线性代数12_全排列及其逆序数
线性代数第一节排列及其逆序数
第一章行列式第一节 排列及其逆序数�引言�排列与逆序数一、引言我们在中学曾经学习过求解二元一次线性方程组⎩⎨⎧=+=+2221212111c x b x a c x b x a (1) 当两个方程的未知数系数不成比例,即 2121b b a a ≠时,我们有.b a b ac a c a x ,b a b ac b c b x 122112212122121121−−=−−=(2)为方便记忆,我们引入二阶行列式bc ad db ca −=(3)则(2)可以表示为.b a b ac a c a x ,b a b a b c b c x 221122112221122111==(4)即当(1)的系数行列式0b a b a 2211≠时, (1)的解可以用二阶行列式表示为(4)。
用高斯消元法,对三元一次线性方程组,333323213123232221211313212111⎪⎩⎪⎨⎧=++=++=++b x a x a x a b x a x a x a b x a x a x a (5)我们也可以得到类似的结果。
即如果引入三阶行列式,c c c c c c c c c c c c c c c c c c c c c c c c c c c 322311332112312213322113312312332211333231232221131211−−−++=(6)则当(5)的系数行列式0a a a a a a a a a D 333231232221131211≠=(7)时,方程组(5)的解可以用三阶行列式表示为.a a a a a a a a a b a a b a a b a a x ,a a a a a a a a a a b a a b a a b a x ,a a a a a a a a a a a b a a b a a b x 333231232221131211332312222111211333323123222113121133331232211311123332312322211312113332323222131211===(8)对于n 元一次方程组,是否也有类似于上述(4)、(8)的结果呢?这就是本章要回答的问题。
全排列及其逆序数
全排列及其逆序数
全排列是指对给定的一组不同的元素,按照一定的顺序进行排列,形成所有可能的排列方式。
例如,对于3个元素a、b、c
来说,它们的全排列为6种:abc、acb、bac、bca、cab、cba。
在全排列中,逆序数是指排列中相邻两个元素逆序出现的次数。
例如,对于排列abc,其中包含两个逆序对,即bc和ac。
逆
序数越多,说明排列越混乱或越逆序。
逆序数在数学上有广泛的应用,例如在计算逆序对问题、计算排列的偏序关系等方面都有用到。
在计算逆序数时,常采用归并排序的思想,即将排列拆分成子序列,分别计算子序列的逆序数,再合并子序列的结果。
1-2全排列及逆序数
n 个不同的元素的所有排列的种数,通常 个不同的元素的所有排列的种数,
用 P 表示 n表示. 由引例 P3 = 3 2 1 = 6. 同理
Pn = n ( n 1) ( n 2) L 3 2 1 = n!.
机动 目录 上页 下页 返回 结束
第一章 行列式
排列的逆序数 我们规定各元素之间有一个标准次序, 我们规定各元素之间有一个标准次序 n 个 不同的自然数,规定由小到大为标准次序 标准次序. 不同的自然数,规定由小到大为标准次序 定义 在一个排列 (i1 i 2 L i t L i s L i n ) 中,若数 it > i s 则称这两个数组成一个逆序 则称这两个数组成一个逆序.
t = ( n 1) + ( n 2 ) + L + 2 + 1
时为奇排列. 当 n = 4k + 2,4k + 3 时为奇排列
机动 目录 上页 下页 返回 结束
第一章 行列式
(3) (2k )1(2k 1)2(2k 2)3(2k 3 )L(k + 1)k
解
(2k ) 1 (2k 1) 2 (2k 2) 3 (2k 3)L(k + 1) k
t = 0 + 1 + 0 + 3 + 1 = 5.
机动 目录 上页 下页 返回 结束
第一章 行列式
计算下列排列的逆序数, 例2 计算下列排列的逆序数,并讨论它们的奇 偶性. 偶性
(1) 217986354
解
2 1 7 9 8 6 3 5 4
0 10 0 1 3 4 4 5
t = 5 + 4 + 4+ 3+1+ 0+ 0+1+ 0
线性代数全排列及其逆序
逆序
定义: 一个排列中所有逆序的总数称为此排列的 逆序数.
例如: 排列32514 中, 0 0
1
3 2 5 1 4
1 逆序数为3
故此排列的逆序数为: 3+1+0+1+0 = 0+1+0+3+1 = 5. 逆序数为奇数的排列称为奇排列; 逆序数为偶数的排列称为偶排列. 计算排列逆序数的方法 方法1: 分别计算出排在1,2, ·, n 前面比它大的数 · · 码的个数并求和, 即先分别算出 1,2, ·, n 这 n 个元素 · · 的逆序数, 则所有元素的逆序数的总和即为所求排列 的逆序数.
§1.2 全排列及其逆序数 一、全排列
引例: 用1, 2, 3三个数字, 可以组成多少个没有重 复数字的三位数? 这是一个大家熟知的问题, 答案是: 3! = 6. 将此问题推广: 把n个不同的元素按先后次序排成 一列, 共有多少种不同的排法. 定义: 把 n 个不同的元素排成一列, 叫做这 n 个 元素的全排列(或排列). n 个不同的元素的所有排列的种数, 通常用 Pn 表 示, 称为排列数. Pn = n (n–1) (n–2) · 2 1 = n! · ·
三、小结
1. n个不同的元素的所有排பைடு நூலகம்种数为n!个; 2. 排列具有奇偶性; 3. 计算排列逆序数常用的方法有两种.
例2: 计算下列排列的逆序数, 并讨论其奇偶性. (1) 217986354. 解: 2 1 7 9 8 6 3 5 4 0 1 001 34 4 5 于是排列217986354的逆序数为: t = 0+1+0+0+1+3+4+4+5 = 18. 此排列为偶排列. (2) n(n–1)(n–2) · 21 · · · · 解: n (n–1) (n–2) · 2 1 2 (n–2) (n–1) 0 1 于是排列n(n–1)(n–2) · 21的逆序数为: · · nn 1 , t = 0+1+2+ · +(n–2)+(n–1) · · 2
线性代数 1.1 全排列及其逆序数
三、排列的奇偶性
逆序数为奇数的排列称为奇排列; 逆序数为偶数的排列称为偶排列. 定义 把排列中两个元素位置进行对调, 称为对排列作一次对换。 定理:对换改变排列的奇偶性. 证明:先证明是相邻对换的情况,再证非 相邻对换的情况。 推论 将奇(偶)排列变成标准排列需用奇(偶)数 次对换。
第一章
行列式
§1.1 全排列及其对换
一、全排列的定义 n 个不同的元素排成一列,叫做这 n
个元素的全排列,简称排列。 例 123456 是 6 个数的全排列, 53421 是 5 个数的全排列。
二排列的逆序数
对于n 个不同的元素,规定各元素之间由小 到大为标准次序. 定义 当某两个元素的先后次序与标准次序不同 时,就说有一个逆序,一个排列中所有逆序的总 数叫做这个排列的逆序数。 求逆序数的方法: t ( p1 p2 pn ) t1 t2 tn 其中 ti 是排列中与元素 pi 相关的逆序数,即位于 pi前且比 pi 大的的元素个数。
例 (1) 求排列3412中逆序数 .
2 nn 1n 2 321
(1) t (3412) 0 0 2 2 4; 解:
(2) t (n n 1 n 2 321) 0 1 2 (n 1) 1 n(n 1) 2
线性代数-全排列及其逆序数
引例 用1、2、3三个数字,可以组成多少个没 有重复数字的三位数?
解
123
百位 1 十位 1 2 个位 1 2 3
2
3
3种放法
13
2种放法 1种放法
共有 3 2 1 6 种放法.
问题 把 n 个不同的元素排成一列,共有多少种不同的 排法?
定义 把 n 个不同的元素排成一列,叫做这 n 个元素 的全排列. n 个不同元素的所有排列的种数,通常用 Pn 表示.
t(32514) 0 1 0 3 1 5
练习: 求排列 453162 的逆序数.
解: t 9
并规定由小到大为标准次序.
先看有多少个比 p1 大的数排在 p1 前面,记为 t1 ; 再看有多少个比 p2大的数排在 p2前面,记为 t2 ;
……
最后看有多少个比 pn大的数排在 pn前面,记为 tn;
则此排列的逆序数为 t t1 t2 tn
例1: 解:
求排列 32514 的逆序数.
对于n 个不同的元素,可规定各元素之间的标准次序. n 个不同的自然数,规定从小到大为标准次序.
定义 当某两个元素的先后次序与标准次序不同时, 就称这两个元素组成一个逆序.
例如 在排列32514中, 逆序
32514 逆序 逆序 思考题:还能找到其它逆序吗? 答:2和1,3和1也构成逆序.
定义 排列中所有逆序的总数称为此排列的逆序数.
显然 Pn n (n 1) (n 2) 3 2 1 n!
即n 个不同的元素一共有n! 种不同的排法.
Hale Waihona Puke 3个不同的元素一共有3! =6种不同的排法
123,132,213,231,312,321
线性代数1-2
al a bb1
bm
对换 a 与 b
a1
al b ab1
bm
除a,b外,其它元素的逆序数不改变. 逆序数加1或减1,奇偶性改变.
2)
一般情形
对换a与b
a1 al a b1 bm b b c1 cn
a1 al ab1 bm bc1 cn
a1
al bb1
bm ac1
cn ,
m 次相邻对换 a 1
若将t 个偶排列的前两个数对换, 则这t 个偶排列 全变成奇排列,并且它们彼此不同,于是有 t s . 故必有 s t .
本节小结
1. n元排列 2. 逆序 3. 逆序数 4. 奇偶排列 5. 对换 结论1 任一排列经过一次对换奇偶性改变. 结论2 全部n元排列中,奇偶排列各占一半.
t 18
例2 讨论排列 n n 1 n 2 解
nn 1n 2321
n1 n2
321的奇偶性.
t n 1 n 2 2 1 n n 1 , 2 当n 4k ,4k 1 时为偶排列;
当n 4k 2,4k 3 时为奇排列.
例3 选择i和j,使1i25j4869成为奇排列、偶排列.
1
4.对换
n元排列中, 任意对调两个元素的位置,其余元素 不动,这种变换叫做对换.
奇 偶
25143
偶
25413
奇
这些排列的
奇偶性呢?
2 1 6 排列经过一次对换必改变奇偶性. 证明 1) 特殊情形:相邻对换 设排列为 a1
2.逆序
n元排列中,若较大的元素排在较小的元素 前面,称为一个逆序. 比如 3 2 5 1 4
3.逆序数
排列中所有逆序的总数称为此排列的逆序数.
线性代数知识点总结
线性代数知识点总结线性代数知识点总结第一章 行列式第一节:二阶与三阶行列式把表达式11221221aa a a -称为11122122a a a a 所确定的二阶行列式,并记作11122112aa aa ,即1112112212212122.a a D a a a a a a ==-结果为一个数。
(课本P1)同理,把表达式112233122331132132112332122133132231,a a a a a a a a a a a a a a a a a a ++---称为由数表111213212223313233a a a a a a a a a 所确定的三阶行列式,记作111213212223313233a a a aa a a a a 。
即111213212223313233a a a aa a a a a =112233122331132132112332122133132231,aa a a a a a a a a a a a a a a a a ++---二三阶行列式的计算:对角线法则(课本P2,P3)注意:对角线法则只适用于二阶及三阶行列式的计算。
利用行列式计算二元方程组和三元方程组:对二元方程组11112212112222ax a x b ax a x b +=⎧⎨+=⎩设11122122a a D a a =≠1121222b a D b a =1112212.a b D a b =则1122221111122122b a b a D xa a Da a ==,1112122211122122.a b a b D x a a Da a ==(课本P2)对三元方程组111122133121122223323113223333a x a x a xb a x a x a x b a x a x a x b ++=⎧⎪++=⎨⎪++=⎩,设1112132122233132330a a a D aa a a a a =≠,1121312222333233b a a D b a a b a a =,1111322122331333a b a Da b a a b a =,1112132122231323a ab Da ab a a b =,则11D x D=,22D xD=,33D xD=。
线性代数1.2全排列与逆序数
的奇偶性, .
而标准排列是
0 ),因此知推论成立
推论2:n元排列中(n>1,n!个排列)奇排列偶排列 各占一半。
计算排列的逆序数的方
法 :
设 p 1 p 2 p n 为 n 个自然数的一个排列,
考虑元素 p i ( i 1、、 n ), 2 p i 前面的元素有 t i 个,
如果比 p i大的且排在
就是说 pi 这个元素的逆序数为t i .
全体元素的逆序数 即是这个排列的逆序数 之和 . t t1 t 2 t n
n 个不同元素的所有排列
的种数,通常用
Pn 表示 .
Pn n ( n 1) 3 2 1 n!
例1 求排列32514的逆序数. 解 在排列32514中, 3排在首位,逆序数为 0; 2前面比2大的数有一个(3),故逆序数为1; 5是最大数,逆序数为 0; 1前面比1大的数有三个(3、2、5),故逆序数为3; 4前面比4大的数有一个(5),故逆序数为1; 于是这个排列的逆序数为 ( 32514 ) 0 1 0 3 1 5 .
解
n 1 n ( n 1 )( n 2 ) 321 n 2
t ( n 1) ( n 2 ) 2 1
n( n 1) 2
,
当 n 4k ,
4 k 1时为偶排列,
4 k 3时为奇排列 .
ti ,
i1
n
例2 计算下列排列的逆序数,并讨论它们的 奇偶性.
(1 ) 217986354 ;
解
2 1 7 9 8 6 3 5 4
0 1 0 0 1 3 4 4 5
t ( 217986354 )
线性代数 课件
例5 写出四阶行列式中含有因子 a11a23 的项。
解: 1) (13 pq ) a11a23a3 p a4 q , pq为24的全排列 ( 所以: 1) (1324) a11a23a32 a44 a11a23a32 a44 ( ( 1) (1342) a11a23a34 a42 a11a23a34 a42 例6 若 a13a2i a32 a4 k , a11a22 a3i a4 k , ai 2 a31a43ak 4 为四阶行列式的项,试确定i与k,使前两项带正号, 后一项带负号。
n(n 1) ( p1 p2 ... pn ) ( pn pn1... p1 ) C 2 n(n 1) ( pn pn1... p1 ) k 2
2 n
例4 求排列(2k ) k 1)2(2k 2)...( k 1) k 1(2 的逆序数, 并讨论奇偶性。 解:2k 的逆序数为 2k 1 ; 的逆序数为 0 1 (2k 1) 的逆序数为 2k 3 ; 的逆序数为0 2 (2k 2) 的逆序数为 2k 5 ; 的逆序数为0 3 ............ (k 1) 的逆序数为 1 ;k的逆序数为0
( p1 p2 ... pn ) (n, n 1,..., 2,1)
1 2 ... ( n 2) ( n 1)
n
0 0 12 ...n ...
n (n 1) 2
1
0 (1) ... 0
n ( n 1) 2
12 ...n
2.三角行列式 1) 下三角行列式 a11 a21 ... an1 2) 上三角行列式 a11 0 ... 0
自然数的一个排列,考虑元素 pi(i=1,2,…n),如 果比 pi大的且排在 pi 前面的元素有τi个,就说
§2 全排列及其逆序数
例如 排列32514 中, 排列
3 2 5 1 4
逆序 逆序
2. 一个排列中所有逆序的总数称为此排列的逆序数. 一个排列中所有逆序的总数称为此排列的逆序数 逆序数. 例如: 其逆序数为5. 例如 排列 32514 , 其逆序数为 其逆序数为4. 排列 31524 , 其逆序数为 3. 排列的奇偶性 逆序数为奇数的排列称为奇排列 逆序数为奇数的排列称为奇排列; 奇排列 逆序数为偶数的排列称为偶排列 逆序数为偶数的排列称为偶排列. 偶排列
4.计算排列逆序数的方法 计算排列逆序数的方法 设排列为 p1 p2 L pn , t i 为 pi 构成的逆序数 则其逆序数为 t = t ( p1 p2 L pn ) = t1 + t 2 + Lt n−1 计算下列排列的逆序数,并讨论它们的奇偶性 并讨论它们的奇偶性. 例 计算下列排列的逆序数,并讨论它们的奇偶性.
二、排列的逆序数
规定各元素之间有一个标准次序, 规定各元素之间有一个标准次序 n 个不同的自 然数, 规定由小到大为标准次序 标准次序. 然数 …pt…ps…pn中, 若数 pt >ps, 则称这两个数组成一个逆序 逆序. 则称这两个数组成一个逆序 (即:大的数在小的数左边, 则这两数构成一个逆序) 即 大的数在小的数左边 则这两数构成一个逆序)
(1) 217986354 ( 2) n( n − 1)( n − 2)L 321
四、小结
1. n个不同的元素的所有排列总数为 个不同的元素的所有排列总数为n!. 个不同的元素的所有排列总数为 2. 排列具有奇偶性 排列具有奇偶性. 3. 计算排列逆序数. 计算排列逆序数
§2 全排列及其逆序数
一、全排列 二、排列逆序数 三、小结
全排列及其逆序数
标准排列 在n个自然数的全排列中排列123 ⋅ ⋅ ⋅ n称为标准排列. 逆序与逆序数 在一个排列中, 如果某两个元素的先后次序与标准排列 的次序不同, 就说有1个逆序. 一个排列中所有逆序的总数叫做这个排列的逆序数.
提示: 以下我们只讨论n个自然数的全排列.
下页
标准排列 在n个自然数的全排列中排列123 ⋅ ⋅ ⋅ n称为标准排列. 逆序与逆序数 在一个排列中, 如果某两个元素的先后次序与标准排列 的次序不同, 就说有1个逆序. 一个排列中所有逆序的总数叫做这个排列的逆序数. 逆序数的计算 在排列p1p2⋅ ⋅ ⋅pn中, 如果pi的前面有ti个大于pi的数, 就说 元素pi的逆序数是ti. 排列的逆序数为t=t1+t2+ ⋅ ⋅ ⋅ +tn. 举例: 在排列32514中, t1=0, t2=1, t3=0, t4=3, t5=1. 排列32514的逆序数为t=0+1+0+3+1=5. 标准排列12345的逆序数是多少字, 可以组成多少个没有重复数 字的三位数? 解 采用先选定百位数, 再选定十位数, 最后选定个位数 的步骤. 百位数有3种选法, 十位数有2种选法, 个位数有1种选法. 因为3×2×1=6, 所以可以组成6个没有重复数字的三位数. 这6个三位数是 123, 132, 213, 231, 312, 321.
下页
标准排列 在n个自然数的全排列中排列123 ⋅ ⋅ ⋅ n称为标准排列. 逆序与逆序数 在一个排列中, 如果某两个元素的先后次序与标准排列 的次序不同, 就说有1个逆序. 一个排列中所有逆序的总数叫做这个排列的逆序数. 奇排列与偶排列 逆序数为奇数的排列叫做奇排列, 逆序数为偶数的排列 叫做偶排列. 举例: 排列32514的逆序数是5, 它是奇排列. 标准排列12345的逆序数是0, 它是偶排列.
线性代数全排列与逆序数
一、全排列及其逆序数
定义 由n 个不同数码1,2,…,n 组成的有序数组 i1i2…in,称为一个全排列。 –例如, 1234及2341都是4级全排列, 25413是一
个5级全排列.
n个不同数码有n!种全排列。
定义 在一个全排列i1i2…in中,如果有较大的 数it排在较小的数is前面(is<it),则称it与is构成一 个逆序。一个全排列中逆序的总数, 称为它的逆 序数,记为
例 计算下列排列的逆序数,并讨论它们的奇 偶性.
1 217986354
解
217986354
0 10 0 1 3 4 4 5
t 5 4 4310010
18
此排列为偶排列.
2 nn 1n 2321
解 n1
nn1n 2321 n 2
因此对换相邻两个元素,排列改变奇偶性.
设排列为 a1 alab1 bmbc1 cn 现来对换 a 与b.
a1al a b1bm b c1cn
m 次相邻对换 a1 al ab b1 bmc1cn m 1 次相邻对换 a1al bb b1bm a c1cn
a1alab1bmbc1cn ,
21, 31 31, 32 21,31,32
逆序数 0 1 1 2 2 3
奇偶性 偶排列 奇排列 奇排列 偶排列 偶排列 奇排列
证 设在全部 n 阶排列中有 s 个奇排列, t 个偶 排列,现来证 s t .
将s 个奇排列的前两个数对换,则这 s个奇排 列全变成偶排列,并且它们彼此不同,所以 s t.
方法2
分别计算出排列中每个元素前面比它大的数码 个数之和,即算出排列中每个元素的逆序数, 这每个元素的逆序数之总和即为所求排列的逆 序数.
线性代数知识点总结-最新
线性代数⼀、⾏列式1. ⼆阶与三阶⾏列式对⼆元线性⽅程组有⼆阶段⾏列式若记则对个数组成的⾏列的数表有三阶⾏列式2.全排列和对换排列全排列:把个不同的元素排成⼀列,叫做这个元素的全排列排列。
逆序:对于个不同的元素先规定⼀个元素之间的标准次序在这个元素的任⼀排列中当某⼀对元素的先后顺序与标准次序不同时就说它构成⼀个逆序。
逆序数:⼀个排列中所有逆序的总数。
奇排列:逆序数为技术的排列偶排列:逆序数为偶数的排列排列的逆序数:对换:将排列中的任意两个元素对调,其余的元素不动的过程。
相邻对换:将相邻两个元素进⾏的对换。
定理:⼀个排列中的任意两个元素对换,排列改变奇偶性。
推论奇排列对换成标准排列的对换次数为奇数,偶数列对换成标准数列的对换次数为偶数。
3.n阶⾏列式对个数组成的⾏列的数表有阶⾏列式,记作4.⾏列式的性质⾏列⾏列式称为的转置⾏列式性质:⾏列式与它的转置⾏列式相等性质:对换⾏列式的两⾏列,⾏列式变号推论:如果⾏列式有两⾏列完全相同,则此⾏列式等于零性质:⾏列式的某⼀⾏列中所有的元素都乘同⼀数,等于⽤数乘此⾏列式性质:⾏列式中如果有两⾏(列)元素成⽐例,则此⾏列式等于零性质:若⾏列式的某⼀⾏的元素都是两数之和,则⾏列式可拆分为两个⾏列式相加性质:把⾏列式的某⼀⾏的个元素乘同义数然后加到另⼀⾏列对应的元素上去,⾏列式不变。
5.⾏列式按⾏(列)展开在阶⾏列式中把元所在的第⾏和第列划去后在阶⾏列式中把元所在的第⾏和第列划去后留下来的阶⾏列式叫做元的余⼦式记作记叫做元的代数余⼦式引理⼀个阶⾏列式如果其中第⾏所有元素除元外都为零那么这⾏列式等于与它的代数余⼦式的乘积即定理按⾏列展开法则⾏列式等于它的任⼀⾏列的各元素与其对应的代数余⼦式乘积之和即或例如四阶⾏列式中元的余⼦式和代数余⼦式分别为⼆、矩阵2.1 线性⽅程组、矩阵、矩阵的运算当常数项不全为零时有元⾮齐次线性⽅程组含有个末知数个⽅程的元⾮齐次线性⽅程组:其中是第个⽅程的第个末知数的系数是第个⽅程的常数项当全为零时有元齐次线性⽅程组:元齐次线性⽅程组⼀定有零解不⼀定有⾮零解即⼀组不全为零的解2.1.1 矩阵1、矩阵介绍对由个数排成的⾏列的数表称为⾏列矩阵矩阵:数位于矩阵的第⾏第列称为矩阵的元2、矩阵的种类矩阵的种类:其中称为系数矩阵称为末知数矩阵称为常数项矩阵称为增⼴矩阵⾏矩阵⾏向量:列矩阵列向量:实矩阵元素是实数的矩阵复矩阵元素是复数的矩阵除特别说明外都指实矩阵阶矩阵阶⽅阵:⾏数与列数都等于的矩阵同型矩阵⾏数、列数都相等的两个矩阵相等矩阵如果与是同型矩阵并且它们的对应元素相等即那么就称矩阵与矩阵相等记作零矩阵元素都是零的矩阵注意不同型的零矩阵是不同的对⾓矩阵对⾓阵:从左上⾓到右下⾓的直线叫做对⾓线以外的元素都是的阶⽅阵:特别当有阶单位矩阵单位阵:单位阵的元为:当当2.1.2 矩阵的运算1、矩阵的加法矩阵的加法:设有两个矩阵和那么矩阵与的和记作规定为只有当两个矩阵是同型矩阵时才能进⾏加法运算矩阵加法满⾜下列运算规律设都是矩阵设矩阵记称为矩阵的负矩阵由此规定矩阵的减法为2、矩阵数乘数与矩阵的乘积记作或规定为:数乘矩阵满⾜下列运算规律设、为矩阵、为数3、矩阵相乘矩阵相乘:对矩阵矩阵有矩阵记为其中按此定义⼀个⾏矩阵与⼀个列矩阵的乘积是⼀个阶⽅阵也就是⼀个数由此表明乘积矩阵的元就是的第⾏与的第列的乘积如:4、转置矩阵矩阵称为的转置矩阵:例如转置矩阵的运算规律:对称矩阵对称阵:元素以对⾓线为对称轴对应相等的阶矩阵如果阶⽅阵满⾜:即则为对称矩阵⽅阵的⾏列式:⽅阵的⾏列式或:由阶⽅阵的元素所构成的⾏列式各元素的位置不变伴随矩阵:⾏列式的各个元素的代数余⼦式所构成的矩阵称为矩阵的伴随矩阵有:注:2.2 逆矩阵、克拉默法则、矩阵分块法2.2.1 逆矩阵1、逆矩阵的定义、性质和求法:逆矩阵的定义、性质和求法:逆矩阵的定义、性质和求法:对于阶矩阵如果有⼀个阶矩阵使则矩阵是可逆的的逆矩阵逆阵在矩阵的乘法中的作⽤与数类似如果矩阵是可逆的那么的逆矩阵是惟⼀的这是因为若、都是的逆矩阵则有所以的逆矩阵是惟⼀的定理若矩阵可逆,则定理若则矩阵可逆且其中为矩阵的伴随矩阵推论:若或,则故逆矩阵满⾜下述运算规律若可逆则亦可逆且若可逆数则可逆且若、为同阶矩阵且均可逆则亦可逆且2、逆矩阵的初步应⽤:逆矩阵的初步应⽤:设求矩阵使其满⾜解:若存在则⽤左乘上式右乘上式有即若⽽故知、都可逆且于是2.2.2 克拉默法则克拉默法则:含有个末知数的个线性⽅程的⽅程组:①它的解可以⽤阶⾏列式表⽰即有克拉默法则:如果线性⽅程组①的系数矩阵的⾏列式不等于零即:那么⽅程组①有惟⼀解其中是把系数矩阵中第列的元素⽤⽅程组右端的常数项代替后所得到的阶矩阵即2.2.3 分块矩阵1、分块矩阵分块矩阵:以⼦块为元素的形式上的矩阵将矩阵⽤若⼲条纵线和横线分成许多个⼩矩阵每⼀个⼩矩阵称为的⼦块例如将矩阵分成⼦块的分法很多下⾯举出三种分块形式,,分法可记为其中即为的⼦块⽽形式上成为以这些⼦块为元的分块矩阵2、分块矩阵的运算分块矩阵的运算与普通矩阵的运算相类似:分块矩阵的运算与普通矩阵的运算相类似:设矩阵与的⾏数相同、列数相同采⽤相同的分块法有:其中与的⾏数相同、列数相同那么:设为数那么:设为矩阵为矩阵分块成:其中的列数分别等于的⾏数那么:其中设则设为阶⽅阵若的分块矩阵只有在对⾓线上有⾮零⼦块其余⼦块都为零矩阵且在对⾓线上的⼦块都是⽅阵即其中都是⽅阵那么称为分块对⾓矩阵分块对⾓矩阵的⾏列式满⾜:由此性质可知若则并有:补充:。
线性代数(同济六版)知识点总结
0 a11a22...ann
副三角跟副对角相识
an1 an2 ... ann
对角行列式:
副对角行列式:
λ1 λ2
λ 1λ 2...λn
λn
6. 行列式的性质:
λ2
λ1
n ( n1 )
(1) 2 λ 1λ 2 λ n
λn
①行列式与它的转置行列式相等. (转置:行变列,列变行)。D =
②互换行列式的两行(列),行列式变号。
余子式:在 n 阶行列式中,把元素 aij 所在的第 i 行和第 j 列划去, 剩下的( n −1 )2 个元素按原来的排法构 成的 n − 1 阶行列式 叫做 aij 的余子式,记为 Mij
代数余子式:记 Aij = ( −1 ) i+j Mij 为元素 aij 的代数余子式 。 ②重要性质,定理
a11 a12 (b1 j c1 j ) a1n
a21 a22 (b2 j c2 j ) a2n
an1 an2 (bnj cnj ) ann
a11 a12 b1 j a1n a11 a12 c1 j a1n
a21
a22
b2 j
a2n
a21
a22
c2 j
a2n
(3) ( A)T AT ; (4) ( AB)T BT AT .
设 A 为 n 阶方阵,如果满足
,即
,则 A 为对称阵
如果满足
,即
,则 A 为反对称阵
4. 方阵的行列式:由 n 阶方阵的元素所构成的行列式,叫做方阵 A 的行列式,记作|A|或 det A.
性质:①| AT || A | ,②| A | n | A | ,③| AB || A || B | 。
1-2全排列及其逆系数
三、小结
1 n 个不同的元素的所有排列种数为 n !. 2 排列具有奇偶性. 3 计算排列逆序数常用的方法有2 种.
一、概念的引入
引例 用1、2、3三个数字,可以组成多少个没 有重复数字的三位数?
二、全排列及其逆序数
问题 把 n 个不同的元素排成一列
同的排法? ,共有几种不
定义 把 n 个不同的元素排成一列,叫做这 n 个 元素的全排列(或排列).
n 个不同的元素的所有排列的种数,通常
用 Pn表示.
Pn n ( n 1 ) ( n 2 ) 3 2 1 n !.
方法2 分别计算出排列中每个元素前面比它大的数码 个数之和,即算出排列中每个元素的逆序数, 这每个元素的逆序数之总和即为所求排列的逆 序数. 例1 求排列32514的逆序数.
排列32514的逆序数为
t 0 1 0 3 1 5.
例2 计算下列排列的逆序数,并讨论它们的奇 偶性.
排列的逆序数
我们规定各元素之间有一个标准次序, n 个 不同的自然数,规定由小到大为标准次序. 定义 在一个排列 i 1 i 2 i t i s i n 中,若数 i t i s 则称这两个数组成一个逆序.
定义 一个排列中所有逆序的总数称为此排列 的逆序数. 例如 排列32514 中, 故此排列的逆序数为 0 0 1 3+1+0+1+0=5. 3 2 5 1 4
1
解
217986354
2 1 7 9 8 6 3 5 4
0 1 0 0 1 3 4 4 5
t 5 4 4 31 0 01 0
18
此排列为偶排列.
2
解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排列的奇偶性
逆序数为奇数的排列称为 奇排列; 逆序数为偶数的排列称为 偶排列.
计算排列逆序数的方法
方法 1
分别计算出排在 1,2,? ,n ? 1,n 前面比它大的数 码之和即分别算出 1,2,? ,n ? 1,n 这 n个元素
的逆序数,这个元素的逆序数的总和即为所求 排列的逆序数 .
方法2 分别计算出排列中每个元素前面比它大的数码 个数之和,即算出排列中每个元素的逆序数, 这每个元素的逆序数之总和即为所求排列的逆 序数 .
? 解 ?2k ?1 ?2k ? 1?2 ?2k ? 2?3 ?2k ? 3?? ?k ? 1?k
?? ?
?
?
?
01 1 2 2
k
t ? 0 ? 1 ? 1 ? 2 ? 2 ? ? ? ?k ? 1源自? ?k ? 1?? k?
?2?1 ?
k
?
1??k
?
1??
?
k
?
k2,
2
当 k 为偶数时,排列为偶排列,
元素的全排列(或排列) .
n 个不同的元素的所有排列的种数,通常
用 Pn表示. 由引例 P3 ? 3 ?2 ?1 ? 6. 同理 Pn ? n ?(n ? 1) ?(n ? 2) ?? ?3 ?2 ?1 ? n!.
排列的逆序数
我们规定各元素之间有一个标准次序 , n 个 不同的自然数,规定由小到大为 标准次序 .
一、概念的引入
引例 用1、2、3三个数字,可以组成多少个没 有重复数字的三位数?
解
123
百位 1 十位 1 2 个位 1 2 3
2
3
3种放法
13
2种放法 1种放法
共有 3 ? 2 ? 1 ? 6 种放法.
二、全排列及其逆序数
问题 把 n 个不同的元素排成一列 ,共有几种不 同的排法?
定义 把 n 个不同的元素排成一列,叫做这 n 个
例1 求排列32514的逆序数. 解 在排列32514中,
3排在首位 ,逆序数为 0;
2的前面比 2大的数只有一个 3,故逆序数为 1;
5的前面没有比 5大的数,其逆序数为 0; 1的前面比 1大的数有3个,故逆序数为 3; 4的前面比 4大的数有1个,故逆序数为 1;
32514 01 031 于是排列 32514的逆序数为 t ? 0 ? 1 ? 0 ? 3 ? 1? 5.
当 k 为奇数时,排列为奇排列 .
三、小结
1 n 个不同的元素的所有排列种数为 n!. 2 排列具有奇偶性 . 3 计算排列逆序数常用的方法有 2 种.
思考题
分别用两种方法求排列 16352487的逆序数 .
例2 计算下列排列的逆序数,并讨论它们的奇 偶性 .
?1? 217986354
解
217986354
0 10 0 1 3 4 4 5
t ? 5 ? 4 ? 4? 3? 1? 0? 0? 1? 0
? 18
此排列为 偶排列.
?2? n?n ? 1??n ? 2?? 321
解 ?????n???1????
定义 在一个排列 ?i1i2 ? it ? is ? in ?中,若数
it ? is 则称这两个数组成一个逆序 .
例如 排列32514 中, 逆序
32514
逆序 逆序
定义 一个排列中所有逆序的总数称为此排列的 逆序数 . 例如 排列32514 中,
0 01
32514
1 逆序数为3
故此排列的逆序数为 3+1+0+1+0=5.
n??n???1????n ?? 2?????321
?n ? 2?
t ? ?n ? 1? ? ?n ? 2? ? ? ? 2 ? 1 ? n?n ? 1?,
2 当 n ? 4k ,4k ? 1 时为偶排列;
当 n ? 4k ? 2,4k ? 3 时为奇排列 .
?3? ?2k ?1?2k ? 1?2?2k ? 2?3?2k ? 3?? ?k ? 1?k