山东省2018-2019学年高二上学期第一次月考数学(理)试题Word版含解析
2018-2019学年上学期高二数学12月月考试题含解析(1679)
天柱县第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知函数f (x )=x 2﹣2x+3在[0,a]上有最大值3,最小值2,则a 的取值范围( ) A .[1,+∞) B .[0.2} C .[1,2] D .(﹣∞,2]2. 已知双曲线的渐近线与圆x 2+(y ﹣2)2=1相交,则该双曲线的离心率的取值范围是( )A .(,+∞) B .(1,)C .(2.+∞)D .(1,2)3. 已知全集I={1,2,3,4,5,6,7,8},集合M={3,4,5},集合N={1,3,6},则集合{2,7,8}是( ) A .M ∪NB .M ∩NC .∁I M ∪∁I ND .∁I M ∩∁I N4. 若向量=(3,m ),=(2,﹣1),∥,则实数m 的值为( )A .﹣B .C .2D .65. f ()=,则f (2)=( )A .3B .1C .2D .6. 复数z=(m ∈R ,i 为虚数单位)在复平面上对应的点不可能位于( )A .第一象限B .第二象限C .第三象限D .第四象限7. 空间直角坐标系中,点A (﹣2,1,3)关于点B (1,﹣1,2)的对称点C 的坐标为( )A .(4,1,1)B .(﹣1,0,5)C .(4,﹣3,1)D .(﹣5,3,4)8. 若f (x )=﹣x 2+2ax 与g (x )=在区间[1,2]上都是减函数,则a 的取值范围是( )A .(﹣∞,1]B .[0,1]C .(﹣2,﹣1)∪(﹣1,1]D .(﹣∞,﹣2)∪(﹣1,1]9. 已知向量(,1)a t =,(2,1)b t =+,若||||a b a b +=-,则实数t =( ) A.2- B.1- C. 1 D. 2【命题意图】本题考查向量的概念,向量垂直的充要条件,简单的基本运算能力. 10.设函数()()21xf x e x ax a =--+,其中1a <,若存在唯一的整数,使得()0f t <,则的取值范围是()A.3,12e⎡⎫-⎪⎢⎣⎭B.33,24e⎡⎫-⎪⎢⎣⎭C.33,24e⎡⎫⎪⎢⎣⎭D.3,12e⎡⎫⎪⎢⎣⎭1111]11.在极坐标系中,圆的圆心的极坐标系是( )。
2018-2019学年上学期高二数学12月月考试题含解析(371)
永胜县第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 设()f x 是偶函数,且在(0,)+∞上是增函数,又(5)0f =,则使()0f x >的的取值范围是( )A .50x -<<或5x >B .5x <-或5x >C .55x -<<D .5x <-或05x <<2. 抛物线y=﹣x 2上的点到直线4x+3y ﹣8=0距离的最小值是( )A .B .C .D .33. 已知函数f (2x+1)=3x+2,且f (a )=2,则a 的值等于( ) A .8B .1C .5D .﹣14. 若命题“p 或q ”为真,“非p ”为真,则( )A .p 真q 真B .p 假q 真C .p 真q 假D .p 假q 假5. 若函数f (x )=3﹣|x ﹣1|+m 的图象与x 轴没有交点,则实数m 的取值范围是( ) A .m ≥0或m <﹣1B .m >0或m <﹣1C .m >1或m ≤0D .m >1或m <06. 在△ABC 中,sinB+sin (A ﹣B )=sinC 是sinA=的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也非必要条件7. 已知正方体ABCD ﹣A 1B 1C 1D 1中,点E 为上底面A 1C 1的中心,若+,则x 、y 的值分别为( )A .x=1,y=1B .x=1,y=C .x=,y=D .x=,y=18. 线段AB 在平面α内,则直线AB 与平面α的位置关系是( )A .AB ⊂αB .AB ⊄αC .由线段AB 的长短而定D .以上都不对9. 已知命题p :∃x ∈R ,cosx ≥a ,下列a 的取值能使“¬p ”是真命题的是( )A .﹣1B .0C .1D .210.已知函数,函数,其中b ∈R ,若函数y=f (x )﹣g (x )恰有4个零点,则b 的取值范围是( )A .B .C .D .11.设复数z 满足z (1+i )=2(i 为虚数单位),则z=( ) A .1﹣i B .1+i C .﹣1﹣iD .﹣1+i12.已知α,β为锐角△ABC 的两个内角,x ∈R ,f (x )=()|x ﹣2|+()|x ﹣2|,则关于x 的不等式f (2x ﹣1)﹣f (x+1)>0的解集为( )A .(﹣∞,)∪(2,+∞)B .(,2)C .(﹣∞,﹣)∪(2,+∞)D .(﹣,2)二、填空题13.下列关于圆锥曲线的命题:其中真命题的序号 .(写出所有真命题的序号).①设A ,B 为两个定点,若|PA|﹣|PB|=2,则动点P 的轨迹为双曲线;②设A ,B 为两个定点,若动点P 满足|PA|=10﹣|PB|,且|AB|=6,则|PA|的最大值为8; ③方程2x 2﹣5x+2=0的两根可分别作椭圆和双曲线的离心率; ④双曲线﹣=1与椭圆有相同的焦点.14.对于集合M ,定义函数对于两个集合A ,B ,定义集合A △B={x|f A (x )fB (x )=﹣1}.已知A={2,4,6,8,10},B={1,2,4,8,12},则用列举法写出集合A △B 的结果为 .15.在极坐标系中,直线l 的方程为ρcos θ=5,则点(4,)到直线l 的距离为 .16.若直线:012=--ay x 与直线2l :02=+y x 垂直,则=a .17.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()ln 4f x x x =+-的零点在区间()1k k +,内,则正整数k 的值为________. 18.在ABC ∆中,已知角C B A ,,的对边分别为c b a ,,,且B c C b a sin cos +=,则角B为 .三、解答题19.电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?非体育迷体育迷合计男女总计(2)将日均收看该体育节目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2名,求至少有1名女性观众的概率.附:K2=P(K2≥k0)0.50 0.40 0.25 0.15 0.10 0.05 0.0250.010 0.005 0.001k00.455 0.708 1.323 2.072 2.706 3.84 5.024 6.63520.已知A(﹣3,0),B(3,0),C(x0,y0)是圆M上的三个不同的点.(1)若x0=﹣4,y0=1,求圆M的方程;(2)若点C是以AB为直径的圆M上的任意一点,直线x=3交直线AC于点R,线段BR的中点为D.判断直线CD与圆M的位置关系,并证明你的结论.21.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()()3231312f x x k x kx =-+++,其中.k R ∈ (1)当3k =时,求函数()f x 在[]0,5上的值域; (2)若函数()f x 在[]1,2上的最小值为3,求实数k 的取值范围.22.如图,M 、N 是焦点为F 的抛物线y 2=2px (p >0)上两个不同的点,且线段MN 中点A 的横坐标为,(1)求|MF|+|NF|的值;(2)若p=2,直线MN 与x 轴交于点B 点,求点B 横坐标的取值范围.23.(本小题满分12分)已知平面向量(1,)a x =,(23,)b x x =+-,()x R ∈. (1)若//a b ,求||a b -;(2)若与夹角为锐角,求的取值范围.24.设椭圆C :+=1(a >b >0)过点(0,4),离心率为.(1)求椭圆C 的方程;(2)求过点(3,0)且斜率为的直线被椭圆所截得线段的中点坐标.永胜县第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】B考点:函数的奇偶性与单调性.【思路点晴】本题主要考查函数的单调性、函数的奇偶性,数形结合的数学思想方法.由于函数是偶函数,所以定义域关于原点对称,图象关于y 轴对称,单调性在y 轴两侧相反,即在0x >时单调递增,当0x <时,函数单调递减.结合(5)0f =和对称性,可知(5)0f ±=,再结合函数的单调性,结合图象就可以求得最后的解集.12. 【答案】A【解析】解:由,得3x 2﹣4x+8=0.△=(﹣4)2﹣4×3×8=﹣80<0.所以直线4x+3y ﹣8=0与抛物线y=﹣x 2无交点.设与直线4x+3y ﹣8=0平行的直线为4x+3y+m=0联立,得3x 2﹣4x ﹣m=0.由△=(﹣4)2﹣4×3(﹣m )=16+12m=0,得m=﹣.所以与直线4x+3y ﹣8=0平行且与抛物线y=﹣x 2相切的直线方程为4x+3y ﹣=0.所以抛物线y=﹣x 2上的一点到直线4x+3y ﹣8=0的距离的最小值是=.故选:A .【点评】本题考查了直线与圆锥曲线的关系,考查了数学转化思想方法,训练了两条平行线间的距离公式,是中档题.3. 【答案】B【解析】解:∵函数f (2x+1)=3x+2,且f (a )=2,令3x+2=2,解得x=0,∴a=2×0+1=1.故选:B.4.【答案】B【解析】解:若命题“p或q”为真,则p真或q真,若“非p”为真,则p为假,∴p假q真,故选:B.【点评】本题考查了复合命题的真假的判断,是一道基础题.5.【答案】A【解析】解:∵函数f(x)=3﹣|x﹣1|+m的图象与x轴没有交点,∴﹣m=3﹣|x﹣1|无解,∵﹣|x﹣1|≤0,∴0<3﹣|x﹣1|≤1,∴﹣m≤0或﹣m>1,解得m≥0或m>﹣1故选:A.6.【答案】A【解析】解:∵sinB+sin(A﹣B)=sinC=sin(A+B),∴sinB+sinAcosB﹣cosAsinB=sinAcosB+cosAsinB,∴sinB=2cosAsinB,∵sinB≠0,∴cosA=,∴A=,∴sinA=,当sinA=,∴A=或A=,故在△ABC中,sinB+sin(A﹣B)=sinC是sinA=的充分非必要条件,故选:A7.【答案】C【解析】解:如图,++().故选C.8.【答案】A【解析】解:∵线段AB在平面α内,∴直线AB上所有的点都在平面α内,∴直线AB与平面α的位置关系:直线在平面α内,用符号表示为:AB⊂α故选A.【点评】本题考查了空间中直线与直线的位置关系及公理一,主要根据定义进行判断,考查了空间想象能力.公理一:如果一条线上的两个点在平面上则该线在平面上.9.【答案】D【解析】解:命题p:∃x∈R,cosx≥a,则a≤1.下列a的取值能使“¬p”是真命题的是a=2.故选;D.10.【答案】D【解析】解:∵g(x)=﹣f(2﹣x),∴y=f(x)﹣g(x)=f(x)﹣+f(2﹣x),由f(x)﹣+f(2﹣x)=0,得f(x)+f(2﹣x)=,设h(x)=f(x)+f(2﹣x),若x≤0,则﹣x≥0,2﹣x≥2,则h(x)=f(x)+f(2﹣x)=2+x+x2,若0≤x≤2,则﹣2≤﹣x≤0,0≤2﹣x≤2,则h(x)=f(x)+f(2﹣x)=2﹣x+2﹣|2﹣x|=2﹣x+2﹣2+x=2,若x>2,﹣x<﹣2,2﹣x<0,则h(x)=f(x)+f(2﹣x)=(x﹣2)2+2﹣|2﹣x|=x2﹣5x+8.作出函数h (x )的图象如图:当x ≤0时,h (x )=2+x+x 2=(x+)2+≥,当x >2时,h (x )=x 2﹣5x+8=(x ﹣)2+≥,故当=时,h (x )=,有两个交点,当=2时,h (x )=,有无数个交点,由图象知要使函数y=f (x )﹣g (x )恰有4个零点,即h (x )=恰有4个根,则满足<<2,解得:b ∈(,4),故选:D .【点评】本题主要考查函数零点个数的判断,根据条件求出函数的解析式,利用数形结合是解决本题的关键.11.【答案】A【解析】解:∵z (1+i )=2,∴z===1﹣i .故选:A .【点评】本题考查了复数的运算法则、共轭复数的定义,属于基础题.12.【答案】B【解析】解:∵α,β为锐角△ABC 的两个内角,可得α+β>90°,cos β=sin (90°﹣β)<sin α,同理cos α<sin β,∴f (x )=()|x ﹣2|+()|x ﹣2|,在(2,+∞)上单调递减,在(﹣∞,2)单调递增,由关于x的不等式f(2x﹣1)﹣f(x+1)>0得到关于x的不等式f(2x﹣1)>f(x+1),∴|2x﹣1﹣2|<|x+1﹣2|即|2x﹣3|<|x﹣1|,化简为3x2﹣1x+8<0,解得x∈(,2);故选:B.二、填空题13.【答案】②③.【解析】解:①根据双曲线的定义可知,满足|PA|﹣|PB|=2的动点P不一定是双曲线,这与AB的距离有关系,所以①错误.②由|PA|=10﹣|PB|,得|PA|+|PB|=10>|AB|,所以动点P的轨迹为以A,B为焦点的图象,且2a=10,2c=6,所以a=5,c=3,根据椭圆的性质可知,|PA|的最大值为a+c=5+3=8,所以②正确.③方程2x2﹣5x+2=0的两个根为x=2或x=,所以方程2x2﹣5x+2=0的两根可分别作椭圆和双曲线的离心率,所以③正确.④由双曲线的方程可知,双曲线的焦点在x轴上,而椭圆的焦点在y轴上,所以它们的焦点不可能相同,所以④错误.故正确的命题为②③.故答案为:②③.【点评】本题主要考查圆锥曲线的定义和性质,要求熟练掌握圆锥曲线的定义,方程和性质.14.【答案】{1,6,10,12}.【解析】解:要使f A(x)f B(x)=﹣1,必有x∈{x|x∈A且x∉B}∪{x|x∈B且x∉A}={6,10}∪{1,12}={1,6,10,12,},所以A△B={1,6,10,12}.故答案为{1,6,10,12}.【点评】本题是新定义题,考查了交、并、补集的混合运算,解答的关键是对新定义的理解,是基础题.15.【答案】3.【解析】解:直线l的方程为ρcosθ=5,化为x=5.点(4,)化为. ∴点到直线l 的距离d=5﹣2=3.故答案为:3.【点评】本题考查了极坐标化为直角坐标、点到直线的距离,属于基础题.16.【答案】1 【解析】试题分析:两直线垂直满足()02-12=⨯+⨯a ,解得1=a ,故填:1. 考点:直线垂直【方法点睛】本题考查了根据直线方程研究垂直关系,属于基础题型,当直线是一般式直线方程时,0:1111=++c y b x a l ,0:2222=++c y b x a l ,当两直线垂直时,需满足02121=+b b a a ,当两直线平行时,需满足01221=-b a b a 且1221c b c b ≠,或是212121c c b b a a ≠=,当直线是斜截式直线方程时,两直线垂直121-=k k ,两直线平行时,21k k =,21b b ≠.117.【答案】2 【解析】18.【答案】4π 【解析】考点:正弦定理.【方法点晴】本题考查正余弦定理,根据正弦定理,将所给的含有边和角的等式化为只含有角的等式,再利用三角形的三角和是︒180,消去多余的变量,从而解出B 角.三角函数题目在高考中的难度逐渐增加,以考查三角函数的图象和性质,以及三角形中的正余弦定理为主,在2016年全国卷( )中以选择题的压轴题出现.三、解答题19.【答案】【解析】解:(1)由频率分布直方图中可知:抽取的100名观众中,“体育迷”共有(0.020+0.005)×10×100=25名.可得2×2列联表:非体育迷体育迷合计男30 15 45女45 10 55总计75 25 100将2×2列联表中的数据代入公式计算可得K2的观测值为:k==≈3.030.∵3.030<3.841,∴我们没有理由认为“体育迷”与性别有关.(2)由频率分布直方图中可知:“超级体育迷”有5名,从而一切可能结果所组成的基本事件空间Ω={(a1,a2),(a1,a3),(a2,a3),(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)},其中a i(i=1,2,3)表示男性,b j (j=1,2)表示女性.设A表示事件“从“超级体育迷”中任意选取2名,至少有1名女性观众”,则事件A包括7个基本事件:(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2).∴P(A)=.【点评】本题考查了“独立性检验基本原理”、古典概率计算公式、频率分布直方图及其性质,考查了推理能力与计算能力,属于中档题.20.【答案】【解析】解:(1)设圆的方程为x2+y2+Dx+Ey+F=0圆的方程为x2+y2﹣8y﹣9=0…(2)直线CD与圆M相切O、D分别是AB、BR的中点则OD∥AR,∴∠CAB=∠DOB,∠ACO=∠COD,又∠CAO=∠ACO,∴∠DOB=∠COD又OC=OB,所以△BOD≌△COD∴∠OCD=∠OBD=90°即OC⊥CD,则直线CD与圆M相切.…(其他方法亦可)21.【答案】(1)[]1,21;(2)2k ≥.【解析】试题分析:(1)求导,再利用导数工具即可求得正解;(2)求导得()'f x =()()31x x k --,再分1k ≤和1k >两种情况进行讨论;试题解析:(1)解:3k = 时,()32691f x x x x =-++则()()()23129313f x x x x x =-+=--' 令0f x '=得121,3x x ==列表由上表知函数()f x 的值域为[]1,21(2)方法一:()()()()2331331f x x k x k x x k =-++=--'①当1k ≤时,[]()1,2,'0x f x ∀∈≥,函数()f x 在区间[]1,2单调递增 所以()()()min 31113132f x f k k ==-+++= 即53k =(舍) ②当2k ≥时,[]()1,2,'0x f x ∀∈≤,函数()f x 在区间[]1,2单调递减所以()()()min 28613213f x f k k ==-++⋅+= 符合题意③当12k <<时,当[)1,x k ∈时,()'0f x <()f x 区间在[)1,k 单调递减 当(],2x k ∈时,()'0f x >()f x 区间在(],2k 单调递增所以()()()322min 313132f x f k k k k k ==-+++= 化简得:32340k k -+= 即()()2120k k +-=所以1k =-或2k =(舍)注:也可令()3234g k k k =-+则()()23632g k k k k k =='-- 对()()1,2,0k g k ∀∈'≤()3234g k k k =-+在()1,2k ∈单调递减所以()02g k <<不符合题意综上所述:实数k 取值范围为2k ≥方法二:()()()()2331331f x x k x k x x k =-++=--'①当2k ≥时,[]()1,2,'0x f x ∀∈≤,函数()f x 在区间[]1,2单调递减 所以()()()min 28613213f x f k k ==-++⋅+= 符合题意 …………8分 ②当1k ≤时,[]()1,2,'0x f x ∀∈≥,函数()f x 在区间[]1,2单调递增所以()()min 23f x f <=不符合题意③当12k <<时,当[)1,x k ∈时,()'0f x <()f x 区间在[)1,k 单调递减 当(],2x k ∈时,()'0f x >()f x 区间在(],2k 单调递增 所以()()()min 23f x f k f =<=不符合题意综上所述:实数k 取值范围为2k ≥ 22.【答案】【解析】解:(1)设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=8﹣p ,|MF|=x 1+,|NF|=x 2+, ∴|MF|+|NF|=x 1+x 2+p=8;(2)p=2时,y 2=4x ,若直线MN 斜率不存在,则B (3,0);若直线MN 斜率存在,设A (3,t )(t ≠0),M (x 1,y 1),N (x 2,y 2),则代入利用点差法,可得y 12﹣y 22=4(x 1﹣x 2)∴k MN =,∴直线MN 的方程为y ﹣t=(x ﹣3),∴B 的横坐标为x=3﹣,直线MN 代入y 2=4x ,可得y 2﹣2ty+2t 2﹣12=0△>0可得0<t 2<12,∴x=3﹣∈(﹣3,3),∴点B 横坐标的取值范围是(﹣3,3). 【点评】本题考查抛物线的定义,考查点差法,考查学生分析解决问题的能力,属于中档题.23.【答案】(1)2或2)(1,0)(0,3)-.【解析】试题分析:(1)本题可由两向量平行求得参数,由坐标运算可得两向量的模,由于有两解,因此模有两个值;(2)两向量,a b 的夹角为锐角的充要条件是0a b ⋅>且,a b 不共线,由此可得范围.试题解析:(1)由//a b ,得0x =或2x =-, 当0x =时,(2,0)a b -=-,||2a b -=, 当2x =-时,(2,4)a b -=-,||25a b -=.(2)与夹角为锐角,0a b ∙>,2230x x -++>,13x -<<,又因为0x =时,//a b , 所以的取值范围是(1,0)(0,3)-.考点:向量平行的坐标运算,向量的模与数量积.【名师点睛】由向量的数量积cos a b a b θ⋅=可得向量的夹角公式,当为锐角时,cos 0θ>,但当cos 0θ>时,可能为锐角,也可能为0(此时两向量同向),因此两向量夹角为锐角的充要条件是0a b a b⋅>且,a b 不同向,同样两向量夹角为钝角的充要条件是0a b a b⋅<且,a b 不反向.24.【答案】【解析】解:(1)将点(0,4)代入椭圆C 的方程得=1,∴b=4,…由e==,得1﹣=,∴a=5,…∴椭圆C的方程为+=1.…(2)过点(3,0)且斜率为的直线为y=(x﹣3),…设直线与椭圆C的交点为A(x1,y1),B(x2,y2),将直线方程y=(x﹣3)代入椭圆C方程,整理得x2﹣3x﹣8=0,…由韦达定理得x1+x2=3,y1+y2=(x1﹣3)+(x2﹣3)=(x1+x2)﹣=﹣.…由中点坐标公式AB中点横坐标为,纵坐标为﹣,∴所截线段的中点坐标为(,﹣).…【点评】本题考查椭圆的方程与几何性质,考查直线与椭圆的位置关系,考查韦达定理的运用,确定椭圆的方程是关键.。
高二数学上学期第一次月考试题含解析
智才艺州攀枝花市创界学校第二二零二零—二零二壹高二数学上学期第一次月考试题〔含解析〕一、选择题〔本大题一一共13小题,每一小题4分,一共52分.题1—10为单项选择题,题11-13为多项选择题,多项选择题错选得0分,漏选得2分.〕 1.椭圆229225x ky +=的一个焦点是()4,0,那么k =〔〕A.5B.25C.-5D.-25【答案】B 【解析】 【分析】将椭圆方程化为HY 方程,根据焦点坐标求得c ,由此列方程求得k 的值.【详解】椭圆的HY方程为22122525x y k+=,由于椭圆焦点为()4,0,故焦点在x 轴上,且4c =.所以2225254k=+,解得25k =. 应选:B【点睛】本小题主要考察根据椭圆的焦点坐标求参数的值,属于根底题. 2.双曲线22412mx y -=的一条渐近线的方程为20y -=,那么m =〔〕A.3C.4D.16【答案】A 【解析】 【分析】写出双曲线的HY 方程,根据渐近线方程即可得解. 【详解】双曲线22412mx y -=20y -=,即双曲线221213m x y -=的一条渐近线的方程为y x =, 所以124,3m m==. 应选:A【点睛】此题考察根据双曲线的渐近线方程求双曲线HY 方程,关键在于准确掌握双曲线的概念,找准其中的a ,b .3.“x R ∃∈,2440x x -+≤〞的否认是〔〕A.x R ∀∈,2440x x -+>B.x R ∀∈,2440x x -+≥C.x R ∃∈,2440x x -+>D.x R ∃∈,2440x x -+≥【答案】A 【解析】 【分析】 .【详解】A 选项正确. 应选:A 【点睛】. 4.〕 A.2230x x -->,B.π不是无限不循环小数C.直线与平面相交D.在线段AB 上任取一点【答案】B 【解析】【分析】 ACDB.【详解】ACD 均不能判断真假,B. 应选:B 【点睛】.5.平面内,一个动点P ,两个定点1F ,2F ,假设12PF PF -为大于零的常数,那么动点P 的轨迹为〔〕A.双曲线B.射线C.线段D.双曲线的一支或者射线 【答案】D 【解析】【分析】根据双曲线的定义,对动点P 的轨迹进展判断,由此确定正确选项. 【详解】两个定点的间隔为12F F ,当1212PF PF F F -<时,P 点的轨迹为双曲线的一支; 当1212PF PF F F -=时,P 点的轨迹为射线;不存在1212PF PF F F ->的情况.综上所述,P 的轨迹为双曲线的一支或者射线. 应选:D【点睛】本小题主要考察双曲线定义的辨析,属于根底题. 6.〕A.x R ∀∈,2210x x -+>B.0,4x π⎡⎤∀∈⎢⎥⎣⎦,tan 1x <C.a ∀∈R ,in s (s in )a a π-=D.x R ∀∈,12x x+≥ 【答案】C 【解析】 【分析】 .【详解】A.x R ∀∈,2210x x -+>,当21,210x x x =-+=B.0,4x π⎡⎤∀∈⎢⎥⎣⎦,tan 1x <,当,tan 14x x π== C.a ∀∈R ,in s (s in )a a π-=,满足题意; D.x R ∀∈,12x x +≥,当10,2x x x<+≤-. 应选:C 【点睛】.7.假设方程22216x y a a +=-表示双曲线,那么实数a 的取值范围是〔〕A.6a <B.6a <且0a≠ C.2a > D.2a >或者3a <-【答案】B 【解析】 【分析】根据双曲线方程形式得2060a a ⎧≠⎨-<⎩,即可得解.【详解】方程22216x y a a +=-表示双曲线,那么2060a a ⎧≠⎨-<⎩,解得:6a <且0a ≠.应选:B【点睛】此题考察双曲线概念辨析,根据方程表示双曲线求解参数的取值范围,关键在于纯熟掌握双曲线方程的形式.8.1F ,2F 是椭圆(222:13x y C a a+=>的两个焦点,P 是C 上一点.假设1260F PF ∠=︒,那么12F PF △的面积为〔〕B. D.与a 有关【答案】A 【解析】 【分析】根据椭圆的几何性质结合余弦定理求得124F P PF ⋅=,利用三角形面积公式即可得解.【详解】根据椭圆几何性质可得:122F P PF a +=,12F PF △中,由余弦定理:222121212F F F P PF F P PF =+-⋅,即()221212123F F F P PF F P PF =+-⋅()22124343a a F P PF -=-⋅,解得:124F P PF ⋅=12F PF △的面积为121sin 602F P PF ⋅⋅︒=. 应选:A【点睛】此题考察椭圆的几何性质的应用,结合余弦定理和面积公式求三角形面积,关键在于纯熟掌握椭圆根本性质和三角形相关定理公式.9.1F ,2F 是椭圆()222210x y a b a b+=>>的左,右焦点,直线23b y =与该椭圆交于B ,C ,假设2BF C △是直角三角形,那么该椭圆的离心率为〔〕B.【答案】D 【解析】 【分析】联立直线和椭圆求出交点坐标22,,,3333b b B C ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,分别讨论直角情况即可得解.【详解】联立直线和椭圆方程:2222123x y a b b y ⎧=⎪⎪⎨+=⎪⎪⎩ 所以直线23b y =与椭圆()222210x y a b a b+=>>的交点坐标22,33b b B C ⎛⎫⎫⎪⎪ ⎪⎪⎝⎭⎝⎭, 因为椭圆焦点在x 轴,所以角B 不可能为直角,当角Cc =,即e =;当角2F 为直角时,220F B F C ⋅=,即22,,03333b b c c ⎛⎫⎛⎫--⋅-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭22254099a b c -+=,2222544099a a c c --+=225c a =,5e =.应选:D【点睛】此题考察根据直线与椭圆位置关系,结合三角形形状求解离心率,关键在于准确求出直线与椭圆的交点坐标,根据垂直关系建立等量关系求椭圆离心率.10.双曲线221916x y -=的左,右焦点分别为1F ,2F ,P 为右支上一点,且1245cos F PF ∠=,那么12F PF △内切圆的面积为〔〕A.211πB.83π C.649π D.176121π【答案】C 【解析】 【分析】 根据1245cos F PF ∠=求出三角形的边长和面积,利用等面积法求出内切圆的半径,即可得到面积. 【详解】由题:1245cos F PF ∠=,那么123sin 5F PF ∠=,P 为右支上一点, 12F PF △中由余弦定理:()()22212111146265F F F P F P F P F P =++-⋅+⨯解得110F P =,12F PF △的面积121310164825F PF S =⨯⨯⨯=△,设其内切圆半径为r ,()101016482r ++=,解得:83r = 那么12F PF △内切圆的面积为286439ππ⎛⎫⨯=⎪⎝⎭【点睛】此题考察根据双曲线的几何性质求解焦点三角形的面积和内切圆的半径,根据等面积法求解半径得到圆的面积. 11.〕A.假设a ba c ⋅=⋅,那么bc =B.正数,a b ,假设2a b+≠a bC.0x N +∃∈,使200x x ≤D.正数,x y ,那么1xy =是lg lg 0x y +=的充要条件【答案】BCD 【解析】 【分析】 考虑0a=可断定A.【详解】A 选项:假设0a =,任意向量,b c ,0a b a c ⋅=⋅=,不能推出b c =B ,a b ,假设ab =,那么2a b+= C 选项:当01x =D 选项:正数,x y ,lg lg 0x y +=等价于lg 0xy =,等价于1xy =,那么1xy =是lg lg 0x y +=的充要条件应选:BCD 【点睛】.12.〔多项选择题〕双曲线()22122:10,0x y C a b a b-=>>与双曲线()222222222:10,0y x C a b a b -=>>的渐近线将第三象限三等分,那么双曲线1C 的离心率可能为〔〕C.2D.3【答案】CD 【解析】 【分析】根据渐近线的平分关系求出斜率,根据斜率为b a =b a =.【详解】双曲线()22122:10,0x y C a b a b-=>>与双曲线()222222222:10,0y x C a b a b -=>>的渐近线将第三象限三等分,根据双曲线对称性可得:双曲线()22122:10,0x y C a b a b-=>>与双曲线()222222222:10,0y x C a b a b -=>>的渐近线将第一象限三等分,所以第一象限的两条渐近线的倾斜角为30°和60°,其斜率为b a =b a =,所以其离心率为2或者3. 应选:CD【点睛】此题考察根据双曲线的渐近线关系求离心率,关键在于对题目所给条件进展等价转化,利用双曲线根本量之间的关系求解.13.〔多项选择题〕以下说法正确的选项是〔〕 A.方程2xxy x +=表示两条直线B.椭圆221102x y m m +=--的焦距为4,那么4m =C.曲线22259x y xy +=关于坐标原点对称D.双曲线2222x y a b λ-=的渐近线方程为b y x a=±【答案】ACD 【解析】 【分析】B 选项漏掉考虑焦点在y 轴的情况,ACD 说法正确. 【详解】方程2xxy x +=即()10x x y +-=,表示0x =,10x y +-=两条直线,所以A 正确;椭圆221102x ym m+=--的焦距为4,那么()1024m m---=或者()2104m m---=,解得4m=或者8m=,所以B选项错误;曲线22259x yxy+=上任意点(),P x y,满足22259x yxy+=,(),P x y关于坐标原点对称点(),P x y'--也满足()()()()22259x yx y--+=--,即(),P x y'--在22259x yxy+=上,所以曲线22259x yxy+=关于坐标原点对称,所以C选项正确;双曲线2222x ya bλ-=即0λ≠,其渐近线方程为by xa=±正确,所以D选项正确.应选:ACD【点睛】此题考察曲线方程及简单性质辨析,涉及认识曲线方程,研究对称性,根据椭圆性质求参数的取值,求双曲线的渐近线.二、填空题〔本大题一一共4小题,每一小题4分,一共16分.〕14.方程22157x ya a+=--表示椭圆,那么实数a的取值范围是_______.【答案】()()5,66,7【解析】【分析】根据方程表示椭圆,列不等式组可得507057aaa a->⎧⎪->⎨⎪-≠-⎩,即可求解.【详解】由题方程22157x ya a+=--表示椭圆,那么507057aaa a->⎧⎪->⎨⎪-≠-⎩,解得()()5,66,7a ∈故答案为:()()5,66,7【点睛】此题考察根据曲线方程表示椭圆求参数的取值范围,关键在于纯熟掌握椭圆的HY方程特征,此题容易漏掉考虑a =6的情况不合题意.15.假设“0,4x π⎡⎤∃∈⎢⎥⎣⎦,tan x m <〞m 的取值范围是________. 【答案】0m >【解析】【分析】 根据0,4x π⎡⎤∃∈⎢⎥⎣⎦,tan x m <,实数m 的取值范围,即()min tan x m <. 【详解】0,4x π⎡⎤∃∈⎢⎥⎣⎦,tan x m <,即()min tan x m <, tan y x =在0,4x π⎡⎤∈⎢⎥⎣⎦单调递增,()min tan 0x = 即0m >.故答案为:0m >【点睛】.16.2F 是椭圆2211612x y +=的右焦点,P 是椭圆上的动点,(A 为定点,那么1PA PF +的最小值为_______.【答案】6【解析】【分析】 将问题进展转化12288PA PF PA PF PA PF +=+-=+-,根据动点到两个定点间隔之差的最值求解. 【详解】()22,0F 是椭圆2211612x y +=的右焦点,()12,0F -是椭圆2211612x y +=的左焦点,128PF PF +=(A 在椭圆内部,1222888826PA PF PA PF PA PF AF +=+-=+-≥-=-=,当P 为2F A 的延长线与椭圆交点时获得最小值.故答案为:6【点睛】此题考察椭圆上的点到椭圆内一点和焦点的间隔之和最值问题,关键在于利用椭圆的几何性质进展等价转化,结合平面几何知识求解.17.点A ,B 分别是射线()1:0l y x x =≥,2(:0)l y x x =-≤上的动点,O 为坐标原点,且AOB 的面积为定值4.那么线段AB 中点M 的轨迹方程为_________. 【答案】22144-=y x ,0y > 【解析】【分析】设出中点坐标,根据面积关系建立等量关系化简即可得到轨迹方程.【详解】由题:()1:0l y x x =≥,2(:0)l y x x =-≤互相垂直,()()112212,,,,0,0A x x B x x x x -><,设线段AB 中点(),M x y , AOB 的面积为定值4,即)12142x -=,即124x x =- 121222x x x x x y +⎧=⎪⎪⎨-⎪=⎪⎩,两式平方得:222121222212122424x x x x x x x x x y ⎧++=⎪⎪⎨+-⎪=⎪⎩, 两式相减得:22124x y x x -==- 即22144-=y x ,0y >故答案为:22144-=y x ,0y > 【点睛】此题考察求轨迹方程,关键在于根据给定的条件建立等量关系,此类题目容易漏掉考虑取值范围的限制.三、解答题〔本大题一一共6小题,总分值是82分.解容许写出文字说明,证明过程或者演算步骤〕18.集合{}2(3)0A x x a x a =+-+=,{}0B x x =>.假设A B =∅.务实数a 的取值范围.【答案】(](),19,a ∈-∞+∞【解析】【分析】 将问题转化考虑A B =∅a 的取值范围,即可得到假设A B =∅a 的取值范围. 【详解】考虑A B =∅2(3)0x a x a +-+=没有正根, ①()2340a a ∆=--<得()1,9a ∈; ②()2340a a ∆=--=得1a =,或者9a =, 当9a =时{}{}26903A x x x =++==-符合题意,当1a =时{}{}22101A x x x =-+==,不合题意,所以9a =; ③()23403020a a a a ⎧∆=-->⎪-⎪<⎨⎪>⎪⎩无解; 综受骗A B =∅(]1,9a ∈,所以假设A B =∅(](),19,a ∈-∞+∞【点睛】.19.对称中心在坐标原点的椭圆关于坐标轴对称,该椭圆过1212,55⎛⎫ ⎪⎝⎭,且长轴长与短轴长之比为4:3.求该椭圆的HY 方程. 【答案】221169x y +=或者221169y x += 【解析】【分析】根据椭圆的长轴短轴长度之比设椭圆的HY 方程,根据椭圆经过的点求解参数即可得解.【详解】由题:对称中心在坐标原点的椭圆关于坐标轴对称,长轴长与短轴长之比为4:3,当焦点在x 轴上,设椭圆的HY 方程为221169x y m m+=,m >0,椭圆过1212,55⎛⎫ ⎪⎝⎭, 14414412516259m m+=⨯⨯,解得:m =1, 所以椭圆的HY 方程为221169x y += 同理可得当焦点在y 轴上,椭圆的HY 方程为221169y x +=, 所以椭圆的HY 方程为221169x y +=或者221169y x += 【点睛】此题考察求椭圆的HY 方程,关键在于根据长轴短轴长度关系设方程,根据椭圆上的点的坐标求解,易错点在于漏掉考虑焦点所在位置.20.“[]0,2x ∃∈,使方程251020x x m -+-=有解〞.〔1〕务实数m 的取值集合A ;〔2〕设不等式()()1120x a x a -+-<+的解集为集合B ,假设x B ∈是x A ∈的必要不充分条件,务实数a 的取值范围.【答案】〔1〕{}32A m m =-≤≤;〔2〕()(),23,a ∈-∞-+∞【解析】【分析】〔1〕将问题转化为()225102513m x x x =-+=--在[]0,2x ∈有解,即可求解;〔2〕分类讨论求解A B ⊆即可得到参数的取值范围.【详解】〔1“[]0,2x ∃∈,使方程251020x x m -+-=有解〞是.即()225102513m x x x =-+=--在[]0,2x ∈有解,所以[]3,2m ∈- 即{}32A m m =-≤≤;〔2〕不等式()()1120x a x a -+-<+的解集为集合B ,假设x B ∈是x A ∈的必要不充分条件, 当23a =不合题意; 当23<a 时,112a a -<-,()1,12B a a =--,13122a a -<-⎧⎨->⎩,得2a <-; 当23a >时,112a a ->-,()12,1B a a =--,12123a a ->⎧⎨-<-⎩,得3a >; 所以()(),23,a ∈-∞-+∞【点睛】此题考察根据方程有解求参数的取值范围,根据充分条件和必要条件关系求解参数的取值范围,关键在于弄清充分条件和必要条件关系,利用分类讨论求解.21.设1F ,2F 分别是椭圆222:14x y E b+=的左,右焦点,假设P 是该椭圆上的一个动点,12PF PF ⋅的最大值为1.求椭圆E 的方程. 【答案】2214x y += 【解析】【分析】设出焦点坐标,表示出12PF PF ⋅利用函数关系求出最大值,即可得到21b =.【详解】由题:()1F ,)2F 分别是椭圆222:14x y E b +=的左,右焦点,设(),P x y 施椭圆上的动点,即[]222221,0,4,44x y x b b+=∈<, ()22222221124444x b x b x b b ⎛⎫⎛⎫=-+-=-+- ⎪ ⎪⎝⎭⎝⎭-,当2x =4时,获得最大值, 即21b =, 所以椭圆的方程为2214x y +=. 【点睛】此题考察求椭圆的HY 方程,关键在于根据椭圆上的点的坐HY 确计算,结合取值范围求解最值.22.平面直角坐标系中两个不同的定点()1,0F a -,()2,0,0F a a >,过点1F 的直线1l 与过点2F 的直线2l 相交于点P ,假设直线1l 与直线2l 的斜率之积为(0)m m ≠,求动点P 的轨迹方程,并说明此轨迹是何种曲线.【答案】见解析.【解析】【分析】 根据斜率关系化简得22221x y a ma-=,分类讨论得解. 【详解】设(),P x y ,过点1F 的直线1l 与过点2F 的直线2l 相交于点P ,假设直线1l 与直线2l 的斜率之积为(0)m m ≠, 即y y m x a x a ,222y mx ma =-,22221x y a ma-=, 当1m =-轨迹是圆,不含点()1,0F a -,()2,0,0F a a >;当0m >,轨迹是以()1,0F a -,()2,0F a 为顶点的双曲线,不含顶点()1,0F a -,()2,0F a ; 当10m -<<,轨迹是以()1,0F a -,()2,0F a 为长轴顶点的椭圆,不含()1,0F a -,()2,0F a ; 当1m <-,轨迹是以()1,0F a -,()2,0F a 为短轴顶点的椭圆,不含()1,0F a -,()2,0F a .【点睛】此题考察曲线轨迹的辨析,关键在于根据题意建立等量关系,根据曲线轨迹方程分类讨论得解.23.椭圆221:1169x y C +=和双曲线222:1169x y C -=,点A ,B 为椭圆的左,右顶点,点P 在双曲线2C 上,直线OP 与椭圆1C 交于点Q 〔不与点A ,B 重合〕,设直线AP ,BP ,AQ ,BQ 的斜率分别为1k ,2k ,3k ,4k .〔1〕求证:12916k k ⋅=; 〔2〕求证:1234k k k k +++的值是定值.【答案】〔1〕证明见解析;〔2〕证明见解析.【解析】【分析】〔1〕设(),P x y ,表示出斜率即可求得斜率之积;〔2〕设直线:OP y kx =,0k≠,依次求解P ,Q 坐标,表示出斜率之和化简即可得解. 【详解】〔1〕由题:()()()4,0,4,0,,A B P x y -满足221169x y -=,229116x y ⎛⎫=- ⎪⎝⎭ 21229441616y y y k k x x x ⋅=⋅==+--; 〔2〕根据曲线的对称性不妨设直线:OP y kx =,0k ≠, 联立221169y kx x y =⎧⎪⎨+=⎪⎩得2221169x k x +=,22144916x k =+,不妨取Q ⎛⎫,同理可得:P ⎛⎫ 所以1234k k k k +++的值是定值.【点睛】此题考察椭圆与双曲线对称性辨析,求解直线与曲线交点坐标,根据坐标表示斜率求解斜率之积和斜率之和证明结论.。
高二上学期第一次月考数学试题(答案)
高二数学上第一次月考试题一、选择题1.已知两点()()1,3,3,3--BA ,则直线AB 的斜率是( )A .3B .3-C .33D .33- 2.下列说法中正确的是( )A .平行于同一直线的两个平面平行B .垂直于同一直线的两个平面平行C .平行于同一平面的两条直线平行D .垂直于同一平面的两个平面平行3.用一个平面去截一个正四棱柱(底面是正方形,侧棱与底面垂直),截法不同,所得截面的形状不一定相同,在各种截法中,边数最多的截面的形状为 ( ) A .四边形 B .五边形 C .六边形 D .八边形4.用斜二测画法画一个水平放置的平面图形为如下图的一个正方形,则原来图形的形状是( )A .B . C. D .5.圆锥的底面半径为a ,侧面展开图是半圆面,那么此圆锥的侧面积是 ( ) A .22a π B .24a π C. 2a π D .23a π 6.为了得到函数⎪⎭⎫⎝⎛-=32sin πx y 的图像,只需把函数x y 2sin =的图像( ) A .向左平移125π个单位长度 B .向右平移125π个单位长度 C.向左平移3π个单位长度 D .向右平移6π个单位长度 7.某产品的广告费用x 与销售额y 的统计数据如下表: 广告费用x (万元) 1 2 4 5 销售额y (万元)10263549根据上表可得回归方程ˆˆˆybx a =+,其中ˆb 约等于9,据此模型预测广告费用为8万元时,销售额约为( )A .55万元B .57万元 C. 66万元 D .75万元8.棱锥的中截面(过棱锥高的中点且与高垂直的截面)将棱锥的侧面分成两部分,这两部分的面积的比为( )A . 4:1B . 3:1 C. 2:1 D .1:1 9.若过定点()3,0-P 的直线l 与直线232+-=x y 的交点位于第一象限,则直线l 的倾斜角的取值范围是( ) A .⎪⎭⎫⎢⎣⎡3,6ππ B .⎪⎭⎫ ⎝⎛2,6ππ C.⎪⎭⎫ ⎝⎛2,3ππ D .⎥⎦⎤⎢⎣⎡2,3ππ10.执行如图所示程序框图,若输出x 值为47,则实数a 等于( )A .2B .3 C. 4 D .511.若实数y x ,满足约束条件⎪⎩⎪⎨⎧≤--≥-+≥+-011405201y x y x y x ,则y x z +=的最大值是( )A .6B .7 C. 8 D .912.在体积为15的斜三棱柱111C B A ABC -中,P 是C C 1上的一点,ABC P -的体积为3,则三棱锥111C B A P -的体积为( )A .1B .23C. 2 D .3 二、填空题13.如图,点F E ,分别为正方体的面11A ADD ,面11B BCC 的中心,则四边形E BFD 1在该正方体的面上的射影可能是 .(要求:把可能的图的序号都填上)14.设向量()()1,2,,1a b m =-=,如果向量2a b +与2a b -平行,则a b ⋅= .15.某几何体的三视图如下图(单位:cm )则该几何体的表面积是 2cm .16.定义在()5,2+-b b 上的奇函数()x f 是减函数,且满足()()01<++a f a f ,则实数a 取值范围是三、解答题17. 已知在ABC ∆中,c b a ,,分别是角C B A ,,的对边,且.2,2cos cos =+-=c a bca B C (1)求角B ;(2)当边长b 取得最小值时,求ABC ∆的面积;18.如图,ABCD 是正方形,O 是正方形的中心,PO ⊥底面ABCD ,E 是PC 的中点.求证:(1) //PA 平面BDE ; (2)平面⊥PAC 平面BDE ;19.如图,在三棱锥ABC P -中,平面⊥PBC 平面ABC ,PBC ∆是边长为a 的正三角形,M BAC ACB ,30,9000=∠=∠是BC 的中点.(1)求证:AC PB ⊥; (2)求点M 到平面PCA 的距离.20.如图,已知⊥PA 平面ABCD ,ABCD 为矩形,N M ,分别为PC AB ,的中点.(1)求证:AB MN ⊥;(2)若045=∠PDA ,求证:平面⊥MND 平面PDC .21.已知各项均不相等的等差数列{}n a 的前五项和205=S ,且731,,a a a 成等比数列. (1)求数列{}n a 的通项公式; (2)若n T 为数列⎭⎬⎫⎩⎨⎧+11n n a a 的前n 项和,且存在*∈N n ,使得01≥-+n n a T λ成立,求实数λ的取值范围.22.在棱长为2正方体1111D C B A ABCD -中,O 是底面ABCD 的中心,F 是棱AD 上的一点,E 是棱1CC 的中点.(1)如图1,若F 是棱AD 的中点,求异面直线OE 和1FD 所成角的余弦值; (2)如图2,若延长EO 与F D 1的延长线相交于点G ,求线段G D 1的长度.试卷答案一、选择题1-5: DBCAA 6-10: DDBBD 11、12:DC二、填空题13.②③ 14.25 15.1413+⎪⎭⎫ ⎝⎛-9,21 三、解答题17.解:(1) 因为b c a B C -=2cos cos ,所以.sin sin sin 2cos cos BC A B C -= 所以()B C A B C cos sin sin 2sin cos -=, 所以()B A C B cos sin 2sin =+, 所以.cos sin 2sin B A A = 在ABC ∆中,0sin ≠A , 故21cos =B ,又因为()π,0∈B ,所以.3π=B (2)由(1)求解,得3π=B ,所以222222cos b a c ac B a c ac =+-=+- 又2=+c a ,所以()ac ac c a b 34322-=-+=,又因为22⎪⎭⎫ ⎝⎛+≤c a ac ,所以1≤ac ,所以12≥b ,又因为0>b ,故b 的最小值为1,此时.4360sin 11210=⨯⨯⨯=∆ABC S18.证:(1) 连接EO , 在PAC ∆中O 是AC 的中点,E 是PC 的中点 .//AP OE ∴又⊂OE 平面⊄PA BDE ,平面BDE ,//PA ∴平面BDE ,(2)⊥PO 底面ABCD ,.BD PO ⊥∴又BD AC ⊥ ,且O PO AC = ,⊥∴BD 平面.PAC而⊂BD 平面BDE ,∴平面⊥PAC 平面.BDE19.解:(1) PBC ∆ 是边长为a 的正三角形,M 是BC 的中点.BC PM ⊥∴又 平面⊥PBC 平面ABC ,且平面 PBC 平面BC ABC =,⊥∴PM 平面ABC ,⊂AC 平面ABC , .AC PM ⊥∴090=∠ACB ,即BC AC ⊥,又M BC PM = ,⊥∴AC 平面PBC ,⊂PB 平面PBC , PB AC ⊥∴(2)PAC M ACM P V V --=,得a h 43=,即为点M 到平面PAC 的距离. 20.证明:(1) 设E 为PD 的中点,连接AE EN ,,N M , 分别为PC AB ,的中点,DC EN //∴且DC AM DC EN //,21=,且AM EN DC AM //,21∴=且AM EN =, ∴四边形AMNE 为平行四边形,AE MN //∴,⊥PA 平面PA AB ABCD ⊥∴,,又⊥∴⊥AB AD AB , 平面PAD ,又⊂AE 平面.,AE AB PAD ⊥∴.,//AB MN AE MN ⊥∴(2)AD PA PDA =∴=∠,450,则.PD AE ⊥又⊥AB 平面⊥∴CD CD AB PAD ,//,平面PAD .AE CD ⊥∴ 又⊥∴=AE D PD CD , 平面PDC ,⊥∴MN AE MN ,// 平面.PDC又⊂MN 平面∴,MND 平面⊥MND 平面.PDC 21.解:(1) 设数列{}n a 的公差为d ,则()()⎪⎩⎪⎨⎧+=+=⨯+d a a d a d a 6220245511211,即⎩⎨⎧==+d a d d a 121242, 又因为0≠d ,所以⎩⎨⎧==121d a , 所以.1+=n a n (2)因为()(),211121111+-+=++=+n n n n a a n n所以()222121211141313121+=+-=+-+++-+-=n n n n n T n , 因为存在*∈N n ,使得01≥--n n a T λ成立,所以存在*∈N n ,使得()()0222≥+-+n n nλ成立,即存在*∈N n ,使()222+≤n nλ成立, 又()1614421,4421222≤⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++=+n n n n n n ,(当且仅当2=n 时取等号) 所以.161≤λ 即实数λ的取值范围是.161,⎥⎦⎤ ⎝⎛∞-22.解:(1) 如图,连接OF ,取11D C 的中点M ,连接.,ME OMM F O ,, 分别为11,,D C AD AC 的中点,CD M D CD OF //,//1∴,且.21,211CD M D CD OF ==M D OF 1//∴且,1M D OF = ∴四边形M OFD 1为平行四边形,.//1OM F D ∴MOE ∠∴为异面直线1FD 与OE 所成的角,在MOE ∆中,易求.,3,2,5222OE ME OM OE ME OM +=∴===.OE ME ⊥∴ .51553cos ==∠∴MOE(2)∈G 平面F D 1,且F D 1在平面11A ADD 内,∈∴G 平面,11A ADD同理∈G 平面11A ACC ,又 平面 11A ADD 平面A A A ACC 111=,∴由公理2知1AA G ∈(如图)CE G A //1 ,且O 为AC 的中点,1==∴CE AG ,。
山东省青岛市青岛第二中学2024-2025学年高二上学期第一次月考数学试题(无答案)
青岛二中2024-2025学年第一学期10月份阶段练习一高二数学试题时间:90分钟 满分:120分一、选择题:本题共8小题;每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知空间向量,,且,则()A.-16B.16C.4D.-42.已知点,,若过点的直线与线段相交,则该直线斜率的取值范围是()A. B.C. D.3.已知空间向量,,若与垂直,则等于()4.设,为两个随机事件,以下命题正确的为( )A.若,是对立事件,则B.若,是互斥事件,,,则C.若,,且,则,是独立事件D.若,是独立事件,,,则5.已知点关于直线-对称的点在圆上,则()A.4B.5C.-4D.-56.连掷两次骰子得到的点数分别为和,记向量与向量的夹角为,则的概率是()A.B.CD.7.边长为1的正方形沿对角线折叠,使,则三棱锥的体积为()()1,3,5a =-()2,,b x y = a b ∥x y -=()2,3A -()3,2B --()1,1P -AB 32,,43⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭][43,,32⎛⎫-∞-⋃+∞ ⎪⎝⎭34,23⎡⎤-⎢⎥⎣⎦43,32⎡⎤-⎢⎥⎣⎦()1,,2a n = ()2,1,2b =- 3a b - b aA B A B ()1P AB =A B ()13P A =()12P B =()16P A B +=()13P A =()12P B ≡()13P AB =A B A B ()13P A =()23P B =()19P A B ⋂=()0,1P -10x y -+=Q 22:50C x y mx +++=m =m n (),a m n =()1,1b =- θ0,2πθ⎛⎤∈ ⎥⎝⎦5121271256ABCD AC 14AD BC ⋅= D ABC -8.已知空间向量,,两两的夹角均为,且,.若向量,满足,,则的最大值是()A. B. C. D.二、选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得3分,有选错的得0分.9.下列说法正确的是()A.8个数据的平均数为5,另3个数据的平均数为7,则这11个数据的平均数是B.若样本数据,,,的平均数为2,则数据,,,的平均数为3C 一组数据,,,,,的分位数为6D.某班男生30人、女生20人,按照分层抽样的方法从该班共抽取10人答题.若男生答对题目的平均数为10,方差为1;女生答对题目的平均数为15,方差为0.5,则这10人答对题目的方差为6.810.已知,若过定点的动直线和过定点的动直线:交于点(与,不重合),则以下说法正确的是()A.B 点的坐标为B.为定值C.最大值为D.的最大值为11.在棱长为1的正方体中,,,,,,若直线与的夹角为,则下列说法正确的是()A.线段的最小值为1C.对任意点,总存在点,使得D.存在点,使得直线与平面所成的角为三、填空题:本题共4个小题,每小题5分,共20分.12.已知,,,若不能构成空间的一个基底,则_________.13.已知半径为1的圆经过点,则其圆心到直线距离的最大值为_______.a b c 602a b == 4c = x y ()x x a x b ⋅+=⋅ ()y y a y c ⋅+=⋅ x y -1+1+261111x 2x ⋯10x 121x -221x -⋯1021x -43265860%m ∈R A 1:20l x my m -+-=B 2l 240mx y m ++-=P P A B ()2,4-22PA PB +PAB S △2522PA PB +1111ABCD A B C D -1BP xBB yBC =+ x ()0,1y ∈11A Q z A C = []0,1z ∈1A P 11A B 45 1A P 1A Q PQ +P Q 1D Q CP⊥P 1A P 11ADD A 60()11,0,1n =- ()2,3,2n m =- ()30,1,1n =- {}123,,n n nm =()3,43430x y --=14.在长方体中,已知异面直线与,与所成角的大小分别为和,为中点,则点到平面的距离为_______.15.平面直角坐标系中,矩形的四个顶点为,,,,,光线从边上一点沿与轴正方向成角的方向发射到边上的点,被反射到上的点,再被反射到上的点,最后被反射到轴上的点,若,则的取值范围是_______.四、解答题:本题共3小题,共42分.解答应写出文字说明,证明过程或演算步骤.16.(本题满分10分)已知直线,,且满足,垂足为.(I )求的值及点的坐标.(II )设直线与轴交于点,直线与轴交于点,求的外接圆方程.17.(本题满分15分)在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为,收到0的概率为;发送时,收到0的概率为,收到1的概率为.现有两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次,三次传输是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码(例如,若收到1,则译码为1,若收到0,则译码为0);三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到,,,则译码为1,若依次收到,,,则译码为1).(I )已知,,(1)若采用单次传输方案,重复发送信号0两次,求至少收到一次0的概率;(2)若采用单次传输方案,依次发送,,,判断事件“第三次收到的信号为”与事件“三次收到的数字之和为2”是否相互独立,并说明理由;(II )若发送1,采用三次传输方案时译码为0的概率不大于采用单次传输方案时译码为0的概率,求的取值范围.18.(本题满分17分)1111ABCD A B C D -1AC 11B C 1AC 11C D 6045 E 1CC E 1A BC ()0,0O ()8,0A ()8,6B ()0,6C OA ()04,0P x θAB 1P AB BC 2P BC OC 3P OC x ()4,0P t ()4,6t ∈tan θ()1:220l x m y +-=2:220l mx y +-=12l l ⊥C m C 1l x A 2l x B ABC △()1101p p <<11p -1()2201p p <<21p -101111134p =223p =00112p如图,四面体中,为等边三角形,且,为等腰直角三角形,且.第(I )问图(I )当时,(1)求二面角的正弦值;第(II )问图(2)当为线段中点时,求直线与平面所成角正弦值;(II )当时,若,且平面,为垂足,中点为,中点为;直线与平面的交点为,当三棱锥体积最大时,求的值.ABCD ABC △2AB =ADC △90ADC ∠= BD =D AC B --P BD AD APC 2BD =()01DP DB λλ=<<PH ⊥ABC H CD M AB N MN APC G P ACH -MGGN。
山东省烟台市第二中学2020-2021学年高二上学期1月期末月考数学试题PDF版含答案
高二数学参考答案与评分标准一、单选题C C BD D D A B二、多选题9. BCD 10. BD 11. ABD 12. BC三、填空题13.43 14. 116y =- 16.24y x = 四、解答题17. 解:(1)因为椭圆222:1(8x y C a a +=>, 所以28b =, ……………………………………………1分 又因为离心率为13e =, 所以222819c a a a -⎛⎫== ⎪⎝⎭, ……………………………………………2分 解得29a =. ……………………………………………4分所以椭圆C 的方程.22198x y +=. ……………………………………………5分 (2)因为双曲线2222:1x y C a b-=的焦距为6, 所以3c =, ……………………………………………6分又因为渐近线方程为2y x =,所以2b a =, ……………………………………………7分 2222254b c a a a -==, 解得224,5a b ==, ……………………………………………9分所以双曲线C 的方程.22145x y -=. ……………………………………………10分18. 解:(1)当1n =时,11314121=⨯-⨯=+=a S , ………………………2分当2n ≥时,由2342n S n n =-+,得()()2131412-=---+n S n n , ………………………4分 两式相减得:67n a n =-, ………………………6分 11a =,不适合上式,所以数列{}n a 的通项公式. 1,167,2n n a n n =⎧=⎨-≥⎩. ………………………8分 (2)数列{}n a 的偶数项从小到大排列为:5,17,29,41,,………………………10分 则{}n b 的通项公式为127n b n =-. ………………………12分 19. 解:(1)由题意知:2a =,c a =c , ………………………1分 2221b a c ∴=-= ………………………2分∴椭圆M 的方程为:2214x y += ……………………………4分 (2)设()11,A x y ,()22,B x y 联立2214y x m x y =+⎧⎪⎨+=⎪⎩得:2258440x mx m ++-= ……………………………5分 ()226420440m m ∴∆=-->,解得:m < …………………………6分1285m x x ∴+=-,212445m x x -=5AB ∴== …………………………8分 又点C 到直线AB的距离为:d =111225ABC S AB d ∆∴=⋅=⨯=, …………………………10分解得:(m =m ∴=± ………………………………………………………12分 20. 解:(1)由题意抛物线的方程为:24y x =……………………………………1分 设直线:1l x ty =+,代入抛物线中得:224(1)440y ty y ty =+⇒--= ………………………………2分 则124y y t +=,()12122x x t y y +=++设()()1122,,,A x y B x y , 则1212(,)22x x y y M ++,即2(21,2)M t t + ………………………………3分则222122OM t k t t ==⇒=+即直线:0l y -=. ………………………………5分(2)由题意1l ,2l 的斜率存在且都不为0设直线1:4l x my =+,代入抛物线中得:24160y my --=…………………6分 设()()1122,,,P x y Q x y ,则12|||PQ y y =-=同理||RS = …………………………………8分则1||||2PRQS S PQ RS === …………………………………10分令2212u m m=+≥,则S =当且仅当2u =,即1m =±时,四边形PQRS 面积的最小值为80.…………………12分 21. 解:(1)12F MF △面积最大值为:1211222S F F b c b bc =⋅=⋅⋅==,………1分 又12c a =,b ∴=, …………………2分解得:1b c ⎧=⎪⎨=⎪⎩即:2,a b ==, …………………4分 所以方程为:22143x y +=. ……………………………………5分 (2)假设存在满足题意的定点Q ,设(0,)Q m , ………………………6分 设直线l 的方程为,()()11221,,,,2y kx M x y N x y =+. 由2214312x y y kx ⎧+=⎪⎪⎨⎪=+⎪⎩消去x ,得()22344110k x kx ++-=. ………………………7分 由直线l 过椭圆内一点10,2⎛⎫ ⎪⎝⎭,故>0∆恒成立, 由求根公式得:121222411,3434k x x x x k k--+=⋅=++, 由MQO NQO ∠=∠,可得直线MQ 与NQ 斜率和为零.故121212121122kx m kx m y m y m x x x x +-+---+=+, ()1212121220kx x m x x x x ⎛⎫+-+ ⎪⎝⎭==, ………………………9分 ()1212221(11)1(4)22234234k kx x m x x k m k k --⎛⎫⎛⎫+-+=⋅+-⋅ ⎪ ⎪++⎝⎭⎝⎭ 24(6)034k m k -==+. ………………………11分 所以6m =,存在定点(0,6),当斜率不存在时定点(0,6)也符合题意. ………………………12分22. 解:(1)由于222c a b =-,将x c =-代入椭圆方程22221x y a b +=,得2b y a =±. 由题意知221b a=,即22a b =. ………………………2分 又12b a =,222a bc =+,所以2a =,1b =. ………………………3分 所以椭圆C 的方程为2214x y +=. ………………………4分 (2)设0(P x ,00)(0)y y ≠,则直线l 的方程为00()y y k x x -=-. 联立得220014()x y y y k x x ⎧+=⎪⎨⎪-=-⎩,整理得222222000000(14)8()4(21)0k x ky k x x y kx y k x ++-+-+-= ………5分 由题意得△0=,即2220000(4)210x k x y k y -++-=. 又220014x y +=,所以22200001680y k x y k x ++=,故004x k y =-.………………6分又知00012000211x x x k k y y y +=+=, ………………7分 所以001212004211111()()8y x kk kk k k k x y +=+=-=-g , 因此1211kk kk +为定值,这个定值为8-. …………………………8分 (3)设0(P x ,00)(0)y y ≠,又1(F,2F ,所以直线1PF ,2PF的方程分别为1000:(0PF l y x x y -=,2000:(0PF l y x x y -=. ………………………9分=.由于点P 在椭圆上,所以220014x y +=.=.………………………10分因为m<,022x-<<=,所以34=m x,……………11分因此3322-<<m.……………12分。
学年上学期高二第一次月考数学试题(附答案)
y'x'O'(C')B'A'2019届高二(上)第一次月考数学试题一选择题:本大题共12小题,每小题5分,共60分.1.下列命题正确的是( )A. 棱柱的侧面都是长方形B. 棱柱的所有面都是四边形C. 棱柱的侧棱不一定相等D. 一个棱柱至少有五个面2.下列说法不正确的....是 A. 空间中,一组对边平行且相等的四边形是一定是平行四边形;B. 同一平面的两条垂线一定共面;C. 过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内D. 过一条直线有且只有一个平面与已知平面垂直3.圆柱底面圆的半径和圆柱的高都为2,则圆柱侧面展开图的面积为( )A. π4B. π24C. π8D. π284.水平放置的ABC ∆由“斜二测画法”画得的直观图如图所示,已知''3,''2A C B C ==,则AB 边的实际长度为( )(A(B )5 (C )52(D )25.已知为直线, 为平面, , ,则与之间的关系是( )A. 平行B. 垂直C. 异面D. 平行或异面6.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )(A )6 (B )9 (C )12 (D )184题图7.如图,在正方体1111D C B A ABCD -中,若E 是11C A 的中点,则直线CE 垂直于( )A .ACB .BDC .D A 1 D .11D A8.,αβ是两个平面,,m n 是两条直线,有下列四个命题:正确的命题有( )(1)如果m n ⊥,m α⊥,//n β,那么αβ⊥.(2)如果m α⊥,//n α,那么m n ⊥.(3)如果//αβ,m α⊂,那么//m β.4)如果//m n ,//αβ,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有( )A ○1○2B ○1C ○2○3D ○2○3○49.把边长为1的正方形ABCD 沿对角线BD 折起,使得平面ABD ⊥平面CBD ,形成 三棱锥C -ABD 的正视图与俯视图如图所示,则侧视图的面积为( ) A.21 B. 22 C. 41 D. 429题图 11题图10.已知各顶点都在同一球面上的正四棱锥的高为3,体积为6,则这个球的表面积为( )A. π16;B. π20;C. π24;D. π32;11.如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥底面ABCD ,E 是PC的中点,2,2AB AD PA ===,则异面直线BC 与AE 所成的角的大小为( )(A )π6 (B )π4(C )π3(D )π212.如图,正方体ABCD —A 1B 1C 1D 1的棱长为1,线段AC 1上有E D C B AP两个动点E ,F ,且EF .有下列四个结论: ①CE ⊥BD ; ②三棱锥E —BCF 的体积为定值;③△BEF 在底面ABCD 内的正投影是面积为定值的三角形;④在平面ABCD 内存在无数条与平面DEA 1平行的直线,其中正确结论的个数是( )A .1B .2C .3D .4二填空题(每小题5分)13已知圆锥的母线长是,侧面展开图是半圆,则该圆锥的侧面积为_______14.正方体1111D C B A ABCD -中,直线1BC 与直线1AB 所成角的大小为_____15.某几何体的三视图如图所示,则该几何体的体积为.16.已知正三棱锥P ABC -,点P ,A ,B ,C 都在半径为3的球面上,若P A ,PB ,PC 两两相互垂直,则球心到截面ABC 的距离为______三、计算题17.如图,某几何体的下部分是长为8,宽为6,高为3的长方体,上部分是侧棱长都相等且高为3的四棱锥,求:(1)该几何体的体积;(2)该几何体的表面积.18、如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm)。
五河县高级中学2018-2019学年高二上学期第一次月考试卷数学
五河县高级中学2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的解集是( ) A .{}|303x x x -<<>或 B . {}|3003x x x -<<<<或 C .{}|33x x x <->或 D . {}|303x x x <-<<或2. 已知双曲线﹣=1(a >0,b >0)的渐近线与圆(x ﹣2)2+y 2=1相切,则双曲线的离心率为( )A .B .C .D .3. 在中,角、、所对应的边分别为、、,若角、、依次成等差数列,且,,则等于( )A .B .C .D .24. 某工厂生产某种产品的产量x (吨)与相应的生产能耗y (吨标准煤)有如表几组样本数据:0.7,则这组样本数据的回归直线方程是( )A . =0.7x+0.35B . =0.7x+1C . =0.7x+2.05D . =0.7x+0.455. 已知i 是虚数单位,则复数等于( )A .﹣ +iB .﹣ +iC .﹣iD .﹣i6. 某公园有P ,Q ,R 三只小船,P 船最多可乘3人,Q 船最多可乘2人,R 船只能乘1人,现有3个大人和2个小孩打算同时分乘若干只小船,规定有小孩的船必须有大人,共有不同的乘船方法为( ) A .36种 B .18种 C .27种 D .24种7. △ABC 的内角A ,B ,C 所对的边分别为,,,已知a =b =6A π∠=,则B ∠=( )111]A .4π B .4π或34π C .3π或23π D .3π8. 在△ABC 中,a=1,b=4,C=60°,则边长c=( )A .13B .C .D .219. 若动点A ,B 分别在直线l 1:x+y ﹣7=0和l 2:x+y ﹣5=0上移动,则AB 的中点M 到原点的距离的最小值为( )A .3B .2C .3D .410.函数f (x )=sin ωx (ω>0)在恰有11个零点,则ω的取值范围( ) A . C . D .时,函数f (x )的最大值与最小值的和为( ) A .a+3 B .6C .2D .3﹣a11.已知角θ的终边经过点P (4,m ),且sin θ=,则m 等于( )A .﹣3B .3C .D .±312.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a=3,,A=60°,则满足条件的三角形个数为( ) A .0B .1C .2D .以上都不对二、填空题13.在区间[﹣2,3]上任取一个数a ,则函数f (x )=x 3﹣ax 2+(a+2)x 有极值的概率为 . 14.直线l 1和l 2是圆x 2+y 2=2的两条切线,若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于 _________ 。
2018-2019学年上学期高二数学12月月考试题含解析(466)
张北县第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知全集U=R ,集合A={1,2,3,4,5},B={x ∈R|x ≥3},图中阴影部分所表示的集合为 ( )A .{1}B .{1,2}C .{1,2,3}D .{0,1,2}2. 已知,,那么夹角的余弦值( )A .B .C .﹣2D .﹣3. 函数f (x )=x 2﹣2ax ,x ∈[1,+∞)是增函数,则实数a 的取值范围是( ) A .RB .[1,+∞)C .(﹣∞,1]D .[2,+∞)4. 下列各组函数中,表示同一函数的是( )A 、()f x =x 与()f x =2x xB 、()1f x x =- 与()f x =C 、()f x x =与()f x = D 、()f x x =与2()f x =5. 在正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是棱AB ,BB 1的中点,则异面直线EF 和BC 1所成的角是( )A .60°B .45°C .90°D .120°6. 如图甲所示, 三棱锥P ABC - 的高8,3,30PO AC BC ACB ===∠= ,,M N 分别在BC和PO 上,且(),203CM x PN x x ==∈(,,图乙的四个图象大致描绘了三棱锥N AMC -的体积y 与的变化关系,其中正确的是( )A.B. C. D.1111]7.函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.8.如图F1、F2是椭圆C1:+y2=1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是()A.B.C.D.9.独立性检验中,假设H0:变量X与变量Y没有关系.则在H0成立的情况下,估算概率P(K2≥6.635)≈0.01表示的意义是()A.变量X与变量Y有关系的概率为1%B.变量X与变量Y没有关系的概率为99%C.变量X与变量Y有关系的概率为99%D.变量X与变量Y没有关系的概率为99.9%10.sin3sin1.5cos8.5,,的大小关系为()A.sin1.5sin3cos8.5<<<<B.cos8.5sin3sin1.5C.sin1.5cos8.5sin3<<D.cos8.5sin1.5sin3<<11.用秦九韶算法求多项式f(x)=x6﹣5x5+6x4+x2+0.3x+2,当x=﹣2时,v1的值为()A.1 B.7 C.﹣7 D.﹣512.已知函数()2sin()f x x ωϕ=+(0)2πϕ<<与y 轴的交点为(0,1),且图像上两对称轴之间的最小距离为2π,则使()()0f x t f x t +--+=成立的t 的最小值为( )1111] A .6π B .3π C .2πD .23π二、填空题13.【2017-2018第一学期东台安丰中学高三第一次月考】在平面直角坐标系xOy 中,直线l 与函数()()2220f x x ax =+>和()()3220g x x a x =+>均相切(其中a 为常数),切点分别为()11,A x y 和()22,B x y ,则12x x +的值为__________.14.已知θ是第四象限角,且sin (θ+)=,则tan (θ﹣)= .15.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=5,BC=4,AA 1=3,沿该长方体对角面ABC 1D 1将其截成两部分,并将它们再拼成一个新的四棱柱,那么这个四棱柱表面积的最大值为 .16.(若集合A ⊊{2,3,7},且A 中至多有1个奇数,则这样的集合共有 个.17.为了近似估计π的值,用计算机分别产生90个在[﹣1,1]的均匀随机数x 1,x 2,…,x 90和y 1,y 2,…,y 90,在90组数对(x i ,y i )(1≤i ≤90,i ∈N *)中,经统计有25组数对满足,则以此估计的π值为 .18.在直角梯形,,DC//AB,AD DC 1,AB 2,E,F ABCD AB AD ⊥===分别为,AB AC 的中点,点P 在以A 为圆心,AD 为半径的圆弧DE 上变动(如图所示).若AP ED AF λμ=+,其中,R λμ∈,则2λμ-的取值范围是___________.三、解答题19.设圆C 满足三个条件①过原点;②圆心在y=x 上;③截y 轴所得的弦长为4,求圆C 的方程.20.已知(+)n 展开式中的所有二项式系数和为512,(1)求展开式中的常数项; (2)求展开式中所有项的系数之和.21.甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2个、3个、4个,乙袋中红色、黑色、白色小球的个数均为3个,某人用左右手分别从甲、乙两袋中取球.(1)若左右手各取一球,问两只手中所取的球颜色不同的概率是多少?(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记两次取球的成功取法次数为X,求X的分布列和数学期望.22.我市某校某数学老师这学期分别用m,n两种不同的教学方式试验高一甲、乙两个班(人数均为60人,入学数学平均分和优秀率都相同,勤奋程度和自觉性都一样).现随机抽取甲、乙两班各20名的数学期末考试成绩,并作出茎叶图如图所示.(Ⅰ)依茎叶图判断哪个班的平均分高?(Ⅱ)现从甲班所抽数学成绩不低于80分的同学中随机抽取两名同学,用ξ表示抽到成绩为86分的人数,求ξ的分布列和数学期望;(Ⅲ)学校规定:成绩不低于85分的为优秀,作出分类变量成绩与教学方式的2×2列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?”下面临界值表仅供参考:P(K2≥k)0.15 0.10 0.05 0.025 0.010 0.005 0.001k 2.072 2.706 3.841 5.024 6.635 7.879 10.828(参考公式:K2=,其中n=a+b+c+d)23.已知曲线C1:ρ=1,曲线C2:(t为参数)(1)求C1与C2交点的坐标;(2)若把C1,C2上各点的纵坐标都压缩为原来的一半,分别得到曲线C1′与C2′,写出C1′与C2′的参数方程,C1与C2公共点的个数和C1′与C2′公共点的个数是否相同,说明你的理由.2015-2016学年安徽省合肥168中学高三(上)10月月考数学试卷(理科)24.如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,,E,F分别是A1C1,AB的中点.(I)求证:平面BCE⊥平面A1ABB1;(II)求证:EF∥平面B1BCC1;(III)求四棱锥B﹣A1ACC1的体积.张北县第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】B【解析】解:图中阴影部分表示的集合中的元素是在集合A中,但不在集合B中.由韦恩图可知阴影部分表示的集合为(C U B)∩A,又A={1,2,3,4,5},B={x∈R|x≥3},∵C U B={x|x<3},∴(C U B)∩A={1,2}.则图中阴影部分表示的集合是:{1,2}.故选B.【点评】本小题主要考查Venn图表达集合的关系及运算、Venn图的应用等基础知识,考查数形结合思想.属于基础题.2.【答案】A【解析】解:∵,,∴=,||=,=﹣1×1+3×(﹣1)=﹣4,∴cos<>===﹣,故选:A.【点评】本题考查了向量的夹角公式,属于基础题.3.【答案】C【解析】解:由于f(x)=x2﹣2ax的对称轴是直线x=a,图象开口向上,故函数在区间(﹣∞,a]为减函数,在区间[a,+∞)上为增函数,又由函数f(x)=x2﹣2ax,x∈[1,+∞)是增函数,则a≤1.故答案为:C4.【答案】C【解析】试题分析:如果两个函数为同一函数,必须满足以下两点:①定义域相同,②对应法则相同。
高二数学上学期第一次月考试题
2019届高二第一学期第一次月考数学试卷一、选择题1.已知集合{10}{lg(1)}M x x N x y x =+>==-,,则M N =()A .{11}x x -<<B .{1}x x >C .{11}x x -≤<D .{1}x x ≥-2.函数21)(--=x x x f 的定义域为() (A )[1,2)∪(2,+∞)(B )(1,+∞) (C )[1,2)(D )[1,+∞)3.执行如图所示的程序框图,输出的T =()(A )29 (B )44 (C )52 (D )624.已知0x >,0y >,且231x y +=,则23x y+的最小值为( ) A .1 B .2 C .4 D .2565.已知某几何体的三视图如图所示,则该几何体的体积是() A.3π+ B.23π+ C.π D.2π6.已知平面向量(12)=,a ,(32)=-,b ,若k +a b 与3-a b 垂直,则实数值为() (A )13-(B )119(C )(D )7.已知函数()()cos (0)f x A x ωϕω=+>的部分图象如图所示,下面结论错误的是()A. 函数()f x 的最小周期为23πB. 函数()f x 的图象关于,012π⎛⎫-⎪⎝⎭中心对称C. 函数()f x 的图象关于直线12x π=对称D. 函数()f x 的最小值为8.在数列{}n a 中,11a =,12n n a a +=,22221234n S a a a a =-+-+…22212n n a a -+-等于()A.()1213n - B. ()41125n - C. ()1413n - D. ()1123n - 9.若sin()cos(2)1sin cos()2πθθπθπθ-+-=++,则tan θ=()A .B .C .D .10.已知y x z c y x y x x y x +=⎪⎩⎪⎨⎧≥++-≤+≥302,42,且目标函数满足的最小值是5,则z 的最大值是()A .10B .12C .14D .1511.如图,正方体1111ABCD A B C D -的棱长为,,是线段11B D 上的两个动点,且2EF =,则下列结论错误..的是() A. AC BF ⊥B. 直线AE 、BF 所成的角为定值C. EF ∥平面ABCDD. 三棱锥A BEF -的体积为定值12.已知直线0x y k +-=(0)k >与圆224x y +=交于不同的两点、,是坐标原点,且有3||||OA OB AB+≥,那么的取值范围是() A.)+∞B.C.)+∞D. 二、填空题13.在ABC ∆中,角,,所对的边分别为,,,若60C ∠=,2b =,c =,则__________. 14.数列{}n a 的前项和*23()n n S a n N =-∈,则数列{}n a 的通项公式为n a =.15.函数()()()sin 22sin cos f x x x ϕϕϕ=+-+的最大值为_________. 16.在底面边长为2 的正三棱锥V-ABC 中,E 是BC 的中点,若VAE ∆的面积是41,则该正三棱锥的体积为__________________三、解答题 17.化简或求值: (1)1242--(2)2(lg 2)lg 2lg5+ 18.xx x f 1)(+=已知 (1) 判断并证明f(x)的奇偶性; (2) 证明f(x)在),1[+∞的单调性。
2018-2019学年上学期高二数学12月月考试题含解析(1690)
铁门关市第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( ) A .1B .2C .3D .42. 若等边三角形ABC 的边长为2,N 为AB 的中点,且AB 上一点M 满足CM xCA yCB =+,则当14x y+取最小值时,CM CN ⋅=( )A .6B .5C .4D .33. 函数f (x )=ax 2+bx 与f (x )=log x (ab ≠0,|a|≠|b|)在同一直角坐标系中的图象可能是( )A .B .C .D .4. 下列命题正确的是( )A .很小的实数可以构成集合.B .集合{}2|1y y x =-与集合(){}2,|1x y y x =-是同一个集合.C .自然数集 N 中最小的数是.D .空集是任何集合的子集.5. 若实数x ,y 满足不等式组则2x+4y 的最小值是( )A .6B .﹣6C .4D .26. 已知函数1)1(')(2++=x x f x f ,则=⎰dx x f 1)(( )A .67-B .67C .65D .65- 【命题意图】本题考查了导数、积分的知识,重点突出对函数的求导及函数积分运算能力,有一定技巧性,难度中等.7. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若(acosB+bcosA )=2csinC ,a+b=8,且△ABC 的面积的最大值为4,则此时△ABC 的形状为( )A .等腰三角形B .正三角形C .直角三角形D .钝角三角形8. 与﹣463°终边相同的角可以表示为(k ∈Z )( )A .k360°+463°B .k360°+103°C .k360°+257°D .k360°﹣257°9. 已知f (x )为偶函数,且f (x+2)=﹣f (x ),当﹣2≤x ≤0时,f (x )=2x ;若n ∈N *,a n =f (n ),则a 2017等于( ) A .2017 B .﹣8 C .D .10.某大学数学系共有本科生1000人,其中一、二、三、四年级的人数比为4:3:2:1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为( )A .80B .40C .60D .2011.某几何体的三视图如图所示,则该几何体为( )A .四棱柱B .四棱锥C .三棱台D .三棱柱12.设函数F (x )=是定义在R 上的函数,其中f (x )的导函数为f ′(x ),满足f ′(x )<f (x )对于x ∈R 恒成立,则( ) A .f (2)>e 2f (0),f B .f (2)<e 2f (0),f C .f (2)>e 2f (0),fD .f (2)<e 2f (0),f二、填空题13.经过A (﹣3,1),且平行于y 轴的直线方程为 .14.-23311+log 6-log 42()= . 15.如图是正方体的平面展开图,则在这个正方体中①BM 与ED 平行;②CN 与BE 是异面直线;③CN 与BM 成60︒角;④DM 与BN 是异面直线.以上四个命题中,正确命题的序号是 (写出所有你认为正确的命题).16.圆上的点(2,1)关于直线x+y=0的对称点仍在圆上,且圆与直线x ﹣y+1=0相交所得的弦长为,则圆的方程为 .17.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=lnx -mx(m ∈R )在区间[1,e]上取得最小值4,则m =________.18.已知向量(1,),(1,1),a x b x ==-若(2)a b a -⊥,则|2|a b -=( )A .2B .3C .2D 【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力.三、解答题19.已知f (x )=|﹣x|﹣|+x|(Ⅰ)关于x 的不等式f (x )≥a 2﹣3a 恒成立,求实数a 的取值范围;(Ⅱ)若f (m )+f (n )=4,且m <n ,求m+n 的取值范围.20.2015年第7届女足世界杯在加拿大埃德蒙顿联邦体育场打响,某连锁分店销售某种纪念品,每件纪念品的成本为4元,并且每件纪念品需向总店交3元的管理费,预计当每件纪念品的售价为x元(7≤x≤9)时,一年的销售量为(x﹣10)2万件.(Ⅰ)求该连锁分店一年的利润L(万元)与每件纪念品的售价x的函数关系式L(x);(Ⅱ)当每件纪念品的售价为多少元时,该连锁分店一年的利润L最大,并求出L的最大值.21.设函数f(x)=kx2+2x(k为实常数)为奇函数,函数g(x)=a f(x)﹣1(a>0且a≠1).(Ⅰ)求k的值;(Ⅱ)求g(x)在[﹣1,2]上的最大值;(Ⅲ)当时,g(x)≤t2﹣2mt+1对所有的x∈[﹣1,1]及m∈[﹣1,1]恒成立,求实数t的取值范围.22.已知函数f(x)=.(1)求f(x)的定义域;(2)判断并证明f(x)的奇偶性;(3)求证:f()=﹣f(x).23.已知函数f(x)=lg(2016+x),g(x)=lg(2016﹣x)(1)判断函数f(x)﹣g(x)的奇偶性,并予以证明.(2)求使f(x)﹣g(x)<0成立x的集合.24.已知命题p:方程表示焦点在x轴上的双曲线.命题q:曲线y=x2+(2m﹣3)x+1与x轴交于不同的两点,若p∧q为假命题,p∨q为真命题,求实数m的取值范围.铁门关市第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】B【解析】解:设数列{a n }的公差为d ,则由a 1+a 5=10,a 4=7,可得2a 1+4d=10,a 1+3d=7,解得d=2, 故选B .2. 【答案】D 【解析】试题分析:由题知(1)CB BM CM CB xCA y =-=+-,BA CA CB =-;设BM k B A =,则,1x k y k =-=-,可得1x y +=,当14x y+取最小值时,()141445x yx y x y x y y x⎛⎫+=++=++ ⎪⎝⎭,最小值在4y x x y =时取到,此时21,33y x ==,将()1,CN 2CM xCA yCB CA CB =+=+代入,则()22111233322233x y CM CN xCA yCB CA CB x y +⎛⎫⋅=++⋅=+=+= ⎪⎝⎭.故本题答案选D.考点:1.向量的线性运算;2.基本不等式. 3. 【答案】 D【解析】解:A 、由图得f (x )=ax 2+bx 的对称轴x=﹣>0,则,不符合对数的底数范围,A 不正确;B 、由图得f (x )=ax 2+bx 的对称轴x=﹣>0,则,不符合对数的底数范围,B 不正确;C 、由f (x )=ax 2+bx=0得:x=0或x=,由图得,则,所以f (x )=log x在定义域上是增函数,C 不正确;D 、由f (x )=ax 2+bx=0得:x=0或x=,由图得,则,所以f(x )=logx 在定义域上是减函数,D 正确.【点评】本题考查二次函数的图象和对数函数的图象,考查试图能力.4. 【答案】D 【解析】试题分析:根据子集概念可知,空集是任何集合的子集,是任何非空集合的真子集,所以选项D是正确,故选D.考点:集合的概念;子集的概念.5.【答案】B【解析】解:作出不等式组对应的平面区域如图:设z=2x+4y得y=﹣x+,平移直线y=﹣x+,由图象可知当直线y=﹣x+经过点C时,直线y=﹣x+的截距最小,此时z最小,由,解得,即C(3,﹣3),此时z=2x+4y=2×3+4×(﹣3)=6﹣12=﹣6.故选:B【点评】本题主要考查线性规划的应用,利用目标函数的几何意义是解决本题的关键.6.【答案】B7.【答案】A【解析】解:∵(acosB+bcosA)=2csinC,∴(sinAcosB+sinBcosA)=2sin2C,∴sinC=2sin2C,且sinC>0,∴sinC=,∵a+b=8,可得:8≥2,解得:ab≤16,(当且仅当a=b=4成立)∵△ABC的面积的最大值S△ABC=absinC≤=4,∴a=b=4,则此时△ABC的形状为等腰三角形.故选:A.8.【答案】C【解析】解:与﹣463°终边相同的角可以表示为:k360°﹣463°,(k∈Z)即:k360°+257°,(k∈Z)故选C【点评】本题考查终边相同的角,是基础题.9.【答案】D【解析】解:∵f(x+2)=﹣f(x),∴f(x+4)=﹣f(x+2)=f(x),即f(x+4)=f(x),即函数的周期是4.∴a2017=f(2017)=f(504×4+1)=f(1),∵f(x)为偶函数,当﹣2≤x≤0时,f(x)=2x,∴f(1)=f(﹣1)=,∴a2017=f(1)=,故选:D.【点评】本题主要考查函数值的计算,利用函数奇偶性和周期性之间的关系是解决本题的关键.10.【答案】B【解析】解:∵要用分层抽样的方法从该系所有本科生中抽取一个容量为200的样本,∴三年级要抽取的学生是×200=40,故选:B.【点评】本题考查分层抽样方法,本题解题的关键是看出三年级学生所占的比例,本题也可以先做出三年级学生数和每个个体被抽到的概率,得到结果.11.【答案】A【解析】试题分析:由三视图可知,该几何体是底面为直角梯形的直四棱柱,直角梯形的上下底分别为3和4,直角腰为1,棱柱的侧棱长为1,故选A.考点:三视图【方法点睛】本题考查了三视图的问题,属于基础题型,三视图主要还是来自简单几何体,所以需掌握三棱锥,四棱锥的三视图,尤其是四棱锥的放置方法,比如正常放置,底面就是底面,或是以其中一个侧面当底面的放置方法,还有棱柱,包含三棱柱,四棱柱,比如各种角度,以及以底面当底面,或是以侧面当底面的放置方法,还包含旋转体的三视图,以及一些组合体的三视图,只有先掌握这些,再做题时才能做到胸有成竹.12.【答案】B【解析】解:∵F(x)=,∴函数的导数F′(x)==,∵f′(x)<f(x),∴F′(x)<0,即函数F(x)是减函数,则F(0)>F(2),F(0)>F<e2f(0),f,故选:B二、填空题13.【答案】x=﹣3.【解析】解:经过A(﹣3,1),且平行于y轴的直线方程为:x=﹣3.故答案为:x=﹣3.14.【答案】33 2【解析】试题分析:原式=233331334log log16log16log1622+=+=+=+=。
山东省高二上学期数学第一次月考试卷
山东省高二上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)已知集合A={1,2,3},B={x|(x﹣3)(x﹣6)=0},则A∩B等于()A . {1}B . {2,3}C . {3,6}D . {3}2. (2分) (2019高一上·罗江月考) 已知函数在区间上是增函数,则的范围是()A .B .C .D .3. (2分) (2019高一上·吴起月考) 线段在平面内,则直线与平面的位置关系是().A .B .C . 线段的长短而定D . 以上都不对4. (2分) (2017高二下·定州开学考) 已知函数f(x)在[0,+∞)上是增函数,g(x)=﹣f(|x|),若g (lgx)>g(1),则x的取值范围是()A . (0,10)B . (10,+∞)C .D .5. (2分)已知向量满足,且,则向量与的夹角为()A .B .C .D .6. (2分) (2020高三上·郑州月考) 若,则()A .B .C .D .7. (2分)已知满足:,,则BC的长()A . 2B . 1C . 1或2D . 无解8. (2分) (2020高二上·青铜峡期末) 已知数列是等比数列,为其前n项和,若,a4+a5+a6=6,则S12等于()A . 45B . 60C . 35D . 509. (2分) (2018高一上·海珠期末) 下列函数中,值域为的偶函数是()A .B .C .D .10. (2分) (2020高二上·上虞期末) 已知直线m,n及平面α,β,则下列说法正确的是()A . 若m α,m β,则α βB . 若m α,m n,则n αC . 若m⊥α,n α,则m⊥nD . 若m⊥α,α⊥β,则m β11. (2分)(2016·运城模拟) 在三棱锥D﹣ABC中,已知AB=BC=AD= ,BD=AC=2,BC⊥AD,则三棱锥D ﹣ABC外接球的表面积为()A . 6πB . 12πC . 6 πD . 6 π12. (2分) (2016高一上·思南期中) 偶函数f(x)在(0,+∞)上的解析式是f(x)=x(1+x),则在(﹣∞,0)上的函数解析式是()A . f(x)=﹣x(1﹣x)B . f(x)=x(1+x)C . f(x)=﹣x(1+x)D . f(x)=x(x﹣1)二、填空题 (共4题;共4分)13. (1分) (2018高二上·北京期中) 如图,在正四面体V-ABC中,直线VA与BC所成角的大小为________;二面角V-BC-A的余弦值为________。
高二数学上学期第一次月考试题含解析 试题
智才艺州攀枝花市创界学校潜山第二二零二零—二零二壹高二数学上学期第一次月考试题〔含解析〕第I 卷〔选择题,一共60分〕一、选择题:〔本大题一一共12小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的〕A ={x |x >1},B ={x |x 2-2x <0},那么A ∪B 等于()A.{x |x >0}B.{x |x >1}C.{x |1<x <2}D.{x |0<x <2}【答案】A 【解析】 【分析】先解出集合B ,再由并集的定义即可求出. 【详解】因为集合{}02B x x =<<,A ={x |x >1},所以{}0A B x x ⋃=>.应选:A .【点睛】此题主要考察集合的并集运算,属于根底题.x 的终边上一点的坐标为(sin56π,cos 56π),那么角x 的最小正值为() A.56πB.53π C.116π D.23π 【答案】B【解析】 【分析】先根据角x 终边上点的坐标判断出角x 的终边所在象限,然后根据三角函数的定义即可求出角x 的最小正值.【详解】因为5sin06π>,5cos 06π<,所以角x 的终边在第四象限,根据三角函数的定义,可知 53sin cos 62x π==-,故角x 的最小正值为5233x πππ=-=.应选:B .【点睛】此题主要考察利用角的终边上一点求角,意在考察学生对三角函数定义的理解以及终边一样的角的表示,属于根底题.3.数列{a n }是等差数列,a 1+a 7=-8,a 2=2,那么数列{a n }的公差d 等于〔〕 A.-1 B.-2C.-3D.-4【答案】C 【解析】试题分析:由等差数列的性质知,,所以,又,解得:,应选C .考点:1、等差数列的性质;2、等差数列的通项公式.a >0,b >0,且ln (a +b )=0,那么11a b+的最小值是() A.14B.1C.4D.8【答案】C 【解析】 【分析】先将对数式化指数式,再根据根本不等式即可求出. 【详解】由()ln0a b +=得1a b +=,所以()11112224b aa b a b a b a b⎛⎫+=++=++≥+= ⎪⎝⎭, 当且仅当12ab ==时取等号,故11a b+的最小值是4. 应选:C .【点睛】此题主要考察对数的性质以及根本不等式中“1的代换〞的应用,属于根底题. 5.m ,n 表示两条不同直线,α表示平面.以下说法正确的选项是() A.假设m ∥α,n ∥α,那么m ∥n B .假设m ⊥α,n ⊂α,那么m ⊥nC.假设m ⊥α,m ⊥n ,那么n ∥αD.假设m ∥α,m ⊥n ,那么n ⊥α 【答案】B 【解析】 【分析】根据线线、线面关系的定义、性质、结论和断定定理对各项逐个判断即可. 【详解】对于A ,假设,mn αα,那么m 与n 可能平行,可能相交,可能异面,所以A 错误;对于B ,根据线面垂直的定义可知,正确; 对于C ,假设,m m n α⊥⊥,那么n α或者n ⊂α,所以C 错误;对于D ,假设,m m n α⊥,那么n 可能垂直于α,也可能n⊂α,也可能n α,所以D 错误.应选:B .【点睛】此题主要考察空间线线、线面关系的判断,意在考察学生的直观想象和逻辑推理才能,属于中档题. 〔1,1〕在圆()()224x a y a -++=的内部,那么a 的取值范围是〔〕A.11a -<<B.01a <<C.1a <-或者1a >D.1a =±【答案】A 【解析】因为点〔1,1〕在圆内部,所以22(1)(1)4a a -++<,解之得11a -<<.x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,那么a 的范围是()A.a <-2或者a >23B.-23<a <2C.-2<a <0D.-2<a <23【答案】D 【解析】 【分析】先把圆的一般方程化为圆的HY 方程,由此可求得a 的范围. 【详解】由题意可得圆的HY 方程2223()()124a x y a a a +++=--,由23104a a -->解得223a -<<,选D.【点睛】圆的一般方程220x y Dx Ey F ++++=,化HY 方程为22224()()224D E D E F x y +-+++=〔其中2240D E F +->〕,圆心为(,)22D E--,半径2r =.8.点P 〔2,﹣1〕为圆〔x ﹣1〕2+y 2=25的弦AB 的中点,那么直线AB 的方程为〔〕 A.x+y ﹣1=0B.2x+y ﹣3=0C.x ﹣y ﹣3=0D.2x ﹣y ﹣5=0【答案】C【解析】试题分析:由垂径定理,得AB中点与圆心C的连线与AB互相垂直,由此算出AB的斜率k=1,结合直线方程的点斜式列式,即可得到直线AB的方程.解:∵AB是圆〔x﹣1〕2+y2=25的弦,圆心为C〔1,0〕∴设AB的中点是P〔2,﹣1〕满足AB⊥CP因此,PQ的斜率k===1可得直线PQ的方程是y+1=x﹣2,化简得x﹣y﹣3=0应选C考点:直线与圆相交的性质.9.一个算法:(1)m=a.(2)假设b<m,那么m=b,输出m;否那么执行第(3)步.(3)假设c<m,那么m=c,输出m.假设a=3,b=6,c=2,那么执行这个算法的结果是()A.3B.6C.2D.m【答案】C【解析】【分析】根据算法的功能可知,输出三个数中的最小值,即可求解.【详解】根据算法的功能可知,输出三个数中的最小值,故执行这个算法的结果是2.应选:C.【点睛】此题主要考察对算法语句以及算法功能的理解.C 的方程为22(2)(1)9x y -++=,直线l 的方程为320x y -+=,那么曲线C 上到直线l 的间隔为10的点的个数为〔〕A.1B.2C.3D.4【答案】B 【解析】试题分析:由22(2)(1)9x y -++=,可得圆心坐标为(2,1)C -,半径为3r =,那么圆心到直线的间隔为d ===,所以此时对应的点位于过圆心C 的直径上,所以满足条件的点有两个,应选B . 考点:直线与圆的位置关系.【方法点晴】此题主要考察了直线与圆的位置关系的应用,其中解答中涉及到点到直线的据公式和直线与圆位置关系的断定与应用,试题思维量和运算量较大,属于中档试题,着重考察了学生分析问题和解答问题的才能,以及数形结合思想的应用,此类问题平时需要注意方法的积累和总结.11.两点A 〔-2,0〕,B 〔0,2〕,点C 是圆x 2+y 2-2x =0上任意一点,那么△ABC 面积的最小值是〔〕A.3B.3C.3 【答案】A 【解析】 试题分析:圆C的HY 方程为22(1)1x y -+=,圆心为(1,0)D ,半径为1,直线AB 方程为122x y+=-,即20x y -+=,D 到直线AB 的间隔为2d ==,点C 到AB 的间隔的最小值为1-,AB =,所以ABC∆面积最小值为11)32S =⨯=.应选A . 考点:点到直线的间隔.(1,1)P 的直线,将圆形区域{}22(,)|4x y x y +≤分两局部,使得这两局部的面积之差最大,那么该直线的方程为 A.20x y +-= B.10y -=C.0x y -=D.340x y +-=【答案】A 【解析】要使直线将圆形区域分成两局部的面积之差最大,通过观察图形,显然只需该直线与直线OP 垂直即可,又P(1,1),那么所求直线的斜率为-1,又该直线过点P(1,1),易求得该直线的方程为x +y -2=0.应选A.第II 卷〔非选择题,一共90分〕二、填空题(本大题一一共4小题,每一小题5分,一共20分.)13.函数的定义域为___________________________.【答案】()1,1- 【解析】 【分析】根据函数表达式得到使得函数有意义只需要210340x x x +>⎧⎨--+>⎩,解这个不等式获得交集即可. 【详解】由210340x x x +>⎧⎨--+>⎩得-1<x<1. 故答案为()1,1-.【点睛】求函数定义域的类型及求法:(1)函数解析式:构造使解析式有意义的不等式(组)求解;(2)抽象函数:①假设函数f (x )的定义域为[a ,b ],其复合函数f [g (x )]的定义域由a ≤g (x )≤b 求出;②假设函数f [g (x )]的定义域为[a ,b ],那么f (x )的定义域为g (x )在x ∈[a ,b ]上的值域. C 经过(5,1),(1,3)A B 两点,圆心在x 轴上,那么C 的方程为__________.【答案】22(2)10x y -+=.【解析】 【分析】由圆的几何性质得,圆心在AB 的垂直平分线上,结合题意知,求出AB 的垂直平分线方程,令0y =,可得圆心坐标,从而可得圆的半径,进而可得圆的方程. 【详解】由圆的几何性质得,圆心在AB 的垂直平分线上,结合题意知,AB 的垂直平分线为24y x =-,令y =,得2x =,故圆心坐标为(2,0),所以圆的半径=22(2)10x y -+=.【点睛】此题主要考察圆的性质和圆的方程的求解,意在考察对根底知识的掌握与应用,属于根底题. 15.执行如图的程序框图,假设输入的ε的值是0.25,那么输入的n 的值_____.【答案】3. 【解析】根据运行顺序计算出11F 的值,当11F ≤ε时输出n 的值,完毕程序.由程序框图可知:第一次运行:F 1=1+2=3,F 0=3-1=2,n =1+1=2,11F =13>ε,不满足要求,继续运行; 第二次运行:F 1=2+3=5,F 0=5-2=3,n =2+1=3,11F =15=0.2<ε,满足条件. 完毕运行,输出n =3.【此处有视频,请去附件查看】,a b 夹角为45︒,且1,210a a b =-=,那么b =__________.【答案】32【解析】试题分析:的夹角,,,,.考点:向量的运算.【思路点晴】平面向量的数量积计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用.利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.列出方程组求解未知数.三、解答题(本大题一一共6小题,一共70分.解容许写出文字说明,证明过程或者演算步骤) 17.如下列图,底角为45°的等腰梯形ABCD ,底边BC 长为7cm ,腰长为2cm ,当一条垂直于底边BC (垂足为F )的直线l 从B 点开场由左至右挪动(与梯形ABCD 有公一共点)时,直线l 把梯形分成两局部,令BF =x (0≤x ≤7),左边局部的面积为y ,求y 与x 之间的函数关系式,画出程序框图,并写出程序.【答案】221,02222,251(7)10,572x x y x x x x ⎧≤≤⎪⎪=-<≤⎨⎪⎪-+<<⎩,程序框图和程序见解析. 【解析】 【分析】根据直线l 将梯形分割的左边局部的形状进展分类讨论,求出函数关系式,即可根据条件构造画出程序框图,并写出程序.【详解】过点A ,D 分别作AG ⊥BC ,DH ⊥BC ,垂足分别是G ,H .∵四边形ABCD 是等腰梯形,底角是45°,AB =2cm ,∴BG =AG =DH =HC =2cm .又BC =7cm ,∴AD =GH =3cm ,当02x ≤≤时,212y x =; 当25x <≤时,22y x =-; 当57x <<时,21(7)102y x =-+, 所以221,02222,251(7)10,572x x y x x x x ⎧≤≤⎪⎪=-<≤⎨⎪⎪-+<<⎩. 程序框图如下:程序:INPUT “x =〞;xIFx >=0ANDx <=2THENy =0.5*x ^2ELSEIFx <=5THENy =2*x -2ELSEy =-0.5*(x -7)^2+10ENDIFENDIFPRINTyEND【点睛】此题主要考察分段函数解析式的求法、程序框图的画法以及程序语句的书写,意在考察学生分类讨论思想和算法语句的理解和书写.xOy 中,曲线261y x x =-+与坐标轴的交点都在圆C 上,那么圆C 的方程为.【答案】22(3)(1)0.x y -+-= 【解析】【详解】试题分析:根据题意令y=0,可知23610,y x x x =-+==±∴同时令x=0,得到函数与y 轴的交点坐标为〔0,1〕,那么利用圆的性质可知,与x 轴的两个根的中点坐标即为圆心的横坐标为3,设圆心为:(3,)t ,那么229(1)8t t +-=+,解得1t = 因此可知圆的方程为22(3)(1)0.x y -+-=,故答案为22(3)(1)0.x y -+-=.考点:本试题考察了抛物线与坐标轴的交点问题.点评:解决该试题的关键是确定出交点的坐标,然后结合交点坐标,得到圆心坐标和圆的半径,进而秋季诶圆的方程,属于根底题.19.如图,在四棱锥P ﹣ABCD 中,PA⊥底面ABCD ,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC ,E 是PC 的中点.〔1〕求PB 和平面PAD 所成的角的大小;〔2〕证明AE⊥平面PCD .【答案】〔1〕45°;〔2〕见解析【解析】试题分析:〔1〕先找出PB 和平面PAD 所成的角,再进展求解即可;〔2〕可以利用线面垂直根据二面角的定义作角,再证明线面垂直.〔1〕解:在四棱锥P ﹣ABCD 中,因PA⊥底面ABCD ,AB ⊂平面ABCD ,故PA⊥AB.又AB⊥AD,PA∩AD=A,从而AB⊥平面PAD ,故PB 在平面PAD 内的射影为PA ,从而∠APB 为PB 和平面PAD 所成的角.在Rt△PAB 中,AB=PA ,故∠APB=45°.所以PB 和平面PAD 所成的角的大小为45°.〔2〕证明:在四棱锥P ﹣ABCD 中,因为PA⊥底面ABCD ,CD ⊂平面ABCD ,所以CD⊥PA.因为CD⊥AC,PA∩AC=A,所以CD⊥平面PAC .又AE ⊂平面PAC ,所以AE⊥CD.由PA=AB=BC ,∠ABC=60°,可得AC=PA .因为E 是PC 的中点,所以AE⊥PC.又PC∩CD=C,所以AE⊥平面PCD .考点:直线与平面所成的角;直线与平面垂直的断定.()f x 是(),-∞+∞上的奇函数,()()2f x f x +=-,当01x ≤≤时,()f x x =.〔1〕求()f π的值;〔2〕当44x -≤≤时,求()f x 的图象与x 轴所围成图形的面积.【答案】〔1〕4π-〔2〕4 【解析】【分析】〔1〕由()()2f x f x +=-可推出函数()f x 是以4为周期的周期函数,再利用函数的周期性及奇偶性可得()()()()1444f f f f ππππ=-⨯+=-=--, 再利用函数在[]0,1上的解析式即可得解,〔2〕由函数的周期性、奇偶性及函数在[]0,1上的解析式,作出函数在[]4,4-的图像,再求()f x 的图象与x 轴所围成图形的面积即可.【详解】解:〔1〕由()()2f x f x +=-得,()()()()4222f x f x f x f x +=++=-+=⎡⎤⎣⎦,所以()f x 是以4为周期的周期函数, 所以()()()()1444f f f f ππππ=-⨯+=-=--()44ππ=--=-.〔2〕由()f x 是奇函数且()()2f x f x +=-, 得()()()1211f x f x f x -+=--=--⎡⎤⎡⎤⎣⎦⎣⎦, 即()()11f x f x +=-.故知函数()y f x =的图象关于直线1x =对称.又当01x ≤≤时,()f x x =,且()f x 的图象关于原点成中心对称,那么()f x 44x -≤≤时,()f x 的图象与x 轴围成的图形面积为S ,那么1442142OAB S S ∆⎛⎫==⨯⨯⨯= ⎪⎝⎭. 【点睛】此题考察了函数的周期性、奇偶性及函数的图像,主要考察了函数性质的应用,重点考察了作图才能,属中档题.()2cos sin 34f x x x x π⎛⎫=⋅++ ⎪⎝⎭,x R ∈.〔Ⅰ〕求()f x 的最小正周期;〔Ⅱ〕求()f x 在,44ππ⎡⎤-⎢⎥⎣⎦上的最小值和最大值. 【答案】〔Ⅰ〕π;〔Ⅱ〕最小值12-和最大值14. 【解析】 试题分析:〔1〕由利用两角和与差的三角函数公式及倍角公式将()f x 的解析式化为一个复合角的三角函数式,再利用正弦型函数()sin y A x B ωϕ=++的最小正周期计算公式2T πω=,即可求得函数()f x 的最小正周期;〔2〕由〔1〕得函数,分析它在闭区间上的单调性,可知函数()f x 在区间上是减函数,在区间上是增函数,由此即可求得函数()f x 在闭区间上的最大值和最小值.也可以利用整体思想求函数()f x 在闭区间上的最大值和最小值.由,有 ()f x 的最小正周期. 〔2〕∵()f x 在区间上是减函数,在区间上是增函数,,,∴函数()f x 在闭区间上的最大值为,最小值为.考点:1.两角和与差的正弦公式、二倍角的正弦与余弦公式;2.三角函数的周期性和单调性.22.设数列{a n }的前n 项和为S n ,a 1=1,S n +1=4a n +2.(1)设b n =a n +1−2a n ,证明:数列{b n }是等比数列;(2)求数列{a n }的通项公式.【答案】(1)见解析;(2)a n=(3n−1)·2n−2.【解析】(1)由a1=1及S n+1=4a n+2,得a1+a2=S2=4a1+2.∴a2=5,∴b1=a2−2a1=3.又①−②,得a n+1=4a n−4a n−1,∴a n+1−2a n=2(a n−2a n−1).∵b n=a n+1−2a n,∴b n=2b n−1,故{b n}是首项b1=3,公比为2的等比数列. (2)由(1)知b n=a n+1−2a n=3·2n−1,∴−=,故是首项为,公差为的等差数列.∴=+(n−1)·=,故a n=(3n−1)·2n−2.。
山东省2018-2019学年高二上学期12月月考数学理试题Word版含答案
临朐中学高二上学期12月月考—理科数学命题人: 审核人: 使用时间:2016/12/7一、选择题:本大题共10小题,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的,将答案填在指定答题栏内 1. 抛物线24x y -=的准线方程是 ( ) A. 1=y B. 1-=y C. 161=y D. 161-=y 2已知命题p:若m >0,则关于 x 的方程02=-+m x x 有实根,q 是p 的逆命题,下面结论正确的是( )A .p 真q 假B .p 假q 真C .p 真q 真D .p 假q 假 3. “211<x ” 是“2>x ”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 4.在△ABC 中,所对的边分别为,若c cos C =b cos B ,则△ABC 的形状一定是( )A. 等腰或直角三角形B. 直角三角形C.等腰三角形D. 等边三角形 5. 方程02=+ny mx 与)0(122>>=+n m ny mx 的曲线在同一坐标系中的示意图应为( )-A 1B 1C 1D 1中,点E 为上底面对角线A 1C 1的中点,若BE →=AA 1→+xAB →+yAD →,则( )A .x =-12,y =12B .x =12,y =-12C .x =-12,y =-12D .x =12,y =127. 过椭圆22165x y +=内的一点(2,1)P -的弦恰好被P 点平分,则这条弦所在的直线方程是( )A .35110x y --=B .53130x y --=C .5370x y +-=D .3510x y +-=8.已知等差数列{a n }中,|a 3|=|a 9|,公差d <0,则使其前n 项和S n 取得最大值的自然数n是( )A .4或5B .5或6C .6或7D .不存在9. 设变量,x y 满足约束条件00220x x y x y ≥⎧⎪-≥⎨⎪--≤⎩,则32z x y =-的最大值 ( )A .8B .5C .6D .410.如图,1F ,2F 是双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点,过1F 的直线l 与C 的左、右两支分别交于A ,B 两点.若2ABF ∆为等边三角形,则双曲线的离心率为( ) AB .2CD第Ⅱ卷(非选择题,共100分)二、填空题:本大题共5小题,每小题5分,共25分.将答案填在题中横线上. 11. 命题“存在有理数x ,使220x -=”的否定为 ;12. 在△ABC 中,b 2-bc-2c 278,则△ABC 的面积S 为_______.13.已知实数4,m ,1构成一个等比数列,则曲线221x y m+=的离心率为___________;14.在等差数列项的和 _______.15.一元二次不等式对一切实数 都成立的 的取值范围为________.三、解答题:本大题共6小题,满分75分.16.已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →.(1)设|c |=3,c ∥BC →,求c . (2)求a 与b 的夹角的正弦值. (3)若k a +b 与k a -2b 互相垂直,求k .17. 已知命题p :直线y=kx+1与椭圆1522=+ay x 恒有公共点; 命题q :只有一个实数x 满足不等式2220x ax a ++≤. 若命题“p 或q ”是假命题,求实数a 的取值范围.18.如图,某货轮在A 处看灯塔B 在货轮的北偏东75°,距离为12 n mile ,在A 处看灯塔C 在货轮的北偏西30°,距离为8 n mile ,货轮由A 处向正北航行到D 处时,再看灯塔B 在北偏东120°,求:(1)A 处与D 处的距离; (2)灯塔C 与D 处的距离.19. 已知数列{}n a 是等差数列,13,573==a a ,数列{}n b 前n 项和为n S ,且满足)(12*N n b S n n ∈-=(1) 求数列{}n a ,{}n b 的通项公式;(2)令n n n b a c =,求数列{}n c 的前n 项和n T 。
山东省青岛市高二上学期数学第一次月考试卷
山东省青岛市高二上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)若sin2x、sinx分别是sin与cos的等差中项和等比中项,则cos2x的值为()A .B .C .D .2. (2分) (2016高一下·黑龙江期中) 在锐角△ABC中,AC=6,B=2A,则BC的取值范围为()A . (3,3 )B . (2 ,3 )C . (3 ,+∞)D . (0,3 )3. (2分)已知等比数列中,公比若则有()A . 最小值-4B . 最大值-4C . 最小值12D . 最大值124. (2分)若等差数列的首项是﹣24,且从第10项开始大于零,则公差d的取值范围是()A . d>B . d<3C . ≤d<3D . <d≤35. (2分) (2016高三上·安徽期中) 在△ABC中,角A,B,C所对应的边分别为a,b,c,则“a≤b”是“sinA≤sinB”的()A . 充分必要条件B . 充分非必要条件C . 必要非充分条件D . 非充分非必要条件6. (2分) (2016高一下·临川期中) 在△ABC中,角A,B,C所对的边分别为a,b,c,且a=10,b=8,B=30°,那么△ABC的解的情况是()A . 无解B . 一解C . 两解D . 一解或两解7. (2分)在等差数列中,,则的前5项和()A . 7B . 15C . 20D . 258. (2分) (2020高二上·黄陵期末) 设 ,是双曲线()的左、右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若,则的离心率为A .B .C .D .9. (2分) (2018·茂名模拟) 设等差数列{an}的前n项和为Sn ,若a2+a8=10,则S9= ()A . 20B . 35C . 45D . 9010. (2分) (2017高三下·深圳模拟) 等比数列的前项和为,则()A . -3B . -1C . 1D . 311. (2分) (2018高一下·重庆期末) 数列中,,(),则()A .B .C .D .12. (2分) (2017高二上·西华期中) 已知锐角△ABC中,角A、B、C所对的边分别为a、b、c,若a=2,b2+c2﹣bc=4,则△ABC的面积的取值范围是()A . (, ]B . (0, ]C . (, ]D . (,)二、填空题 (共4题;共4分)13. (1分) (2016高一下·成都期中) 已知数列1,a1 , a2 , 9是等差数列,数列1,b1 , b2 , b3 ,9是等比数列,则的值为________.14. (1分) (2019高一下·上海月考) 在中,若则角A的值为________.15. (1分) (2016高二上·临漳期中) 已知数列{an}满足anan+1=(﹣1)n(n∈N*),a1=1,Sn是数列{an}的前n项和,则S2015=________.16. (1分) (2016高二上·大名期中) 如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为67°,30°,此时气球的高是46m,则河流的宽度BC约等于________ m.(用四舍五入法将结果精确到个位.参考数据:sin67°≈0.92,cos67°≈0.39,sin37°≈0.60,cos37°≈0.80,≈1.73)三、解答题 (共6题;共55分)17. (10分)(2018·商丘模拟) 在中,内角所对的边分别为,若,且 .(1)求证:成等比数列;(2)若的面积是2,求边的长.18. (5分)已知等差数列{an}的公差为d,且d>0,等比数列{bn}为公比q,且q>1,首项b1>0,若an ﹣a1>logabn﹣logab1(n∈N,n>1,a>0,a≠1),求实数a的取值范围.19. (10分) (2016高二上·衡阳期中) 在△ABC中,cosA=﹣,cosB= ,(1)求sinA,sinB,sinC的值(2)设BC=5,求△ABC的面积.20. (10分) (2017高一下·资阳期末) 已知数列{an}满足:.(1)求证:数列为等差数列;(2)求数列的前n项和Sn.21. (10分) (2017高一下·宜昌期末) 在△ABC中,A、B、C的对边分别是a、b、c,且A、B、C成等差数列.△ABC的面积为.(1)求:ac的值;(2)若b= ,求:a,c 的值.22. (10分) (2019高二上·桂林期末) 已知数列{an}满足a1=2,an+1=2(Sn+n+1)(n∈N*),令bn=an+1.(1)求数列{bn}的通项公式;(2)证明:.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共55分) 17-1、17-2、18-1、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省2018-2019学年高二上学期第一次月考数学(理)试题一.选择题(共12小题60分)1. 一个命题的四种形式的命题中真命题的个数可能取值是()A. 0或2B. 0或4C. 2或4D. 0或2 或4【答案】D2. 命题“若a>b,则ac>bc”的逆否命题是()A. 若a>b,则ac≤bcB. 若ac≤bc,则a≤bC. 若ac>bc,则a>bD. 若a≤b,则ac≤bc【答案】B【解析】因为的否定是,的否定是,所以命题“若,则”的逆否命题是“若,则,故选B.3. 已知椭圆的方程为,则此椭圆的离心率为()A. B. C. D.【答案】B【解析】略4. 命题“∃x0∈R,”的否定是()A. ∀x∈R,x2﹣x﹣1≤0B. ∀x∈R,x2﹣x﹣1>0C. ∃x0∈R,D. ∃x0∈R,【答案】A【解析】含有存在量词的命题的否定是含有全称量词的命题,命题“∃x0∈R,”的否定是“∀x∈R,x2﹣x﹣1≤0”,选A.5. 已知命题p:若x<﹣3,则x2﹣2x﹣8>0,则下列叙述正确的是()A. 命题p的逆命题是:若x2﹣2x﹣8≤0,则x<﹣3B. 命题p的否命题是:若x≥﹣3,则x2﹣2x﹣8>0C. 命题p的否命题是:若x<﹣3,则x2﹣2x﹣8≤0D. 命题p的逆否命题是真命题【答案】D【解析】命题p:若x<﹣3,则x2﹣2x﹣8>0的逆命题为:若x2﹣2x﹣8>0,则x<﹣3,A错误;命题p:若x<﹣3,则x2﹣2x﹣8>0的否命题为:若,则,B、C错误;命题p:若x<﹣3,则x2﹣2x﹣8>0是真命题,则命题p的逆否命题是真命题,选D.6. 已知p:4+2=5,q:3≥2,则下列判断中,错误的是()A. p或q为真,非q为假B. p或q为真,非p为真C. p且q为假,非p为假D. p且q为假,p或q为真【答案】C【解析】,可得是假命题;,可得命题是真命题;可得:且为假,非为真,所以错误的是,故选C.7. 平面内有两定点A、B及动点P,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P的轨迹是以A、B 为焦点的椭圆”,那么()A. 甲是乙成立的充分不必要条件B. 甲是乙成立的必要不充分条件C. 甲是乙成立的充要条件D. 甲是乙成立的非充分非必要条件【答案】B【解析】试题分析:只有满足|PA|+|PB|是常数且常数大于两定点A,B的距离时,动点轨迹才是椭圆,因此甲是乙成立的必要不充分条件考点:椭圆定义及充分条件必要条件8. 已知△ABC的周长为20,且顶点B (0,﹣4),C (0,4),则顶点A的轨迹方程是()A. (x≠0)B. (x≠0)C. (x≠0)D. (x≠0)【答案】B【解析】试题分析:根据三角形的周长和定点,得到点A到两个定点的距离之和等于定值,得到点A的轨迹是椭圆,椭圆的焦点在y轴上,写出椭圆的方程,去掉不合题意的点.解:∵△ABC的周长为20,顶点B (0,﹣4),C (0,4),∴BC=8,AB+AC=20﹣8=12,∵12>8∴点A到两个定点的距离之和等于定值,∴点A的轨迹是椭圆,∵a=6,c=4∴b2=20,∴椭圆的方程是故选B.考点:椭圆的定义.9. 若p∧q是假命题,则()A. p是真命题,q是假命题B. p、q均为假命题C. p、q至少有一个是假命题D. p、q至少有一个是真命题【答案】C【解析】试题分析:当、都是真命题是真命题,其逆否命题为:是假命题、至少有一个是假命题,可得C正确.考点:命题真假的判断.10. 命题p:若ab=0,则a=0;命题q:3≥3,则()A. “p或q”为假B. “p且q”为真C. p真q假D. p假q真【答案】D【解析】试题分析:命题p:b可能为0,a不为0,可知是假命题.命题q:3=3,可得为真命题.再利用复合命题真假的判定方法即可得出.解:命题p:b可能为0,a不为0,因此是假命题.命题q:3=3,因此为真命题,所以“p或q”为真命题,“p且q”为假命题.故选:D.考点:复合命题的真假.11. 已知椭圆过点和点,则此椭圆的标准方程是()A. +x2=1B. +y2=1或x2+=1C. +y2=1D. 以上均不正确【答案】A【解析】设椭圆方程为,椭圆过点和点,则,,则此椭圆的标准方程是,选A.12. 已知椭圆+=1(a>b>0)的右焦点为F(3,0),点(0,﹣3)在椭圆上,则椭圆的方程为()A. +=1B. +=1C. +=1D. +=1【答案】D考点:椭圆的标准方程二.填空题(共4小题20分)13. 椭圆的短轴长为6,焦距为8,则它的长轴长等于_____.【答案】10【解析】.14. 命题“∃x∈R,2x≥0”的否定是_____.【答案】【解析】含有存在量词的命题的否定是含有全称量词的命题,命题“∃x∈R,2x≥0”的否定是.15. 从“充分不必要条件”、“必要不充分条件”、“充要条件”和“既不充分又不必要条件”中,选出恰当的一种填空:“a=0”是“函数f(x)=x2+ax(x∈R)为偶函数”的_____.【答案】充要条件【解析】当时,函数是偶函数,反过来函数f(x)=x2+ax(x∈R)为偶函数,则,则对恒成立,只需,则“a=0”是“函数f(x)=x2+ax(x∈R)为偶函数”的充要条件.16. 若方程表示椭圆,则m的取值范围是_____.【答案】【解析】方程表示椭圆,则,,即:且,则m的取值范围是.三.解答题(共6小题70分)17. 求椭圆 16x2+25y2=400的长轴和短轴的长,离心率,焦点和顶点坐标.【答案】详见解析【解析】试题分析:有关椭圆的简单几何性质问题,首先把椭圆方程化为标准方程,先得出,求出,根据,求出,然后写出长轴,短轴,计算离心率,根据焦点的位置写出焦点的坐标,最后在写出四个顶点的坐标.一要注意焦点在那个轴上,二要注意和和的区别.试题解析:由题知得a=5,b=4,c=3,所以长轴长2a=10,短轴长:2b=8离心率:e=,焦点F1(3,0)F2(﹣3,0 ),顶点坐标(5,0)、(﹣5,0)、(0,4)、(0,﹣4).18. 写出“若x=2,则x2﹣5x+6=0”的逆命题、否命题、逆否命题,并判其真假.【答案】详见解析【解析】试题分析:原命题“若,则”,它的逆命题为:“若,则”,它的否命题为“若则”,它的逆否命题为“若,则”,由于时,成立,原命题为真命题,,逆命题为假,根据互为逆否命题同真假可判断出否命题和逆否命题的真假.试题解析:逆命题:若x2﹣5x+6=0,则x=2,假命题;否命题:若x≠2,则x2﹣5x+6≠0,是假命题;逆否命题:若x2﹣5x+6≠0,则x≠2,是真命题.【点睛】本题考查四种命题及四种命题的关系,命题“若,则”,它的逆命题为:“若,则”,它的否命题为“若则”,它的逆否命题为“若,则”,由于互为逆否的两个命题同真假,所以只需判断两个命题的真假就够了,说明命题为真命题,需要证明其成立,说明一个命题为假命题只需举一个反例.19. 已知命题p:x∈A,且A={x|a﹣1<x<a+1},命题q:x∈B,且B={x|x2﹣4x+3≥0}(Ⅰ)若A∩B=∅,A∪B=R,求实数a的值;(Ⅱ)若p是q的充分条件,求实数a的取值范围.【答案】(Ⅰ)2(Ⅱ)(﹣∞,0]∪[4,+∞).【解答】解:(Ⅰ)B={x|x2﹣4x+3≥0}={x|x≤1,或x≥3},A={x|a﹣1<x<a+1},由A∩B=∅,A∪B=R,得,得a=2,所以满足A∩B=∅,A∪B=R的实数a的值为2;(Ⅱ)因p是q的充分条件,所以A⊆B,且A≠∅,所以结合数轴可知,a+1≤1或a﹣1≥3,解得a≤0,或a≥4,所以p是q的充分条件的实数a的取值范围是(﹣∞,0]∪[4,+∞).【解析】试题分析:首先化简集合B,根据A∩B=∅,A∪B=R,说明集合A为集合B在R下的补集,根据要求列出方程求出a,第二步从集合的包含关系解决充要条件问题,p是q的充分条件说明集合A是集合B的子集,根据要求列出不等式组,解出a的范围.试题解析:(Ⅰ)B={x|x2﹣4x+3≥0}={x|x≤1,或x≥3},A={x|a﹣1<x<a+1},由A∩B=∅,A∪B=R,得,得a=2,所以满足A∩B=∅,A∪B=R的实数a的值为2;(Ⅱ)因p是q的充分条件,所以A⊆B,且A≠∅,所以结合数轴可知,a+1≤1或a﹣1≥3,解得a≤0,或a≥4,所以p是q的充分条件的实数a的取值范围是(﹣∞,0]∪[4,+∞).20. 求过点(3,﹣2)且与椭圆4x2+9y2=36有相同焦点的椭圆方程.【答案】【解析】试题分析:本题为求椭圆的标准方程问题,待定系数法是求椭圆的标准方程最基本的方法,两个椭法圆共焦点,求出已知椭圆的焦点坐标,借助的值,得出所求椭圆的关系,再利用椭圆过点的坐标,满足椭圆的方程,列出方程解方程组求出,写出椭圆的方程.试题解析:椭圆4x2+9y2﹣36=0,∴焦点坐标为:(,0),(﹣,0),c=,∵椭圆的焦点与椭圆4x2+9y2﹣36=0有相同焦点∴椭圆的半焦距c=,即a2﹣b2=5∵,∴解得:a2=15,b2=10∴椭圆的标准方程为.【点睛】求椭圆的标准方程基本方法有三种:其一是待定系数法,根据题目所提供的条件列出关于的两个方程,再借助解方程组求出,根据焦点的位置写出椭圆的标准方程;其二已知椭圆经过的两个点的坐标时,可以设椭圆的方程为,其三是定义法,已知焦点坐标和椭圆上一点时,直接用定义求出.21. 已知命题p:x2+mx+1=0有两个不等的负根;命题q:4x2+4(m﹣2)x+1=0无实根.若命题p与命题q 有且只有一个为真,求实数m的取值范围.【答案】m≥3,或1<m≤2【解析】试题分析:根据题意,首先求得p、q为真时m的取值范围,再由题意p,q中有且仅有一为真,一为假,分p假q真与p真q假两种情况分别讨论,最后综合可得答案试题解析:若方程x2+mx+1=0有两不等的负根,则解得m>2,即命题p:m>2若方程4x2+4(m-2)x+1=0无实根,则Δ=16(m-2)2-16=16(m2-4m+3)<0解得:1<m<3.即q:1<m<3.因“p或q”为真,所以p、q至少有一为真,又“p且q”为假,所以命题p、q至少有一为假,因此,命题p、q应一真一假,即命题p为真,命题q为假或命题p为假,命题q为真.∴解得:m≥3或1<m≤2.考点:1.复合命题的真假;2.一元二次方程的根的分布与系数的关系22. 椭圆+=1的左、右焦点分别为F1,F2,一条直线经过点F1与椭圆交于A,B两点.(1)求△ABF2的周长;(2)若的倾斜角为,求弦长|AB|.【答案】(1)8(2)【解析】试题分析:解决椭圆问题要注意“勿忘定义”,根据椭圆的定义,把三角形周长看成点A到两焦点的距离和及点B到两焦点距离和,求椭圆的弦长利用弦长公式,一般设而不求,把直线方程和椭圆方程联立方程组,借助根与系数的关系,利用和求弦长.试题解析:(1)椭圆,a=2,b=,c=1,由椭圆的定义,得丨AF1丨+丨AF2丨=2a=4,丨BF1丨+丨BF2丨=2a=4,又丨AF1丨+丨BF1丨=丨AB丨,∴△ABF2的周长为∴故△ABF2点周长为8;(2)由(1)可知,得F1(﹣1,0),∵AB的倾斜角为,则AB斜率为1,A(x1,y1),B(x2,y2),故直线AB的方程为y=x+1.,整理得:7y2﹣6y﹣9=0,由韦达定理可知:y1+y2=,y1•y2=﹣,则由弦长公式丨AB丨=,弦长|AB|=.。