第五章_相交线与平行线单元检测(含答案)

合集下载

人教版初中数学七年级下册第五章《相交线与平行线》测试题(含答案)

人教版初中数学七年级下册第五章《相交线与平行线》测试题(含答案)

第五章《相交线与平行线》检测题一、选择题(每小题只有一个正确答案)1.下列图形中,∠1与∠2是对顶角的是( )A. B. C. D.2.下列命题的逆命题不正确...的是()A. 同角的余角相等B. 等腰三角形的两个底角相等C. 两直线平行,内错角相等D. 线段中垂线上的点到线段两端的距离相等3.如图,AB∥CD,∠1=50°,∠2=110°,则∠3=()A. 60°B. 50°C. 70°D. 80°4.下列图形中线段PQ的长度表示点P到直线a的距离的是()A. B. C. D.5.如图,有下列说法:①若DE∥AB,则∠DEF+∠EFB=180º;②能与∠DEF构成内错角的角的个数有2个;③能与∠BFE构成同位角的角的个数有2个;④能与∠C构成同旁内角的角的个数有4个.其中结论正确的是()A. ①②B. ③④C. ①③④D. ①②④6.如图所示,已知∠1=∠2,那么下列结论正确的是( )A. AB∥BCB. AB∥CDC. ∠C=∠DD. ∠3=∠47.以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是().B. 如图2,展开后测得12∠=∠C. 如图3,测得12∠=∠D. 如图4,展开后再沿CD 折叠,两条折痕的交点为O ,测得OA OB =, OC OD = 8.如图,01,220,=B D ∠=∠∠=∠则( )A. 20B. 22C. 30D. 459.如图,从A 处出发沿北偏东60°方向行走至B 处,又沿北偏西20°方向行走至C 处,则∠ABC 的度数是( ) .A. 80°B. 90°C. 100°D. 95°10.如图,AB∥CD∥EF,则下列各式中正确的是( )A. ∠1+∠3=180°B. ∠1+∠2=∠3C. ∠2+∠3+∠1=180°D. ∠2+∠3﹣∠1=180°11.对于命题“若22a b >,则a b >”,下面四组关于a ,b 的值中,能说明这个命题是假命题的是( ).A. 3a =, 2b =-B. 2a =-, 3b =C. 2a =, 3b =-D. 3a =-, 2b = 12.下面的每组图形中,左面的平移后可以得到右面的是( )A. B. C. D.二、填空题13.如图,DF 平分∠CDE .∠CDF =50°.∠C =80°,则________∥________.a b c d,若a∥b. a⊥c. b⊥d,则直线,c d的位置14.同一平面内有四条直线,,,关系_________.15.如图.直线a.b.且∠1.28°..2.50°.则∠ABC._______.16.下列说法:①三角形的一个外角等于它的两个内角和;②三角形的内角和等于180°,外角和等于360°.③若一个三角形的三边长分别为3.5.x,则x的取值范围是2.x.8.④角是轴对称图形,角的对称轴是角的平分线;⑤圆既是轴对称图形,也是中心对称图形,圆有无数条对称轴.其中正确的有_ __.(填序号)17.如图,Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=50°,∠C=60°,点D 在边OA上,将图中的△AOB绕点O按每秒20°的速度沿逆时针方向旋转一周,在旋转的过程中,在第t秒时,边CD恰好与边AB平行,则t的值为________.三、解答题18.将一副直角三角尺拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F,试判断CF与AB是否平行,并说明理由.19.如图,已知,AB∥CD,∠1=∠2,AE与EF平行吗?为什么?20.完成下面的证明:如图.AB和CD相交于点O.∠C.∠COA.∠D.∠BOD.求证:∠A.∠B.21.如图,在6×8 方格纸中,. ABC 的三个顶点和点P .Q都在小方格的顶点上.按要求画一个三角形,使它的顶点在方格的顶点上:. 1)在图1中画. DEF,使. DEF 与. ABC 全等,且使点P在. DEF 的内部.. 2. 在图2中画. MNH,使. MNH 与. ABC 的面积相等,但不全等,且使Q在. MNH的边上.22.如图,已知射线CB∥OA,∠C=∠OAB=100°,点E,F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.(1)求∠EOB的度数;(2)若向右平移AB,其他条件都不变,那么∠OBC∶∠OFC的值是否随之变化?若变化,找出变化规律;若不变,求出这个比值.参考答案1.C 2.A 3.A 4.C 5.A 6.B 7.C 8.A 9.C 10.D 11.D 12.D 13. DE BC14.c ∥d 15.78° 16.②③⑤17.5.5秒或14.5秒 18.CF ∥AB 19.AE∥DF, . 20.证明:∵∠C.∠COA.∠D.∠BOD(已知). 又∵∠COA.∠BOD(__对顶角相等__). ∴∠C.__∠D__(等量代换).∴AC ∥__BD__(__内错角相等.两直线平行__). ∴∠A.∠B(__两直线平行.内错角相等__).21. 1)利用三角形平移的规律进而得出对应点位置即可; . 2)利用三角形面积公式求出符合题意的图形即可. 试题解析:解:(1)如图所示:. DEF 即为所求;.2)如图所示:.MNH 即为所求.22. (1)∵CB ∥OA ,180.C COA ∴∠+∠=︒100C OAB ∠=∠=︒Q ,80.COA ∴∠=︒ ∵OE 平分COF ∠, .COE EOF ∴∠=∠2COA COE EOF FOB AOB EOB ∠=∠+∠+∠+∠=∠Q ,40.EOB ∴∠=︒(2)这个比值不变,比值为1∶2.理由: ∵CB ∥OA ,.OBC BOA OFC FOA ∴∠=∠∠=∠,FOB BOA ∠=∠Q , 12BOA FOA ∴∠=∠,OBC OFC ∴∠=∠,:1:2.OBC OFC ∴∠∠=。

人教版数学七年级第五章《相交线与平行线》单元同步检测试题 (附答案)

人教版数学七年级第五章《相交线与平行线》单元同步检测试题 (附答案)

第五章《相交线与平行线》单元检测题题号一二三总分192021222324分数1.如果∠A和∠B的两边分别平行,那么∠A和∠B的关系是()A.相等B.互余或互补C.互补D.相等或互补2.如图,将△ABC沿BC方向平移得到△DEF,若△ABC的周长为12cm,四边形ABFD的周长为18cm,则平移的距离为()A.2cm B.3cm C.4cm D.6cm3.如图所示,下列结论中正确的是()A.∠1和∠2是同位角B.∠2和∠3是同旁内角C.∠1和∠4是内错角D.∠3和∠4是对顶角4.下列四个图案中,可能通过如图平移得到的是()A.B.C.D.5.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为()A.16cm B.18cm C.20cm D.22cm6.如图,如果把△ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,则线段A′B与线段AC的关系是()A.垂直B.相等C.平分D.平分且垂直7.如图,下列说法错误的是()A.∠A与∠3是同位角B.∠4与∠B是同旁内角C.∠A与∠C是内错角D.∠1与∠2是同旁内角8.如图,下列条件中,能判断a∥b的条件有()①∠1=∠2;②∠1=∠4;③∠1+∠3=180°;④∠1+∠5=180°A.1个B.2个C.3个D.4个9.如图,AB∥CD,AC⊥BC,图中与∠CAB互余的角有()A.1 个B.2个C.3 个D.4个10.如图,直线l1∥l2,线段AB交l1,l2于D,B两点,过点A作AC⊥AB,交直线l1于点C,若∠1=15°,则∠2=()A.95°B.105°C.115°D.125°二、填空题(每题3分,共24分)11.把命题“在同一平面内,垂直于同一条直线的两直线平行”改写成“如果…,那么…”的形式是.12.如图所示,DE∥BF,∠D=53°,∠B=30°,DC平分∠BCE,则∠DCE的度数为.13.如图,直线a∥b∥c,直角三角板的直角顶点落在直线b上.若∠1=35°,则∠2等于.14.如图,直线a∥b,∠1=75°,那么∠2的度数是.15.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠2=24°,则∠1的度数为.16.如图所示,点E在AC的延长线上,有下列条件:①∠1=∠2,②∠3=∠4,③∠A=∠DCE,④∠D=∠DCE,⑤∠A+∠ABD=180°,⑥∠A+∠ACD=180°,其中能判断AB∥CD的是.17.如图,已知直线AB,CD相交于点O,EO⊥AB于O,若∠1=32°,则∠2=°,∠3=°,∠4=°.18.已知:如图,CD平分∠ACB,∠1+∠2=180°,∠3=∠A,∠4=35°,则∠CED=.三.解答题(19题6分,20、21、22、23、24题分别8分,共46分)19.如图AB∥CD,∠B=62°,EG平分∠BED,EG⊥EF,求∠CEF的度数.20.如图,∠ABC+∠ECB=180°,∠P=∠Q.求证:∠1=∠2.在下列解答中,填空:证明:∵∠ABC+∠ECB=180°(已知),∴AB∥DE().∴∠ABC=∠BCD().∵∠P=∠Q(已知),∴PB∥()().∴∠PBC=()(两直线平行,内错角相等).∵∠1=∠ABC﹣(),∠2=∠BCD﹣(),∴∠1=∠2(等量代换).21.(8分)如图,已知AB∥CD,试再添加一个条件,使∠1=∠2成立.(1)写出两个不同的条件;(2)从(1)中选择一个来证明.22.(8分)如图,已知∠1+∠2=180°,∠3=∠B.(1)试判断DE与BC的位置关系,并说明理由.(2)若DE平分∠ADC,∠2=3∠B,求∠1的度数.23.如图①,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°.(1)将图①中的三角板OMN沿BA的方向平移至图②的位置,MN与CD相交于点E,求∠CEN的度数;(2)将图①中的三角板OMN绕点O按逆时针方向旋转,使∠BON=30°,如图③,MN与CD相交于点E,求∠CEN的度数.24.如图1,AB∥CD,E是AB、CD之间的一点.(1)判定∠BAE,∠CDE与∠AED之间的数量关系,并证明你的结论;(2)如图2,若∠BAE、∠CDE的两条平分线交于点F.直接写出∠AFD与∠AED之间的数量关系;(3)将图2中的射线DC沿DE翻折交AF于点G得图3,若∠AGD的余角等于2∠E的补角,求∠BAE的大小.参考答案一、选择题:题号12345678910答案D B B C C D A D B B二、填空题:11.解:把命题“在同一平面内,垂直于同一条直线的两直线平行”改写成“如果…,那么…”的形式,是“在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行”,故答案为:“在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行”.12.解:∵DE∥BF,∠D=53°,∴∠F AC=∠D=53°,∵∠B=30°,∴∠ACB=23°,∵DC平分∠BCE,∴∠DCE=23°.故答案为:23°.13.解:∵a∥b∥c,∴∠1=∠3,∠2=∠4,∵∠1=35°,∴∠3=30°,∵∠4+∠3=90°,∴∠4=55°,∴∠2=55°,故答案为:55°.14.解:∵周长为12的三角形ABC沿BC方向平移2个单位长度得到三角形DEF,∴AD=CF=2,AC=DF,∴四边形ABFD的周长=AB+BC+CF+DF+AD=AB+BC+AC+AD+CF=△ABC 的周长+2AD=12+2×2=16.故答案为16.14.解:如图,∵a∥b,∴∠1=∠3=75°,而∠2+∠3=180°,∴∠2=180°﹣75°=105°.故答案为:105°.15.解:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵GH∥EF,∴∠AEC=∠2=24°,∴∠1=∠ABC﹣∠AEC=36°.故答案为:36°.16.解:①∵∠1=∠2,∴AB∥CD,正确;②∵∠3=∠4,∴BD∥AC,错误;③∵∠A=∠DCE,∴AB∥CD,正确;④∵∠D=∠DCE,∴BD∥AC,错误;⑤∵∠A+∠ABD=180°,∴BD∥AC,错误;⑥∵∠A+∠ACD=180°,∴AB∥CD,正确;故答案为:①③⑥17.解:∵EO⊥AB于O,∴∠AOE=90°,∵∠1=32°,∴∠3=58°,∴∠2=58°,∴∠4=180°﹣58°=122°,故答案为:58;58;122.18.解:∵∠1+∠2=180°,∠1+∠BDC=180°∴∠2=∠BDC∴EF∥AB∴∠3=∠BDE∵∠3=∠A∴∠A=∠BDE∴AC∥DE∴∠ACB+∠CED=180°∵CD平分∠ACB,∠4=35°∴∠ACB=2∠4=2×35°=70°∴∠CED=180°﹣∠ACB=180°﹣70°=110°故答案为:110°.三.解答题:19.解:∵AB∥CD,∠B=62°,∴∠BED=∠B=62°,∵EG平分∠BED,∴∠DEG=∠BED=31°,∵EG⊥EF,∴∠FEG=90°,∴∠DEG+∠CEF=90°,∴∠CEF=90°﹣∠DEG=90°﹣31°=59°.20.证明:∵∠ABC+∠ECB=180°(已知),∴AB∥DE(同旁内角互补,两直线平行).∴∠ABC=∠BCD(两直线平行,内错角相等).∵∠P=∠Q(已知),∴PB∥(CQ)(内错角相等,两直线平行).∴∠PBC=(∠BCQ)(两直线平行,内错角相等).∵∠1=∠ABC﹣(∠PBC),∠2=∠BCD﹣(∠BCQ),∴∠1=∠2(等量代换).故答案为:同旁内角互补,两直线平行;两直线平行,内错角相等;CQ,内错角相等,两直线平行;∠BCQ;∠PBC;∠BCQ.21.解:此题答案不唯一,合理即可.(1)添加∠FCB=∠CBE或CF∥BE.(2)已知AB∥CD,CF∥BE.求证:∠1=∠2.证明:∵AB∥CD,∴∠DCB=∠ABC.∵CF∥BE,∴∠FCB=∠CBE,∴∠DCB-∠FCB=∠ABC-∠CBE,即∠1=∠2.22.解:(1)DE∥BC,理由如下:∵∠1+∠4=180°,∠1+∠2=180°,∴∠2=∠4,∴AB∥EF,∴∠3=∠5,∵∠3=∠B,∴∠5=∠B,∴DE∥BC,(2)∵DE平分∠ADC,∴∠5=∠6,∵DE∥BC,∴∠5=∠B,∵∠2=3∠B,∴∠2+∠5+∠6=3∠B+∠B+∠B=180°,∴∠B=36°,∴∠2=108°,∵∠1+∠2=180°,∴∠1=72°.23.解:(1)由平移得,∠ONM=30°∠DCN=45°在△CEN中,∠CEN=180°﹣∠ONM﹣∠DCN=180°﹣30°﹣45°=105°;(2)由旋转知,∠N=30°,∵∠BON=30°∴∠BON=∠N=30°,∴MN∥BC∴∠CEN=180°﹣∠DCO=180°﹣45°=135°.24.解:(1)∠BAE+∠CDE=∠AED.理由如下:作EF∥AB,如图1,∵AB∥CD,∴EF∥CD,∴∠1=∠BAE,∠2=∠CDE,∴∠BAE+∠CDE=∠AED;(2)如图2,由(1)的结论得∠AFD=∠BAF+∠CDF,∵∠BAE、∠CDE的两条平分线交于点F,∴∠BAF=∠BAE,∠CDF=∠CDE,∴∠AFD=(∠BAE+∠CDE),∵∠BAE+∠CDE=∠AED,∴∠AFD=∠AED;(3)由(1)的结论得∠AGD=∠BAF+∠CDG,而射线DC沿DE翻折交AF于点G,∴∠CDG=4∠CDF,∴∠AGD=∠BAF+4∠CDF=∠BAE+2∠CDE=∠BAE+2(∠AED﹣∠BAE)=2∠AED﹣∠BAE,∵90°﹣∠AGD=180°﹣2∠AED,∴90°﹣2∠AED+∠BAE=180°﹣2∠AED,∴∠BAE=60°.。

人教版七年级数学下册《第五章相交线与平行线》单元检测-附答案

人教版七年级数学下册《第五章相交线与平行线》单元检测-附答案

人教版七年级数学下册《第五章相交线与平行线》单元检测-附答案一、选择题(本大题共12小题 每小题3分 共36分)1.图 C 是直线AB 上一点 CD ⊥AB EC ⊥CF 则图中互余的角的对数与互补的角的对数分别是( )A .3 4B .4 7C .4 4D .4 5 2.如图 直线AB CD 相交于点O EO⊥AB 垂直为点O ⊥BOD =50° 则⊥COE =( )A .30°B .140°C .50°D .60° 3.将一副三角板按如图放置 则下列结论⊥13∠=∠;⊥如果230∠= 则有//AC DE ;⊥如果245∠= 则有//BC AD ;⊥如果4C ∠=∠ 必有230∠= 其中正确的有( )A .⊥⊥⊥B .⊥⊥⊥C .⊥⊥D .⊥⊥⊥⊥ 4.如图 AB ⊥CD BF DF 分别平分⊥ABE 和⊥CDE BF ⊥DE ⊥F 与⊥ABE 互补 则⊥F 的度数为A .30°B .35°C .36°D .45°5.如图 直线//AB CD 点E 在CD 上 点O 、点F 在AB 上 EOF ∠的角平分线OG 交CD 于点G 过点F 作FH OE ⊥于点H 已知148OGD ∠=︒ 则OFH ∠的度数为( )A .26ºB .32ºC .36ºD .42º6.如图 //,2,2,AB CD FEN BEN FGH CGH ∠=∠∠=∠则F ∠与H ∠的数量关系是()A .90F H ︒∠+∠=B .2H F ∠=∠C .2180H F ︒∠-∠=D .3180H F ︒∠-∠=7.将图1中周长为32的长方形纸片剪成1号、2号、3号、4号正方形和5号长方形并将它们按图2的方式放入周长为48的长方形中 则没有覆盖的阴影部分的周长为( )A .16B .24C .30D .408.如图所示 直线c 截直线a b 给出下列以下条件:①48∠=∠;②17∠=∠;③26∠=∠;④47180∠+∠=︒.其中能够说明a⊥b 的条件有A .1个B .2个C .3个D .4个9.如图a 是长方形纸带 ⊥DEF =26° 将纸带沿EF 折叠成图b 再沿BF 折叠成图c 则图c 中的⊥CFE 的度数是( )A .102°B .108°C .124°D .128°10.如图 已知直线AB CD 被直线AC 所截 //AB CD E 是平面内任意一点(点E 不在直线AB CD AC 上) 设⊥BAE =α ⊥DCE =β.下列各式:⊥α+β ⊥α﹣β ⊥180°﹣α﹣β ⊥360°﹣α﹣β ⊥AEC 的度数可能是( )A .⊥⊥⊥B .⊥⊥⊥C .⊥⊥⊥D .⊥⊥⊥⊥ 11.如图 //,AD BC D ABC ∠=∠ 点E 是边DC 上一点 连接AE 交BC 的延长线于点H 点F 是边AB 上一点 使得FBE FEB ∠=∠ 作FEH ∠的角平分线EG 交BH 于点G 若100DEH ︒∠= 则BEG ∠的度数是( )A .30︒B .40︒C .50︒D .60︒12.如图 E 在线段BA 的延长线上 ⊥EAD =⊥D ⊥B =⊥D EF ∥HC 连FH 交AD 于G ⊥FGA 的余角比⊥DGH 大16° K 为线段BC 上一点 连CG 使⊥CKG =⊥CGK 在⊥AGK内部有射线GM GM 平分⊥FGC 则下列结论:⊥AD ∥BC ;⊥GK 平分⊥AGC ;⊥⊥DGH =37°;⊥⊥MGK 的角度为定值且定值为16° 其中正确结论的个数有( )A .4个B .3个C .2个D .1个二、填空题(本大题共6小题 每小题4分 共24分)13.α∠与β∠的两边互相垂直 且o 50α=∠ 则β∠的度数为_________.14.如图 有两个正方形夹在AB 与CD 中 且AB//CD 若⊥FEC=10° 两个正方形临边夹角为150° 则⊥1的度数为________度(正方形的每个内角为90°)15.如图 已知EF⊥GH A 、D 为GH 上的两点 M 、B 为EF 上的两点 延长AM 于点C AB 平分⊥DAC 直线DB 平分⊥FBC 若⊥ACB=100° 则⊥DBA 的度数为________.16.线段AB 和线段CD 交于点O OE 平分⊥AOC 点F 为线段AB 上一点(不与点A 和点O 重合)过点F 作 FG//OE 交线段CD 于点G 若⊥AOD=110° 则⊥AFG 的度数为_____°. 17.如图 AB⊥CD 点P 为CD 上一点 ⊥EBA 、⊥EPC 的角平分线于点F 已知⊥F =40° 则⊥E =_____度.18.如图直线MN⊥PQ 点A在直线MN与PQ之间点B在直线MN上连结AB.⊥ABM 的平分线BC交PQ于点C 连结AC 过点A作AD⊥PQ交PQ于点D 作AF⊥AB交PQ于点F AE平分⊥DAF交PQ于点E 若⊥CAE=45° ⊥ACB=52⊥DAE 则⊥ACD的度数是_____.三、解答题(本大题共6小题共60分)19.(8分)作图并写出结论:如图点P是⊥AOB的边OA上一点请过点P画出OA OB的垂线分别交BO 的延长线于M、N 线段的长表示点P到直线BO的距离;线段的长表示点M到直线AO的距离;线段ON的长表示点O到直线的距离;点P到直线OA的距离为.20.(8分)探究:如图⊥ 在⊥ABC中点D、E、F分别在边AB、AC、CB上且DE⊥BC EF⊥AB若⊥ABC =65° 求⊥DEF的度数.请将下面的解答过程补充完整并填空(理由或数学式):解:⊥DE⊥BC()⊥⊥DEF=()⊥EF⊥AB⊥=⊥ABC()⊥⊥DEF=⊥ABC()⊥⊥ABC=65°⊥⊥DEF=应用:如图⊥ 在⊥ABC中点D、E、F分别在边AB、AC、BC的延长线上且DE⊥BC EF⊥AB 若⊥ABC=β 则⊥DEF的大小为(用含β的代数式表示).21.(10分)已知:如图⊥BAP+⊥APD =180° ⊥1 =⊥2.求证:AE⊥PF.22.(10分)已知DB⊥FG⊥EC A是FG上一点⊥ABD=60° ⊥ACE=36° AP平分⊥BAC 求:(1)⊥BAC的大小;(2)⊥PAG的大小.23.(12分)如图在四边形OBCA中OA⊥BC ⊥B=90° OA=3 OB=4.(1)若S四边形AOBC=18 求BC的长;(2)如图1 设D为边OB上一个动点当AD⊥AC时过点A的直线PF与⊥ODA的角平分线交于点P ⊥APD=90° 问AF平分⊥CAE吗?并说明理由;(3)如图2 当点D在线段OB上运动时⊥ADM=100° M在线段BC上⊥DAO和⊥BMD 的平分线交于H点则点D在运动过程中⊥H的大小是否变化?若不变求出其值;若变化说明理由.24.(12分)如图1 E是直线AB CD内部一点AB⊥CD连接EA ED.(1)探究猜想:⊥若⊥A=30° ⊥D=40° 则⊥AED等于多少度?⊥若⊥A=20° ⊥D=60° 则⊥AED等于多少度?⊥猜想图1中⊥AED⊥EAB⊥EDC的关系并证明你的结论.(2)拓展应用:如图2 线段FE与长方形ABCD的边AB交于点E与边CD交于点F.图2中⊥⊥分别是被线段FE隔开的2个区域(不含边界)P是位于以上两个区域内的一点猜想⊥PEB⊥PFC⊥EPF的关系(不要求说明理由).参考答案1.B【分析】根据垂直的定义、角互余与互补的定义即可得.【详解】CD AB ⊥90ACD BCD ∴∠=∠=︒90ACE DCE ∴∠+∠=︒ 90BCF DCF ∠+∠=︒EC CF ⊥90ECF ∴∠=︒90DCE DCF ∴∠+∠=︒ACE DCF ∴∠=∠ BCF DCE ∠=∠90BCF ACE ∴∠+∠=︒则图中互余的角的对数为4对;90ACD BCD ECF ∠=∠=∠=︒180ACD BCD ACD ECF BCD ECF ∴∠+∠=∠+∠=∠+∠=︒点C 是直线AB 上一点180ACB ∴∠=︒180ACE BCE ∴∠+∠=︒ 180ACF BCF ∠+∠=︒又ACE DCF ∠=∠ BCF DCE ∠=∠180DCF BCE ∴∠+∠=︒ 180ACF DCE ∠+∠=︒则图中互补的角的对数为7对故选:B .【点拨】本题考查了垂直的定义、角互余与互补的定义 熟练掌握各定义是解题关键. 2.B【详解】试题解析:EO ⊥AB90,AOE ∴∠=50,AOC BOD ∠=∠=5090140.COE AOC AOE ∴∠=∠+∠=+=故选B.3.D【分析】根据⊥1+⊥2=⊥3+⊥2即可证得⊥;根据230∠=求出⊥1与⊥E 的度数大小即可判断⊥;利用⊥2求出⊥3 与⊥B 的度数大小即可判断⊥;利用4C ∠=∠求出⊥1 即可得到⊥2的度数 即可判断⊥.【详解】⊥⊥1+⊥2=⊥3+⊥2=90︒⊥⊥1=⊥3 故⊥正确;⊥230∠=⊥190260∠=-∠=⊥E=60︒⊥⊥1=⊥E⊥AC⊥DE 故⊥正确;⊥245∠=⊥345∠=⊥45B ∠=⊥⊥3=⊥B⊥//BC AD 故⊥正确;⊥4C ∠=∠45=⊥⊥CFE=⊥C 45=⊥⊥CFE+⊥E=⊥C+⊥1⊥⊥1=⊥E=60⊥⊥2=90︒-⊥1=30 故⊥正确故选:D.【点拨】此题考查互余角的性质 平行线的判定及性质熟练运用解题是关键. 4.C【分析】延长BG交CD于G 然后运用平行的性质和角平分线的定义进行解答即可.【详解】解:如图延长BG交CD于G⊥BF⊥ED⊥⊥F=⊥EDF又⊥DF 平分⊥CDE⊥⊥CDE=2⊥F⊥BF⊥ED⊥⊥CGF=⊥EDF=2⊥F⊥AB⊥CD⊥⊥ABF=⊥CGF=2⊥F⊥BF平分⊥ABE⊥⊥ABE=2⊥ABF=4⊥F又⊥⊥F 与⊥ABE 互补⊥⊥F +⊥ABE =180°即5⊥F=180° 解得⊥F=36°故答案选C.【点拨】本题考查了平行的性质和角平分线的定义做出辅助线是解答本题的关键.5.A【分析】依据⊥OGD=148° 可得⊥EGO=32° 根据AB⊥CD 可得⊥EGO =⊥GOF 根据GO 平分⊥EOF 可得⊥GOE =⊥GOF 等量代换可得:⊥EGO=⊥GOE=⊥GOF=32° 根据FH OE ⊥ 可得:OFH ∠=90°-32°-32°=26°【详解】解:⊥ ⊥OGD=148°⊥⊥EGO=32°⊥AB⊥CD⊥⊥EGO =⊥GOF⊥EOF ∠的角平分线OG 交CD 于点G⊥⊥GOE =⊥GOF⊥⊥EGO=32°⊥EGO =⊥GOF⊥GOE =⊥GOF⊥⊥GOE=⊥GOF=32°⊥FH OE ⊥⊥OFH ∠=90°-32°-32°=26°故选A.【点拨】本题考查的是平行线的性质及角平分线的定义的综合运用 易构造等腰三角形用到的知识点为:两直线平行 内错角相等.6.D【分析】先设角 利用平行线的性质表示出待求角 再利用整体思想即可求解.【详解】设,NEB HGC αβ∠=∠=则2,2FEN FGH αβ∠=∠=⊥//AB CD⊥H AEH HGC ∠=∠+∠NEB HGC =∠+∠αβ=+F FEB FGD ∠=∠-∠()180FEB FGC =∠-︒-∠()31803αβ=-︒-()3180αβ=+-︒⊥F ∠3180H =∠-︒3180H F ∴∠-∠=︒故选:D .【点拨】本题考查了平行线的性质 关键是熟练掌握平行线的性质 注意整体思想的运用.7.D【分析】设1号正方形的边长为x 2号正方形的边长为y 则3号正方形的边长为x+y 4号正方形的边长为2x+y 5号长方形的长为3x+y 宽为y -x 根据图1中长方形的周长为32 求得x+y=4 根据图2中长方形的周长为48 求得AB=24-3x -4y 根据平移得:没有覆盖的阴影部分的周长为四边形ABCD 的周长=2(AB+AD ) 计算即可得到答案.【详解】设1号正方形的边长为x 2号正方形的边长为y 则3号正方形的边长为x+y 4号正方形的边长为2x+y 5号长方形的长为3x+y 宽为y -x由图1中长方形的周长为32 可得 y+2(x+y )+(2x+y )=16解得:x+y=4如图⊥图2中长方形的周长为48⊥AB+2(x+y )+2x+y+y -x=24⊥AB=24-3x -4y根据平移得:没有覆盖的阴影部分的周长为四边形ABCD 的周长⊥2(AB+AD )=2(24-3x -4y+x+y+2x+y+y -x)=2(24-x -y )=48-2(x+y )=48-8=40 故选:D ..【点拨】此题考查整式加减的应用 平移的性质 利用平移的性质将不规则图形变化为规则图形进而求解 解题的关键是设出未知数 列代数式表示各线段进而解决问题.【详解】根据平行线的判定由题意知:∠=∠⊥⊥68∠=∠48∠=∠⊥46∥故⊥对.⊥a b⊥⊥13∠=∠∠=∠17⊥37∠=∠∥故⊥对.⊥a b⊥⊥26∠=∠∥故⊥对.⊥a b⊥⊥47180∠+∠=︒34180∠+∠=︒⊥37∠=∠∥故⊥对.⊥a b故选D.点拨:此题主要考查了平行线的判定关键是利用图形中的条件和已知的条件构造两直线平行的条件.平行线的判定:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行.9.A【分析】先由矩形的性质得出⊥BFE=⊥DEF=26° 再根据折叠的性质得出⊥CFG=180°-2⊥BFE ⊥CFE=⊥CFG-⊥EFG即可.【详解】⊥四边形ABCD是矩形⊥AD⊥BC⊥⊥BFE=⊥DEF=26°⊥⊥CFE=⊥CFG-⊥EFG=180°-2⊥BFE-⊥EFG=180°-3×26°=102°故选A.【点拨】本题考查了翻折变换(折叠问题)、矩形的性质、平行线的性质;熟练掌握翻折变换和矩形的性质弄清各个角之间的关系是解决问题的关键.【分析】根据点E有6种可能位置分情况进行讨论依据平行线的性质以及三角形外角性质进行计算求解即可.【详解】解:(1)如图1 由AB//CD可得⊥AOC=⊥DCE1=β⊥⊥AOC=⊥BAE1+⊥AE1C⊥⊥AE1C=β﹣α.(2)如图2 过E2作AB平行线则由AB//CD可得⊥1=⊥BAE2=α ⊥2=⊥DCE2=β ⊥⊥AE2C=α+β.当AE2平分⊥BAC CE2平分⊥ACD时⊥BAE2+⊥DCE2=12(⊥BAC+⊥ACD)=12×180°=90°即α+β=90°又⊥⊥AE2C=⊥BAE2+⊥DCE2⊥⊥AE2C=180°﹣(α+β)=180°﹣α﹣β;(3)如图3 由AB//CD可得⊥BOE3=⊥DCE3=β ⊥⊥BAE3=⊥BOE3+⊥AE3C⊥⊥AE3C=α﹣β.(4)如图4 由AB//CD可得⊥BAE4+⊥AE4C+⊥DCE4=360°⊥⊥AE4C=360°﹣α﹣β.(5)(6)当点E在CD的下方时同理可得⊥AEC=α﹣β或β﹣α.综上所述⊥AEC的度数可能为β﹣α α+β α﹣β 180°﹣α﹣β 360°﹣α﹣β.故选:D.【点拨】本题主要考查了平行线的性质的运用与外角定理解题时注意:两直线平行同位角相等;两直线平行内错角相等.11.B【分析】AD⊥BC ⊥D=⊥ABC 则AB⊥CD 则⊥AEF=180°-⊥AED-⊥BEG=180°-2β 在△AEF中100°+2α+180°-2β=180° 故β-α=40° 即可求解.【详解】解:设FBE=⊥FEB=α 则⊥AFE=2α⊥FEH的角平分线为EG 设⊥GEH=⊥GEF=β⊥AD⊥BC ⊥⊥ABC+⊥BAD=180°而⊥D=⊥ABC ⊥⊥D+⊥BAD=180° ⊥AB⊥CD⊥DEH=100° 则⊥CEH=⊥FAE=80°⊥AEF=180°-⊥FEG-⊥BEG=180°-2β在△AEF中在△AEF中80°+2α+180-2β=180°故β-α=40°而⊥BEG=⊥FEG-⊥FEB=β-α=40°故选:B.【点拨】此题考查平行线的性质解题关键是落脚于△AEF内角和为180° 即100°+2α+180°-2β=180° 题目难度较大.12.B【分析】根据平行线的判定定理得到AD⊥BC故⊥正确;由平行线的性质得到⊥AGK=⊥CKG 等量代换得到⊥AGK=⊥CGK求得GK平分⊥AGC;故⊥正确;根据题意列方程得到⊥FGA=⊥DGH=37° 故⊥正确;设⊥AGM=α⊥MGK=β得到⊥AGK=α+β根据角平分线的定义即可得到结论.【详解】解:⊥⊥EAD=⊥D⊥B=⊥D⊥⊥EAD=⊥B⊥AD⊥BC故⊥正确;⊥⊥AGK=⊥CKG⊥⊥CKG=⊥CGK⊥⊥AGK=⊥CGK⊥GK平分⊥AGC;故⊥正确;⊥⊥FGA的余角比⊥DGH大16°⊥90°-⊥FGA-⊥DGH=16°⊥⊥FGA=⊥DGH⊥90°-2⊥FGA=16°⊥⊥FGA=⊥DGH=37° 故⊥正确;设⊥AGM=α⊥MGK=β⊥⊥AGK=α+β⊥GK平分⊥AGC⊥⊥CGK=⊥AGK=α+β⊥GM平分⊥FGC⊥⊥FGM=⊥CGM⊥⊥FGA+⊥AGM=⊥MGK+⊥CGK⊥37°+α=β+α+β⊥β=18.5°⊥⊥MGK=18.5° 故⊥错误故选:B.【点拨】本题考查了平行线的判定和性质角平分线的定义对顶角性质一元一次方程正确的识别图形是解题的关键.13.130°或50°【详解】【分析】作图分析若两个角的边互相垂直那么这两个角必相等或互补可据此解答.【详解】如图⊥β的两边与α的两边分别垂直⊥α+β=180°故β=130°在上述情况下若反向延长⊥β的一边那么⊥β的补角的两边也与⊥α的两边互相垂直故此时⊥β=50;综上可知:⊥β=50°或130°故正确答案为:【点拨】本题考核知识点:四边形内角和. 解题关键点:根据题意画出图形分析边垂直的2种可能情况.14.70.【详解】作IF⊥AB GK⊥AB JH⊥AB因为AB⊥CD所以AB⊥CD⊥ IF⊥GK⊥JH所以⊥IFG=⊥FEC=10°所以⊥GFI=90°-⊥IFG=80°所以⊥KGF=⊥GFI=80°所以⊥HGK=150°-⊥KGF=70°所以⊥JHG=⊥HGK=70°同理⊥2=90°-⊥JHG=20°所以⊥1=90°-⊥2=70°故答案为70【点拨】本题考查了平行线的性质正确作出辅助线是关键注意掌握平行线的性质:两直线平行内错角相等.15.50°【详解】解:如图设⊥DAB=⊥BAC=x即⊥1=⊥2=x.⊥EF⊥GH⊥⊥2=⊥3.在⊥ABC内⊥4=180°(180°﹣⊥4)﹣⊥ACB﹣⊥1﹣⊥3=180°﹣⊥ACB﹣2x=80°﹣2x.⊥直线BD平分⊥FBC⊥⊥5=12=1(180°﹣80°+2x)=50°+x⊥⊥DBA=180°﹣⊥3﹣⊥4﹣⊥52=180°﹣x﹣(80°﹣2x)﹣(50°+x)=180°﹣x﹣80°+2x﹣50°﹣x=50°.故答案为50°.点拨:本题考查了平行线的性质角平分线的定义三角形的内角和定理熟记性质并理清图中各角度之间的关系是解题的关键.16.35°或145°.【分析】分两种情况讨论:点F在AO上点F在OB上依据平行线的性质以及角平分线的定义即可得到⊥AFG度数.【详解】解:如图当点F在AO上时⊥⊥AOD=110°⊥⊥AOC=70°又⊥OE平分⊥AOC⊥⊥COE=35°⊥FG⊥OE⊥⊥OGF=35°⊥⊥AFG=⊥AOD+⊥OGF=110°+35°=145°;如图当点F在OB上时⊥⊥AOD=110°⊥⊥AOC=70°又⊥OE平分⊥AOC⊥⊥AOE=35°⊥FG⊥OE⊥⊥AFG=⊥AOE=35°故答案为35°或145°.【点拨】本题考查了平行线的性质以及角平分线的定义熟记概念并准确识图理清图中各个角度之间的关系是解题的关键.17.80【详解】如图根据角平分线的性质和平行线的性质可知⊥FMA=12⊥CPE=⊥F+⊥1⊥ANE=⊥E+2⊥1=⊥CPE=2⊥FMA 即⊥E=2⊥F=2×40°=80°.故答案为80.18.27°.【分析】延长FA与直线MN交于点K 通过角度的不断转换解得⊥BCA=45°.【详解】解:延长FA与直线MN交于点K由图可知⊥ACD=90°-⊥CAD=90°-(45°+⊥EAD)=45°-12⊥FAD=45°-12(90°-⊥AFD)=12⊥AFD因为MN⊥PQ 所以⊥AFD=⊥BKA=90°-⊥KBA=90°-(180°-⊥ABM)=⊥ABM-90°所以⊥ACD=12⊥AFD=12(⊥ABM-90°)=⊥BCD-45° 即⊥BCD-⊥ACD=⊥BCA=45°所以⊥ACD=90°-(45°+⊥EAD)=45°-⊥EAD=45°-25⊥BCA=45°-18°=27°.故⊥ACD的度数是:27°.【点拨】本题利用平行线、垂直、角平分线综合考查了角度的求解. 19.PN PM PN 0【分析】先根据题意画出图形再根据点到直线的距离的定义得出即可.【详解】如图所示:线段PN的长表示点P到直线BO的距离;线段PM的长表示点M到直线AO的距离;线段ON的长表示点O到直线PN的距离;点P到直线OA的距离为0故答案为PN PM PN 0.【点拨】本题考查了点到直线的距离能熟记点到直线的距离的定义是解此题的关键.20.探究:见解析;应用:见解析.【分析】探究:依据两直线平行内错角相等以及两直线平行同位角相等即可得到⊥DEF=⊥ABC 进而得出⊥DEF的度数.应用:依据两直线平行同位角相等以及两直线平行同旁内角互补即可得到⊥DEF的度数.【详解】解:探究:⊥DE⊥BC(已知)⊥⊥DEF=⊥CFE(两直线平行内错角相等)⊥EF⊥AB⊥⊥CFE=⊥ABC(两直线平行同位角相等)⊥⊥DEF=⊥ABC(等量代换)⊥⊥ABC=65°⊥⊥DEF=65°故答案为已知;⊥CFE;两直线平行内错角相等;⊥CFE;两直线平行同位角相等;等量代换;65°.应用:⊥DE⊥BC⊥⊥ABC=⊥D=β⊥EF⊥AB⊥⊥D+⊥DEF =180°⊥⊥DEF =180°﹣⊥D =180°﹣β故答案为180°﹣β.【点拨】本题主要考查了平行线的性质 解题时注意:两直线平行 同位角相等;两直线平行 同旁内角互补;两直线平行 内错角相等.21.见解析【分析】由⊥BAP +⊥APD =180°可得AB⊥CD 进而得到⊥BAP=⊥CPA 然后根据角的和差可得⊥EAP=⊥FPA 运用内错角相等、两直线平行证明即可.【详解】证明:⊥⊥BAP +⊥APD =180°⊥AB⊥CD⊥⊥BAP=⊥CPA⊥⊥1 =⊥2⊥⊥BAP -⊥1=⊥CPA -⊥2 即⊥EAP=⊥FPA⊥AE⊥PF【点拨】本题考查平行线的性质和判定 解题的关键是灵活应用平行线的性质定理和判定定理.22.(1)96°;(2)12°.【详解】试题分析:(1)利用两直线内错角相等得到两对角相等 相加即可求出所求的角; (2)由AP 为角平分线 利用角平分线定义求出PAC ∠的度数 由PAC CAG ∠-∠即可求PAG ∠的度数.试题解析:(1)⊥DB ⊥FG ⊥EC60,36BAG ABD CAG ACE ∴∠=∠=∠=∠=,96BAC BAG CAG ∴∠=∠+∠=;(2)⊥AP 为⊥BAC 的平分线48BAP CAP ,∴∠=∠= 12.PAG CAP GAC ∴∠=∠-∠=23.(1)6;(2)见解析;(3)见解析.【详解】分析:(1)由梯形的面积公式即可求得BC 的长;(2)由两直线平行 同旁内角互补得到⊥DAC=⊥O=90° 由⊥DAC+⊥CAF=⊥ADP+⊥APD得⊥CAF=⊥ADP 由角平分线的定义 可得⊥⊥CAF=12⊥CAE 即可得证; (3)由两直线平行 同旁内角互补得到⊥OAD+⊥DAM+⊥BMD+⊥DMA=180° 由三角形内角和定理得⊥OAD+⊥BMD=100° 由角平分线定义得⊥DAH+⊥DAM=50° 由三角形内角和定理得⊥H=50° 即可得到结论.详解:(1)在四边形OBCA 中 OA⊥BC ⊥B=90°⊥四边形OBCA 是梯形⊥S 四边形AOBC ==()2OA BC OB +⨯=(3)42BC +⨯=18 解得:BC=6;(2)AF 平分⊥CAE.理由如下:OA//BC ⊥B =90°⊥⊥O=90°AD⊥AC⊥⊥DAC=⊥O=90°⊥DAC+⊥CAF=⊥ADP+⊥APD⊥⊥CAF=⊥ADP ⊥ADP=12⊥ADO ⊥⊥ADP=()190DAO 2∠︒-⊥CAE=90°-⊥DAO⊥⊥ADP=12⊥CAE⊥⊥CAF=12⊥CAE⊥AF平分⊥CAE;(3)连接AMOA//BC⊥⊥OAD+⊥DAM+⊥BMD+⊥DMA=180° ⊥ADM=100°⊥⊥DAM+⊥DMA=80°⊥⊥OAD+⊥BMD=100°⊥DAH=12⊥OAD ⊥DAM=12⊥BMD⊥⊥DAH+⊥DAM=12(⊥OAD+⊥BMD)=50°⊥⊥H=180°-50°-80°=50°故⊥H的大小不变⊥H=50°.点拨:此题是四边形综合题主要考查了平行线的性质四边形的面积的计算方法角平分线的意义解本题的关键是用整体思想解决问题也是本题的难点.24.(1)⊥70°;⊥80°;⊥⊥AED=⊥EAB+⊥EDC;(2)p点在区域⊥时⊥PEB+⊥PFC+⊥EPF=360° ;p点在区域⊥时⊥EPF=⊥PEB+⊥PFC【解析】【详解】试题分析:(1)⊥根据图形猜想得出所求角度数即可;⊥根据图形猜想得出所求角度数即可;⊥猜想得到三角关系理由为:延长AE与DC交于F点由AB与DC平行利用两直线平行内错角相等得到一对角相等再利用外角性质及等量代换即可得证;(2)分两个区域分别找出三个角关系即可.试题解析:(1)⊥当⊥A=30° ⊥D=40° 则⊥AED=70°⊥当⊥A=20° ⊥D=60° 则⊥AED=80°⊥⊥AED ⊥EAB ⊥EDC的关系为⊥AED=⊥EAB+⊥EDC 证明:图1过点E作EF//AB ⊥⊥AEF=⊥A.⊥AB//CD ⊥EF//CD. ⊥⊥FED=⊥D.⊥⊥AED=⊥AEF+⊥FED=⊥A+⊥D.(2)图2 p点在区域⊥时⊥PEB+⊥PFC+⊥EPF=360°图3 p点在区域⊥时⊥EPF=⊥PEB+⊥PFC点睛:此题考查了平行线的性质熟练掌握平行线的性质是解本题的关键.。

人教版七年级数学下册《第五章相交线与平行线》单元测试卷-带答案

人教版七年级数学下册《第五章相交线与平行线》单元测试卷-带答案

人教版七年级数学下册《第五章相交线与平行线》单元测试卷-带答案(本试卷六个大题,23个小题。

满分120分,考试时间120分钟。

)学校:___________班级:___________姓名:___________考号:___________一、单项选择题(每小题3分,共18分.)1.如图,在平面内作已知直线m的垂线,可作的垂线有()A.0条B.1条C.2条D.无数条2.下面四个图形中,∠1与∠2是同位角的是()3.如图,已知直线a,b被直线c所截,下列条件不能判断a∥b的是()A.∠2=∠6B.∠3+∠4=180°C.∠2+∠5=180°D.∠1=∠64.下列命题中,为假命题的是()A.内错角相等,两直线平行B.同角的补角相等C.两直线平行,同位角互补D.过直线外一点有且只有一条直线与已知直线平行5.如图,∠1=∠2,∠4=120°,则∠3等于()A.60°B.40°C.50°D.30°6.2022年北京冬奥会男子500米短道速滑冠军在一次直道速滑训练中,经过两次拐弯后的速滑方向与原来的方向相反,则两次拐弯的角度可能是() A.第一次向左拐52°,第二次向右拐52° B.第一次向左拐48°,第二次向左拐48°C.第一次向左拐73°,第二次向右拐107°D.第一次向左拐32°,第二次向左拐148°二、填空题(每小题3分,共18分)7.如图,某单位要在河岸l上建一个水泵房引水到C处.他们的做法如下:过点C作CD⊥l于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是 .8.已知直线a∥b,把一块含30°角的直角三角板按如图所示的方式放置,若∠1=48°,则∠2的度数为.9.如图,已知m∥n,若∠1+∠2=280°,则∠4-∠3= .10.如图,在宽为13米、长为24米的长方形地面上修筑同样宽的道路(图中阴影部分),道路的宽为2米,余下部分种植草坪.则草坪的面积为平方米.11.如图,将长方形纸片ABCD沿折痕MN折叠,A,B分别落在对应位置A1,B1处,A1B1交AD于点E,若∠BNM=62°,则∠A1ME的度数为.12.如图,直线AB和CD交于点O,∠AOC=30°,∠BOE=90°,OF平分∠AOD.射线OE以每秒10°的速度绕点O逆时针转动,同时射线OF也以每秒4°的速度绕点O顺时针转动,当射线OE转动一周时,射线OE,OF同时停止转动.在射线OE转动一周的过程中,当OE⊥OF时,射线OE转动的时间为秒.三、解答题(每小题6分,共30分)13.(1)如图,点A,O,B在同一条直线上,已知∠BOC=50°,求∠AOC的度数.(2)如图,已知OA⊥OB,OC⊥OD,∠AOC=27°,求∠BOD的度数.14.如图,AD与BC交于点O,点E在OD上,∠C=∠3,∠2=70°,∠1+∠3=150°,∠A=∠D,求∠B的度数.15.填空,并在括号内,填上推理的依据.如图,已知∠BAE=∠E,∠B=∠D,证明:∠AFC+∠DAE=180°.证明:∵∠BAE=∠E∴∥(),∴∠B=∠().又∵∠B=∠D∴∠D=∠(等量代换),∴AD∥BC()∴∠AFC+∠DAE=180°().16.某市为了方便市民绿色出行,推出了共享单车服务.图1是某品牌共享单车放在水平地面的实物图,图2是其示意图,其中AB,CD都与地面l平行,∠BCD=60°,∠BAC=54°.问当∠MAC为多少度时,AM与CB平行?17.如图,在由小正方形组成的4×4的网格中,请用无刻度直尺按下列要求作格点三角形(图形的顶点都在正方形网格的格点上).(1)在图1中,将三角形ABC平移,得到三角形A'B'C',使得三角形A'B'C'与三角形ABC无重合部分.(2)在图2中,线段AB与CD相交,所夹的一个角为∠α,请画一个三角形ABE,使得三角形ABE中的一个角等于∠α.四、解答题(每小题8分,共24分。

七年级数学(下)第五章《相交线与平行线》单元检测题含答案

七年级数学(下)第五章《相交线与平行线》单元检测题含答案

七年级数学(下)第五章《相交线与平行线》单元检测题(时间:90分钟,满分:100分)一、选择题(每小题3分,共30分)1.下列命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中错误的有()A.1个B.2个C.3个D.4个2.点P是直线l外一点,A为垂足,,且PA=4 cm,则点P到直线l的距离()A.小于4 cm B.等于4 cm C.大于4 cm D.不确定3.(2013•安徽)如图,AB∥CD,∠A+∠E=75°,则∠C为()A.60°B.65°C.75°D.80°第3题图第4题图4.(2013•襄阳)如图,BD平分∠ABC,CD∥AB,若∠BCD=70°,则∠ABD的度数为()A.55°B.50°C.45°D.40°5.(2013•孝感)如图,∠1=∠2,∠3=40°,则∠4等于()A.120°B.130°C.140°D.40°6.如图,AB∥CD,AC⊥BC,图中与∠CAB互余的角有()A.1个B.2个C.3个D.4个第5题图第6题图7.如图,点在的延长线上,下列条件中不能判定AB∥CD的是()A.∠1=∠2 B.∠3=∠4C.∠5=∠D.∠+∠BDC=180°第7题图第8题图8.如图,DH∥EG∥BC,DC∥EF,那么与∠DCB相等的角的个数为()A.2个B.3个C.4个D.5个9. 下列条件中能得到平行线的是()①邻补角的角平分线;②平行线内错角的角平分线;③平行线同旁内角的角平分线.A.①②B.②③C.②D.③10. 两平行直线被第三条直线所截,同位角的平分线()A.互相重合B.互相平行C.互相垂直D.相交二、填空题(共8小题,每小题3分,满分24分)11.如图,直线a、b相交,∠1=,则∠2=.第11题图12.(2013•镇江)如图,AD平分△ABC的外角∠EAC,且AD∥BC,若∠BAC=80°,则∠B= °.第12题图第13题图第14题图13.如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是.14.如图,直线AB,CD,EF相交于点O,且AB⊥CD,∠1与∠2的关系是.15.(2013•江西)如图,在△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=155°,则∠B的度数为.第15题图第16题图16.如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,则∠2= .17.如图,直线a∥b,则∠ACB= .第17题图第18题图18.(2012•郴州)如图,已知AB∥CD,∠1=60°,则∠2= 度.三、解答题(共6小题,满分46分)19.(7分)读句画图:如图,直线CD与直线AB相交于C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.第19题图20.(7分)如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1,则小鱼的面积为;(2)画出小鱼向左平移3格后的图形.(不要求写作图步骤和过程)第20题图21.(8分)已知:如图,∠BAP+∠APD =,∠1 =∠2.求证:∠E =∠F.第21题图第22题图22.(8分)已知:如图,∠1 =∠2,∠3 =∠4,∠5 =∠6.求证:ED ∥FB.23.(8分)如图,CD平分∠ACB,DE∥BC,∠AED=80°,求∠EDC的度数.第23题图第24题图24.(8分)如图,已知AB∥CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数.参考答案1.B 解析:①是正确的,对顶角相等;②正确,在同一平面内,垂直于同一条直线的两直线平行;③错误,角平分线分成的两个角相等但不是对顶角;④错误,同位角只有在两直线平行的情况下才相等.故①②正确,③④错误,所以错误的有两个,故选B.2. B 解析:根据点到直线的距离为点到直线的垂线段的长度(垂线段最短),所以点P到直线l的距离等于4 cm,故选B.3. C 解析:∵∠A+∠E=75°,∴∠EOB=∠A+∠E=75°.∵AB∥CD,∴∠C=∠EOB=75°,故选C.4. A 解析:∵CD∥AB,∴∠ABC+∠DCB=180°.∵∠BCD=70°,∴∠ABC=180°-70°=110°.∵BD平分∠ABC,∴∠ABD=55°.5. C 解析:如题图所示,∵∠1=∠2,∴a∥b,∴∠3=∠5.∵∠3=40°,∴∠5=40°,∴∠4=180°-∠5=180°-40°=140°,故选C.6. C 解析:∵AB∥CD,∴∠ABC=∠BCD.设∠ABC的对顶角为∠1,则∠ABC=∠1.又∵AC⊥BC,∴∠ACB=90°,∴∠CAB+∠ABC=∠CAB+∠BCD=∠CAB+∠1=90°,因此与∠CAB互余的角为∠ABC,∠BCD,∠1.故选C.7. A 解析:选项B中,∵∠3=∠4,∴AB∥CD (内错角相等,两直线平行),故正确;选项C中,∵∠5=∠B,∴AB∥CD (内错角相等,两直线平行),故正确;选项D中,∵∠B+∠BDC=180°,∴AB∥CD(同旁内角互补,两直线平行),故正确;而选项A中,∠1与∠2是直线AC、BD被直线AD所截形成的内错角,∵∠1=∠2,∴AC∥BD,故A错误.选A.8. D 解析:如题图所示,∵DC∥EF,∴∠DCB=∠EFB.∵DH∥EG∥BC,∴∠GEF=∠EFB,∠DCB=∠HDC,∠DCB=∠CMG=∠DME,故与∠DCB相等的角共有5个.故选D.9. C 解析:结合已知条件,利用平行线的判定定理依次推理判断.10. B 解析:∵两条平行直线被第三条直线所截,同位角相等,∴它们角的平分线形成的同位角相等,∴同位角相等的平分线平行.故选B.11. 144°解析:由题图得,∠1与∠2互为邻补角,即∠1+∠2=180°.又∵∠1=36°,∴∠2=180°36°=144°.12. 50 解析:∵∠BAC=80°,∴∠EAC=100°.∵AD平分△ABC的外角∠EAC,∴∠EAD=∠DAC=50°.∵AD∥BC,∴∠B=∠EAD=50°.故答案为50.13. 垂线段定理:直线外一点与直线上所有点的连线中,垂线段最短解析:根据垂线段定理,直线外一点与直线上所有点的连线中,垂线段最短,∴沿AB开渠,能使所开的渠道最短.14. ∠1+∠2=90°解析:∵直线AB、EF相交于O点,∴∠1=∠DOF.又∵AB⊥CD,∴∠2+∠DOF=90°,∴∠1+∠2=90°.15. 65°解析:∵∠1=155°,∴∠EDC=180°-155°=25°.∵DE∥BC,∴∠C=∠EDC=25°.∵在△ABC中,∠A=90°,∠C=25°,∴∠B=180°-90°-25°=65°.故答案为65°.16. 54°解析:∵AB∥CD,∴∠BEF=180°∠1=180°72°=108°,∠2=∠BEG.又∵EG平分∠BEF,∴∠BEG=∠BEF=×108°=54°,故∠2=∠BEG=54°.17. 78°解析:延长BC与直线a相交于点D,∵a∥b,∴∠ADC=∠DBE=50°. ∴∠ACB=∠ADC +28°=50°+28°=78°. 故应填78°.18. 120 解析:∵AB ∥CD ,∴∠1=∠3,而∠1=60°,∴∠3=60°.又∵∠2+∠3=180°,∴∠2=180°-60°=120°.故答案为120.19.解:(1)(2)如图所示.第19题答图(3)∠PQC=60°. 理由:∵ PQ ∥CD,∴ ∠DCB+∠PQC=180°.∵ ∠DCB=120°,∴ ∠PQC=180°120°=60°.20. 解:(1)小鱼的面积为7×621 ×5×621 ×2×521 ×4×221 ×1.5×121×21 ×11=16. (2)将每个关键点向左平移3个单位,连接即可.第20题答图21.证明:∵ ∠BAP+∠APD = 180°,∴ AB ∥CD.∴ ∠BAP =∠APC.又∵ ∠1 =∠2,∴ ∠BAP −∠1 =∠APC −∠2.即∠EAP =∠APF.∴ AE ∥FP.∴ ∠E =∠F.22.证明:∵ ∠3 =∠4,∴ AC ∥BD.∴ ∠6+∠2+∠3 = 180°.∵ ∠6 =∠5,∠2 =∠1,∴ ∠5+∠1+∠3 = 180°.∴ ED ∥FB.23. 解:∵ DE ∥BC ,∠AED=80°,∴ ∠EDC=∠BCD ,∠ACB=∠AED=80°.∵ CD 平分∠ACB ,∴ ∠BCD = 21∠ACB =40°,∴ ∠EDC =∠BCD =40°. 24. 解:∵ AB ∥CD ,∴ ∠B +∠BCE =180°(两直线平行,同旁内角互补).∵ ∠B =65°,∴ ∠BCE =115°.∵ CM 平分∠BCE ,∴ ∠ECM =21 ∠BCE =57.5°. ∵ ∠ECM +∠MCN +∠NCD =180°,∠MCN =90°,∴ ∠NCD =180°-∠ECM -∠MCN =180°-57.5°-90°=32.5°.。

人教版七年级数学下册《第五章-相交线与平行线》单元测试卷-附带答案

人教版七年级数学下册《第五章-相交线与平行线》单元测试卷-附带答案

人教版七年级数学下册《第五章相交线与平行线》单元测试卷-附带答案班级姓名学号分数核心知识1. 相交线一选择题(共3小题)1.(2022春·黑龙江哈尔滨·七年级期中)在下列图中1∠属于对顶角的是()∠与2A.B.C.D.【答案】C【分析】根据对顶角的定义:有一个公共顶点并且一个角的两边分别是另一个角的两边的反向延长线具有这种位置关系的两个角互为对顶角可得结论.【详解】解:在选项B D中1∠的两边都不互为反向延长线A选项没有公共点所以不是对顶角∠与2是对顶角的只有选项C.故选:C.【点睛】本题主要考查了对顶角的定义熟记有一个公共顶点并且一个角的两边分别是另一个角的两边的反向延长线具有这种位置关系的两个角互为对顶角是解答此题的关键.2.(2022秋·重庆云阳·七年级校考阶段练习)春节过后某村计划挖一条水渠将不远处的河水引到农田(记作点O)以便对农田的小麦进行灌溉现设计了四条路段OA OB OC OD如图所示其中最短的一条路线是()A.OA B.OB C.OC D.OD【答案】B【分析】根据垂线段的性质:垂线段最短 可得答案.【详解】由垂线段最短 得四条线段OA OB OC OD 如图所示其中最短的一条路线是OB故选:B .【点睛】本题考查了垂线段的的性质 熟记性质是解题关键.3.(2022春·黑龙江哈尔滨·七年级哈尔滨风华中学校考期中)图中1∠与2∠是同位角的有( )A .1个B .2个C .3个D .4个 【答案】B【分析】根据同位角的定义作答.【详解】解:第1个图和第4个图中的1∠与2∠是同位角 有2个故选:B .【点睛】本题考查了同位角的识别 两条直线被第三条直线所截 在截线的同侧 在两条被截直线的同旁的两个角是同位角.如果两个角是同位角 那么它们一定有一条边在同一条直线上. 二 填空题(共3小题)4.(2022秋·江西九江·七年级统考期中)如图 过直线AB 上一点O 作射线OC 30BOC ∠=︒ OD 平分AOC ∠ 则DOC ∠的度数为__________.【答案】75︒##75度故答案为:75︒.【点睛】本题主要考查了角平分线的有关计算 领补角的计算 解题的关键是根据邻补角求出150AOC ∠=︒.5.(2022秋·北京·七年级校考阶段练习)如图 O 为直线AB 上一点 将一直角三角板()30M ∠=︒的直角顶点放在点O 处 一边ON 在射线OA 上 另一边OM 在直线AB 的上方.将三角板绕点O 以每秒3°的速度沿逆时针方向旋转一周.则经过______秒后 MN AB ⊥.6.(2022秋·上海·七年级校考期中)如图:与FDB ∠成内错角的是______ 与DFB ∠成同旁内角的是______.【答案】 EFD ∠ AFD ∠和CBD ∠ DBF ∠ BDF ∠和CBF ∠【分析】准确识别内错角 同旁内角的关键 是弄清哪两条直线被哪一条线所截.也就是说 在辨别这些角之前 要弄清哪一条直线是截线 哪两条直线是被截线.【详解】解:如图 与FDB ∠成内错角的是EFD ∠ AFD ∠和CBD ∠ 与DFB ∠成同旁内角的是:DBF ∠ BDF ∠和CBF ∠.故答案分别是:EFD ∠ AFD ∠和CBD ∠ DBF ∠ BDF ∠和CBF ∠.【点睛】本题考查了同位角 内错角 同旁内角.在复杂的图形中识别同位角 内错角 同旁内角时 应当沿着角的边将图形补全 或者把多余的线暂时略去 找到三线八角的基本图形 进而确定这两个角的位置关系.三 简答题(共1小题)7.(2022春·广东佛山·七年级校考阶段练习)已知直线AB 经过点O 90COD ∠=︒ OE 是BOC ∠的平分线.(1)如图1 若30AOC ∠=︒ 求DOE ∠(2)如图1 若AOC α∠= 直接写出DOE ∠=______ (用含α的式子表示)(3)将图1中的COD ∠绕顶点O 顺时针旋转到图2的位置 其他条件不变 (2)中的结论是否还成立?试说明理由.核心知识2.平行线及其判定一选择题(共3小题)1.(2022春·江苏·七年级专题练习)已知三角形ABC过AC的中点D作AB的平行线根据语句作图正确的是()A.B.C.D.【答案】B【分析】根据中点的定义平行线的定义判断即可.【详解】解:过AC的中点D作AB的平行线正确的图形是选项B故选:B.【点睛】本题考查作图——复杂作图平行线的定义中点的定义等知识解题关键是理解题意灵活运用所学知识解决问题.2.(2022秋·甘肃武威·七年级校考期中)如图 在平面内作已知直线a 的平行线 可作平行线的条数是( )A .1条B .2条C .无数条D .无法确定 【答案】C【分析】根据平行线的定义和性质求解即可.【详解】解:在同一平面内与已知直线平行的直线有无数条∵在平面内作已知直线a 的平行线 可作平行线的条数是无数条故选C .【点睛】本题主要考查了平行线的定义和性质 熟知相关知识是解题的关键.3.(2022春·北京东城·八年级校考期末)如图 在下列条件中 能够证明AD CB ∥的条件是( )A .14∠=∠B .5B ∠=∠C .12180D ∠+∠+∠=︒D .23∠∠= 【答案】D【分析】根据平行线的判定定理逐项分析判断即可求解.【详解】解:A . 14∠=∠ 内错角相等两直线平行 能判定AB DE ∥ 故A 不符合题意B . 5B ∠=∠ 同位角相等两直线平行 能判定AB DE ∥ 故B 不符合题意C . 12180D ∠+∠+∠=︒ 同旁内角互补两直线平行 能判定AB DE ∥ 故C 不符合题意D . 32∠=∠ 内错角相等两直线平行 能判定AD BC ∥ 故D 符合题意.故选:D .【点睛】本题考查了平行线的判定方法 掌握平行线的判定方法“同位角相等 两直线平行 内错角相等 两直线平行 同旁内角互补 两直线平行”是解题的关键. 二 填空题(共3小题)4.(2022春·上海·九年级开学考试)如图 点E F 分别是梯形ABCD 两腰的中点 联结EF DE 如果图中DEF △的面积为1.5 那么梯形ABCD 的面积等于___.1.5DEFS=1 2EF AG⋅•EF AH5.(2022春·江苏·七年级专题练习)下列说法:①对顶角相等②两点之间的线段是两点间的距离③过一点有且只有一条直线与已知直线平行④过一点有且只有一条直线与已知直线垂直⑤一个锐角的补角一定比它的余角大90° 正确的有______.(填序号)【答案】①⑤【分析】根据对顶角线段直线垂直的定义平行线的性质及余补角的性质可直接进行求解.【详解】解:①对顶角相等原说法正确②两点之间的线段长度是两点间的距离原说法错误③过直线外一点有且只有一条直线与已知直线平行原说法错误④在同一平面内过一点有且只有一条直线与已知直线垂直原说法错误⑤一个锐角的补角一定比它的余角大90° 原说法正确综上所述:正确的有①⑤故答案为①⑤.【点睛】本题主要考查对顶角线段直线垂直的定义平行线的性质及余补角的性质熟练掌握相关概念及性质是解题的关键.6.(2022秋·江西赣州·七年级统考期中)如图点E在AC的延长线上若要使AB CD则需添加条件_______(写出一种即可)【答案】∵1=∵2 等(写出一种即可)【分析】根据平行线的判定定理得出直接得出即可.【详解】解:∵当∵1 =∵2时AB CD(内错角相等两直线平行)∵若要使AB CD则需添加条件∵1 =∵2故答案为:∵1=∵2.【点睛】本题主要考查了平行线的判定熟练掌握平行线的判定定理是解题关键.三简答题(共1小题)7.(2022秋·河南信阳·七年级校考期末)如图已知点O在直线AB上射线OE平分∵AOC过点O作OD∵OE G是射线OB上一点连接DG使∵ODG+∵DOG=90°.(1)求证:∵AOE=∵ODG(2)若∵ODG=∵C试判断CD与OE的位置关系并说明理由.【答案】(1)证明见解析(2)CD∥OE理由见解析【分析】(1)由OD ∵OE 得到∵EOC +∵COD =∵AOE +∵DOG =90° 再利用等角的余角相等即可证明∵AOE =∵ODG (2)证明∵EOC =∵C 利用内错角相等两直线平行 即可证明CD ∥OE .【详解】(1)证明:∵OD ∵OE∵∵EOC +∵COD =∵AOE +∵DOG =90°∵∵ODG +∵DOG =90°∵∵AOE =∵ODG(2)解:CD ∥OE .理由如下:由(1)得∵AOE =∵ODG∵射线OE 平分∵AOC∵∵AOE =∵EOC∵∵ODG =∵C∵∵EOC =∵C∵CD ∥OE .【点睛】本题考查了角平分线定义 垂直的定义 平行线的判定 等角的余角相等 正确识图是解题的关键.核心知识3.平行线的性质一 选择题(共3小题)1.(2022春·陕西商洛·八年级统考期末)将一副直角三角尺如图所示放置 已知AE BC ∥ 则AFD ∠的度数是( )A .80︒B .75︒C .65︒D .60︒ 【答案】B【分析】根据平行线的性质及三角形内角定理解答.【详解】解:由三角板的性质可知45,30,90EAD C BAC ADE ︒︒︒∠=∠=∠=∠=.∵AE BC ∥∵30EAC C ∠=∠=︒∵453015DAF EAD EAC ∠=∠-∠=︒-︒=︒.∵180180901575AFD ADE DAF ︒︒︒︒︒∠=-∠⋅∠=--=.故选:B .【点睛】本题考查的是平行线的性质及三角形内角和定理 平行线的性质:两直线平行同位角相等 同旁内角互补.三角形内角和定理:三角形的内角和等于180︒.2.(2022秋·北京·七年级校考阶段练习)如图 点A B 为定点 直线l AB ∥ P 是直线l 上一动点.对于下列各值:①APB ∠的度数 ②线段AB 的长 ③PAB 的面积 ④PAB 的周长 其中不会..随点P 的移动而变化的是( )A .①③B .①④C .②③D .①② 【答案】C【分析】根据运动得出APB ∠的大小不断发生变化 求出AB 长为定值 由于P 到AB 的距离为定值 再根据三角形的面积公式进行计算即可 根据运动得出PA PB +不断发生变化.【详解】解:当P 点移动时 APB ∠发生变化∵①错误∵A B 为定点∵AB 长为定值∵②正确∵点A B 为定点 直线l AB ∥∵P 到AB 的距离为定值 故PAB 的面积不变∵③正确当P 点移动时 PA PB +的长发生变化∵PAB 的周长发生变化∵④错误综上 正确的有②③故选:C .【点睛】本题考查了平行线的性质 等底等高的三角形的面积相等 平行线间的距离的运用 熟记定理是解题的关键.3.(2022春·八年级单元测试)对于命题“如果1290∠+∠=︒ 那么12∠≠∠” 能说明它是假命题的反例是( ) A .1245∠=∠=°B .150∠=︒ 250∠=︒C .150∠=︒ 240∠=︒D .140∠=︒ 240∠=︒ 【答案】A【分析】判断命题是假命题 结论错误即可 由此即可求解.【详解】解:当1245∠=∠=°时 1290∠+∠=︒ 但12∠=∠∵命题“如果1290∠+∠=︒ 那么12∠≠∠”是假命题故选:A .【点睛】本题主要考查命题真假的判定 掌握命题真假的判定方法是理解命题的条件与结论的关系 即掌握相关定理 命题的定义和性质是解题的关键. 二 填空题(共3小题)4.(2022春·广东深圳·八年级校考期末)光线在不同介质中传播速度不同 从一种介质射向另一种介质时会发生折射.如图 水面AB 与水杯下沿CD 平行 光线EF 从水中射向空气时发生折射 光线变成FH 点G 在射线EF 上 已知20HFB ∠︒= 45FED ∠︒= 则GFH ∠的度数为______.【答案】25︒##25度【分析】根据平行线的性质求得GFB ∠ 根据GFH GFB HFB ∠=∠-∠即可求解.【详解】解:∵AB CD ∥∵45GFB FED ∠=∠=︒.∵20HFB ∠=︒∵452025GFH GFB HFB ∠=∠-∠=︒-︒=︒故答案为25°.【点睛】本题考查了平行线的性质与判定 掌握平行线的性质与判定是解题的关键.5.(2022秋·上海闵行·七年级校考阶段练习)如图 已知直线a b ∥ 将一块三角板的直角顶点放在直线a 上 如果142∠=︒ 那么2∠=______度.【答案】48【分析】根据平行线得到内错角相等 在根据直角即可得到答案.【详解】解:∵a b ∥∵23∠∠=∵1+3=90∠∠︒ 142∠=︒∵3904248∠=︒-︒=︒故答案为48.【点睛】本题考查平行线性质:两直线平行内错角相等.6.(2022秋·陕西渭南·七年级统考阶段练习)下列命题:①经过直线外一点 有且只有一条直线与这条直线平行 ②在同一平面内 过一点有且只有一条直线与已知直线垂直 ③直线外一点到这条直线的垂线段的长度 叫做点到直线的距离 ④如果直线a b ∥ b c ⊥ 那么a c ∥.其中是真命题的有______.(填序号)【答案】①②③【分析】根据平行公理及其推论 垂线的性质 点到直线的距离定义等分析判断即可.【详解】解:①经过直线外一点 有且只有一条直线与这条直线平行 正确 为真命题②在同一平面内 过一点有且只有一条直线与已知直线垂直 正确 为真命题③直线外一点到这条直线的垂线段的长度 叫做点到直线的距离 正确 为真命题④如果直线a b ∥ b c ⊥ 那么a c ⊥ 原命题为假命题.综上所述 真命题有①②③.故答案为:①②③.【点睛】本题主要考查了命题与定理的知识 解题关键是理解平行公理及其推论 垂线的性质 点到直线的距离定义等知识.三 简答题(共1小题)7.(2022春·黑龙江哈尔滨·七年级校考阶段练习)如图1 AB CD ∥ 直线AB 外有一点M 连接AM CM .(1)证明:M A C ∠+∠=∠(2)如图2 延长MA 至点E 连接CE CM 平分ECD ∠ AF 平分EAB ∠ 且AF 与CM 交于点F 求E ∠与AFC ∠的数量关系(3)如图3 在2的条件下 100E ∠=︒ FA AN ⊥ 连接CN 且2M N ∠=∠ 30MCN ∠=︒ 求M ∠的度数. 【答案】(1)证明见解析(2)3602E AFC ∠=︒-∠(3)20︒【分析】(1)过点M 作MN AB ∥ 根据平行线性质即可得到角度关系 即可求证(2)过点E 作EP AB ∥ 过点F 作QF AB ∥根据平行线性质得到角度关系即可得到答案(3)过点N 做NY AB ∥ 过点M 作MX AB ∥ 根据平行线性质得到角度关系即可得到答案.【详解】(1)证明:过点M 作MN AB ∥∵AB CD ∥ MN AB ∥∵MN CD AB ∥∥∵180A NME AME ∠+∠+∠=︒ 180NME MEB ∠+∠=︒ MEB C ∠=∠∵A AME MEB ∠+∠=∠∵A AMC C ∠+∠=∠(2)解:∵CM 平分ECD ∠ 设ECM MCD a ∠=∠=又∵AF 平分EAB ∠ 设EAF FAB b ∠=∠=∵22ECD ECM a ∠=∠= 22EAB EAF b ∠=∠=过点E 作EP AB ∥∵AB CD ∥∵EP CD ∥∵180EAB AEP ∠+∠=︒ 180ECD CEP ∠+∠=︒∵1801802AEP EAB b ∠=︒-∠=︒- 1801802CEP ECD a ∠=︒-∠=︒-∵360223602()AEC AEP CEP b a a b ∠=∠+∠=--=-+过点F 作QF AB ∥∵QF CD ∥∵AFQ FAB ∠=∠ QFC MCD ∠=∠∵AFC QFA QFC a b ∠=∠+∠=+∵3602AEC AFC ∠=︒-∠(3)设NAB r ∠= NCD y ∠=过点N 做NY AB ∥∵AB CD ∥ NY CD ∥∵YNA NAB ∠=∠ YNC NCD ∠=∠∵ANC NCD NAB y r ∠=∠-∠=-∵2M N ∠=∠∵22M y r ∠=-过点M 作MX AB ∥∵MX CD ∥∵XMA MAB ∠=∠ XMC MCD ∠=∠∵XMA XMC AMC ∠=∠-∠∵AMC XMC XMA MCD MAB ∠=∠-∠=∠-∠∵2MAB r ∠= 2MCD y ∠=∵MCN MCD NCD y ∠=∠-∠=∵30MCN ∠=︒∵30y =︒∵260MCD y ∠==︒∵100AEC ∠=︒ 3602AEC AFC ∠=︒-∠∵360AFC AFC ∠=︒-∠130=︒由(2)知BAF FCD AFC ∠+∠=∠∵70BAF AFC MCD ∠=∠-∠=︒∵FA AN ⊥∵90FAN ∠=︒∵20NAB FAN BAF ∠=∠-∠=︒∵20r =︒∵240MAB r ∠==︒∵604020AMC MCD MAB ∠=∠-∠=︒-︒=︒.【点睛】本题考查根据平行线的性质 解题的关键是作平行辅助线转换角度关系.核心知识4.平移一 选择题(共3小题)1.(2022秋·北京西城·七年级北师大实验中学校考期末)下列现象是平移的是( )A .电梯从底楼升到顶楼B .卫星绕地球运动C .纸张沿着它的中线对折D .树叶从树上落下 【答案】A【分析】平移是物体运动时 物体上任意两点间 从一点到另一点的方向与距离都不变的运动 根据平移的定义分析即可.【详解】解:A 电梯从底楼升到顶楼为平移现象 故该选项符合题意B 卫星绕地球运动为旋转现象 故该选项不符合题意C 纸张沿着它的中线对折是轴对称现象 故该选项不符合题意D 树叶从树上落下既不是旋转也不是平移 故该选项不符合题意.故选:A .【点睛】本题考查了平移现象 熟练根据平移的定义联系实际生活是解题的关键.2.(2022秋·重庆璧山·七年级校联考期中)今年4月 被称为“猪儿虫”的璧山云巴正式运行.云巴在轨道上运行可以看作是( )A .对称B .旋转C .平移D .跳跃【答案】C【分析】根据平移与旋转定义判断即可.【详解】解:云巴在轨道上运行可以看作是数学上的平移.故选:C .【点睛】本题考查对平移与旋转的理解及在实际当中的运用.平移是物体运动时 物体上任意两点间 从一点到另一点的方向与距离都不变的运动 旋转是物体运动时 每一个点离同一个点(可以在物体外)的距离不变的运动 称为绕这个点的转动 这个点称为物体的转动中心.所以 它并不一定是绕某个轴的.正确理解平移与旋转的定义是解题的关键.3.(2022秋·福建龙岩·七年级校考阶段练习)如图是一段楼梯 2cm BC = 4cm AB = 若在楼梯上铺地毯至少要( )A .2cmB .4cmC .6cmD .8cm 【答案】C【分析】把楼梯的横竖向上向左平移 构成一个矩形 则AB +BC 即为所求.【详解】解:∵∵ABC 是直角三角形 BC =2cm AB =4cm∵如果在楼梯上铺地毯 那么至少需要地毯为AB +BC =6米.故选C .【点睛】本题考查的是生活中的平移现象 解决此题的关键是要利用平移的知识. 二 填空题(共3小题)4.(2022秋·浙江温州·七年级校联考阶段练习)如图 将长为5cm 宽为3cm 的长方形ABCD 先向右平移2cm 再向下平移1cm 得到长方形A B C D '''' 则阴影部分的周长为______cm .【答案】32【分析】阴影部分的周长刚好是长方形周长的两倍 据此作答即可.【详解】∵长方形的长为5cm 宽为3cm∵长方形的周长为:5+3+3+5=16(cm )根据图形可知:阴影部分的周长为:A D D C C B B A AD DC CB BA ''''''''+++++++即:阴影部分的周长刚好是长方形周长的两倍即阴影部分的周长为:16×2=32(cm )故答案为:32.【点睛】本题考查了图形的平移的知识 根据图形的平移判断出阴影部分的周长刚好是长方形周长的两倍是解答本题的关键.5.(2022春·上海静安·七年级上海市市西中学校考期中)如图 将周长为8厘米的ABC 沿射线BC 方向平移1厘米得到DEF 那么四边形ABFD 的周长为___________厘米.【答案】10【分析】利用平移的性质得到1AD CF AC DF ===, 然后根据8AB BC AC ++=可计算出四边形ABFD 的周长.【详解】解:ABC 沿射线BC 方向平移1厘米得到DEF1AD CF AC DF ∴===,8++=AB BC AC81110AB BC CF DF AD AB BC AC CF AD ∴++++=++++=++=cm .即四边形ABFD 的周长为10cm .故答案为10.【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动 会得到一个新的图形 新图形与原图形的形状和大小完全相同.新图形中的每一点 都是由原图形中的某一点移动后得到的 这两个点是对应点.连接各组对应点的线段平行(或共线)且相等. 6.(2022秋·浙江·七年级期中)作图题:将如图的三角形ABC 先水平向右平移4格 再竖直向下平移4格得到三角形DEF .观察线段AB 与DE 的关系是_____.【答案】AB ∵DE AB =DE【分析】根据网格结构找出平移后的点D E F 的位置 然后解答即可.【详解】解:∵DEF 如图所示AB ∵DE AB =DE .故答案为:AB ∵DE AB =DE .【点睛】本题考查了平移的性质 熟练掌握网格结构准确找出对应点的位置是解题的关键.三 简答题(共1小题)7.(2022春·江苏·八年级统考期中)在正方形网格中 小正方形的顶点称为“格点” 每个小正方形的边长均为1 内角均为直角 ABC 的三个顶点均在“格点”处.(1)将ABC 平移 使得点B 移到点B '的位置 画出平移后的A B C '''(2)利用正方形网格画出ABC 的高AD(3)连接BB ' CB ' 利用全等三角形的知识证明BB AC '⊥.【答案】(1)见解析(2)见解析(3)见解析【分析】(1)利用平移变换的性质分别作出A B C 的对应点A ' B ' C '即可(2)根据三角形的高的定义画出图形即可(3)证明ADC BCB '△≌△ 可得结论.【详解】(1)过点B '作B C BC ''∥ 且5B C ''= 再沿着B '向右移动两个单位 再向上移动五个单位 就可得到点A ' 连接A B '' A C '' 即可得到A B C '''(2)设从点B 的位置向右两个单位的点为D 连接AD 则AD 就是所求的高(3)设AC 交BB '于点J .在ADC △和BCB '中AD BC = 90ADC BCB ︒'∠=∠= DC CB '=∵ADC BCB '△≌△∵DAC CBB '∠∠=∵90ACD DAC ∠+∠=︒∵90CBB ACB '∠+∠=︒∵90BJC ∠=︒∵BB AC '⊥.【点睛】本题考查作图平移变换全等三角形的判定和性质等知识解题的关键是掌握平移变换的性质正确寻找全等三角形解决问题.。

人教版七年级数学 下册 第五章 相交线与平行线 单元综合与测试(含答案)

人教版七年级数学 下册 第五章 相交线与平行线  单元综合与测试(含答案)

第五章相交线与平等线单元复习与检测题(含答案)一、选择题1、已知两条平行线被第三条直线所截,则以下说法不正确的是()A. 一对同位角的平分线互相平行B. 一对内错角的平分线互相平行C. 一对同旁内角的平分线互相平行D. 一对同旁内角的平分线互相垂直2、甲.乙.丙.丁四个学生在判断时钟的分针与时针互相垂直的时,他们每个人都说两个时间,说对的是()A. 丁说时整和时整B. 丙说时整和时分C. 乙说点分和点分D. 甲说时整和点分第4题图3、过一点画已知直线的平行线,则( )A.有且只有一条 B.有两条 C.不存在 D.不存在或只有一条4、如上图,已知于点,点..在同一直线上,且,则为().A. B. C. D.5、将一副三角板按图中方式叠放,则角的度数是( ).第5题图第6题图A. B. C. D. 6、对于图中标记的各角,下列条件能推理得到a∥b的是()A.∠1=∠2 B.∠2=∠4 C.∠3=∠4 D.∠1+∠4=180°7、如图,下列说法中,正确的是()A.因为∠A+∠D=180°,所以AD∥BCB.因为∠C+∠D=180°,所以AB∥CDC.因为∠A+∠D=180°,所以AB∥CDD.因为∠A+∠C=180°,所以AB∥CD8、下列命题中,是假命题的是()A.同旁内角互补B.对顶角相等C.直角的补角仍然是直角D.两点之间,线段最短9、如图,AB∥ED,则∠A+∠C+∠D=( )A.180° B.270° C.360° D.540°第9题图第10题图10、如图,小明从家到学校有①②③三条路可走,每条路的长分别为a,b,c,则()A. B.C. D.二、填空题11、四条直线两两相交,至多会有个交点.12、如图,,,,则度.第12题图第13题图第14题图13、如上图,两直线a.b被第三条直线c所截,若∠1=50°,∠2=130°,则直线a.b的位置关系是____________ .14、如上图,直线a、b与直线c相交,给出下列条件:①∠1=∠2;②∠4=∠6;③∠4+∠7=180°;④∠5+∠3=180°.其中能判断a∥b的条件是(只填序号).15、如上图,是我们生活中经常接触的小刀,刀片的外形是一个直角梯形,刀片上.下是平行的,转动刀片时会形成∠1和∠2,则∠1+∠2=度.三、解答题16、看图填空:如图,∠1的同位角是,∠1的内错角是,如果∠1=∠BCD,那么,根据是;如果∠ACD=∠EGF,那么,根据是 .17、已知:如图,CE平分∠ACD,∠1=∠2.求证:AB∥CD.18、如图,M,N,T和P,Q,R分别在同一直线上,且∠1=∠3,∠P=∠T.求证:∠M=∠R.19、如图,已知AB//CD,分别写出下列四个图形中,∠P与∠A,∠C的关系,请你从所得的四个关系中任选一个加以证明.20、如图①是长方形纸带,将纸带沿EF折叠成图②,再沿BF折叠成图③.(1)若图①中∠DEF=20°,则图③中∠CFE的度数是多少?(2)若图①中∠DEF=α,把图③中∠CFE的度数用α表示是多少?21、如图,已知AB∥CD,C在D的右侧,BM平分∠ABC,DN平分∠ADC,BM,DN所在直线交于点E,∠ADC =70°.(1)求∠EDC的度数;(2)若∠ABC =n°,求∠BED的度数(用含n的代数式表示);(3)将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,画出图形并判断∠BED的度数是否改变,若改变,求出它的度数(用含n的式子表示);若不改变,请说明理由.参考答案:一、1、C 2、C 3、A 4、B 5、D 6、D 7、C 8、A 9、C 10、C 二、11、612、5513、平行14、①③④15、90三、16、∠EFG ∠BCD,∠AED DE∥BC 内错角相等,两直线平行 CD∥GF 同位角相等,两直线平行17、证明:∵CE平分∠ACD,,∴∠2=∠DCE.∵∠1=∠2,∴∠DCE=∠1,∴AB∥CD.18、证明:∵∠1=∠3,∠1=∠2,∴∠2=∠3,∴PN∥QT,∴∠T=∠MNP.∵∠P=∠T,∴∠P=∠MNP,∴PR∥MT,∴∠M=∠R..19、解:(1)∠P=360°-∠A-∠C.(2)∠P=∠A+∠C.(3)∠P=∠C-∠A.(4)∠P=∠A-∠C.若选(3),证明如下:过点P向左作PQ∥AB,则∠A=∠APQ.∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∴∠CPA=∠CPQ-∠APQ=∠C-∠A.20、解:图①中,∵AD∥BC,∴∠DEF=∠BFE,∴∠CFE=180°-∠DEF.图②中,由折叠得∠CEF=180°-∠DEF,∴∠CFB=∠CEF-∠BFE=180°-2∠DEF.图③中,由折叠得∠CFB=180°-2∠DEF,∴∠CFE=∠CFB-∠BFE=180°-3∠DEF.(1)若图①中∠DEF=20°,则图③中∠CFE=180°-3×20°=120°.(2)若图①中∠DEF=α,则图③中∠CFE=180°-3α.21、解:(1)∵DE平分∠ADC,∠ADC=70°,∴∠EDC=∠ADC=×70°=35°.(2)如图,过点E向左作EF∥AB. ∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF.∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABE=∠ABC=n°,∠CDE=∠ADC=35°,∴∠BED=∠BEF+∠DEF=n°+35°.(3)如图①,过点E向左作EF∥AB.∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABE=∠ABC=n°,∠CDE=∠ADC=35°.∵AB∥CD,∴AB∥CD∥EF,∴∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=35°,∴∠BED=∠BEF+∠DEF=180°-n°+35°=215°-n°.图①图②如图②,过点E向左作EF∥AB.∵BM平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABM=∠ABC=n°,∠CDE=∠ADC=35°.∵AB∥CD,∴AB∥CD∥EF,∴∠BEF=∠ABM=n°,∠CDE=∠DEF=35°,∴∠BED=∠BEF-∠DEF=n°-35°.综上所述,∠BED的度数发生了改为,改变为215°-n°或n°-35°.。

人教版七年级数学下册《第五章-相交线与平行线》单元测试卷-附参考答案

人教版七年级数学下册《第五章-相交线与平行线》单元测试卷-附参考答案

人教版七年级数学下册《第五章 相交线与平行线》单元测试卷-附参考答案(测试时间:90分钟 卷面满分:100分)班级 姓名 学号 分数一 选择题(本大题共10个小题 每小题3分 共30分 在每小题给出的四个选项中 只有一项是符合题目要求的)1.(2022春·全国·七年级单元测试)下图中 1∠和2∠是对顶角的是( )A .B .C .D . 【答案】B 【分析】根据对顶角的定义解答即可.【详解】解:A 1∠和2∠的某一边不是互为反向延长线 则不是对顶角 此项不符合题意B 1∠和2∠是对顶角 则此项符合题意C 1∠和2∠没有公共顶点 则不是对顶角 此项不符合题意D 1∠和2∠的某一边不是互为反向延长线 则不是对顶角 此项不符合题意故选:B .【点睛】本题考查了对顶角 解题的关键是熟记对顶角的定义:有一个公共顶点 并且一个角的两边分别是另一个角的两边的反向延长线 具有这种位置关系的两个角 互为对顶角. 2.(2022·全国·七年级单元测试)如图 直线AD BE 、 被直线BF 和AC 所截 则2∠的同位角有( )个.A .2B .3C .4D .1【答案】B【分析】根据同位角的定义求解即可:同位角:两条直线被第三条直线所截形成的角中 若两个角都在两直线的同侧 并且在第三条直线(截线)的同旁 则这样一对角叫做同位角.【详解】解:∠2的同位角有:∠1 ∠F AC ∠4 共三个.故选:B .【点睛】本题考查了同位角熟记同位角定义是解题的关键.3.(2022春·七年级单元测试)如图所示的图案可以看作由“基本图案”经过平移得到的是()A.B.C.D.【答案】B【分析】根据平移的概念:在平面内把一个图形整体沿某一的方向移动这种图形的平行移动叫做平移变换简称平移即可选出答案.【详解】解:A 不是由“基本图案”经过平移得到故此选项不符合题意B 是由“基本图案”经过平移得到故此选项符合题意C 不是由“基本图案”经过平移得到故此选项不符合题意D 不是由“基本图案”经过平移得到故此选项不符合题意故选B.【点睛】本题考查生活中的平移现象仔细观察各选项图形是解题的关键.4.(2022秋·江苏连云港·七年级校考单元测试)下列语句中属于命题的是()A.等角的余角相等B.两点之间线段最短吗C.连接P Q两点D.花儿会不会在春天开放【答案】A【分析】根据命题的定义对选项一一进行分析即可.【详解】解:选项A:是用语言可以判断真假的陈述句是命题故符合题意选项B C D:都不是可以判断真假的陈述句都不是命题故不符合题意.故选:A【点睛】本题考查了命题的定义解本题的关键在判断给出的语句是否用语言符号或式子表达是否为可以判断真假的陈述句.一般地对某件事情作出正确或不正确的判断的句子叫做命题命题可看做由题设和结论两部分组成.5.(2022·全国·七年级单元测试)如图若图形A经过平移与下方图形(阴影部分)拼成一个长方形则平移方式可以是()A .向右平移4个格 再向下平移4个格B .向右平移6个格 再向下平移5个格C .向右平移4个格 再向下平移3个格D .向右平移5个格 再向下平移4个格 【答案】A【分析】根据平移的性质 结合图形解答即可.【详解】解:图形A 向右平移4个格 再向下平移4个格可以与下方图形(阴影部分)拼成一个长方形 故选:A .【点睛】本题考查的是平移的性质 把一个图形整体沿某一直线方向移动 会得到一个新的图形 新图形与原图形的形状和大小完全相同.6.(2022春·黑龙江哈尔滨·七年级校考单元测试)如图 已知直线AB CD ∥ 130GEF ∠=︒ 135EFH ∠=︒ 则12∠+∠的度数为( )A .35︒B .45︒C .65︒D .85︒ 【答案】D【分析】由130GEF ∠=︒ 135EFH ∠=︒可得1324265︒∠+∠+∠+∠= 由ABCD 得34180∠+∠=︒ 进而可求出12∠+∠的度数.【详解】解:如下图所示∠130GEF ∠=︒∠13130︒∠+∠=∠135EFH ∠=︒∠24135︒∠+∠=∠1324265︒∠+∠+∠+∠=∠AB CD∠34180∠+∠=︒∠121324(34)26518085︒∠∠︒+∠=∠+∠+∠+∠-+∠=︒=-故选:D .【点睛】本题考查了平行线的性质 解题的关键是根据平行线的性质找出图中角度之间的关系.7.(2022春·江苏·七年级单元测试)下列说法中 错误的有( )①若a b ∥ b c ∥ 则a c ∥②若a 与c 相交 b 与c 相交 则a 与b 相交③相等的角是对顶角④过一点有且只有一条直线与已知直线平行.A .3个B .2个C .1个D .0个【答案】A【分析】根据平行公理及推论可判断① 若a 与c 相交 b 与c 相交 则a 与b 可能相交或平行 可判断② 对顶角相等 但相等的角不一定是对顶角 可判断③ 根据平行公理及推论可判断④.【详解】解:根据平行线公理及推论可知 ①正确若a 与c 相交 b 与c 相交 则a 与b 可能相交或平行 ②错误对顶角相等 但相等的角不一定是对顶角 ③错误过直线外一点有且只有一条直线与已知直线平行④错误.故错误的有3个故选:A.【点睛】本题考查平行公理及推论平行线的判定与性质熟练掌握平行线的判定与性质是解答本题的关键.8.(2022·全国·七年级单元测试)如图P为直线l外一点A B C在l上且PB∠l下列说法中正确的个数是()①P A PB PC三条线段中PB最短②线段PB叫做点P到直线l的距离③线段AB的长是点A到PB 的距离④线段AC的长是点A到PC的距离.A.1个B.2个C.3个D.4个【答案】B【分析】根据直线外一点到这条直线的垂线段的长度叫做点到直线的距离从直线外一点到这条直线上各点所连的线段中垂线段最短.逐一判断.【详解】解:①线段BP是点P到直线l的垂线段根据垂线段最短可知P A PB PC三条线段中PB 最短故原说法正确②线段BP是点P到直线l的垂线段故线段BP的长度叫做点P到直线l的距离故原说法错误③线段AB是点A到直线PB的垂线段故线段AB的长度叫做点P到直线l的距离故故原说法正确④由题意及图形无法判断线段AC的长是点A到PC的距离故原说法错误综上所述正确的说法有①③故选:B.【点睛】本题主要考查了垂线段最短的性质和点到直线的距离的概念.垂线的两条性质:①从直线外一点到这条直线的垂线段的长度叫做点到直线的距离.②从直线外一点到这条直线上各点所连的线段中垂线段最短.∥的是()9.(2022春·天津·七年级校考单元测试)如图下列条件中能判断AB CDA .12∠=∠B .34∠∠=C .180DAB ABC ∠+∠=︒D .B D ∠=∠ 【答案】A 【分析】结合图形分析两角的位置关系 根据平行线的判定方法逐项进行判断即可得到结论.【详解】解:∠12∠=∠∠AB CD ∥故①选项符合题意∠34∠∠=∠AD BC ∥故②选项不符合题意∠180DAB ABC ∠+∠=︒∠AD BC ∥故③选项不符合题意∠B D ∠=∠ 不能判定AB CD ∥故④选项不符合题意故选:A .【点睛】本题主要考查了平行线的判定 能根据图形准确找出同位角 内错角和同旁内角是解决问题的关键.10.(2022秋·江苏盐城·七年级校联考单元测试)如图 在宽为20m 长为30m 的矩形地面上修建两条同样宽的道路 余下部分作为耕地.根据图中数据 计算耕地的面积为( )A .600m 2B .551m 2C .550m 2D .500m 2【答案】B【详解】由图可以看出两条路的宽度为:1m 长度分别为:20m 30m所以 可以得出路的总面积为:20×1+30×1-1×1=49m 2又知该矩形的面积为:20×30=600m 2所以 耕地的面积为:600-49=551m 2.故选B.二 填空题(本大题共8个小题 每题2分 共16分)11.(2022春·黑龙江哈尔滨·七年级哈尔滨工业大学附属中学校校考单元测试)如图 要把池水引到C 处 可作CD AB ⊥于点D 然后沿CD 开渠 可使所开渠道最短 依据是______.【答案】垂线段最短【分析】根据直线外一点到直线的距离解答.【详解】解:因为直线外一点到直线上各点的连线中 垂线段最短所以沿CD 开渠故答案为:垂线段最短.【点睛】本题考查垂线段的性质 熟练掌握垂线段最短是解决本题的关键.12.(2022秋·重庆铜梁·七年级校考单元测试)如图 O 是直线AB 上一点 32COB ∠=︒ 则1∠=___.【答案】148︒##148度 【分析】依据邻补角进行计算 即可得到∠1的度数.【详解】解:∠O 是直线AB 上一点 32COB ∠=︒∠118032148∠=︒-︒=︒故答案为:148︒.【点睛】本题主要考查了邻补角的概念 只有一条公共边 它们的另一边互为反向延长线 具有这种关系的两个角 互为邻补角.邻补角互补 即和为180︒.13.(2022秋·河南安阳·七年级统考单元测试)如图 给出下列条件:①∠1=∠2 ②∠3=∠4 ③∠A =∠CDE ④∠A +∠ADC =180°.其中 能推出AB //DC 的条件为_______.【答案】①③④【分析】根据平行线的判定定理逐个分析判断即可求解.【详解】解:①∠∠1=∠2∥符合题意∠AB DC②∠∠3=∠4∥不符合题意∠BC AD③∠∠A=∠CDE∥符合题意∠AB DC④∠∠A+∠ADC=180°∥符合题意∠AB DC故答案为:①③④.【点睛】本题考查了平行线的判定定理掌握平行线的判定定理是解题的关键.14.(2022秋·云南昭通·七年级校考单元测试)如图把三角尺的直角顶点放在直线b上.若∠1= 50° 则当∠2=____时a∥b.【答案】40°##40度【分析】根据三角尺的直角顶点在直线b上∠1=50° 即可得到∠3=180°−90°−∠1=40° 再根据a//b即可得到∠2=∠3=40°.【详解】解:如图∠三角尺的直角顶点在直线b上∠1=20°∠∠3=180°−90°−∠1=40°又∠要使得a b∠只需要∠2=∠3=40°故答案为:40.【点睛】本题主要考查了平行线的性质熟记两直线平行线同位角相等是解题的关键.15.(2022秋·河北石家庄·七年级统考单元测试)在同一平面内直线a b相交于P 若a∠c 则b与c的位置关系是______.【答案】相交【详解】解:因为a∠c 直线b相交所以直线b与c也有交点故答案为:相交.【点睛】本题考查了平行线和相交线.同一平面内一条直线与两条平行线中的一条相交则必与另一条直线也相交.16.(2022秋·北京·七年级校考单元测试)如图快艇从P处向正北航行到A处时向右转60︒航行到B处再向左转90︒继续航行此时的航行方向为北偏西______°.【答案】30【分析】根据平行线的性质与方位角的定义即可求解.【详解】解:如图∠//PC BE 60CAB ∠=︒∠60EBF ∠=︒∠906030DBE此时的航行方向为:北偏西30︒故答案为:30.【点睛】此题主要考查方位角 解题的关键是熟知方位角的定义及平行线的性质.17.(2022·全国·七年级单元测试)如图 在三角形ABC 中 90BAC ∠=︒ 4cm AB = 5cm =BC 3cm AC = 将三角形ABC 沿BC 方向平移cm(5)a a <得到三角形DEF 且AC 与DE 相交于点G 连接AD .(1)阴影部分的周长为______cm(2)若三角形ADG 的面积比三角形EGC 的面积大24.8cm 则a 的值为______.【答案】 12 4.5##92##142 【分析】(1)由平移的性质可得出cm AD BE a == 5cm DE AB ==.再根据()5cm CE BC BE a =-=- 即ADG S ABC CEG ABEG S S S =+四边形 即可得出1342ADG CEG S S =⨯⨯- 再根据24.8cm ADG CEG S S -= 列出关于a 的等式 解出a 即可.【详解】(1)∠三角形ABC 沿BC cm(5)a <得到三角形DEFCE BC =∴阴影部分的周长为故答案为:(2)过AABC S =3AH =ADG ABED S四边形 ADG S . ABC CEG ABEG S S S =+四边形1342CEG ABEG S S =⨯⨯-四边形121342ADG CEG BE S S ⨯-=⨯⨯- 即125ADG CEG S S -=ADG 的面积比三角形EGC 的面积大24.8cm 4.8cm ADG CEG SS -=4 4.8⨯= 18.(2022春·黑龙江哈尔滨·七年级单元测试)如图 直线AB CD ∥ 点E F 分别为直线AB 和CD 上的点 点P 为两条平行线间的一点 连接PE 和PF 过点P 作EPF ∠的平分线交直线CD 于点G 过点F 作FH PG ⊥ 垂足为H 若120DGP PFH ∠-∠=︒ 则AEP ∠=________︒.【答案】30︒【分析】设FPG x GPM y ∠∠=︒=︒, 过P 作PM CD ∥ 则AB CD PM ∥∥ 用x y ︒︒,表示PGD ∠ PFH ∠ 代入求出x y ︒-︒ 即AEP ∠的值可以解出.【详解】解:设FPG x GPM y ∠∠=︒=︒,PG 平分EPF ∠EPG FPG x ∠∠∴==︒过P 作PM CD ∥∥AB CDAB CD PM ∴∥∥AEP EPM EPG MPG x y ∠∠∠∠∴==-=︒-︒ 180180PGD MPG y ∠∠=︒-=︒-︒FH PG ⊥90PHF ∠∴=︒909090PFH FPG FPG x ∠∠∠∴=︒-=︒-=︒-︒120DGP PFH ∠-∠=︒()()18090120y x ∴︒-︒-︒-︒=︒ 即30x y ︒-︒=︒30AEP x y ∠∴=︒-︒=︒.故答案为:30︒.【点睛】本题考查平行线的性质 角平分线的性质 垂线的性质 熟练运用性质计算是解题的关键.三 解答题(本大题共8个小题 共54分 第19-22每小题6分 23-24每小题7分 25-26每小题8分)19.(2022·全国·七年级单元测试)如图 在边长为1个单位的正方形网格中 ABC 经过平移后得到A B C ''' 点B 的对应点为B ' 根据下列条件 利用网格点和无刻度的直尺画图并解答 保留痕迹:(1)画出A B C ''' 线段AC 扫过的图形的面积为______(2)在A B ''的右侧确定格点Q 使A B Q ''△的面积和ABC 的面积相等 请问这样的Q 点有______个? 根据平移的性质得出'''ABC线段)根据平行线之间的距离处处相等可得答案.A B C '''即为所求111022612411022A B ∥ 则点1234,,,Q Q Q Q 即为所求本题主要考查了作图——平移变换20.(2022秋·北京海淀·七年级校考单元测试)如图 点C 在MON ∠的一边OM 上 过点C 的直线AB ON ∥CD 平分ACM ∠.当60DCM ∠=︒时 求O ∠的度数.解:∠CD 平分ACM ∠∠ACM ∠= .∠60DCM ∠=︒∠ACM ∠= °.∠直线AB 与OM 交于点C∠OCB ∠=ACM ∠= °( )∠AB ON ∥∠+=180O OCB ∠∠︒( )∠O ∠= °.【答案】2DCM ∠ 120 120 对顶角相等 两直线平行 同旁内角互补 60【分析】根据角平分线的定义 即可得到∠ACM 的度数 进而得出∠OCB 的度数 再依据平行线的性质 即可得到∠O 的度数.【详解】解:∠CD 平分ACM ∠∠=2ACM DCM ∠∠.∠∠60DCM ∠=︒∠=120ACM ∠︒.∠直线AB 与OM 交于点C∠==120OCB ACM ∠∠︒(对顶角相等)∠AB ON ∥∠+=180O OCB ∠∠︒(两直线平行 同旁内角互补)∠=60O ∠︒.故答案为:2DCM ∠ 120 120 对顶角相等 两直线平行 同旁内角互补 60.【点晴】本题主要考查了角的计算 平行线的性质以及角平分线的定义 解题的关键是熟练掌握平行线的性质:两直线平行 同旁内角互补.21.(2022秋·重庆铜梁·七年级校考单元测试)如图 在四边形ABCD 中 130A ∠=︒ 50ADC ∠=︒ 试说明12∠=∠.【答案】AB CD 同旁内角互补 两直线平行 两直线平行 内错角相等【分析】由180A ADC ∠+∠=︒ 利用同旁内角互补 两直线平行可得AB CD ∥ 再利用平行线的性质可得答案.【详解】证明:∠130A ∠=︒ 50ADC ∠=︒(已知)∠180A ADC ∠+∠=︒(等式的性质)∠AB CD ∥ (同旁内角互补 两直线平行)∠12∠=∠(两直线平行 内错角相等).【点睛】本题考查的是平行线的判定与性质 熟记平行线的性质与判定方法是解本题的关键.22.(2022·全国·七年级单元测试)如图 己知点P Q 分别在AOB ∠的边OA OB 、上 按下列要求画图:(1)画射线PQ(2)过点P 画垂直于射线OB 的线段PC 垂足为点C(3)过点Q画直线QM平行于射线OA.【答案】(1)见解析(2)见解析(3)见解析【分析】根据题意过用直尺作图分别P画垂直于射线OB的射线PC垂足为点C过点Q画直线QM平行于射线OA.【详解】(1)如图射线PQ为所求(2)如图线段PC为所求(3)如图直线QM为所求【点睛】此题主要考查了基本作图正确把握相关定义是解题关键.23.(2022春·七年级单元测试)如图汽车站码头分别位于A B,两点直线b和波浪线分别表示公路与河流.(1)从汽车站A到码头B怎样走最近?画出最近路线并说明理由(2)从码头B到公路b怎样走最近?画出最近路线BC并说明理由.【答案】(1)作图见解析 理由见解析(2)作图见解析 理由见解析【分析】(1)根据两点之间线段最短解决问题.(2)根据垂线段最短解决问题.【详解】(1)解:如图 连接,A B 线段AB 即为所求作.(2)如图 过点B 作BC b ⊥于点C 线段BC 即为所求作.【点睛】本题考查作图﹣应用与设计作图 垂线段最短 两点之间线段最短等知识 解题的关键是理解题意 灵活运用所学知识解决问题.24.(2022春·七年级单元测试)如图 AB CD ⊥ 垂足为O .(1)比较AOD EOB AOE ∠∠∠,,的大小 并用“<”号连接.(2)若28EOC ∠=︒ 求EOB ∠和EOD ∠的度数.【答案】(1)AOE AOD EOB ∠<∠<∠(2)118152EOB EOD ∠=︒∠=︒,【分析】(1)根据图形可判断各角的大小.(2)根据图形可得90118EOB EOC ∠=∠+︒=︒,根据平角的定义求得EOD ∠. 【详解】(1)解:∠AB CD ⊥∠909090AOD EOB EOC AOE EOC ∠=︒∠=︒+∠∠=︒-∠,,∠AOE AOD EOB ∠<∠<∠(2)∠AB CD ⊥∠90118EOB EOC ∠=∠+︒=︒∠180********EOD EOC ∠=︒-∠=︒-︒=︒.【点睛】本题考查了角的关系 垂直的定义 通过已知角求得未知角 数形结合是解题的关键. 25.(2022春·广东·七年级单元测试)如图 直线CD EF 交于点O OA OB 分别平分COE ∠和DOE ∠ 已知1290∠+∠=︒ 且2:32:5∠∠=.(1)求BOF ∠的度数(2)试说明AB CD 的理由.∠+∠)解:12AOCAB CD.【点睛】本题主要考查了平行线的判定与性质是解题的关键.26.(2022秋·上海宝山·七年级校考单元测试)已知AB∠CD点M为平面内的一点∠AMD=90°.(1)当点M在如图1的位置时求∠MAB与∠D的数量关系(写出说理过程)(2)当点M在如图2的位置时则∠MAB与∠D的数量关系是(直接写出答案)(3)在(2)条件下如图3 过点M作ME∠AB垂足为E∠EMA与∠EMD的角平分线分别交射线EB于点F G回答下列问题(直接写出答案):图中与∠MAB相等的角是∠FMG=度.【答案】(1)∠MAB+∠D=90°见解析(2)∠MAB﹣∠D=90°(3)∠MAB=∠EMD45【分析】(1)在题干的基础上通过平行线的性质可得结论(2)仿照(1)的解题思路过点M作MN∠AB由平行线的性质可得结论(3)利用(2)中的结论结合角平分线的性质可得结论.【详解】(1)解:如图①过点M作MN∥AB∵AB∥CD∴MN∥AB∥CD(如果一条直线和两条平行线中的一条平行那么它和另一条也平行).∴∠D=∠NMD.∵MN∥AB∴∠MAB+∠NMA=180°.∴∠MAB+∠AMD+∠DMN=180°.∵∠AMD=90°∴∠MAB+∠DMN=90°.∴∠MAB+∠D=90°(2)解:如图②过点M作MN∥AB∵MN∥AB∴∠MAB+∠AMN=180°.∵AB∥CD∴MN∥AB∥CD.∴∠D=∠NMD.∵∠AMD=90°∴∠AMN=90°﹣∠NMD.∴∠AMN=90°﹣∠D.第21页共22页第22页共22页。

七年级数学下册第五章《相交线与平行线》单元测试题-人教版(含答案)

七年级数学下册第五章《相交线与平行线》单元测试题-人教版(含答案)

七年级数学下册第五章《相交线与平行线》单元测试题-人教版(含答案)一、单选题1.在下图中,1∠和2∠是同位角的是( )A .(1)、(2)B .(1)、(3)C .(2)、(3)D .(2)、(4) 2.如图,直线AB 与CD 相交于点O ,75AOC ∠=︒,125∠=︒,则2∠的度数是( )A .25°B .30°C .40°D .50° 3.如图,直线1l 与2l 相交于点O ,1OM l ⊥,若4418α=︒',则β的度数是( )A .5542'︒B .4542'︒C .'4552︒D .4642'︒ 4.如图,两条直线交于点O ,若1280∠+∠=︒,则3∠的度数为( )A .40︒B .80︒C .100D .140︒ 5.如图,,AB CD BC EF ∥∥.若158∠=︒,则2∠的大小为( )A .120︒B .122︒C .132︒D .148︒ 6.如图,直线a ∥b ,将三角尺直角顶点放在直线b 上,若∠1=50°,则∠2的度数是( )A .20°B .30°C .40°D .50° 7.如图,将一副三角板按如图放置,则下列结论:∠13∠=∠;∠2180CAD ∠+∠=︒;∠如果235∠=︒,则有BC AD ∥;∠4275∠+∠=︒.其中正确的序号是( )A .∠∠∠∠B .∠∠∠C .∠∠∠D .∠∠∠ 8.如图,点E 在BC 的延长线上,下列条件中不能判定//AB CD 的是( )A .3=4∠∠B .12∠=∠C .B DCE ∠=∠D .13180D ∠+∠+∠=︒9.下列语句是命题的是( )A .画出两个相等的角B .所有的直角都相等吗C .延长线段AB 到C ,使得BC BA =D .两直线平行,内错角相等10.如图,下列条件中能判定AB CE ∥的是( )A .∠B =∠ACE B .∠B =∠ACBC .∠A =∠ECD D .∠A =∠ACE=180°;∠∠7=∠5.其中能够说明a ∥b 的条件为( )A .∠∠B .∠∠C .∠∠D .∠∠ 12.如图,直线AB ,CD 相交于点E ,EF AB ⊥于点E ,若20FEC AEC ∠-∠=︒,那么AED ∠的度数为( )A .125°B .135°C .140°D .145°二、填空题 13.已知如图,三条直线1l 、2l 、3l 交于一点,则∠1+∠2+∠3=_________.14.如图,要把池水引到C 处,可作CD AB ⊥于点D ,然后沿CD 开渠,可使所开渠道最短,依据是______.15.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西16.如图,AB CD ∥,若40A ∠=︒,26C ∠=︒,则∠E =______.17.如图,将∠ABE 向右平移2cm 得到∠DCF ,如果∠ABE 的周长是16cm ,那么四边形ABFD 的周长是_____.18.如图,在四边形ABCD 中.点E 为AB 延长线上一点,点F 为CD 延长线上一点,连接EF ,交BC 于点G ,交AD 于点H ,若12∠=∠,A C ∠=∠,求证:E F ∠=∠.证明:13∠=∠( ),12∠=∠(已知). ∠ = (等量代换).∴AD BC ∥( )4180A ∴∠+∠=( ), A C ∠=∠(已知),4180C ∴∠+∠=(等量代换). ∠ ∥ (同旁内角互补,两直线平行).19.如图直线AD 与直线BC 相交于点O ,OE 平分AOB ∠,130∠=︒,则EOD ∠的度数为___________°.三、解答题20.如图,直线AB 、CD 相交于点O ,OE 平分∠BOD ,OF 平分∠COE .(1)若∠AOC =76°,求∠BOF 的度数;(2)若∠BOF =36°,求∠AOC 的度数;21.如图,已知AD BC ⊥,EF BC ⊥,12∠=∠.(1)求证:EF AD ∥;(2)求证:180BAC AGD ∠+∠=︒.22.如图,直线AB 和CD 相交于O 点,OE CD ⊥,142EOF ∠=︒,13BOD BOF ∠∠=::,求AOF ∠的度数.23.如图,两直线AB ,CD 相交于点O ,OE 平分∠BOD ,∠AOC :∠AOD =7:11.(1)求∠COE 的度数;(2)若OF ∠OE ,求∠COF 的度数.24.如图,直线CD 、EF 交于点O ,OA ,OB 分别平分COE ∠和DOE ∠,已知1290∠+∠=︒,且2:32:5∠∠=.(1)求BOF ∠的度数;(2)试说明AB CD 的理由.参考答案1.B2.D解:由题可知75BOD AOC ∠=∠=︒,125∠=︒,217525BOD ∴∠=∠-∠=︒-︒=50︒.3.B解:由题意得90180αβ++︒=︒,∠180904542βα'=︒-︒-=︒,4.D解:12∠=∠,1280∠+∠=︒,140∴∠=︒,13180∠+∠=︒,31801140∴∠=︒-∠=︒.5.B解:设CD 与EF 交于G ,∠AB ∠CD∠∠1=∠C =58°∠BC ∠FE ,∠∠C +∠CGE =180°,∠∠CGE =180°-58°=122°,∠∠2=∠CGE =122°,6.C解:如图,由题意得:∠3=180°-90°-∠1=40°,∠a ∥b ,∠∠2=∠3=40°,7.B解:∠1290CAB ∠=∠+∠=︒,3290EAD ∠=∠+∠=︒,∠13∠=∠,故∠正确;∠212329090180CAD ∠+∠=∠+∠+∠+∠=︒+︒=︒故∠正确;∠235∠=︒,∠3902903565∠=︒-∠=︒-︒=︒,1(18090)452B ∠=︒-︒=︒, ∠BC 与AD 不平行,故∠错误;∠43CBA EDA ∠+∠=∠+∠,即445330∠+︒=∠+︒,又∠2+3=90∠∠︒,∠44590230∠+︒=︒∠+︒-42=75∠+∠︒,故∠正确;综上,∠∠∠正确,8.A解:A 、∠3=4∠∠,∠//AD BC ,故选项A 不能判定//AB CD ,符合题意;B 、∠12∠=∠,∠//AB CD ,故选项B 能判定//AB CD ,不符合题意;C 、∠B DCE ∠=∠,∠//AB CD ,故选项C 能判定//AB CD ,不符合题意;D 、∠13180D ∠+∠+∠=︒,即180D DAB ∠+∠︒=,∠//AB CD ,故选项D 能判定//AB CD ,不符合题意;9.D解:A 、画出两个相等的角,没有做错判断,不是命题;B 、所有的直角都相等吗,没有做错判断,不是命题;C 、延长线段AB 到C ,使得BC BA =,没有做错判断,不是命题;D 、两直线平行,内错角相等,是命题;10.DA . ∠B =∠ACE ,不是同位角,内错角,不能判定AB CE ∥,不符合题意;B . ∠B =∠ACB ,不是同位角,内错角,不能判定AB CE ∥,不符合题意;C . ∠A =∠ECD ,不是同位角,内错角,不能判定AB CE ∥,不符合题意; D . ∠A =∠ACE ,内错角相等,两直线平行,能判定AB CE ∥,符合题意;11.A∠∠∠1=∠5,∠a ∥b ,故正确;∠∠∠5=∠7,∠1=∠7,∠∠1=∠5,∠a ∥b ,故正确;∠∠2+∠3=180°,∠2和∠3是邻补角,不能说明任何一组直线平行,故错误; ∠∠7=∠5,∠7和∠5是对顶角,不能说明任何一组直线平行,故错误.12.D设AEC ∠为x ,则+20FEC x ∠=︒,∠EF AB ⊥,∠90AEF ∠=︒,∠90AEC FEC ∠+∠=︒,∠2090x x ++︒=︒,解得35x =︒,即35AEC ∠=︒,∠18035145AED ∠=︒-︒=︒.13.180°解:如图,14∠=∠,123423180∴∠+∠+∠=∠+∠+∠=︒.故答案为:180︒.14.垂线段最短15.48°先根据题意画出图形,利用平行线的性质解答即可.解:如图,∠AC∠BD ,∠1=48°,∠∠2=∠1=48°,根据方向角的概念可知,乙地所修公路的走向是南偏西48°.16.66︒解:如图所示,过点E 作EF AB ∥,∠EF AB AB CD ∥,∥,∠AB CD EF ∥∥,∠4026AEF A CEF C ==︒==︒∠∠,∠∠,∠66AEC AEF CEF =+=︒∠∠∠,故答案为:66︒.17.20cm解:∠∠ABE 向右平移2cm 得到∠DCF ,∠DF =AE ,∠四边形ABFD 的周长=AB +BE +DF +AD +EF ,=AB +BE +AE +AD +EF ,=∠ABE 的周长+AD +EF ,∠平移距离为2cm ,∠AD =EF =2cm ,∠∠ABE 的周长是16cm ,∠四边形ABFD 的周长=16+2+2=20cm .故答案为:20cm .18.对顶角相等;23∠∠,;同位角相等,两直线平行;两直线平行,同旁内角互补;CF ,EA ;两直线平行,内错角相等.证明:13∠=∠(对顶角相等),12∠=∠(已知), 23∴∠=∠(等量代换),∴AD BC ∥(同位角相等,两直线平行),4180A ∴∠+∠=(两直线平行,同旁内角互补), A C ∠=∠(已知),4180C ∴∠+∠=(等量代换), ∴CF EA ∥(同旁内角互补,两直线平行),E F ∴∠=∠(两直线平行,内错角相等); 故答案为:对顶角相等;23∠∠,;同位角相等,两直线平行;两直线平行,同旁内角互补;CF ,EA ;两直线平行,内错角相等.19.105解:∠130∠=︒,∠180118030150AOB ∠=︒-∠=︒-︒=︒,∠OE 平分AOB ∠, ∠111507522BOE AOB ∠=∠=⨯︒=︒, ∠2130∠=∠=︒,∠27530105EOD BOE ∠=∠+∠=︒+︒=︒故答案为:10520.(1)∠BOF =33°(2)∠AOC =72°(1)∠∠AOC 、∠BOD 是对顶角,∠∠BOD=∠AOC=76°,∠OE 平分∠BOD , ∠∠DOE=∠BOE=12∠BOD=38°∠∠COE=142°,∠OF 平分∠COE . ∠∠EOF=12∠COE=71°,又∠BOE+∠BOF=∠EOF ,∠∠BOF=∠EOF−∠BOE=71°−38°=33°,(2)∠OE 平分∠BOD ,OF 平分∠COE ,∠BOE EOD COF FOE ∠=∠∠=∠,,∠设BOE x ∠=,则EOD x ∠=,故2COA x ∠=,36EOF COF x ∠=∠=+︒, 则23636180AOC COF BOF x x ∠+∠+∠=++︒+︒=︒, 解得36x =︒,故∠AOC =72°.21.(1)见解析(2)见解析(1)证明:∠AD BC ⊥,EF BC ⊥, ∠90EFB ∠=︒,90ADB ∠=︒(垂直的定义), ∠∠=∠EFB ADB (等量代换),∠EF AD ∥(同位角相等,两直线平行); (2)证明:∠EF AD ∥,∠1BAD ∠=∠(两直线平行,同位角相等), 又12∠=∠(已知),∠2BAD ∠=∠(等量代换),∠DG BA ∥(内错角相等,两直线平行), ∠180BAC AGD ∠+∠=︒(两直线平行,同旁内角互补). 22.102AOF ∠=︒解:∠OE CD ⊥,∠90EOD ∠=︒,∠142EOF ∠=︒,∠1429052DOF ∠=︒-︒=︒,∠13BOD BOF ∠∠=::, ∠1262BOD DOF ∠=∠=︒, ∠78BOF BOD DOF ∠=∠+∠=︒,∠180AOF BOF ∠+∠=︒,∠180********AOF BOF ∠=︒-∠=︒-︒=︒. ∠102AOF ∠=︒.23.(1)145︒(2)125︒1)解:∠711180AOC AOD AOC AOD ∠∠=∠+∠=︒::,, ∠∠AOC =71818070⨯︒=︒, ∠∠DOB =∠AOC =70°,又∠OE 平分∠BOD ,∠DOE ∠=12DOB ∠=127035⨯︒=︒,∠180********COE DOE ∠=︒-∠=︒-︒=︒, (2)∠OF OE ⊥,∠90EOF ∠=︒,∠90903555FOD DOE ∠=︒-∠=︒-︒=︒, ∠180********COF FOD ∠=︒-∠=︒-︒=︒. 24.(1)BOF ∠的度数为140︒(2)见解析(1)解:∠OA ,OB 分别平分COE ∠和DOE ∠, ∠12AOE AOC COE ∠=∠=∠,122BOE DOE ∠=∠=∠, ∠180COE DOE ∠+∠=°,∠290AOC ∠+∠=︒,∠3COE ∠=∠, ∠132AOC ∠=∠, ∠123902∠+∠=︒,∠2:32:5∠∠=, ∠5322∠=∠, ∠15229022∠+⨯∠=︒,∠240∠=︒,∠3100∠=︒,∠23140BOF ∠=∠+∠=︒;(2)解:1290∠+∠=︒,290AOC ∠+∠=︒, ∠1AOC ∠=∠,∠AB CD .。

人教版七年级下册数学第五章《相交线与平行线》单元测试(含答案)

人教版七年级下册数学第五章《相交线与平行线》单元测试(含答案)

第五章相交线与平行线单元测试一、选择题1.下列图中,∠1和∠2是对顶角的有()个.A.1个B.2个C.3个D.4个2.下列说法正确的是()A.两点之间的距离是两点间的线段B.同一平面内,过一点有且只有一条直线与已知直线平行C.与同一条直线垂直的两条直线也垂直D.同一平面内,过一点有且只有一条直线与已知直线垂直3.给出下列说法:(1)两条直线被第三条直线所截,同位角相等;(2)平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;(3)相等的两个角是对顶角;(4)从直线外一点到这条直线的垂线段,叫做这点到直线的距离.其中正确的有().A.0个B.1个C.2个D.3个4.∠1和∠2是直线AB和CD被直线EF所截得到的同位角,那么∠1和∠2的大小关系是().A.∠1=∠2 B.∠1>∠2 C.∠1<∠2 D.无法确定5.如图所示中,不能通过基本图形平移得到的是().6.一个人从A点出发向北偏东60°方向走到B点,再从B点出发向南偏西15°方向走到C点,那么∠ABC等于().A.75°B.105°C.45°D.135°7.下列说法中,正确的是().A.过点P画线段AB的垂线.B.P是直线AB外一点,Q是直线AB上一点,连接PQ,使PQ⊥AB.C.过一点有且只有一条直线垂直于已知直线.D.过一点有且只有一条直线平行于已知直线.8.如果在同一平面内有两个图形甲和乙,通过平移,总可以完全重合在一起(不论甲和乙的初始位置如何),则甲和乙是().A.两个点B.两个半径相等的圆C.两个点或两个半径相等的圆D.两个能够完全重合的多边形二、填空题9.如图所示,AB ∥CD ,EF 分别交AB 、CD 于G 、H 两点,若∠1=50°,则∠EGB =________.10.平行用符号表示,直线AB 与CD 平行,可以记作为 .11.每天小明上学时,需要先由家向东走150米到公共汽车站点,然后再乘车向西900米到学校,每天小明由家到学校移动的方向是________,移动的距离是________.12. (广东湛江)如图所示,请写出能判断CE ∥AB 的一个条件,这个条件是;①:________ ②:________ ③:________13.如图,已知AB ∥CD ,EF 与AB 、CD 分别相交于点E 、F ,EP ⊥EF ,与∠EFD 的平分线FP相交于点P ,且∠BEP=50°,则∠EPF=________度.14.同一平面内的三条直线a ,b ,c ,若a ⊥b ,b ⊥c ,则a________c .若a ∥b ,b ∥c ,则a________c .若a ∥b ,b ⊥c ,则a________c .15. 如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西 .16.如图所示,AC ⊥BC 于点C ,CD ⊥AB 于点D ,DE ⊥BC 于点E ,能表示点到直线(或线段)的距离的线段有 条.北 北 甲 乙三、解答题17.把图中的互相平行的线写出来,互相垂直的线写出来:18.如图所示,已知∠1=∠2,AC平分∠DAB,你能推断哪两条线段平行?说明理由.19.如图,在一块长为a米,宽为b米的长方形地上,有一条弯曲的柏油马路,马路的任何地方的水平宽度都是2米,其它部分都是草地.求草地的面积.20.如图所示,点P是∠ABC内一点.(1)画图:①过点P画BC的垂线,垂足为D;②过点P画BC的平行线交AB于点E,过点P画AB的平行线交BC于点F.(2)∠EPF等于∠B吗?为什么?参考答案一、选择题1. 【答案】A;【解析】只有第三个图中的∠1与∠2是对顶角.2. 【答案】D.3. 【答案】B;【解析】(1)只有两条直线平行时,同位角相等,错误;(2)正确;(3)不符合对顶角的定义,错误;(4)直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,故错误.故选:B.4. 【答案】D;【解析】因为不知道直线AB和CD是否平行,平行时同位角相等,不平行时同位角不相等,所以无法确定同位角是否相等,故选D.5. 【答案】D【解析】易见A、B、C都可以通过基本图形平移得到,只有D不能.6. 【答案】C;【解析】根据直线平行,内错角相等,从A点北偏东60°方向等于从B点南偏西60°,再从B点向南偏西15°方向到C点,∠ABC应等于这两个角的差,故C正确.7.【答案】C;【解析】应是过一点画线段所在直线的垂线,不能是画线段的垂线,故A错误;P是直线AB外一点,Q是直线AB上一点,如果P点不在过Q点与AB垂直的直线上,或Q 点不在过P点与AB垂直的直线上,连接PQ,不可能有PQ⊥AB,故B错误;过一点画直线的平行线,这点不能在直线上,否则是同一条直线,故D错误;只有C是垂线的性质,故C正确.8.【答案】C【解析】分析:两个能够完全重合的多边形,如果把其中一个多边形旋转一个角度,那么另一个多边形不论怎样平移,也不可能和这个多边形(指旋转一个角度的多边形)完全重合在一起,只有两个点或两个半径相等的圆总能完全重合在一起,故选C.二、填空题9. 【答案】50°【解析】因为AB∥CD,所以∠1=∠AGF,因为∠AGF与∠EGB是对顶角,所以∠EGB=∠AGF,故∠EGB=50°.10.【答案】∥,AB∥CD.11.【答案】向西,750米;【解析】移动的方向是起点到终点的方向,移动的距离是起点到终点的线段的长度. 12.【答案】∠DCE=∠A,∠ECB=∠B,∠A+∠ACE=180°;【解析】根据平行线的判定,CE∥AB成立的条件可以是∠DCE=∠A或∠ECB=∠B 或∠A+∠ACE=180°.13.【答案】70°;【解析】∠EFD+∠FEB=180°,∠EFD=180°-50°-90°=40°,∴∠EFP=20°,则∠EPF=180°-90°-20°=70°.14.【答案】∥,∥,⊥;15.【答案】48°;【解析】内错角相等,两直线平行.16.【答案】8;【解析】表示点到直线或线段距离的垂线段有:线段AC、BC、DE、CE、BE、CD、CB、AD.三、解答题17.【解析】解:AB∥CD,MN∥OP,EF∥GH;AB⊥GH,AB⊥EF,CD⊥EF,CD⊥GH.18.【解析】解:AB∥CD,理由如下:因为AC平分∠DAB(已知),所以∠1=∠3(角平分线定义).又因为∠1=∠2(已知),所以∠2=∠3(等量代换),所以AB∥CD(内错角相等,两直线平行).19.【解析】解:将马路的一边向另一边平移到重合,则此时草地的形状为:长为(a-2)米,宽为b米的长方形,所以面积为:(a-2)b=(ab-2b)平方米.20.【解析】解:如图所示,(1)①直线PD即为所求;②直线PE、PF即为所求.(2)∠EPF=∠B,理由:因为PE∥BC(已知),所以∠AEP=∠B(两直线平行,同位角相等).又因为PF∥AB(已知),所以∠EPF=∠AEP(两直线平行,内错角相等),∠EPF =∠B(等量代换).。

相交线与平行线单元练习(含答案)

相交线与平行线单元练习(含答案)

第五章相交线与平行线一、选择题1.a、b、c是同一平面内的任意三条直线,其交点有()A. 1或2个B. 1或2或3个C. 0或1或3个D. 0或1或2或3个【答案】D【解析】由题意画出图形,如图所示:2.如图,在高为3米,水平距离为4米楼梯的表面铺地毯,地毯的长度至少需多少米()A. 4B. 5C. 6D. 72.【答案】D【解析】地毯长度至少需3+4=7米.故选D.3.下列语句中,是对顶角的语句为()A.有公共顶点并且相等的两个角B.两条直线相交,有公共顶点的两个角C.顶点相对的两个角D.两条直线相交,有公共顶点没有公共边的两个角【答案】D【解析】A.有公共顶点并且两边分别都在同一条直线上的两个角是对顶角,故本选项错误;B.两条直线相交所成的角是对顶角或邻补角,故本选项错误;C.顶点相对的两个角的两边不一定在同一条直线上,不一定是对顶角,故本选项错误;D.两条直线相交,有公共顶点没有公共边的两个角的两边在同一条直线上,是对顶角,故本选项正确;故选D.4.如图,能判定EC∥AB的条件是()A.∠B=∠ACBB.∠B=∠ACEC.∠A=∠ACED.∠A=∠ECD【答案】C【解析】根据∠B=∠ACB,不能得到EC∥AB,故A错误;根据∠B=∠ACE,不能得到EC∥AB,故B错误;根据∠A=∠ACE,能判定EC∥AB,故C正确;根据∠A=∠ECD不能得到EC∥AB,故D错误;故选C.5.有下列说法:①△ABC在平移的过程中,对应线段一定相等.②△ABC在平移的过程中,对应线段一定平行.③△ABC在平移的过程中,周长不变.④△ABC在平移的过程中,面积不变.其中正确的有()A.①②③B.①②④C.①③④D.②③④【答案】C【解析】①∵平移不改变图形的大小,∴△ABC在平移过程中,对应线段一定相等,故正确;②∵经过平移,对应线段所在的直线共线或平行,∴对应线段一定平行错误;③∵平移不改变图形的形状和大小,∴△ABC在平移过程中,周长不变,故正确;④∵平移不改变图形的大小和形状,∴△ABC在平移过程中,面积不变,正确;∴①、③、④都符合平移的基本性质,都正确.故选C.6.如图,已知AB∥CD∥EF,FC平分∠AFE,∠C=25°,则∠A的度数是()A. 25°B. 35°C. 45°D. 50°【答案】D【解析】∵CD∥EF,∠C=∠CFE=25°,∵FC平分∠AFE,∴∠AFE=2∠CFE=50°,又∵AB∥EF,∴∠A=∠AFE=50°,故选D.7.如图,木工师傅在一块木板上画两条平行线,方法是:用角尺画木板边缘的两条垂线,这样画的理由有下列4种说法:其中正确的是()①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平面内垂直于同一直线的两条直线平行.A.①②③B.①②④C.①③④D.①③答案】C【解析】由图可知,用角尺画木板边缘的两条垂线,这样画的理由:①同位角相等,两直线平行;③同旁内角互补,两直线平行;④平面内垂直于同一直线的两条直线平行.故选C.8.两条直线相交所构成的四个角中:①有三个角都相等;②有一对对顶角互补;③有一个角是直角;④有一对邻补角相等.其中能判定这两条直线垂直的有()A. 1个B. 2个C. 3个D. 4个【答案】D【解析】①有三个角都相等,能判定互相垂直;②有一对对顶角互补,可计算出夹角是90°,可以判定垂直;③有一个角是直角,可以判定垂直;④有一对邻补角相等,可以判定垂直.故选D.二、填空题9.已知,如图,AD∥BE,∠1=20°,∠DCE=45°,则∠2的度数为______.【答案】25°【解析】∵AD∥BE,∠DCE=45°,∴∠DCE=∠ADC=45°.∵∠1=20°,∴∠2=∠ADC-∠1=45°-20°=25°.故答案为25°10.如图,已知点A、B、C、F在同一条直线上,AD∥EF,∠D=40°,∠F=30°,那么∠ACD的度数是________.【答案】110°【解析】∵AD∥EF,∴∠A=∠F=30°,∵∠D=40°,∴∠ACD=180°-30°-40°=110°.故答案为110°.11.如图∠1=(3x-40)°,∠2=(220-3x)°,那么AB与CD的位置关系是________.【答案】平行【解析】因为∠2=(220-3x)°,所以∠3=180°-∠2=(3x-40)°,可得:∠1=∠3,所以AB与CD平行,故答案为平行.12.把下列命题改写成“如果…那么…“的形式:(1)互补的两个角不可能都是锐角:________________________________________.(2)垂直于同一条直线的两条直线平行:________________________________________.(3)对顶角相等:____________________________________________________.【答案】如果两个角互补,那么这两个角不可能都是锐角如果两直线都垂直于第三条直线,那么这两直线平行如果两个角为对顶角,那么这两个角相等【解析】(1)如果两个角互补,那么这两个角不可能都是锐角;(2)如果两直线都垂直于第三条直线,那么这两直线平行;(3)如果两个角为对顶角,那么这两个角相等.故答案为:如果两个角互补,那么这两个角不可能都是锐角;如果两直线都垂直于第三条直线,那么这两直线平行;如果两个角为对顶角,那么这两个角相等.13.如图,与∠2互为同旁内角的是________;与∠3互为同位角的是________;∠6与∠9是______,它们是直线________与______被直线______所截得的;∠3与∠5是直线______与直线______被直线______所截得的;与∠1是同位角的有______,在标有数字的九个角中,大小一定相等的角有__________________.【答案】∠1和∠3∠4和∠5内错角AC DE BE AC BC BE∠7和∠8∠2=∠6,∠5=∠7【解析】由图可得,∠1,∠3与∠2互为同旁内角;∠4,∠5与∠3互为同位角;∠6与∠9是内错角,它们是直线AC与DE被直线BE所截得的;∠3与∠5是直线AC与直线BC被直线BE所截得的同位角;∠7,∠8与∠1是同位角;根据对顶角相等可得,在标有数字的九个角中,大小一定相等的角有∠2=∠6,∠5=∠7.故答案为:∠1,∠3;∠4,∠5;内错角,AC,DE,BE;AC,BC,BE;∠7,∠8;∠2=∠6,∠5=∠7.14.如图,请你添加一个条件________,使AB∥CD.【答案】∠1=∠5【解析】添加∠1=∠5.∵∠1=∠5,∴AB∥CD.故答案为∠1=∠5.15.如图,直线a∥b,∠2=∠3,若∠1=45°,则∠4=______.【答案】45°【解析】延长DC交a于E,如图,∵∠2=∠3,∴AB∥DE,∴∠4=∠5,∵a∥b,∴∠1=∠5=45°,∴∠4=∠5=45°.故答案为45°.16.如图,∠1和∠3是直线______、______被直线______所截得到的______角;∠3和∠2是直线______、______被直线______所截得到的______角.【答案】a b c同旁内a c b内错【解析】如题图,∠1和∠3是直线a、b被直线c所截得到的同旁内角;∠3和∠2是直线a、c被直线b所截得到的内错角.故答案为:a,b,c,同旁内;a,c,b,内错角.17.如图,已知直线AB与CD交于点O,ON平分∠DOB,若∠BOC=110°,则∠DON为________度.【答案】35【解析】∵∠BOC=110°,∴∠BOD=70°,∵ON为∠BOD平分线,∴∠DON=35°.故答案为35.18.如图,一张三角形纸片ABC,∠B=45°,现将纸片的一角向内折叠,折痕ED∥BC,则∠AEB的度数为________.【答案】90°【解析】∵ED∥BC,∴∠FED=∠B=45°,由折叠可得∠AEF=2∠FED=90°,∴∠AEB=180°-90°=90°,故答案为90°.三、解答题19.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.【答案】证明∵BE⊥FD,∴∠EGD=90°,∴∠1+∠D=90°,又∠2和∠D互余,即∠2+∠D=90°,∴∠1=∠2,又已知∠C=∠1,∴∠C=∠2,∴AB∥CD.【解析】首先由BE⊥FD,得∠1和∠D互余,再由已知,∠C=∠1,∠2和∠D互余,所以得∠C =∠2,从而证得AB∥CD.20.(1)图①是将线段AB向右平移1个单位长度,图②是将线段AB折一下再向右平移1个单位长度,请在图③中画出一条有两个折点的折线向右平移1个单位长度的图形.(2)若长方形的长为a,宽为b,请分别写出三个图形中除去阴影部分后剩余部分的面积.(3)如图④,在宽为10 m,长为40 m的长方形菜地上有一条弯曲的小路,小路宽为1 m,求这块菜地的面积.20.【答案】(1)如图:(2)三个图形中除去阴影部分后剩余部分的面积:①ab-b;②ab-b;③ab-b;(3)40×10-10×1=390(m2).答:这块菜地的面积是390m2.【解析】(1)根据两个折点,可得小路是三个平行四边形;(2)根据路的形状是矩形,可得路的面积,根据面积的和差,可得答案;(3)根据等底等高的面积相等,可得路的面积,根据面积的和差,可得答案.21.直线a∥b,b∥c,直线d与a相交于点A.(1)判断a与c的位置关系,并说明理由;(2)判断c与d的位置关系,并说明理由.【答案】(1)a与c的位置关系是平行,理由是:∵直线a∥b,b∥c,∴a∥c;(2)c与d的位置关系是相交,理由是:∵c∥a,直线d与a相交于点A,∴c与d的位置关系是相交.【解析】(1)根据平行公理得出即可;(2)根据c∥a和直线d与a相交推出即可.22.如图,直线AB、CD相交于点O,OE平分∠BOD.(1)若∠AOC=68°,∠DOF=90°,求∠EOF的度数;(2)若OF平分∠COE,∠BOF=15°,若设∠AOE=x°,求∠AOC的度数.【答案】(1)∵∠AOC=68°,∴∠BOD=68°,∵OE平分∠BOD,∴∠BOE=∠DOE=34°,∵∠DOF=90°,∴∠EOF=∠DOF-∠DOE=90°-34°=56°;(2)∵OE平分∠BOD,∴∠BOE=∠DOE,∵∠BOE+∠AOE=180°,∠COE+∠DOE=180°,∴∠COE=∠AOE=x,∵OF平分∠COE,∴∠FOE=x.∴∠BOE=∠FOE-∠BOF=x-15°.又∵∠BOE+∠AOE=180°,∴x-15°+x=180°,解得x=130°,∴∠AOC=2∠BOE=2×=100°.【解析】(1)根据角平分线的定义结合∠AOC=68°即可求出∠BOE=∠DOE=34°,再由∠EOF与∠DOE互余即可求出∠EOF的度数;(2)由角平分线的定义可得出∠BOE=∠DOE,根据∠BOE+∠AOE=180°、∠COE+∠DOE=180°即可找出∠AOE=∠COE=x,再根据角平分线的定义可知∠FOE=x.23.如图,给出下列论断:①∠1=∠E;②∠4=∠B;③∠2+∠B=180°;④∠3+∠E=180°;⑤∠A+∠E=180°;⑥AB∥CD;⑦AB∥EF;⑧CD∥EF.请你从中选出一个论断作为题设,一个论断作为结论,组成一个真命题,至少写出三个.(格式:如果…,那么…)23.【答案】如果①∠1=∠E;那么⑧CD∥EF;如果②∠4=∠B;那么⑥AB∥CD;如果③∠2+∠B=180°;那么⑥AB∥CD.【解析】根据平行线的性质与判定,结合所给条件即可作出答案.24.如图,在Rt△ABC中,∠C=90°,AC=4 cm,BC=3 cm,将△ABC沿AB方向向右平移得到△DEF,若AE=8 cm,DB=2 cm.(1)求△ABC向右平移的距离AD的长;(2)求四边形AEFC的周长.【答案】(1)∵△ABC沿AB方向向右平移得到△DEF,∴AD=BE=CF,BC=EF=3 cm,∵AE=8 cm,DB=2 cm,∴AD=BE=CF==3 cm;(2)四边形AEFC的周长=AE+EF+CF+AC=8+3+3+4=18 cm.【解析】(1)根据平移的性质可得AD=BE=CF,BC=EF=3 cm,然后根据AE、BD的长度求解即可;(2)根据平移的性质可得EF=BC,CF=AD,然后根据四边形的周长的定义列式计算即可得解.。

第五章相交线与平行线单元试卷测试卷附答案

第五章相交线与平行线单元试卷测试卷附答案

第五章相交线与平行线单元试卷测试卷附答案一、选择题1.下列说法中错误的是( )A .一个锐角的补角一定是钝角;B .同角或等角的余角相等;C .两点间的距离是连结这两点的线段的长度;D .过直线l 上的一点有且只有一条直线垂直于l2.如图,直角三角形ABC 的直角边AB =6,BC =8,将直角三角形ABC 沿边BC 的方向平移到三角形DEF 的位置,DE 交AC 于点G ,BE =2,三角形CEG 的面积为13.5,下列结论:①三角形ABC 平移的距离是4;②EG =4.5;③AD ∥CF ;④四边形ADFC 的面积为6.其中正确的结论是A .①②B .②③C .③④D .②④ 3.已知点P 为直线m 外一点,点A ,B ,C 为直线m 上三点,PA =4 cm ,PB =5 cm ,PC =2 cm ,则点P 到直线m 的距离为( )A .4 cmB .5 cmC .小于2 cmD .不大于2 cm4.如图,AB ∥CD ,BC 平分∠ABD ,∠1=50°,则∠2的度数是( )A .50B .60C .70D .805.将一副三角板按如图放置,则下列结论①13∠=∠;②如果230∠=,则有//AC DE ;③如果245∠=,则有//BC AD ;④如果4C ∠=∠,必有230∠=,其中正确的有( )A .①②③B .①②④C .③④D .①②③④6.给出下列说法: (1)两条直线被第三条直线所截,同位角相等;(2)不相等的两个角不是同位角;(3)平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;(4)从直线外一点到这条直线的垂线段,叫做该点到直线的距离;(5)过一点作已知直线的平行线,有且只有一条.其中真命题的有()A.0个B.1个C.2个D.3个7.已知∠A的两边与∠B的两边互相平行,且∠A=20°,则∠B的度数为(). A.20° B.80° C.160° D.20°或160°8.下列语句是命题的是 ( )(1)两点之间,线段最短;(2)如果两个角的和是180度,那么这两个角互补;(3)请画出两条互相平行的直线;(4)一个锐角与一个钝角互补吗?A.(1)(2)B.(3)(4)C.(2)(3)D.(1)(4)9.下列命题:①同位角相等;②过一点有且只有一条直线与已知直线平行;③过一点有且只有一条直线与已知直线垂直;④如果同一平面内的三条直线只有两个交点,那么这三条直线中必有两条直线互相平行.其中假命题的个数是()A.1个B.2个C.3个D.4个10.下列命题是假命题的是()A.等腰三角形底边上的高是它的对称轴B.有两个角相等的三角形是等腰三角形C.等腰三角形底边上的中线平分顶角D.等边三角形的每一个内角都等于60°11.如图,下列说法错误的是( )A.若a∥b,b∥c,则a∥c B.若∠1=∠2,则a∥c C.若∠3=∠2,则b∥c D.若∠3+∠5=180°,则a∥c12.如图所示,下列条件能判断a∥b的有()A.∠1+∠2=180°B.∠2=∠4 C.∠2+∠3=180°D.∠1=∠3二、填空题13.已知直线AB∥CD,点P、Q分别在AB、CD上,如图所示,射线PB按顺时针方向以每秒4°的速度旋转至PA便立即回转,并不断往返旋转;射线QC按顺时针方向每秒1°旋转至QD停止,此时射线PB也停止旋转.(1)若射线PB 、QC 同时开始旋转,当旋转时间30秒时,PB'与QC'的位置关系为_____; (2)若射线QC 先转45秒,射线PB 才开始转动,当射线PB 旋转的时间为_____秒时,PB′∥QC′.14.如果1∠的两边分别平行于2∠的两边,且1∠比2∠的2倍少30,则1∠=________.15.平面内不过同一点的n 条直线两两相交,它们交点个数记作n a ,并且规定10a =,则2a =__________,1n n a a --=____________.16.如图,已知AB ∥CD ,CE 、BE 的交点为E ,现作如下操作:第一次操作,分别作∠ABE 和∠DCE 的平分线,交点为E 1,第二次操作,分别作∠ABE 1和∠DCE 1的平分线,交点为E 2,第三次操作,分别作∠ABE 2和∠DCE 2的平分线,交点为E 3,…,第n 次操作,分别作∠ABE n ﹣1和∠DCE n ﹣1的平分线,交点为E n .若∠E n =1度,那∠BEC 等于________度17.设a 、b 、c 为平面上三条不同直线,(1)若//,//a b b c ,则a 与c 的位置关系是_________;(2)若,a b b c ⊥⊥,则a 与c 的位置关系是_________;(3)若//a b ,b c ⊥,则a 与c 的位置关系是________.18.如图,将直角三角形ABC 沿斜边AC 的方向平移到三角形DEF 的位置,DE 交BC 于点G ,BG =4,EF =12,△BEG 的面积为4,下列结论:①DE ⊥BC ;②△ABC 平移的距离是4;③AD =CF ;④四边形GCFE 的面积为20,其中正确的结论有________(只填写序号).19.如图,直线l 1∥l 2∥l 3,等边△ABC 的顶点B 、C 分别在直线l 2、l 3上,若边BC 与直线l 3的夹角∠1=25°,则边AB 与直线l 1的夹角∠2=________.20.如图,AD 平分,34BDF ∠∠=∠,若150,2130∠=︒∠=︒,则CBD ∠=________︒.三、解答题21.如图1,AB CD ∥ ,130PAB ∠=︒ ,120PCD ∠=︒ ,求APC ∠的度数.小明的思路是:过P 作//PE AB ,通过平行线性质来求APC ∠.(1)按小明的思路,求APC ∠的度数;(问题迁移)(2)如图2,//AB CD ,点P 在射线OM 上运动,记PAB α∠=,PCD β∠=,当点P 在B 、D 两点之间运动时,问APC ∠与α、β之间有何数量关系?请说明理由; (问题应用):(3)在(2)的条件下,如果点P 在B 、D 两点外侧运动时(点P 与点O 、B 、D 三点不重合),请直接写出APC ∠与α、β之间的数量关系.22.如图①,已知直线12l l //,且3l 和12,l l 分别相交于,A B 两点,4l 和12,l l 分别相交于,C D 两点,点P 在线段AB 上,记1 23ACP BDP CPD ∠∠∠∠∠∠=,=,=.(1)若120,355︒︒∠=∠=,则2∠=_____;(2)试找出123∠∠∠,,之间的数量关系,并说明理由;(3)应用(2)中的结论解答下列问题;如图②,点A 在B 处北偏东42︒的方向上, 若88BAC ︒∠=,则点 A 在C 处的北偏西_____的方向上;(4)如果点P 在直线3l 上且在,A B 两点外侧运动时,其他条件不变,试探究1 23∠∠∠,,之间的关系(点 P 和,A B 两点不重合),直接写出结论即可.23.已知AB ∥CD ,点C 在点D 的右侧,连接AD ,BC ,BE 平分∠ABC ,DE 平分∠ADC ,BE ,DE 相交于点E .(1)如图1,当点B 在点A 的左侧时,①若∠ABC =50º,∠ADC =70º,求∠BED 的度数;②请直接写出∠BED 与∠ABC ,∠ADC 的数量关系;(2)如图2,当点B 在点A 的右侧时,试猜想∠BED 与∠ABC ,∠ADC 的数量关系,并说明理由.24.已知,90AOB ︒∠=,点C 在射线OA 上,//CD OE .(1)如图 1,若120OCD ︒∠=,求∠BOE 的度数;(2)把“90AOB ︒∠=°”改为“120AOB ︒∠=”,射线OE 沿射线OB 平移,得到O E ',其它条件不变(如 图 2 所示),探究,OCD BO E '∠∠ 的数量关系;(3)在(2)的条件下,作PO OB '⊥,垂足为O ' ,与OCD ∠ 的角平分线CP 交于点P ,若BO E α'∠= , 用含 α 的式子表示CPO '∠(直接写出答案).25.已知://AB DE ,//AC DF ,B C E F 、、、四点在同一直线上.(1)如图1,求证:12∠=∠;(2)如图2,猜想1,3,4∠∠∠这三个角之间有何数量关系?并证明你的结论; (3)如图3,Q 是AD 下方一点,连接,AQ DQ ,且13DAQ BAD ∠=∠,13ADQ ADF ∠=∠,若110AQD ∠=︒,求2∠的度数. 26.问题情境:我们知道,“两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补”,所以在某些探究性问题中通过“构造平行线”可以起到转化的作用.已知三角板ABC 中,60,30,90BAC B C ∠=∠=︒∠=︒︒,长方形DEFG 中,DE GF .问题初探:(1)如图(1),若将三角板ABC 的顶点A 放在长方形的边GF 上,BC 与DE 相交于点M ,AB DE ⊥于点N ,求EMC ∠的度数.分析:过点C 作CH GF ∥,则有CH DE ∥,从而得,CAF HCA EMC MCH ∠=∠∠=∠,从而可以求得EMC ∠的度数.由分析得,请你直接写出:CAF ∠的度数为____________,EMC ∠的度数为___________.类比再探:(2)若将三角板ABC 按图(2)所示方式摆放(AB 与DE 不垂直),请你猜想写出CAF ∠与EMC ∠的数量关系,并说明理由.27.如图`,已知:直线AD BC ∥,且直线AB 、CD 与AD 、BC 分别交于A 、D 和B 、C 两点,点P 在直线AB 上.∠、(1)如图1,当点P在A、B两点之间时(点P不与点A、B重合),探究ADP、DPC ∠之间的关系,并说明理由.BCP∠、(2)若点P不在A、B两点之间,在备用图中画出图形,直接写出ADP、DPC∠之间的关系,不需说理.BCP28.已知:∠1=∠2,EG 平分∠AEC.(1)如图1,∠MAE=50°,∠FEG=15°,∠NCE=80°.试判断EF 与CD 的位置关系,并说明理由.(2)如图2,∠MAE=135°,∠FEG=30°,当AB∥CD 时,求∠NCE 的度数;(3)如图2,试写出∠MAE、∠FEG、∠NCE 之间满足什么关系时,AB∥CD.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【详解】解:D选项中缺少先要条件,就是在同一平面内故选:D2.B解析:B【解析】分析:(1)对应线段的长度即是平移的距离;(2)根据EC的长和△CEG的面积求EG;(3)平移前后,对应点的连线平行且相等;(4)根据平行四边形的面积公式求.详解:(1)因为点B,E是对应点,且BE=2,所以△ABC平行的距离是2,则①错误;②根据题意得,13.5×2=(8-2)EG,解得EG=4.5,则②正确;③因为A,D是对应点,C,F是对应点,所以AD∥CF,则③正确;④平行四边形ADFC的面积为AB·CF=AB·BE=6×2=12,则④错误.故选B.点睛:本题考查了平移的性质,平移的性质有:①平移只改变图形的位置,不改变图形的形状和大小;②平移得到的图形与原图形中的对应线段平行(或在同一条直线上)且相等,对应角相等;对应点连线平行(或在同一条直线上)且相等.3.D解析:D【分析】根据点到直线的距离是直线外的点与直线上垂足间的线段的长,再根据垂线段最短,可得答案.【详解】当PC⊥m时,PC是点P到直线m的距离,即点P到直线m的距离2cm,当PC不垂直直线m时,点P到直线m的距离小于PC的长,即点P到直线m的距离小于2cm,综上所述:点P到直线m的距离不大于2cm,故选D.【点睛】此题考查了点到直线的距离,利用了垂线段最短的性质.4.D解析:D【分析】利用角平分线和平行的性质即可求出.【详解】∵AB∥CD∴∠ABC=∠1=50°,∠ABD+∠BDC=180°,∵BC平分∠ABD,∴∠ABD=2∠ABC=100°,∴∠BDC=180°-∠ABD=80°,∴∠2=∠BDC=80°.故选D.【点睛】本题考查的是平行,熟练掌握平行的性质和角平分线的性质是解题的关键.5.D解析:D【分析】根据∠1+∠2=∠3+∠2即可证得①;根据230∠=求出∠1与∠E 的度数大小即可判断②;利用∠2求出∠3,与∠B 的度数大小即可判断③;利用4C ∠=∠求出∠1,即可得到∠2的度数,即可判断④.【详解】∵∠1+∠2=∠3+∠2=90︒,∴∠1=∠3,故①正确;∵230∠=,∴190260∠=-∠=∠E=60︒,∴∠1=∠E ,∴AC ∥DE ,故②正确;∵245∠=,∴345∠=,∵45B ∠=,∴∠3=∠B,∴//BC AD ,故③正确;∵4C ∠=∠45=,∴∠CFE=∠C 45=,∵∠CFE+∠E=∠C+∠1,∴∠1=∠E=60,∴∠2=90︒-∠1=30,故④正确,故选:D.【点睛】此题考查互余角的性质,平行线的判定及性质,熟练运用解题是关键.6.B解析:B【解析】试题分析:根据两平行线被第三条直线所截,同位角相等,故(1)不正确;同位角不一定相等,只有在两直线平行时,同位角相等,故(2)不正确;平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交,故(3)正确; 从直线外一点到这条直线的垂线段的长度,叫做该点到直线的距离,故(4)不正确;过直线外一点作已知直线的平行线,有且只有一条,故(5)不正确.故选B.7.D解析:D【解析】试题分析:如图,∵∠A=20°,∠A的两边分别和∠B的两边平行,∴∠B和∠A可能相等也可能互补,即∠B的度数是20°或160°,故选:D.8.A解析:A【分析】根据命题的定义对四句话进行判断.【详解】解:(1)两点之间,线段最短,它是命题;(2)如果两个角的和是90度,那么这两个角互余,它是命题;(3)请画出两条互相平行的直线,它不是命题;(4)一个锐角与一个钝角互补吗?,它不是命题.所以,是命题的为(1)(2),故选:A.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成如果…那么…形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.9.A解析:A【分析】根据平行线的性质、八个基本事实、平行线的判定等知识分别判断即可.【详解】解:同位角不一定相等,①是假命题;过直线外一点有且只有一条直线与已知直线平行,②是假命题;在同一平面内,过一点有且只有一条直线与已知直线垂直,③是假命题;如果同一平面内的三条直线只有两个交点,那么这三条直线中必有两条直线互相平行,④是真命题,故选:A.【点睛】本题考查了命题与定理、平行线的判定与性质、八个基本事实,熟记八个基本事实,会判断命题的真假是解答的关键.10.A解析:A【分析】分别分析各题设是否能推出结论,不能推出结论的既是假命题,从而得出答案.【详解】A.等腰三角形底边上的高所在的直线是它的对称轴,故该选项错误,是假命题,B.有两个角相等的三角形是等腰三角形,正确,是真命题,C.等腰三角形底边上的中线平分顶角,正确,是真命题,D.等边三角形的每一个内角都等于60°,正确,是真命题,故选:A.【点睛】本题考查了命题与定理,判断命题的真假,关键是分析各题设是否能推出结论.11.C解析:C【解析】试题分析:根据平行线的判定进行判断即可.解:A、若a∥b,b∥c,则a∥c,利用了平行公理,正确;B、若∠1=∠2,则a∥c,利用了内错角相等,两直线平行,正确;C、∠3=∠2,不能判断b∥c,错误;D、若∠3+∠5=180°,则a∥c,利用同旁内角互补,两直线平行,正确;故选C.考点:平行线的判定.12.B解析:B【分析】通过平行线的判定的相关知识点,并结合题中所示条件进行相应的分析,即可得出答案.【详解】A.∠1 ,∠2是互补角,相加为180°不能证明平行,故A错误.B.∠2=∠4,内错角相等,两直线平行,所以B正确.C. ∠2+∠3=180°,不能证明a∥b,故C错误.D.虽然∠1=∠3,但是不能证明a∥b;故D错误.故答案选:B.【点睛】本题考查的知识点是平行线的判定,解题的关键是熟练的掌握平行线的判定.二、填空题13.PB′⊥QC′ 15秒或63秒或135秒.【分析】(1)求出旋转30秒时,∠BPB′和∠CQC′的度数,过E作EF∥AB,根据平行线的性质求得∠PEF和∠QEF的度数,进而得结论;解析:PB′⊥QC′ 15秒或63秒或135秒.【分析】(1)求出旋转30秒时,∠BPB′和∠CQC′的度数,过E作EF∥AB,根据平行线的性质求得∠PEF和∠QEF的度数,进而得结论;(2)分三种情况:①当0s<t≤45时,②当45s<t≤67.5s时,③当67.5s<t<135s时,根据平行线的性质,得出角的关系,列出t的方程便可求得旋转时间.【详解】(1)如图1,当旋转时间30秒时,由已知得∠BPB′=4°×30=120°,∠CQC′=30°,过E作EF∥AB,则EF∥CD,∴∠PEF=180°﹣∠BPB′=60°,∠QEF=∠CQC′=30°,∴∠PEQ=90°,∴PB′⊥QC′,故答案为:PB′⊥QC′;(2)①当0s<t≤45时,如图2,则∠BPB′=4t°,∠CQC′=45°+t°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即4t=45+t,解得,t=15(s);②当45s<t≤67.5s时,如图3,则∠APB′=4t﹣180°,∠CQC'=t+45°,∵AB∥CD,PB′∥QC′,∴∠APB′=∠PED=180°﹣∠CQC′,即4t﹣180=180﹣(45+t),解得,t=63(s);③当67.5s<t<135s时,如图4,则∠BPB′=4t﹣360°,∠CQC′=t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即4t﹣360=t+45,解得,t=135(s);综上,当射线PB旋转的时间为15秒或63秒或135秒时,PB′∥QC′.故答案为:15秒或63秒或135秒.【点睛】本题主要考查了平行线的性质,第(1)题关键是作平行线,第(2)题关键是分情况讨论,运用方程思想解决几何问题.14.或【分析】由两个角的两边分别平行,画出图形可得这两个角相等或互补,依此列出方程,解方程即可得出结果.【详解】解:∵∠1比∠2的2倍少30°,∴∠1=2∠2-30°.根据∠1的两边与∠2的两解析:30或110【分析】由两个角的两边分别平行,画出图形可得这两个角相等或互补,依此列出方程,解方程即可得出结果.【详解】解:∵∠1比∠2的2倍少30°,∴∠1=2∠2-30°.根据∠1的两边与∠2的两边分别平行,分两种情况:如图①,根据平行可得,∠1=∠3,∠2=∠3,∴∠1=∠2,则2∠2-30°=∠2,解得∠2=30°,∴∠1=30°;如图②,根据平行可知,∠1=∠3,∠2+∠3=180°,∴∠1+∠2=180°,则2∠2-30°+∠2=180°,解得∠2=70°,∴∠1=110°.综上所述,∠1的度数为30°或110°.故答案为:30°或110°.【点睛】此题考查了平行线的性质.解题的关键是注意由两个角的两边分别平行,可得这两个角相等或互补,注意分类讨论思想的应用.15.【分析】条直线相交只有一个交点,条直线相交,交点数是,条直线相交,交点数是,即,可写出, 的解.【详解】解:求平面内不过同一点的条直线两两相交的交点个数,可由简入繁, 当2条直线相交时,交点解析:1n -【分析】2条直线相交只有一个交点,3条直线相交,交点数是12+,n 条直线相交,交点数是123(1)n ++++-,即1123(1)(1)2n a n n n =++++-=-,可写出2a , 1n n a a --的解.【详解】解:求平面内不过同一点的n 条直线两两相交的交点个数,可由简入繁,当2条直线相交时,交点数只有一个;当3条直线相交时,交点数为两条时的数量+第3条直线与前两条的交点2个,即交点数是12+;同理,可以推导当n 条直线相交时,交点数是123(1)n ++++-,即1123(1)(1)2n a n n n =++++-=-, 212(21)12a ∴=⨯⨯-=,111(1)(1)(2)122n n a a n n n n n -∴-=----=-, 本题的答案为:1,1n -.【点睛】本题考查了平面内直线两两相交交点数的计算,涉及到一种很重要的数学方法数学归纳法的初步应用接触,此方法在推导证明中比较常用.16.2n .【解析】如图①,过E 作EF ∥AB ,∵AB ∥CD ,∴AB ∥EF ∥CD ,∴∠B=∠1,∠C=∠2,∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE ;如图②,∵∠ABE 和∠解析:2n .【解析】如图①,过E 作EF ∥AB ,∵AB ∥CD ,∴AB ∥EF ∥CD ,∴∠B=∠1,∠C=∠2,∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE ;如图②,∵∠ABE 和∠DCE 的平分线交点为E 1,∴∠CE 1B=∠ABE 1+∠DCE 1=12∠ABE+12∠DCE=12∠BEC . ∵∠ABE 1和∠DCE 1的平分线交点为E 2,∴∠BE 2C=∠ABE 2+∠DCE 2=12∠ABE 1+12∠DCE 1=12∠CE 1B=14∠BEC ; 如图②,∵∠ABE 2和∠DCE 2的平分线,交点为E 3, ∴∠BE 3C=∠ABE 3+∠DCE 3=12∠ABE 2+12∠DCE 2=12∠CE 2B=18∠BEC ; …以此类推,∠E n =12n ∠BEC . ∴当∠E n =1度时,∠BEC 等于2n 度.故答案为2n .点睛:本题主要考查了角平分线的定义以及平行线性质:两直线平行,内错角相等的运用.解决问题的关键是作平行线构造内错角,解题时注意:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.17.平行 平行 垂直【解析】根据平行公理的推论,可由,得出a∥c;根据垂直的性质以及平行线的判定,可由,得到a∥c;根据,,得到a⊥c.故答案为平行,平行,垂直.点睛:由平解析:平行 平行 垂直【解析】根据平行公理的推论,可由//,//a b b c ,得出a ∥c ;根据垂直的性质以及平行线的判定,可由,a b b c ⊥⊥,得到a∥c;根据//a b ,b c ⊥,得到a⊥c.故答案为平行,平行,垂直.点睛:由平行于同一条直线的两条直线互相平行,可求解(1),因为在同一平面内,垂直于同一条直线的两条直线互相平行,可求解(2),再根据平行线的性质可求解(3).18.①③④【分析】根据平移的性质分别对各个小题进行判断:①利用平移前后对应线段是平行的即可得出结果;②平移距离指的是对应点之间的线段的长度;③根据平移前后对应线段相等即可得出结果;④利用梯形的面积公解析:①③④【分析】根据平移的性质分别对各个小题进行判断:①利用平移前后对应线段是平行的即可得出结果;②平移距离指的是对应点之间的线段的长度;③根据平移前后对应线段相等即可得出结果;④利用梯形的面积公式即可得出结果.【详解】解:∵直角三角形ABC沿斜边AC的方向平移到三角形DEF的位置,∴AB∥DE,∴∠ABC=∠DGC=90°,∴DE⊥BC,故①正确;△ABC平移距离应该是BE的长度,BE>4,故②错误;由平移前后的图形是全等可知:AC=DF,∴AC-DC=DF-DC,∴AD=CF,故③正确;∵△BEG的面积是4,BG=4,∴EG=4×2÷4=2,∵由平移知:BC=EF=12,∴CG=12-4=8,四边形GCFE的面积:(12+8)×2÷2=20,故④正确;故答案为:①③④【点睛】本题主要考查的是平移的性质,正确的掌握平移的性质是解题的关键.19.【解析】试题分析:如图:∵△ABC是等边三角形,∴∠ABC=60°,又∵直线l1∥l2∥l3,∠1=25°,∴∠1=∠3=25°.∴∠4=60°-25°=35°,∴∠2=∠4=35解析:035【解析】试题分析:如图:∵△ABC是等边三角形,∴∠ABC=60°,又∵直线l1∥l2∥l3,∠1=25°,∴∠1=∠3=25°.∴∠4=60°-25°=35°,∴∠2=∠4=35°.考点:1.平行线的性质;2.等边三角形的性质.20.65【分析】利用平行线的判定定理和性质定理,等量代换可得∠CBD=∠EBC,可得结果.【详解】∵∠1=50°,∴∠DBE=180°-∠1=180°-50°=130°,∵∠2=130°,解析:65【分析】利用平行线的判定定理和性质定理,等量代换可得∠CBD=∠EBC,可得结果.【详解】∵∠1=50°,∴∠DBE=180°-∠1=180°-50°=130°,∵∠2=130°,∴∠DBE=∠2,∴AE∥CF,∴∠4=∠ADF,∵∠3=∠4,∴∠EBC=∠4,∴AD∥BC,∵AD平分∠BDF,∴∠ADB=∠ADF,∵AD∥BC,∴∠ADB=∠CBD,∴∠4=∠CBD,∴∠CBD=∠EBC=12∠DBE=12×130°=65°.故答案为:65.【点睛】本题主要考查了平行线的判定定理和性质定理,角平分线的定义等,熟练掌握定理是解答此题的关键.三、解答题21.(1)110°;(2)∠APC=∠α+∠β,理由见解析;(3)∠CPA=∠α-∠β或∠CPA=∠β-∠α【分析】(1)过P作PE∥AB,通过平行线性质可得∠A+∠APE=180°,∠C+∠CPE=180°再代入∠PAB=130°,∠PCD=120°可求∠APC即可;(2)过P作PE∥AD交AC于E,推出AB∥PE∥DC,根据平行线的性质得出∠α=∠APE,∠β=∠CPE,即可得出答案;(3)分两种情况:P在BD延长线上;P在DB延长线上,分别画出图形,根据平行线的性质得出∠α=∠APE,∠β=∠CPE,即可得出答案.【详解】解:(1)过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=130°,∠PCD=120°,∴∠APE=50°,∠CPE=60°,∴∠APC=∠APE+∠CPE=110°.(2)∠APC=∠α+∠β,理由:如图2,过P作PE∥AB交AC于E,∵AB∥CD,∴AB∥PE∥CD,∴∠α=∠APE,∠β=∠CPE,∴∠APC=∠APE+∠CPE=∠α+∠β;(3)如图所示,当P在BD延长线上时,∠CPA=∠α-∠β;如图所示,当P在DB延长线上时,∠CPA=∠β-∠α.【点睛】本题主要考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,解题时注意分类思想的运用.22.(1)35︒;(2)123∠+∠=∠,理由见解析;(3)46︒;(4)当P 点在A 的上方时,321∠=∠-∠,当P 点在B 的下方时,312∠=∠-∠.【分析】(1)由题意直接根据平行线的性质和三角形内角和定理进行分析即可求解; (2)由题意过点P 作//PM AC ,进而利用平行线的性质进行分析证明即可;(3)根据题意过A 点作//AF BD ,则////A BD CE ,进而利用平行线的性质即可求解;(4)根据题意分当P 点在A 的上方与当P 点在B 的下方两种情况进行分类讨论即可.【详解】解:()1∵12l l //,∴∠1+∠PCD+∠PDC+∠2=180°,在△PCD 中,∠3+∠PCD+∠PDC=180°,∴∠3=∠1+∠2,则有∠2=∠3-∠1=35︒,故答案为:35︒;()2123∠+∠=∠理由如下:过点P 作//PM AC//AC BD////AC PM BD ∴12CPM DPM ∴∠=∠∠=∠,12CPM DPM CPD ∴∠+∠=∠+∠=∠()3过A 点作//AF BD ,则////A BD CE ,则BAC DBA ACE ∠∠+∠=,故答案为:46︒;()4当P 点在A 的上方时,如图 2,∴∠1=∠FPC .∵14//l l ,∴2//PF l ,∴∠2=∠FPD∵∠CPD=∠FPD-∠FPC∴∠CPD=∠2-∠1,即321∠=∠-∠.当P 点在B 的下方时,如图 3,∴∠2=∠GPD∵12l l //,∴1//PG l ,∴∠1=∠CPG∵∠CPD=∠CPG-∠GPD∴∠CPD=∠1-∠2,即312∠=∠-∠.【点睛】本题考查平行线的判定与性质,利用了等量代换的思想,熟练掌握平行线的判定与性质是解答本题的关键.23.(1)①∠BED=60º;②∠BED=12∠ABC+12∠ADC;(2)∠BED=180º-1 2∠ABC+12∠ADC,理由见解析.【分析】(1)①过点E作EF∥AB,然后说明AB∥CD∥EF,再运用平行线的性质、角平分线的性质和角的和差即可解答;②利用平行线的性质和角平分线的性质即可确定它们的关系.(2)过点E作EF∥AB,再运用平行线的性质、角平分线的定义和角的和差即可确定它们的关系.【详解】(1)①如图1,过点E作EF∥AB.∵AB∥CD∴AB∥CD∥EF∴∠ABE=∠BEF,∠EDC=∠DEF.∵BE平分∠ABC,DE平分∠ADC,∴∠ABC=50º,∠ADC=70º∴∠ABE=12∠ABC=150252⨯=°°,∠EDC=12∠ADC=170352⨯︒=︒,∴∠BEF=25º,∠DEF=35º,∴∠BED=∠BEF+∠DEF=25º+35º=60º;②∵AB∥CD∴AB∥CD∥EF∴∠ABE=∠BEF=12∠ABC,∠EDC=∠DEF=12∠ADC;.∴∠BED=∠BEF +∠DEF =12∠ABC+12∠ADC∴∠BED=12∠ABC+12∠ADC(2)如图2,过点E作EF∥AB.∵AB∥CD∴AB∥CD∥EF∴∠EDC=∠DEF,∵∠ABE+∠BEF=180º,∴∠BEF=180º-∠ABE.∵BE平分∠ABC,DE平分∠ADC,∴∠ABE=12∠ABC,∠DEF=12∠ADC,∴∠BED=∠BEF+∠DEF=180º-12∠ABC+12∠ADC.【点睛】本题考查了平行线的判定与性质,添加辅助线构造平行线并灵活利用平行线的性质是解答本题的关键.24.(1) 150°;(2) ∠OCD+∠BO'E=240°;(3) 30°+12 .【分析】(1)先求出到∠AOE的度数,再根据直角、周角的定义即可求解;(2)过O点作OF//CD,根据平行线的判定和性质可得∠OCD、∠BO'E的数量关系;(3)根据四边形内角和为360°,再结合(2)的结论以及角平分线的定义即可解答.【详解】解:(1)∵CD//OE,∴∠AOE=∠OCD=120°,∴∠BOE=360°-90°-120°=150°;(2)如图2,过O点作OF//CD,∴CD//OE,∴OF∥OE,∴∠AOF=180°-∠OCD,∠BOF=∠EO'O=180°-∠BO'E,∴∠AOB=∠AOF+∠BOF=180°-∠OCD+180°-∠BO'E=360°-(∠OCD+∠BO'E)=120°,∴∠OCD+∠BO'E=240°;(3)∵CP是∠OCD的平分线,∴∠OCP=12∠OCD,∴∠CPO'=360°-90°-120°-∠OCP=150°-12∠OCD =150°-12(240°-∠BO'E ) =30°+12α【点睛】本题考查了平行线的判定和性质、周角的定义、角平分线的定义,确定∠OCD 、∠B0'E 的数量关系是解答本题的关键.25.(1)详见解析;(2)118034∠+︒=∠+∠,详见解析;(3)230∠=︒【分析】(1)如下图,延长AC ,DE 相交于点G ,利用∠G 作为过渡角可证;(2)如下图,作//CP AB ,可得//CP DE ,推导得出118034∠+︒=∠+∠; (3)如下图,过Q 作1//AD l ∠,利用平行可得出70x y +=︒,再利用////QR AB DE 得到22110x y z +-=︒,从而得出z 的值.【详解】(1)延长,AC DE 相交于点G .∵//AB DE ,//AC DF∴1G ∠=∠,2G ∠=∠∴12∠=∠.(2)作//CP AB ,则//CP DE∵//CP AB ,//CP DE .∴1ACP ∠=∠,4180ECP ∠+∠=︒∴11804ACP ECP ∠+︒=∠+∠+∠即118034∠+︒=∠+∠.(3)过Q 作1//AD l ∠则5D ∠=.6y ∠=∵56110180∠+∠+︒=︒∴110180x y ++︒=︒即70x y +=︒旁证:过Q 作//QR AB ,则//QR DE .设DAQ x ∠=,APQ y ∠=,2z ∠=.则2BAQ x ∠=,2FDQ y ∠=,1z ∠=.∵////QR AB DE∴2AQR BAQ x ∠=∠=,2EDQ DQR y z ∠=∠=-.∴22110x y z +-=︒又∵70x y +=︒∴22140x y +=︒∵(2)(22)30x y x y z z +-+-==︒∴230∠=︒【点睛】本题考查角度的推导,第(3)问的解题关键是通过方程思想和整体思想,计算得出∠2的大小.26.(1)30°,60°;(2)∠CAF+∠EMC=90°,理由见解析【分析】(1)利用∠CAF=∠BAF-∠BAC 求出∠CAF 度数,求∠EMC 度数转化到∠MCH 度数; (2)过点C 作CH ∥GF ,得到CH ∥DE ,∠CAF 与∠EMC 转化到∠ACH 和∠MCH 中,从而发现∠CAF 、∠EMC 与∠ACB 的数量关系.【详解】(1)过点C 作CH ∥GF ,则有CH ∥DE ,所以∠CAF=∠HCA ,∠EMC=∠MCH ,∵∠BAF=90°,∴∠CAF=90°-60°=30°.∠MCH=90°-∠HCA=60°,∴∠EMC=60°.故答案为30°,60°.(2)∠CAF+∠EMC=90°,理由如下:过点C 作CH ∥GF ,则∠CAF=∠ACH .∵DE ∥GF ,CH ∥GF ,∴CH ∥DE .∴∠EMC=∠HCM .∴∠EMC+∠CAF=∠MCH+∠ACH=∠ACB=90°.【点睛】考查了平行线的判定和性质,解题关键是熟记并灵活运用其性质和判定.27.(1)∠ADP+∠BCP=∠DPC ,理由见解析;(2)∠ADP=∠DPC+∠BCP ,理由见解析【分析】(1)过P 作直线PQ ∥AD ,交CD 于点Q ,根据平行线的性质进行推理;(2)过P 作直线PQ ∥AD ,交CD 于点Q ,根据平行线的性质进行推理;【详解】解:(1)过P 作直线PQ ∥AD ,交CD 于点Q ,∵AD ∥BC ,∴PQ ∥AD ∥BC ,∴∠ADP=∠DPQ ,∠BCP=∠CPQ ,∴∠ADP+∠BCP=∠DPC ;(2)∠ADP=∠DPC+∠BCP .过P 作直线PQ ∥AD ,交CD 于点Q ,∵AD ∥BC ,∴PQ ∥AD ∥BC ,∴∠ADP=∠DPQ=∠DPC+∠CPQ ,∠BCP=∠CPQ ,∴∠ADP=∠DPC+∠BCP .【点睛】本题考查了平行线的性质,利用平行线的性质得出角的和差关系是解题的关键.28.(1)//EF CD ,证明见解析 (2)75° (3)2FEG NCE MAE +=∠∠∠,证明见解析【分析】(1)根据12∠=∠可得//MB EF ,根据角的和差关系和角平分线的性质可得80CEF NCE ==︒∠∠,从而得证//EF CD ;(2)根据12∠=∠可得//MB EF ,根据平行线的性质以及角平分线的性质可得18075NCE GEC FEG =︒--=︒∠∠∠;(3)根据12∠=∠可得//MB EF ,根据平行线的性质可得180AEG FEA FEG MAE FEG =+=︒-+∠∠∠∠∠,再根据角平分线的性质可得1802FEC MAE FEG =︒-+∠∠∠,再根据平行线的性质即可得2FEG NCE MAE +=∠∠∠.【详解】(1)//EF CD∵12∠=∠∴//MB EF∴50AEF MAE ==︒∠∠∴501565AEG AEF FEG =+=︒+︒=︒∠∠∠∵EG 平分∠AEC∴65CEG AEG ==︒∠∠∴651580CEF CEG FEG =+=︒+︒=︒∠∠∠∴80CEF NCE ==︒∠∠∴//EF CD ;(2)∵12∠=∠∴//MB EF∵∠MAE =135°∴18045AEF MAE =︒-=︒∠∠∵∠FEG =30°∴75AEG AEF FEG =+=︒∠∠∠∵EG 平分∠AEC∴75GEC =︒∠∵//AB CD∴18075NCE GEC FEG =︒--=︒∠∠∠;(3)2FEG NCE MAE +=∠∠∠∵12∠=∠∴//MB EF∴180MAE FEA +=︒∠∠∴180FEA MAE =︒-∠∠∴180AEG FEA FEG MAE FEG =+=︒-+∠∠∠∠∠∵EG 平分∠AEC∴GEC AEG =∠∠∴FEC GEC FEG =+∠∠∠∴180FEC MAE FEG FEG =︒-++∠∠∠∠∴1802FEC MAE FEG =︒-+∠∠∠∵//,//AB CD AB EF∴//EF CD∴180FEC NCE +=︒∠∠∴1802180MAE FEG NCE ︒-++=︒∠∠∠∴2FEG NCE MAE +=∠∠∠.【点睛】本题考查了平行线的综合问题,掌握平行线的性质以及判定定理、角平分线的性质、角的和差关系是解题的关键.。

人教版七年级数学下册单元检测(含答案) :第5章《相交线与平行线》含答案

人教版七年级数学下册单元检测(含答案) :第5章《相交线与平行线》含答案

人教版数学七年级下册单元检测试卷第 5 章《相交线与平行线》班级:姓名:成绩:题号一二三四五六七八总分得分一.单项选择题。

(本大题共10 小题,每小题4 分,共40 分。

每小题只有一个正确答案,请将正确的答案的序号填入括号中。

)1.如图所示的图案分别是奔驰、宝马、大众、奥迪汽车的车标,其中,可以看作由“基本图案”经过平移得到的是()A.B.C.D.2.在“同一平面”条件下,下列说法中错误的个数是()(1)过一点有且只有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)平移只改变图形的位置,不改变图形的形状和大小;(4)有公共顶点且有一条公共边的两个角互为邻补角;(5)连接直线外一点与直线上各点的所有线段中,垂线段最短。

A.1 个B.2 个C.3 个D.4 个3.如图,若AB,CD 相交于点O,且AB⊥OE,则下列结论不正确的是()A.∠EOC 与∠BOC 互为余角B.∠EOC 与∠AOD 互为余角C.∠AOE 与∠EOC 互为补角D.∠AOE 与∠EOB 互为补角第3 题图第4 题图第5 题图4.下列说法错误的是()A.∠1 与∠A 是同旁内角B.∠3 与∠A 是同位角C.∠2 与∠3 是同位角D.∠3 与∠B 是内错角5.新农村建设中一项重要工程是“村村通自来水”,如图是某一段自来水管道,若经过每次拐弯后,管道保持平行(即AB∥CD∥EF,BC∥DE).若∠B=70°,则∠E 的度数为( )A.70°B.110°C.120°D.130°6.如图,直线AB、CD 相交于点O,OE 平分∠BOD,OF 平分∠COE,∠AOD:∠BOE=4:1,则∠AOF 的度数为()A.135°B.130°C.125°D.120°7.如图,直线m∥n,AB⊥BC,∠1=35°,∠2=62°,则∠BCD 的度数为()A.97°B.117°C.125°D.152°8.如图,AB⊥BD 于点B,BC⊥CD 于点C,已知AD=7,CD=4,则BD 的长可能为( )A.5 B.7 C.8 D.12第6 题图第7 题图第8 题图9.将一副三角板按如图放置,则下列结论①∠BAE+∠CAD=180°;②如果∠2=30°则有AC∥DE;③如果∠2=30°,则有BC∥AD;④如果∠2=30°,必有∠4=∠C,其中正确的有()A.①②③B.①②④C.③④D.①②③④第9 题图第10 题图第11 题图10.甲乙丙丁四位同学在在一起研究一道数学题.如图,已知EF⊥AB,CD⊥AB,甲说:“如果还知道∠CDG=∠BFE,则能得到∠AGD=∠ACB。

人教版七年级下册《第五章相交线与平行线》单元检测题(含答案)

人教版七年级下册《第五章相交线与平行线》单元检测题(含答案)

相交线与平行线检测题一.选择题(共10小题)1.如图,∠1=65°,CD∥EB,则∠B的度数为()A.115°B.110°C.105°D.65°2.下列说法正确的有()①两点之间的所有连线中,线段最短;②相等的角是对顶角;③过直线外一点有且仅有一条直线与已知直线平行;④两点之间的距离是两点间的线段;⑤如果一个角的两边与另一个角的两边垂直,那么这两个角相等.A.1个B.2个C.3个D.4个3.能判定直线a∥b的条件是()A.∠1=58°,∠3=59°B.∠2=118°,∠3=59°C.∠2=118°,∠4=119°D.∠1=61°,∠4=119°4.下列命题中真命题是()A.若a2=b2,则a=bB.4的平方根是±2C.两个锐角之和一定是钝角D.相等的两个角是对顶角5.如图,测量运动员跳远成绩选取的是AB的长度,其依据是()A.两点确定一条直线B.两点之间直线最短C.两点之间线段最短D.垂线段最短6.如果一个角的两边与另一个角的两边互相垂直,那么这两个角的关系为()A.互补B.相等C.相等或互余D.相等或互补7.如图,下列条件中,能判断AB∥CD的是()A.∠FEC=∠EFB B.∠BFC+∠C=180°C.∠BEF=∠EFC D.∠C=∠BFD8.如图,下列条件中,能判断直线a∥b的有()个.①∠1=∠4;②∠3=∠5;③∠2+∠5=180°;④∠2+∠4=180°A.1B.2C.3D.49.下列命题中是假命题的有()A.一组邻边相等的平行四边形是菱形B.对角线互相垂直的四边形是矩形C.一组邻边相等的矩形是正方形D.一组对边平行且相等的四边形是平行四边形10.下列命题中,正确的是()A.两个直角三角形一定相似B.两个矩形一定相似C.两个等边三角形一定相似D.两个菱形一定相似二.填空题(共10小题)11.如图,△ABC的面积为10,BC=4,现将△ABC沿着射线BC平移a个单位(a>0),得到新的△A'B'C',则△ABC所扫过的面积为.12.如图,把△ABC沿着BC的方向平移到△DEF的位置,它们要登部分的面积是△ABC 面积的一半,若BC=3,则△ABC移动的距离是.13.将一张长方形纸片按图中方式折叠,若∠2=65°,则∠1的度数为.14.如图,若∠l=∠D,∠C=72°,则∠B=.15.如图,∠A=70°,O是AB上一点,直线OD与AB所夹的∠AOD=100°,要使OD ∥AC,直线OD绕点O按逆时针方向至少旋转.16.如图是一块四边形木板和一把曲尺(直角尺),把曲尺一边紧靠木板边缘PQ,画直线AB,与PQ,MN分别交于点A,B;再把曲尺的一边紧靠木板的边缘MN,移动使曲尺另一边过点B画直线,若所画直线与BA重合,则这块木板的对边MN与PQ是平行的,其理论依据是.17.点P是直线l外一点,点A,B,C,D是直线l上的点,连接P A,PB,PC,PD.其中只有P A与l垂直,若P A=7,PB=8,PC=10,PD=14,则点P到直线l的距离是.18.如图,直线AB、CD相交于点O.若∠1+∠2=100°,则∠BOC的大小为度.19.如图是一种测量角的仪器,它依据的原理是.20.直线AB与射线OC相交于点O,OC⊥OD于O,若∠AOC=60°,则∠BOD=度.三.解答题(共10小题)21.直线AB、CD相交于点O,OE平分∠BOD.OF⊥CD,垂足为O,若∠EOF=54°.(1)求∠AOC的度数;(2)作射线OG⊥OE,试求出∠AOG的度数.22.已知直线CD⊥AB于点O,∠EOF=90°,射线OP平分∠COF.(1)如图1,∠EOF在直线CD的右侧:①若∠COE=30°,求∠BOF和∠POE的度数;②请判断∠POE与∠BOP之间存在怎样的数量关系?并说明理由.(2)如图2,∠EOF在直线CD的左侧,且点E在点F的下方:①请直接写出∠POE与∠BOP之间的数量关系;②请直接写出∠POE与∠DOP之间的数量关系.23.如图,已知直线AB,CD,EF相交于点O,∠2=2∠1,∠3=3∠2,求∠DOE的度数.24.已知如图,直线AB、CD相交于点O,∠COE=90°.(1)若∠AOC=36°,求∠BOE的度数;(2)若∠BOD:∠BOC=1:5,求∠AOE的度数;(3)在(2)的条件下,过点O作OF⊥AB,请直接写出∠EOF的度数.25.如图,直线AB 、CD 相交于点O .已知∠BOD =75°,OE 把∠AOC 分成两个角,且∠AOE :∠EOC =2:3. (1)求∠AOE 的度数;(2)若OF 平分∠BOE ,问:OB 是∠DOF 的平分线吗?试说明理由.26.如图,直线AB 、CD 相交于点O ,∠BOM =90°,∠DON =90° (1)若∠COM =∠AOC ,求∠AOD 的度数; (2)若∠COM =14∠BOC ,求∠BOD .27.如图,直线AB 、CD 相交于点O ,∠DOE =∠BOD ,OF 平分∠AOE .(1)判断OF与OD的位置关系,并说明理由;(2)若∠AOC:∠AOD=1:5,求∠EOF的度数.28.作图并写出结论:如图,点P是∠AOB的边OA上一点,请过点P画出OA,OB的垂线,分别交BO的延长线于M、N,线段的长表示点P到直线BO的距离;线段的长表示点M 到直线AO的距离;线段ON的长表示点O到直线的距离;点P到直线OA的距离为.29.如图所示,直线AB、CD、EF相交于点O,且AB⊥CD,OG平分∠AOE,若∠DOF =50°,求∠AOG的度数.30.如图所示,直线AB 、CD 相交于点O ,OM ⊥AB . (1)若∠1=∠2,判断ON 与CD 的位置关系,并说明理由; (2)若∠1=14∠BOC ,求∠MOD 的度数.参考答案一.选择题(共10小题)1.如图,∠1=65°,CD ∥EB ,则∠B 的度数为( )A .115°B .110°C .105°D .65°【分析】根据对顶角相等求出∠2=65°,然后跟据CD ∥EB ,判断出∠B =115°. 【解答】解:如图,∵∠1=65°, ∴∠2=65°, ∵CD ∥EB ,∴∠B=180°﹣65°=115°,故选:A.【点评】本题考查了平行线的性质,知道“两直线平行,同旁内角互补”是解题的关键.2.下列说法正确的有()①两点之间的所有连线中,线段最短;②相等的角是对顶角;③过直线外一点有且仅有一条直线与已知直线平行;④两点之间的距离是两点间的线段;⑤如果一个角的两边与另一个角的两边垂直,那么这两个角相等.A.1个B.2个C.3个D.4个【分析】依据线段的性质、平行公理、两点间的距离以及垂线的定义,即可得到正确结论.【解答】解:①两点之间的所有连线中,线段最短,正确;②相等的角不一定是对顶角,错误;③过直线外一点有且仅有一条直线与已知直线平行,正确;④两点之间的距离是两点间的线段的长度,错误;⑤如果一个角的两边与另一个角的两边垂直,那么这两个角相等或互补,错误.故选:B.【点评】本题主要考查了线段的性质、平行公理、两点间的距离以及垂线的定义,解题时注意:平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度.3.能判定直线a∥b的条件是()A.∠1=58°,∠3=59°B.∠2=118°,∠3=59°C.∠2=118°,∠4=119°D.∠1=61°,∠4=119°【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;依据平行线的判定方法得出结论.【解答】解:A.由∠1=58°,∠3=59°,不能判定直线a∥b;B.由∠2=118°,∠3=59°,不能判定直线a∥b;C.由∠2=118°,∠4=119°,不能判定直线a∥b;D.由∠1=61°,∠4=119°,可得∠3=∠1=61°,能判定直线a∥b;故选:D.【点评】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.4.下列命题中真命题是()A.若a2=b2,则a=bB.4的平方根是±2C.两个锐角之和一定是钝角[来源:]D.相等的两个角是对顶角【分析】利用平方根的定义对A、B进行判断;利用反例对C进行判断;根据对顶角的定义对D进行判断.【解答】解:A、若a2=b2,则a=b或a=﹣b,所以A选项错误;B、4的平方根是±2,所以B选项正确;C、两个锐角之和不一定是钝角,若30°与60°的和为直角;所以C选项错误;D、相等的两个角不一定为对顶角,所以D选项错误.故选:B.【点评】本题考查了命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.5.如图,测量运动员跳远成绩选取的是AB的长度,其依据是()[来源:Z|xx|]A.两点确定一条直线B.两点之间直线最短C.两点之间线段最短D.垂线段最短【分析】利用垂线段最短求解.【解答】解:该运动员跳远成绩的依据是:垂线段最短;故选:D.【点评】本题考查了垂线段:从直线外一点引一条直线的垂线,这点和垂足之间的线段叫做垂线段.垂线段的性质:垂线段最短.6.如果一个角的两边与另一个角的两边互相垂直,那么这两个角的关系为()A.互补B.相等C.相等或互余D.相等或互补【分析】此题可以通过两个图形得出这两个角的关系相等或互补.【解答】解:图1中,根据垂直的关系可知相等的角都等于90°,对顶角相等,所以∠1=∠2,图2中,同样根据垂直的关系可知相等的角都等于90°,根据四边形的内角和等于360°,所以∠1+∠2=360°﹣90°﹣90°=180°.所以如果一个角的两边与另一个角的两边互相垂直,那么这两个角的关系为相等或互补,故选:D.【点评】此题考查的知识点是垂直,关键明确四边形的内角和等于360°,三角形的内角和等于180°,对顶角相等的性质,对图形准确分析利用是解题的关键.7.如图,下列条件中,能判断AB∥CD的是()A.∠FEC=∠EFB B.∠BFC+∠C=180°C.∠BEF=∠EFC D.∠C=∠BFD【分析】根据平行线的判定定理对各选项进行逐一判断即可.【解答】解:A.由∠FEC=∠EFB,可得CE∥BF,故本选项错误;B.由∠BFC+∠C=180°,可得CE∥BF,故本选项错误;C.由∠BEF=∠EFC,可得AB∥CD,故本选项正确;D.由∠C=∠BFD,可得CE∥BF,故本选项错误;故选:C.【点评】本题考查的是平行线的判定,解题时注意:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.8.如图,下列条件中,能判断直线a∥b的有()个.①∠1=∠4;②∠3=∠5;③∠2+∠5=180°;④∠2+∠4=180°A.1B.2C.3D.4【分析】根据平行线的判定方法,对各选项分析判断后利用排除法求解.【解答】解:∵∠1=∠4,∴a∥b;∵∠3=∠5,∴a∥b,∵∠2+∠5=180°,∴a∥b,[来源:学|科|网]∴能判断直线a∥b的有3个,故选:C.【点评】本题考查了平行线的判定,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行,解题时要认准各角的位置关系.9.下列命题中是假命题的有()A.一组邻边相等的平行四边形是菱形B.对角线互相垂直的四边形是矩形C.一组邻边相等的矩形是正方形D.一组对边平行且相等的四边形是平行四边形【分析】利用菱形的判定定理、矩形的判定定理、平行四边形的判定定理及正方形的判定方法分别判断后即可确定正确的选项.【解答】解:A、一组邻边相等的平行四边形是菱形,正确,是真命题;B、对角线相等的平行四边形是矩形,故错误,是假命题;C、一组邻边相等的矩形是正方形,正确,是真命题;D、一组对边平行且相等的四边形是平行四边形,正确,是真命题,故选:B.【点评】本题考查了命题与定理的知识,解题的关键是了解菱形的判定定理、矩形的判定定理、平行四边形的判定定理及正方形的判定方法,难度不大.10.下列命题中,正确的是()A.两个直角三角形一定相似B.两个矩形一定相似C.两个等边三角形一定相似D.两个菱形一定相似【分析】根据相似三角形的判定方法对A、C进行判断;利用反例可对B、D进行判断.【解答】解:两个直角三角形不一定相似,两个矩形不一定相似,两个菱形不一定相似,而两个等边三角形一定相似.故选:C.【点评】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.二.填空题(共10小题)11.如图,△ABC 的面积为10,BC =4,现将△ABC 沿着射线BC 平移a 个单位(a >0),得到新的△A 'B 'C ',则△ABC 所扫过的面积为 10+5a .【分析】要求△ABC 所扫过的面积,即求梯形ABC ′A ′的面积,根据题意,可得AD =a ,BC ′=4+a ,所以重点是求该梯形的高,根据直角三角形的面积公式即可求解;【解答】解:△ABC 所扫过面积即梯形ABC ′A ′的面积,作AH ⊥BC 于H ,∴S △ABC =10,12BC •AH =10,AH =5, ∴S 梯形ABFD =12×(AA ′+BC ′)×AH =12(a +4+a )×5 =10+5a ;故答案为:10+5a .【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.12.如图,把△ABC 沿着BC 的方向平移到△DEF 的位置,它们要登部分的面积是△ABC 面积的一半,若BC =3,则△ABC 移动的距离是 3﹣62.【分析】移动的距离可以视为BE或CF的长度,根据题意可知△ABC与阴影部分为相似三角形,且面积比为2:1,所以EC:BC=1:2,推出EC的长,利用线段的差求BE的长.【解答】解:∵△ABC沿BC边平移到△DEF的位置,∴AB∥DE,∴△ABC∽△HEC,∴EC:BC=1:2,∵BC=3,∴EC=6 2,∴BE=BC﹣EC=3﹣6 2.故答案为:3﹣6 2.【点评】本题主要考查相似三角形的判定和性质、平移的性质,关键在于证△ABC与阴影部分为相似三角形.13.将一张长方形纸片按图中方式折叠,若∠2=65°,则∠1的度数为50°.【分析】由平行线的性质以及折叠的性质,可得∠2=∠BDE=65°,再根据三角形内角和定理以及对顶角的性质,即可得到∠1的度数.【解答】解:如图,延长CD至G,∵AB∥CD,∴∠2=∠BDG=65°,由折叠可得,∠BDE=∠BDG=65°,∴△BDE中,∠BED=180°﹣65°×2=50°,∴∠1=∠BED=50°,故答案为:50°.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.14.如图,若∠l=∠D,∠C=72°,则∠B=108°.【分析】先依据∠l=∠D,判定AB∥CD,再根据平行线的性质,即可得到∠B的度数.【解答】解:∵∠l=∠D,∴AB∥CD,∴∠B+∠C=180°,又∵∠C=72°,∴∠B=108°,故答案为:108°.【点评】本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.15.如图,∠A=70°,O是AB上一点,直线OD与AB所夹的∠AOD=100°,要使OD ∥AC,直线OD绕点O按逆时针方向至少旋转10°.【分析】根据平行线的性质,求得∠AOD′的度数,即可确定旋转的角度,即∠DOD′的大小.【解答】解:∵OD′∥AC,∴∠AOD′=180°﹣∠A=110°,∴∠DOD′=∠AOD′﹣∠AOD=110°﹣100°=10°.故答案为:10°.【点评】考查了平行线的判定,在旋转变换中,正确认识旋转角是解题关键,同时本题运用了平行线的性质,两直线平行,同旁内角互补.16.如图是一块四边形木板和一把曲尺(直角尺),把曲尺一边紧靠木板边缘PQ,画直线AB,与PQ,MN分别交于点A,B;再把曲尺的一边紧靠木板的边缘MN,移动使曲尺另一边过点B画直线,若所画直线与BA重合,则这块木板的对边MN与PQ是平行的,其理论依据是内错角相等,两条直线平行.【分析】依据∠ABM=90°,∠BAQ=90°,即可得到∠MAB=∠QAB,进而得出MN∥PQ.【解答】解:∵∠ABM=90°,∠BAQ=90°,∴∠MAB=∠QAB,∴MN∥PQ(内错角相等,两条直线平行),故答案为:内错角相等,两条直线平行.【点评】本题考查了平行线的判定;熟记内错角相等,两直线平行是解决问题的关键.17.点P是直线l外一点,点A,B,C,D是直线l上的点,连接P A,PB,PC,PD.其中只有P A与l垂直,若P A=7,PB=8,PC=10,PD=14,则点P到直线l的距离是7.【分析】根据“直线外一点到直线上各点的所有线中,垂线段最短”进行解答.【解答】解:∵直线外一点与直线上各点连接的所有线段中,垂线段最短,∴点P到直线l的距离=P A,即点P到直线l的距离=7,故答案为:7.【点评】本题主要考查了垂线段最短的性质,熟记性质是解题的关键.18.如图,直线AB、CD相交于点O.若∠1+∠2=100°,则∠BOC的大小为130度.【分析】两直线相交,对顶角相等,即∠1=∠2,已知∠1+∠2=100°,可求∠1;又∠1与∠BOC互为邻补角,即∠1+∠BOC=180°,将∠1的度数代入,可求∠BOC.【解答】解:∵∠1与∠2是对顶角,∴∠1=∠2,又∵∠1+∠2=100°,∴∠1=50°.∵∠1与∠BOC互为邻补角,∴∠BOC=180°﹣∠1=180°﹣50°=130°.故答案为:130.【点评】本题考查对顶角的性质以及邻补角的定义,是一个需要熟记的内容.19.如图是一种测量角的仪器,它依据的原理是对顶角相等.【分析】根据对顶角相等的性质解答.【解答】解:测量角的仪器依据的原理是:对顶角相等.故答案为:对顶角相等.【点评】本题考查了对顶角相等的性质,是基础题,熟记性质是解题的关键.20.直线AB与射线OC相交于点O,OC⊥OD于O,若∠AOC=60°,则∠BOD=30或150度.【分析】根据题意画出图形,由OC⊥OD,∠AOC=60°,利用垂直的定义易得∠AOD,再利用补角的定义可得结果.【解答】解:根据题意画图如下,情况一:如图1,∵OC⊥OD,∠AOC=60°,∴∠AOD=∠COD﹣∠AOC=90﹣60°=30°,∴∠COD=180°﹣∠AOD=180°﹣30°=150°;情况二:如图2,∵OC⊥OD,∠AOC=60°,∴∠AOD=∠COD+∠AOC=90°+60°=150°,∴∠COD=180°﹣∠AOD=180°﹣150°=30°,故答案为:150或30.【点评】此题考查了角的计算,关键是根据题意画出图形,要注意分两种情况画图.三.解答题(共10小题)21.直线AB、CD相交于点O,OE平分∠BOD.OF⊥CD,垂足为O,若∠EOF=54°.(1)求∠AOC的度数;(2)作射线OG⊥OE,试求出∠AOG的度数.【分析】(1)依据垂线的定义,即可得到∠DOE的度数,再根据角平分线的定义,即可得到∠BOD的度数,进而得出结论;(2)分两种情况讨论,依据垂线的定义以及角平分线的定义,即可得到∠AOG的度数.【解答】解:(1)∵OF⊥CD,∠EOF=54°,∴∠DOE=90°﹣54°=36°,又∵OE平分∠BOD,∴∠BOD=2∠DOE=72°,∴∠AOC=72°;(2)如图,若OG在∠AOD内部,则由(1)可得,∠BOE=∠DOE=36°,又∵∠GOE=90°,∴∠AOG=180°﹣90°﹣36°=54°;如图,若OG在∠COF内部,则由(1)可得,∠BOE=∠DOE=36°,∴∠AOE=180°﹣36°=144°,又∵∠GOE=90°,∴∠AOG=360°﹣90°﹣144°=126°.综上所述,∠AOG的度数为54°或126°.【点评】本题主要考查了角平分线的定义以及对顶角的性质,从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.22.已知直线CD⊥AB于点O,∠EOF=90°,射线OP平分∠COF.(1)如图1,∠EOF在直线CD的右侧:①若∠COE=30°,求∠BOF和∠POE的度数;②请判断∠POE与∠BOP之间存在怎样的数量关系?并说明理由.(2)如图2,∠EOF在直线CD的左侧,且点E在点F的下方:①请直接写出∠POE与∠BOP之间的数量关系;②请直接写出∠POE与∠DOP之间的数量关系.【分析】(1)①根据余角的性质得到∠BOF=∠COE=30°,求得∠COF=90°+30°=120°,根据角平分线的定义即可得到结论;②根据余角的性质得到∠BOF=∠COE=30°,求得∠COF=90°+30°=120°,根据角平分线的定义即可得到结论;(2)①根据角平分线的定义得到∠COP=∠POF,求得∠POE=90°+∠POF,∠BOP=90°+∠COP,于是得到∠POE=∠BOP;②根据周角的定义即可得到结论.【解答】解:(1)①∵CD⊥AB,∴∠COB=90°,∵∠EOF=90°,∴∠COE+∠BOE=∠BOE+∠BOF=90°,∴∠BOF=∠COE=30°,∴∠COF=90°+30°=120°,∵OP平分∠COF,∴∠COP=∠COF=60°,∴∠POE=∠COP﹣∠COE=30°;②CD⊥AB,∴∠COB=90°,∵∠EOF=90°,∴∠COE+∠BOE=∠BOE+∠BOF=90°,∴∠BOF=∠COE,∵OP平分∠COF,∴∠COP=∠POF,∴∠POE=∠COP﹣∠COE,∠BOP=∠POF﹣∠BOF,∴∠POE=∠BOP;(2)①∵∠EOF=∠BOC=90°,∵PO平分∠COF,∴∠COP=∠POF,∴∠POE=90°+∠POF,∠BOP=90°+∠COP,∴∠POE=∠BOP;②∵∠POE=∠BOP,∠DOP+∠BOP=270°,∴∠POE+∠DOP=270°.【点评】本题考查了垂线,角平分线定义,角的和差,正确的识别图形是解题的关键.23.如图,已知直线AB,CD,EF相交于点O,∠2=2∠1,∠3=3∠2,求∠DOE的度数.【分析】直接利用已知结合邻补角的定义分析得出答案.【解答】解:∵∠2=2∠1,∴∠1=1/2∠2,∵∠3=3∠2,∴∠1+∠2+∠3=1/2∠2+∠2+3∠2=180°,解得:∠2=40°,∴∠3=3∠2=120°,∴∠DOE=∠3=120°.【点评】此题主要考查了邻补角,正确得出各角之间的关系是解题关键.24.已知如图,直线AB、CD相交于点O,∠COE=90°.(1)若∠AOC=36°,求∠BOE的度数;(2)若∠BOD:∠BOC=1:5,求∠AOE的度数;(3)在(2)的条件下,过点O作OF⊥AB,请直接写出∠EOF的度数.【分析】(1)根据平角的定义求解即可;(2)根据平角的定义可求∠BOD,根据对顶角的定义可求∠AOC,根据角的和差关系可求∠AOE的度数;(3)先过点O作OF⊥AB,再分两种情况根据角的和差关系可求∠EOF的度数.【解答】解:(1)∵∠AOC=36°,∠COE=90°,∴∠BOE=180°﹣∠AOC﹣∠COE=54°;(2)∵∠BOD:∠BOC=1:5,∴∠BOD=180°×1/6=30°,∴∠AOC=30°,∴∠AOE=30°+90°=120°;(3)如图1,∠EOF=120°﹣90°=30°,或如图2,∠EOF=360°﹣120°﹣90°=150°.故∠EOF的度数是30°或150°.【点评】本题主要考查了角的计算,涉及到的角有平角、直角;熟练掌握平角等于180度,直角等于90度,是解答本题的关键.25.如图,直线AB、CD相交于点O.已知∠BOD=75°,OE把∠AOC分成两个角,且∠AOE:∠EOC=2:3.(1)求∠AOE的度数;(2)若OF平分∠BOE,问:OB是∠DOF的平分线吗?试说明理由.【分析】(1)根据对顶角相等求出∠BAOC的度数,设∠AOE=2x,根据题意列出方程,解方程即可;(2)根据角平分线的定义求出∠BOF的度数即可.【解答】解:(1)∵∠AOE:∠EOC=2:3.∴设∠AOE=2x,则∠EOC=3x,∴∠AOC=5x,∵∠AOC=∠BOD=75°,∴5x=75°,解得:x=15°,则2x=30°,∴∠AOE=30°;(2)OB是∠DOF的平分线;理由如下:∵∠AOE=30°,∴∠BOE=180°﹣∠AOE=150°,∵OF平分∠BOE,∴∠BOF=75°,∵∠BOD=75°,∴∠BOD=∠BOF,∴OB是∠COF的角平分线.【点评】本题考查的是对顶角、邻补角的概念和性质、角平分线的定义,掌握对顶角相等、邻补角之和等于180°是解题的关键.26.如图,直线AB、CD相交于点O,∠BOM=90°,∠DON=90°(1)若∠COM=∠AOC,求∠AOD的度数;(2)若∠COM=1/4∠BOC,求∠BOD.【分析】(1)利用邻补角的定义结合已知角度得出答案;(2)利用∠COM=1/4∠BOC,得出∩AOC的度数即可得出答案.【解答】解:(1)∵∠COM=∠AOC,∴∠AOC=1/2∠AOM,∵∠BOM=90°,∴∠AOM=90°,∴∠AOC=45°,∴∠AOD=180°﹣45°=135°;(2)设∠COM=x°,则∠BOC=4x°,∴∠BOM=3x°,∵∠BOM=90°,∴3x=90,即x=30,∴∠AOC=60°,∴∠BOD=60°.【点评】此题主要考查了角平分线的定义以及邻补角的定义,正确得出各角之间关系是解题关键.27.如图,直线AB、CD相交于点O,∠DOE=∠BOD,OF平分∠AOE.(1)判断OF与OD的位置关系,并说明理由;(2)若∠AOC:∠AOD=1:5,求∠EOF的度数.【分析】(1)直接利用角平分线的定义以及结合邻补角的定义得出答案;(2)结合已知得出∠AOC的度数,再利用角平分线的定义得出答案.【解答】解:(1)OF与OD的位置关系:互相垂直,理由:∵OF平分∠AOE,∴∠AOF=∠FOE,∵∠DOE=∠BOD,∴∠AOF+∠BOD=∠FOE+∠DOE=1/2×180°=90°,∴OF与OD的位置关系:互相垂直;(2)∵∠AOC:∠AOD=1:5,∴∠AOC=1/6×180°=30°,∴∠BOD=∠EOD=30°,∴∠AOE=120°,∴∠EOF=1/2∠AOE=60°.【点评】此题主要考查了角平分线的定义以及邻补角的定义,正确得出各角之间关系是解题关键.28.作图并写出结论:如图,点P是∠AOB的边OA上一点,请过点P画出OA,OB的垂线,分别交BO的延长线于M、N,线段PN的长表示点P到直线BO的距离;线段PM的长表示点M到直线AO的距离;线段ON的长表示点O到直线PN的距离;点P到直线OA的距离为0.【分析】先根据题意画出图形,再根据点到直线的距离的定义得出即可.【解答】解:如图所示:线段PN的长表示点P到直线BO的距离;线段PM的长表示点M到直线AO的距离;线段ON的长表示点O到直线PN的距离;点P到直线OA的距离为0,故答案为:PN,PM,PN,0.【点评】本题考查了点到直线的距离,能熟记点到直线的距离的定义是解此题的关键.29.如图所示,直线AB、CD、EF相交于点O,且AB⊥CD,OG平分∠AOE,若∠DOF =50°,求∠AOG的度数.【分析】先根据∠DOF=50°,AB⊥CD,得到∠AOF的度数,进而得出∠AOE的度数,再根据OG平分∠AOE,即可得到∠AOG=1/2∠AOE.【解答】解:∵∠DOF=50°,AB⊥CD,∴∠AOF=90°﹣50°=40°,∴∠AOE=180°﹣40°=140°,∵OG平分∠AOE,∴∠AOG=1/2∠AOE=1/2×140°=70°.【点评】本题主要考查了垂线,角平分线的定义以及邻补角的运用,解题时注意:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.30.如图所示,直线AB、CD相交于点O,OM⊥AB.(1)若∠1=∠2,判断ON与CD的位置关系,并说明理由;(2)若∠1=1/4∠BOC,求∠MOD的度数.【分析】(1)根据垂直定义可得∠AOM=90°,进而可得∠1+∠AOC=90°,再利用等量代换可得到∠2+∠AOC=90°,从而可得ON⊥CD;(2)根据垂直定义和条件可得∠1=30°,∠BOC=120°,再根据邻补角定义可得∠MOD 的度数.【解答】解:(1)ON⊥CD.理由如下:∵OM⊥AB,∴∠AOM=90°,∴∠1+∠AOC=90°,又∵∠1=∠2,∴∠2+∠AOC=90°,即∠CON=90°,∴ON⊥CD.(2)∵OM⊥AB,∠1=1/4∠BOC,∴∠1=30°,∠BOC=120°,又∵∠1+∠MOD=180°,∴∠MOD=180°﹣∠1=150°.【点评】此题主要垂直定义,关键是掌握垂线的定义当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线.。

第五单元《相交线与平行线》单元测试卷(较易)(含答案)

第五单元《相交线与平行线》单元测试卷(较易)(含答案)

人教版初中数学七年级下册第五单元《相交线与平行线》单元测试卷(较易)(含答案解析)考试范围:第五单元;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36分。

在每小题列出的选项中,选出符合题目的一项)1. 下列图形中线段PQ的长度表示点P到直线a的距离的是( )A. B. C. D.2. 如图,在线段PA、PB、PC、PD中,长度最小的是( )A. 线段PAB. 线段PBC. 线段PCD. 线段PD3. 如图所示,已知∠1=∠2,要使∠3=∠4,只要( )A.∠1=∠3B.∠2=∠4C.∠1=∠4D. AB//CD4. 在同一平面内,a、b、c是直线,下列说法正确的是( )A. 若a//b,b//c,则a//cB. 若a⊥b,b⊥c,则a⊥cC. 若a//b,b⊥c,则a//cD. 若a//b,b//c,则a⊥c5. 如图,给出下列条件:①∠1=∠2;②∠3=∠4;③∠B=∠DCE;④∠B+∠BAD=180°,其中能推出AB//DC的是( )A. ①②B. ①③C. ②③D. ②④6. 下列说法中,正确的是( )A. “同位角相等”是一个真命题B. 图形的平移是指把图形沿水平方向移动C. “凡直角都相等”是一个假命题D. 在平移的过程中,对应线段互相平行(或在同一条直线上)且相等7. 从操场某处看旗杆是北偏东70°,则从旗杆看此处是( )A. 南偏西70°B. 南偏东70°C. 南偏西20°D. 南偏北20°8. 一副直角三角板如图放置,点C在FD的延长线上,AB//CF,∠F=∠ACB=90∘,∠A= 60∘,∠E=45∘,则∠DBC的度数为( )A. 10°B. 15°C. 18°D. 30°9. 皮影戏是中国民间古老的传统艺术,是一种用兽皮或纸板做成人物剪影来表演故事的民间戏剧.2011年中国皮影戏入选人类非物质文化遗产代表作名录.图1是孙悟空的皮影造型,在下面的四个图中,能由图1经过平移得到的是( )A. B.C. D.10. 如图2是图1将__________平移__________所得到的( )A. △AOB,BC的长度B. △COD,BC的长度C. △AOD,AD的长度D. △BOC,BA的长度11. 如图,多边形的相邻两边互相垂直,则这个多边形的周长为( )A. 21B. 26C. 37D. 4212. 如图,将△ABC沿直线AB向右平移后到达△BDE的位置,连接CD、CE,若△ACD的面积为10,则△BCE的面积为( )A. 5B. 6C. 10D. 4第II卷(非选择题)二、填空题(本大题共4小题,共12分)13. 如图,AB//CD,AB⊥AE,∠CAE=42°,则∠ACD的度数为______.14. 如图,∠1=70∘,直线a平移后得到直线b,则∠2−∠3=___15. 如图,直角三角形ABC的周长为100,在其内部有6个小直角三角形,则6个小直角三角形的周长之和为______.16. 如图,∠3=38°,直线b平移后得到直线a,则∠1+∠2=______°.三、解答题(本大题共9小题,共72分。

人教版九年级数学下册《第五章相交线与平行线》单元测试卷-含参考答案

人教版九年级数学下册《第五章相交线与平行线》单元测试卷-含参考答案

人教版九年级数学下册《第五章相交线与平行线》单元测试卷-含参考答案班级姓名学号分数(测试时间:90分钟满分:120分)一、选择题(共10小题每题3分共30分)1.面四个图形中∠1与∠2是对顶角的是()A.12 B.12C.12D.122.如图 PO⊥OR OQ⊥PR 则点O到PR所在直线的距离是线段()的长A.PO B.RO C.OQ D.PQ3.在6×6方格中将图1中的图形N平移后位置如图2所示则图形N的平移方法中正确的是()A.向下移动1格 B.向上移动1格C.向上移动2格 D.向下移动2格4.直线AB与CD相交于点O,OE⊥CD,垂足为O.若130EOB∠=︒则AOC∠的大小为( )A.40︒B.50︒C.90︒D.130︒EOD C BA5.如图 AD是∠EAC的平分线 AD∥B C ∠B=30°则∠C为()A.30° B.60° C.80° D.120°6.如图下列条件中:(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.能判定AB∥CD的条件个数有()A.1 B.2 C.3 D.47.如图按各组角的位置判断错误的是()A、∠1与∠A是同旁内角B、∠3与∠4是内错角C、∠5与∠6是同旁内角D、∠2与∠5是同位角8.如图把一块等腰直角三角板的直角顶点放在直尺的一边上如果∠1=40°那么∠2=()A.40° B.45° C.50° D.60°OP QR ST下列各式中正确的是()9.如图////A.123180∠+∠+∠=B.12390∠+∠-∠=C.12390∠-∠+∠=D.231180∠+∠-∠= 10.下列说法中正确的是( )A .两直线被第三条直线所截得的同位角相等B .两直线被第三条直线所截得的同旁内角互补C .两平行线被第三条直线所截得的同位角的平分线互相垂直D .两平行线被第三条直线所截得的同旁内角的平分线互相垂直 二、填空题(共10小题 每题3分 共30分)11.如图 直线a 、b 相交于点O ∠1=50° 则∠2= 度.12.在同一平面内 过一点有______________条直线与已知直线垂直。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章相交线与平行线复习题
本卷满分120分班级姓名
1填空每空2分共64分
1.两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有
这种关系的两个角,互为_____________.
2.两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角
两边的反向延长线,具有这种关系的两个角,互为__________.对顶角的性质:______ _________.
3.两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互
_______.垂线的性质:⑴过一点______________一条直线与已知直线垂直.⑵连接直线外一点与直线上各点的所在线段中,_______________.
4.直线外一点到这条直线的垂线段的长度,叫做________________________.
5.两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两
个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________ ;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________.
6.在同一平面内,不相交的两条直线互相___________.同一平面内的两条直线的位置
关系只有________与_________两种.
7.平行公理:经过直线外一点,有且只有一条直线与这条直线______.
推论:如果两条直线都与第三条直线平行,那么_____________________.
8.平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线
平行.简单说成:_____________________________________.⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:
___________________________.
⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:
________________________________________.
9. 在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______ .
10. 平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等.简单说成: __
_______________.⑵两条平行直线被第三条直线所截,内错角相等.简单说成:__________________________________.⑶两条平行直线被第三条直线所截,同旁内角互补.简单说成:____________________________________ .
11. 把一个图形整体沿某一方向移动,会得到一个新图形,图形的这种移动,叫做平移
变换,简称_______.图形平移的方向不一定是水平的.
平移的性质:⑴把一个图形整体平移得到的新图形与原图形的形状与大小完全______. ⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段_________________.
12如图,,8,6,10,BC AC CB cm AC cm AB cm ⊥===那么点A
到BC 的距离是_____,点B 到AC 的距离是_______,点A 、B 两
点的距离是_____,点C 到AB 的距离是________.
12. 设a 、b 、c 为平面上三条不同直线,
a) 若//,//a b b c ,则a 与c 的位置关系是_________;
b) 若,a b b c ⊥⊥,则a 与c 的位置关系是_________;
c) 若//a b ,b c ⊥,则a 与c 的位置关系是________.
13. 如图,已知AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,∠FOD =28°,
求∠COE 、∠AOE 、∠AOG 的度数.8分
14. 如图,AOC ∠与BOC ∠是邻补角,OD 、OE 分别是AOC ∠与BOC ∠的平分线,
试判断OD 与OE 的位置关系,并说明理由.8分
15. 如图,AB ∥DE ,试问∠B 、∠E 、∠BCE 有什么关系.4分
解:∠B +∠E =∠BCE
过点C 作CF ∥AB ,
则B ∠=∠____( )
又∵AB ∥DE ,AB ∥CF ,
∴____________( )
∴∠E =∠____( )
∴∠B +∠E =∠1+∠2
即∠B +∠E =∠BCE .
16. ⑴如图,已知∠1=∠2 求证:a ∥b .⑵直线//a b ,求证:12∠=∠.8分
17. 阅读理解并在括号内填注理由:4分
如图,已知AB ∥CD ,∠1=∠2,试说明EP ∥FQ .
证明:∵AB ∥CD ,
∴∠MEB =∠MFD ( )
又∵∠1=∠2,
∴∠MEB -∠1=∠MFD -∠2,
即 ∠MEP =∠______
∴EP ∥_____.( )
18. 已知DB ∥FG ∥EC ,A 是FG 上一点,∠ABD =60°,∠ACE =36°,AP 平分∠BAC ,
求:⑴∠BAC 的大小;⑵∠P AG 的大小.8分
19. 如图,已知ABC ∆,AD BC ⊥于D ,E 为AB 上一点,EF BC ⊥于F ,//DG BA
∠=∠.8分
交CA于G.求证12
20.已知:如图∠1=∠2,∠C=∠D,问∠A与∠F相等吗?试说明理由.8分
答案
1.邻补角
2. 对顶角,对顶角相等
3.垂直 有且只有 垂线段最短
4.点到直线的距离
5.同位角 内错角 同旁内角
6.平行 相交 平行
7.平行 这两直线互相平行
8.同位角相等 两直线平行; 内错角相等 两直线平行; 同旁内角互补 两直线平行.
9.平行 10.两直线平行 同位角相等;两直线平行 内错角相等;两直线平行 同旁内角互补. 11.平移 相同 平行且相等 12.6cm 8cm 10cm 4.8cm. 13.平行 平行 垂直 14 28° 118° 59° 15. OD ⊥OE 理由略 16. 1(两直线平行,内错角相等)DE ∥CF (平行于同一直线的两条直线平行) 2 (两直线平行,内错角相等). 17⑴∵∠1=∠2 ,又∵∠2=∠3(对顶角相等),∴∠1=∠3∴a ∥b (同位角相等 两直线平行) ⑵∵a ∥b ∴∠1=∠3(两直线平行,同位角相等)又∵∠2=∠3(对顶角相等) ∴∠1=∠2. 18. 两直线平行,同位角相等 MFQ FQ 同位角相等两直线平行 19. 96°,12°.
20,AD BC FE BC ⊥⊥ 90EFB ADB ∴∠=∠= //EF AD ∴23∴∠=∠
//,31DG BA ∴∠=∠ 1 2.∴∠=∠ 21. ∠A =∠F .∵∠1=∠DGF (对顶角相等)又∠1=∠2 ∴∠DGF =∠2 ∴DB ∥EC (同位角相等,两直线平行) ∴∠DBA =∠C (两直线平行,同位角相等) 又∵∠C =∠D ∴∠DBA =∠D ∴DF ∥AC (内错角相等,两直线平行)∴∠A =∠F (两直线平行,内错角相等).。

相关文档
最新文档