解析数列求和的基本方法和技巧

合集下载

(完整版)数列求和常见的7种方法

(完整版)数列求和常见的7种方法
解:由于 (找通项及特征)

= (分组求和)



[例16]已知数列{an}: 的值.
解:∵ (找通项及特征)
= (设制分组)
= (裂项)
∴ (分组、裂项求和)


提高练习:
1.已知数列 中, 是其前 项和,并且 ,
⑴设数列 ,求证:数列 是等比数列;
⑵设数列 ,求证:数列 是等差数列;
2.设二次方程 x - +1x+1=0(n∈N)有两根α和β,且满足6α-2αβ+6β=3.
∴ 原等式成立
答案:
六、分段求和法(合并法求和)
针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求Sn.
[例12]求cos1°+cos2°+cos3°+···+cos178°+cos179°的值.
解:设Sn=cos1°+cos2°+cos3°+···+cos178°+cos179°
∴ =
= =
∴当 ,即n=8时,
二、错位相减法求和
这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an·bn}的前n项和,其中{an}、{bn}分别是等差数列和等比数列.
[例3]求和: ………………………①
解:由题可知,{ }的通项是等差数列{2n-1}的通项与等比数列{ }的通项之积
…………..②(反序)
又因为
①+②得(反序相加)
=89
∴S=44.5
题1已知函数
(1)证明: ;
(2)求 的值.

数列求和的七种基本方法

数列求和的七种基本方法

数列求和的七种基本方法在数学中,数列是一系列按一定规律排列的数值,求和则是将数列中的所有数值相加的运算。

数列求和是数学中非常重要的一部分,它不仅在数学中具有广泛的应用,也在其他学科如物理学、经济学等中发挥着重要的作用。

在数列求和问题中,有许多种基本的方法可以帮助我们解决问题。

一、综合物理方法(高中物理方法):物理学中,我们经常遇到等差数列求和的问题,例如计算平均速度。

我们可以利用物理公式来求解数列的和。

假设一个运动物体在时间t内以a的加速度匀加速运动,初速度为v0,则末速度v= at + v0。

利用等差数列的思想,将时间划分为无穷小时间片段dt,则位移ds= (at + v0)dt。

将位移累加起来,即可得到整个时间段内的位移S。

我们可以通过对时间积分求和来解决这个问题。

二、找到规律在数列求和的问题中,我们常常需要根据数列的规律来进行求和。

数列的规律可以通过观察数列的前几项,并进行逻辑推理来得出。

有时,根据数列的规律,我们可以将数列拆分成若干个简单的数列,从而方便我们进行求和。

例如,对于等差数列an = a1 + (n-1)d,我们可以将其拆分为两个数列,一个是由首项、末项构成的数列(an = a1 + (n-1)d),另一个是由末项、首项构成的数列(a1 = an - (n-1)d)。

我们可以对这两个数列进行求和,然后将结果相加,即可得到等差数列的和。

同样地,对于等比数列an = a1 * q^(n-1),我们可以将其拆分为两个数列,一个是由首项、末项构成的数列(an = a1 * q^(n-1)),另一个是由末项、首项构成的数列(a1 = an / q^(n-1))。

我们可以对这两个数列进行求和,然后将结果相加,即可得到等比数列的和。

三、利用前缀和前缀和也叫做累加和,是指从数列的第一项开始,逐项进行求和,得到的数列。

求和前缀和的过程可以通过递推公式来表示。

对于一个数列{a1, a2, a3, ..., an},它的前缀和表示为{S1, S2, S3, ..., Sn},其中Si表示数列的前i项的和。

数列求和常见的7种方法

数列求和常见的7种方法

精心整理数列求和的基本方法和技巧一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和法, 1、2⎩3、)1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n[例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得n n x x x x S +⋅⋅⋅+++=32(利用常用公式)=x x x n--1)1(=211211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n,n ∈N *,求1)32()(++=n nS n S n f 的最大值.(利列.[例{1-n x }的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ②(设制错位)①-②得 n n n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+ [例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232nn前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项②122+-n n[例nn n n n(反序)又由m n n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ② ①+②得 n nn n n nn n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加)∴ n n n S 2)1(⋅+=[例6] 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..②得题1已知函数 (1)证明:;(2)求的值(2所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n(分组))13(nn -2)13(nn + [例k nk ∑=12)1(22+n (分组求和)=2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n[例[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴)111(82122+-=+⋅=n n n n b n(裂项)∴ 数列{b n }的前n 项和)]111()4131()3121(211[(8+-+⋅⋅⋅+-+-+-=n nS n (裂项求和)=)111(8+-n = 18+n n[例n tan (裂]}答案:针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.解:设S n = cos1°+ cos2°+ cos3°+···+ cos178°+ cos179° ∵)180cos(cos n n --=(找特殊性质项)∴S n = (cos1°+ cos179°)+( cos2°+ cos178°)+ (cos3°+ cos177°)+···+(cos89°+cos91°)+cos90°(合并求和)= 0[例2002a +(1+a [例14] 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.解:设1032313log log log a a a S n +⋅⋅⋅++= 由等比数列的性质q p n m a a a a q p n m =⇒+=+(找特殊性质项)和对数的运算性质 N M N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++= (合并求和)=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅ =9log 9log 9log 333+⋅⋅⋅++[例(找 (分=)91010(8111n n --+ [例16] 已知数列{a n }:∑∞=+-+++=11))(1(,)3)(1(8n n n n a a n n n a 求的值. 解:∵ )4)(2(1)3)(1(1)[1(8))(1(1++-+++=-++n n n n n a a n n n (找通项及特征)=])4)(3(1)4)(2(1[8+++++⋅n n n n(设制分组)=)4131(8)4121(4+-+++-+⋅n n n n (裂项)∴ ∑∑∑∞∞∞+-+-=-+111(8)11(4))(1(n n a a n (分组、裂项 1.是等比数列;2..3⑵设。

数列求和的常见方法

数列求和的常见方法

数列求和的常见方法数列求和是高中数学中重要的概念之一,常见的数列求和方法有多种,包括等差数列求和公式、等比数列求和公式、Telescoping Series(直线和数列)等。

在本文中,我将介绍这些常见的数列求和方法,并给出相应的例子以加深理解。

一、等差数列求和公式等差数列是指一个数列中每个数与它的前一个数的差都相等的数列。

数列求和公式是指利用数列的首项、末项和项数等信息,直接求得数列的和的公式。

等差数列的求和公式为:Sn = (a1 + an)n/2,其中Sn表示数列前n项和,a1表示首项,an表示末项,n表示项数。

例1:求等差数列1,4,7,...,97的和。

解:这是一个等差数列,首项a1 = 1,末项an = 97,项数n =(an - a1)/d + 1 = (97 - 1)/3 + 1 = 33、代入公式Sn = (a1 + an)n/2,得到S33 = (1 + 97)× 33/2 = 1617二、等比数列求和公式等比数列是指一个数列中每个数与它前一个数的比都相等的数列。

数列求和公式是指利用数列的首项、末项和项数等信息,直接求得数列的和的公式。

等比数列的求和公式为:Sn=a1×(1-q^n)/(1-q),其中Sn表示数列前n项和,a1表示首项,q表示公比。

例2:求等比数列2,4,8,...,1024的和。

解:这是一个等比数列,首项a1 = 2,末项an = 1024,q = an/a1= 1024/2 = 512、项数n = logq(an/a1) + 1 = log512((1024/2)/2) +1 = 10。

代入公式Sn = a1 ×(1 - q^n)/(1 - q),得到S10 =2 ×(1 - 512^10)/(1 - 512) = 2046三、Telescoping Series(直线和数列)Telescoping Series是一种特殊的数列,其中每个项都可以通过其前一项和下一项抵消,最终只剩下首项和末项。

高中数学数列求和题解题方法技巧

高中数学数列求和题解题方法技巧

高中数学数列求和题解题方法技巧数列求和的七种解法1.公式法:顾名思义就是通过等差、等比数列或者其他常见的数列的求和公式进行求解。

2.倒序相加:如果一个数列{an},与首末两端等“距离”的两项和相等或者等于同一个常数,则求该数列的前n项和即可用倒序相加法。

例如等差数列的求和公式,就可以用该方法进行证明。

3.错位相减:形如An=Bn∙Cn,其中{Bn}为等差数列,首项为b1,公差为d;{Cn}为等比数列,首项为c1,公比为q。

对数列{An}进行求和,首先列出Sn,记为①式;再把①式中所有项同乘等比数列{Cn}的公比q,即得q∙Sn,记为②式;然后①②两式错开一位作差,从而得到{An}的前n项和。

这种数列求和方式叫做错位相减。

4.裂项相消:把数列的每一项都拆成正负两项,使其正负抵消,只剩下首尾几项,再进行求和,这种数列求和方式叫做裂项相消。

5.分组求和:有一类数列,既不是等差,又不是等比,但若把这个数列适当的拆开,就会分成若个等差,等比或者其他常见数列(即可用倒序相加,错位相减或裂项相消求和的数列),然后分别求和,之后再进行合并即可算出原数列的前n项和。

6.周期数列:一般地,若数列{an}满足:存在一个最小的正整数T,使得an+T=an对于一切正整数n都成立,则数列{an}称为周期数列,其中T叫做数列{an}的周期,接下来根据数列的周期性进行求和。

7.数学归纳法:是一种重要的数学方法,其对求数列通项,求和的归纳猜想证明起到了关键作用。

高中数学解题方法实用技巧1解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。

具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。

②零点分段讨论法:适用于含一个字母的多个绝对值的情况。

③两边平方法:适用于两边非负的方程或不等式。

④几何意义法:适用于有明显几何意义的情况。

2因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。

数列求和的各种方法

数列求和的各种方法

数列求和的各种方法一、等差数列求和1.1 基本公式等差数列求和有个很实用的公式,那就是和等于首项加末项的和乘以项数再除以2。

这就像我们分东西,把一头一尾的数看成是两个特殊的家伙,把它们加起来然后乘以一共有多少个数,再平均一下就得到总和了。

比如说数列1,3,5,7,9,首项是1,末项是9,项数是5,按照公式来算就是(1 + 9)×5÷2 = 25。

这公式就像一把万能钥匙,很多等差数列求和的问题都能轻松搞定。

1.2 实际应用在生活里也有等差数列求和的影子。

就像我们堆木头,最底下一层有10根,往上每层少1根,一共堆了10层。

这就是个等差数列,首项10,末项1,项数10。

用求和公式一算,(10 + 1)×10÷2 = 55根,一下子就知道木头总数了。

这就叫学以致用嘛。

二、等比数列求和2.1 公式及推导等比数列求和公式稍微复杂一点。

当公比不等于1的时候,和等于首项乘以1减去公比的n次方的差,再除以1减去公比。

这公式怎么来的呢?咱可以想象把等比数列的和乘以公比,然后和原来的和相减,就像玩消消乐一样,很多项就消掉了,最后就得到这个公式。

比如说等比数列2,4,8,16,首项2,公比2,项数4,按照公式算就是2×(1 2⁴)÷(1 2)=30。

2.2 特殊情况当公比等于1的时候就简单多啦,那就是首项乘以项数。

这就像大家都长得一样,直接数个数乘以每个的大小就成。

2.3 经济中的应用等比数列求和在经济领域也有用处。

比如银行利息按复利计算,本金1000元,年利率5%,存3年。

每年的本利和就是个等比数列,首项1000,公比1.05。

用等比数列求和公式就能算出3年后的本利和,这可关系到咱的钱袋子呢。

三、分组求和法3.1 适用情况有些数列看起来乱七八糟的,既不是等差数列也不是等比数列,但是可以把它的项分成几组,每组分别是我们熟悉的数列。

这就好比把一群混杂的小动物按照种类分开,然后分别计算。

高中数学 数列求和常见的7种方法

高中数学  数列求和常见的7种方法

数列求和的基本方法和技巧一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法(合并法求和) 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。

数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n --1)1(=211)211(21--n =1-n 21 资料来源QQ 群697373867 关注微信公众号:高中“数学教研室”回复任意内容获取资料 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………① 14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n n n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加) ∴ nn n S 2)1(⋅+=资料来源QQ 群697373867 关注微信公众号:高中“数学教研室”回复任意内容获取资料[例6] 求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5题1 已知函数(1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n [例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和) =)111(8+-n =18+n n[例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+ (裂项) ∴ 89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2 ∴ 原等式成立答案:六、分段求和法(合并法求和)针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.解:设S n = cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°∵ )180cos(cosn n --= (找特殊性质项)∴S n = (cos1°+ cos179°)+( cos2°+ cos178°)+ (cos3°+ cos177°)+···+(cos89°+ cos91°)+ cos90° (合并求和)= 0[例13] 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.解:设S 2002=2002321a a a a +⋅⋅⋅+++由n n n a a a a a a -====++12321,2,3,1可得,2,3,1654-=-=-=a a a,2,3,1,2,3,1121110987-=-=-====a a a a a a……2,3,1,2,3,1665646362616-=-=-====++++++k k k k k k a a a a a a∵ 0665646362616=+++++++++++k k k k k k a a a a a a (找特殊性质项) ∴ S 2002=2002321a a a a +⋅⋅⋅+++ (合并求和) =)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a2002200120001999199819941993)(a a a a a a a +++++⋅⋅⋅+++⋅⋅⋅+=2002200120001999a a a a +++ =46362616+++++++k k k k a a a a =5[例14] 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列的性质 q p n m a a a a q p n m =⇒+=+ (找特殊性质项) 和对数的运算性质 N M N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++= (合并求和)=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅=9log 9log 9log 333+⋅⋅⋅++ =10七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法.[例15] 求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和. 解:由于)110(91999991111111-=⋅⋅⋅⨯=⋅⋅⋅k k k个个 (找通项及特征) ∴ 11111111111个n ⋅⋅⋅+⋅⋅⋅+++ =)110(91)110(91)110(91)110(91321-+⋅⋅⋅+-+-+-n (分组求和) =)1111(91)10101010(911321 个n n +⋅⋅⋅+++-+⋅⋅⋅+++ =9110)110(1091nn ---⋅=)91010(8111n n --+资料来源QQ 群697373867 关注微信公众号:高中“数学教研室”回复任意内容获取资料[例16] 已知数列{a n }:∑∞=+-+++=11))(1(,)3)(1(8n n n n a a n n n a 求的值. 解:∵ ])4)(2(1)3)(1(1)[1(8))(1(1++-+++=-++n n n n n a a n n n (找通项及特征)=])4)(3(1)4)(2(1[8+++++⋅n n n n (设制分组)=)4131(8)4121(4+-+++-+⋅n n n n (裂项)∴ ∑∑∑∞=∞=∞=++-+++-+=-+1111)4131(8)4121(4))(1(n n n n n n n n n a a n (分组、裂项求和)=418)4131(4⋅++⋅ =313提高练习:1.已知数列{}n a 中,n S 是其前n 项和,并且1142(1,2,),1n n S a n a +=+==,⑴设数列),2,1(21 =-=+n a a b n n n ,求证:数列{}n b 是等比数列; ⑵设数列),2,1(,2 ==n a c nnn ,求证:数列{}n c 是等差数列;2.设二次方程n a x 2-n a +1x +1=0(n ∈N)有两根α和β,且满足6α-2αβ+6β=3.(1)试用n a 表示a 1n +;3.数列{}n a 中,2,841==a a 且满足n n n a a a -=++122 *N n ∈⑴求数列{}n a 的通项公式;⑵设||||||21n n a a a S +++= ,求n S ;。

数列求和公式方法总结

数列求和公式方法总结

数列求和公式方法总结数列是数学中一个重要的概念,它是由一系列按照一定规律排列的数构成的序列。

在数列中,求和是一个常见的问题,而求和公式和方法则是解决这一问题的关键。

本文将对数列求和的常见公式和方法进行总结,希望能够帮助读者更好地理解和掌握数列求和的技巧。

一、等差数列求和公式。

等差数列是指数列中相邻两项之差都相等的数列,常用的求和公式有以下两种:1. 等差数列的前n项和公式,Sn = (a1 + an) n / 2,其中a1为首项,an为末项,n为项数。

2. 等差数列的通项公式,an = a1 + (n-1) d,其中an为第n项,a1为首项,d为公差。

二、等比数列求和公式。

等比数列是指数列中相邻两项的比值都相等的数列,常用的求和公式有以下两种:1. 等比数列的前n项和公式,Sn = a1 (1 q^n) / (1 q),其中a1为首项,q为公比,n为项数。

2. 等比数列的通项公式,an = a1 q^(n-1),其中an为第n项,a1为首项,q为公比。

三、其他常见数列求和公式。

除了等差数列和等比数列外,还有一些其他常见的数列求和公式,如:1. 平方和公式,1^2 + 2^2 + 3^2 + ... + n^2 = n (n + 1) (2n + 1) / 6。

2. 立方和公式,1^3 + 2^3 + 3^3 + ... + n^3 = (n (n + 1) / 2)^2。

3. 斐波那契数列求和公式,F(n) = F(n+2) 1,其中F(n)为斐波那契数列的前n项和。

四、数列求和的常用方法。

除了利用求和公式外,还有一些常用的方法可以帮助我们求解数列的和,如:1. 数学归纳法,通过证明首项成立,然后假设第k项成立,推导出第k+1项也成立,从而得出结论。

2. Telescoping series,利用数列中相邻项之间的关系,将求和式中的部分项相互抵消,从而简化求和过程。

3. 倒序相消法,将数列按照相反的顺序排列,然后与原数列相加,利用相邻项之间的关系进行相消,从而简化求和过程。

详解数列求和的方法+典型例题.docx

详解数列求和的方法+典型例题.docx

详解数列求和的常用方法数列求和是数列的重要内容之一, 除了等差数列和等比数列有求和公式外, 大部分数列的求和都需要一定的技巧。

第一类:公式法利用下列常用求和公式求和是数列求和的最基本最重要的方法。

1、等差数列的前 n 项和公式n( a 1 a n )na 1n(n1)d S n222、等比数列的前 n 项和公式na 1 (q 1)Sna 1 (1 q n ) a 1a n q (q 1)1 q1 q3、常用几个数列的求和公式n1n(n 1)( 1)、 S nk 1 2 3nk 12n222221 (1)(21)( 2)、 S nk 1 2 3 n nn nk 16nk 313 23 33n 3 [ 1n(n 1)] 2( 3)、 S nk 12第二类:乘公比错项相减(等差等比)这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{ a n b n } 的前 n 项和,其中 { a n } , { b n } 分别是等差数列和等比数列。

例 1:求数列 { nq n 1 } ( q 为常数 ) 的前 n 项和。

解:Ⅰ、若 q =0, 则 S n =0Ⅱ、若q =1 ,则1 ( 1)12 3nn nS nⅢ、若 q ≠ 0 且 q ≠ 1,2则 S n1 2q 3q 2nq n 1①qS n q2q 2 3q3nq n②①式—②式: (1q) S n1q q 2q3q n 1nq nS n1q (1 q q 2q 3q n 1nq n )1S n1q (1q n nq n )11qS n1q n nq n(1q) 21q0(q0)综上所述: S n 1n(n1)(q1)2q n nq n1(1q) 21(q 0且 q 1)q解析:数列 { nq n 1} 是由数列n与 q n 1对应项的积构成的,此类型的才适应错位相减,(课本中的的等比数列前n 项和公式就是用这种方法推导出来的),但要注意应按以上三种情况进行分类讨论,最后再综合成三种情况。

数列求和的基本方法

数列求和的基本方法

数列求和的基本方法数列求和是数学中一个非常重要的概念,它指的是将一个数列中所有的数相加得到一个总和。

数列求和在数学中有着广泛的应用,例如在金融、工程、科学等领域中都经常需要对一些数列进行求和。

本文将介绍数列求和的基本方法,包括等差数列求和、等比数列求和和斐波那契数列求和。

1. 等差数列求和等差数列是指一个数列中每个相邻的数之间的差值都相等。

例如,1,3,5,7,9 就是一个公差为 2 的等差数列。

等差数列的求和公式为: Sn = n/2 * (a1 + an)其中,Sn 表示前 n 项和,a1 表示数列的首项,an 表示数列的第 n 项。

例如,对于上面的等差数列 1,3,5,7,9,我们可以使用上述公式计算前 5 项和:S5 = 5/2 * (1 + 9) = 25因此,前 5 项和为 25。

2. 等比数列求和等比数列是指一个数列中每个相邻的数之间的比值都相等。

例如,2,4,8,16,32 就是一个公比为 2 的等比数列。

等比数列的求和公式为:Sn = a1 * (1 - r^n) / (1 - r)其中,Sn 表示前 n 项和,a1 表示数列的首项,r 表示数列的公比。

例如,对于上面的等比数列 2,4,8,16,32,我们可以使用上述公式计算前 5 项和:S5 = 2 * (1 - 2^5) / (1 - 2) = 31因此,前 5 项和为 31。

3. 斐波那契数列求和斐波那契数列是指一个数列中每相邻的两个数之和等于第三个数。

例如,1,1,2,3,5,8,13,21,34,55 就是一个斐波那契数列。

由于斐波那契数列中每个数都是前两个数之和,因此其求和公式比较复杂,不过可以利用等差数列求和公式和等比数列求和公式来计算。

例如,对于上面的斐波那契数列,我们可以将其拆分为等差数列1,1,2,3,5,8 和等比数列 1,2,3,5,8,13,21,34,55,然后分别使用等差数列求和公式和等比数列求和公式计算前 5 项和:S5 = S3 + S2 = 3/2 * (1 + 5) + 2 * (1 - 2^5) / (1 - 2) = 13因此,前 5 项和为 13。

数列求和的基本方法与技巧

数列求和的基本方法与技巧

数列求和的基本方法与技巧数列是数学中常见的一种数学对象,它由一系列按特定规律排列的数字组成。

而数列求和则是对这些数字进行求和运算的过程。

在数学中,数列求和是一项基本的技巧,它不仅在数学课堂上有着广泛的应用,也在实际生活中有着重要的意义。

一、等差数列求和等差数列是指数列中的每一项与它的前一项之差都相等的数列。

等差数列求和是数列求和中最常见的一种情况。

对于一个等差数列,我们可以通过以下方法来求和。

首先,我们需要知道等差数列的首项a1和公差d。

首项指的是数列中的第一个数字,而公差则是数列中相邻两项之间的差值。

其次,我们可以利用等差数列的求和公式来求和。

等差数列的求和公式为Sn = n/2 * (2a1 + (n-1)d),其中Sn表示前n项和,n表示项数。

举个例子来说明,假设我们要求和的等差数列为1, 3, 5, 7, 9,其中首项a1为1,公差d为2。

我们可以使用求和公式来计算前5项的和。

首先,我们可以计算出n/2,即5/2=2.5。

然后,将a1和d带入公式中,得到2 * 1 + (5-1) * 2 = 10。

最后,将2.5与10相乘,得到前5项的和为25。

二、等比数列求和等比数列是指数列中的每一项与它的前一项之比都相等的数列。

与等差数列不同,等比数列的求和方法稍有不同。

对于一个等比数列,我们需要知道首项a1和公比q。

首项指的是数列中的第一个数字,而公比则是数列中相邻两项之比。

等比数列的求和公式为Sn = a1 * (1-q^n) / (1-q),其中Sn表示前n项和,n表示项数。

让我们来看一个例子,假设我们要求和的等比数列为1, 2, 4, 8, 16,其中首项a1为1,公比q为2。

我们可以使用求和公式来计算前5项的和。

首先,我们可以计算出1-q^n,即1-2^5=-31。

然后,将a1和-31带入公式中,得到1 * (-31) / (1-2) = 31。

最后,我们得到前5项的和为31。

三、级数求和除了等差数列和等比数列之外,还有一种常见的数列求和情况是级数求和。

解数列求和的基本技巧

解数列求和的基本技巧

When you can't fight daddy, you can only do it hard!(页眉可删)解数列求和的基本技巧解数列求和的基本技巧,数列求和,各位同学你们准备好解答了吗?请看下面:数列求和的基本方法和技巧【1】一.公式法如果一个数列是等差数列或等比数列,则求和时直接利用等差、等比数列的前n项和公式.注意等比数列公示q的取值要分q=1和q1.二.倒序相加法如果一个数列的首末两端等“距离”的两项的和相等,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.三.错位相减法如果一个数列的各项和是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.四.裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.用裂项相消法求和时应注意抵消后并不一定只剩下第一项和最后一项,也可能前面剩两项,后面也剩两项,前后剩余项是对称出现的.五.分组求和法若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和然后相加减.六.并项求和法一个数列的前n项和中,若可两两结合求解,则称之为并项求和法.形如类型,可采用两项合并求解.数列知识整合1、在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题。

2、在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力。

进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。

3、培养学生善于分析题意,富于联想,以适应新的背景,新的`设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法。

数列求和的七种方法

数列求和的七种方法

数列求和的七种方法数列求和是数学中非常基础的概念之一,它在高中数学中被广泛讨论和应用。

在数学中,我们经常遇到需要求解数列的和的问题,这样的问题可以通过不同的方法和技巧来解决。

在这篇文章中,我们将讨论七种常见的数列求和方法,并深入探讨它们的原理和应用。

第一种方法是等差数列的求和方法。

等差数列是指一个数列中每一项与其前一项之差保持恒定的数列。

对于一个等差数列,我们可以通过使用求和公式来求解其总和。

具体来说,对于首项为a,公差为d的等差数列,其前n项和可以通过公式Sn = (n/2)(2a + (n-1)d)来计算,其中n表示项数。

这种方法适用于各种等差数列,无论是正数还是负数的等差数列。

第二种方法是等比数列的求和方法。

等比数列是指一个数列中每一项与其前一项之比保持恒定的数列。

对于一个等比数列,我们可以通过使用求和公式来求解其总和。

具体来说,对于首项为a,公比为r的等比数列,其前n项和可以通过公式Sn = (a(1-r^n))/(1-r)来计算,其中n表示项数。

需要注意的是,公比不能为0或1,否则求和公式将无法使用。

第三种方法是利用等差数列的性质进行求和。

等差数列具有很多性质,其中一个重要的性质是数列的和等于首项与末项乘以项数的一半。

具体来说,对于首项为a,末项为b,项数为n的等差数列,其总和可以通过公式Sn = (a + b) * n / 2来计算。

这种方法在一些情况下更加简便和直观,特别是当我们只关注数列的总和而不关心具体的项时。

第四种方法是利用等比数列的性质进行求和。

等比数列也具有一些特殊的性质,其中一个重要的性质是当公比小于1时,数列的和可以表示为首项与末项的差除以1减去公比。

具体来说,对于首项为a,公比为r的等比数列(其中|r|<1),其总和可以通过公式Sn = (a -ar^n)/(1-r)来计算。

这种方法在一些情况下也更加简洁和有效。

第五种方法是使用递归关系进行求和。

递归关系是数列中的每一项与前一项之间存在一定规律的关系。

数列求和的几种方法

数列求和的几种方法

数列求和的几种方法一、数列的求和问题在数学中非常常见,可以通过各种方法进行求解。

下面将介绍一些数列求和的常用方法。

1.直接求和法直接求和法是最基础的求和方法,即将数列中的所有项相加得到数列的总和。

例如,对于等差数列an = a1 + (n-1)d,其中a1为首项,d为公差,n为项数。

根据等差数列求和公式Sn = n(a1 + an)/2,可以直接将数列中的所有项相加来求和。

2.差分法差分法是一种将数列转化为差分序列进行求和的方法。

对于数列an,可以构造差分序列∆an = an+1 - an,然后将差分序列的所有项相加,得到数列的和。

差分法在数列中的应用较为广泛,尤其对于一些递推关系式的求和问题具有很好的效果。

3.转化法转化法是将数列进行变换,使其转化为容易求解的形式进行求和的方法。

例如,对于等差数列an,可以将其转化为等比数列,再利用等比数列的求和公式进行求解。

转化法需要根据具体数列的性质进行变换,通常需要一定的技巧和经验。

4.等差数列求和公式对于等差数列an = a1 + (n-1)d,其中a1为首项,d为公差,n为项数,有等差数列求和公式Sn = n(a1 + an)/2、该公式是数列求和中最常用的公式之一,可以快速计算得到等差数列的和。

此外,还可以利用等差数列的对称性求和,即Sn = na1 + n(n-1)d/25.等比数列求和公式对于等比数列an = a1 * q^(n-1),其中a1为首项,q为公比,n为项数,有等比数列求和公式Sn = a1 * (q^n - 1)/(q - 1)。

该公式是数列求和中另一个常用的公式,可以迅速计算得到等比数列的和。

6.综合求和法当数列无法通过上述方法直接求和时,可以尝试使用综合求和法。

综合求和法是利用数列中的递推关系式和数学归纳法进行求和的方法。

通过观察数列中的规律,可以得到数列中前n项的和与前n-1项的和之间的关系,从而得到数列的总和。

以上是数列求和的一些常用方法,不同的数列可以采用不同的方法求解。

数列求和的基本题型与解题方法

数列求和的基本题型与解题方法

数列求和的基本题型与解题方法一、分组求和法(通项分解法)如果通项能转化为等差数列与等比数列和(或差),即n n n c b a ±=例1、求数列 ,231,,71,41,1112-++++-n a a a n 的前n 项和n S . 二、错位相减法如果通项能转化为等差数列与等比数列的积,一般适用于数列{}n n a b 的前n 项求和,其中{}n a 成等差,{}n b 成等比,即n n n c b a ⋅=例2、求和)0(32112≠++++-a naa a n . 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S 三、倒序相加法把数列正写和倒写再相加,如等差数列前n 项和公式的推导。

例3、设()f x =,利用课本中推导等差数列前n 项和的公式的方法,可求得(5)(4)(0)(5)(6)f f f f f -+-+⋅⋅⋅++⋅⋅⋅++=四、裂项相消法:通项是分式结构,分母因式成等差数列关系,可以把通项写成两项之差n a =f(n+1)-f(n),然后累加抵消掉中间的许多项,这种先裂后消的求和法叫裂项求和法。

常见的裂项公式:⑴若{}n a 是公差为d 的等差数列,则111111n n n n a a d a a ++⎛⎫=- ⎪⎝⎭; ⑵()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;1a b =-. 例4、求数列n +++++++++++++++ 32114321132112111的前n 项和n S ; 五、奇偶讨论法(并项求和法):把数列的某些项放在一起先求和,然后再求n S .例5、(1)求和)12()1(75311--++-+-=-n S n n(2)数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2011练习题: 1. 数列 ,21)12(,815,413,211n n -的前n 项和n S 等于( ) A .n n 2112-+ B. n n n 21122-+- C .12211--+n n D. n n n 2112-+- 2.数列1,(1+2),(1+2+22),…,(1+2+22+…+2n-1),…的前n 项和等于( )A.2nB.2n-n C.2n+1-n-2 D.n ·2n 3. 数列}{n a 的前n 项和为n S ,若1(1)n a n n =+,则5S 等于( ) .A 1 .B 56 .C 16 .D 1304.数列{a n }的通项公式是a n =11++n n ,若前n 项和为10,则项数n 为( )A.11B.99C.120D.1215.设4710310()22222()n f n n N +=+++++∈,则()f n 等于( ).A 2(81)7n - .B 12(81)7n +- .C 32(81)7n +- .D 42(81)7n +- 6.已知数列{a n }的前n 项和S n =1-5+9-13+17-21+…+(-1)n-1(4n-3),那么S 15+S 22-S 31的值为__________. 7.已知函数244)(+=x x x f ,则)20111(f S =)20112010()20113()20112(f f f ++++ = . 8.求下列数列前n 项和⑴nn S 555555555⋅⋅⋅+⋅⋅⋅+++=; ⑵13⨯+24⨯+35⨯+…+(2)n n +;⑶222sin 1sin 2sin 3︒+︒+︒+ (2)sin 89+︒;⑷22222212979899100-++-+- ; ⑸n n 223222132++++ ; ⑹)23)(13(11181851521+-++⨯+⨯+⨯n n . 9.已知数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足)21(2-=n n n S a S .(1)求S n 的表达式;(2)设12+=n S b n n ,求{b n }的前n 项和T n . .。

数列求和的8种常用方法(最全)

数列求和的8种常用方法(最全)

数列求和的8种常用方法(最全)一、前言在高中数学以及各类应用数学问题中,数列求和问题是非常常见的。

解决数列求和问题不仅需要对常用数列的规律进行深刻的理解,还需要掌握多种数列求和的方法。

本文将介绍数列求和的八种常用方法,并且会结合具体的数列实例来进行讲解。

尽力做到对每一种方法的介绍都能够做到极致详细,希望对读者有所帮助。

二、数列求和的8种常用方法1. 等差数列求和公式对于一个首项为$a_1$,公差为$d$,共有$n$ 项的等差数列,其求和公式为:$$S_n = \frac{n}{2}(2a_1 + (n-1)d)$$其中,$S_n$ 代表前$n$ 项的和。

举例:求和数列$1,3,5,7,9$ 的和。

分析:此数列的首项为1,公差为2,总共有5项。

解答:$$S_5 = \frac{5}{2}(2\times 1 + (5-1)\times 2)=25$$因此,数列$1,3,5,7,9$ 的和为25。

2. 等比数列求和公式对于一个首项为$a_1$,公比为$q$,共有$n$ 项的等比数列,其求和公式为:$$S_n = \frac{a_1(1-q^n)}{1-q}$$其中,$S_n$ 代表前$n$ 项的和。

举例:求和数列$2,4,8,16,32$ 的和。

分析:此数列的首项为2,公比为2,总共有5项。

解答:$$S_5=\frac{2\times (1-2^5)}{1-2}=-62$$因此,数列$2,4,8,16,32$ 的和为-62。

3. 几何级数通项公式求和对于一般形式为$a_1r^{n-1}$ 的数列,其求和公式为:$$S_n = \frac{a_1(1-r^n)}{1-r}$$其中,$S_n$ 代表前$n$ 项的和。

举例:求和数列$1,-\frac{1}{2},\frac{1}{4},-\frac{1}{8},\frac{1}{16}$ 的和。

分析:此数列的首项是1,公比是$-\frac{1}{2}$,总共有5项。

数列求和的基本方法和技巧

数列求和的基本方法和技巧

数列求和的基本方法和技巧数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 即直接用等差、等比数列的求和公式求和。

1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、 )12)(1(6112++==∑=n n n k S nk n222221(1)(21)1236nk n n n k n =++=++++=∑5、 213)]1(21[+==∑=n n k S nk n2333331(1)1232nk n n k n =+⎡⎤=++++=⎢⎥⎣⎦∑ 1、 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得n n x x x x S +⋅⋅⋅+++=32 =xx x n--1)1(=211)211(21--n =1-n 21 2、 已知数列{},n nn a a x =,(x ≠0),n s 数列的前n 项和,求n s 。

解:当x=1时,n s n = 当x ≠1时,{}na 为等比数列,公比为x 由等比数列求和公式得nn x x x x S +⋅⋅⋅+++=32=xx x n --1)1( 3、 (07高考山东文18)设{}n a 是公比大于1的等比数列,n S 为数列{}n a 的前n 项和.已知37S =,且123334a a a ++,,构成等差数列.(1)求数列{}n a 的等差数列.(2)令31ln 12n n b a n +== ,,,,求数列{}n b 的前n 项和T .解:(1)由已知得1231327:(3)(4)3.2a a a a a a ++=⎧⎪⎨+++=⎪⎩,解得22a =.设数列{}n a 的公比为q ,由22a =,可得1322a a q q ==,.又37S =,可知2227q q ++=,即22520q q -+=,解得12122q q ==,.由题意得12q q >∴=,.11a ∴=.故数列{}n a 的通项为12n n a -=.(2)由于31ln 12n n b a n +== ,,,,由(1)得3312n n a += 3ln 23ln 2n n b n ∴==, 又13ln 2n n n b b +-={}n b ∴是等差数列. 12n n T b b b ∴=+++1()2(3ln 23ln 2)23(1)ln 2.2n n b b n n n +=+=+=故3(1)ln 22n n n T +=. 4、 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n nS n S n f =64342++n n n =n n 64341++=50)8(12+-n n 501≤∴ 当88-n ,即n =8时,501)(max =n f二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.5、 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………① 解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 n n n x n xx x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+6、 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和.解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积 设n n nS 2226242232+⋅⋅⋅+++=…………………………………①(设制错位)14322226242221++⋅⋅⋅+++=n n nS ………………………………② ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS 1122212+---=n n n ∴ 1224-+-=n n n S7、 (07高考全国Ⅱ文21)设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b +=(Ⅰ)求{}n a ,{}n b 的通项公式;(Ⅱ)求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n S . 解:(Ⅰ)设{}n a 的公差为d ,{}n b 的公比为q ,则依题意有0q >且4212211413d q d q ⎧++=⎪⎨++=⎪⎩,,解得2d =,2q =.所以1(1)21n a n d n =+-=-,112n n n b q --==.(Ⅱ)1212n n n a n b --=.122135232112222n n n n n S ----=+++++ ,①3252321223222n n n n n S ----=+++++ ,②②-①得22122221222222n n n n S ---=+++++- ,221111212212222n n n ---⎛⎫=+⨯++++- ⎪⎝⎭ 1111212221212n n n ----=+⨯--12362n n -+=-.8、 等比数列{n a }的前n 项和为n S ,已知对任意的n N +∈,点(,)n n S 均在函数(0xy b r b =+>且1,,b b r ≠均为常数)的图像上.(1)求r 的值;(11)当b=2时,记 1()4n nn b n N a ++=∈ 求数列{}n b 的前n 项和n T解:因为对任意的n N +∈,点(,)n n S ,均在函数(0x y b r b =+>且1,,b b r ≠均为常数)的图像上.所以得n n S b r =+,当1n =时,11a S b r ==+,当2n ≥时,1111()(1)n n n n n n n n a S S b r b r b b b b ----=-=+-+=-=-,又因为{n a }为等比数列, 所以1r =-, 公比为b , 所以1(1)n n a b b -=- (2)当b=2时,11(1)2n n n a b b --=-=,111114422n n n n n n n b a -++++===⨯则234123412222nn n T ++=++++ 3451212341222222n n n n n T +++=+++++ 相减,得23451212111112222222n n n n T +++=+++++- 31211(1)112212212n n n -+⨯-++--12311422n n n +++=--所以113113322222n n n n n n T ++++=--=-9、 函数2()f x x x =+,当[,1]()x n n n N *∈+∈时,()f x 的所有整数值的个数为()g n(1)求()g n 的表达式(2)设321123423(),(1)()n n n n n n a n N S a a a a a g n *-+=∈=-+-++- ,求n S(3)设12(),2n n n ng n b T b b b ==+++ ,若()n T l l z <∈,求l 的最小值 解:(1)当[,1]()x n n n N *∈+∈时,函数()f x 单调递增,则()f x 的值域为22[,32]()()23n n n n n N g n n *+++∈⇒=+(2)由(1)得2n a n =当n 为偶数时22222212341(12)(34)[(1)]n n n S a a a a a a n n -=-+-++-=-+-++-- =(1)(123)2n n n +-++++=-当n 为奇数时2222222123421()(12)(34)[(2)(1)]n n n n S a a a a a a a n n n --=-+-++-+=-+-++---+ ==2(1)(1231)2n n n n +-++++-+=1(1)(1)2n n n n S ++∴=- (3)由()2n n g n b =得23579232222n n n T +=++++ 234115792322222nn n T ++=++++ 两式相减得 12311523222727()()22222222n n n n n n T ++++=-++++=- 2772n n n T +⇒=-,则由277,2nnn T l l z +=-<∈,可得l 的最小值为7 10、 (2010四川理)(21)(本小题满分12分)已知数列{a n }满足a 1=0,a 2=2,且对任意m 、n ∈N *都有a 2m -1+a 2n -1=2a m +n -1+2(m -n )2(Ⅰ)求a 3,a 5;(Ⅱ)设b n =a 2n +1-a 2n -1(n ∈N *),证明:{b n }是等差数列;(Ⅲ)设c n =(a n+1-a n )q n -1(q ≠0,n ∈N *),求数列{c n }的前n 项和S n .本小题主要考查数列的基础知识和化归、分类整合等数学思想,以及推理论证、分析与解决问题的能力.解:(1)由题意,零m =2,n=1,可得a 3=2a 2-a 1+2=6 再令m =3,n =1,可得a 5=2a 3-a 1+8=20… (2)当n ∈N *时,由已知(以n +2代替m )可得a 2n +3+a 2n -1=2a 2n +1+8于是[a 2(n +1)+1-a 2(n +1)-1]-(a 2n +1-a 2n -1)=8 即 b n +1-b n =8所以{b n }是公差为8的等差数列………………………………………………5分(3)由(1)(2)解答可知{b n }是首项为b 1=a 3-a 1=6,公差为8的等差数列则b n =8n -2,即a 2n +=1-a 2n -1=8n -2 另由已知(令m =1)可得a n =2112n a a ++-(n -1)2.那么a n +1-a n =21212n n a a +-+-2n +1 =822n --2n +1=2n 于是c n =2nq n -1.当q =1时,S n =2+4+6+……+2n =n (n +1) 当q ≠1时,S n =2·q 0+4·q 1+6·q 2+……+2n ·qn -1.两边同乘以q ,可得 qS n =2·q 1+4·q 2+6·q 3+……+2n ·q n.上述两式相减得 (1-q )S n =2(1+q +q 2+……+q n -1)-2nq n=2·11n q q ---2nq n =2·11(1)1n n n q nq q+-++-所以S n =2·12(1)1(1)n nnqn q q +-++-综上所述,S n =12(1)(1)(1)12(1)(1)n n n n q nq n q q q ++=⎧⎪-++⎨≠⎪-⎩…………………………12分 11、(安庆市四校元旦联考)(本题满分16分)各项均为正数的数列{}n a 中,n S a ,11=是数列{}n a 的前n项和,对任意*∈N n ,有 )(222R p p pa pa S n n n ∈-+=;⑴求常数p 的值; ⑵求数列{}n a 的通项公式;⑶记n nn n S b 234⋅+=,求数列{}n b 的前n 项和T 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解析数列求和的基本方法和技巧
湖北房县二中 颜彬 ----必修五 第二章 数列 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面来谈谈数列求和的基本方法和技巧:
一、利用特殊数列求和公式求和
1、等差数列求和公式:d n n na a a n S n n 2
)1(2)(11-+=+= 2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a q
q a q na S n n n 自然数方幂和公式:
3、)1(211+==∑=n n k S n
k n 4、)12)(1(6112++==∑=n n n k S n k n 5、213)]1(21[+==∑=n n k S n
k n [例] 求和1+x 2+x 4+x 6+…x 2n+4(x≠0)
解:当x≠0且21x ≠时,则该数列是首项为1,公比为x 2的等比数列而且有n+3项,直接用等比数列求和公式求出结果。

当x 2=1 即x =±1时,则n s =n+3。

评注:(1)利用等比数列求和公式.当公比是用字母表示时,应对其是否为1进行讨论,如本题若为“等比”的形式而并未指明其为等比数列,还应对x 是否为0进行讨论.(2)要弄清数列共有多少项,末项不一定是第n 项.
二、错位相减法求和
错位相减法求和在高考中占有相当重要的位置,近几年来的高考题其中的数列方面都出了这方面的内容。

需要我们的学生认真掌握好这种方法。

这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. 求和时一般在已知和式的两边都乘以组成这个数列的等比数列的公比q ;然后再将得到的新和式和原和式相减,转化为同倍数的等比数列求和,这种方法就是错位相减法。

[例] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S (1≠x )………………………① 解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积
设n n x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设置错位)
①-②得 n n n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减) 再利用等比数列的求和公式得:n n n x n x
x x S x )12(1121)1(1
----⋅+=-- 则 21)
1()1()12()12(x x x n x n S n n n -+++--=+ 注意:1、要考虑当公比x 为值1时为特殊情况;2、错位相减时要注意末项。

此类题的特点是所求数列是由一个等差数列与一个等比数列对应项相乘。

三、倒序相加法求和
这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +。

[例] 求证:n n n n n n
n C n C C C 2)1()12(53210+=++⋅⋅⋅+++ 证明: 设n n n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………… ①
把①式右边倒转过来得
0113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)
又由m n n m n C C -=可得
n n n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(……………… ②
①+②得 n n n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加)
∴ n n n S 2)1(⋅+=
四、分组法求和
有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.
若数列{}n a 的通项公式为n n n b a c +=,其中{}{}n n b a ,中一个是等差数列,另一个是等比数列,求和时一般用分组结合法。

[例]:求数列 16
14,813,412,211的前n 项和; 分析:数列的通项公式为n n n a 21+
=,而数列{}⎭
⎬⎫⎩⎨⎧n n 21,分别是等差数列、等比数列,求和时一般用分组结合法; [解] :因为n n n a 2
1+=,所以)21()813()412()211(n n n s ++++++++=
)21814121()321(n n +++++++++= (
前一个括号内是一个等比数列的和,后一个括号内是一个等差数列的和,因此
n s 12122
11)211(212)1(2+-+=--++=n n n n n n 五、裂项法求和
这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:
(1))()1(n f n f a n -+= (2)
n n n n tan )1tan()
1cos(cos 1sin -+=+ (3)1
11)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])
2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n [例] 求数列⋅⋅⋅++⋅⋅⋅++,11,,3
21
,211
n n 的前n 项和. 解:设n n n n a n -+=++=11
1
(裂项) 则 11
321
211
+++⋅⋅⋅++++=n n S n (裂项求和)
=)1()23()12(n n -++⋅⋅⋅+-+-=11-+n
小结:此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了。

只剩下有限的几项。

注意: 余下的项具有如下的特点:1、余下的项前后的位置前后是对称的; 2、余下的项前后的正负性是相反的。

[练习] 在数列{a n }中,11211++⋅⋅⋅++++=
n n n n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项和. 六、合并法求和
针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n
[例] 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.
解:设1032313log log log a a a S n +⋅⋅⋅++=
由等比数列的性质 q p n m a a a a q p n m =⇒+=+ (找特殊性质项) 和对数的运算性质 N M N M a a a ⋅=+log log log 得
)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++= (合并求和) =)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅
=9log 9log 9log 333+⋅⋅⋅++
=10
数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位.数列的求和方法多种多样,它在高考中的重要性也显而易见。

我们的学生在学习中必须要掌握好几种最基本的方法,在解题中才能比较容易解决数列问题。

相关文档
最新文档