(1)你认为图b中的阴影部分的正方形的边长等于多少?(2)观察图b你能写出下列三个代数式之间的等量关系吗?代数式:(m+n)2,(m−n)2,mn(3)已知m+n=7,mn=6,求(m−n)2的值.参考答案一、选择题(本题共计10 小题,每题3 分,共计30分)1.【答案】D【解答】A、b3⋅b3=b6,故A不符合题意;B、x2⋅x3=x5,故B不符合题意;C、(a5)2=a10,故C不符合题意;D、a5÷a3=a2,故D符合题意;2.【答案】C【解答】解:(1+x)(1+y)=x+y+xy+1,则当x+y=3,xy=1时,原式=3+1+1=5.故选C.3.【答案】C【解答】解:原式=4a4.故选C.4.D【解答】解:A ,a 2⋅a 3=a 2+3=a 5,故选项错误;B ,a 10÷a 5=a 10−5=a 5,故选项错误;C ,(a 2)3=a 2×3=a 6,故选项错误;D ,(−ab 3)2=a 2b 6,选项正确.故选D .5.【答案】A【解答】解:(−x 3)2+(−x 2)3=x 6−x 6=0.故选A .6.【答案】B【解答】解:由题意得:①当{x −1≠0x 2−1=0,解得:x =− ①当x −1=时,解得:x =2①当x −1=−1时,x =0,此时(−1)−1=−1,不符合题意,综上所述,x 的值为−1或2,故选:B .7.【答案】B解:a6÷a=a5,y5÷y2=y3,a3÷a=a2,(−c)4÷(−c)2=c2,x10÷(x4÷x2)=x10÷x2=x8,① ①①①①错误,①正确;即错误的有4个,故选B.8.【答案】D【解答】解:A、原式不能合并,错误;B、原式=a7,错误;C、原式=x6÷x5=x,错误;D、原式=−xy,正确.故选D.9.【答案】C【解答】解:A、底数不变指数相减,故A错误;B、底数不变指数相加,故B错误;C、底数不变指数相乘,故C正确;D、积的乘方等于乘方的积,故D错误;故选:C.10.【答案】D【解答】解:① a∗b=a b,① 2∗(−3)=2−3=123=18.故选D.二、填空题(本题共计10 小题,每题3 分,共计30分)11.【答案】9.07×10−5【解答】解:0.0000907=9.07×10−5.故答案为:9.07×10−5.12.【答案】2ab−2bc【解答】解:原式=ab−ac−bc+ab+ac−bc=2ab−2bc,故答案为:2ab−2bc.13.【答案】61236【解答】解:① x m=6,x n=9,① 原式=2(x m)3(x n)2+(x m⋅x n)2⋅x n=34992+26244=61236,故答案为:61236.14.【答案】x5,−10【解答】解:−x⋅(−x)2•(−x2)=x5;① (y−2)(y+m)=y2+my−2y−2m=y2+(m−2)y−2m=y2+ny+8,① m−2=n,−2m=8,① m=−4,n=−6,① m+n=−4−6=−10.故答案为:x5,−10.15.【答案】−12x5y5【解答】原式=−18x3y3⋅4x2y2=−12x5y5,16.【答案】−1,−20【解答】解:(x−5)(x+4)=x2−x−20,① m=−1,n=−20.故答案为:−1,−20.17.【答案】0【解答】解:−5x3⋅(x2+ax+5)=−5x5−5ax4−25x3,① −5x3⋅(x2+ax+5)的结果中不含x4项,① −5a=0,① a=0;故答案为:0.18.【答案】5,−24【解答】解:① (x−3)(x+8)=x2+5x−24,① m=5,n=−24.故答案为:5,−24.19.【答案】−12【解答】解:① (x−3)(x+4)=x2+4x−3x−12=x2+x−12=x2−mx+n,① −m=1,n=−12,即m=−1,n=−12,则m2n=1×(−12)=−12.故答案为:−1220.【答案】232【解答】解:原式=(2−1)(2+1)(22+1)(24+1)(28+1)(216+1)+1=(22−1)(22+1)(24+1)(28+1)(216+1)+1=(24−1)(24+1)(28+1)(216+1)+1=(28−1)(28+1)(216+1)+1=(216−1)(216+1)+1=232−1+1=232.故答案为:232三、解答题(本题共计6 小题,每题10 分,共计60分)21.【答案】b)2−(2a)2原式=(−23b2−4a2;=49原式=(−x)2+2⋅(−x)⋅(−2y)+(−2y)2=x2+4xy+4y2;原式=4x2−y2−4x2+4xy−y2=4xy−2y2.【解答】b)2−(2a)2原式=(−23b2−4a2;=49原式=(−x)2+2⋅(−x)⋅(−2y)+(−2y)2=x2+4xy+4y2;原式=4x2−y2−4x2+4xy−y2=4xy−2y2.22.【答案】解:原式=x2−9+x2+8x+16=2x2+8x+7.当x=1时,原式=2+8+7=17.【解答】解:原式=x2−9+x2+8x+16=2x2+8x+7.当x=1时,原式=2+8+7=17.23.【答案】解:左图中阴影部分的面积是a2−b2,右图中梯形的面积是12(2a+2b)(a−b)=(a+b)(a−b),① 左右的阴影部分的面积相等,① a2−b2=(a+b)(a−b).【解答】解:左图中阴影部分的面积是a2−b2,右图中梯形的面积是12(2a+2b)(a−b)=(a+b)(a−b),① 左右的阴影部分的面积相等,① a2−b2=(a+b)(a−b).24.【答案】解:设拼成后大正方形的边长为x,① a2+4ab+4b2=x2,① (a+2b)2=x2,① 该正方形的面积:(a+2b)2【解答】解:设拼成后大正方形的边长为x,① a2+4ab+4b2=x2,① (a+2b)2=x2,① 该正方形的面积:(a+2b)225.【答案】解:(1)方式一收入:xa(a+100)+100y(a−100)=a2x+100ax+100ay−10000y;方式二收入:x+y2[a(a+100)+100(a−100)]=12a2x+100ax−5000x+12a2y+100ay−5000y;(2)方式一、二的收入的差为:(a2x+100ax+100ay−10000y)−(12a2x+100ax−5000x+12a2y+100ay−5000y)=12a2x+5000x−12a2y−5000y=x−y2(a2+1000),①当x>y时,方式一的收入大于方式二的收入;①当x=y时,方式一的收入等于方式二的收入;①当x<y时,方式一的收入小于方式二的收入.【解答】解:(1)方式一收入:xa(a+100)+100y(a−100)=a2x+100ax+100ay−10000y;方式二收入:x+y2[a(a+100)+100(a−100)]=12a2x+100ax−5000x+12a2y+100ay−5000y;(2)方式一、二的收入的差为:(a2x+100ax+100ay−10000y)−(12a2x+100ax−5000x+12a2y+100ay−5000y)=12a2x+5000x−12a2y−5000y=x−y2(a2+1000),①当x>y时,方式一的收入大于方式二的收入;①当x=y时,方式一的收入等于方式二的收入;①当x<y时,方式一的收入小于方式二的收入.26.【答案】解:(1)我认为图b中的阴影部分的正方形的边长等于m−n.(2)(m+n)2=(m−n)2+4mn.(3)(m−n)2=(m+n)2−4mn=49−4×6=25.【解答】解:(1)我认为图b中的阴影部分的正方形的边长等于m−n..(2)(m+n)2=(m−n)2+4mn.(3)(m−n)2=(m+n)2−4mn=49−4×6=25.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式的除法综合测试题
(90分 60分钟)
一、学科内综合题:(每小题8分,共32分)
1.已知812x÷92x÷3x=81,求x的值.
2.已知x=32m+2,y=5+9m,请你用含x的代数式表示y.
3.化简求值:[4(xy-1)2-(xy+2)(2-xy)]÷1
4
xy,其中x=-2, y=
1
5
.
4.已知:长方体的体积为3a3b5cm3,它的长为abcm,宽为3
2
ab2cm.求:
(1)它的高; (2)它的表面积.
二、实践应用题:(10分)
5.一种被污染的液体每升含有×1013个有害细菌,为了试验某种杀菌剂的效果,科学家们进
行了实验,发现1滴杀菌剂可以杀死4×1010个此种细菌,要将1升液体中的有害细菌全部杀死,需要这种杀菌剂多少毫升(注:15滴=1毫升)
三、创新题:(共40分)
(一)教材中的变型题(8分)
6.(教材第4页练习题2变型)观看燃放烟花时,常常是“先见烟花,后闻响声”, 这是由于光速比声速快的缘故.已知光在空气中的传播速度约为3×108米/秒, 它是声音在空气中传播速
度的×105倍.求声音在空气中的传播速度( 结果精确到个位).
(二)多解题(每小题8分,共24分)
7.计算:-x9÷(-x)3÷x2.
8.已知8m=12,4n=6,求26m-2n+1的值.
9.已知9m·27m-1÷32m的值为27,求m的值.
(三)多变题(8分)
10.已知x3=64,求x的值.
(1)一变:已知x6=64,求x的值.
(2)二变:已知1
3
x4-27=0,求x的值.
四、中考题:(每小题2分,共8分)
11.化简:a5b÷a3=___________.
12计算:a3÷a·1
a
=__________.
13.计算:(2a)3·(b3)2÷4a3b4.
14计算:(16x2y3z+8x3y2z)÷8x2y2=__________.
参考答案
一、
1.解:将812x ÷92x ÷3x =81变形:
(34)2x ÷(32)2x ÷3x =34,38x ÷34x ÷3x =34,38x-4x-x =34,33x =34
比较“=”号两边可得3x=4,x=43
.点拨:解此题的关键是通过运算和变形,把“=”号左右两边化成同底数的幂,用比较法得到关于x 的方程.进而求解.
2.解:x=32m+2=32m ·32=9·(32)m =9·9m (1)
由y=5+9m ,得9m =y-5.(2)
把(2)代入(1)得x=9·(y-5),即y=9
x +5. 点拨:此题不但用到了幂的灵活变形,还应用了整体代入的思想, 所以解此类题目时应认真的比较、观察,找出变形的方向.另法:
由x=32m+2得x=32m ·32,即x=9·32m (1)
由y=5+9m 得y=5+32m ,故32m =y-5 (2)
(2)代入(1)得x=9(y-5),即y=
9
x +5. 3.解:原式=[4(x 2y 2-2xy+1)-(4-x 2y 2)]÷14
xy =(4x 2y 2-8xy+4-4+x 2y 2)÷14
xy =(5x 2y 2-8xy)÷14
xy=20xy-32 把x=-2,y=15
代入上式 原式=20×(-2)×15-32=-40. 点拨:这是一道整式乘除混合运算的题目,除了熟知乘法公式外, 还要特别注意符号的确定.
4.解:高为:3a 3b 5÷(ab ×
32ab 2)=3a 3b 5÷32a 2b 3=2ab 2,表面积为:2×ab ×32ab 2+2×ab ×2ab 2+2×32
ab 2×2ab 2=3a 2b 3+4a 2b 3+3a 2b 4=7a 2b 3+3a 2b 4. 答:它的高为2ab 2cm,表面积是(7a 2b 3+3a 2b 4)cm 2.
二、
三、
7.解法一:原式=-x 9÷(-x+)÷x 2=x 9÷x 3÷x 2=x 9-3-2=x 4.
解法二:原式=(-x)9÷(-x)3÷(-x)2=(-x)9-3-2=(-x)4=x 4.
8.解法一:26m-2n+1=26m ÷22n ×21=(23)2m ÷(22)n ×2=82m ÷4n ×2=(8m ) 2÷4n ×2.
把8m =12,4n =6代入公式,原式=122÷6×2=48.
点拨:此法是把结果向着已知条件的形式变形,以达到代入求值的目的.
解法二:由8m =12得(23)m =12,即23m =12,
由4n=6,得(22)n=6,即22n=6,
26m-2n+1=26m÷22n×21=(23m)2÷22n×2=122÷6×2=48.
点拨:8和4都可以转化为以2为底的幂,同时,26m-2n+1又可以转化成以2 为底的幂的乘除运算的形式,这样,通过“两头凑”的方式达到了直接代入求值的目的.
9.解法一:9m.27m-1÷32m=27 得:
(32)m.(33)m-1÷32m=33
32m.33m-3÷32m=33
35m-3÷32m=33
33m-3=33
比较“=”号两边,得3m-3=3,m=2.
解法二:由9m.27m-1÷32m=27 得:
32m.33m-3÷32m=27
33m-3=27
33(m-1)=27
27m-1=27
比较“=”两边,得m-1=1,即m=2.
(三)
10.解:变形x3=64,得x3=43.∵3为奇数,∴x=4.
(1)变形x6=64,得x6=26,∵6为偶数,x=±2.
(2)移项,得1
3
x4=27,两边都乘以3,得x4=81.
变形得x4=34,∵4为偶数,∴x=±3.
点拨:解决此类题目的关键是变形“=”号的左右两边, 使之转化为指数相同的幂的形式.再根据指数的奇偶性确定未知底数的取值.当指数是偶数时, 很容易漏了解应特别留意.四、
点拨:此题运算时易出现原式=a3÷1=a3的错误.
13.原式=23a÷4a3b4=8a3b6÷4a3b4=2b2.
+xz.。

相关文档
最新文档