2019-2020学年高中数学 第三章 概率 第1课时 随机事件及其概率导学案苏教版必修3.doc

合集下载

高中数学 第3章 概率 3.1 随机事件及其概率教案 苏教版必修3-苏教版高一必修3数学教案

高中数学 第3章 概率 3.1 随机事件及其概率教案 苏教版必修3-苏教版高一必修3数学教案

第3章概率本章概述一、课标要求本章通过对随机现象的研究,学习认识客观世界的方法.多年来,学生学习数学,主要研究确定的现象,对于不确定现象的规律知之甚少.通过本章的学习,使学生进一步了解不仅确定性现象有规律,可以预知结果,可以用数学方法去研究,而且不确定现象也有规律可循,同样也能用数学方法去研究.使学生初步形成用科学的态度、辩证的思想、用随机观念去观察、分析、研究客观世界的态度,寻求并获得认识世界的初步知识和科学态度.1.在具体情境中了解随机事件发生的不确定性及频率的稳定性,进一步了解概率的意义以及概率与频率的区别.2.通过实例,理解古典概型概率的计算公式,会用列举法计算随机事件所包含的基本事件数以及事件发生的概率.3.了解随机数的意义,能运用模拟方法〔包括计算机产生随机数来模拟〕根据概率,初步体会几何概型的意义.4.通过实例,了解两个互斥事件的概率加法公式.5.通过阅读相关材料,了解人类认识随机现象的过程.6.使学生能初步利用概率知识对实际问题进行分析,并进行理性思考,学会对纷繁复杂的事物进行探索,养成透过事物表面现象把握事物本质所在的思维方法,培养学生理性思维能力与辩证思维能力、创新意识与探究能力、数学建模能力和实践能力,以及表达、交流的能力,增强学生的辩证唯物主义世界观,进一步树立科学的人生观、价值观.7.注重表达数学的文化价值与美学价值,增强学生的审美观,丰富学生的文化底蕴,提高学生的人文素质.二、本章编写意图与教学建议人们在认识自然的过程中,对自然现象进行大量的观察,通过观察得到大量的数据,再对得到的数据进行分析,找出其内在的规律.人们发现,有些现象并不像万有引力定律那样可以得到完全确定的规律.现实世界中发生的事件大多是随机事件,人们通过对随机事件的大量重复试验的结果进行理性的探讨,发现了随机事件也不是毫无规律可循.研究这些规律,最终导致了概率的诞生.学生在初中已经接触了概率的初步知识,本章那么是在此基础上开始系统地学习概率知识.本章又是高中阶段第一次学习这一内容,在后续的学习中还将继续学习概率的其他内容,因此,在高中阶段概率的学习中,起到了承前启后的作用,由于与概率计算密切相关的内容还没有学习,因此,在涉及有关计算的问题时采用枚举法,而在用枚举法时一定要做到既不重复也不遗漏,应该按照一定的顺序来计算有关数据,也可以用表格或树形图来进行有关数据的计算.本章包括了随机事件的概率、古典概型、几何概型以及互斥事件有一个发生的概率等内容.概率的核心问题是要让学生了解随机现象及概率的意义,为了让学生能更深入地理解,可以列举日常生活中的实例,由此正确理解随机事件发生的不确定性及其频率的稳定性,从而加深对概率的理解;古典概型从随机事件发生频率的稳定性导入,通过对频率稳定性研究得出随机事件的发生与否有一定的规律可循,从而得出概率的统计定义.在教学中让学生通过实例理解古典概型的特征是试验结果的有限性和每一个试验结果出现的等可能性,使学生学会把一些实际问题转化为古典概型;从古典概型到几何概型,是从有限到无限的延伸,在几何概型的教学中抓住较强直观性的特点.在教学中有意识地适当地运用现代信息技术辅助教学.在教学中要能做到:(1)注意概念的区别与联系,类似的概念不能够混淆,例如概率与频率,互斥事件与对立事件;(2)在运用公式时注意是否符合公式运用的前提条件;(3)注意顺向思维与逆向思维的合理运用,遵循“正难那么反〞的原那么;(4)注意学习前辈的学习和研究的思维方法,能通过对大量事件的观察抽象出事件的本质.在本章的教学中应注重培养学生学习的信心,提高学生学习数学的兴趣,使学生形成锲而不舍的钻研精神和科学态度;培养学生的数学思维能力,逐步地发展独立获取数学知识的能力,形成批判性的思维习惯,发展数学应用意识和创新意识;通过本章的学习,让学生感受数学与现实世界的重要联系,逐步形成辩证的思维品质;养成准确,清晰,有条理地表述问题以及解决问题的过程的习惯,提高数学表达和交流的能力;进一步拓展学生的视野,逐步认识数学的科学价值、应用价值和文化价值.三、教学内容及课时安排建议3.1 随机事件及其概率整体设计教材分析本节课是概率这一章的第一节课,所以有必要在上新课之前向学生简要地介绍概率论的发展、概率趣话以及概率的应用,以此激发学生对科学的探究精神和严肃认真的科学态度.随机事件及其概率为一课时.本节课主要学习随机现象、必然事件、不可能事件、随机事件的概念.通过抛掷硬币试验,探究随机事件的概率,揭示概率的本质,引出随机事件概率的求法,同时让学生体验数学的奥秘与数学美,激发学生的学习兴趣.通过实例说明一个随机事件的发生是存在着统计规律性的,一个随机事件发生的频率总是在某个常数附近摆.我们给这个常数取一个名字,叫做这个随机事件的概率.它从数量上反映了这个事件发生的可能性的大小.它是0~1之间的一个数.将这个事件记为A,用P(A)表示事件A发生的概率.对于任意一个随机事件A,P(A)必须满足如下基本要求:0≤P(A)≤1.怎样确定一个事件发生的概率呢?可以从实际问题出发,创设问题情境.具体设计如下:首先利用多媒体展示奥地利遗传学家孟德尔〔G.Mendel,1822~1884〕用豌豆进行杂交试验的结果表格,通过商讨分析得到孟德尔是用某种性状发生的频率来估计生物遗传的基本规律的.然后依次展示抛掷硬币的模拟试验结果、π的前n位小数中数字6出现的频率、鞋厂某种成品鞋质量检验结果,通过商讨分析分别得出:掷硬币的模拟试验结果中,当模拟次数很大时,正面向上的频率值接近于常数0.5,并在其附近摆动;π的前n位小数中数字6出现的频率中数字6在π的各位小数数字中出现的频率值接近于常数0.1,并在其附近摆动;鞋厂某种成品鞋质量检验结果中,当抽取的样品数很多时,优等品的频率接近于常数0.95,并在其附近摆动.三维目标1.通过具体的例子了解随机现象,了解必然事件、不可能事件、随机事件的概念.采用实验探究法,按照思考、交流、实验、观察、分析、得出结论的方法进行启发式教学.使学生了解一个随机事件的发生既有随机性,又在大量重复试验中存在着一种客观规律性——频率的稳定性,以引出随机事件概率的意义和计算方法.2.理解随机事件在大量重复试验的情况下,它的发生呈现的规律性.3.掌握概率的统计定义及概率的性质.引导学生对身边的事件加以注意、分析,发挥学生的主体作用,设计好探究性试验.指导学生做简单易行的试验,让学生无意识地发现随机事件的某一结果发生的规律性,理论联系实际,激发学生的学习积极性.4.通过概率论的介绍,激发学生对科学的探究精神和严肃认真的科学态度.发动学生动手试验,体验数学的奥秘与数学美,激发学生的学习兴趣.培养学生的辩证唯物主义观点,增强学生的科学意识.重点难点教学重点:1.随机现象的定义,必然事件、不可能事件、随机事件的定义.2.概率的统计定义,概率的基本性质.教学难点:随机事件的定义,随机事件发生存在的统计规律性.课时安排1课时教学过程导入新课设计思路一:〔情境导入〕在第二次世界大战中,美国曾经宣布:一名优秀数学家的作用超过10个师的兵力.这句话有一个非同寻常的来历.1943年以前,在大西洋上英美运输船队常常受到德国潜艇的袭击,当时,英美两国限于实力,无力增派更多的护航舰,一时间,德军的“潜艇战〞搞得盟军焦头烂额.为此,有位美国海军将领专门去请教了几位数学家,数学家们运用概率论分析舰队与敌潜艇相遇是一个随机事件,从数学角度来看这一问题,它具有一定的规律性.一定数量的船〔为100艘〕编队规模越小,编次就越多〔为每次20艘,就要有5个编次〕,编次越多,与敌人相遇的概率就越大.美国海军接受了数学家的建议,命令舰队在指定海域集合,再集体通过危险海域,然后各自驶向预定港口.结果奇迹出现了:盟军舰队遭袭被击沉的概率由原来的25%降为1%,大大减少了损失,保证了物资的及时供应.设计思路二:〔问题导入〕观察以下现象,各有什么特点?(1)在标准大气压下,水加热到100 ℃沸腾;(2)抛一石块,下落;(3)同性电荷互相吸引;〔4〕实心铁块丢入水中,铁块上浮;〔5〕射击一次,中靶;〔6〕掷一枚硬币,反面向上.解答:〔1〕、〔2〕两种现象必然发生,〔3〕、〔4〕两种现象不可能发生,〔5〕、〔6〕两种现象可能发生,也可能不发生.推进新课新知探究由上述事例可知现实生活中有很多现象,这些现象在一定条件下,可能发生也可能不发生.在一定条件下事先就能断定发生或不发生某种结果,这种现象就是确定性现象.在一定条件下,某种现象可能发生,也可能不发生,事先不能断定出现哪种结果,这种现象就是随机现象.对于某个现象,如果能让其条件实现一次,就是进行了一次试验,试验的每一种可能的结果,都是一个事件.在上述现象中,我们如果把〔1〕、(2)的条件实现一次,那么〔1〕、(2)的现象一定会出现“沸腾〞与“下落〞,“沸腾〞与“下落〞都是一个事件.对于在一定条件下必然要发生的事件,叫做必然事件(certain event);我们如果把(3)、〔4〕的条件各实现一次,那么“吸引〞与“上浮〞也都是一个事件,但这两个事件都是不可能发生的.在一定条件下不可能发生的事件,叫做不可能事件(impossible event);当(5)、(6)的条件各实现一次,那么“中靶〞与“反面向上〞也都是一个事件,这两个事件,可能发生,也可能不发生.在一定条件下可能发生也可能不发生的事件,叫做随机事件(random event).必然事件与不可能事件反映的都是在一定条件下的确定性现象,而随机事件反映的是随机现象.我们一般用大写的英文字母表示随机事件,例如随机事件A、随机事件B等,另外我们常常将随机事件简称为事件.由于随机事件具有不确定性,因而从表面上看,似乎偶然性在起着支配作用,没有什么必然性.但是,人们经过长期的实践并深入研究后,发现随机事件虽然就每次试验结果来说具有不确定性,然而在大量重复试验中,它却呈现出一种完全确定的规律性.历史上曾有人做过抛掷硬币的大量重复试验,结果如下表:从表中我们可以看到,当抛掷硬币的次数很多时,出现正面的频率值是稳定的,接近于常数0.5,在它左右摆动.对于给定的随机事件A,在相同的条件下,随着试验次数的增加,事件A发生的频率mn 总在某个常数附近摆动并趋于稳定,因此,可以用这个常数来刻画随机事件A发生的可能性的大小,并把这个常数称为随机事件A的概率〔probability〕,记作P(A).必然事件的概率为1,不可能事件的概率为0.因此0≤P(A)≤1 .对于概率的统计定义,教师应说明以下几点:〔1〕求一个事件的概率的基本方法是通过大量的重复试验;〔2〕只有当频率在某个常数附近摆动时,这个常数才叫做事件A的概率;〔3〕概率是频率的稳定值,而频率是概率的近似值;〔4〕概率反映了随机事件发生的可能性的大小.应用示例思路1例1 给出以下事件:①某人练习打靶,一枪命中十环;②手机没电,接听;③抛一枚硬币,结果正面向上;④冰棒在烈日下融化;⑤一粒植物种子,播种后发芽;⑥向上抛一只不锈钢杯子,结果杯口向上.其中随机事件的个数是〔〕A.3B.4解析:判断事件是否是随机事件,可以依据随机事件的概念判断,也就是该事件在一定条件下,是否可能发生也可能不发生,如果可能发生也可能不发生,那么该事件为随机事件.由随机事件的概念可知:①③⑤⑥是随机事件.答案:B点评:判断某一事件是否是随机事件依据随机事件的概念,同样判断某一事件是否是必然事件或是不可能事件也是依据相应的概念,因此,此题中的②是不可能事件,④是必然事件.例2 指出以下事件中,哪些是不可能事件?哪些是必然事件?哪些是随机事件?〔1〕假设a、b、c 都是实数,那么a(bc)=(ab)c ;〔2〕没有空气,动物也能生存下去;〔3〕在标准大气压下,水在温度90°时沸腾;〔4〕直线y=k(x+1)过定点(-1,0);〔5〕某一天内某人接听20次;〔6〕一个袋内装有形状、大小相同的一个白球和一个黑球,从中任意摸出1个球为白球.分析:根据必然事件、随机事件和不可能事件的定义来判断.解:由必然事件的定义可知〔1〕、〔4〕是必然事件;由随机事件的定义知〔5〕、〔6〕是随机事件;由不可能事件的定义可知(2〕、〔3〕是不可能事件.点评:要判断一个事件是必然事件、随机事件还是不可能事件,应紧紧抓住这些事件的定义,从定义出发来作出判断.例3 任取一个由50名同学组成的班级〔称为一个标准班〕,至少有两位同学的生日在同一天〔记为事件T〕的概率是0.97,据此,我们知道( )A.取定一个标准班,事件T发生的可能性为97%B.取定一个标准班,事件T发生的概率大约是97%C.任意取定10 000个标准班,其中必有9 700个班有事件T发生D.随着抽取的班级数n的不断增大,事件T发生的频率逐渐接近0.97,并在它附近摆动解析:根据随机事件的概率的定义必须进行大量试验,才能得出某一随机事件的概率,因此,此题应从定义出发来研究.对于取定的一个标准班来说,T要么发生要么不发生,所以A,B都不对;对任意取定的10 000个标准班,也可能出现极端情况,如T都不发生,因此C也不对;据概率的统计定义知,选项D正确.答案:D点评:利用概率的统计定义计算随机事件的概率,需要大量重复的试验.对某一个随机事件来说,在一次试验中不一定发生,但在大量重复试验下它的发生又呈现一定的规律.通过对概率的定义的感悟,感受数学学科的实验性,体会偶然与必然的辩证统一.例4 对某电视机厂生产的电视机进行抽样检测的数据如下:〔1〕计算表中优等品的各个频率;〔2〕该厂生产的电视机优等品的概率是多少?分析:利用概率的定义来求解此题.解:〔1〕各次优等品的频率为 0.8, 0.92, 0.96, 0.95, 0.956, 0.954;〔2〕优等品的概率是0.95.点评:通过此题进一步理解概率的定义,领悟概率其实是某一随机事件发生的可能性的大小.例5 历史上曾有人做过抛掷硬币的大量随机试验,结果如下:〔1〕计算表中正面向上的频率;(2)试估计事件“正面向上〞的概率.分析:先运用频率计算的方法计算频率,再运用概率的定义确定事件“正面向上〞的概率.解:(1)表中频率自上而下依次为:0.518 1,0.506 9,0.501 6,0.500 5,0.499 6;〔2〕由(1)的结果发现:当抛掷的次数很多时,“正面向上〞的频率接近于常数0.5,在它附近摆动,所以抛掷一枚硬币,正面向上的概率约为0.5.点评:通过计算随机事件发生的频率来估计随机事件的概率是求随机事件概率常用的方法.思路2例1 指出以下事件中哪些是必然事件,哪些是不可能事件,哪些是随机事件.〔1〕我国东南沿海某地明年将受到3次热带风暴的侵袭;〔2〕假设a为实数,那么|a|≥0;〔3〕某人开车经过10个交叉路口都遇到绿灯;〔4〕一个正六面体的六个面分别标有数字1、2、3、4、5、6,将该正六面体连续抛掷两次,向上的一面数字之和大于12.分析:要判断某一事件是必然事件、随机事件还是不可能事件,可以依据必然事件、随机事件以及不可能事件的定义来判断.解:由必然事件、随机事件和不可能事件的定义可知:〔2〕是必然事件;〔1〕、〔3〕是随机事件;〔4〕是不可能事件.点评:对于某一事件是必然事件、随机事件还是不可能事件的判断依据是定义,其关键是看事件本身是如何发生的.例2 在一只口袋中装有形状与大小都相同的2只白球和3只黑球,从中任意取出3只球,试编拟一些事件,使它们分别为随机事件、必然事件和不可能事件.分析:要编拟一些事件,使其为随机事件、必然事件和不可能事件,就是在一定条件下,所编拟的事件必定发生那么为必然事件,必定不发生那么为不可能事件,可能发生也可能不发生那么为随机事件.解:事件A :任意取出3只球,恰有1只球是白球,那么事件A 是随机事件;事件B :任意取出3只球,至少有1只球是黑球,那么事件B 是必然事件;事件C :任意取出3只球,都是白球,那么事件C 是不可能事件.点评:此题在编拟随机事件、必然事件和不可能事件时,是开放性问题,因此根据相应的概念来编拟,答案不唯一.除了上述解答外,还可以是其他答案,例如:事件A :任意取出3只球,至少有1只球是白球,那么事件A 是随机事件;事件B :任意取出3只球,至多有2只球是白球,那么事件B 是必然事件;事件C :任意取出3只球,没有一只黑球,那么事件C 是不可能事件.例3 用一台自动机床加工一批零件,从中抽出100个逐个进行直径检验,结果如下:从这100个螺母中,任意抽取一个,求事件A 〔6.92<d≤6.94〕,事件B 〔6.90<d≤6.96〕,事件C 〔d>6.96〕,事件D 〔d≤6.89〕的频率并求这几个事件发生的概率约为多少?分析:分别求出事件A 〔6.92<d≤6.94〕,事件B 〔6.90<d≤6.96〕,事件C 〔d>6.96〕,事件D 〔d≤6.89〕的频率,再根据这几个事件的频率得出概率.解:事件A 的频率为17+10026=0.43,概率约为0.43; 事件B 的频率为10081526171710+++++=0.93,概率约为0.93; 事件C 的频率为10022+=0.04,概率约为0.04;事件D 的频率为1001=0.01,概率约为0.01. 点评:根据概率的统计定义求随机事件的概率的常用方法是先求随机事件发生的频率,再由频率得出随机事件发生的概率.例4 某射手在同一条件下进行射击,结果如下表所示:〔1〕填写表中击中靶心的频率;〔2〕这个射手射击一次,击中靶心的概率约是多少?分析:击中靶心的频率=击中靶心的次数÷射击的次数,再根据概率的统计定义可知:击中靶心的概率应为频率在某一常数P 的左右摆动,那么常数P 即为该事件的概率.解:〔1〕表中击中靶心的频率依次为0.8,0.95,0.88,0.92,0.89;〔2〕因频率在常数0.89的左右摆动,所以射手射击一次,击中靶心的概率约是0.89. 点评:在运用概率的统计定义求某一事件的概率时,应该先求频率,再根据频率来求该事件的概率.知能训练一、课本随机现象练习.解答:2.(1)随机事件;(2)不可能事件;(3)必然事件;(4)不可能事件;(5)随机事件;(6)随机事件.3.必然事件:③;不可能事件:⑤;随机事件:①②④.4.必然事件:太阳每天都从东方升起;不可能事件:电灯在断电时发亮;随机事件:同时抛两枚硬币,正面都向上.二、课本随机事件的概率练习.解答:1.不对.2.不同意,随机事件的发生概率与该事件以前是否发生无关,故下次发生的概率仍为21. 3.不一定,第10个人治愈的概率仍为10%.点评:通过练习,进一步加深必然事件、不可能事件、随机事件以及概率的概念的理解. 课堂小结本节课主要研究了以下内容:1.随机事件、必然事件、不可能事件的概念.2.随机事件A 的概率:一般地,如果随机事件A 在n 次试验中发生了m 次,当试验的次数n 很大时,我们可以将事件A 发生的频率n m 作为事件A 发生的概率的近似值,即P(A)≈nm .3.由于随机事件A 在各次试验中可能发生,也可能不发生,所以它在n 次试验中发生的次数〔称为频数〕m 可能等于0〔n 次试验中A 一次也不发生〕,可能等于1〔n 次试验中A 只发生一次〕,……也可能等于n 〔n 次试验中A 每次都发生〕.我们说,事件A 在n 次试验中发生的频数m 是一个随机变量,它可能取得0、1、2、…、n 这n+1个数中的任一个值.于是,随机事件A 的频率nm 也是一个随机变量,它可能取得的值介于0与1之间,即0≤P 〔A 〕≤1.特别,必然事件的概率为1,即P(Ω)=1,不可能事件的概率为0,即P()=0.这里说明随机事件的频率究竟取得什么值具有随机性.然而,经验说明,当试验重复多次时随机事件的频率又具有稳定性.4.说明:①求一个事件概率的基本方法是做大量的重复试验;②当频率在某个常数附近摆动时,这个常数叫做事件A 的概率;③概率是频率的稳定值,而频率是概率的近似值;④概率从数量上反映了随机事件发生的可能性的大小;⑤必然事件的概率是1,不可能事件的概率是0,因此0≤P〔A 〕≤1.作业课本习题3.1 1、2.设计感想本节课是概率这一章的第一节课,所以有必要在上新课之前向学生简要地介绍概率的发展、概率趣话以及概率的应用,以激发学生对科学的探究精神和严肃认真的科学态度.随机事件及其概率分为两部分,第一部分主要学习随机现象、必然事件、不可能事件、随机事件的概念.通过抛掷硬币试验,探究随机事件的概率,揭示概率的本质,引出随机事件概率的求法,同时让学生体验数学的奥秘与数学美,激发学生的学习兴趣.第二部分是随机事件的概率.怎样确定一个事件发生的概率呢?设计时,从实际问题出发,创设问题情境.除了已有设计之外还可以有如下设计:首先利用多媒体展示奥地利遗传学家孟德尔〔G.Mendel ,1822~1884〕用豌豆进行杂交试验的结果表格,通过商讨分析得到孟德尔是用某种性状发生的频率来估计生物遗传的基本规律的.然后依次展示抛掷硬币的模拟试验结果、π的前n 位小数中数字6出现的频率、鞋厂某种成品鞋质量检验结果,通过商讨分析分别得出:掷硬币的模拟试验结果中,当模拟次数很大时,正面向上的频率值接近于常数0.5,并在其附近摆动;π的前n 位小数中数字6出现的频率中数字6在π的各位小数数字中出现的频率值接近于常数0.1,并在其附近摆动;鞋厂某种成品鞋质量检验结果中,当抽取的样品数很多时,优等品的频率接近于常数0.95,并在其附近摆动.最终得出概率的统计定义.习题详解1.〔1〕随机事件 〔2〕不可能事件 〔3〕随机事件 〔4〕必然事件 〔5〕不可能事件〔6〕必然事件 〔7〕随机事件 〔8〕随机事件2.D.3.(1)〔2〕概率约为0.81.4.。

高中数学必修三 第三章 概率 第1节 事件与概率

高中数学必修三 第三章 概率  第1节  事件与概率
(2,4); (4)“xy=4”包含以下 3 个基本事件:(1,4),(2,2),(4,1);“x=y”包含以 下 4 个基本事件:(1,1),(2,2),(3,3),(4,4).
练习:一个盒子中装有 4 个完全相同的球,分别标有号码 1,2,3,5,从中任取两 球,然后不放回. (1)写出这个试验的基本事件空间; (2)求这个试验的基本事件总数; (3)写出“取出的两球上的数字之和是 6”这一事件所包含的基本事件.
1.常见现象的特点及分类
名称
定义
必然现象 在一定条件下必然 发生某种结果的现象.
不可能现 在一定条件下 不可能发生某种结果的现象.

在相同的条件下多次观察同一现象,每次观察到
随机现象 的结果 不一定 相同,事先很难预料哪一种
结果会出现的现象.
2.试验 把观察随机现象或为了某种目的而进行的实验统称为试验,把
典型例题:
例 1:判断下列现象是必然现象还是随机现象: (1)掷一枚质地均匀的骰子出现的点数; (2)行人在十字路口看到的交通信号灯的颜色; (3)在 10 个同类产品中,有 8 个正品、2 个次品,从中任意抽出 2 个检验的结果.
[精解详析] (1)掷一枚质地均匀的骰子其点数有可能出现 1~6 点,不能确定, 因此是随机现象. (2)行人在十字路口看到交通信号灯的颜色有可能是红色,有可能是黄色,也有 可能是绿色,故是随机现象. (3)抽出的 2 个产品中有可能全部是正品,也有可能是一个正品一个次品,还有 可能是两个次品,故此现象为随机现象.
件是( )
A.4 个都是正品
B.至少有 1 个是次品
C.4 个都是次品
D.至少有 2 个是正品
解析:A、B 为随机事件,C 为不可能事件,只有 D 为必然事件.答案:D

2019-2020年高中数学必修三第三章概率3.1.3《概率的基本性质》导学案

2019-2020年高中数学必修三第三章概率3.1.3《概率的基本性质》导学案

2019-2020年高中数学必修三第三章概率3.1.3《概率的基本性质》导学案【学习目标】(1)正确理解事件的包含、并事件、交事件、相等事件,以及互斥事件、对立事件的概念;(2)概率的几个基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;2)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);3)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)(3)正确理解和事件与积事件,以及互斥事件与对立事件的区别与联系.【自主学习】任务1:阅读教材P119—121,独立完成下列问题1、 问题1: (1)集合有相等、包含关系,如{1,3}={3,1},{2,4}С{2,3,4,5}等;(2)在掷骰子试验中,可以定义许多事件如:C 1={出现1点},C 2={出现2点},C 3={出现1点或2点},C 4={出现的点数为偶数}……师生共同讨论:观察上例,类比集合与集合的关系、运算,你能发现事件的关系与运算吗?2、 问题2: (1)事件的包含、并事件、交事件、相等事件见课本P119—121;(2)若A ∩B 为不可能事件,即A ∩B=ф,那么称事件A 与事件B ;(3)若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互 ;(4)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1, 于是有P(A)=1—P(B).任务2例1 一个射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件? 事件A :命中环数大于7环; 事件B :命中环数为10环;事件C :命中环数小于6环; 事件D :命中环数为6、7、8、9、10环. 练习:如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心(事件A )的概率是41,取到方块(事件B )的概率是41,问:(1)取到红色牌(事件C )的概率是多少? (2)取到黑色牌(事件D )的概率是多少?【合作探究】抛掷一骰子,观察掷出的点数,设事件A 为“出现奇数点”,B 为“出现偶数点”,已知P(A)=21,P(B)=21,求出“出现奇数点或偶数点” 概率.【目标检测】1.从一堆产品(其中正品与次品都多于2件)中任取2件,观察正品件数与次品件数,判断下列每件事件是不是互斥事件,如果是,再判断它们是不是对立事件。

【精品推荐】2019-2020学年高中数学北师大版必修3 第三章 1 随机事件的概率 课件(42张)

【精品推荐】2019-2020学年高中数学北师大版必修3 第三章 1 随机事件的概率 课件(42张)

【解】 (1)计算 m 即得男婴出生的频率依次约为0.520 0,0.517 3, n
0.517 3,0.517 3. (2)由于这些频率非常接近0.517 3,因此这一地区男婴出生的概率 约为0.517 3.
◆频率与概率的区别与联系 1.区别 频率是一个试验值,具有随机性,它反映的是某一随机事件出现的频 繁程度,反映了随机事件出现的可能性大小,近似地反映了概率的大 小. 概率是[0,1]上的一个确定值,不随试验结果的改变而改变. 概率从数量上反映了随机事件发生的可能性大小,它是对大量重复试 验来说存在的一种统计规律性. 2.联系 进行大量重复试验,可以用这个事件发生的频率近似地作为它的概 率,概率不是一个近似值,而是一个客观常数.
三、概率
1.随机事件的概率 在相同的条件下,大量重复进行同一试验时,随机事件 A 发生的频率会 在某个常数附近摆动,即随机事件 A 发生的频率具有稳定性 .这时,我们把 这个常数叫作 随机事件A的概率 ,记作P(A) .我们有 0≤P(A)≤1.
2.频率与概率的关系 频率反映了一个随机事件出现的频繁程度,但频率是 随机的,而概率是 一个确定的值,因此,人们用概率来反映 随机事件发生的可能性的大小.
三 生活中的概率 1.生活中的公平性问题 例4 有一个转盘游戏,转盘被平均分成10份.如图,转动转盘,当转盘停止
后,指针指向的数字即为转出的数字.游戏规则如下:两个人参加,先 确定猜数方案,甲转动转盘,乙猜,若猜出的结果与转盘转出的数字 所表示的特征相符,则乙获胜;否则甲获胜.猜数方案从以下三种方案 中选一种:
【提示】 在进行事件的判断时,应注意:(1)条件的变化将影响事件的发生 与否及其结果,要注意从问题的背景中体会条件的特点;(2)必然 事件具有确定性,它在一定条件下肯定发生.对随机事件可作以下解 释:在相同的条件下观察试验,每一次的试验结果不一定相同,且无 法预测下一次试验的结果是什么.

2019_2020学年高中数学第3章概率3.1随机事件及其概率讲义苏教版必修3

2019_2020学年高中数学第3章概率3.1随机事件及其概率讲义苏教版必修3

3.1 随机事件及其概率1.随机事件(1)确定性现象、随机现象在一定条件下,事先就能断定发生或不发生某种结果,这种现象就是确定性现象.在一定条件下,某种现象可能发生,也可能不发生,事先不能断定出现哪种结果,这种现象就是随机现象.(2)试验、事件一次试验就是对于某个现象的条件实现一次,例如对“掷一枚硬币,出现正面”这个现象来说,做一次试验就是将硬币抛掷一次.而试验的每一种可能的结果,都是一个事件.(3)必然事件、不可能事件、随机事件在一定条件下,必然会发生的事件叫做必然事件;在一定条件下,肯定不会发生的事件叫做不可能事件;在一定条件下,可能发生也可能不发生的事件叫做随机事件.我们用A ,B ,C 等大写英文字母表示随机事件,如我们记“某人射击一次,中靶”为事件A .2.随机事件的概率(1)频数与频率在一定条件下,重复进行了n 次试验,如果某一事件A 出现了m 次,则事件A 出现的频数是m ,称事件A 出现的次数与试验总次数的比例m n为事件A 出现的频率.(2)概率的统计定义一般地,如果随机事件A 在n 次试验中发生了m 次,当试验的次数n 很大时,我们可以发现事件A 发生的频率m n 趋近于一个常数,这个常数随着试验次数的增加越来越稳定,我们把这个常数作为事件A 发生的概率的近似值,即P (A )≈m n. 这里这个常数的意义就代表是随机事件的概率,由于随着试验次数的增加,频率越来越接近概率,也即概率是频率的期望值,所以用频率来定义概率是合理的,可行的.(3)必然事件和不可能事件的概率可以把必然事件和不可能事件当成随机事件的两种特殊情况来考虑,分别用Ω和∅来表示,显然P (Ω)=1,P (∅)=0.所以对任何一个事件A ,都有0≤P (A )≤1.思考:频率与概率之间有什么关系?[提示] (1)频率是随机的,是一个变量,在试验前不能确定,且可能会随着试验次数的改变而改变,它反映的是某一随机事件出现的频繁程度,反映了随机事件出现的可能性的大小,近似反映了概率的大小.比如全班同学都做了10次掷硬币的试验,但得到正面向上的频率可以是不同的.(2)概率是一个确定的常数,是客观存在的,它是频率的科学抽象,与每次试验无关,不随试验结果的改变而改变,从数量上反映随机事件发生的可能性大小.例如,如果一个硬币质地均匀,则掷该枚硬币出现正面向上的概率是0.5,与做多少次试验无关.(3)频率是概率的近似值,随着试验次数的增加,频率会越来越接近于概率.在实际问题中,随机事件的概率未知,常用大量重复试验中事件发生的频率作为它的估计值.1.有下列现象:①连续掷一枚硬币两次,两次都出现正面向上;②异性电荷互相吸引;③在标准大气压下,水在1 ℃结冰;④南通某天下雨.其中是随机现象的是( )A .①③B .②③C .①④D .③④ C [随机现象的典型特征是不能事先预料哪一种结果会出现,据此逐个分析,所以①④正确.]2.在10件同类商品中,有8件红色的,2件白色的,从中任意抽取3件.给出下列事件:①3件都是红色;③3件都是白色;③至少有1件红色;④至少有1件白色.其中是必然事件的序号为________.③ [因白色商品共2件,而要抽出3件商品,故抽出的3件中至少有1件为红色的,故选③.]3.某英语试题中,共有12道选择题,每道选择题有4个选项,其中只有1个选项是正确的,则随机选择其中一个选项正确的概率是14,某家长说:“要是都不会做,每题都随机选择其中一个选项,则一定有3题答对.”这句话____________________________________.(填“正确”“错误”或“不一定”)错误 [把解答一个选择题作为一次试验,答对的概率是14,说明了答对的可能性大小是14,由于每次试验的结果都是随机的,因而做12次试验,结果都是随机的,那么答对3道题的可能性较大,但是并不一定答对3道题,也可能都选错,也可能有1,2,3,4,…甚至12道题选择正确.]4.将一枚骰子掷300次,则掷出的点数大于2的次数大约是________.200 [根据题意,得300×23=200.](1)抛一石块,下落;(2)在标准大气压下且温度低于0 ℃时,冰融化;(3)某人射击一次,中靶;(4)如果a >b ,那么a -b >0;(5)掷一枚硬币,出现正面;(6)导体通电后,发热; (7)从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签;(8)某电话机在1分钟内收到2次呼叫;(9)没有水分,种子能发芽;(10)在常温下,焊锡熔化.[解] (1)是必然事件,该现象是大自然的客观规律所致.(2)是不可能事件,在标准大气压下,只有温度高于0 ℃时,冰才融化.(3)是随机事件,射击一次可能中靶,也可能不中靶.(4)是必然事件,由不等式性质可得.(5)是随机事件,因为将一枚硬币抛掷一次,可能出现正面向上,也可能出现反面向上.(6)是必然事件,导体通电发热是物理现象.(7)是随机事件,从5张标签中任取一张,每张都有被取到的可能.(8)是随机事件,因为结果有不可预知性.(9)是不可能事件,因为种子只有在有水分的条件下,才能发芽.(10)是不可能事件,因为金属锡只有在高温下才能熔化.。

2019-2020学年数学必修三北师大版课时跟踪检测:第3章 概率 §1 1.1 1.2 Word版含解析

2019-2020学年数学必修三北师大版课时跟踪检测:第3章 概率 §1 1.1 1.2 Word版含解析

第三章§11.1频率与概率1.2生活中的概率课时跟踪检测一、选择题1.下列事件:①某路口单位时间内通过“红旗”牌轿车的车辆数;②n边形内角和为(n-2)×180°;③某同学竞选学生会主席的成功性;④一名篮球运动员,每场比赛所得分数.其中是随机事件的是()A.①②③④B.①②③C.①③④D.②③④解析:②是必然事件,故选C.答案:C2.下列说法正确的是()①频数和频率都能反映一个对象在试验总次数中出现的频繁程度;②每个试验结果出现的频数之和等于试验的样本总数;③每个试验结果出现的频率之和不一定等于1;④概率就是频率.A.①B.①②④C.①②D.③④解析:频数指事件发生的次数;频率指在本次试验中该事件发生的次数与试验次数的比值;而概率是大量重复试验后频率的稳定值,因此①②正确,③④不正确.答案:C3.在5张不同的彩票中有2张奖票,5个人依次从中各抽取1张,则每个人抽到奖票的概率()A.递减B.递增C.相等D.不确定解析:每个人抽得奖票的概率为25,与抽取顺序无关.答案:C4.下列说法正确的是()A.在2016年出生的367人中,没有两人生日为同一天B.一位同学做抛硬币试验,掷了10次,一定有5次“反面朝上”C.某地发行福利彩票,其回报率为45%,某人花了100元买该福利彩票,就有45元的回报D.某运动员投篮命中的概率为70%,但他投篮10次并不一定命中7次解析:由367人中至少有2人生日相同可知,A错误;概率一定的事件在具体的试验中具有偶然性,B、C错误.故选D.答案:D5.给出下列四个命题:①设有一批产品,其次品率为0.05,则从中任取200件,必有10件是次品;②做100次抛硬币的试验,结果51次出现正面,因此,出现正面的概率是mn=51100;③随机事件发生的频率就是这个随机事件发生的概率;④抛掷骰子100次,得点数1的结果是18次,则出现1点的频率是9 50.其中正确命题的个数为()A.1 B.2C.3 D.4解析:对于①,由于次品率为0.05,故从中任取200件,可能会有10件次品,故①不正确;对于②,做100次抛硬币的试验,51次出现正面,故出现正面的频率为51100,而概率不一定是51100,故②不正确;③显然不正确;④显然正确,故正确命题的个数为1个.答案:A6.全国高考数学试题中,共有12道选择题,每道选择题有4个选项,其中只有1个选项是正确的,则随机选择其中一个选项正确的概率是14,某家长说:“要是都不会做,每题都随机选择其一个选项,则一定有3题答对.”这句话()A.正确B.错误C.不一定D.无法解释解析:把解答一个选择题作为一次试验,答对的概率是14,说明做对的可能性大小是14.做12道选择题,即进行了12次试验,每个结果都是随机的,那么答对3题的可能性较大,但是并不一定答对3道.也可能都选错,或仅有1,2,4,…题,甚至12个题都选择正确.答案:B二、填空题7.一个三位数字的密码锁,每位上的数字都可在0到9这十个数字中任选,某人忘记了密码最后一个号码,那么此人开锁时,在对好前两位数字后,随意拨动最后一个数字恰好能开锁的概率为________.解析:最后一个号码是0到9中的任意一个,可打开锁的只有一个,所以恰好能开锁的概率为110=0.1.答案:0.18.如果袋中装有数量差别很大而大小相同的白球和黑球(只是颜色不同),从中任取一球,取了10次有9个白球,估计袋中数量最多的是________.解析:取了10次有9个白球,则取出白球的频率是910,估计其概率约是910,取出黑球的概率约是110,那么取出白球的概率大于取出黑球的概率.所以估计袋中数量最多的是白球.答案:白球9.(2019·全国卷Ⅱ)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________.解析:由题意得,经停该站高铁列车所有车次的平均正点率的估计值为10×0.97+20×0.98+10×0.9910+20+10=0.98.答案:0.98三、解答题10.在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如下表:解:纤度落在[1.38,1.50)中的频数是30+29+10=69,则纤度落在[1.38,1.50)中的频率是69100=0.69,所以估计纤度落在[1.38,1.50)中的概率为0.69. 纤度小于1.42的频数是4+25+30=59,则纤度小于1.42的频率是59100=0.59,所以估计纤度小于1.42的概率为0.59.11.在“六一”儿童节来临之际,某妇女儿童用品商场为吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成20份),并规定:顾客每购物满100元,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得80元、50元、20元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可直接获得15元的购物券.转转盘和直接获得购物券,你认为哪种方式对顾客更合算,请说明理由.解:由题意可得转转盘所获得的购物券为80×120+50×320+20×520=16.5(元),因为16.5元>15元,所以选择转转盘对顾客更合算.12.在调查运动员服用兴奋剂的时候,给出两个问题作答,无关紧要的问题:“你的身份证号码的尾数是奇数吗?”敏感的问题是:“你服用过兴奋剂吗?”然后要求被调查的运动员掷一枚硬币,如果出现正面,就回答第一个问题,否则回答第二个问题.由于回答哪一个问题只有被测者知道,所以应答者一般乐意如实地回答问题.如果我们把这种方法用于300个被调查的运动员,得到80个“是”的回答,试估计他们中服用过兴奋剂的百分率.解:因为掷硬币出现正面向上的概率是12,大约有150人回答了第一个问题,又身份证号码尾数是奇数或偶数的可能性是相同的,因而在回答第一个问题的150人中大约有一半,即75人回答了“是”,所以有5个回答“是”的人服用过兴奋剂.因此我们估计他们中大约有3.33%的人服用过兴奋剂.13.某中学高一年级有12个班,要从中选2个班代表学校参加某项活动,由于某种原因,1班必须参加.另外再从2至12班中选1个班,有人提议用如下的方法:掷两个骰子,得到的点数和是几就选几班,你认为这种方法公平吗?解:掷两颗骰子,每颗骰子下落时得到的点数有6种结果,故基本事件数为n=6×6=36.从下表中可以看出掷两颗骰子得到的点数和是2,3,4,5,6,7,8,9,10,11,12的情况分别有1种,2种,3种,4种,5种,6种,5种,4种,3种,2种,1种.1点2点3点4点5点6点1点234567 2点345678P(点数和是2)=P(点数和是12)=1 36,P(点数和是3)=P(点数和是11)=236=118,P(点数和是4)=P(点数和是10)=336=112,P(点数和是5)=P(点数和是9)=436=19,P(点数和是6)=P(点数和是8)=5 36,P(点数和是7)=636=16.∴当两个骰子的点数和是7时的概率最大,其值为1 6.由以上分析知,掷两颗骰子得到的点数和是几就选几班,这种方法不公平.若按这种选法,显然7班被选中的机会最大,2班和12班被选中的机会最小.。

2019年人教版高中数学必修三3.1随机事件的概率(3课时)优质课教案

2019年人教版高中数学必修三3.1随机事件的概率(3课时)优质课教案

第一课时 3.1.1 随机事件的概率教学要求:了解随机事件、必然事件、不可能事件的概念;正确理解事件A 出现的频率的意义;正确理解概率的概念,明确事件A 发生的频率f n (A)与事件A 发生的概率P (A )的区别与联系;利用概率知识正确理解现实生活中的实际问题.教学重点:事件的分类;概率的定义以及概率和频率的区别与联系. 教学难点:随机事件及其概率,概率与频率的区别和联系.教学过程:1. 讨论:①抛一枚硬币,它将正面朝上还是反面朝上? ②购买本期福利彩票是否能中奖?2. 提问:日常生活中,有些问题是很难给予准确无误的回答的,但当我们把某些事件放在一起时,会表现出令人惊奇的规律性.这其中蕴涵什么意思?二、讲授新课:1. 教学基本概念:① 实例:①明天会下雨 ②母鸡会下蛋 ③木材能导电② 必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件;③ 不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件;④ 确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件; 随机事件:……⑤ 频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数;称事件A 出现的比例f n (A)=nn A 为事件A 出现的概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率;⑥ 频率与概率的区别与联系:随机事件的频率,指此事件发生的次数n A 与试验总次数n 的比值nn A ,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。

我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。

频率在大量重复试验的前提下可以近似地作为这个事件的概率.2. 教学例题:① 出示例1:指出下列事件是必然事件、不可能事件还是随机事件?(1)如果,a b 都是实数,a b b a +=+;(2)没有水分,种子发芽;(3)从分别标有1,2,3,4,5,6的6张号签中任取一张,得到4号签.② 出示例2 某射手在同一条件下进行射击,结果如下表所示:的概率约是什么?(教法:先依次填入表中的数据,在找出频率稳定在常数,即为击中靶心的概率)③ 练习:某人进行打靶练习,共射击10次,其中有2次中10环,有3次环中9环,有4次中8环,有1次未中靶,试计算此人中靶的频率,假设此人射击1次,试问中靶的频率约为多大?中10环的概率约为多大?3. 小结:随机事件、必然事件、不可能事件的概念;事件A出现的频率的意义,概率的概念三、巩固练习:1. 练习:1. 教材 P105 1、22. 作业 2、3第二课时 3.1.2 概率的意义教学要求:正确理解概率的意义, 并能利用概率知识正确解释现实生活中的实际问题.教学重点:概率意义的理解和应用.教学难点:用概率知识解决现实生活中的具体问题.教学过程:一、复习准备:1. 讨论:有人说,既然抛一枚硬币出现正面的概率是0.5,那么连续两次抛一枚质地均匀的硬币,一定是“一次正面朝上,一次反面朝上”,你认为这种想法正确吗?2. 提问:如果某种彩票的中奖概率是1,那么买1000张这种彩票1000一定能中奖吗?二、讲授新课:1. 教学基本概念:①概率的正确理解:概率是描述随机事件发生的可能性大小的度量,事件A的概率P(A)越大,其发生的可能性就越大;概率P(A)越小,事件A发生的可能性就越小.②概率的实际应用(知道随机事件的概率的大小,有利我们做出正确的决策,还可以判断某些决策或规则的正确性与公平性.)③游戏的公平性:应使参与游戏的各方的机会为等可能的,即各方的概率相等,根据这一教学要求确定游戏规则才是公平的④决策中的概率思想:以使得样本出现的可能性最大为决策的准则⑤天气预报的概率解释:降水的概率是指降水的这个随机事件出现的可能,而不是指某些区域有降水或能不能降水.⑥遗传机理中的统计规律:2. 教学例题:①出示例1:有人说,既然抛一枚硬币出现正面向上的概率为0.5,那么连续抛一枚硬币两次,一定是一次正面朝上,一次反面朝上,你认为这种想法正确吗?,那么买1000张这种彩票②练习:如果某种彩票的中奖概率是11000一定能中奖吗?请用概率的意义解释.(分析:买1000张彩票,相当于1000次试验,因为每次试验的结果都是随机的,所以做1000次试验的结果也是随机的,也就是说,买1000张彩票有可能没有一张中奖。

人教版高中数学必修三第三章第1节 3.1.1 随机事件的概率 课件(共25张PPT)

人教版高中数学必修三第三章第1节 3.1.1 随机事件的概率  课件(共25张PPT)
3.抛掷一枚硬币出现正面朝上的概率是 0.5, 所以将一枚硬币投掷10000次,出现正面 朝上的次数很有可能接近于5000次。
事件“甲乙两人进行‘石头剪刀布’的 游戏,结果甲获胜”是哪一类事件?
为了估计上述随机事件发生的概率,我 们可以采用何种方法?
知识小结
1.随机事件的概念
在一定条件下可能发生也可能不发生的 事件,叫做随机事件. 2.随机事件的概率的统计定义
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0
25
10 70 130 310 700 1500 2000 3000 试验次数
结论:当试验的油菜籽的粒数很多时,油菜籽发 芽的频率 m 接近于常数0.9,在它附近摆动。
n
思考:
1.事件A发生的频率 fn(A) 是不是不变的? 2.事件A的概率P(A)是不是不变的? 3.它们之间有什么区别与联系?
优等品的频率 1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0 50
100
200
500
1000 2000 试验次数
结频论率:m 当接抽近查于的常球数数0.很95多,时在,它抽附到近优摆等动品。的
n
某种油菜籽在相同条件下的发芽试验结果表:
某种油菜籽在相同条件下的发芽试验结果表:
发芽的频率
随机事件的概率
1. 引言
在一些人看来,总觉得数学都是研究现实世界中确定性 现象的数量规律,其实不然。大家知道,任何事物的发展 是既有偶然性又有必然性,为了研究一些无法确定的现象 的规律,早在十七世纪数学的重要分支概率统计便应运而 生,最初是欧洲保险业的发展促成这门学科的诞生,经过 几百年的发展和应用概率统计已遍布所有的领域,你比如 利用概率统计,二战中美军破译日军的电报密码,;利用概 率统计我国数学家得出《红楼梦》的前八十回与后四十回 出自两位作家的手笔,解决了红学家长期争论不休的问题; 还是利用概率统计使我们对变化莫测的天气的预报越来越 准……,总之,概率统计这门古老又十分有用的学科,如今 它已经渗透到生活的方方面面。

高中数学必修三第三章概率知识要点

高中数学必修三第三章概率知识要点

一、随机事件的概率1.事件与随机事件在一定条件下必然发生的事件叫;在一定条件下不可能发生的事件叫;在一定条件下可能发生也可能不发生的事件叫。

2.事件的频率与概率⑴若在n次试验中事件A发生了m次, 则称为事件A的频率。

记做。

二、⑵若随着试验次数n的增大, 事件A的频率总接近某个常数p, 在它的附近作微小摆动, 则称为事件A的概率, 记做, 显然。

三、 3.概率从数量上反映了一个事件的大小。

四、概率的基本性质1.事件的关系与运算:(1)互斥事件:若为, 则称事件与事件互斥。

(2)对立事件:若为, 为, 则称事件与事件互为对立事件。

2.概率的几个基本性质:(1)概率的取值范围是: 。

(2)的概率为1;的概率为0。

五、(3)如果事件与事件互斥, 那么。

六、(4)如果事件与事件对立, 那么;;。

七、古典概型1.古典概型的特征:(1):一次试验中, 基本事件只有有限个;八、(2): 每个基本事件发生的可能性都相等。

九、2、求古典概率的常用方法: 列举法与列表法。

十、几何概型1.几何概型的特征:(1)几何概型的基本事件有无穷多个;(2)每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例。

2.求几何概率用到的一个方法: 线性规划。

练习题:1.甲盒中有红, 黑, 白三种颜色的球各3个, 乙盒子中有黄, 黑, 白, 三种颜色的球各2个, 从两个盒子中各取1个球, 求取出的两个球是不同颜色的概率.2.设关于的一元二次方程, 若是从区间任取的一个数, 是从区间任取的一个数,求上述方程有实数根的概率.3.将一颗质地均匀的正方体骰子(六个面的点数分别为1, 2, 3, 4, 5, 6)先后抛掷两次, 将得到的点数分别记为.将的值分别作为三条线段的长, 求这三条线段能围成等腰三角形的概率.1 / 1。

数学必修三 3.1.1概率第一课时

数学必修三  3.1.1概率第一课时
第三章 概 率
3.1 随机事件的概率
1 随机事件的概率
事件分类
阅读课本
(1)导体通电时发热; (2)向上抛出的石头会下落; (3)在标准大气压下水温升高到100°C 会沸
腾. (4)在没有水分的真空中种子发芽; (5)在常温常压下钢铁融化; (6)服用一种药物使人永远年轻. (7)某人射击一次命中目标; (8)马林能夺取北京奥运会男子乒乓球单打冠
军; (9)抛掷一个骰字出现的点数为偶数.
• 既然随机事件A在大量重复试验中发生 的频率fn(A)趋于稳定,在某个常数附 近摆动,那我们就可以用这个常数来 度量事件A发生的可能性的大小,并把 这个常数叫做事件A发生的概率,记作 P(A).
通过大量重复试验得 到事件A发生的频率的稳定 值,即概率.
思考7:在相同条件下,事件A在先后两次 试验中发生的频率fn(A)是否一定相等? 事件A在先后两次试验中发生的概率 P(A)是否一定相等?
n
(1)填写表中击中靶心的频率;
(2)这个射手射击一次,击中靶心的概
率约是多少?
0.90
频率具有随机性,做同样次数的重复 试验,事件A发生的频率可能不相同; 概率是一个确定的数,是客观存在的, 与每次试验无关.
例1 某射手在同一条件下进行射击,结 果如下表所示:
射击次数n
10 20 50 100 200 500
击中靶心次数m 8 19 44 92 178 455
击中靶心的频率 m 0.8 0.95 0.88 0.92 0.89 0.91

2019-2020年高中数学-第三章概率教案-新人教版必修3

2019-2020年高中数学-第三章概率教案-新人教版必修3

2019-2020年高中数学第三章概率教案新人教版必修3一、课时学习目标知识与技能1、掌握随机事件、必然事件、不可能事件的概念。

2、正确理解事件A出现的频率的意义。

3、正确理解概率的概率和意义,明确事件A 发生的频率f n(A)与事件A发生的概率P(A)的区别与联系。

4、利用概率知识,正确理解现实生活中的实际问题。

过程与方法通过在抛硬币、抛骰子的试验中获取数据的过程,培养探索、归纳的能力和自主学习的能力。

情感、态度与价值观1、通过自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系。

2、培养辩证唯物主义观点,增强科学意识。

二、课前预习导学请同学们阅读P108—112,完成下列问题1、事件的有关概念(1)必然条件:在条件S下,_________会发生的事件,叫做相对于条件S的必然事件,简称必然事件;(2)不可能事件:在条件S下,__________会发生的事件,叫做相对于条件S的不可能事件,简称不可能事件;(3)确定事件:__________事件与___________事件统称为相对于条件S的确定事件,简称确定事件;(4)随机事件:在条件S下,___________的事件叫做相对于条件S的随机事件,简称随机事件。

(5)_________事件与________事件统称为事件,一般用________表示。

2、概率与频率(1)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的_________,称事件A出现的比例fn(A)=为事件A出现的__________,显然频率的取值范围是____________。

(2)概率:在大量重复试验后,随着试验次数的增加,事件A发生的频率如果逐渐________在区间[0,1]中的某个______上,这个便称为事件A的概率,用P(A)表示,显示概率的取值范围是[0,1],且不可能事件的概率为_________,必然事件的概率为___________。

2019-2020学年人教A版数学必修三课件:第3章 3.1 3.1.1 随机事件的概率

2019-2020学年人教A版数学必修三课件:第3章 3.1 3.1.1 随机事件的概率
3.写试验结果时,要按顺序写,特别要注意题目中的有关字眼, 如“先后”“依次”“顺序”“放回”“不放回”等.
第三十七页,编辑于星期六:二十三点 二分。
当堂达标 固双基
第三十八页,编辑于星期六:二十三点 二分。
1.判断下列结论的正误(正确的打“√”,错误的打“×”)
(1)“抛掷硬币五次,均正面向上”是不可能事件. ( )
A.4 B.3 C.2 D.1
第十七页,编辑于星期六:二十三点 二分。
B [③“每年的国庆节都是晴天”是随机事件,故错误;①②④ 的判断均正确.]
第十八页,编辑于星期六:二十三点 二分。
试验结果的列举
【例 2】 设集合 M={1,2,3,4},a∈M,b∈M,(a,b)是 一个基本事件.
(1)“a+b=5”这一事件包含哪几个基本事件? (2)“a=b”这一事件包含哪几个基本事件? (3)“直线 ax+by=0 的斜率 k>-1”这一事件包含哪几个基本事 件?
第二十六页,编辑于星期六:二十三点 二分。
3.试验次数越多,频率就越接近概率吗? [提示] 不是.随着试验次数的增多(足够多),频率稳定于概率 的可能性在增大.在事件的概率未知的情况下,我们常用频率作为概 率的估计值.即概率是频率的稳定值,频率是概率的估计值.
第二十七页,编辑于星期六:二十三点 二分。
第二十一页,编辑于星期六:二十三点 二分。
不重不漏地列举试验的所有可能结果的方法 (1)结果是相对于条件而言的,要弄清试验的结果,必须首先明 确试验中的条件. (2)根据日常生活经验,按照一定的顺序列举出所有可能的结果, 可应用画树状图、列表等方法解决.
第二十二页,编辑于星期六:二十三点 二分。
2.下列随机事件中,一次试验各指什么?试写出试验的所有结 果.

2019-2020学年数学高中人教A版必修3课件:3.1.1随机事件的概率(一)

2019-2020学年数学高中人教A版必修3课件:3.1.1随机事件的概率(一)

-15-
五、[作业精选,巩固提高]
作业:P113——1.2.3.
课后巩固:
1.将一枚硬币向上抛掷 10 次,其中正面向上恰有 5 次是( )
A.必然事件
B.随机事件
C.不可能事件 D.无法确定
2.下列说法正确的是( )
A.任一事件的概率总在(0.1)内
B.不可能事件的概率不一定为 0
C.必然事件的概率一定为 1
答:根据定义,事件(1)、(4)、(6)是必然事件;事件(2)、(9)、(10)是不可能事 件;事件(3)、(5)、(7)、(8)是随机事件.
-11-
例 2 .某射手在同一条件下进行射击,结果如下表所示:
射击次数 n
10
20
50
100 200 500
击中靶心次数 m
8
19
44
92
178
455
击中靶心的频率 m n
4.某篮球运动员,在同一条件下进行投篮练习,结果如下表如示。
投篮次数
进球次数 m 进球频率 m
n
(1)计算表中进球的频率; (2)这位运动员投篮一次,进球的概率约为多少?
-17-
答案: 1.B[提示:正面向上恰有 5 次的事件可能发生,也可能不发生,即该事件为随机事件。] 2.C[提示:任一事件的概率总在[0,1]内,不可能事件的概率为 0,必然事件的概率为 1.] 3. 解 : ( 1) 填 入 表 中 的 数 据 依 次 为 1,0.8,0.9,0.857,0.892,0.910,0.913,0.893,0.903,0.905(. 2)该油菜子发芽的概率约为 0.897。 4.解:(1)填入表中的数据依次为 0.75,0.8,0.8,0.85,0.83,0.8,0.76.(2)由于上述频 率接近 0.80,因此,进球的概率约为 0.80。

2019_2020学年高中数学第三章概率3.1.1随机事件的概率课件新人教A版必修3

2019_2020学年高中数学第三章概率3.1.1随机事件的概率课件新人教A版必修3
第三章 概率
3.1 随机事件的概率
3.1.1 随机事件的概率
第三章 概率
考点
学习目标
核心素养
在具体情境中,了解随机事
件发生的不确定性和频率的
频率与概率
数学抽象、数学运算
稳定性,了解概率的意义以
及频率与概率的区别
问题导学 (1)什么叫做必然事件、不可能事件、确定事件、随机事件? (2)什么叫做概率? (3)什么叫做频数、频率? (4)频率与概率的区别与联系是什么?
解析:根据频率与概率的关系,(1)正确;必然事件的概率是 1,不 可能事件的概率是 0,(2)不正确;当 P(A)→0,事件 A 发生的可能 性很小,(3)不正确. 答案:(1)√ (2)× (3)×
下列事件是确定事件的是( ) A.2020 年奥运会期间不下雨 B.没有水,种子发芽 C.对任意 x∈R,有 x+1>2x D.抛掷一枚硬币,正面朝上 答案:B
■名师点拨 (1)对事件分类的两个关键点 ①条件:在条件 S 下事件发生与否是与条件相对而言的,没有条件, 就无法判断事件是否发生. ②结果发生与否:有时结果较复杂,要准确理解结果包含的各种情 况. (2)随机试验的特点 ①可以在相同条件下重复进行. ②试验的所有结果是明确可知的,但不止一个. ③每次试验总是出现这些结果中的一个,但在一次试验之前不能确 定该试验出现哪个结果.
不重不漏地列举试验的所有可能结果的方法 (1)结果是相对于条件而言的,要弄清试验的结果,必须首先明确 试验中的条件. (2)根据日常生活经验,按照一定的顺序列举出所有可能的结果, 可应用画树状图、列表等方法解决.
在下列随机试验中,一次试验各指什么?它们各 有几次试验?试验的可能结果有哪几种? (1)观察从北京站开往合肥站的 3 趟列车中正点到达的列车数; (2)某人射击两次,观察中靶的次数.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年高中数学第三章概率第1课时随机事件及其概率
导学案苏教版必修3
【学习目标】
1.体会确定性现象与随机现象的含义.
2.了解必然事件、不可能事件及随机事件的意义.
3.了解随机事件发生的不确定性及频率的稳定性.
4.了解概率的意义以及概率与频率的区别.
5.理解概率的统计定义,知道根据概率的统计定义计算概率的方法.
6.通过对概率的学习,使学生对对立统一的辩证规律有进一步的认识.
【问题情境】
观察下列现象:
(1)在标准大气压下把水加热到1000C,沸腾; (2)导体通电,发热;
(3)同性电荷,互相吸引; (4)实心铁块丢入水中,铁块浮起;
(5)买一张福利彩票,中奖; (6)抛一枚硬币,正面向上.
这些现象各有什么特点?
【合作探究】
1.基本概念:确定性现象、随机现象、试验、事件.
2.必然事件:;
不可能事件:;
随机事件: .
事件的表示:以后我们用A、B、C等大写字母表示随机事件,简称事件.
3. 随机事件的概率:
记作,概率P(A)必须满足的两个条件为(1)(2)
4. 概率与频率的关系:
(1)一般地,如果随机事件A在n次试验中发生了m次,当试验的次数n很大时,我们可以将事件A发生的频率作为事件A的概率的近似值,即 .
(2)频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率,并在其附近摆动.概率是频率的稳定值.频率本身是随机的,在试验前不能确定.
(3)概率是一个确定的数,是客观存在的,与试验无关.它反映了随机事件发生的可能性大小.
(4)必然事件的概率为,不可能事件的概率是 .随机事件的概率 .
【展示点拨】
例1.试判断下列事件是随机事件、必然事件还是不可能事件:
(1)我国东南沿海某地明年将3次受到热带气旋的侵袭;
a ;
(2)若a为实数,则0
(3)某人开车通过10个路口都将遇到绿灯;
(4)抛一石块,石块下落;
(5)一个正六面体的6个面分别写有数字1,2,3,4,5,6,将它抛掷两次,向上的面的
数字之和大于12.
例2.某射手在同一条件下进行射击,结果如下:
(1)计算表中击中靶心的各个频率;
(2)这个射手射击一次,击中靶心的概率约为多少?
例3.某市统计近几年新生儿出生数及其中男婴数(单位:人)如下:
(1)试计算男婴各年出生频率(精确到0.001);
(2)该市男婴出生的概率约是多少?
【学以致用】
1.下列说法是否正确:
(1)中奖率为1/1000的彩票,买1000张一定中奖.( )
(2)掷一枚硬币,连续出现5次正面向上.某同学认为下次出现反面向上的概率大于
0.5.( )
(3)某医院治疗一种疾病的治愈率为10%,如果前9个病人都没有治愈,那么第10个病人就
一定能治愈. ( )
2.下列说法:
(1)频率是反映事件发生的频繁程度,概率反映事件发生的可能性的大小;
(2)做n次随机试验,事件A发生的频率m
n
就是事件的概率;
(3)频率是概率的近似值,概率是频率的稳定值;
(4)频率是不能脱离具体的n次试验的实验值,而概率是具有确定性的不依赖于试验次数的理论值.
其中正确的是 .
3.同时掷两枚骰子,点数之和在2至12点间的事件是___事件,点数之和为12点的事件是___事件,点数之和小于2或大于12的事件是___事件,点数之差为6点的事件是___事件.
4.10件产品中有8件正品,两件次品,从中随机地取出3件,则下列事件中是必然事
件的
为 .
(1) 3件都是正品; (2) 至少有一件次品; (3) 3件都是次品; (4)至少有一件
正品.
5.某批乒乓球产品质量检查结果如下表所示:
(1)计算表中乒乓球优等品的频率;
(2)从这批乒乓球产品中任取一个,质量检查为优等品的概率约是多少?
第1课时随机事件及其概率
【基础训练】
1.给出下列两个随机事件:①抛一枚质地均匀的硬币10次,有10次正面向上;②某人在比赛中共罚球8次,有5次投球命中.其中事件①的一次试验是;事件②一共进行了次试验.
2.下列事件中是不可能事件的为 .(填序号)
①从自然数中任取两数,其中一个是奇数;
②从自然数中任取两数,其乘积是偶数;
③从自然数中任取两数,其和是1.5.
3.某班有15名团员,其中男生10人,女生5人.现从15名团员中任意选6个人,下列事件中是必然事件的为 .(填序号)
①都是男生;②至少有1名男生;③都是女生;④至少有1名女生.
4.下列事件中是随机事件的为 .(填序号)
①在实数集中任意取一个数x,有x2+3x+2>0;
②投三颗骰子,点数之和大于2;
③从1,2,3, …,9中任取两数,两数之和为偶数;
④地面上有一直径是“壹元”硬币直径10倍的圆,现向上抛一枚“壹元”硬币,恰好落在圆内.
5.以下结论中错误的有个.
①如果一件事发生的机会只有十亿分之一,那么它就不可能发生;
②如果一件事发生的机会达到99.5%,那么它就必然发生;
③如果一件事不是不可能发生的,那么它就必然发生;
④如果一件事不是必然发生的,那么它就不可能发生.
6.将一骰子抛掷1200次,估计点数是6的次数大约是次,估计点数大于3的次数大约是次.
【思考应用】
7. 指出下列事件是随机事件、必然事件还是不可能事件:
(1)某人射击一次,中靶; .
(2)在一个标准大气压下且温度低于00C时,冰融化; .
(3)抛掷两枚骰子,点数之和为16; .
(4)a,b是实数,如果a2+b2=0,那么a=b=0; .
(5)明天下雨; .
(6)从分别写有号数1,2,3的3张标签中任取一张,得到1号签. .
8.每道选择题有4个选项,其中只有1个选项是正确的.某次考试有12道选择题,某人说:“每个选项正确的概率是四分之一,我每题都选择第1个选项,则一定有3道选择正确.”这句话是的.(填“正确”或“不正确”)
9.某厂检验某产品的质量记录如下:
该产品不合格率在一定范围内摆动,而且随着抽检件数的增多,逐渐稳定.请判断从该产品中任意取一件为合格品的概率为 .(精确到0.01)
10.用红、黄、蓝三种不同的颜色涂在如图所示的田字格的四个小方格A,B,C,D内,一格涂一种颜色,而相邻两格涂不同的颜色.试编一些事件,使它们分别是随机事件、必然事件、以及不可能事件.
【拓展提升】
11.在10名学生中,男生有x名,现从10名学生中任选6名去参加某项活动.设“至少有1名女生”为事件A,“5名男生,1名女生”为事件B,“3名男生,3名女生”为事件C.当x 为何值时,使得同时满足A为必然事件,B为不可能事件,且C为随机事件?
12.已知2()2,[2,1]f x x x x =+∈-,给出事件A :().f x a ≥ (1)当A 为必然事件时,求a 的取值范围; (2)当A 为不可能事件时,求a 的取值范围.。

相关文档
最新文档