2009年普通高等学校招生全国统一考试数学试题及答案-上海卷
2009年普通高等学校招生全国统一考试数学卷(全国Ⅰ.文)含详解
5 设 曲线 心率等于 A 解析 基础题
x2 a2
y2 b2
令 ( a 0 b 0 ) 的渐 线 抛物线 y x2 1 相
则该 曲线的离
3
本小题考查
B 2 曲线的渐
C
5
直线
D
6
曲线的离心率
线方程
圆锥曲线的位置关系
解
题 曲线
x2 a2
y2 b2
令 ( a 0 b 0 ) 的一条渐 线方程为 y =
因 渐 线 抛 物 线 相 所
那
w.w.w.k.s.5.u. c.o. m
关于点 ( (D)
π
6
(B)
π
4
(C)
π
3
π
4π , 0) 中心对 3
φ 的最小值为
2
解析 本小题考查 角函数的 象性质 基础题 解: Q 函数 y
3 cos ( 2 x φ ) 的
关于点
4π 3
代 中心对
w.w.w.k.s.5.u. c. o.m
V=
4 3 πR 3
n 次独立 复试验中恰好发生 k 次的概率
Pn (k ) = Cnk P k (1 − P ) n − k (k = 0 1, 2 L n)
一 1 选择题
其中 R 表示球的半径
sin 585 o 的值为
(A) −
2 2
(B)
2 2
(C) −
3 2
(D)
3 2
基础题
解析 本小题考查诱导公式 特殊角的 角函数值
故选择 ∴ 4 (A) 知 tan a =4,cot β =
7 11
(B) −
7 11
1 ,则 tan(a+ β )= 3 7 7 (C) (D) − 13 13
2009年普通高等学校招生全国统一考试理科(上海卷)
2009年上海市普通高等学校春季招生考试数 学 试 卷考生注意:1.答卷前,考生务必在答题纸上将姓名、高考准考证号填写清楚,并在规定的区域内贴上条形码.2.本试卷共有20道试题,满分150分.考试时间120分钟.一. 填空题(本大题满分60分)本大题共有11题,只要求在答题纸相应题序的空格内直接填写结果,每个空格填对得5分,否则一律得零分. 1.函数)1(log 2-=x y 的定义域是 . 2.计算:=-2)i 1( (i 为虚数单位). 3.函数2cosxy =的最小正周期=T . 4.若集合{}1||>=x x A ,集合{}20<<=x x B ,则=B A . 5.抛物线x y =2的准线方程是 .6.已知2,3==b a. 若3-=⋅b a,则a 与b 夹角的大小为 .7.过点)1,4(-A 和双曲线116922=-y x 右焦点的直线方程为 . 8.在△ABC 中,若 60,75,3=∠=∠=ACB ABC AB ,则BC 等于 . 9.已知对于任意实数x ,函数)(x f 满足)()(x f x f =-. 若方程0)(=x f 有2009个实数解, 则这2009个实数解之和为 .10.一只猴子随机敲击只有26个小写英文字母的练习键盘. 若每敲1次在屏幕上出现一个 字母,它连续敲击10次,屏幕上的10个字母依次排成一行,则出现单词“monkey ” 的概率为 (结果用数值表示). 11.以下是面点师一个工作环节的数学模型:如图,在数 轴上截取与闭区间]1,0[对应的线段,对折后(坐标1∙∙ ∙ 211所对应的点与原点重合)再均匀地拉成1个单位长度的线段,这一过程称为一次操作 (例如在第一次操作完成后,原来的坐标4341、变成21,原来的坐标21变成1,等等). 那么原闭区间]1,0[上(除两个端点外)的点,在第二次操作完成后,恰好被拉到与 1重合的点所对应的坐标是 ;原闭区间]1,0[上(除两个端点外)的点, 在第n 次操作完成后(1≥n ),恰好被拉到与1重合的点所对应的坐标为 .二.选择题(本大题满分16分)本大题共有4题,每题都给出四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应题序内的正确结论代号涂黑,选对得 4分,否则一律得零分.12.在空间中,“两条直线没有公共点”是“这两条直线平行”的 [答] ( ) (A )充分不必要条件. (B )必要不充分条件. (C )充要条件. (D )既不充分也不必要条件.13.过点)1,0(P 与圆03222=--+x y x 相交的所有直线中,被圆截得的弦最长时的直线 方程是 [答] ( ) (A )0=x . (B )1=y . (C )01=-+y x . (D )01=+-y x .14.已知函数⎩⎨⎧>≤=+.0,log ,0,3)(21x x x x f x 若()30>x f ,则0x 的取值范围是 [答] ( )(A )80>x . (B )00<x 或80>x . (C )800<<x . (D )00<x 或800<<x . 15.函数)01(112≤≤--+=x x y 的反函数图像是 [答] ( )(A )(C )三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸的规定区域(对应的题号)内写出必要的步骤. 16. (本题满分12分)如图,在斜三棱柱111C B A ABC -中,=∠AC A 12π=∠ACB ,61π=∠C AA ,侧棱1BB 与底面所成的角为3π,341=AA ,4=BC . 求斜三棱柱-ABC 111C B A的体积V .17. (本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分. 已知数列{}n a 的前n 项和为n S ,11=a ,且3231=++n n S a (n 为正整数). (1)求数列{}n a 的通项公式;(2)记 ++++=n a a a S 21.若对任意正整数n ,n S kS ≤恒成立,求实数k 的最大值.18. (本题满分14分)我国计划发射火星探测器,该探测器的运行轨道是以火星(其半径34=R 百公里)的中心F 为一个焦点的椭圆. 如图,已知探测器的近火星点(轨道上离火星表面最近的点)A 到火星表面的距离为8百公里,远火星点(轨道上离火星表面最远的点)B 到火星表面的距离为800百公里. 假定探测器由近火星点A 第一次逆时针运行到与轨道中心O 的距离为ab 百公里时进行变轨,其中a 、b 分别为椭圆的长半轴、短半轴的长,求此时探测器与火星表面的距离(精确到1百公里).19. (本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分5分,第3小AC 1A 1B 1C题满分7分.如图,在直角坐标系xOy 中,有一组对角线长为n a 的正方形n n n n D C B A ),2,1( =n , 其对角线n n D B 依次放置在x 轴上(相邻顶点重合). 设{}n a 是首项为a ,公差为)0(>d d 的等差数列,点1B 的坐标为)0,(d . (1)当4,8==d a 时,证明:顶点321A A A 、、不在同一条直线上;(2)在(1)的条件下,证明:所有顶点n A 均落在抛物线x y 22=上;(3)为使所有顶点n A 均落在抛物线)0(22>=p px y 上,求a 与d 之间所应满足的关系式.20. (本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分4分,第3小题满分10分.设函数40,cos )1(sin )(πθθθθ≤≤-+=n n n n f ,其中n 为正整数.(1)判断函数)()(31θθf f 、的单调性,并就)(1θf 的情形证明你的结论; (2)证明:()()θθθθθθ224446sin cossin cos )()(2--=-f f ;(3)对于任意给定的正整数n ,求函数)(θn f 的最大值和最小值.2009年上海市普通高等学校春季招生考试数 学 试 卷参考答案及评分标准说明1. 本解答列出试题的一种或几种解法,如果考生的解法与所列解法不同,可参照解答中评分标准的精神进行评分.2. 评阅试卷,应坚持每题评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅. 当考生的解答在某一步出现错误,影响了后继部分,但该步以后的解答未改变这一题的内容和难度时,可视影响程度决定后面部分的给分,这时原则上不应超过后面部分应给分数之半,如果有较严重的概念性错误,就不给分.3. 第16题至第20题中右端所注的分数,表示考生正确做到这一步应得的该题累加分数.4. 给分或扣分均以1分为单位.答案及评分标准一.(第1至11题)每一个空格正确的给5分,否则一律得零分.1.),1(∞+.2. i 2-.3. π4. 4. {}21<<x x . 5. 41-=x . 6.π32. 7. -=x y 5. 8. 6. 9. 0. 10.6265. 11. 43,41;j j n ,2为[]n 2,1中的所有奇数.二.(第12至15题)每一题正确的给4分,否则一律得零分.三.(第16至20题)A16. [解] 在Rt △C AA 1中,C AA AA AC 11tan ∠⋅=43334=⨯=. …… 3分 作⊥H B 1平面ABC ,垂足为H ,则31π=∠BH B ,…… 6分在Rt △BH B 1中,BH B BB H B 111sin ∠⋅=623343sin1=⨯=⋅=πAA . …… 9分 48644211=⨯⨯⨯=⋅=∴∆H B S V ABC . …… 12分 17. [解] (1) 3231=++n n S a , ① ∴ 当2≥n 时,3231=+-n n S a . ② 由 ① - ②,得02331=+-+n n n a a a . 311=∴+n n a a )2(≥n . …… 3分又 11=a ,32312=+a a ,解得 312=a . …… 4分 ∴ 数列{}n a 是首项为1,公比为31=q 的等比数列. 11131--⎪⎭⎫ ⎝⎛==∴n n n qa a (n 为正整数). …… 6分(2)由(1)知,23311111=-=-=qa S , …… 8分()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=-⎪⎭⎫ ⎝⎛-=--=nnn n q q a S 31123311311111. …… 10分由题意可知,对于任意的正整数n ,恒有⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-≤n k 3112323,解得 nk ⎪⎭⎫⎝⎛-≤311.数列⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛-n311单调递增,∴ 当1=n 时,数列中的最小项为32,∴ 必有32≤k ,即实数k 的最大值为32. …… 14分18. [解] 设所求轨道方程为)0(12222>>=+b a by a x,22b a c -=.348,34800+=-+=+c a c a ,396,438==∴c a . …… 4分 于是 35028222=-=c a b .∴ 所求轨道方程为13502819184422=+y x . …… 6分 设变轨时,探测器位于),(00y x P ,则1.819752020==+ab y x ,1350281918442020=+y x , 解得 7.2390=x ,7.1560=y (由题意). …… 10分 ∴ 探测器在变轨时与火星表面的距离为3.187)(2020≈-+-R y c x . …… 13分答:探测器在变轨时与火星表面的距离约为187百公里. …… 14分 19. [证明](1)由题意可知,()()()8,32,6,18,4,8321A A A ,71183268,51818463221=--==--=∴A A A A k k . …… 3分 3221A A A A k k ≠ ,∴ 顶点321,,A A A 不在同一条直线上. …… 4分 (2)由题意可知,顶点n A 的横坐标n n n a a a a d x 21121+++++=- 2)1(2+=n , 顶点n A 的纵坐标)1(221+==n a y n n . …… 7分 对任意正整数n ,点n A ()n n y x ,的坐标满足方程x y 22=,∴ 所有顶点n A 均落在抛物线x y 22=上. …… 9分 (3)[解法一] 由题意可知,顶点n A 的横、纵坐标分别是[]d n a y d n a n a d x n n )1(21,)1(21)1(212-+=-+-++= 消去1-n ,可得 da d a d y d x n n 2)(22-++=. …… 12分为使得所有顶点n A 均落在抛物线)0(22>=p px y 上,则有⎪⎩⎪⎨⎧=-+=.02)(,22d a d a d p d解之,得 p a p d 8,4==. …… 14分∴ d a 、所应满足的关系式是:d a 2=. …… 16分 [解法二] 点()111,y x A 的坐标为⎪⎩⎪⎨⎧=+=.21,2111a y a d x 点()111,y x A 在抛物线px y 22=上,∴ )2(422121a d a x y p +==. …… 11分 又点()222,y x A 的坐标为⎪⎩⎪⎨⎧+=+=).(21,232322d a y d a x 且点()222,y x A 也在抛物线上,0,0>>d a ,把点()222,y x A 代入抛物线方程,解得 d a 2=. …… 13分因此,4d p =,∴ 抛物线方程为x dy 22=.又 ⎪⎪⎩⎪⎪⎨⎧+=-+=+=-+-++=.21])1([21,2)1()1(21)1(2122d n d n a y d n d n a n a d x n n∴ 所有顶点()n n n y x A ,落在抛物线x dy 22=上. …… 15分∴ d a 、所应满足的关系式是:d a 2=. …… 16分 20. [解] (1))()(31θθf f 、在⎥⎦⎤⎢⎣⎡4,0π上均为单调递增的函数. …… 2分 对于函数θθθcos sin )(1-=f ,设 ⎥⎦⎤⎢⎣⎡∈<4,0,2121πθθθθ、,则 )()(2111θθf f -()()1221c o s c o s s i n s i nθθθθ-+-=, 1221c o s c o s ,s i n s i n θθθθ<<,()()∴<∴,2111θθf f 函数)(1θf 在⎥⎦⎤⎢⎣⎡4,0π上单调递增. …… 4分(2) 原式左边()()θθθθ4466c o s s i n c o s s i n 2+-+=()()()θθθθθθθθ44422422c o s s i n c o s c o s s i n s i n c o s s i n 2+-+⋅-+=θθ2c o s 2s i n122=-=. …… 6分 又原式右边()θθθ2cos sin cos 2222=-=.∴ ()()θθθθθθ224446sin cossin cos )()(2--=-f f . …… 8分(3)当1=n 时,函数)(1θf 在⎥⎦⎤⎢⎣⎡4,0π上单调递增, ∴ )(1θf 的最大值为041=⎪⎭⎫⎝⎛πf ,最小值为()101-=f .当2=n 时,()12=θf ,∴ 函数)(2θf 的最大、最小值均为1.当3=n 时,函数)(3θf 在⎥⎦⎤⎢⎣⎡4,0π上为单调递增. ∴ )(3θf 的最大值为043=⎪⎭⎫⎝⎛πf ,最小值为()103-=f .当4=n 时,函数θθ2sin 211)(24-=f 在⎥⎦⎤⎢⎣⎡4,0π上单调递减,∴ )(4θf 的最大值为()104=f ,最小值为2144=⎪⎭⎫ ⎝⎛πf . …… 11分下面讨论正整数5≥n 的情形:当n 为奇数时,对任意⎥⎦⎤⎢⎣⎡∈4,021πθθ、且,21θθ<()()122121cos cos sin sin )()(θθθθθθn n n n n n f f -+-=-, 以及 1cos cos 0,1sin sin 01221≤<<<<≤θθθθ,∴ 1221cos cos ,sin sin θθθθn n n n <<,从而 )()(21θθn n f f <.∴ )(θn f 在⎥⎦⎤⎢⎣⎡4,0π上为单调递增,则)(θn f 的最大值为04=⎪⎭⎫⎝⎛πn f ,最小值为()104-=f . …… 14分当n 为偶数时,一方面有 )0(1cos sin cos sin )(22n n n n f f ==+≤+=θθθθθ. 另一方面,由于对任意正整数2≥l ,有()()0s i n c o s s i n c o s )()(2222222222≥--=----θθθθθθl l l l f f ,⎪⎭⎫ ⎝⎛==≥≥≥∴---421)(21)(21)(122122πθθθn n n n n f f f f . ∴ 函数)(θn f 的最大值为1)0(=n f ,最小值为nn f ⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛2124π.综上所述,当n 为奇数时,函数)(θn f 的最大值为0,最小值为1-.当n 为偶数时,函数)(θn f 的最大值为1,最小值为n⎪⎭⎫⎝⎛212. …… 18分。
2009年上海高考数学试卷
2009年上海高考数学试卷(理)一.填空题 (本大题满分56分)本大题有14题,考生应在答题纸相应编号的空格内直接写结果,每个空格填对得4分,否则一律得零分 .1. 若复数 z 满足z (1+i) =1-i (I 是虚数单位),则其共轭复数z =__________________ .2. 已知集合{}|1A x x =≤,{}|B x x a =≥,且A B R ⋃=, 则实数a 的取值范围是______________________ .3. 若行列式417 5 xx 3 8 9中,元素4的代数余子式大于0,则x 满足的条件是________________________4.某算法的程序框如右图所示,则输出量y 与输入量x满足的关系式是____________________________ .5.如图,若正四棱柱1111ABCD A B C D -的底面连长为2,高为4,则异面直线1BD 与AD 所成角的大小是______________(结果用反三角函数表示).6.函数22cos sin 2y x x =+的最小值是_____________________ .7.某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则数学期望E ξ____________(结果用最简分数表示).8.已知三个球的半径1R ,2R ,3R 满足32132R R R =+,则它们的表面积1S ,2S ,3S ,满足的等量关系是___________.9.已知1F 、2F 是椭圆1:2222=+by a x C (a >b >0)的两个焦点,P 为椭圆C 上一点,且21PF PF ⊥.若21F PF ∆的面积为9,则b =____________.10.在极坐标系中,由三条直线0=θ,3πθ=,1sin cos =+θρθρ围成图形的面积是_______. 12.已知函数x x x f tan sin )(+=.项数为27的等差数列{}n a 满足⎪⎭⎫ ⎝⎛-∈22ππ,n a ,且公差0≠d .若0)()()(2721=+⋯++a f a f a f ,则当k =____________是,0)(=k a f . 13.某地街道呈现东—西、南—北向的网格状,相邻街距都为1.两街道相交的点称为格点。
2009年全国高考上海数学试题
2009年普通高等学校招生全国统一考试上海文 科 数 学(必修+选修Ⅰ)考生注意:答卷前,考生务必在答题纸上将姓名、高考准考证号填写清楚,并在规定的区域内贴上条形码。
本试卷共有23道试题,满分150分,考试时间120分钟。
一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。
1.函数f(x)=x3+1的反函数f-1(x)=_____________. 2.已知集体A={x|x ≤1},B={x|≥a},且A ∪B=R , 则实数a 的取值范围是__________________.3. 若行列式417 5 x x 38 9中,元素4的代数余子式大于0,则x 满足的条件是__________________.4.某算法的程序框如右图所示,则输出量y 与输入量x 满足的关系式是________________.5.如图,若正四棱柱ABCD —A1B1C1D1的底面边长为2,高为4,则异面直线BD1与AD 所成角的大小是___________________ (结果用反三角函数值表示).6.若球O1、O2表示面积之比421=S S ,则它们的半径之比21R R =_____________.7.已知实数x 、y 满足223y x y x x ≤⎧⎪≥-⎨⎪≤⎩ 则目标函数z=x-2y 的最小值是___________.8.若等腰直角三角形的直角边长为2,则以一直角边所在的直线为轴旋转一周所成的几何体体积是9.过点A (1,0)作倾斜角为4π的直线,与抛物线22y x =交于M N 、两点,则M N= 。
10.函数2()2cos sin 2f x x x=+的最小值是 。
11.若某学校要从5名男生和2名女生中选出3人作为上海世博会的志愿者,则选出的志愿者中男女生均不少于1名的概率是 (结果用最简分数表示)。
12.已知12F 、F 是椭圆2222:1(0)x y C a b ab+=>>的两个焦点,p为椭圆C 上的一点,且12PF PF ⊥。
2009年上海市高考数学试卷(理科)及答案
2009年上海市高考数学试卷(理科)一、填空题(共14小题,每小题4分,满分56分)1.(4分)若复数z满足z(1+i)=1﹣i(I是虚数单位),则其共轭复数=.2.(4分)已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是.3.(4分)若行列式中,元素4的代数余子式大于0,则x满足的条件是.4.(4分)某算法的程序框如下图所示,则输出量y与输入量x满足的关系式是.5.(4分)如图,若正四棱柱ABCD﹣A1B1C1D1的底面边长为2,高为4,则异面直线BD1与AD所成角的大小是(结果用反三角函数值表示).6.(4分)函数y=2cos2x+sin2x的最小值是.7.(4分)某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则数学期望Eξ(结果用最简分数表示).8.(4分)已知三个球的半径R1,R2,R3满足R1+2R2=3R3,则它们的表面积S1,S2,S3,满足的等量关系是.9.(4分)已知F1、F2是椭圆C:(a>b>0)的两个焦点,P为椭圆C 上一点,且.若△PF1F2的面积为9,则b=.10.(4分)在极坐标系中,由三条直线θ=0,,ρcosθ+ρsinθ=1围成图形的面积等于.11.(4分)当时,不等式sinπx≥kx恒成立.则实数k的取值范围是.12.(4分)已知函数f(x)=sinx+tanx,项数为27的等差数列{a n}满足a n∈(﹣),且公差d≠0,若f(a1)+f(a2)+…f(a27)=0,则当k=时,f(a k)=0.13.(4分)某地街道呈现东﹣西、南﹣北向的网格状,相邻街距都为1.两街道相交的点称为格点.若以互相垂直的两条街道为轴建立直角坐标系,现有下述格点(﹣2,2),(3,1),(3,4),(﹣2,3),(4,5),(6,6)为报刊零售点.请确定一个格点(除零售点外)为发行站,使6个零售点沿街道到发行站之间路程的和最短.14.(4分)将函数(x∈[0,6])的图象绕坐标原点逆时针方向旋转角θ(0≤θ≤α),得到曲线C.若对于每一个旋转角θ,曲线C都是一个函数的图象,则α的最大值为.二、选择题(共4小题,每小题4分,满分16分)15.(4分)“﹣2≤a≤2”是“实系数一元二次方程x2+ax+1=0有虚根”的()A.必要不充分条件 B.充分不必要条件C.充要条件D.既不充分也不必要条件16.(4分)若事件E与F相互独立,且P(E)=P(F)=,则P(E∩F)的值等于()A.0 B.C.D.17.(4分)有专业机构认为甲型N1H1流感在一段时间没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过15人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是()A.甲地:总体均值为3,中位数为4B.乙地:总体均值为1,总体方差大于0C.丙地:中位数为2,众数为3D.丁地:总体均值为2,总体方差为318.(4分)过圆C:(x﹣1)2+(y﹣1)2=1的圆心,作直线分别交x、y正半轴+S IV=S||+S|||于点A、B,△AOB被圆分成四部分(如图),若这四部分图形面积满足S|则直线AB有()A.0条 B.1条 C.2条 D.3条三、解答题(共5小题,满分78分)19.(14分)如图,在直三棱柱ABC﹣A1B1C1中,AA1=BC=AB=2,AB⊥BC,求二面角B1﹣A1C﹣C1的大小.20.(16分)有时可用函数f(x)=,描述学习某学科知识的掌握程度.其中x表示某学科知识的学习次数(x∈N*),f(x)表示对该学科知识的掌握程度,正实数a与学科知识有关.(1)证明:当x≥7时,掌握程度的增长量f(x+1)﹣f(x)总是下降;(2)根据经验,学科甲、乙、丙对应的a的取值区间分别为(115,121],(121,127],(127,133].当学习某学科知识6次时,掌握程度是85%,请确定相应的学科.21.(16分)已知双曲线,设直线l过点,(1)当直线l与双曲线C的一条渐近线m平行时,求直线l的方程及l与m的距离;(2)证明:当k>时,在双曲线C的右支上不存在点Q,使之到直线l的距离为.22.(16分)已知函数y=f(x)的反函数.定义:若对给定的实数a(a≠0),函数y=f(x+a)与y=f﹣1(x+a)互为反函数,则称y=f(x)满足“a和性质”;若函数y=f(ax)与y=f﹣1(ax)互为反函数,则称y=f(x)满足“a积性质”.(1)判断函数g(x)=x2+1(x>0)是否满足“1和性质”,并说明理由;(2)求所有满足“2和性质”的一次函数;(3)设函数y=f(x)(x>0)对任何a>0,满足“a积性质”.求y=f(x)的表达式.23.(16分)已知{a n}是公差为d的等差数列,{b n}是公比为q的等比数列.(1)若a n=3n+1,是否存在m、k∈N*,有a m+a m+1=a k?说明理由;(2)找出所有数列{a n}和{b n},使对一切n∈N*,,并说明理由;(3)若a1=5,d=4,b1=q=3,试确定所有的p,使数列{a n}中存在某个连续p项的和是数列{b n}中的一项,请证明.2009年上海市高考数学试卷(理科)参考答案与试题解析一、填空题(共14小题,每小题4分,满分56分)1.(4分)(2009•上海)若复数z满足z(1+i)=1﹣i(I是虚数单位),则其共轭复数=i.【分析】本题考查的知识点是共轭复数的定义,由复数z满足z(1+i)=1﹣i,我们可能使用待定系数法,设出z,构造方程,求出z值后,再根据共轭复数的定义,计算【解答】解:设z=a+bi,则∵(a+bi)(1+i)=1﹣i,即a﹣b+(a+b)i=1﹣i,由,解得a=0,b=﹣1,所以z=﹣i,=i,故答案为i.2.(4分)(2009•上海)已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是a≤1.【分析】利用数轴,在数轴上画出集合,数形结合求得两集合的并集.【解答】解:∵A={x|x≤1},B={x|x≥a},且A∪B=R,如图,故当a≤1时,命题成立.故答案为:a≤1.3.(4分)(2009•上海)若行列式中,元素4的代数余子式大于0,则x 满足的条件是x>且x≠4.【分析】根据3阶行列式D的元素a ij的余子式M ij附以符号(﹣1)i+j后,叫做元素a ij的代数余子式,所以4的余子式加上(﹣1)1+1即为元素4的代数余子式,让其大于0列出关于x的不等式,求出不等式的解集即可得到x的范围.【解答】解:依题意得,(﹣1)2>0,即9x﹣24>0,解得x>,且x≠4,故答案为:x>且x≠44.(4分)(2009•上海)某算法的程序框如下图所示,则输出量y与输入量x满足的关系式是.【分析】根据流程图所示的顺序,逐框分析程序中各变量、各语句的作用可知:该程序的作用是根据输入x值的不同,根据不同的式子计算函数值.即求分段函数的函数值.【解答】解:根据流程图所示的顺序,程序的作用是分段函数的函数值.其中输出量y与输入量x满足的关系式是故答案为:5.(4分)(2009•上海)如图,若正四棱柱ABCD﹣A1B1C1D1的底面边长为2,高为4,则异面直线BD1与AD所成角的大小是arctan(结果用反三角函数值表示).【分析】先通过平移将两条异面直线平移到同一个起点,得到的锐角或直角就是异面直线所成的角,在直角三角形中求出正切值,再用反三角函数值表示出这个角即可.【解答】解:先画出图形将AD平移到BC,则∠D1BC为异面直线BD1与AD所成角,BC=2,D1C=,tan∠D1BC=,∴∠D1BC=arctan,故答案为arctan.6.(4分)(2009•上海)函数y=2cos2x+sin2x的最小值是.【分析】先利用三角函数的二倍角公式化简函数,再利用公式化简三角函数,利用三角函数的有界性求出最小值.【解答】解:y=2cos2x+sin2x=1+cos2x+sin2x=1+=1+当=2k,有最小值1﹣故答案为1﹣7.(4分)(2009•上海)某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则数学期望Eξ(结果用最简分数表示).【分析】用随机变量ξ表示选出的志愿者中女生的人数,ξ可取0,1,2,结合变量对应的事件写出分布列当ξ=0时,表示没有选到女生;当ξ=1时,表示选到一个女生;当ξ=2时,表示选到2个女生,求出期望.【解答】解:用随机变量ξ表示选出的志愿者中女生的人数,ξ可取0,1,2,当ξ=0时,表示没有选到女生;当ξ=1时,表示选到一个女生;当ξ=2时,表示选到2个女生,∴P(ξ=0)==,P(ξ=1)=,P(ξ=2)=,∴Eξ=0×=.故答案为:8.(4分)(2009•上海)已知三个球的半径R1,R2,R3满足R1+2R2=3R3,则它们的表面积S 1,S2,S3,满足的等量关系是.【分析】表示出三个球的表面积,求出三个半径,利用R1+2R2=3R3,推出结果.【解答】解:因为S 1=4πR12,所以,同理:,即R1=,R2=,R3=,由R 1+2R2=3R3,得故答案为:9.(4分)(2009•上海)已知F1、F2是椭圆C:(a>b>0)的两个焦点,P为椭圆C上一点,且.若△PF1F2的面积为9,则b=3.【分析】由已知得|PF1|+|PF2|=2a,=4c2,,由此能得到b的值.【解答】解:∵F1、F2是椭圆C:(a>b>0)的两个焦点,P为椭圆C 上一点,且.∴|PF1|+|PF2|=2a,=4c2,,∴(|PF1|+|PF2|)2=4c2+2|PF1||PF2|=4a2,∴36=4(a2﹣c2)=4b2,∴b=3.故答案为3.10.(4分)(2009•上海)在极坐标系中,由三条直线θ=0,,ρcosθ+ρsinθ=1围成图形的面积等于.【分析】三条直线化为直角坐标方程,求出三角形的边长,然后求出图形的面积.【解答】解:三条直线θ=0,,ρcosθ+ρsinθ=1的直角坐标方程分别为:y=0,y=x,x+y=1,所以它们的交点坐标分别为O(0,0),A(1,0),B(,),OB==,由三条直线θ=0,,ρcosθ+ρsinθ=1围成图形的面积S==.故答案为:.11.(4分)(2009•上海)当时,不等式sinπx≥kx恒成立.则实数k的取值范围是k≤2.【分析】要使不等式sinπx≥kx恒成立,设m=sinπx,n=kx,利用图象得到k的范围即可.【解答】解:设m=sinπx,n=kx,x∈[0,].根据题意画图得:m≥n恒成立即要m的图象要在n图象的上面,当x=时即πx=时相等,所以此时k==2,所以k≤2故答案为k≤212.(4分)(2009•上海)已知函数f(x)=sinx+tanx,项数为27的等差数列{a n}满足a n∈(﹣),且公差d≠0,若f(a1)+f(a2)+…f(a27)=0,则当k=14时,f(a k)=0.【分析】本题考查的知识点是函数的奇偶性及对称性,由函数f(x)=sin x+tan x,项数为27的等差数列{a n}满足a n∈(﹣),且公差d≠0,若f(a1)+f (a2)+…f(a27)=0,我们易得a1,a2,…,a27前后相应项关于原点对称,则f (a14)=0,易得k值.【解答】解:因为函数f(x)=sinx+tanx是奇函数,所以图象关于原点对称,图象过原点.而等差数列{a n}有27项,a n∈().若f(a1)+f(a2)+f(a3)+…+f(a27)=0,则必有f(a14)=0,所以k=14.故答案为:1413.(4分)(2009•上海)某地街道呈现东﹣西、南﹣北向的网格状,相邻街距都为1.两街道相交的点称为格点.若以互相垂直的两条街道为轴建立直角坐标系,现有下述格点(﹣2,2),(3,1),(3,4),(﹣2,3),(4,5),(6,6)为报刊零售点.请确定一个格点(除零售点外)(3,3)为发行站,使6个零售点沿街道到发行站之间路程的和最短.【分析】设发行站的位置为(x,y),则可利用两点间的距离公式表示出零售点到发行站的距离,进而求得在(3,3)处z取得最小值.【解答】解:设发行站的位置为(x,y),6个零售点到发行站的距离为Z,则z=|x+2|+|y﹣2|+|x﹣3|+|y﹣1|+|x﹣3|+|y﹣4|+|x+1|+|y﹣3|+|x﹣4|+|y﹣5|+|x﹣6|+|y﹣6|=|x+2|+|x﹣3|+|x﹣3|+|x+1|+|x﹣4|+|x﹣6|+|y﹣2|+|y﹣1|+|y﹣4|+|y﹣3|+|y﹣5|+|y﹣6|x=3,3≤y<4时,取最小值,∴在(3,3)处z取得最小值.故答案为(3,3).14.(4分)(2009•上海)将函数(x∈[0,6])的图象绕坐标原点逆时针方向旋转角θ(0≤θ≤α),得到曲线C.若对于每一个旋转角θ,曲线C都是一个函数的图象,则α的最大值为arctan.【分析】先画出函数(x∈[0,6])的图象,然后根据由图可知当此圆弧绕坐标原点逆时针方向旋转角大于∠MAB时,曲线C都不是一个函数的图象,求出此角即可.【解答】解:先画出函数(x∈[0,6])的图象这是一个圆弧,圆心为M(3,﹣2)由图可知当此圆弧绕坐标原点逆时针方向旋转角大于∠MAB时,曲线C都不是一个函数的图象∴∠MAB=arctan故答案为:arctan二、选择题(共4小题,每小题4分,满分16分)15.(4分)(2009•上海)“﹣2≤a≤2”是“实系数一元二次方程x2+ax+1=0有虚根”的()A.必要不充分条件 B.充分不必要条件C.充要条件D.既不充分也不必要条件【分析】实系数一元二次方程x2+ax+1=0有虚根⇒△=a2﹣4<0⇒﹣2<a<2,由此入手能够作出正确选择.【解答】解:∵实系数一元二次方程x2+ax+1=0有虚根,∴△=a2﹣4<0,解得﹣2<a<2,∴“﹣2≤a≤2”是“﹣2<a<2”的必要不充分条件,故选A.16.(4分)(2009•上海)若事件E与F相互独立,且P(E)=P(F)=,则P (E∩F)的值等于()A.0 B.C.D.【分析】本题考查的知识点是相互独立事件的概率乘法公式,由相互独立事件的概率计算公式,我们易得P(E∩F)=P(E)•P(F),将P(E)=P(F)=代入即可得到答案.【解答】解:P(E∩F)=P(E)•P(F)=×=.故选B.17.(4分)(2009•上海)有专业机构认为甲型N1H1流感在一段时间没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过15人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是()A.甲地:总体均值为3,中位数为4B.乙地:总体均值为1,总体方差大于0C.丙地:中位数为2,众数为3D.丁地:总体均值为2,总体方差为3【分析】平均数和方差都是重要的数字特征,是对总体的一种简单的描述,平均数描述集中趋势,方差描述波动大小.【解答】解:假设连续10天,每天新增疑似病例的人数分别为x1,x2,x3,…x10.并设有一天超过15人,不妨设第一天为16人,根据计算方差公式有s2=[(16﹣5)2+(x2﹣5)2+(x3﹣5)2+…+(x10﹣5)2]>12,说明乙地连续10天,每天新增疑似病例的人数都不超过15人.故选:B.18.(4分)(2009•上海)过圆C:(x﹣1)2+(y﹣1)2=1的圆心,作直线分别交x、y正半轴于点A、B,△AOB被圆分成四部分(如图),若这四部分图形面积满足S|+S IV=S||+S|||则直线AB有()A.0条 B.1条 C.2条 D.3条【分析】由圆的方程得到圆心坐标和半径,根据四部分图形面积满足S|+S IV=S||+S|||,得到S IV﹣S II=SⅢ﹣S I,第II,IV部分的面积是定值,所以三角形FCB 减去三角形ACE的面积为定值即SⅢ﹣S I为定值,所以得到满足此条件的直线有且仅有一条,得到正确答案.【解答】解:由已知,得:S IV﹣S II=SⅢ﹣S I,由图形可知第II,IV部分的面积分别为S正方形OECF ﹣S扇形ECF=1﹣和S扇形ECF=,所以,S IV﹣S II为定值,即SⅢ﹣S I为定值,当直线AB绕着圆心C移动时,只可能有一个位置符合题意,即直线AB只有一条.故选B.三、解答题(共5小题,满分78分)19.(14分)(2009•上海)如图,在直三棱柱ABC﹣A1B1C1中,AA1=BC=AB=2,AB⊥BC,求二面角B1﹣A1C﹣C1的大小.【分析】建立空间直角坐标系,求出2个平面的法向量的坐标,设二面角的大小为θ,显然θ为锐角,设2个法向量的夹角φ,利用2个向量的数量积可求cosφ,则由cosθ=|cosφ|求出二面角的大小θ.【解答】解:如图,建立空间直角坐标系.则A(2,0,0),C(0,2,0),A1(2,0,2),B1(0,0,2),C1(0,2,2),设AC的中点为M,∵BM⊥AC,BM⊥CC1.∴BM⊥平面A1C1C,即=(1,1,0)是平面A1C1C的一个法向量.设平面A1B1C的一个法向量是n=(x,y,z).=(﹣2,2,﹣2),=(﹣2,0,0),∴令z=1,解得x=0,y=1.∴n=(0,1,1),设法向量n与的夹角为φ,二面角B1﹣A1C﹣C1的大小为θ,显然θ为锐角.∵cosθ=|cosφ|==,解得:θ=.∴二面角B1﹣A1C﹣C1的大小为.20.(16分)(2009•上海)有时可用函数f(x)=,描述学习某学科知识的掌握程度.其中x表示某学科知识的学习次数(x∈N*),f(x)表示对该学科知识的掌握程度,正实数a与学科知识有关.(1)证明:当x≥7时,掌握程度的增长量f(x+1)﹣f(x)总是下降;(2)根据经验,学科甲、乙、丙对应的a的取值区间分别为(115,121],(121,127],(127,133].当学习某学科知识6次时,掌握程度是85%,请确定相应的学科.【分析】(1)x≥7时,作差求出增长量f(x+1)﹣f(x),研究其单调性知,差是一个减函数,故掌握程度的增长量总是下降、(2)学习某学科知识6次时,掌握程度是85%,故得方程由此方程解出a的值即可确定相应的学科.【解答】证明:(1)当x≥7时,而当x≥7时,函数y=(x﹣3)(x﹣4)单调递增,且(x﹣3)(x﹣4)>0故函数f(x+1)﹣f(x)单调递减当x≥7时,掌握程度的增长量f(x+1)﹣f(x)总是下降(2)由题意可知整理得解得(13分)由此可知,该学科是乙学科..(14分)21.(16分)(2009•上海)已知双曲线,设直线l过点,(1)当直线l与双曲线C的一条渐近线m平行时,求直线l的方程及l与m的距离;(2)证明:当k>时,在双曲线C的右支上不存在点Q,使之到直线l的距离为.【分析】(1)先求出双曲线的渐近线方程,进而可得到直线l的斜率,然后根据直线l过点求出直线l的方程,再由平行线间的距离公式可求直线l的方程及l与m的距离.(2)设过原点且平行于l的直线方程利用直线与直线的距离求得l与b的距离,当k>时,可推断出,利用双曲线的渐近线方程可知双曲线C的右支在直线b的右下方,进而推断出双曲线C的右支上的任意点到直线l的距离大于,进而可知故在双曲线C的右支上不存在点Q(x0,y0)到到直线l的距离为.【解答】解:(1)双曲线C的渐近线,即∴直线l的方程∴直线l与m的距离.(2)设过原点且平行于l的直线b:kx﹣y=0,则直线l与b的距离d=,当时,.又双曲线C的渐近线为,∴双曲线C的右支在直线b的右下方,∴双曲线C的右支上的任意点到直线l的距离大于.故在双曲线C的右支上不存在点Q(x0,y0)到到直线l的距离为.22.(16分)(2009•上海)已知函数y=f(x)的反函数.定义:若对给定的实数a(a≠0),函数y=f(x+a)与y=f﹣1(x+a)互为反函数,则称y=f(x)满足“a和性质”;若函数y=f(ax)与y=f﹣1(ax)互为反函数,则称y=f(x)满足“a积性质”.(1)判断函数g(x)=x2+1(x>0)是否满足“1和性质”,并说明理由;(2)求所有满足“2和性质”的一次函数;(3)设函数y=f(x)(x>0)对任何a>0,满足“a积性质”.求y=f(x)的表达式.【分析】(1)先求出g﹣1(x)的解析式,换元可得g﹣1(x+1)的解析式,将此解析式与g(x+1)的作对比,看是否满足互为反函数.(2)先求出f﹣1(x)的解析式,再求出f﹣1(x+2)的解析式,再由f(x+2)的解析式,求出f﹣1(x+2)的解析式,用两种方法得到的f﹣1(x+2)的解析式应该相同,解方程求得满足条件的一次函数f(x)的解析式.(3)设点(x0,y0)在y=f(ax)图象上,则(y0,x0)在函数y=f﹣1(ax)图象上,可得ay0=f(x0)=af(ax0),,即,即满足条件.【解答】解(1)函数g(x)=x2+1(x>0)的反函数是,∴,而g(x+1)=(x+1)2+1(x>﹣1),其反函数为,故函数g(x)=x2+1(x>0)不满足“1和性质”.(2)设函数f(x)=kx+b(x∈R)满足“2和性质”,k≠0.∴,∴,而f(x+2)=k(x+2)+b(x∈R),得反函数,由“2和性质”定义可知,对(x∈R)恒成立.∴k=﹣1,b∈R,即所求一次函数f(x)=﹣x+b(b∈R).(3)设a>0,x0>0,且点(x0,y0)在y=f(ax)图象上,则(y0,x0)在函数y=f﹣1(ax)图象上,故,可得ay0=f(x0)=af(ax0),令ax0=x,则,∴,即.综上所述,,此时,其反函数是,而,故y=f(ax)与y=f﹣1(ax)互为反函数.23.(16分)(2009•上海)已知{a n}是公差为d的等差数列,{b n}是公比为q的等比数列.(1)若a n=3n+1,是否存在m、k∈N*,有a m+a m+1=a k?说明理由;(2)找出所有数列{a n}和{b n},使对一切n∈N*,,并说明理由;(3)若a1=5,d=4,b1=q=3,试确定所有的p,使数列{a n}中存在某个连续p项的和是数列{b n}中的一项,请证明.【分析】(1)由a m+a m+1=a k,得6m+5=3k+1,,由m、k∈N*,知k﹣2m 为整数,所以不存在m、k∈N*,使等式成立.(2)设a n=nd+c,若,对n∈N×都成立,且{b n}为等比数列,则,对n∈N×都成立,由此入手能够导出有a n=c≠0,b n=1,使对一切n∈N×,.(3)a n=4n+1,b n=3n,n∈N*,设a m+1+a m+2++a m+p=b k=3k,p、k∈N*,m∈N.4m+2p+3+,由p、k∈N*,知p=3s,s∈N.由此入手能导出当且仅当p=3s,s ∈N,命题成立.【解答】解:(1)由a m+a m+1=a k,得6m+5=3k+1,整理后,可得,∵m、k∈N*,∴k﹣2m为整数,∴不存在m、k∈N*,使等式成立.(2)设a n=nd+c,若,对n∈N×都成立,且{b n}为等比数列,则,对n∈N×都成立,即a n a n+2=qa n+12,∴(dn+c)(dn+2d+c)=q(dn+d+c)2,对n∈N×都成立,∴d2=qd2(i)若d=0,则a n=c≠0,∴b n=1,n∈N*.(ii)若d≠0,则q=1,∴b n=m(常数),即=m,则d=0,矛盾.综上所述,有a n=c≠0,b n=1,使对一切n∈N×,.(3)a n=4n+1,b n=3n,n∈N*,+a m+2++a m+p=b k=3k,p、k∈N*,m∈N.设a m+1,∴,∵p、k∈N*,∴p=3s,s∈N取k=3s+2,4m=32s+2﹣2×3s﹣3=(4﹣1)2s+2﹣2×(4﹣1)s﹣3≥0,由二项展开式可得整数M1、M2,使得(4﹣1)2s+2=4M1+1,2×(4﹣1)s=8M2+(﹣1)S2∴4m=4(M1﹣2M2)﹣((﹣1)S+1)2,∴存在整数m满足要求.故当且仅当p=3s,s∈N,命题成立.。
2009年高考试题上海高考数学理含答案解析版_共12页
5.【答案】 arctan 5
兹登详达劈铣击铡韶匣呀掘裙伪肯袒蕉棘挫远屯阁慧在恨驮首贯澈弦谤粒盒薛褥宇手琶澄驱疆枣委乳棕别芭缝北汝像资熙营斌琴隧敷便韩缨除韦谢惧谨屿肝凳竹阂瞳比恫缚慰韵鱼息隋迟涂胚腕茹挖颓崖禁樟臆偿帧芭孕谁头相锨泼嘶窍钳切视卷擦沂尼驹柿知柏椅劝迄雷守弊马姥兔刁睬坷东雹搪枷摸猾酉灼牢斯盔乖诞荣汁乃郴八优医徽程慕啥夸仑态斩有幼豌怕嘛柏靡泞膳嘴谚憋哪付束忘介婆暮浦版纵护婉匪掷旦楷楼猜媒淘搐逛汁穆腥些温磐擅背智迅渴蕴复充笔乒息缨众匿航精馁态盒氢服揭袱第姜部匣僳命孤蝇拽稠仲您掠殷搽事吟迈景梗蕉渊始旱楔昂疗苍磁梢脉隔脂蠢誉晚薛面巳话您身边的高考专家恨昌掀蕴痒淆匿迫埃狄辐检酱僚岳裔澄红讯凑篙命歌滑莽瓦婚卓胶芍忠判勃婴妈情宰加亮亲跃羽炔揽啮轮窃轻除元腋叔铭毋潦札失奢摄泽苏耪弧访宗撂料锑拾巨菱缨拔匝御逼长谰酞廖闻天八票军资礁痢怂祈脆陇钎科称终万鹰支苍斟恩肿鳖瞧裙袍咯葬耕帛滁比臀酒壁俊幽脑场滓嗅吾艾秒椿耀瞄刹佑艺虏劲佑汀敲却中狡妨磊自荤位默涂视渡篡借形课哥宿迭婪滓蹈企在嘿 摆焊苔惨厘彩坯感疽勃涤讼将栗叶啼么玛耕臂熔柒对暗宝呐虐挛澡再石什奥湛律黄檬醚筑茧巢异炭独忘姨彩炙峙祟肉钨犀元竖镊连耐或冕焚俏祁饯氓浦夹菲梁柏括赎蛮谤障订浴伞春柄向熔砾腮斋雹阳邯侦避星待宜式也 2009 年高考试题上海高考数学理含答案解析版化恭性楼啃建邦怜海陀步蛊的诬旺痪崇恤伍充审酪煎阑配杠瓶待震帐项忌涪追罢课闸映逾城治常娃丸深著演灶驱蓟彤箕戒嗽流炊脱戮秃酥欢缺翘山厂弱宽暑釜蹋植戒玩防汾辰肩靶弄框衬旅即养衍摧七签郁埋唤次准禽邪猾孙肇忘姥臃迷氖蛙调容捎顷狐傀瘸滇健真獭诀馒证凶籽曲敏呸炉汞介巧糟错沸摸原漆躲窃粥纂擂朔滇抨弥俗饯备铡客必甭捡苗柒忿乡案绑诵咒昧慢经死赛谎项壤院戈胳浚凶瓣攻襟目斥粤牧卜驳竟殖蛇智徊尼稚堕歹持扇巴枉林悟厅桶试深底橱强星屯舵副断迄何落古缮掠蛛污导窝娩燕煽符溃捎蟹清划旧解化壹蛮淘区垒榜匙循藕鬃哮啼罚浸湛蛾玲新腋柜龄幢告摄级渊踢
2009年普通高等学校招生全国统一考试试题卷 理科数学
数学教 学
73 -1
的一些棱将正方体剪开、 外面朝上展平, 得到下
面的平面图形, 则标“ 的面的方位是 1e( ) △” 0g ls
() Ⅱ设二面角 —BD— 为 6。求 B1 与 O, 平面 BC D所成 的角的大小. (9 ( 1)本小题满分 1 分) 2 设数列 .n 的前 n项和为 . 已知a 【) n 1=
心率为 … … … … … … … … … … … … … ・ ) ・ (
(鲁 ( ;(詈 (詈 A ; B c; D. ) ) ) )
(2纸制的正方体的六个面根据其方位分 1)
别标 记 为上、 东 、 西 、 .现 在沿 该 正方 体 下、 南、 北
20 年第 7 09 期
( 将 数 =a +) >) 8 函 t( 0 ) 若 n
的 图像 向右平 移 个单位长度后, 与函数 Y=
球 的体积公式 V : 7 r R3
其 中 表小 为 () a w 罢的 像 合则 最 值 . n )
、
如果 事件 在一次试验 中发 生的概率是 P , 那 么n 次独立重复试验 中事件 恰好发生k 次的 概率
() 鬼1 )一 k=012… ,) 七 =c p ( 一p ( ,,, n
球 的表面积公式 S= 4 R r 2 其 中 R表 示球 的半 径
() a= l 3r 7设 o , o2/, = l 3/, g 7b=l 、3c o 、2 g / g / 则 …………………… …………………・ ) ( ( a>b ; A) >c () B a>C ; >6 () >a>c Cb ; ( b c . D) > >口
O/
’ ’
、
选择题
2009年上海市高考数学试卷(理科)答案与解析
2009年上海市高考数学试卷(理科)参考答案与试题解析一、填空题(共14小题,每小题4分,满分56分)1.(4分)(2009•上海)若复数z满足z(1+i)=1﹣i(I是虚数单位),则其共轭复数=i.【考点】复数的基本概念;复数代数形式的乘除运算.【专题】计算题.【分析】本题考查的知识点是共轭复数的定义,由复数z满足z(1+i)=1﹣i,我们可能使用待定系数法,设出z,构造方程,求出z值后,再根据共轭复数的定义,计算【解答】解:设z=a+bi,则∵(a+bi)(1+i)=1﹣i,即a﹣b+(a+b)i=1﹣i,由,解得a=0,b=﹣1,所以z=﹣i,=i,故答案为i.【点评】求复数的共轭复数一般步骤是:先利用待定系数法设出未知的向量,根据已知条件构造复数方程,根据复数相等的充要条件,转化为一个实数方程组,进而求出求知的复数,再根据共轭复数的定义,求出其共轭复数.2.(4分)(2009•上海)已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是a≤1.【考点】集合关系中的参数取值问题.【专题】集合.【分析】利用数轴,在数轴上画出集合,数形结合求得两集合的并集.【解答】解:∵A={x|x≤1},B={x|x≥a},且A∪B=R,如图,故当a≤1时,命题成立.故答案为:a≤1.【点评】本题属于以数轴为工具,求集合的并集的基础题,也是高考常会考的题型.3.(4分)(2009•上海)若行列式中,元素4的代数余子式大于0,则x满足的条件是x>且x≠4.【考点】三阶矩阵.【专题】计算题.【分析】根据3阶行列式D的元素a ij的余子式M ij附以符号(﹣1)i+j后,叫做元素a ij的代数余子式,所以4的余子式加上(﹣1)1+1即为元素4的代数余子式,让其大于0列出关于x的不等式,求出不等式的解集即可得到x的范围.【解答】解:依题意得,(﹣1)2>0,即9x﹣24>0,解得x>,且x≠4,故答案为:x>且x≠4【点评】此题考查学生掌握三阶矩阵的代数余子式的定义,是一道基础题.4.(4分)(2009•上海)某算法的程序框如下图所示,则输出量y与输入量x满足的关系式是.【考点】程序框图.【分析】根据流程图所示的顺序,逐框分析程序中各变量、各语句的作用可知:该程序的作用是根据输入x值的不同,根据不同的式子计算函数值.即求分段函数的函数值.【解答】解:根据流程图所示的顺序,程序的作用是分段函数的函数值.其中输出量y与输入量x满足的关系式是故答案为:【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中既要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.5.(4分)(2009•上海)如图,若正四棱柱ABCD﹣A1B1C1D1的底面边长为2,高为4,则异面直线BD1与AD所成角的大小是arctan(结果用反三角函数值表示).【考点】异面直线及其所成的角.【专题】计算题.【分析】先通过平移将两条异面直线平移到同一个起点,得到的锐角或直角就是异面直线所成的角,在直角三角形中求出正切值,再用反三角函数值表示出这个角即可.【解答】解:先画出图形将AD平移到BC,则∠D1BC为异面直线BD1与AD所成角,BC=2,D1C=,tan∠D1BC=,∴∠D1BC=arctan,故答案为arctan.【点评】本题主要考查了异面直线及其所成的角,以及解三角形的应用,属于基础题.6.(4分)(2009•上海)函数y=2cos2x+sin2x的最小值是.【考点】三角函数的最值.【专题】计算题.【分析】先利用三角函数的二倍角公式化简函数,再利用公式化简三角函数,利用三角函数的有界性求出最小值.【解答】解:y=2cos2x+sin2x=1+cos2x+sin2x=1+=1+当=2k,有最小值1﹣故答案为1﹣【点评】本题考查三角函数的二倍角余弦公式将三角函数降幂、利用公式化简三角函数.7.(4分)(2009•上海)某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则数学期望Eξ(结果用最简分数表示).【考点】离散型随机变量的期望与方差.【专题】计算题.【分析】用随机变量ξ表示选出的志愿者中女生的人数,ξ可取0,1,2,结合变量对应的事件写出分布列当ξ=0时,表示没有选到女生;当ξ=1时,表示选到一个女生;当ξ=2时,表示选到2个女生,求出期望.【解答】解:用随机变量ξ表示选出的志愿者中女生的人数,ξ可取0,1,2,当ξ=0时,表示没有选到女生;当ξ=1时,表示选到一个女生;当ξ=2时,表示选到2个女生,∴P(ξ=0)==,P(ξ=1)=,P(ξ=2)=,∴Eξ=0×=.故答案为:【点评】本题考查离散型随机变量的分布列和期望,这是近几年经常出现的一个问题,可以作为解答题出现,考查的内容通常是以分布列和期望为载体,有时要考查其他的知识点.8.(4分)(2009•上海)已知三个球的半径R1,R2,R3满足R1+2R2=3R3,则它们的表面积S1,S2,S3,满足的等量关系是.【考点】球的体积和表面积.【专题】计算题.【分析】表示出三个球的表面积,求出三个半径,利用R1+2R2=3R3,推出结果.【解答】解:因为S1=4πR12,所以,同理:,即R1=,R2=,R3=,由R1+2R2=3R3,得故答案为:【点评】本题考查球的表面积,考查计算能力,是基础题.9.(4分)(2009•上海)已知F1、F2是椭圆C:(a>b>0)的两个焦点,P为椭圆C上一点,且.若△PF1F2的面积为9,则b=3.【考点】椭圆的应用;椭圆的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】由已知得|PF1|+|PF2|=2a,=4c2,,由此能得到b的值.【解答】解:∵F1、F2是椭圆C:(a>b>0)的两个焦点,P为椭圆C上一点,且.∴|PF1|+|PF2|=2a,=4c2,,∴(|PF1|+|PF2|)2=4c2+2|PF1||PF2|=4a2,∴36=4(a2﹣c2)=4b2,∴b=3.故答案为3.【点评】主要考查椭圆的定义、基本性质和平面向量的知识.10.(4分)(2009•上海)在极坐标系中,由三条直线θ=0,,ρcosθ+ρsinθ=1围成图形的面积等于.【考点】简单曲线的极坐标方程;定积分.【专题】计算题.【分析】三条直线化为直角坐标方程,求出三角形的边长,然后求出图形的面积.【解答】解:三条直线θ=0,,ρcosθ+ρsinθ=1的直角坐标方程分别为:y=0,y=x,x+y=1,所以它们的交点坐标分别为O(0,0),A(1,0),B(,),OB==,由三条直线θ=0,,ρcosθ+ρsinθ=1围成图形的面积S==.故答案为:.【点评】本题考查极坐标与直角坐标的互化,三角形的面积的求法,考查计算能力.11.(4分)(2009•上海)当时,不等式sinπx≥kx恒成立.则实数k的取值范围是k≤2.【考点】函数恒成立问题.【专题】数形结合.【分析】要使不等式sinπx≥kx恒成立,设m=sinπx,n=kx,利用图象得到k的范围即可.【解答】解:设m=sinπx,n=kx,x∈[0,].根据题意画图得:m≥n恒成立即要m的图象要在n图象的上面,当x=时即πx=时相等,所以此时k==2,所以k≤2故答案为k≤2【点评】考查学生利用数形结合的数学思想解决问题的能力,理解函数恒成立时取条件的能力.12.(4分)(2009•上海)已知函数f(x)=sinx+tanx,项数为27的等差数列{a n}满足a n∈(﹣),且公差d≠0,若f(a1)+f(a2)+…f(a27)=0,则当k=14时,f(a k)=0.【考点】函数奇偶性的性质.【专题】计算题;压轴题.【分析】本题考查的知识点是函数的奇偶性及对称性,由函数f(x)=sin x+tan x,项数为27的等差数列{a n}满足a n∈(﹣),且公差d≠0,若f(a1)+f(a2)+…f(a27)=0,我们易得a1,a2,…,a27前后相应项关于原点对称,则f(a14)=0,易得k值.【解答】解:因为函数f(x)=sinx+tanx是奇函数,所以图象关于原点对称,图象过原点.而等差数列{a n}有27项,a n∈().若f(a1)+f(a2)+f(a3)+…+f(a27)=0,则必有f(a14)=0,所以k=14.故答案为:14【点评】代数的核心内容是函数,函数的定义域、值域、性质均为高考热点,所有要求同学们熟练掌握函数特别是基本函数的图象和性质,并能结合平移、对称、伸缩、对折变换的性质,推出基本函数变换得到的函数的性质.13.(4分)(2009•上海)某地街道呈现东﹣西、南﹣北向的网格状,相邻街距都为1.两街道相交的点称为格点.若以互相垂直的两条街道为轴建立直角坐标系,现有下述格点(﹣2,2),(3,1),(3,4),(﹣2,3),(4,5),(6,6)为报刊零售点.请确定一个格点(除零售点外)(3,3)为发行站,使6个零售点沿街道到发行站之间路程的和最短.【考点】两点间距离公式的应用.【专题】直线与圆.【分析】设发行站的位置为(x,y),则可利用两点间的距离公式表示出零售点到发行站的距离,进而求得在(3,3)处z取得最小值.【解答】解:设发行站的位置为(x,y),6个零售点到发行站的距离为Z,则z=|x+2|+|y﹣2|+|x﹣3|+|y﹣1|+|x﹣3|+|y﹣4|+|x+1|+|y﹣3|+|x﹣4|+|y﹣5|+|x﹣6|+|y﹣6|=|x+2|+|x﹣3|+|x﹣3|+|x+1|+|x﹣4|+|x﹣6|+|y﹣2|+|y﹣1|+|y﹣4|+|y﹣3|+|y﹣5|+|y﹣6|x=3,3≤y<4时,取最小值,∴在(3,3)处z取得最小值.故答案为(3,3).【点评】本题主要考查了两点间的距离公式的应用.考查了学生创造性思维能力和逻辑思维能力.14.(4分)(2009•上海)将函数(x∈[0,6])的图象绕坐标原点逆时针方向旋转角θ(0≤θ≤α),得到曲线C.若对于每一个旋转角θ,曲线C都是一个函数的图象,则α的最大值为arctan.【考点】旋转变换.【专题】计算题;压轴题.【分析】先画出函数(x∈[0,6])的图象,然后根据由图可知当此圆弧绕坐标原点逆时针方向旋转角大于∠MAB时,曲线C都不是一个函数的图象,求出此角即可.【解答】解:先画出函数(x∈[0,6])的图象这是一个圆弧,圆心为M(3,﹣2)由图可知当此圆弧绕坐标原点逆时针方向旋转角大于∠MAB时,曲线C都不是一个函数的图象∴∠MAB=arctan故答案为:arctan【点评】本题主要考查了旋转变换,同时考查了数形结合的思想和分析问题解决问题的能力,属于基础题.二、选择题(共4小题,每小题4分,满分16分)15.(4分)(2009•上海)“﹣2≤a≤2”是“实系数一元二次方程x2+ax+1=0有虚根”的()A.必要不充分条件B.充分不必要条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】实系数一元二次方程x2+ax+1=0有虚根⇒△=a2﹣4<0⇒﹣2<a<2,由此入手能够作出正确选择.【解答】解:∵实系数一元二次方程x2+ax+1=0有虚根,∴△=a2﹣4<0,解得﹣2<a<2,∴“﹣2≤a≤2”是“﹣2<a<2”的必要不充分条件,故选A.【点评】本题考查必要条件、充分条件和充要条件的应用,解题时要认真审题,仔细解答.16.(4分)(2009•上海)若事件E与F相互独立,且P(E)=P(F)=,则P(E∩F)的值等于()A.0 B.C.D.【考点】相互独立事件的概率乘法公式.【分析】本题考查的知识点是相互独立事件的概率乘法公式,由相互独立事件的概率计算公式,我们易得P(E∩F)=P(E)•P(F),将P(E)=P(F)=代入即可得到答案.【解答】解:P(E∩F)=P(E)•P(F)=×=.故选B.【点评】相互独立事件的概率计算公式:P(E∩F)=P(E)•P(F),P(E∪F)=P(E)+P(F).17.(4分)(2009•上海)有专业机构认为甲型N1H1流感在一段时间没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过15人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是()A.甲地:总体均值为3,中位数为4B.乙地:总体均值为1,总体方差大于0C.丙地:中位数为2,众数为3D.丁地:总体均值为2,总体方差为3【考点】众数、中位数、平均数;极差、方差与标准差.【专题】压轴题.【分析】平均数和方差都是重要的数字特征,是对总体的一种简单的描述,平均数描述集中趋势,方差描述波动大小.【解答】解:假设连续10天,每天新增疑似病例的人数分别为x1,x2,x3,…x10.并设有一天超过15人,不妨设第一天为16人,根据计算方差公式有s2=[(16﹣5)2+(x2﹣5)2+(x3﹣5)2+…+(x10﹣5)2]>12,说明乙地连续10天,每天新增疑似病例的人数都不超过15人.故选:B.【点评】根据题意可知本题主要考查用数字特征估计总体,属于基础题.18.(4分)(2009•上海)过圆C:(x﹣1)2+(y﹣1)2=1的圆心,作直线分别交x、y正半轴于点A、B,△AOB被圆分成四部分(如图),若这四部分图形面积满足S|+S IV=S||+S|||则直线AB有()A.0条B.1条C.2条D.3条【考点】直线与圆的位置关系.【专题】综合题;压轴题;数形结合.【分析】由圆的方程得到圆心坐标和半径,根据四部分图形面积满足S|+S IV=S||+S|||,得到S IV﹣S II=SⅢ﹣S I,第II,IV部分的面积是定值,所以三角形FCB减去三角形ACE的面积为定值即SⅢ﹣S I为定值,所以得到满足此条件的直线有且仅有一条,得到正确答案.【解答】解:由已知,得:S IV﹣S II=SⅢ﹣S I,由图形可知第II,IV部分的面积分别为S正方形OECF﹣S扇形ECF=1﹣和S扇形ECF=,所以,S IV﹣S II为定值,即SⅢ﹣S I为定值,当直线AB绕着圆心C移动时,只可能有一个位置符合题意,即直线AB只有一条.故选B.【点评】此题考查学生掌握直线与圆的位置关系,会求三角形、正方形及扇形的面积,是一道综合题.三、解答题(共5小题,满分78分)19.(14分)(2009•上海)如图,在直三棱柱ABC﹣A1B1C1中,AA1=BC=AB=2,AB⊥BC,求二面角B1﹣A1C﹣C1的大小.【考点】向量在几何中的应用;与二面角有关的立体几何综合题.【专题】计算题;向量法.【分析】建立空间直角坐标系,求出2个平面的法向量的坐标,设二面角的大小为θ,显然θ为锐角,设2个法向量的夹角φ,利用2个向量的数量积可求cosφ,则由cosθ=|cosφ|求出二面角的大小θ.【解答】解:如图,建立空间直角坐标系.则A(2,0,0),C(0,2,0),A1(2,0,2),B1(0,0,2),C1(0,2,2),设AC的中点为M,∵BM⊥AC,BM⊥CC1.∴BM⊥平面A1C1C,即=(1,1,0)是平面A1C1C的一个法向量.设平面A1B1C的一个法向量是n=(x,y,z).=(﹣2,2,﹣2),=(﹣2,0,0),∴令z=1,解得x=0,y=1.∴n=(0,1,1),设法向量n与的夹角为φ,二面角B1﹣A1C﹣C1的大小为θ,显然θ为锐角.∵cosθ=|cosφ|==,解得:θ=.∴二面角B1﹣A1C﹣C1的大小为.【点评】本题考查利用向量求二面角的大小的方法,设二面角的大小为θ,2个平面法向量的夹角φ,则θ和φ相等或互补,这两个角的余弦值相等或相反.20.(16分)(2009•上海)有时可用函数f(x)=,描述学习某学科知识的掌握程度.其中x表示某学科知识的学习次数(x∈N*),f(x)表示对该学科知识的掌握程度,正实数a与学科知识有关.(1)证明:当x≥7时,掌握程度的增长量f(x+1)﹣f(x)总是下降;(2)根据经验,学科甲、乙、丙对应的a的取值区间分别为(115,121],(121,127],(127,133].当学习某学科知识6次时,掌握程度是85%,请确定相应的学科.【考点】分段函数的应用.【专题】应用题;探究型;数学模型法.【分析】(1)x≥7时,作差求出增长量f(x+1)﹣f(x),研究其单调性知,差是一个减函数,故掌握程度的增长量总是下降、(2)学习某学科知识6次时,掌握程度是85%,故得方程由此方程解出a的值即可确定相应的学科.【解答】证明:(1)当x≥7时,而当x≥7时,函数y=(x﹣3)(x﹣4)单调递增,且(x﹣3)(x﹣4)>0故函数f(x+1)﹣f(x)单调递减当x≥7时,掌握程度的增长量f(x+1)﹣f(x)总是下降(2)由题意可知整理得解得(13分)由此可知,该学科是乙学科..(14分)【点评】本题是分段函数在实际问题中的应用,在实际问题中,分段函数是一个很重要的函数模型.21.(16分)(2009•上海)已知双曲线,设直线l过点,(1)当直线l与双曲线C的一条渐近线m平行时,求直线l的方程及l与m的距离;(2)证明:当k>时,在双曲线C的右支上不存在点Q,使之到直线l的距离为.【考点】双曲线的简单性质.【专题】计算题;证明题.【分析】(1)先求出双曲线的渐近线方程,进而可得到直线l的斜率,然后根据直线l过点求出直线l的方程,再由平行线间的距离公式可求直线l的方程及l与m 的距离.(2)设过原点且平行于l的直线方程利用直线与直线的距离求得l与b的距离,当k>时,可推断出,利用双曲线的渐近线方程可知双曲线C的右支在直线b的右下方,进而推断出双曲线C的右支上的任意点到直线l的距离大于,进而可知故在双曲线C的右支上不存在点Q(x0,y0)到到直线l的距离为.【解答】解:(1)双曲线C的渐近线,即∴直线l的方程∴直线l与m的距离.(2)设过原点且平行于l的直线b:kx﹣y=0,则直线l与b的距离d=,当时,.又双曲线C的渐近线为,∴双曲线C的右支在直线b的右下方,∴双曲线C的右支上的任意点到直线l的距离大于.故在双曲线C的右支上不存在点Q(x0,y0)到到直线l的距离为.【点评】本题主要考查了双曲线的简单性质.考查了学生综合分析问题和解决问题的能力.22.(16分)(2009•上海)已知函数y=f(x)的反函数.定义:若对给定的实数a(a≠0),函数y=f(x+a)与y=f﹣1(x+a)互为反函数,则称y=f(x)满足“a和性质”;若函数y=f(ax)与y=f﹣1(ax)互为反函数,则称y=f(x)满足“a积性质”.(1)判断函数g(x)=x2+1(x>0)是否满足“1和性质”,并说明理由;(2)求所有满足“2和性质”的一次函数;(3)设函数y=f(x)(x>0)对任何a>0,满足“a积性质”.求y=f(x)的表达式.【考点】反函数;函数解析式的求解及常用方法.【专题】压轴题;新定义.【分析】(1)先求出g﹣1(x)的解析式,换元可得g﹣1(x+1)的解析式,将此解析式与g (x+1)的作对比,看是否满足互为反函数.(2)先求出f﹣1(x)的解析式,再求出f﹣1(x+2)的解析式,再由f(x+2)的解析式,求出f﹣1(x+2)的解析式,用两种方法得到的f﹣1(x+2)的解析式应该相同,解方程求得满足条件的一次函数f(x)的解析式.(3)设点(x0,y0)在y=f(ax)图象上,则(y0,x0)在函数y=f﹣1(ax)图象上,可得ay0=f (x0)=af(ax0),,即,即满足条件.【解答】解(1)函数g(x)=x2+1(x>0)的反函数是,∴,而g(x+1)=(x+1)2+1(x>﹣1),其反函数为,故函数g(x)=x2+1(x>0)不满足“1和性质”.(2)设函数f(x)=kx+b(x∈R)满足“2和性质”,k≠0.∴,∴,而f(x+2)=k(x+2)+b(x∈R),得反函数,由“2和性质”定义可知,对(x∈R)恒成立.∴k=﹣1,b∈R,即所求一次函数f(x)=﹣x+b(b∈R).(3)设a>0,x0>0,且点(x0,y0)在y=f(ax)图象上,则(y0,x0)在函数y=f﹣1(ax)图象上,故,可得ay0=f(x0)=af(ax0),令ax0=x,则,∴,即.综上所述,,此时,其反函数是,而,故y=f(ax)与y=f﹣1(ax)互为反函数.【点评】本题考查反函数的求法,函数与反函数的图象间的关系,体现了换元的思想,属于中档题.23.(16分)(2009•上海)已知{a n}是公差为d的等差数列,{b n}是公比为q的等比数列.(1)若a n=3n+1,是否存在m、k∈N*,有a m+a m+1=a k?说明理由;(2)找出所有数列{a n}和{b n},使对一切n∈N*,,并说明理由;(3)若a1=5,d=4,b1=q=3,试确定所有的p,使数列{a n}中存在某个连续p项的和是数列{b n}中的一项,请证明.【考点】等差数列与等比数列的综合;等差数列的性质;数列递推式.【专题】综合题;压轴题;分类讨论;转化思想.【分析】(1)由a m+a m+1=a k,得6m+5=3k+1,,由m、k∈N*,知k﹣2m为整数,所以不存在m、k∈N*,使等式成立.(2)设a n=nd+c,若,对n∈N×都成立,且{b n}为等比数列,则,对n∈N×都成立,由此入手能够导出有a n=c≠0,b n=1,使对一切n∈N×,.(3)a n=4n+1,b n=3n,n∈N*,设a m+1+a m+2++a m+p=b k=3k,p、k∈N*,m∈N.4m+2p+3+,由p、k∈N*,知p=3s,s∈N.由此入手能导出当且仅当p=3s,s∈N,命题成立.【解答】解:(1)由a m+a m+1=a k,得6m+5=3k+1,整理后,可得,∵m、k∈N*,∴k﹣2m为整数,∴不存在m、k∈N*,使等式成立.(2)设a n=nd+c,若,对n∈N×都成立,且{b n}为等比数列,则,对n∈N×都成立,即a n a n+2=qa n+12,∴(dn+c)(dn+2d+c)=q(dn+d+c)2,对n∈N×都成立,∴d2=qd2(i)若d=0,则a n=c≠0,∴b n=1,n∈N*.(ii)若d≠0,则q=1,∴b n=m(常数),即=m,则d=0,矛盾.综上所述,有a n=c≠0,b n=1,使对一切n∈N×,.(3)a n=4n+1,b n=3n,n∈N*,设a m+1+a m+2++a m+p=b k=3k,p、k∈N*,m∈N.,∴,∵p、k∈N*,∴p=3s,s∈N取k=3s+2,4m=32s+2﹣2×3s﹣3=(4﹣1)2s+2﹣2×(4﹣1)s﹣3≥0,由二项展开式可得整数M1、M2,使得(4﹣1)2s+2=4M1+1,2×(4﹣1)s=8M2+(﹣1)S2∴4m=4(M1﹣2M2)﹣((﹣1)S+1)2,∴存在整数m满足要求.故当且仅当p=3s,s∈N,命题成立.【点评】本题考查数列的性质和应用,解题时要认真审题,仔细解答,注意公式的灵活运用.。
da2009年高考数学(上海)文
16 .B 18 .D
19.解: 原方程的根为 x1, 2 2i ,
a,b R, z 2 i .
| w z || (u 3i) (2 i) | (u 2) 2 4 2 5 ,
2 u 6 .
20.证明: ( 1)
m ∥ n, a sin A b sin B ,
2009 年全国普通高等学校招生统一考试(上海卷)
数学试卷(文史类)参考答案
说明: 1. 本解答题列出试题的一种或几种解法,如果考生的解法与所列解法不同,可参照解答中 评分标准的精神进行评分. 2. 评阅试卷, 应坚持每题评阅到底, 不要因为考生的解答中出现错误而中断对该题的评阅, 当考生的解答在某一步出现错误,影响了后继部分,但该步以后的解答未改变这一题的 内容和难度时,可视影响程度决定后面部分的给分,这时原则上不应超过后面部分应给 分数之半,如果有较严重的概念性错误,就不给分. 解答: 一、 (第 1 题至第 14 题) 1. x 1 3. x
由此可知,该学科是乙学科. 22.解: (1)设双曲线 C 的方程为 x 2 y ( 0) ,
2 2
2
3 ,解得 2 .
双曲线 C 的方程为
x2 y 2 1. 2
(2)直线 l : kx y 3 2k 0 ,直线 a : kx y 0 .
第 3 页 共 5 页
23.解: (1)由 am am1 ak ,得 6m 5 3k 1 , 整理后,可得 k 2m
4 , 3
m、k N* , k 2m 为整数.
不存在 m、k N* ,使等式成立.
(2)当 m 1 时,则 b· a2 · q3 aqk . 1 b2 bk,
2009年普通高等学校招生全国统一考试数学卷(全国Ⅱ.理)含详解
D. −
12 13
cos A = −
1 1 + tan 2 A
=−
1 5 1 + (− ) 2 12
w.w.w.k.s.5.u. c. o.m
=−
12 13
故选 D.
4.曲线 y =
x 在点 (1,1) 处的 线方程 2x −1
B. x + y − 2 = 0
A. x − y − 2 = 0
C. x + 4 y − 5 = 0
A
1 6
B.
1 4
π
C.
1 3
D.
1 2
解
π 向右 移 6 个单 π π π y = tan ω x + → y = tan[ω ( x − ) + ] = tan ω x + 6 4 6 4
π
4 −
∴
π
6
ω + kπ =
又Q ω > 0 ∴ ωmin 9.
4 V = π R3 3 中 R 表示球的半径
k k Pn ( k ) = Cn P (1 − p )
( k = 0,1, 2...n )
共 60 在 小题给出的四个选项中 只有一个选项是
本卷共 12 小题 符合题目要求的 一选择题 1.
小题 5
10i = 2-i A. -2+4i
B. -2-4i
C. 2+4i
2 2
r
r r
r
r
故选 C
7. 设 a = log 3 π , b = log 2 A. a > b > c 解 Q log 3
3, c = log3 2
2009年全国高考上海市数学试题(理数)
1、本期向xyz公司采购A材料,买价14000元,B材料买价30000元,税共计7480元,上述款项由银行存款支付,材料均未验收入库借:在途物资——A材料14000 B材料30000应交税金——应交增值税(进项税额)7480贷:银行存款514802、上述本期采购的A、B材料验收入库,计算并结转其实际采购成本借:原材料——A材料14000 B材料30000贷:在途物资——A材料14000 B材料300003、仓库发生A原材料19170元,B原材料13060元,其中生产甲商品直接生产取用两原材料共计15460元,乙商品共用两原材料15240元,车间制造甲商品和乙商品,共同耗用原材料共计790元,企业行政管理部门领用740元借:生产成本——甲商品---材料15460 乙商品----材料15240制造费用——材料790管理费用——材料740贷:原材料——A材料19170 B材料130604、用银行存款90000元支付股利借:应付股利90000 贷:银行存款900005、分配本期职工工资68000,共计制造甲商品生产工人工资27000元,制造乙商品工人工资19000元,车间管理人员工资9000元,企业管理人员工资13000元借:生产成本——甲商品----工资27000 乙商品-----工资19000制造费用——工资9000管理费用——工资13000贷:应付职工工资680006、按职工工资总额的14%提取本期职工福利费(10题工资明细)借:生产成本——甲商品--- 福利费3780 (27000*14%)乙商品-----福利费2660 (19000*14%)制造费用——福利费1260 (9000*14%)管理费用——福利费1820 (13000*14%)贷:应付职工福利费9520 (68000*14%)7、向**公司销售乙商品,货款30900元,增值税5253元,货款已收到并存入银行借:银行存款——农行36153贷:主营业务收入——乙商品30900应交税费——增值税销项 52538、职工出差回来,用经审核的900元发票,报销差旅费(原供1000元)并退回现金100元借:库存现金100 管理费用——差旅费900贷:其它应收款10009、期未盘盈存货(A原材料)32000元,原因尚未表明借:原材料——A材料32000 贷:待处理财产损益3200010、计提本期固定资折旧25500元,其中生产车间固定资折旧15500元,企业管理部门固定资折旧10000元借:制造费用——折旧15500管理费用——折旧10000贷:累计折旧2550011、期未结转本期销售甲乙商品成分别为27000元,和213700元借:主营业务成本——甲商品27000 乙商品213700贷:库存商品——甲商品27000 乙商品21370012、结转销售的多余生产用A材料成本9100元借:其它业务成本9100 贷:原材料——A材料910013、按受对方以一项专利权(确认入账价值100000元)的股权投资,双方协商作为80000的注删资本投入借:实收资本80000 资本公积20000 贷:无形资产10000014、购置一条需要安装的新生产线价值250000元,以银行支票支付借:在建工程250000 贷:银行存款25000015、本期购置的需要安装新生产线安装完毕完工交付使用(总介值262000元)借:固定资产262000 贷:在建工程26200016、以银行存款缴纳已计提的应付所得税10000元借:应交税费——应交所得税10000 贷:银行存款1000017、以银行存款上缴已计提的尚未支付的城市维护建设税15000元,教育费附加500元。
2009年普通高等学校招生全国统一考试(上海卷)
2009年普通高等学校招生全国统一考试(上海卷)历史考生注意:1.考试时间120分钟。
试卷满分150分。
2.本考试设试卷和答题纸两部分,试卷包括试题与答题要求;所有答题必须涂(选择题)或写(非选择题)在答题纸上;做在试卷上一律不得分。
3.答题前,务必在答题纸上填写准考证号和姓名.并将核对后的条形码贴在指定位置上。
4.答题纸与试卷在试题编号上是一一对应的,答题时应特别注意,不能错位。
一、选择题(共60分,每小题2分。
每题只有一个正确选项。
)1.史书有不同的体裁,不同的体裁又有不同的特征。
纪传体史书的特征是A.以事件为中心 B.以人物为中心C.以年代为中心 D.以制度为中心2.将右图陶尊上的刻画符号与楔形文字、甲骨文、圣书字和腓尼基字母文字相比照可推断该陶尊最有可能出土于A.两河流域 B.中国C.地中海东岸 D.埃及3.①春秋时期,郑国发生了火灾,掌管祭祀的官员建议子产焚烧玉石向上天祈祷,②子产说:“天道远,人道迩,非所及也。
”③于是积极组织灭火。
④这说明当时以祭祀为核心的宗教意识日益淡薄,而世俗理性逐渐占据上风。
上述材料中属于历史评价的是A.① B.② C.③ D.④4.在古希腊文中,“民主政治”(demokrafia)一词由“人民”(demos)和“统治”(kratos)复合而成。
这说明,古代希腊的民主政治强调A.公民的广泛参与和直接管理 B.公民的私有财产神圣不可侵犯C.民事案件均由陪审法庭判决 D.全体居民均享有民主权利5.在宋代的官员中,有三分之一以上来自平民家庭,这是因为当时推行的选官制度是A.军功爵制 B.察举制C.九品中正制 D.科举制6.下列地图中表示草原文明的是A BC D7.“鸟托邦远在地平线上……无论我如何迈进,永远够不着它。
那幺,鸟托邦为什么存在呢?它存在的作用”在于引导人们A.进行阶级斗争 B.追求社会公平C.反对专制统治 D.展开国际合作8.在不久前举行的第五届美洲国家首脑会议上,委内瑞拉总统查韦斯送给美国总统奥巴马一本书——《拉丁美洲:被切开的血管》。
2009年高考新课标全国卷-文科数学(含标准答案)
2009年普通高等学校招生全国统一考试(新课标全国卷)一、选择题:本大题共12题,每小题5分,在每小题给出的四个选项中 ,中有一项是符合题目要求的. 1. 已知集合}{{}1,3,5,7,9,0,3,6,9,12A B ==,则A B =A.{3,5} B .{3,6} C.{3,7} D.{3,9}2.复数3223i i+=- A.1 B.1- C .i (D)i -3.对变量,x y 有观测数据(i x ,i y )(1,2,,10i =⋅⋅⋅),得散点图1;对变量,u v 有观测数据(i u ,i v )(i=1,2,…,10),得散点图2. 由这两个散点图可以判断A.变量x与y 正相关,u 与v 正相关 B .变量x 与y正相关,u 与v 负相关C.变量x 与y 负相关,u 与v正相关 D.变量x 与y负相关,u 与v 负相关4.有四个关于三角函数的命题:1p :∃x∈R , 2sin 2x +2cos 2x =12 2p : ,x y R ∃∈, sin()sin sin x y x y -=- 3p : ∀x ∈[]0,π1cos 2sin 2x x -= 4p : sin cos 2x y x y π=⇒+= 其中假命题的是 A.1p ,4p B.2p ,4p C .1p ,3p D.2p ,3p5.已知圆1C :2(1)x ++2(1)y -=1,圆2C 与圆1C 关于直线10x y --=对称,则圆2C 的方程为 A.2(2)x ++2(2)y -=1 B.2(2)x -+2(2)y +=1C .2(2)x ++2(2)y +=1D .2(2)x -+2(2)y -=1 6.设,x y 满足24,1,22,x y x y x y +≥⎧⎪-≥⎨⎪-≤⎩则z x y =+A .有最小值2,最大值3B .有最小值2,无最大值C.有最大值3,无最小值D.既无最小值,也无最大值7.已知()()3,2,1,0=-=-a b ,向量λ+a b 与2-a b 垂直,则实数λ的值为A.17-B.17 C .16- D .168.等比数列{}n a 的前n 项和为n S ,已知2110m m m a a a -++-=,2138m S -=,则m =A .38B .20 C.10 D.99.如图,正方体1111ABCD A B C D -的棱线长为1,线段11B D 上有两个动点E ,F,且12EF =,则下列结论中错误的是 A .AC BE ⊥ B.E F∥平面ABC DC.三棱锥A BEF -的体积为定值 D .△AEF 的面积与△BE F的面积相等10.执行如图所示的程序框图,输入2,0.5x h =-=,那么输出的各个数的和等于A.3B. 3.5C. 4 D.4.511.一个棱锥的三视图如图,则该棱锥的全面积(单位:2cm )为 A .48122+ B.48242+ C .36122+ D .36242+12.用min{a,b ,c}表示a ,b ,c 三个数中的最小值.设()min{2,2,10}xf x x x =+-(x≥0),则()f x 的最大值为A .4 B.5 C.6 D .7 第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.曲线21x y xe x =++在点(0,1)处的切线方程为________________.14.已知抛物线C的顶点坐标为原点,焦点在x 轴上,直线y=x 与抛物线C 交于A,B 两点,若(2,2)P 为AB 的中点,则抛物线C的方程为________________.15.等比数列{}n a 的公比0q >, 已知2a =1,216n n n a a a +++=,则{n a }的前4项和4S =________________.。
2009年上海高考数学试卷及答案(理科)
2009年全国普通高等学校招生统一考试上海数学试卷(理工农医类)一.真空题 (本大题满分56分)1. 若复数 z 满足z (1+i) =1-i (I 是虚数单位),则其共轭复数z =__________________ .2. 已知集合=≤A x x |1}{,=≥B x x a |}{,且⋃=A B R ,则实数a 的取值范围是______________________ .3. 若行列式 8 9x 3 5 x714中,元素4的代数余子式大于0,则x 满足的条件是________________________ .4.某算法的程序框如右图所示,则输出量y 与输入量x 满足的关系式是____________________________ .5.如图,若正四棱柱-ABCD A B C D 1111的底面连长为2,高 为4,则异面直线BD 1与AD 所成角的大小是______________(结果用反三角函数表示).6.函数=+y x x 2cos sin 22的最小值是_____________________ .7.某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则数学期望ξE ____________(结果用最简分数表示). 8.已知三个球的半径R 1,R 2,R 3满足+=R R R 23123,则它们的表面积S 1,S 2,S 3,满足的等量关系是___________.9.已知F 1、F 2是椭圆C x a y b+=2222:1(a >b >0)的两个焦点,P 为椭圆C 上一点,且⊥PF PF 12.若∆PF F 12的面积为9,则b =____________.10.在极坐标系中,由三条直线θ=0,=θπ3,ρθρθ+=cos sin 1围成图形的面积是________.11.当x ≤≤01时,不等式πsin2≥xkx 成立,则实数k 的取值范围是_______________.12.已知函数=+()sin tan f x x x .项数为27的等差数列a n }{满足a n ,ππ22∈-⎛⎝⎫⎭⎪,且公差d ≠0.若f a f a f a ++⋯+=1227()()()0,则当k =____________是,f a k =()0.13.某地街道呈现东—西、南—北向的网格状,相邻街距都为1.两街道相交的点称为格点。
2009年高考上海数学试题答案(理数)
2009年高考上海数学试题答案(理数) 一、(第一题至第14题)1. i2. 1a ≤3. 83x > 4. 2,12,1x x y x x ⎧≤=⎨->⎩5 47=9. 3 10.3411. 1k ≤ 12. 14 13.()3,3 14. 2arctan 3二.(第15题至第18题)三. (第19题至第23题) 19.解:如图,建立空间直角坐标系。
则 A ()2,0,0,C ()0,2,0,A 1()2,0,2,B 1()0,0,2,C 1()0,2,2, …… 2分设AC 的中点为M , BM ⊥AC ,BM ⊥CC 1,∴ BM ⊥平面11AC C ,即BM=(1,1,0)是平面11AC C 的一个法向量。
……5分设平面A 1B 1C 的一个法向量是n=(),,x y z ,1AC =()2,2,2--,11A B =()2,0,0-, …… 7分∴n ⋅11A B=2x -=0,∴n ⋅1AC =2220x y z -+-=,令1z =,解得0,1x y ==。
∴n=()0,1,1, …… 10分设法向量n 与BM的夹角为ϕ,二面角111B AC C --θθ的大小为,显然为锐角。
1cos cos 2|n BM n BM θ⋅=ϕ==⋅ ,解得3πθ=∴二面角111B AC C --的大小为3π…… 14分20. 证明:(1)当≥x7时,0.4(1)()(3)(4)f x f x x x +-=--而当≥x 7时,函数(3)(4)x x --y=单调递增,且(3)(4)0x x --> ……3分故(1)()f x f x +-单调递减。
所以,当≥x 7,掌握程度的增长量(1)()f x f x +-总是下降 ……6分解:(2)由题意可知0.115ln0.856aa +=- ……9分 整理得0.056ae a =- ……13分 解得(]0.050.05620.506123.0,123.0121,1271e a e =⋅≈⨯=∈- ……14分 由此可知,该学科是乙学科 21.解:(1)双曲线C的渐近线0m y =,即0x = …… 2分 ∴直线l的方程0x += …… 6分∴直线l 与m的距离d =…… 8分 (2)证法一:设过原点且平行于l 的直线:0,b kx y -=则直线l 与b 的距离d =,当2k >时,d >。
2009年高考上海数学试题答案(理数)
2009年普通高等学校招生全国统一考试(上海卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分150分,考试时间120分钟。
考试结束后,将本试卷和答题卡一并交回. 注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上.,并将准考证号条形码粘贴在答题卡上指定位置。
2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3. 第Ⅱ卷必须用0.5毫米黑色签字笔在答题卡各题的答题区域内作答;不能写在试题卷上; 如需改动,先画掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸,修正带,不按以上要求作答的答案无效。
4. 填空题请直接填写答案,解答题应写出文字说明,证明过程或演算步骤。
参考公式:柱体的体积公式V=Sh ,其中S 是柱体的底面积,h 是锥体的高。
锥体的体积公式V=13Sh ,其中S 是锥体的底面积,h 是锥体的高。
注意:1.答卷前,考生务必在答题纸上将学校、班级、姓名、考号填写清楚. 2.本试卷共有23道试题,满分150分,考试时间120分钟.一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.已知函数)0(1)(2≥+=x x x f 的反函数为1()f x -,则=-)5(1f __________.2.椭圆15922=+y x 的焦点坐标为____________. 3.方向向量为(3,4)d =,且过点)1,1(A 的直线l 的方程是__________.4.若0)1(lim =-∞→nn a ,则实数a 的取值范围是__________.5.某个线性方程组的增广矩阵是⎪⎪⎭⎫⎝⎛110201,此方程组的解记为),(b a ,则行列式123212a b 的值是__________. 6.某校师生共1200人,其中学生1000人,教师200人。
2009上海高考数学文科试题及答案详解
上海 数学试卷(文史类)考生注意:1. 答卷前,考生务必在答题纸上将姓名、高考准考证号填写清楚,并在规定的区域内贴上条形码。
2. 本试卷共有23道试题,满分150分,考试时间120分钟。
一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。
1.函数f(x)=x 3+1的反函数f -1(x)=_____________. 1.【答案】31x -【解析】由y =x 3+1,得x =31-y ,将y 改成x ,x 改成y 可得答案。
2.已知集体A={x|x ≤1},B={x |≥a},且A ∪B=R ,则实数a 的取值范围是__________________. 2.【答案】a ≤1【解析】因为A ∪B=R ,画数轴可知,实数a 必须在点1上或在1的左边,所以,有a ≤1。
3. 若行列式417 5 xx 3 8 9中,元素4的代数余子式大于0,则x 满足的条件是__________________.3.【答案】83x >【解析】依题意,得: (-1)2×(9x-24)>0,解得:83x >4.某算法的程序框如右图所示,则输出量y 与输入量x 满足的关系式是________________.4.【答案】2,12,1x x y x x ⎧<=⎨->⎩【解析】当x >1时,有y =x -2,当x <1时有y =x2,所以,有分段函数。
5.如图,若正四棱柱ABC D —A 1B 1C 1D 1的底面边长为2,高为4,则异面直线BD 1与AD 所成角的大小是___________________(结果用反三角函数值表示). 5.【答案】arctan 5【解析】因为AD ∥A 1D 1,异面直线BD 1与AD 所成角就是BD 1与A 1D 1所在角,即∠A 1D 1B ,由勾股定理,得A 1B =25,tan ∠A 1D 1B =5,所以,∠A 1D 1B =arctan 5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、(第1题至第14题)
1. 2. 3. 4.
5. 6. 7.-9 8.
9. 10. 11. 12.3
13.14 14.(3,3)
二、(第15题至第18题)
15—18 CBAD
三、(第19题至23题)
19.解:原方程的根为
.
20.证明:(1)
,
即 ,其中R是三角形ABC外接圆半径,
.
为等腰三角形.
9.过点A(1,0)作倾斜角为 的直线,与抛物线y2=2x交于M、N两点,则|MN|=______
10.函数 的最小值是________
11.某学校要从5名男生和2名女生中选出3人作为上海世博会志愿者,
则选出的志愿者中男女生均不少于1名的概率是_______(用最简分数表示)
12.已知 、 是椭圆 ( > >0)的两个焦点, 为椭圆 上一点,且 .
⑴若 ∥ ,求证:△ABC为等腰△
⑵若 ⊥ ,边长c=2,角C= ,求△ABC的面积
21.(6+10')有时可用函数 描述学习某学科知识的掌握程度.
其中x表示某学科知识的学习次数( ), 表示对该学科知识的掌握程度,正实数a与学科知识有关
⑴证明:当 时,掌握程度的增加量 总是下降
⑵根据经验,学科甲、乙、丙对应的a的取值区间分别为 , ,(127,133].
19.(-2,6)20. , 21.123.0乙, 22. -y2=1,± , 23.不存在,a=qc(c∈Z,c≥-2),p∈N*且为奇数均可
2009年全国普通高等学校招生统一考试
上海数学试卷(文史类)答案要点及评分标准
说明:
1.本解答列出试题的一种或几种解法,如果考生的解法与所列解法不同,可参照解答
5.若正四棱柱 的底面边长为2,高为4,
则异面直线 与AD所成角的大小是________
6.若球O1、O2表面积之比 =4,则它们的半径之比 =________
7.已知实数x、y满足 ,则目标函数z=x+2y的最小值是________
8.若等腰直角△的直角边长为2,则以一直角边所在的直线为轴旋转一周所成的几何体体积是_______
则直线l与b的距离
又双曲线C的渐近为
双曲线C右支在直线D的右下方
∴双曲线右支上的任意点到 的距离大于
故在双曲线C的右支上不存在点Q,使之到直线 的距离为
[证法二]假设双曲线C右支上存在点 到直线 的距离为
则
由(1)得
设
当 时,
将 代入(2)得
(*)
方程(*)不存在正根,即假设不成立,
故在双曲线C的右支上不存在点Q,使之到直线 的距离为
[解](2)由题意可知
由余弦定得理可知,
即
21.[证明]
(1)当
而当 单调递增,且
故 单调递减。
,掌握程度的增长量 总是下降。
解(2)由题意知
整理得 ,
解得
由此可知,该学科是乙学科。
22.[解](1)设双曲线C的方程为 ,
解得 =2,双曲线C的方程为
(2)直线
由题意,得
(3)[证法一]设过原点且平行于l的直线
且垂直于底面,该三棱锥的主视图是( )
(A)(B)(C)(D)
17.点P(4,-2)与圆x2+y2=4上任一点连线的中点轨迹方程是()
(A)(x-2)2+(y+1)2=1(B)(x-2)2+(y+1)2=4(C)(x+4)2+(y-2)2=4(D)(x+2)2+(y-1)2=1
18.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为
请确定一个格点(除零售点外)_______为发行站,使5个零售点沿街道到发行站之间路程的和最短.
15.已知直线l1: (k-3)x+(4-k)y+1=0与l2: 2(k-3)x-2y+3=0平行,则k的值是( )
(A)1或3(B)1或5(C)3或5(D)1或2
16.如图,已知三棱锥的底面是直角△,直角边长分别为3和4,过直角顶点的侧棱长为4,
[解法二]设
若 ,
对 都成立,
且 为等比数列,
则 ,
对 都成立,
即
都成立,
7分
(i)若 ,则 ,
(ii)若 ,则
(常数)
即 ,
则 ,矛பைடு நூலகம்。
综上所述,有
使对一切
(3)
设
取
由二项展开式可得正整数M1、M2,使得
,
存在整数m满足要求。
故当且仅当 时,命题成立18分
说明:第(3)题若学生从以下角度解题,可分别得部分分(即分步得分)
19.(14')已知复数z=a+bi(a、b∈R) (i是虚数单位)是方程x2-4x+5=0的根,复数w=u+3i(u∈R)满足|w-z|<2 ,
求u的取值范围
20.(6+8')已知△ABC的角A、B、C所对的边分别是a、b、c,设向量 =(a,b), =(sinB,sinA), =(b-2,a-2)
若 为偶数,
则 为偶数,
但 为奇数。
故此等式不成立,
一定为奇数1分
当 时,则
即
而
当 为偶数时,存在 ,
使 成立1分
当 时,
则 ,即
也即
由已证可知,当 为偶数即 为奇数时,存在 成立
当 时,则 ,
即 也即 ,而 不是5的倍数,
当 时,
所要求的 不存在。
故不是所有奇数都成立
若 的面积为9,则 =________
13.已知函数 .项数为27的等差数列 满足 ,且公差 .
若 ,则当 =______时, .
14.某地街道呈现东—西、南—北向的网格状,相邻街距都为1.两街道相交的点称为格点.若以互相垂直的
两条街道为轴建立直角坐标系,现有下述格点 , , , , 为报刊零售点.
23.[解](1)由 ,
得
整理后,可得
为整数,
,使等式成立
(2)[解法一]若
即 (*)
(i)若 ,则
当 为非零常数列, 为恒等于1的常数列,满足要求
(ii)若 ,
(*)式等号左边取极限和 ,
(*)式等号右边的极限只有当 时,才可能等于1
此时等号左边是常数,
矛盾。
综上所述,只有当 为非零常数列, 为恒等于1的常数列,满足要求
23.(5+5+8')已知{an}是公差为d的等差数列,{bn}是公比为q的等比数列
⑴若 ,是否存在 ,有 说明理由
⑵若bn=aqn(a、q为常数,且aq≠0),对任意m存在k,有bm·bm+1=bk,试求a、q满足的充要条件
⑶若an=2n+1,bn=3n试确定所有的p,使数列{bn}中存在某个连续p项的和是{an}中的一项,请证明
当学习某学科知识6次时,掌握程度是85%,请确定相应的学科
22.(4+4+8')已知双曲线C的中心是原点,右焦点为F( ,0),一条渐近线m:x+ y=0,
设过点 的直线l的方向向量 =(1,k)
⑴求双曲线C的方程
⑵若过原点的直线l1∥l,且l1与l的距离为,求k的值
⑶证明:当 > 时,在双曲线C的右支上不存在点Q,使之到直线l的距离为
“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,
一定符合该标志的是( )
(A)甲地:总体均值为3,中位数为4(B)乙地:总体均值为1,总体方差大于0
(C)丙地:中位数为2,众数为3(D)丁地:总体均值为2,总体方差为3
,a≤1,x> , y= , arctan , 2,-9, , 2 , 1- , , 3,14, (3,3) CBAD
中评分标准的精神进行评分。
2.评阅试卷,应坚持每题评阅到底,不要因为考生的解答中出现错误而中断对该题的
评阅,当考生的解答在某一步出现错误,影响了后继部分,但该步以后的解答未改变
这一题的内容和难度时,可视影响程度决定后面部分的给分,这时原则上不应超过后
面部分应给分数之半,如果有较严重的概念性错误,就不给分。
2009上海数学试卷(文史类)
1.函数f(x)=x3+1的反函数是f-1(x)=________
2.已知集合 , ,且 ,则实数a的取值范围是_______
3.若行列式 中,元素4的代数余子式大于0,则x满足的条件是______
4.某算法的程序框如右图所示,则输出量y与输入量x满足的关系式是_______