全排列与逆序数
合集下载
行列式2
此排列当 n=4k, 4k+1 时为偶排列; 当 n=4k+2, 4k+3 时为奇排列. (3) (2k)1(2k–1)2(2k–2)3(2k–3) · (k–1)(k +1)k. · · · · 解: (2k) 1 (2k–1) 2 (2k–2) 3 (2k–3) · (k–1) (k+1) k (k–1) (k–1) k 3 0 1 1 2 2 3 于是排列(2k)1(2k–1)2(2k–2) · (k–1)(k +1)k的逆序数为: · · t = 0+1+1+2+2+ · +(k–1)+(k–1)+k · · k k 1 2 k k2. 2 此排列当 k 为偶数时为偶排列, 当 k为奇数时为 奇排列.
例2: 计算下列排列的逆序数, 并讨论其奇偶性. (1) 217986354. 解: 2 1 7 9 8 6 3 5 4 0 1 001 34 4 5 于是排列217986354的逆序数为: t = 0+1+0+0+1+3+4+4+5 = 18. 此排列为偶排列. (2) n(n–1)(n–2) · 21 · · · · 解: n (n–1) (n–2) · 2 1 2 (n–2) (n–1) 0 1 于是排列n(n–1)(n–2) · 21的逆序数为: · · nn 1 , t = 0+1+2+ · +(n–2)+(n–1) · · 2
方法2: 依次计算出排列中每个元素前面比它大的 数码个数并求和, 即算出排列中每个元素的逆序数, 则 所有元素的逆序数之总和即为所求排列的逆序数. 例1: 求排列32514的逆序数.
1-2线性代数
n( n 1 ) , = 2 时为偶排列; 当 n = 4k ,4k + 1 时为偶排列;
t = ( n 1) + ( n 2 ) + L + 2 + 1
时为奇排列. 当 n = 4k + 2,4k + 3 时为奇排列
(4) (2k )1(2k 1)2(2k 2)3(2k 3)L (k + 1)k
于是排列32514的逆序数为 t = 0 + 1 + 0 + 3 + 1 = 5. 的逆序数为 于是排列
计算下列排列的逆序数,并讨论它们的奇偶性. 例2 计算下列排列的逆序数,并讨论它们的奇偶性
(1)
4132
(2) 3712456
(2) )
解(1)4 1 3 2 )
3 7 1 2 4 5 6
0 0 2 2 1 1 1
第二节 全排列及其逆序数
一、排列
定义 由自然数 2, , n 组成的不重复的每一 由自然数1, 种有确定次序的排列, 称为一个n 种有确定次序的排列 称为一个 阶排列 (简称排列 简称排列). 简称排列 都是4 例如 1234 和4312都是 阶排列 都是 阶排列, 24315是一个 阶排列 是一个5 阶排列. 是一个
t = 0 +0 + 2 + 2 + 1 + 1 + 1
0 1 1 2
t = 0+1+1+ 2 = 4
此排列为偶排列 此排列为偶排列. 偶排列
=7
此排列为奇排列 此排列为奇排列. 奇排列
(3)
解
n(n 1)(n 2 )L 321
n 6444 74444 4 1 8 n(n 1)2 2 )L 321 1 4(n443 44 4 (n 2)
1-2全排列及其逆序数
0 1
1
2
2
0 1 1 2 2 k 1 k 1 k
2 当 k 为偶数时,排列为偶排列,
k
21 k 1k 1
2 k k ,
当 k 为奇数时,排列为奇排列.
机动
目录
上页
下页
返回
结 n ( n 1) ( n 2) 3 2 1 n!.
机动 目录 上页 下页 返回 结束
LOGO
排列的逆序数 我们规定各元素之间有一个标准次序, n 个 不同的自然数,规定由小到大为标准次序.
定义 在一个排列 i1 i 2 i t i s i n 中,若数 i t i s 则称这两个数组成一个逆序. 例如 排列32514 中, 逆序 3 2 5 1 4
1 n 个不同的元素的所有排列种数为 n!. 2 排列具有奇偶性.
机动
目录
上页
下页
返回
结束
思考题
求排列16352487的逆序数. 解 1 6 3 5 2 4 8 7
LOGO
0 0 1 1 3 2 0 1 8.
机动
目录
上页
下页
返回
结束
LOGO 2012年秋
计算排列逆序数的方法
LOGO
分别计算出排列中每个元素前面比它大的数码 个数之和,即算出排列中每个元素的逆序数, 这每个元素的逆序数之总和即为所求排列的逆 序数.
机动
目录
上页
下页
返回
结束
例1
解
求排列32514的逆序数.
在排列32514中,
LOGO
1
2
2
0 1 1 2 2 k 1 k 1 k
2 当 k 为偶数时,排列为偶排列,
k
21 k 1k 1
2 k k ,
当 k 为奇数时,排列为奇排列.
机动
目录
上页
下页
返回
结 n ( n 1) ( n 2) 3 2 1 n!.
机动 目录 上页 下页 返回 结束
LOGO
排列的逆序数 我们规定各元素之间有一个标准次序, n 个 不同的自然数,规定由小到大为标准次序.
定义 在一个排列 i1 i 2 i t i s i n 中,若数 i t i s 则称这两个数组成一个逆序. 例如 排列32514 中, 逆序 3 2 5 1 4
1 n 个不同的元素的所有排列种数为 n!. 2 排列具有奇偶性.
机动
目录
上页
下页
返回
结束
思考题
求排列16352487的逆序数. 解 1 6 3 5 2 4 8 7
LOGO
0 0 1 1 3 2 0 1 8.
机动
目录
上页
下页
返回
结束
LOGO 2012年秋
计算排列逆序数的方法
LOGO
分别计算出排列中每个元素前面比它大的数码 个数之和,即算出排列中每个元素的逆序数, 这每个元素的逆序数之总和即为所求排列的逆 序数.
机动
目录
上页
下页
返回
结束
例1
解
求排列32514的逆序数.
在排列32514中,
LOGO
001全排列逆序数
思考题
分别用两种方法求排列16352487的逆序数 的逆序数. 分别用两种方法求排列 的逆序数
思考题解答
解 用方法1 用方法1 1 6 3 5 2 4 8 7
t = 0+ 3+1+ 2+1+ 0+1+ 0= 8
用方法2 用方法2 由前向后求每个数的逆序数. 由前向后求每个数的逆序数
t = 0 + 0 + 1 + 1 + 3 + 2 + 0 + 1 = 8.
t = 0 + 1 + 0 + 3 + 1 = 5.
计算下列排列的逆序数, 例2 计算下列排列的逆序数,并讨论它们的奇 偶性. 偶性
(1) 217986354
解
2 1 7 9 8 6 3 5 4
0 10 0 1 3 4 4 5
t = 5 + 4 + 4+ 3+1+ 0+ 0+1+ 0
= 18
此排列为偶排列 此排列为偶排列. 偶排列
一、概念的引入
引例 用1、2、3三个数字,可以组成多少个没 三个数字, 、 、 三个数字 有重复数字的三位数? 有重复数字的三位数? 解
百位 十位 个位
1 1 1 2 1 2 3
2 2 1 3
3 3
3种放法 种放法 2种放法 种放法 1种放法 种放法
共有 3 × 2 × 1 = 6
种放法. 种放法
3排在首位 逆序数为 排在首位,逆序数为 排在首位 逆序数为0; 2的前面比 大的数只有一个 故逆序数为 的前面比2大的数只有一个 故逆序数为1; 的前面比 大的数只有一个3,故逆序数为
行列式概念
行列式是线性代数中的重要概念,它是以可排列的逆序奇偶性为基础,由行列地位相同的不重复行列元素乘积项的代数和构成。为了深入理解行列式,需要掌握全排列和逆序数的概念。全排列是从n个元素中取出n个元素进行不重复有逆序之和,根据逆序数的奇偶性,可以将排列分为奇排列和偶排列。求逆序数的基本方法是通过逐一考察每个元素前面的逆序元素个数,并求和得到。此外,对换是排列中的一种重要操作,它可以改变排列的奇偶性。这些概念和性质对于后续学习行列式的计算和应用具有重要意义。
线性代数1-2全排列及其逆序数1-3n阶行列式的定义1-4对换
例3 用行列式的定义计算
0 0 0 1 0 0 0 2 0 0 Dn n1 0 0 0 0 0 0 0 0 n
解 Dn 1 t a1,n1a2,n2 an1,1ann
1t 1 2 n 1 n 1t n!, tn 1n 2 21n
01 2L n 3 n 2 0
1234
例3 计算
0 D
4
2
1
0056
0008
解
1234Βιβλιοθήκη 0421D 00
5
6 a11a22a a 33 44 1 4 5 8 160.
0008
同理可得下三角行列式
a11
0 0 0
a21 a22 0 0
an1
an2
an3 ann
a11a22 ann .
例4 证明对角行列式
1 2
因此对换相邻两个元素,排列改变奇偶性 . 再证一般对换的情形 .
设排列为 a1 alab1 bmbc1 cn , 现来对换 a 与b.
a1 al a b1 bm b c1 cn
m 次相邻对换 a1 al ab b1 bmc1 cn
m 1 次相邻对换 a1 al b b1 bm a c1 cn
t 0 1 0 3 1 5.
例2 计算下列排列 nn 1n 2L 321
的逆序数,并讨论它的奇偶性.
解
t 1 2 L (n 2) n 1
nn 1
,
2
当 n 4k,4k 1 时为偶排列;
当 n 4k 2,4k 3 时为奇排列.
第一章 行列式
第三节 n 阶行列式的定义
一、概念的引入
1
a a t p1q1 p2q2
a pnqn
1n阶行列式
0+1+0+2+4=7
故排列42531的逆序个数为7,即τ(42531)=7,
因而是奇排列.
返回
上一页 下一页
(2) 同理可得:
τ[135…(2n-1)246…(2n)]=0+(n-1)+(n-2)+…+2+1=
n(n 1) 2
所给排列当n=4k或4k+1时为偶排列,当n=4k+2或4k+3
时为奇排列.
把行列式
§3 行列式的性质
的行换成同序数的列,
称为行列式D的转置行列式。
返回
上一页 下一页
性质1 行列式与它的转置行列式相等 。
证: 记
即bij=aji
(i,j=1,2,…,n)
按行列式定义
返回
上一页 下一页
性质2 互换行列式的两行(列),行列式反号。 证
交换第p、q两列,得行列式
返回
上一页 下一页
同理可证
返回
上一页 下一页
代数余子式的重要性质(行列式按行(列)展开公式):
返回
上一页 下一页
例 计算n阶行列式 解法一
返回
上一页 下一页
例 计算n阶行列式
解法二(递推法) 由行列式Dn可知
将Dn按第1列展开
返回
上一页 下一页
这个式子对任何n(n2) 都成立,故有
返回
上一页 下一页
例 利用递推公式法计算 解:按第一行展开
Dn=
返回
上一页 下一页
例 证明
上面的行列式中,未写出的元素都是0。 证: 因为行列式的值为
而排列j1j2…jn只能是n(n-1)…21的排列, 故逆序数
同济版线性代数课件--§2 全排列及其逆序数
三、排列的逆序数
我们规定各元素之间有一个标准次序, n 个 不同的自然数,规定由小到大为标准次序. 1. 定义 在一个排列 p 1 p 2 p t p s p t p s , 则称这两个数组成一个逆序.
p n 中,
若数
(即:大的数在小的数左边,则这两数构成一个逆序) 例如 排列32514 中, 逆序 3 2 5 1 4
t N(p514 的逆序数.
例2
计算下列排列的逆序数,并讨论它们的
奇偶性.
1 2
217986354 n n 1 n 2 321
逆序
逆序
2. 定义 一个排列中所有逆序的总数称为此排
列的逆序数. 例如 排列 32514 中,
3. 排列的奇偶性
逆序数为奇数的排列称为奇排列; 逆序数为偶数的排列称为偶排列.
4.计算排列逆序数的方法
设排列为 p 1 p 2 则其逆序数为 例1
pn , ti 为 pi
构成的逆序数
t1 t 2 t n 1
P3 3 2 1 6 .
P n n ( n 1 ) ( n 2 ) 3 2 1 n !.
1. 由1,2,…,n-1,n(n个数)组成的一个全排列称 为一个n级排列。 如:12345,54321,43512均为5级排列 2. 123…(n-1)n(具有自然顺序的排列为)标准排列。
§2 全排列及其逆序数
一、概念的引入
二、全排列
三、排列逆序数 四、小结
一、概念的引入
引例 用1、2、3三个数字,可以组成多少个没 有重复数字的三位数?
共有 3 2 1 6
种放法.
二、全排列
问题
线性代数第一章行列式第二节全排列及其逆序数
1,2显,然3叫,做百元位素上.可上以述从问1,题2就,是3三:个把数三字个中不任同选的
元一素个排,所 成一以有列,3种共放有法几;种十不位同上的只排能法从?剩下的两个 数字中选一个,所以有2种放法; 而个位上只能放 最后剩下的一个数字,所以只有1种放法. 因此,
二、全排列
对于 n 个不同的元素,也可以提出类似的问 题: 把 n 个不同的元素排成一列,共有几种不同 的排法? 为此先给出全排列的定义.
定义 把 n 个不同的元素排成一列,叫做这 n 个元素的全排列(也简称排列).
n 个不同元素的所有排列的种数,通常用 Pn 表
示. 由引例 用1的,结2,果3可三知个P数3 =字3可·以2 ·组1 成= 6多. 少个没
有重复数字的三位数?
解 这个问题相当于说,把三个数字分别放在
为了得出计算 Pn 的公式,可以仿照引例 用1,2
进行讨论:
有重复数字的三位
从 n 个元素中任取一个放在第一个位解置上这位与个数
从剩下的 n – 1 个元素中任取一个放在显第然二,百位上
个位置上,有 n – 1 种取法;
一个,所以有3种放
这样继续下去,直到最后只剩下数一字个中元选素一放个,所
在第 n 个位置上,只有 1 种取法. 于最是后剩下的一个数
2. 计算方法
下面来讨论计算排列的逆序数的方法. 不失一般性,不妨设 n 个元素为 1 至 n 这 n 个 自然数, 并规定由小到大为标准次序. 设
p1 p2 pn
为这 n 个自然数的一个排列,考虑元素 pi (i = 1, 2, … , n), 如果比 pi 大的且排在 pi 前面的元素有 ti 个,就说 pi 这个元素的逆序数是 ti . 全体元素的 逆序数之和
线性代数 1.1 全排列及其逆序数
三、排列的奇偶性
逆序数为奇数的排列称为奇排列; 逆序数为偶数的排列称为偶排列. 定义 把排列中两个元素位置进行对调, 称为对排列作一次对换。 定理:对换改变排列的奇偶性. 证明:先证明是相邻对换的情况,再证非 相邻对换的情况。 推论 将奇(偶)排列变成标准排列需用奇(偶)数 次对换。
第一章
行列式
§1.1 全排列及其对换
一、全排列的定义 n 个不同的元素排成一列,叫做这 n
个元素的全排列,简称排列。 例 123456 是 6 个数的全排列, 53421 是 5 个数的全排列。
二排列的逆序数
对于n 个不同的元素,规定各元素之间由小 到大为标准次序. 定义 当某两个元素的先后次序与标准次序不同 时,就说有一个逆序,一个排列中所有逆序的总 数叫做这个排列的逆序数。 求逆序数的方法: t ( p1 p2 pn ) t1 t2 tn 其中 ti 是排列中与元素 pi 相关的逆序数,即位于 pi前且比 pi 大的的元素个数。
例 (1) 求排列3412中逆序数 .
2 nn 1n 2 321
(1) t (3412) 0 0 2 2 4; 解:
(2) t (n n 1 n 2 321) 0 1 2 (n 1) 1 n(n 1) 2
2全排列及其逆序数
ab
a1 ⋯ a l ab b1 ⋯ bm 对换 a 与 b a1 ⋯ a l ba b1 ⋯ bm
ba
除a
,b
外,其它元素的逆序数不改变. 其它元素的逆序数不改变
当 a < b 时, 的逆序数增加1 经对换后 a 的逆序数增加 , 当 a > b时 , 的逆序数不变; b 的逆序数不变
b 的逆序数减少1. 经对换后 a 的逆序数不变 , 的逆序数减少
因此对换相邻两个元素,排列改变奇偶性 因此对换相邻两个元素,排列改变奇偶性. 设排列为 a1 ⋯ a l ab1 ⋯ bm bc1 ⋯ c n 现来对换 a 与 b .
a1 ⋯al a b1 ⋯bm b c1 ⋯cn
m 次相邻对换
a1 ⋯ al ab b1 ⋯ bmc1 ⋯cn ab
m + 1 次相邻对换 a ⋯a b b ⋯b a c ⋯c 1 l b 1 m a 1 n
从而 D = D1 .
定义 一个排列中所有逆序的总数称为 此排列的逆序数 逆序数. 此排列的逆序数 排列的奇偶性 逆序数为奇数的排列称为奇排列 奇排列; 逆序数为奇数的排列称为奇排列 逆序数为偶数的排列称为偶排列 偶排列. 逆序数为偶数的排列称为偶排列
例1 解
求排列32514的逆序数 的逆序数. 求排列 的逆序数 在排列32514中, 中 在排列
与之对应并相等; 反之, 与之对应并相等 反之 对于 D1 中任意一项
(− 1)t a p 1a p 2 ⋯a p n , 也总有且仅有 中的某一项 也总有且仅有D中的某一项
1 2 n
(− 1) a1q a2q ⋯anq , 与之对应并相等 于是 与 D1 与之对应并相等, 于是D与
s
线性代数1-2
al a bb1
bm
对换 a 与 b
a1
al b ab1
bm
除a,b外,其它元素的逆序数不改变. 逆序数加1或减1,奇偶性改变.
2)
一般情形
对换a与b
a1 al a b1 bm b b c1 cn
a1 al ab1 bm bc1 cn
a1
al bb1
bm ac1
cn ,
m 次相邻对换 a 1
若将t 个偶排列的前两个数对换, 则这t 个偶排列 全变成奇排列,并且它们彼此不同,于是有 t s . 故必有 s t .
本节小结
1. n元排列 2. 逆序 3. 逆序数 4. 奇偶排列 5. 对换 结论1 任一排列经过一次对换奇偶性改变. 结论2 全部n元排列中,奇偶排列各占一半.
t 18
例2 讨论排列 n n 1 n 2 解
nn 1n 2321
n1 n2
321的奇偶性.
t n 1 n 2 2 1 n n 1 , 2 当n 4k ,4k 1 时为偶排列;
当n 4k 2,4k 3 时为奇排列.
例3 选择i和j,使1i25j4869成为奇排列、偶排列.
1
4.对换
n元排列中, 任意对调两个元素的位置,其余元素 不动,这种变换叫做对换.
奇 偶
25143
偶
25413
奇
这些排列的
奇偶性呢?
2 1 6 排列经过一次对换必改变奇偶性. 证明 1) 特殊情形:相邻对换 设排列为 a1
2.逆序
n元排列中,若较大的元素排在较小的元素 前面,称为一个逆序. 比如 3 2 5 1 4
3.逆序数
排列中所有逆序的总数称为此排列的逆序数.
§2 全排列及其逆序数
逆序
例如 排列32514 中, 排列
3 2 5 1 4
逆序 逆序
2. 一个排列中所有逆序的总数称为此排列的逆序数. 一个排列中所有逆序的总数称为此排列的逆序数 逆序数. 例如: 其逆序数为5. 例如 排列 32514 , 其逆序数为 其逆序数为4. 排列 31524 , 其逆序数为 3. 排列的奇偶性 逆序数为奇数的排列称为奇排列 逆序数为奇数的排列称为奇排列; 奇排列 逆序数为偶数的排列称为偶排列 逆序数为偶数的排列称为偶排列. 偶排列
4.计算排列逆序数的方法 计算排列逆序数的方法 设排列为 p1 p2 L pn , t i 为 pi 构成的逆序数 则其逆序数为 t = t ( p1 p2 L pn ) = t1 + t 2 + Lt n−1 计算下列排列的逆序数,并讨论它们的奇偶性 并讨论它们的奇偶性. 例 计算下列排列的逆序数,并讨论它们的奇偶性.
二、排列的逆序数
规定各元素之间有一个标准次序, 规定各元素之间有一个标准次序 n 个不同的自 然数, 规定由小到大为标准次序 标准次序. 然数 …pt…ps…pn中, 若数 pt >ps, 则称这两个数组成一个逆序 逆序. 则称这两个数组成一个逆序 (即:大的数在小的数左边, 则这两数构成一个逆序) 即 大的数在小的数左边 则这两数构成一个逆序)
(1) 217986354 ( 2) n( n − 1)( n − 2)L 321
四、小结
1. n个不同的元素的所有排列总数为 个不同的元素的所有排列总数为n!. 个不同的元素的所有排列总数为 2. 排列具有奇偶性 排列具有奇偶性. 3. 计算排列逆序数. 计算排列逆序数
§2 全排列及其逆序数
一、全排列 二、排列逆序数 三、小结
例如 排列32514 中, 排列
3 2 5 1 4
逆序 逆序
2. 一个排列中所有逆序的总数称为此排列的逆序数. 一个排列中所有逆序的总数称为此排列的逆序数 逆序数. 例如: 其逆序数为5. 例如 排列 32514 , 其逆序数为 其逆序数为4. 排列 31524 , 其逆序数为 3. 排列的奇偶性 逆序数为奇数的排列称为奇排列 逆序数为奇数的排列称为奇排列; 奇排列 逆序数为偶数的排列称为偶排列 逆序数为偶数的排列称为偶排列. 偶排列
4.计算排列逆序数的方法 计算排列逆序数的方法 设排列为 p1 p2 L pn , t i 为 pi 构成的逆序数 则其逆序数为 t = t ( p1 p2 L pn ) = t1 + t 2 + Lt n−1 计算下列排列的逆序数,并讨论它们的奇偶性 并讨论它们的奇偶性. 例 计算下列排列的逆序数,并讨论它们的奇偶性.
二、排列的逆序数
规定各元素之间有一个标准次序, 规定各元素之间有一个标准次序 n 个不同的自 然数, 规定由小到大为标准次序 标准次序. 然数 …pt…ps…pn中, 若数 pt >ps, 则称这两个数组成一个逆序 逆序. 则称这两个数组成一个逆序 (即:大的数在小的数左边, 则这两数构成一个逆序) 即 大的数在小的数左边 则这两数构成一个逆序)
(1) 217986354 ( 2) n( n − 1)( n − 2)L 321
四、小结
1. n个不同的元素的所有排列总数为 个不同的元素的所有排列总数为n!. 个不同的元素的所有排列总数为 2. 排列具有奇偶性 排列具有奇偶性. 3. 计算排列逆序数. 计算排列逆序数
§2 全排列及其逆序数
一、全排列 二、排列逆序数 三、小结
全排列及其逆序数
下页
标准排列 在n个自然数的全排列中排列123 ⋅ ⋅ ⋅ n称为标准排列. 逆序与逆序数 在一个排列中, 如果某两个元素的先后次序与标准排列 的次序不同, 就说有1个逆序. 一个排列中所有逆序的总数叫做这个排列的逆序数.
提示: 以下我们只讨论n个自然数的全排列.
下页
标准排列 在n个自然数的全排列中排列123 ⋅ ⋅ ⋅ n称为标准排列. 逆序与逆序数 在一个排列中, 如果某两个元素的先后次序与标准排列 的次序不同, 就说有1个逆序. 一个排列中所有逆序的总数叫做这个排列的逆序数. 逆序数的计算 在排列p1p2⋅ ⋅ ⋅pn中, 如果pi的前面有ti个大于pi的数, 就说 元素pi的逆序数是ti. 排列的逆序数为t=t1+t2+ ⋅ ⋅ ⋅ +tn. 举例: 在排列32514中, t1=0, t2=1, t3=0, t4=3, t5=1. 排列32514的逆序数为t=0+1+0+3+1=5. 标准排列12345的逆序数是多少字, 可以组成多少个没有重复数 字的三位数? 解 采用先选定百位数, 再选定十位数, 最后选定个位数 的步骤. 百位数有3种选法, 十位数有2种选法, 个位数有1种选法. 因为3×2×1=6, 所以可以组成6个没有重复数字的三位数. 这6个三位数是 123, 132, 213, 231, 312, 321.
下页
标准排列 在n个自然数的全排列中排列123 ⋅ ⋅ ⋅ n称为标准排列. 逆序与逆序数 在一个排列中, 如果某两个元素的先后次序与标准排列 的次序不同, 就说有1个逆序. 一个排列中所有逆序的总数叫做这个排列的逆序数. 奇排列与偶排列 逆序数为奇数的排列叫做奇排列, 逆序数为偶数的排列 叫做偶排列. 举例: 排列32514的逆序数是5, 它是奇排列. 标准排列12345的逆序数是0, 它是偶排列.
标准排列 在n个自然数的全排列中排列123 ⋅ ⋅ ⋅ n称为标准排列. 逆序与逆序数 在一个排列中, 如果某两个元素的先后次序与标准排列 的次序不同, 就说有1个逆序. 一个排列中所有逆序的总数叫做这个排列的逆序数.
提示: 以下我们只讨论n个自然数的全排列.
下页
标准排列 在n个自然数的全排列中排列123 ⋅ ⋅ ⋅ n称为标准排列. 逆序与逆序数 在一个排列中, 如果某两个元素的先后次序与标准排列 的次序不同, 就说有1个逆序. 一个排列中所有逆序的总数叫做这个排列的逆序数. 逆序数的计算 在排列p1p2⋅ ⋅ ⋅pn中, 如果pi的前面有ti个大于pi的数, 就说 元素pi的逆序数是ti. 排列的逆序数为t=t1+t2+ ⋅ ⋅ ⋅ +tn. 举例: 在排列32514中, t1=0, t2=1, t3=0, t4=3, t5=1. 排列32514的逆序数为t=0+1+0+3+1=5. 标准排列12345的逆序数是多少字, 可以组成多少个没有重复数 字的三位数? 解 采用先选定百位数, 再选定十位数, 最后选定个位数 的步骤. 百位数有3种选法, 十位数有2种选法, 个位数有1种选法. 因为3×2×1=6, 所以可以组成6个没有重复数字的三位数. 这6个三位数是 123, 132, 213, 231, 312, 321.
下页
标准排列 在n个自然数的全排列中排列123 ⋅ ⋅ ⋅ n称为标准排列. 逆序与逆序数 在一个排列中, 如果某两个元素的先后次序与标准排列 的次序不同, 就说有1个逆序. 一个排列中所有逆序的总数叫做这个排列的逆序数. 奇排列与偶排列 逆序数为奇数的排列叫做奇排列, 逆序数为偶数的排列 叫做偶排列. 举例: 排列32514的逆序数是5, 它是奇排列. 标准排列12345的逆序数是0, 它是偶排列.
1-2 全排列及其逆序数
于是排列32514的逆序数为
t 0 1 0 3 1 5.
例 计算下列排列的逆序数.
1
解
217986354
2 1 7 9 8 6 3 5 4
(由后向前求每个数的逆序数.)
0 10 0 1 3 4 4 5
t 5 4 4 31 0 01 0
18
2 nn 1n 2321
把 n 个不同的元素排成一列,叫做这 n 个 元素的全排列(或排列).
2. 逆序、逆序数
我们规定各元素之间有一个标准次序, n 个 不同的自然数,规定由小到大为标准次序.
定义
例如
在一个排列 i1i2 it is in 中,若数 it i s 则称这两个数组成一个逆序. 排列32514 中, 逆序
一、概念的引入
引例 用1、2、3三个数字,可以组成多少个互不 相同的三位数? 解
3种放法
设
2种放法
是一个三位数字,
1种放法
百位上可以从1 2 3三个数字中任选一个,所以有3种放法 十位上只能从剩下的两个数字中任选一个,所以有2种放法 而个位上只能放最后剩下的一个数字,所以只有1种放法 共有 3 2 1 6 种放法. 这6个不同的3位数是
3 2 5 1 4 逆序 逆序 定义 一个排列i1i2…in中所有逆序的总数称为此 排列的逆序数.记作 t (i1i2…in)或简记为t
计算排列逆序数的方法
分别计算出排列中每个元素前面比它大的 数字个数之和. 例4 解 求排列32514的逆序数.
在排列32514中,
3 2 5 1 4 0 1 0 3 1
解
n1 nn 1n 2321
t n 1 n 2 2 1
计算机网络实验基础知识1-2 全排列及其逆序数
4的前面比4大的数有1个,故逆序数为1; 32514 01 031
于是排列32514的逆序数为 t 0 1 0 3 1 5.
例2 计算下列排列的逆序数,并讨论它们的奇 偶性.
1 7986354
解
217986354
0 10 0 1 3 4 4 5
t 5 4 4310010
18
此排列为偶排列.
i1 前面比i1 大的数码个数; i1 i 2 i n
向前看大 向后看小
③ i1 后面比i1 小的数码个数 i2 后面比i2 小的数码个数
in 后面比in 小的数码个数; i1 i 2 in
向后看小 向前看大
例1 求排列32514的逆序数.
解 在排列32514中, 3排在首位,逆序数为0; 2的前面比2大的数只有一个3,故逆序数为1; 5的前面没有比5大的数,其逆序数为0; 1的前面比1大的数有3个,故逆序数为3;
分别用两种方法求排列16352487的逆序数.
思考题解答
解 用方法1 1 63 5 2 4 8 7 t 03121010 8
用方法2 由前向后求每个数的逆序数. t 0 0 1 1 3 2 0 1 8.
2 nn 1n 2321
解 n1
nn1n 2321 n 2
t n 1 n 2 2 1 nn 1,
2 当 n 4k ,4k 1时为偶排列;
从后面向前看大
当 n 4k 2,4k 3 时为奇排列.
3 2k 12k 122k 232k 3k 1k
从前面向前看大
解
2k 1 2k 1 2 2k 2 3 2k 3k 1 k
01 1 2 2
k
t 0 1 1 2 2 k 1 k 1 k
21 k 1k 1 k k 2,
于是排列32514的逆序数为 t 0 1 0 3 1 5.
例2 计算下列排列的逆序数,并讨论它们的奇 偶性.
1 7986354
解
217986354
0 10 0 1 3 4 4 5
t 5 4 4310010
18
此排列为偶排列.
i1 前面比i1 大的数码个数; i1 i 2 i n
向前看大 向后看小
③ i1 后面比i1 小的数码个数 i2 后面比i2 小的数码个数
in 后面比in 小的数码个数; i1 i 2 in
向后看小 向前看大
例1 求排列32514的逆序数.
解 在排列32514中, 3排在首位,逆序数为0; 2的前面比2大的数只有一个3,故逆序数为1; 5的前面没有比5大的数,其逆序数为0; 1的前面比1大的数有3个,故逆序数为3;
分别用两种方法求排列16352487的逆序数.
思考题解答
解 用方法1 1 63 5 2 4 8 7 t 03121010 8
用方法2 由前向后求每个数的逆序数. t 0 0 1 1 3 2 0 1 8.
2 nn 1n 2321
解 n1
nn1n 2321 n 2
t n 1 n 2 2 1 nn 1,
2 当 n 4k ,4k 1时为偶排列;
从后面向前看大
当 n 4k 2,4k 3 时为奇排列.
3 2k 12k 122k 232k 3k 1k
从前面向前看大
解
2k 1 2k 1 2 2k 2 3 2k 3k 1 k
01 1 2 2
k
t 0 1 1 2 2 k 1 k 1 k
21 k 1k 1 k k 2,
1.1逆序数和对换PPT课件
将相邻两个元素对调,叫做相邻对换.
例如
a1 al a bb b1 bm
a1 al bbaa b1 bm
a1ala b1bm b c1cn a1al b b1bm aa c1cn
对换与排列的奇偶性的关系
定理1 一个排列中的任意两个元素对换,排列 改变奇偶性. 证明 首先考虑相邻对换的情况。
设排列为
a1al abb b1bm 对换a与b a1al bbaa b1bm 除a ,b 外,其它元素的逆序数不改变.
例 计算下列排列的逆序数,并讨论它们的奇偶性.
nn 1n 2321
解
t 12
n
2 n 1
nห้องสมุดไป่ตู้
2
1 ,
当 n 4k,4k 1 时为偶排列;
当 n 4k 2,4k 3 时为奇排列.
1.1.2 排列的对换及其性质
定义 在排列中,将任意两个元素对调,其
余元素不动,这种作出新排列的手续叫做对 换.
变化次数, 而标准排列是偶排列(逆序数为0),因此 知推论成立.
m 1 次相邻对换 a1al bb b1bm aa c1cn
a1alab1bmbc1cn ,
2m 1次相邻对换 a1 al bb1 bmac1 cn ,
所以一个排列中的任意两个元素对换,排列改变 奇偶性.
推论 奇排列调成标准排列的对换次数为奇数, 偶排列调成标准排列的对换次数为偶数.
证明 由定理1知对换的次数就是排列奇偶性的
例如 排列32514
定义 一个排列中所有逆序的总数称为此排列的 逆序数.
问题 如何计算排列逆序数?
例如 排列32514 的逆序数是多少? 设p1 p2 pn是元素为自然数1至n的一个排列,
1n阶行列式1
D=aijAij
证 先证i=1,j=1的情形
返回
上一页 下一页
对一般情形,只要适当交换D的行与列的位置,即 可得到结论。
返回
上一页 下一页
定理3 行列式等于它的任一行(列)的各元素 与其对应的代数余子式乘积之和,即
证
返回
上一页 下一页
返回
上一页 下一页
例 计算行列式 解 由定理3 知
注:运用定理3可适当减轻行列式的运算。
返回
上一页 下一页
说明: 1) 等式右边的每一项都是n个元素的乘 积,这n个元素均位于不同的行和不同的列。
2) 各项的正负号与列标排列有关,偶 排列为正,奇排列为负。
3) 因为1,2,…n的排列有n!个,故等式
右边共有n!项。
返回
上一页 下一页
例 计算4阶行列式
解: 根据定义,D是4!=24项的代数和,但每一
对于D中任一项 其中I为排列 在D1中必有对应一项
的逆序数
其中I1为排列 与
的逆序数 只经过一次对换
返回
上一页 下一页
所以对于D中任一项,D1中必定有一项与它的 符号相反而绝对值相等,又D与D1的项数相同。
交换行列式i,j两行记作r(i,j),交换行列式 i,j两列,记作c(i,j)。
推论 若行列式有两行(列)元素对应相等, 则行列式为零。
返回
上一页 下一页
性质6 把行列式某一行(列)的元素乘以数k,加 到另一行(列)对应的元素上去,行列式的值不变。
以数k乘以第i行(列)上的元素加到第j行(列)对应元 素上,记作r(j+i(k)),[ c(j+i(k)],有
返回
上一页 下一页
总结:三种行列式变换 1 互换两行或两列
证 先证i=1,j=1的情形
返回
上一页 下一页
对一般情形,只要适当交换D的行与列的位置,即 可得到结论。
返回
上一页 下一页
定理3 行列式等于它的任一行(列)的各元素 与其对应的代数余子式乘积之和,即
证
返回
上一页 下一页
返回
上一页 下一页
例 计算行列式 解 由定理3 知
注:运用定理3可适当减轻行列式的运算。
返回
上一页 下一页
说明: 1) 等式右边的每一项都是n个元素的乘 积,这n个元素均位于不同的行和不同的列。
2) 各项的正负号与列标排列有关,偶 排列为正,奇排列为负。
3) 因为1,2,…n的排列有n!个,故等式
右边共有n!项。
返回
上一页 下一页
例 计算4阶行列式
解: 根据定义,D是4!=24项的代数和,但每一
对于D中任一项 其中I为排列 在D1中必有对应一项
的逆序数
其中I1为排列 与
的逆序数 只经过一次对换
返回
上一页 下一页
所以对于D中任一项,D1中必定有一项与它的 符号相反而绝对值相等,又D与D1的项数相同。
交换行列式i,j两行记作r(i,j),交换行列式 i,j两列,记作c(i,j)。
推论 若行列式有两行(列)元素对应相等, 则行列式为零。
返回
上一页 下一页
性质6 把行列式某一行(列)的元素乘以数k,加 到另一行(列)对应的元素上去,行列式的值不变。
以数k乘以第i行(列)上的元素加到第j行(列)对应元 素上,记作r(j+i(k)),[ c(j+i(k)],有
返回
上一页 下一页
总结:三种行列式变换 1 互换两行或两列
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
逆序 例 312 逆序 此排列的逆序数为1+1=2.
定义:逆序数为奇数的排列叫做奇排列, 逆序数为偶数的排列叫做偶排列.
§2
全排列及其逆序数
计算排列逆序数的方法
分别计算出排列中每个元素前面比它大的数
码个数之和,即算出排列中每个元素的逆序数,这
每个元素的逆序数之总和即为所求排列的逆序数.
§2
全排列及其逆序数
§2
全排列及其逆序数
定义:对于n个不同的元素,规定各元素之间有一个标准次 序(通常规定由小到大为标准次序).
例 123 是元素1,2,3的标准次序
定义: 在这n个元素的任一排列中,当某两个元素的先后次 序与标准次序不同时就说有1个逆序. 逆序 逆序 例 132 213
§2
全排列及其逆序数
定义: 一个排列中所有逆序的总数称为这个排列的逆序数.
§2
全排列及其逆序数
主要内容:
一、全排列
二、排列的逆序数
考察的对象称为元素.例如:数字1,2,3.
定义:把n个不同的元素排成一列,叫做这n个元素的全 排列(简称排列). n个元素的所有排列的种数用Pn表示.
例 123,321,132,312,213,231都是元素1,2,3的排列, P3=3×2 ×1 = 6. 由上例可推知Pn= n!
例 求排列3241的逆序数 解: 3排在首位,逆序数为0; 2的前面比2大的数有一个数3,故逆序为1; 4是最大数,逆序为0; 1的前面比1大的数有3个数3、2、4,故逆序数为3.
于是,这个排列的逆序数为t=0+1+0+3=4,
排列3241为偶排列.
§2
总结
全排列及其逆序数
1.n个不同的元素的所有排列种数为n!. 2.排列具有奇偶性. 3.计算排列逆序数常用的方法有1种.