南京大学高等代数考研试题2006

合集下载

精编版-2006考研数学一真题及答案

精编版-2006考研数学一真题及答案

2006考研数学一真题及答案一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)0ln(1)lim 1cos x x x x→+=-.(2)微分方程(1)y x y x-'=の通解是 .(3)设∑是锥面z =(01z ≤≤)の下侧,则23(1)xdydz ydzdx z dxdy ∑++-=⎰⎰ .(4)点(2,1,0)到平面3450x y z ++=の距离z = .(5)设矩阵2112⎛⎫=⎪-⎝⎭A ,E 为2阶单位矩阵,矩阵B 满足2=+BA B E ,则B = .(6)设随机变量X 与Y 相互独立,且均服从区间[0,3]上の均匀分布,则{}max{,}1P X Y ≤= .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出の四个选项中,只有一项符合题目要求,把所选项前の字母填在题后の括号内)(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在0x 处の增量,y ∆与dy 分别为()f x 在点0x 处对应の增量与微分,若0x ∆>,则(A)0dx y <<∆ (B)0y dy <∆< (C)0y dy ∆<<(D)0dy y <∆<(8)设(,)f x y 为连续函数,则140(cos ,sin )d f r r rdr πθθθ⎰⎰等于(A)(,)xf x y dy ⎰⎰(B)(,)f x y dy ⎰⎰(C)(,)yf x y dx ⎰⎰(C)(,)f x y dx ⎰⎰(9)若级数1nn a∞=∑收敛,则级数(A)1nn a∞=∑收敛 (B)1(1)nn n a ∞=-∑收敛(C)11n n n a a ∞+=∑收敛(D)112n n n a a ∞+=+∑收敛 (10)设(,)f x y 与(,)x y ϕ均为可微函数,且1(,)0y x y ϕ≠.已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下の一个极值点,下列选项正确の是(A)若00(,)0x f x y '=,则00(,)0y f x y '=(B)若00(,)0x f x y '=,则00(,)0y f x y '≠(C)若00(,)0x f x y '≠,则00(,)0y f x y '=(D)若00(,)0x f x y '≠,则00(,)0y f x y '≠(11)设12,,,,s ααα均为n 维列向量,A 是m n ⨯矩阵,下列选项正确の是 (A)若12,,,,s ααα线性相关,则12,,,,s A αA αA α线性相关 (B)若12,,,,s ααα线性相关,则12,,,,s A αA αA α线性无关(C)若12,,,,s ααα线性无关,则12,,,,s A αA αA α线性相关 (D)若12,,,,s ααα线性无关,则12,,,,s A αA αA α线性无关.(12)设A 为3阶矩阵,将A の第2行加到第1行得B ,再将B の第1列の-1倍加到第2列得C ,记110010001⎛⎫⎪= ⎪ ⎪⎝⎭P ,则(A)1-=C P AP(B)1-=C PAP(C)T=C P AP(D)T=C PAP(13)设,A B 为随机事件,且()0,(|)1P B P A B >=,则必有(A)()()P AB P A > (B)()()P A B P B >(C)()()P A B P A = (D)()()P A B P B =(14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且12{||1}{||1},P X P Y μμ-<>-<则(A)12σσ< (B)12σσ>(C)12μμ<(D)12μμ>三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤) (15)(本题满分10分) 设区域D=(){}22,1,0x y x y x +≤≥,计算二重积分2211DxyI dxdy x y +=++⎰⎰. (16)(本题满分12分)设数列{}n x 满足()110,sin 1,2,...n x x x n ππ+<<==. 求:(1)证明lim n x x →∞存在,并求之.(2)计算211lim n x n x n x x +→∞⎛⎫ ⎪⎝⎭. (17)(本题满分12分) 将函数()22xf x x x =+-展开成x の幂级数.(18)(本题满分12分) 设函数()()0,,f u +∞在内具有二阶导数且z f=满足等式22220z zx y∂∂+=∂∂. (1)验证()()0f u f u u'''+=. (2)若()()10,11,f f '==求函数()f u の表达式. (19)(本题满分12分) 设在上半平面(){},0D x y y =>内,数(),f x y 是有连续偏导数,且对任意の0t >都有()()2,,f tx ty t f x y =.证明: 对L 内の任意分段光滑の有向简单闭曲线L ,都有(,)(,)0Lyf x y dx xf x y dy -=⎰.(20)(本题满分9分) 已知非齐次线性方程组1234123412341435131x x x x x x x x ax x x bx +++=-⎧⎪++-=-⎨⎪++-=⎩ 有3个线性无关の解,(1)证明方程组系数矩阵A の秩()2r =A . (2)求,a b の值及方程组の通解. (21)(本题满分9分)设3阶实对称矩阵A の各行元素之和均为3,向量()()121,2,1,0,1,1TT=--=-αα是线性方程组0x =A の两个解.(1)求A の特征值与特征向量.(2)求正交矩阵Q 和对角矩阵A ,使得T=Q AQ A . (22)(本题满分9分)随机变量x の概率密度为()()21,1021,02,,40,令其它x x f x x y x F x y ⎧-<<⎪⎪⎪=≤<=⎨⎪⎪⎪⎩为二维随机变量(,)X Y の分布函数.(1)求Y の概率密度()Y f y . (2)1,42F ⎛⎫-⎪⎝⎭. (23)(本题满分9分)设总体X の概率密度为(,0)F X = 10θθ- 0112x x <<≤<其它,其中θ是未知参数(01)θ<<,12n ,...,X X X 为来自总体X の简单随机样本,记N 为样本值12,...,n x x x 中小于1の个数,求θの最大似然估计.参考答案 一、填空题(1)0ln(1)lim1cos x x x x→+-= 2 .221cos 1,)1ln(x x x x -+ (0x →当时)(2)微分方程(1)y x y x-'=の通解是(0)x y cxe x -=≠,这是变量可分离方程.(3)设∑是锥面1)Z ≤≤の下侧,则23(1)2xdydz ydzdx z dxdy π∑++-=⎰⎰补一个曲面221:1x y z ⎧+≤∑⎨=⎩1上侧,2,3(1)P x Q y R z ===-1236P Q Rx y z∂∂∂++=++=∂∂∂ ∴16dxdydz ∑∑Ω+=⎰⎰⎰⎰⎰⎰⎰(Ω为锥面∑和平面1∑所围区域)6V =(V 为上述圆锥体体积)623ππ=⨯=而123(1)0dydz ydzdx z dxdy ∑⨯++-=⎰⎰(∵在1∑上:1,0z dz ==)(4),1,0,450x y z d ++==点(2)到平面3的距离d ====(5)设A = 2 1 ,2阶矩阵B 满足BA =B +2E ,则|B |= .-1 2解:由BA =B +2E 化得B (A -E )=2E ,两边取行列式,得|B ||A -E |=|2E |=4,计算出|A -E |=2,因此|B |=2. (6)91 二、选择题(7)设函数()y f x =具有二阶导数,且()0f x '>,()0f x ''>,x ∆为自变量x 在0x 处の增量,y ∆与dy 分别为()f x 在点0x 处对应の增量与微分.若0>∆x ,则[A]0)(0)(0)(0)(<∆<<<∆<∆<∆<<y dy D dy y C dy y B y dy A()0,()f x f x '>因为则严格单调增加 ()0,()f x f x ''>则是凹的 y dy x ∆<<>∆0,0故又2212211220(8)(,)(cos ,sin )[C](A)(,)(B)(,)x x xf x y d f r r rdr dx f x y dydx f x y dyπθθθ--⎰⎰⎰⎰⎰⎰40设为连续函数,则等于222211220(C)(,)(D)(,)y y ydy f x y dxdy f x y dx --⎰⎰⎰⎰111111111(9)[D]()()(1)()()()2n n n n n n n n n n n n n n n a A a B a a a C a a D a∞=∞∞==∞∞∞+++===-+∑∑∑∑∑∑若级数收敛,则级数收敛收敛收敛收敛也收敛00000000000000000(10)(,)(,)(,)0,(,)(,)0y x y x y x y x y f x y x y x y x y f x y x y f x y f x y f x y f x y f x y f x y f x y f x ϕϕϕ'≠=''''≠''''≠≠设与均为可微函数,且已知(,)是在约束条件下的一个极值点,下列选项正确的是[D](A)若(,)=0,则(,)=0(B)若(,)=0,则(,)0(C)若(,)0,则(,)=0(D)若(,)0,则(,00000000000000000(,)(,)(,)(,)0(1)(,)(,)0(2)(,)0(,)(,)(,)(,)0,(,)(,)(,)(,)0x x x y y y y y xy x y y x y f x y x y f x y x y f x y x y x y f x y f x y x y x y f x y x y x y f x y λλϕλϕλϕϕϕϕλϕϕ≠+'''⎧+=⎪'''+=⎨⎪'=⎩'''''≠∴=-='''≠)0构造格朗日乘子法函数F=F =F =F =今代入(1)得今00,(,)0[]y f x y D '≠则故选 (11)设1,2,…,s 都是n 维向量,A 是m ⨯n 矩阵,则( )成立.(A) 若1,2,…,s 线性相关,则A 1,A 2,…,A s 线性相关. (B) 若1,2,…,s 线性相关,则A 1,A 2,…,A s 线性无关. (C) 若1,2,…,s 线性无关,则A 1,A 2,…,A s 线性相关. (D) 若1,2,…,s 线性无关,则A 1,A 2,…,A s 线性无关. 解: (A)本题考の是线性相关性の判断问题,可以用定义解.若1,2,…,s 线性相关,则存在不全为0の数c 1,c 2,…,c s 使得c 11+c 22+…+c s s =0,用A 左乘等式两边,得c 1A 1+c 2A 2+…+c s A s =0,于是A 1,A 2,…,A s 线性相关.如果用秩来解,则更加简单明了.只要熟悉两个基本性质,它们是: 1.1,2,…,s 线性无关⇔ r(1,2,…,s )=s. 2. r(AB )≤ r(B ). 矩阵(A 1,A 2,…,A s )=A (1,2,…,s),因此 r(A 1,A 2,…,A s )≤ r(1,2,…,s). 由此马上可判断答案应该为(A).(12)设A 是3阶矩阵,将A の第2列加到第1列上得B ,将B の第1列の-1倍加到第2列上得C .记 1 1 0P = 0 1 0 ,则 0 0 1(A) C =P -1AP . (B) C =PAP -1.(C) C =P T AP . (D) C =PAP T.解: (B)用初等矩阵在乘法中の作用得出B =PA ,1 -1 0C =B 0 1 0 =BP -1= PAP -1. 0 0 1(13)根据乘法公式与加法公式有: P(AB)=P(B)P(A/B)=P(B)P(A ⋃B)=P(A)+P(B)-P(AB)=P(A) 应选C (14)依题:).1,0(~),10(~2211N Y N x σμσμ--,,1}1{1111⎭⎬⎫<⎩⎨⎧-=<-σσμμX P X P .1}1{2222⎭⎬⎫⎩⎨⎧<-=<-σσμμY P Y P 因 },1{}1{21<-><-μμY P X P 即 .11222111⎭⎬⎫⎩⎨⎧<->⎭⎬⎫⎩⎨⎧<-σσμσσμY P X p 所以.,112121σσσσ<>应选A三、解答题{}22222212120222021(15)(,)1,0,1:011ln(1)ln 21122DD DxyD x y x y x I dxdyx y xydxdy x y r I dxdy d dr r x yr ππππθ-+=+≤≥=++=++===+=+++⎰⎰⎰⎰⎰⎰⎰⎰设区域计算二重积分解{}{}{}211112121(16)0,sin (1,2,)(1)lim (2)lim():(1)sin ,01,2sin ,0,lim ,n n n n n n x n n nn n n n n n n n x x x x n x x x x x x n x x x x x x x A π+→∞+→∞+→∞<<===∴<≤≥=≤≥∴=设数列满足求证明存在,并求之计算解因此当时单调减少又有下界,根据准则1,存在递推公式两边取极限得sin ,0A A A =∴=21sin (2)lim(),n x n n n x x ∞→∞原式=为"1"型离散型不能直接用洛必达法则22011sin lim ln()0sin lim()t ttt tt t e t→→=先考虑2323203311(cos sin )1110()0()lim26cos sin sin 1262limlim2262t t t t t t t t t t t t t t ttt tttteeeee →→→⎡⎤⎡⎤--+--+⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦-=====2(17)()2xf x x x x =+-将函数展开成的幂极数()(2)(1)21x A Bf x x x x x ==+-+-+解:2(1)(2)2,32,3A xB x x x A A ++-====令 11,31,3x B B =-=-=-令)](1[131)21(131)1(131)2(132)(x x x x x f --⨯--⨯=+⨯--⨯= 10001111()(1)(1),132332n n n n n n n n n x x x x ∞∞∞+===⎡⎤=--=+-<⎢⎥⎣⎦∑∑∑(18)设函数()(0,)f u +∞在内具有二阶导数,且Z f=满足等式22220z zx y∂∂+=∂∂ (I )验证()()0f u f u u'''+= (II )若(1)0,(1)1f f '== 求函数()f u 的表达式 证:(I)zzf f xy∂∂''==∂∂()22222zxf f xx y ∂'''=+∂+()()22322222x y f f x y x y '''=+++()()2223222222zy x f f yx y x y ∂'''=+∂++同理22220()()0z z f x y f u f u u∂∂''+=+=∂∂'''∴+=代入得成立(II )令(),;dp p dp du f u p c du u p u'==-=-+⎰⎰则ln ln ,()cp u c f u p u'=-+∴==22(1)1,1,()ln ||,(1)0,0()ln ||f c f u u c f c f u u '===+===由得于是(19)设在上半平面{}(,)|0D x y y =>内,函数(,)f x y 具有连续偏导数,且对任意0t >都有2(,)(,)f tx ty t f x y -=证明:对D 内任意分段光滑の有向简单闭曲线L ,都有0),(),(=-⎰dy y x xf dx y x yf L.证:把2(,)(,)f tx ty t f x y t -=两边对求导 得:(,)(,)2(,)x y xf tx ty yf tx ty tf x y ''+=- 令 1t =,则(,)(,)2(,)x y xf x y yf x y f x y ''+=- 再令 (,),(,)P yf x y Q xf x y ==-所给曲线积分等于0の充分必要条件为Q Px y∂∂=∂∂ 今(,)(,)x Qf x y xf x y x∂'=--∂(,)(,)y Pf x y yf x y y∂'=+∂ 要求Q Px y∂∂=∂∂成立,只要(,)(,)2(,)x y xf x y yf x y f x y ''+=- 我们已经证明,Q Px y∂∂∴=∂∂,于是结论成立. (20)已知非齐次线性方程组x 1+x 2+x 3+x 4=-1,4x 1+3x 2+5x 3-x 4=-1,ax 1+x 2+3x 3+bx 4=1有3个线性无关の解.① 证明此方程组の系数矩阵A の秩为2. ② 求a,b の值和方程组の通解. 解:① 设1,2,3是方程组の3个线性无关の解,则2-1,3-1是AX =0の两个线性无关の解.于是AX =0の基础解系中解の个数不少于2,即4-r(A )≥2,从而r(A )≤2.又因为A の行向量是两两线性无关の,所以r(A )≥2.两个不等式说明r(A )=2.② 对方程组の增广矩阵作初等行变换: 1 1 1 1 -1 1 1 1 1 -1 (A |)= 4 3 5 -1 -1 → 0 –1 1 –5 3 ,a 1 3b 1 0 0 4-2a 4a+b-5 4-2a由r(A )=2,得出a=2,b=-3.代入后继续作初等行变换:1 02 -4 2→ 0 1 -1 5 -3 .0 0 0 0 0得同解方程组x 1=2-2x 3+4x 4,x 2=-3+x 3-5x 4,求出一个特解(2,-3,0,0)T 和AX =0の基础解系(-2,1,1,0)T ,(4,-5,0,1) T .得到方程组の通解:(2,-3,0,0)T +c 1(-2,1,1,0)T +c 2(4,-5,0,1)T , c 1,c 2任意.(21) 设3阶实对称矩阵A の各行元素之和都为3,向量1=(-1,2,-1)T ,2=(0,-1,1)T 都是齐次线性方程组AX =0の解.① 求A の特征值和特征向量.② 求作正交矩阵Q 和对角矩阵Λ,使得Q T AQ =Λ.解:① 条件说明A (1,1,1)T =(3,3,3)T ,即0=(1,1,1)T 是A の特征向量,特征值为3.又1,2都是AX =0の解说明它们也都是A の特征向量,特征值为0.由于1,2线性无关, 特征值0の重数大于1.于是A の特征值为3,0,0.属于3の特征向量:c0, c ≠0. 属于0の特征向量:c 11+c 22, c 1,c 2不都为0. ② 将0单位化,得0=(33,33,33)T . 对1,2作施密特正交化,の1=(0,-22,22)T ,2=(-36,66,66)T . 作Q =(0,1,2),则Q 是正交矩阵,并且3 0 0Q T AQ =Q -1AQ = 0 0 0 .0 0 0(22)随机变量X の概率密度为⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<-=其他,020,4101,21)(x x x f X ,令2X Y =,),(y x F 为二维随机变量)(Y X ,の分布函数. (Ⅰ)求Y の概率密度;(Ⅱ))4,21(-F 解: (Ⅰ)⎪⎪⎩⎪⎪⎨⎧≤<≤<≤<=≤=≤=yy y y y X P y Y P y F Y 4,141,)2(10,)1(0,0)()()(2式式 ⎰⎰=+=≤≤-=-y yy dx dx y X y P 00434121)()1(式; ⎰⎰+=+=≤≤-=-y y dx dx y X y P 00141214121)()2(式. 所以:⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<==其他,041,8110,83)()('y yy y y F y f Y Y 这个解法是从分布函数の最基本の概率定义入手,对y 进行适当の讨论即可,在新东方の辅导班里我也经常讲到,是基本题型.(Ⅱ))4,21(-F )212()22,21()4,21()4,21(2-≤≤-=≤≤--≤=≤-≤=≤-≤=X P X X P X X P Y X P 4121211==⎰--dx . (23)设总体X の概率密度为⎪⎩⎪⎨⎧≤≤-<<=其他,021,110,),(x x x f θθθ,其中θ是未知参数(0<θ<1).n X X X ,,21为来自总体の简单随机样本,记N 为样本值n x x x ,,21中小于1の个数.求θの最大似然估计.解:对样本n x x x ,,21按照<1或者≥1进行分类:pN p p x x x ,,21<1,pn pN pN x x x ,,21++≥1.似然函数⎩⎨⎧≥<-=++-其他,,01,,,1,,)1()(2121pn pN pN pN p p N n N x x x x x x L θθθ, 在pN p p x x x ,,21<1,pn pN pN x x x ,,21++≥1时, )1ln()(ln )(ln θθθ--+=N n N L ,01)(ln =---=θθθθN n N d L d ,所以n N =最大θ.。

2006—数一真题、标准答案及解析

2006—数一真题、标准答案及解析

2006年全国硕士研究生入学考试数学一真题一、填空题(1) lim Xln(1 x)X 01 COSX -----------------(2 )微分方程y y(1 x)的通解是__________________ .X(3)设是锥面z x2—y2( 0 z 1)的下侧,贝U xdydz 2ydzdx 3(z 1)dxdy(4)点(2,1, 0)到平面3x 4y 5z 0的距离z =(5 )设矩阵A E为2阶单位矩阵,矩阵B满足BA B 2E ,贝U B(6)设随机变量X与Y相互独立,且均服从区间[0, 3]上的均匀分布,则P max{X,Y} 1 = ______________、选择题(7)设函数y f(x)具有二阶导数,且f (x) 0, f (x) 0 ,x为自变量x在x0处的增量, y与dy(A) 0 dx y. (B) 0 y dy(C)y dy 0. (D)dy y 0104d 0f(rcos,rsin )rdr等于(A) 02dx x f (X, y)dy.(B) 0勺x°1x2f(x,y)dy.(C) 0「y1y2f(x,y)dx. (C) ^dy J 7 f(x, y)dx. 【】(9)若级数a n收敛,则级数n 1(A) a n收敛.n 1(C) a n a n 1收敛. (B) ( 1)n a n收敛.n 1(D) 3n 3n 1收敛. 【】分别为f(x)在点X。

处对应的增量与微分,若x 0,则(8)设f(x, y)为连续函数,则(10)设f (x, y)与(x, y)均为可微函数,且y (x, y) 0 •已知(x 0, y 0)是f (x, y)在约束条件(x, y) 0 下的一个极值点,下列选项正确的是 0,则 f y (x 0, y 0) 0 0,则 f y (x 0, y 0) 00,则 f y (x 0, y 0) 00,则 f y (x 0, y 0) 0(A) 若a !, a 2,L , a,线性相关,则 (B) 若a !, a ?丄,a,线性相关,则 (C) 若印,玄2丄,a,线性无关,则(A ) P(A B) P(A). (B )P(A B)P(B). (C ) P(A B) P(A).(D )P(A B)P(B). 【】14 )设随机变量X 服从正态分布N( 1, 212) , Y 服从正态分布N( 2, 2),且P{| X1| 1} P{| Y 2| 1},(A ) 1 2.(B ) 1 2.( C )12.(D )1 2.【 】(12 )设A 为3 阶矩阵,将A 的第 2 行加到第 1 行得B ,再将B 的第 1 列的 -1 倍加到第 2 列得C ,记1 10P0 1 0 ,则0 01(A ) CP 1AP.(B ) C PAP 1.(C )C P T AP . (D )C PAP T .【】13)设 A, B 为随机事件,且p(B) 0, p(A|B)1, 则必有(D) 若a !, a ?丄,a,线性无关,则】(A) 若 f x (x 。

南京大学考研高等数学甲2006

南京大学考研高等数学甲2006
������ ������������������������ ������������������������
������������������ ������������ 2 ������������ = ________ = ________ ������ 2 + ������ 2 ������������ = ________
4������ 2 +������ +1 5������ ������ +1
=
4 5
⒉证明:不论������取何值,方程������ 3 − 3������ + ������ = 0,在 −1,1 内至多只有一个实根。
⒋计算二重积分������ = ⒌求幂级数
������
∞ ln ⁡������ +1 ������ =1 ������ +1
⒍设������ ������ 是������的一个连续可微函数,且满足������
������ ������ ������������ = ������ + 1
������ 0
������ ������
������ ������, ������ ������������ = ________
������������ ������������
,其中������可导,则2 ������ ������������ + ������ ������������ = ________
⒍通解为������ = ������������ 2������ + 2������的常微分方程为________ ⒎设������ = ������������������������������������������ ,则������ 18 0 = ________ ⒏������������ ⒐

2006考研数学(二)真题及参考答案

2006考研数学(二)真题及参考答案

2006年全国硕士研究生入学考试数学(二)一、填空题 (1)曲线4sin 52cos x xy x x+=-的水平渐近线方程为 .(2)设函数231sin ,0,(),x t dt x f x x a x ⎧≠⎪=⎨⎪=⎩⎰在0x =处连续,则a = .(3)广义积分22(1)xdxx +∞=+⎰.(4)微分方程(1)y x y x-'=的通解是 . (5)设函数()y y x =由方程1yy xe =-确定,则A dy dx== .(6)设矩阵2112A ⎛⎫= ⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2B A BE =+,则B = . 二、选择题(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在0x 处的增量,y ∆与dy 分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则 (A )0.dy y <<∆ (B )0.y dy <∆<(C )0.y dy ∆<<(D )0.dy y <∆<【 】(8)设()f x 是奇函数,除0x =外处处连续,0x =是其第一类间断点,则()x f t dt ⎰是(A )连续的奇函数. (B )连续的偶函数(C )在0x =间断的奇函数 (D )在0x =间断的偶函数. 【 】(9)设函数()g x 可微,1()(),(1)1,(1)2g x h x e h g +''===,则(1)g 等于(A )ln 31-. (B )ln 3 1.--(C )ln 2 1.--(D )ln 2 1.-【 】(10)函数212xxx y C e C e xe -=++满足一个微分方程是(A )23.xy y y xe '''--= (B )23.xy y y e '''--=(C )23.xy y y xe '''+-=(D )23.xy y y e '''+-=(11)设(,)f x y 为连续函数,则140(cos ,sin )d f r r rdr πθθθ⎰⎰等于(A )22120(,).x xdx f x y dy -⎰⎰(B )22120(,).x dx f x y dy -⎰⎰(C )22120(,).y ydy f x y dx -⎰⎰(D )22120(,).y dy f x y dx -⎰⎰【 】(12)设(,)f x y 与(,)x y ϕ均为可微函数,且1(,)0y x y ϕ≠. 已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是(A )若00(,)0x f x y '=,则00(,)0y f x y '=. (B )若00(,)0x f x y '=,则00(,)0y f x y '≠. (C )若00(,)0x f x y '≠,则00(,)0y f x y '=. (D )若00(,)0x f x y '≠,则00(,)0y f x y '≠.【 】(13)设12,,,,a a a 均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是 (A )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性相关. (B )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性无关.(C )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性相关.(D )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性无关. 【 】(14)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001P ⎛⎫⎪= ⎪ ⎪⎝⎭,则(A )1.C P AP -= (B )1.C PAP -=(C ).T C P AP =(D ).TC PAP =三 解答题15.试确定A ,B ,C 的常数值,使得23(1)1()xe Bx Cx Ax o x ++=++,其中3()o x 是当30x x →时比的高阶无穷小.16.arcsin xxe dx e ⎰求. 17.{}22(,)1,0D x y x y x =+≤≥设区域,221.1DxyI dxdy x y +=++⎰⎰计算二重积分 18.{}110,sin (0,1,2,)n n n x x x x n π+<<== 设数列满足1lim n x x +→∞证明: (1) 存在,并求极限;211(2)lim()n x n x nx x +→∞计算. 19.sin 2cos sin cos .<a <b b b b b a a a a a πππ<++>++证明: 当0时, 20 设函数()()0,,f u +∞在内具有二阶导数且()22z fx y=+满足等式22220z zx y∂∂+=∂∂.(Ⅰ)验证()()0f u f u u'''+=;(Ⅱ)若()()()10,11,f f f u '==求函数的表达式. 21 已知曲线L 的方程为221,(0),4x l t y l t⎧=+≥⎨=-⎩(Ⅰ)讨论L 的凹凸性;(Ⅱ)过点(-1,0)引L 的切线,求切点00(,)x y ,并写出切线的方程; (Ⅲ)求此切线与L (对应于0x x ≤的部分)及x 轴所围成的平面图形的面积.22 已知非齐次线性方程组12341234123414351331x x x x x x x x ax x x bx +++=-⎧⎪++-=-⎨⎪++-=⎩有个线性无关的解Ⅰ证明方程组系数矩阵A 的秩()2r A =; Ⅱ求,a b 的值及方程组的通解.23 设3阶实对称矩阵A 的各行元素之和均为3,向量()()121,2,1,0,1,1TTαα=--=-是线性方程组A x =0的两个解, (Ⅰ)求A 的特征值与特征向量 (Ⅱ)求正交矩阵Q 和对角矩阵A,使得TQ AQ A =.真题解析一、填空题 (1)曲线4sin 52cos x xy x x+=-的水平渐近线方程为15y =4sin 11lim lim2cos 55x x xx y x x→∞→∞+==-(2)设函数2301sin ,0(),0xt dt x f x x a x ⎧≠⎪=⎨⎪=⎩⎰ 在x =0处连续,则a =132200()1lim ()lim 33x x sm x f x x →→==(3)广义积分22(1)xdxx +∞=+⎰1222222201(1)11110(1)2(1)2(1)22xdx d x x x x +∞+∞+∞+==-⋅=+=+++⎰⎰(4)微分方程(1)y x y x-'=的通解是xy cxe -=)0(≠x(5)设函数()y y x =由方程1yy xe =-确定,则0x dy dx==e-当x =0时,y =1,又把方程每一项对x 求导,y yy e xe y ''=--01(1)1x x y yyyye y xe ey e xe ===''+=-=-=-+(6) 设A = 2 1 ,2阶矩阵B 满足BA =B +2E ,则|B |= .-1 2解:由BA =B +2E 化得B (A -E )=2E ,两边取行列式,得|B ||A -E |=|2E |=4, 计算出|A -E |=2,因此|B |=2. 二、选择题(7)设函数()y f x =具有二阶导数,且()0,()0,f x f x x '''>>∆为自变量x 在点x 0处的增量,0()y dy f x x ∆与分别为在点处对应增量与微分,若0x ∆>,则[A](A )0dy y <<∆(B )0y dy <∆<(C )0y dy ∆<<(D )0dy y <∆<由()0()f x f x '>可知严格单调增加()0()f x f x ''>可知是凹的即知(8)设()f x 是奇函数,除0x =外处处连续,0x =是其第一类间断点,则()xf t dt ⎰是[B](A )连续的奇函数 (B )连续的偶函数(C )在x =0间断的奇函数 (D )在x =0间断的偶函数(9)设函数()g x 可微,1()(),(1)1,(1)2,g x h x e h g +''===则g (1)等于[C] (A )ln 31- (B )ln 31--(C )ln 21--(D )ln 21- ∵ 1()()()g x h x g x e +''=,1(1)12g e+= g (1)= ln 21--(10)函数212x x x y c e c xe -=++满足的一个微分方程是[D] (A )23x y y y xe '''--= (B )23x y y y e '''--=(C )23xy y y xe '''+-=(D )23xy y y e '''+-=将函数212x x x y c e c xe -=++代入答案中验证即可.(11)设(,)f x y 为连续函数,则14(cos ,sin )d f r r rd πθθθγ⎰⎰等于[C](A )2212(,)x xdx f x y dy -⎰⎰(B )2212(,)x dx f x y dy -⎰⎰(C )2212(,)y ydy f x y dx -⎰⎰(D )2212(,)y dy f x y dx -⎰⎰(12)设(,)(,)f xyxy ϕ与均为可微函数,且(,)0,y x y ϕ'≠已知00(,)(,)x y f x y 是在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是[D](A )若0000(,)0,(,)0x y f x y f x y ''==则(B )若0000(,)0,(,)0x y f x y f x y ''=≠则 (C )若0000(,)0,(,)0x y f x y f x y ''≠=则 (D )若0000(,)0,(,)0x y f x y f x y ''≠≠则(,)(,)(,)(,)0(1)(,)(,)0(2)(,)0x x xy y y F f x y x y F f x y x y F f x y x y F x y λλϕλϕλϕϕ=+'''=+=⎧⎪'''=+=⎨⎪'==⎩令今000000(,)(,)0,(,)y y y f x y x y x y ϕλϕ''≠∴=-'代入(1) 得 00000000(,)(,)(,)(,)y xx y f x y x y f x y x y ϕϕ'''='今 00000000(,)0,(,)(,)0(,)0x y xy f x y f x y x y f x y ϕ''''≠∴≠≠则 故选[D] (13)设α1,α2,…,αs 都是n 维向量,A 是m ⨯n 矩阵,则( )成立.(A) 若α1,α2,…,αs 线性相关,则A α1,A α2,…,A αs 线性相关. (B) 若α1,α2,…,αs 线性相关,则A α1,A α2,…,A αs 线性无关. (C) 若α1,α2,…,αs 线性无关,则A α1,A α2,…,A αs 线性相关. (D) 若α1,α2,…,αs 线性无关,则A α1,A α2,…,A αs 线性无关. 解: (A)本题考的是线性相关性的判断问题,可以用定义解.若α1,α2,…,αs 线性相关,则存在不全为0的数c 1,c 2,…,c s 使得c 1α1+c 2α2+…+c s αs =0,用A 左乘等式两边,得c 1A α1+c 2A α2+…+c s A αs =0,于是A α1,A α2,…,A αs 线性相关.如果用秩来解,则更加简单明了.只要熟悉两个基本性质,它们是: 1. α1,α2,…,αs 线性无关⇔ r(α1,α2,…,αs )=s. 2. r(AB )≤ r(B ).矩阵(A α1,A α2,…,A αs )=A ( α1, α2,…,αs ),因此r(A α1,A α2,…,A αs )≤ r(α1, α2,…,αs ).由此马上可判断答案应该为(A).(14)设A 是3阶矩阵,将A 的第2列加到第1列上得B ,将B 的第1列的-1倍加到第2列上得C .记 1 1 0P = 0 1 0 ,则 0 0 1(A) C =P -1AP . (B) C =PAP -1. (C) C =P TAP . (D) C =PAP T. 解: (B)用初等矩阵在乘法中的作用得出B =PA , 1 -1 0C =B 0 1 0 =BP -1= PAP -1. 0 0 1三、解答题(15)试确定A ,B ,C 的常数值,使23(1)1()x e Bx Cx Ax o x ++=++其中3()o x 是当30x x →时比的高阶无穷小.解:泰勒公式2331()26xx x e x o x =++++代入已知等式得 23323[1()][1]1()26x x x o x Bx Cx Ax o x ++++++=++整理得233111(1)()()1()226BB xC B x C o x Ax o x ⎛⎫+++++++++=++ ⎪⎝⎭比较两边同次幂函数得B +1=A ①C +B +12=0 ② 1026B C ++= ③ 式②-③得120233B B +==-则 代入①得13A = 代入②得16C = (16)求arcsin xxe dx e ⎰.解:原式=22arcsin arcsin ()x x xx e t de e t dt e t =⎰⎰令21arcsin arcsin ()1t dttd t t t t =-=-+-⎰⎰2222arcsin arcsin 1(2)12(1)1t tdt t udu t u t t u u t t -=-+-==-+--⎰⎰令2arcsin 1t dut u =-+-⎰arcsin 11ln 21t u C t u -=-+++22arcsin arcsin 111ln 211x x x x x x e e e dx C e e e --∴=-++-+⎰. (17)设区域22{(,)||,0}D x y x y x =+≤≥,计算二重积分2211DxyI dxdy x y +=++⎰⎰.解:用极坐标系2201D xydxdy x y ⎛⎫= ⎪++⎝⎭⎰⎰11222002ln(1)ln 2122r I d dr r r ππππθ-==+=+⎰⎰. (18)设数列{}n x 满足10x π<<,1sin (1,2,3,)n n x x n +==证明:(1)1lim n n x +→∞存在,并求极限;(2)计算211lim n x n n n x x +→∞⎛⎫ ⎪⎝⎭. 证:(1)212sin ,01,2x x x n =∴<≤≥ 因此 1sin ,{}n n n n x x x x +=≤单调减少有下界()0n x ≥根据准则1,lim n n x A →∞=存在在1sin n n x x +=两边取极限得sin 0A A A =∴=因此1lim 0n n x +→∞=(2)原式21sin lim "1"n x n n n x x ∞→∞⎛⎫= ⎪⎝⎭为型 离散型不能直接用洛必达法则先考虑 22011s i n l i m l n 0s i n l i m t t t t t t t e t →⎡⎤⎢⎥⎣⎦→⎛⎫= ⎪⎝⎭用洛必达法则2011(cos sin )limsin 2t t t t t tt te→-=23233310()0()26cos sin limlim22t t t t t t t t t t tt t ee →→⎡⎤⎡⎤-+--+⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦==3330110()261lim26t t t t ee →⎛⎫-++ ⎪⎝⎭-==.(19)证明:当0a b π<<<时,1sin 2cos sin 2cos b b b b a a a aππ++>++. 证:令()sin 2cos f x x x x x π=++ 只需证明0a x π<<<时,()f x 严格单调增加()sin cos 2sin f x x x x x π'=+-+cos sin x x x π=-+()cos sin cos sin 0f x x x x x x x ''=--=-< ()f x '∴严格单调减少又()cos 0f ππππ'=+=故0()0()a x f x f x π'<<<>时则单调增加(严格)()()b a f b f a >>由则得证(20)设函数()(0,)f u +∞在内具有二阶导数,且()22Z fx y=+满足等式22220z zx y∂∂+=∂∂.(I )验证()()0f u f u u'''+=; (II )若(1)0,(1)1f f '== 求函数()f u 的表达式.证:(I )()()22222222;zx zy f x y f x y xyx yx y∂∂''=+=+∂∂++()()()()22222223222222zx y f x yf x yx x y x y ∂'''=+++∂++()()()()22222223222222zy x f x yf x yy x y x y ∂'''=+++∂++()2222222222()0()()0f x y z zf x yx y x yf u f u u'+∂∂''+=++=∂∂+'''∴+=代入方程得成立(II )令(),;,dp p dp du c f u p c p du u p u u'==-=-+=⎰⎰则22(1)1,1,()ln ||,(1)0,0()ln ||f c f u u c f c f u u '===+==∴= 由(21)已知曲线L 的方程221(0)4x t t y t t⎧=+≥⎨=-⎩(I )讨论L 的凹凸性;(II )过点(1,0)-引L 的切线,求切点00(,)x y ,并写出切线的方程; (III )求此切线与L (对应0x x ≤部分)及x 轴所围的平面图形的面积.解:(I )4222,42,12dx dy dy t t t dt dt dx t t-==-==-222312110(0)2dy d d y dx t dx dx dt t t t dt ⎛⎫⎪⎛⎫⎝⎭=⋅=-⋅=-<> ⎪⎝⎭处(0L t ∴>曲线在处)是凸(II )切线方程为201(1)y x t ⎛⎫-=-+⎪⎝⎭,设2001x t =+,20004y t t =-,则2223200000000241(2),4(2)(2)t t t t t t t t ⎛⎫-=-+-=-+⎪⎝⎭得200000020,(1)(2)001t t t t t t +-=-+=>∴=点为(2,3),切线方程为1y x =+(III )设L 的方程()x g y =则()3()(1)S g y y dy =--⎡⎤⎣⎦⎰ ()224024241t t y y x y -+==±-=±-+解出t 得由于(2,3)在L 上,由()232241()y x x y g y ===--+=得可知()30944(1)S y y y dy ⎡⎤=-----⎣⎦⎰ 3300(102)44y dy ydy =---⎰⎰3333220002(10)44(4)214(4)3y y yd y y =-+--=+⨯⨯-⎰8642213333=+-=- (22)已知非齐次线性方程组 x 1+x 2+x 3+x 4=-1,4x 1+3x 2+5x 3-x 4=-1,a x 1+x 2+3x 3+bx 4=1有3个线性无关的解.① 证明此方程组的系数矩阵A 的秩为2.② 求a,b 的值和方程组的通解.解:① 设α1,α2,α3是方程组的3个线性无关的解,则α2-α1,α3-α1是AX =0的两个线性无关的解.于是AX =0的基础解系中解的个数不少于2,即4-r(A )≥2,从而r(A )≤2.又因为A 的行向量是两两线性无关的,所以r(A )≥2.两个不等式说明r(A )=2.② 对方程组的增广矩阵作初等行变换:1 1 1 1 -1 1 1 1 1 -1(A |β)= 4 3 5 -1 -1 → 0 –1 1 –5 3 ,a 1 3b 1 0 0 4-2a 4a+b-5 4-2a由r(A )=2,得出a=2,b=-3.代入后继续作初等行变换:1 02 -4 2→ 0 1 -1 5 -3 .0 0 0 0 0得同解方程组x 1=2-2x 3+4x 4,x 2=-3+x 3-5x 4,求出一个特解(2,-3,0,0)T 和AX =0的基础解系(-2,1,1,0)T ,(4,-5,0,1) T.得到方程组的通解: (2,-3,0,0)T +c 1(-2,1,1,0)T +c 2(4,-5,0,1)T , c 1,c 2任意.(23) 设3阶实对称矩阵A 的各行元素之和都为3,向量α1=(-1,2,-1)T , α2=(0,-1,1)T 都是齐次线性方程组AX =0的解.① 求A 的特征值和特征向量.② 求作正交矩阵Q 和对角矩阵Λ,使得 Q T AQ =Λ.解:① 条件说明A (1,1,1)T =(3,3,3)T ,即 α0=(1,1,1)T 是A 的特征向量,特征值为3.又α1,α2都是AX =0的解说明它们也都是A 的特征向量,特征值为0.由于α1,α2线性无关, 特征值0的重数大于1.于是A 的特征值为3,0,0.属于3的特征向量:c α0, c ≠0.属于0的特征向量:c 1α1+c 2α2, c 1,c 2不都为0.② 将α0单位化,得η0=(33,33,33)T . 对α1,α2作施密特正交化,的η1=(0,-22,22)T , η2=(-36,66,66)T . 作Q =(η0,η1,η2),则Q 是正交矩阵,并且 3 0 0Q T AQ =Q -1AQ = 0 0 0 .0 0 0。

06级信本高等代数试题

06级信本高等代数试题

06级信本高等代数试题(A )一、单项选择(每小题3分,共15分)1、下列矩阵正定的是( )A 、121232123⎛⎫ ⎪ ⎪ ⎪⎝⎭B 、122244246⎛⎫ ⎪ ⎪ ⎪⎝⎭C 、122255253--⎛⎫ ⎪- ⎪ ⎪-⎝⎭D 、725212525⎛⎫⎪⎪ ⎪⎝⎭2、下列3R 的子集是其子空间的是( )A 、12323{(,,)|,0}i x x x x R x x ∈+=B 、12323{(,,)|,0}i x x x x R x x ∈+≠C 、12323{(,,)|,0}i x x x x R x x ∈+≤D 、12323{(,,)|,0}i x x x x R x x ∈+≥ 3、212(,)x x Q ∀∈,下列法则为2Q 的线性变换的是( ) A 、1212(,)x x x x σ=+ B 、122(,)(,0)x x x σ= C 、121(,)(0,sin )x x x σ= D 、2121(,)(,0)x x x σ=4、设3=λ为可逆矩阵A 的特征值,则13)31(-A 有特征值( )A 、181B 、127C 、91D 、315、下列]2,2[-C 中向量为单位向量的是( ) A 、1 B 、x 43 C 、2x D 、22二、填空(每小题3分,共15分)1、一切实n 元二次型可分为 个等价类2、2[]C x 作为实数域上的线性空间其维数是 ,其基为3、向量12αα+关于基312,,ααα的坐标是4、)(,2P L ∈τσ,),(),(x y y x -=σ,(,)(0,)x y x τ=,则(,)x y στ=5、在3R 中,定义内积31(,)i i i ix y αβ==∑,则)0,1,0(与(0,0,1)的夹角为三)01('、求可逆线性替换PY X =,使实二次型21233121323(,,)28124f x x x x x x x x x x =+--化为标准形,并求其正惯性指数,判断其是否正定.四)01('、求10121123(,,,)12100111L ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭的一组基与维数.五)51('、设22100x y x y z u W R z u x y z u ⨯⎧⎫+++=⎛⎫⎧⎪⎪=∈⎨⎨⎬ ⎪-+-=⎝⎭⎩⎪⎪⎭⎩,21110(,)1011W L ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭为22R ⨯的两个子空间,求1212,W W W W + 的一组基与维数.六(10)'、3),,(P z y x ∈∀,令(,,)(2,2,32)x y z x y z x y z x y z σ=++-+-+ ①证明)(3P L ∈σ;②求σ关于基)0,0,1(),0,1,1(),1,1,1(321===ααα的矩阵.七)51('、设321,,εεε是欧氏空间V 的一组标准正交基,)(V L ∈σ,并且1123()22σεεεε=--,2123()22σεεεε=-+-,3123()22σεεεε=--+①证明σ是V 上的对称变换;②求σ的特征值与特征向量;③求V 的一组标准正交基,使σ关于此基的矩阵为对角矩阵. 八(10)'、设1234{,,,}αααα是欧氏空间V 的一组标准正交基,证明:1121(2βαα=++34)αα+,212341()2βαααα=--+,312341()2βαααα=-+-,412341()2βαααα=+--也是欧氏空间V 的一组标准正交基.06级信本高等代数试题(A )答案与评分标准一、单项选择(每小题3分,共15分)D, A, B, C, B .二、填空(每小题3分,共15分)1、(1)(2)2n n ++;2、4,1,,,i x ix ;3、(0,1,1);4、(,0)x -;5、2π.三)01('、解:二次型的矩阵046402622A -⎛⎫ ⎪=- ⎪ ⎪--⎝⎭对矩阵A 作合同变换04618201600402220020622002001100100100010010110001311211----⎛⎫⎛⎫⎛⎫⎪ ⎪⎪---- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--→→ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, (5分)令100110211X Y ⎛⎫ ⎪=- ⎪ ⎪⎝⎭,则二次型的标准形为222123162y y y --+;正惯性指数为1 ;且不正定. (5分)四)01('、解:取22R ⨯的一组基11122122,,,E E E E ,则111221221112101211230213(,,,)(,,,)1210011111012011E E E E ⎛⎫⎪⎛⎫⎛⎫⎛⎫⎛⎫ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭⎝⎭⎪⎝⎭(5分) 11121112021302131101000020110000⎛⎫⎛⎫⎪ ⎪⎪ ⎪→ ⎪ ⎪--⎪ ⎪⎝⎭⎝⎭,故其基为1012,1210⎛⎫⎛⎫ ⎪ ⎪-⎝⎭⎝⎭,维数为2. (5分)五)51('、解:由0x y z u x y z u +++=⎧⎨-+-=⎩的基础解系可得1W 的基为1001,1001⎛⎫⎛⎫ ⎪ ⎪--⎝⎭⎝⎭, (5分)则1210011110(,,,)10011011W W L ⎛⎫⎛⎫⎛⎫⎛⎫+= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭,而101110000110010110110011011000⎛⎫⎛⎫⎪ ⎪- ⎪ ⎪→ ⎪ ⎪-⎪ ⎪-⎝⎭⎝⎭, (5分)则1212dim()3,dim()1W W W W +== ,基分别为100111,,100110⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭;011110011011⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭. ( 5分) 六(10)'、①证明:(,,)(2,2,32)x y z x y z x y z x y z σ=++-+-+213(,,)121112x y z ⎛⎫ ⎪=-- ⎪ ⎪⎝⎭,令213121112A ⎛⎫⎪=-- ⎪ ⎪⎝⎭,P b a P Y X ∈∀∈∀,,,3,有=+)(bY aX σ)()()(Y b X a bYA aXA A bY aX σσ+=+=+则)(3P L ∈σ; (5分) ②1123()(4,0,4)444σαααα==-+,2123()(3,1,2)234σαααα=-=-+,3123()(2,1,3)32σαααα==-+,故σ关于},,{321ααα的矩阵423432441B ⎛⎫ ⎪=--- ⎪ ⎪⎝⎭. (5分)七)02('、证明:①σ关于标准正交基321,,εεε的矩阵是122212221A --⎛⎫⎪=-- ⎪ ⎪--⎝⎭,因A A T =,所以σ是对称变换; (5分) ②解0||)(=-=A xE x f A 得特征值1233,3λλλ===-,对123λλ==,解(3)0E A X -=,基础解系12(1,1,0),(1,0,1)ηη=-=-,得其对应线性无关的特征向量为112213,ξεεξεε=-+=-+,对33λ=-,解(3)0E A X --=,基础解系3(1,1,1,)η=,得属于13-=λ的特征向量3123ξεεε=++; (5分)③令11ξβ=,)1,21,21(),(),(1111222--=-=ββββξξβ,则得标准正交基3212211626161,2121εεεγεεγ+--=+-= ,3213313131εεεγ++=,σ关于此基的矩阵是(3,3,3)diag -. (5分)八、(10)'证 由于1234{,,,}αααα是欧氏空间V 的一组标准正交基,故1111112233444444(,)(,)(,)(,)1ββββββββ====+++=11111111121344444444(,)0,(,)0ββββ=--+==-+-=, (5分) 11111111142344444444(,)0,(,)0ββββ=+--==+--=, 11111111243444444444(,)0,(,)0ββββ=-+-==--+=,所以1234{,,,}ββββ也是欧氏空间V 的一组标准正交基. (5分)06级信本高等代数试题(B )一、单项选择(每小题3分,共15分)1、n 元实二次型X AX '正定⇔( )A 、0A >B 、()r A n =C 、符号差0s =D 、正惯性指数p n = 2、dim ((0,1,1,1),(1,1,0,1),(1,0,1,0),(1,2,1,2))L ----=( ) A 、1 B 、2 C 、3 D 、43、)(3P L ∈σ,),,0(),,(y x z y x =σ,则2σ的值域与核的维数分别是( )A 、1,2B 、2,1C 、0,3D 、3,04、设2λ=为可逆矩阵A 的特征值,则311()2A -有特征值( )A 、12B 、14C 、18D 、1165、下列]1,1[-C 中向量为单位向量的是( ) A 、1 B 、x C 、2x D 、22二、填空(每小题3分,共15分)1、一切n 元复二次型可分为 个等价类2、33⨯R 中的所有下三角矩阵所做成33⨯R 的子空间,其维数为3、向量(1,1,1)关于基11213,,εεεεε++的坐标是4、设σ为[]n P x 上的导数变换,核1(0)σ-= ,值域([])n P x σ=5、设12,,,n ααα 是欧氏空间的标准正交基,(,)i j αα= 三)01('、求非退化线性替换PY X =,使实二次型21232121323(,,)242f x x x x x x x x x x =-+-化为标准形,并求其正惯性指数,判断其是否正定.四)01('、求10022214(,,,)11111111L ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭⎝⎭的一组基与维数.五)01('、设1212(1,2,1,0),(1,1,1,1),(2,1,0,1),(1,1,3,7)ααββ==-=-=-,1212(,),(,)U L W L ααββ==,求,U W U W + 的维数与一组基.六)51('、设P 是数域,3),,(P z y x X ∈'=∀,令110(),011101X AX A σ⎛⎫ ⎪== ⎪ ⎪-⎝⎭,①证明)(3P L ∈σ;②求σ关于基)0,1,2(),0,1,1(),1,1,1(321=α=α=α的矩阵. 七)51('、设R 是实数域,在欧氏空间3R 中,3()L R σ∈,并且123123123123(,,)(22,22,22)x x x x x x x x x x x x σ=++++++①证明σ是3R 上的对称变换; ②求σ的特征值与特征向量;③求3R 的一组标准正交基,使σ关于此基的矩阵为对角矩阵. 八、(10)'设123{,,}ααα是欧氏空间V 的一组标准正交基,证明:11231(22)3βααα=++,21231(22)3βααα=-+,31231(22)3βααα=+-也是欧氏空间V 的一组标准正交基.06级信本高等代数试题(B )答案与评分标准一、单项选择(每小题3分,共15分)D ,B ,A ,C ,D二、填空(每小题3分,共15分)1、1n +;2、6;3、(1,1,1)-;4、1,[]n P P x -;5、1,0,i ji j=⎧⎨≠⎩三)01('、解:二次型⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----=321321321011112120),,(),,(x x x x x x x x x f其矩阵是⎪⎪⎪⎭⎫⎝⎛----=011112120A ,对A 施行合同变换⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---→⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----→⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----101111001100010003100112001101010104100010001011112120 (5分) 所以Y X ⎪⎪⎪⎭⎫⎝⎛-=101111001二次型的标准形为:2322213y y y -+- 正惯性指标是1,非正定。

2006年考研数学一真题及参考答案

2006年考研数学一真题及参考答案

2006年全国硕士研究生入学考试数学(一)一、填空题(1)0ln(1)lim1cos x x x x→+=-. (2)微分方程(1)y x y x-'=的通解是 .(3)设∑是锥面22z x y =+(01z ≤≤)的下侧,则23(1)xdydz ydzdx z dxdy ∑++-=⎰⎰ .(4)点(2,1,0)到平面3450x y z ++=的距离z = .(5)设矩阵2112A ⎛⎫=⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则B =16 .(6)设随机变量X 与Y 相互独立,且均服从区间[0, 3]上的均匀分布,则{}max{,}1P X Y ≤= .二、选择题(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在0x 处的增量,y ∆与dy 分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A )0.dx y <<∆ (B )0.y dy <∆<(C )0.y dy ∆<<(D )0.dy y <∆<【 】(8)设(,)f x y 为连续函数,则14(cos ,sin )d f r r rdr πθθθ⎰⎰等于(A )2210(,).x xf x y dy -⎰⎰(B )2210(,).x f x y dy -⎰⎰(C )2210(,).y yf x y dx -⎰⎰(C )2210(,).y f x y dx -⎰⎰【 】(9)若级数1nn a∞=∑收敛,则级数(A )1nn a∞=∑收敛. (B )1(1)nn n a ∞=-∑收敛.(C )11n n n a a ∞+=∑收敛.(D )112n n n a a ∞+=+∑收敛. 【 】 (10)设(,)f x y 与(,)x y ϕ均为可微函数,且1(,)0y x y ϕ≠. 已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是 (A )若00(,)0x f x y '=,则00(,)0y f x y '=. (B )若00(,)0x f x y '=,则00(,)0y f x y '≠. (C )若00(,)0x f x y '≠,则00(,)0y f x y '=. (D )若00(,)0x f x y '≠,则00(,)0y f x y '≠.【 】(11)设12,,,,a a a L 均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是 (A )若12,,,,a a a L 线性相关,则12,,,,Aa Aa Aa L 线性相关. (B )若12,,,,a a a L 线性相关,则12,,,,Aa Aa Aa L 线性无关.(C )若12,,,,a a a L 线性无关,则12,,,,Aa Aa Aa L 线性相关.(D )若12,,,,a a a L 线性无关,则12,,,,Aa Aa Aa L 线性无关. 【 A 】 (12)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001P ⎛⎫⎪= ⎪ ⎪⎝⎭,则(A )1.C P AP -= (B )1.C PAP -=(C ).T C P AP =(D ).TC PAP = 【 B 】(13)设,A B 为随机事件,且()0,(|)1P B P A B >=,则必有 (A )()().P A B P A ⋃> (B )()().P A B P B ⋃>(C )()().P A B P A ⋃=(D )()().P A B P B ⋃= 【 】(14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且12{||1}{||1},P X P Y μμ-<>-<(A )1 2.σσ< (B )1 2.σσ>(C )1 2.μμ<(D )1 2.μμ> 【 】三 解答题 15 设区域D=(){}22,1,0x y x y x +≤≥,计算二重积分2211DxyI dxdy x y +=++⎰⎰。

2006年考研数学一真题及解析

2006年考研数学一真题及解析

2006 年全国硕士研究生入学统一考试数学一试题解析一、填空题(1)【答案】2.【详解】由等价无穷小替换,0x →时,21ln(1),1cos 2x x x x +-,2002ln(1)limlim 11cos 2x x x x x x x →→+=-=2(2)【答案】xCxe-.【详解】分离变量,(1)dy y x dx x -=⇒(1)dy x dx y x -=⇒1(1)dy dx y x =-⇒1dy dx dxy x =-⎰⎰⎰⇒ln ln y x x c =-+⇒ln ln yx x cee-+=⇒xy Cxe-=(3)【答案】2π【详解】补一个曲面221:1x y z ⎧+≤∑⎨=⎩1,取上侧,则1∑+∑组成的封闭立体Ω满足高斯公式,1()P Q R dv Pdydz Qdzdx Rdxdy I x y z Ω∑+∑∂∂∂++=++=∂∂∂⎰⎰⎰⎰⎰ 设,2,3(1)P x Q y R z ===-,则1236P Q Rx y z∂∂∂++=++=∂∂∂∴I =6dxdydz Ω⎰⎰⎰(Ω为锥面∑和平面1∑所围区域)6V =(V 为上述圆锥体体积)注:以下几种解法针对于不同的方法求圆锥体体积V 方法1:I 623ππ=⨯=(高中方法,圆锥的体积公式,这种方法最简便)而123(1)0xdydz ydzdx z dxdy ∑++-=⎰⎰( 在1∑上:1,0z dz ==)方法2:先二重积分,后定积分.因为1V Sdz =⎰,r =222r x y =+,22r z =,22S r z ππ==,所以1122001133V z dz z πππ===⎰.从而6623I V ππ==⨯=方法3:利用球面坐标.1z =在球坐标下为:1cos ρθ=,1224cos 0006sin I d d d ππϕθϕρϕρ=⎰⎰⎰243002sin cos d d ππϕθϕϕ=⎰⎰2430cos (2)cos d d ππϕθϕ=-⎰⎰422001(2)()cos 2d ππθϕ-=--⎰202d πθπ==⎰方法4:利用柱面坐标.21106rI d dr rdz πθ=⎰⎰⎰216(1)d r rdrπθ=-⎰⎰122300116()23d r r πθ=-⎰202d πθπ==⎰(4)【详解】代入点000(,,)P x y z 到平面0Ax By Cz D +++=的距离公式d ===(5)【答案】2【详解】由已知条件2BA B E =+变形得,2BA E B -=⇒()2B A E E -=,两边取行列式,得()244B A E E E -===其中,2110112120111A E ⎡⎤⎡⎤-=-==⎢⎥⎢⎥--⎣⎦⎣⎦,222E 4E ==因此,2422E B A E===-.(6)【答案】19【详解】根据独立性原理:若事件1,,n A A 独立,则{}{}{}{}1212n n P A A A P A P A P A =事件{}{}{}{}max{,}11,111X Y X Y X Y ≤=≤≤=≤≤ ,而随机变量X 与Y 均服从区间[0,3]上的均匀分布,有{}1011133P X dx ≤==⎰和{}1011133P Y dy ≤==⎰.又随机变量X 与Y 相互独立,所以,{}{}{}{}max(,)11,111P x y P x Y P x P Y ≤=≤≤=≤⋅≤1133=⨯19=二、选择题.(7)【答案】A 【详解】方法1:图示法.因为()0,f x '>则()f x 严格单调增加;因为()0,f x ''>则()f x 是凹函数,又0x > ,画2()f x x =的图形结合图形分析,就可以明显得出结论:0dy y << .方法2:用两次拉格朗日中值定理000()()()y dy f x x f x f x x '-=+-- (前两项用拉氏定理)0()()f x f x xξ''=- (再用一次拉氏定理)0()()f x x ηξ=-'' ,其中000,x x x x ξηξ<<+<< 由于()0f x ''>,从而0y dy -> .又由于0()0dy f x x '=> ,故选[]A 方法3:用拉格朗日余项一阶泰勒公式.泰勒公式:000()()()()f x f x f x x x '=+-()20000()()()()2!!n n n f x f x x x x x R n ''+-++-+ ,其中(1)00()()(1)!n nn fx R x x n +=-+.此时n 取1代入,可得20001()()()()()02y dy f x x f x f x x f x ξ'''∆-=+∆--∆=∆>又由0()0dy f x x '=∆>,选()A .O x 0x 0+Δx xyy=f (x )Δydy(8)【答案】()C 【详解】记140(cos ,sin )(,)Dd f r r rdr f x y dxdy πθθθ=⎰⎰⎰⎰,则区域D 的极坐标表示是:01r ≤≤,04πθ≤≤.题目考察极坐标和直角坐标的互化问题,画出积分区间,结合图形可以看出,直角坐标的积分范围(注意y x =与221x y +=在第一象限的交点是2222,)),于是2:02D y y x ≤≤≤≤所以,原式0(,)ydy f x y dx =.因此选()C (9)【答案】D 【详解】方法1:数列收敛的性质:收敛数列的四则运算后形成的新数列依然收敛因为1nn a ∞=∑收敛,所以11n n a ∞+=∑也收敛,所以11()n n n a a ∞+=+∑收敛,从而112n n n a a ∞+=+∑也收敛.选D.方法2:记n n a =,则1n n a ∞=∑收敛.但11n n n a ∞∞===∑(p 级数,12p =级数发散);111n n n n a a ∞∞+===∑∑p 级数,1p =级数发散)均发散。

2006考研数二真题及解析

2006考研数二真题及解析

2006年全国硕士研究生入学统一考试数学二试题一、填空题:1-6小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (1) 曲线4sin 52cos x xy x x+=-的水平渐近线方程为(2) 设函数2301sin ,0(),0xt dt x f x x a x ⎧≠⎪=⎨⎪=⎩⎰ 在0x =处连续,则a =(3) 广义积分22(1)xdxx +∞=+⎰(4) 微分方程(1)y x y x-'=的通解是(5) 设函数()y y x =由方程1yy xe =-确定,则0x dy dx==(6) 设2112A ⎛⎫=⎪- ⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则B = .二、选择题:9-14小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7) 设函数()y f x =具有二阶导数,且()0,()0,f x f x x '''>>为自变量x 在点0x 处的增量,y 与dy 分别为()f x 在点0x 处对应增量与微分,若0x >,则( ) (A)0dy y << (B)0y dy <<(C)0y dy <<(D)0dy y <<(8) 设()f x 是奇函数,除0x =外处处连续,0x =是其第一类间断点,则0()xf t dt ⎰是( )(A)连续的奇函数 (B)连续的偶函数(C)在0x =间断的奇函数(D)在0x =间断的偶函数(9) 设函数()g x 可微,1()(),(1)1,(1)2,g x h x e h g +''===则(1)g 等于( )(A)ln 31-(B)ln 31--(C)ln 21--(D)ln 21-(10) 函数212x x x y c e c e xe -=++满足的一个微分方程是( ) (A)23xy y y xe '''--= (B)23xy y y e '''--=(C)23x y y y xe '''+-=(D)23xy y y e '''+-=(11) 设(,)f x y 为连续函数,则14(cos ,sin )d f r r rdr πθθθ⎰⎰等于( )(A)(,)xf x y dy ⎰(B)(,)f x y dy ⎰(C)(,)yf x y dx ⎰(D)(,)f x y dx ⎰(12) 设(,)(,)f x y x y ϕ与均为可微函数,且(,)0,y x y ϕ'≠已知00(,)(,)x y f x y 是在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是( )(A)若0000(,)0,(,)0x y f x y f x y ''==则 (B)若0000(,)0,(,)0x y f x y f x y ''=≠则(C)若0000(,)0,(,)0x y f x y f x y ''≠=则 (D)若0000(,)0,(,)0x y f x y f x y ''≠≠则(13) 设12,,,s ααα均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是( ) (A)若12,,,s ααα线性相关,则12,,,s A A A ααα线性相关. (B)若12,,,s ααα线性相关,则12,,,s A A A ααα线性无关.(C)若12,,,s ααα线性无关,则12,,,s A A A ααα线性相关. (D)若12,,,s ααα线性无关,则12,,,s A A A ααα线性无关.(14) 设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001P ⎛⎫⎪= ⎪⎝⎭,则( )(A)1.C P AP -=(B)1.C PAP -= (C).TC P AP =(D).TC PAP =三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)试确定常数,,A B C 的值,使得23(1)1()x e Bx Cx Ax o x ++=++,其中3()o x 是当0x →时比3x 高阶的无穷小.(16)(本题满分10分)求arcsin xxe dx e ⎰ (17)(本题满分10分)设区域22{(,)|1,0}D x y x y x =+≤≥,计算二重积分2211DxyI dxdy x y +=++⎰⎰ (18)(本题满分12分)设数列{}n x 满足10x π<<,1sin (1,2,)n n x x n +==(I) 证明lim n n x →∞存在,并求该极限;(II) 计算211lim n x n n n x x +→∞⎛⎫ ⎪⎝⎭. (19)(本题满分10分)证明:当0a b π<<<时,sin 2cos sin 2cos b b b b a a a a ππ++>++. (20)(本题满分12分)设函数()(0,)f u +∞在内具有二阶导数,且Z f=满足等式22220z zx y∂∂+=∂∂(I)验证()()0f u f u u'''+=; (II)若(1)0,(1)1f f '==, 求函数()f u 的表达式. (21)(本题满分12分)已知曲线L 的方程221,(0),4x t t y t t⎧=+≥ ⎨=-⎩(I) 讨论L 的凹凸性;(II) 过点(1,0)-引L 的切线,求切点00(,)x y ,并写出切线的方程; (III) 求此切线与L (对应0x x ≤的部分)及x 轴所围成的平面图形的面积. (22)(本题满分9分)已知非齐次线性方程组1234123412341,4351,31x x x x x x x x ax x x bx +++=-⎧⎪++-=-⎨⎪+++=⎩ 有3个线性无关的解.(I) 证明此方程组系数矩阵A 的秩()2r A =; (Ⅱ) 求,a b 的值及方程组的通解. (23)(本题满分9分)设3阶实对称矩阵A 的各行元素之和均为3,向量()()121,2,1,0,1,1TTαα=--=-是线性方程组0Ax =的两个解.(I) 求A 的特征值与特征向量;(II) 求正交矩阵Q 和对角矩阵Λ,使得TQ AQ =Λ.2006年全国硕士研究生入学统一考试数学二试题解析一、填空题 (1)【答案】15y =【详解】 由水平渐近线的定义及无穷小量的性质----“无穷小量与有界函数的乘积是无穷小量”可知4sin lim lim 52cos x x x x y x x →∞→∞+=-4sin 1lim2cos 5x xx x x→∞+=-10lim 50x →∞+=-15= 0x →时1x为无穷小量,sin x ,cos x 均为有界量. 故,15y =是水平渐近线.(2)【答案】13【详解】按连续性定义,极限值等于函数值,故lim ()x f x →203sin limx x t x →=⎰220sin()lim 3x x x →洛220lim 3x x x→=13= 注:00型未定式,可以采用洛必达法则;等价无穷小量的替换22sin x x(3)【答案】12【详解】222222001111(1)2(1)212xdx dx x x x +∞+∞+∞==-⋅=+++⎰⎰(4) 【答案】xCxe-.【详解】分离变量,(1)dy y x dx x -=⇒(1)dy x dx y x -=⇒1(1)dy dx y x =-⇒1dy dx dx y x=-⎰⎰⎰ ⇒ln ln y x x c =-+ ⇒ln ln y x x ce e -+= ⇒xy Cxe -=(5)【答案】e -【详解】题目考察由方程确定的隐函数在某一点处的导数.在原方程中令0(0)1x y =⇒= .将方程两边对x 求导得y y y e xe y ''=--,令0x =得(0)y e '=-(6) 【答案】 2【详解】由已知条件2BA B E =+变形得,2BA E B -=⇒()2B A E E -=, 两边取行列式, 得()244B A E E E -=== 其中,2110112120111A E ⎡⎤⎡⎤-=-==⎢⎥⎢⎥--⎣⎦⎣⎦, 222E 4E == 因此,2422E B A E===-.二、选择题.(7)【答案】A 【详解】方法1: 图示法.因为()0,f x '>则()f x 严格单调增加;因为()0,f x ''> 则()f x 是凹函数,又0x >,画2()f x x =的图形yy结合图形分析,就可以明显得出结论:0dy y <<. 方法2:用两次拉格朗日中值定理000()()()y dy f x x f x f x x '-=+--(前两项用拉氏定理)0()()f x f x x ξ''=- (再用一次拉氏定理)0()()f x x ηξ=-'', 其中000,x x x x ξηξ<<+<<由于()0f x ''>,从而0y dy ->. 又由于0()0dy f x x '=>,故选[]A 方法3: 用拉格朗日余项一阶泰勒公式. 泰勒公式:000()()()()f x f x f x x x '=+-()20000()()()()2!!n n n f x f x x x x x R n ''+-++-+,其中(1)00()()(1)!n nn fx R x x n +=-+. 此时n 取1代入,可得20001()()()()()02y dy f x x f x f x x f x ξ'''∆-=+∆--∆=∆> 又由0()0dy f x x '=∆>,选()A .(8)【答案】(B ) 【详解】方法1:赋值法特殊选取1,0()0,01,0x f x x x >⎧⎪==⎨⎪-<⎩,满足所有条件,则0,0(),0x x x f t dt x x x ≥⎧==⎨-<⎩⎰ . 它是连续的偶函数. 因此,选(B )方法2:显然()f x 在任意区间[],a b 上可积,于是0()()xF x f t dt =⎰记处处连续,又()()()()()s txxxF x f t dt f t dt f s ds F x =----==--==⎰⎰⎰即()F x 为偶函数 . 选 (B ) .(9)【答案】(C )【详解】利用复合函数求导法1()()g x h x e +=两边对x 求导⇒1()()()g x h x g x e +''=将1x =代入上式,⇒1(1)12g e+=⇒1(1)ln 1ln 212g =-=--. 故选(C ).(10)【答案】(C )【详解】题目由二阶线性常系数非齐次方程的通解,反求二阶常系数非齐次微分方程,分两步进行,先求出二阶常系数齐次微分方程的形式,再由特解定常数项.因为212x x x y c e c e xe -=++是某二阶线性常系数非齐次方程的通解,所以该方程对应的齐次方程的特征根为1和-2,于是特征方程为2(1)(2)20λλλλ-+=+-=,对应的齐次微分方程为-20y y y '''+=所以不选(A )与(B ),为了确定是(C )还是(D ),只要将特解x y xe *=代入方程左边,计算得()()-23x y y y e ***'''+=,故选(D ). (11) 【答案】()C【详解】记140(cos ,sin )(,)Dd f r r rdr f x y dxdy πθθθ=⎰⎰⎰⎰,则区域D 的极坐标表示是:01r ≤≤ ,04πθ≤≤. 题目考察极坐标和直角坐标的互化问题,画出积分区间,结合图形可以看出,直角坐标的积分范围(注意 y x = 与 221x y += 在第一象限的交点是22(,),于是:02D y y x ≤≤≤≤所以,原式0(,)yf x y dx =. 因此选 ()C(12) 【答案】D 【详解】方法1: 化条件极值问题为一元函数极值问题。

2006级《高等代数(2)》试卷A参考答案及评分标准

2006级《高等代数(2)》试卷A参考答案及评分标准

重庆大学《高等代数(2)》课程试题(A 卷)参考答案2006~2007学年第 2 学期 考试时间:2007-7-111. 解:显然所给集合对于定义的加法和数乘运算封闭。

对于加法运算,易证:(1) 11222211(,)(,)(,)(,)a b a b a b a b ⊕=⊕;………………………….(1分) (2) 112233112233[(,)(,)](,)(,)[(,)(,)]a b a b a b a b a b a b ⊕⊕=⊕⊕;...(2分) (3)(,)(0,0)(,)a b a b ⊕=;………………….………………………….(3分) (4)2(,)(,)0a b a a b ⊕--=;………………….……………………….(4分) 对于数乘运算,(5)21(11)1(,)(1,1)(,)2a b a b a a b -=+=;…….…………..………….(5分) (6) 2(1)[(,)](,)()(,)2kl kl k l a b kla klb a kl a b -=+=;………….(6分) (7)2[(,)][(,)]()(1)((),())2()(,);k a b l a b k l k l k l a k l b a k l a b ⊕++-=+++=+.…………..………..…….(8分)(8)11222121212121122[(,)][(,)](1)((),()())2[(,)(,)].k a b k a b k k k a a k a a b b a a k a b a b ⊕-=+++++=⊕……..…….(10分) 故构成实数域上的一个线性空间。

2. 解:取中间基1(1,0,0,0)e =,2(0,1,0,0)e =,3(0,0,1,0)e =,4(0,0,0,1)e =。

则12341234(,,,)(,,,)e e e e A εεεε=,12341234(,,,)(,,,)e e e e B ηηηη=,其中1111212111100111A --⎡⎤⎢⎥--⎢⎥=⎢⎥-⎢⎥⎣⎦,2021111302111222B -⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,从而, 112341234(,,,)(,,,)A B ηηηηεεεε-=,..…………………..….(5分)其中13265513412341133278A --⎡⎤⎢⎥-⎢⎥=-⎢⎥⎢⎥---⎣⎦,1101110101110010A B -⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,这就是由基1234(,,,)εεεε到基1234(,,,)ηηηη的过渡矩阵。

2006年考研数学一真题及解析

2006年考研数学一真题及解析

x 2 + y 2 (0 ≤ z ≤ 1) 的下侧,则
∫∫ xdydz + 2 ydzdx + 3(z − 1)dx dy = 2π .
Σ
【分析】 本题 Σ 不是封闭曲面, 首先想到加一曲面 Σ1 : ⎨
⎧z =1 , 取上侧, 使 Σ + Σ1 2 2 ⎩x + y ≤1
构成封闭曲面,然后利用高斯公式转化为三重积分,再用球面(或柱面)坐标进行计 算即可. 【详解】 设 Σ1 : z = 1( x + y ≤ 1) ,取上侧,则
未定式极限的求解利用等价无穷小代换即可本题为分析lim详解lim本方程为可分离变量型先分离变量然后两边积分即可分析原方程等价为详解两边积分得lnlndzdydydx构成封闭曲面然后利用高斯公式转化为三重积分再用球面或柱面坐标进行计
2006 年硕士研究生入学考试数学一试题及答案解析 一、填空题:1-6 小题,每小题 4 分,共 24 分. 把答案填在题中横线上.
2 2
∫∫ xdydz + 2 ydzdx + 3(z − 1)dx dy
Σ
=

∫∫
Σ+ Σ1
xdydz + 2 ydzdx + 3( z − 1)dx dy − ∫∫ x dy dz + 2 y dz dx + 3(z − 1)dx dy .
Σ1 2π 1 1
∫∫
Σ+ Σ1 Σ1
xdydz + 2 ydzdx + 3( z −1)dx dy = ∫∫∫ 6dv = 6 ∫0 dθ ∫0 rdr ∫r dz = 2π ,
您所下载的资料来源于弘毅考研资料下载中心 获取更多考研资料,请访问

[全]高等代数-考研真题详解

[全]高等代数-考研真题详解

高等代数-考研真题详解1.设Q是有理数域,则P={α+βi|α,β∈Q}也是数域,其中.()[南京大学研]【答案】对查看答案【解析】首先0,1∈P,故P非空;其次令a=α1+β1i,b=α2+β2i其中α1,α2,β1,β2为有理数,故a±b=(α1+β1i)±(α2+β2i)=(α1±α2)+(β1±β2)i∈Pab=(α1+β1i)(α2+β2i)=(α1α2-β1β2)+(α1β2+α2β1)i∈P又令c=α3+β3i,d=α4+β4i,其中α3,α4,β3,β4为有理数且d≠0,即α4≠0,β4≠0,有综上所述得P为数域.2.设f(x)是数域P上的多项式,a∈P,如果a是f(x)的三阶导数f‴(x)的k重根(k≥1)并且f(a)=0,则a是f(x)的k+3重根.()[南京大学研]【答案】错查看答案【解析】反例是f(x)=(x-a)k+3+(x-a)2,这里f(a)=0,并且f ‴(x)=(k+3)(k+2)(k+1)(x-a)k满足a是f(x)的三阶导数f‴(x)的k重根(k≥1).3.设f(x)=x4+4x-3,则f(x)在有理数域上不可约.()[南京大学研]【答案】对查看答案【解析】令x=y+1,则f(y)=y4+4y3+6y2+8y+2,故由艾森斯坦因判别法知,它在有理数域上不可约.二、计算题1.f(x)=x3+6x2+3px+8,试确定p的值,使f(x)有重根,并求其根.[清华大学研]解:f′(x)=3(x2+4x+p).且(f(x),f′(x))≠1,则(1)当p=4时,有(f(x),f′(x))=x2+4x+4所以x+2是f(x)的三重因式,即f(x)(x+2)3,这时f(x)的三个根为-2,-2,-2.(2)若p≠4,则继续辗转相除,即当p=-5时,有(f(x),f′(x))=x-1即x-1是f(x)的二重因式,再用(x-1)2除f(x)得商式x+8.故f(x)=x3+bx2-15x+8=(x-1)2(x+8)这时f(x)的三个根为1,1,-8.2.假设f1(x)与f2(x)为次数不超过3的首项系数为1的互异多项式,且x4+x2+1整除f1(x3)+x4f2(x3),试求f1(x)与f2(x)的最大公因式.[上海交通大学研]解:设6次单位根分别为由于x6-1=(x2)3-1=(x2-1)(x4+x2+1),所以ε1,ε2,ε4,ε5是x4+x2+1的4个根.由于ε13=ε53=-1,且x4+x2+1∣f1(x3)+x4f2(x3),所以,分别将ε1,ε5代入f1(x3)+x4f2(x3)可得从而f1(-1)=f2(-1)=0即x+1是f1(x)与f2(x)的一个公因式.同理,将ε2,ε4代入f1(x3)+x4f2(x3)可得f1(1)=f2(1)=0,即x -1是f1(x)与f2(x)的一个公因式.所以(x-1)(x+1)是f1(x)与f2(x)的一个公因式.又因为f1(x),f2(x)为次数不超过3的首项系数为1的互异多项式,所以(f(x),g(x))=x2-1三、证明题1.设不可约的有理分数p/q是整系数多项式f(x)=a0xn+a1xn-1+…+an -1x+an的根,证明:q∣a0,p∣an[华中科技大学研]证明:因为p/q是f(x)的根,所以(x-p/q)∣f(x),从而(qx-p)∣f(x).又因为p,q互素,所以qx-p是本原多项式[即多项式的系数没有异于±l的公因子],且f(x)=(qx-p)(bn-1xn-1+…+b0,bi∈z比较两边系数,得a0=qbn-1,an=-pb0⇒q∣a0,p∣an2.设f(x)和g(x)是数域P上两个一元多项式,k为给定的正整数.求证:f(x)∣g(x)的充要条件是fk(x)∣gk(x)[浙江大学研]证明:(1)先证必要性.设f(x)∣g(x),则g(x)=f(x)h(x),其中h(x)∈P(x),两边k次方得gk(x)=fk(x)hk(x),所以fk(x)∣gk (x)(2)再证充分性.设fk(x)∣gk(x)(i)若f(x)=g(x)=0,则f(x)∣g(x)(ii)若f(x),g(x)不全为0,则令d(x)=(f(x),g(x)),那么f(x)=d(x)f1(x),g(x)=d(x)g1(x),且(f1(x),g1(x))=1①所以fk(x)=dk(x)f1k(x),gk(x)=dk(x)g1k(x)因为fk(x)∣gk(x),所以存在h(x)∈P[x](x),使得gk(x)=fk(x)·h (x)所以dk(x)g1k(x)=dk(x)f1k(x)·h(x),两边消去dk(x),得g1k (x)=f1k(x)·h(x)②由②得f1(x)∣g1k(x),但(f1(x),g1(x))=1,所以f1(x)∣g1k -1(x)这样继续下去,有f1(x)∣g1(x),但(f1(x),g1(x))=1故fl(x)=c,其中c为非零常数.。

2006年考研数学一真题及答案

2006年考研数学一真题及答案

2006年考研数学一真题一、填空题(1~6小题,每小题4分,共24分。

)(1)。

【答案】2。

【解析】等价无穷小代换:当时,所以综上所述,本题正确答案是2。

【考点】高等数学—函数、极限、连续—无穷小量的性质及无穷小量的比较(2)微分方程的通解为__________。

【答案】,为任意常数。

【解析】原式等价于(两边积分)即,为任意常数综上所述,本题正确答案是。

【考点】高等数学—常微分方程—一阶线性微分方程(3)设是锥面的下侧,则。

【答案】。

【解析】设,取上侧,则而所以综上所述,本题正确答案是。

【考点】高等数学—多元函数积分学—两类曲面积分的概念、性质及计算(4)点(2,1,0)到平面的距离。

【答案】。

【解析】点到平面的距离公式:其中为点的坐标,为平面方程所以综上所述,本题正确答案是。

【考点】高等数学—向量代数和空间解析几何—点到平面和点到直线的距离(5)设矩阵,为二阶单位矩阵,矩阵满足,则___________。

【答案】2。

【解析】因为,所以。

综上所述,本题正确答案是。

【考点】线性代数—行列式—行列式的概念和基本性质线性代数—矩阵—矩阵的线性运算(6)设随机变量与相互独立,且均服从区间上的均匀分布,则___________。

【答案】。

【解析】本题考查均匀分布,两个随机变量的独立性和他们的简单函数的分布。

事件又根据相互独立,均服从均匀分布,可以直接写出综上所述,本题正确答案是。

【考点】概率论—多维随机变量的分布—二维随机变量的分布二、选择题(7~14小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项是符合题目要求的。

)(7)设函数具有二阶导数,且,为自变量在点处的增量,与分别为在点处对应的增量与微分,若,则(A) (B)(C) (D)【答案】A。

【解析】【方法一】由函数单调上升且凹,根据和的几何意义,得如下所示的图由图可得【方法二】由凹曲线的性质,得,于是,即综上所述,本题正确答案是A。

南京大学真题2006年

南京大学真题2006年

南京大学真题2006年(总分:72.00,做题时间:90分钟)一、{{B}}Part Ⅰ Vocabulary{{/B}}(总题数:10,分数:10.00)1.You don't object ______ you by your first name, do you?(分数:1.00)A.that I callB.for callingC.that I am callingD.to my calling √解析:object to (doing) sth. 不赞成,反对做某事。

句中my是calling的逻辑主语; object that结构中,that引出的部分应该是反对某事的理由,本题表达的不是反对理由,因此A项不符合。

2.______ initial recognition while still quite young.(分数:1.00)A.Most famous scientists achieved √B.That most famous scientists schievedC.Most famous scientists who achievedD.For most famous scientists to achieve解析:根据句子结构判断,空缺部分应该是句子主句部分。

while引导的是时间状语,四个选项中,只有A 项是独立、完整的句子。

3.The Chisos Mountains in Big Bend National Park in Texas were created by volcanic eruptions that occurred ______.(分数:1.00)A.the area in which dinosaurs roamedB.when dinosaurs roamed the area √C.did dinosaurs roam the areaD.dinosaurs roaming the area解析:本题空缺部分应该在句中做状语,选项B符合。

南京大学数学系《801高等代数》历年考研真题(含部分答案)专业课考试试题

南京大学数学系《801高等代数》历年考研真题(含部分答案)专业课考试试题

2006年南京大学801高等代数考研真题
2005年南京大学高等代数考研真题及详解
参考答案:
目 录
2014年南京大学801高等代数考研真题 2011年南京大学801高等代数考研真题 2010年南京大学801高等代数考研真题 2009年南京大学801高等代数考研真题 2008年南京大学801高等代数考研真题 2007年南京大学801高等代数考研真题 2006年南京大学801高等代数考研真题 2005年南京大学高等代考研真题
科目代码:801 科目名称:高等代数
2011年南京大学801高等代数考研真题
2010年南京大学801高等代数考研真题
2009年南京大学801高等代数考研真题
2008年南京大学801高等代数考研真题
2007年南京大学801高等代数考研真题

2006年数二真题、标准答案及解析

2006年数二真题、标准答案及解析

2006年全国硕士研究生入学考试数学(二)一、填空题 (1)曲线4sin 52cos x xy x x+=-的水平渐近线方程为 .(2)设函数231sin ,0,(),x t dt x f x xa x ⎧≠⎪=⎨⎪=⎩⎰在0x =处连续,则a = .(3)广义积分22(1)xdxx +∞=+⎰ .(4)微分方程(1)y x y x-'=的通解是 . (5)设函数()y y x =由方程1y y xe =-确定,则A dydx== .(6)设矩阵2112A ⎛⎫= ⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则B = . 二、选择题(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在0x 处的增量,y ∆与dy 分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则 (A )0.dy y <<∆ (B )0.y dy <∆<(C )0.y dy ∆<< (D )0.dy y <∆< 【 】(8)设()f x 是奇函数,除0x =外处处连续,0x =是其第一类间断点,则0()xf t dt⎰是(A )连续的奇函数. (B )连续的偶函数(C )在0x =间断的奇函数 (D )在0x =间断的偶函数. 【 】 (9)设函数()g x 可微,1()(),(1)1,(1)2g x h x e h g +''===,则(1)g 等于(A )ln 31-. (B )ln 3 1.--(C )ln 2 1.-- (D )ln 2 1.- 【 】(10)函数212x x x y C e C e xe -=++满足一个微分方程是 (A )23.x y y y xe '''--= (B )23.x y y y e '''--=(C )23.x y y y xe '''+-= (D )23.x y y y e '''+-=(11)设(,)f x y 为连续函数,则140(cos ,sin )d f r r rdr πθθθ⎰⎰等于(A )0(,).x f x y dy ⎰⎰(B )00(,).f x y dy ⎰⎰(C )0(,).yf x y dx ⎰⎰(D )00(,).f x y dx ⎰⎰ 【 】(12)设(,)f x y 与(,)x y ϕ均为可微函数,且1(,)0y x y ϕ≠. 已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是 (A )若00(,)0x f x y '=,则00(,)0y f x y '=. (B )若00(,)0x f x y '=,则00(,)0y f x y '≠. (C )若00(,)0x f x y '≠,则00(,)0y f x y '=.(D )若00(,)0x f x y '≠,则00(,)0y f x y '≠. 【 】 (13)设12,,,,a a a 均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是 (A )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性相关. (B )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性无关. (C )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性相关.(D )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性无关. 【 】(14)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001P ⎛⎫⎪= ⎪ ⎪⎝⎭,则 (A )1.C P AP -= (B )1.C PAP -= (C ).T C P AP = (D ).T C PAP = 三 解答题15.试确定A ,B ,C 的常数值,使得23(1)1()x e Bx Cx Ax o x ++=++,其中3()o x 是当30x x →时比的高阶无穷小.16.arcsin xxe dx e ⎰求. 17.{}22(,)1,0D x y x y x =+≤≥设区域,221.1DxyI dxdy x y+=++⎰⎰计算二重积分 18.{}110,sin (0,1,2,)n n n x x x x n π+<<==设数列满足1lim n x x +→∞证明: (1) 存在,并求极限;211(2)lim(n x n x nx x +→∞计算. 19.sin 2cos sin cos .<a <b b b b b a a a a a πππ<++>++证明: 当0时, 20 设函数()()0,,f u +∞在内具有二阶导数且z f =满足等式22220z zx y∂∂+=∂∂.(Ⅰ)验证()()0f u f u u'''+=;(Ⅱ)若()()()10,11,f f f u '==求函数的表达式. 21 已知曲线L 的方程为221,(0),4x l t y l t⎧=+≥⎨=-⎩(Ⅰ)讨论L 的凹凸性;(Ⅱ)过点(-1,0)引L 的切线,求切点00(,)x y ,并写出切线的方程; (Ⅲ)求此切线与L (对应于0x x ≤的部分)及x 轴所围成的平面图形的面积.22 已知非齐次线性方程组12341234123414351331x x x x x x x x ax x x bx +++=-⎧⎪++-=-⎨⎪++-=⎩有个线性无关的解Ⅰ证明方程组系数矩阵A 的秩()2r A =; Ⅱ求,a b 的值及方程组的通解.23 设3阶实对称矩阵A 的各行元素之和均为3,向量()()121,2,1,0,1,1T Tαα=--=-是线性方程组A x =0的两个解, (Ⅰ)求A 的特征值与特征向量 (Ⅱ)求正交矩阵Q 和对角矩阵A,使得T Q AQ A =.2006年全国硕士研究生入学考试数学(二)真题解析一、填空题 (1)曲线4sin 52cos x xy x x+=-的水平渐近线方程为15y =4sin 11lim lim2cos 55x x xx y x x→∞→∞+==-(2)设函数2301sin ,0(),0xt dt x f x x a x ⎧≠⎪=⎨⎪=⎩⎰ 在x =0处连续,则a =132200()1lim ()lim 33x x sm x f x x →→== (3)广义积分220(1)xdxx +∞=+⎰1222222201(1)11110(1)2(1)2(1)22xdx d x x x x +∞+∞+∞+==-⋅=+=+++⎰⎰(4)微分方程(1)y x y x-'=的通解是xy cxe -=)0(≠x(5)设函数()y y x =由方程1y y xe =-确定,则0x dy dx==e-当x =0时,y =1,又把方程每一项对x 求导,y y y e xe y ''=-- 001(1)1x x y yyyye y xe ey e xe ===''+=-=-=-+(6) 设A = 2 1 ,2阶矩阵B 满足BA =B +2E ,则|B |= .-1 2解:由BA =B +2E 化得B (A -E )=2E ,两边取行列式,得|B ||A -E |=|2E |=4,计算出|A -E |=2,因此|B |=2.二、选择题(7)设函数()y f x =具有二阶导数,且()0,()0,f x f x x '''>>∆为自变量x 在点x 0处的增量,0()y dy f x x ∆与分别为在点处对应增量与微分,若0x ∆>,则[A] (A )0dy y <<∆ (B )0y dy <∆< (C )0y dy ∆<< (D )0dy y <∆< 由()0()f x f x '>可知严格单调增加 ()0()f x f x ''>可知是凹的 即知(8)设()f x 是奇函数,除0x =外处处连续,0x =是其第一类间断点,则()xf t dt ⎰是[B](A )连续的奇函数 (B )连续的偶函数(C )在x =0间断的奇函数 (D )在x =0间断的偶函数 (9)设函数()g x 可微,1()(),(1)1,(1)2,g x h x e h g +''===则g (1)等于[C] (A )ln 31- (B )ln 31-- (C )ln 21-- (D )ln 21- ∵ 1()()()g x h x g x e +''=,1(1)12g e += g (1)= ln 21-- (10)函数212x x x y c e c xe -=++满足的一个微分方程是[D] (A )23x y y y xe '''--= (B )23x y y y e '''--= (C )23x y y y xe '''+-= (D )23x y y y e '''+-=将函数212x x x y c e c xe -=++代入答案中验证即可.(11)设(,)f x y 为连续函数,则140(cos ,sin )d f r r rd πθθθγ⎰⎰等于[C](A)0(,)xdxf x y dy ⎰(B)0(,)dxf x y dy ⎰(C)0(,)yf x y dx ⎰(D)0(,)f x y dx ⎰(12)设(,)(,)f x y x y ϕ与均为可微函数,且(,)0,y x y ϕ'≠已知00(,)(,)x y f x y 是在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是[D](A )若0000(,)0,(,)0x y f x y f x y ''==则 (B )若0000(,)0,(,)0x y f x y f x y ''=≠则 (C )若0000(,)0,(,)0x y f x y f x y ''≠=则 (D )若0000(,)0,(,)0x y f x y f x y ''≠≠则(,)(,)(,)(,)0(1)(,)(,)0(2)(,)0x x xy y y F f x y x y F f x y x y F f x y x y F x y λλϕλϕλϕϕ=+'''=+=⎧⎪'''=+=⎨⎪'==⎩令今 000000(,)(,)0,(,)y y y f x y x y x y ϕλϕ''≠∴=-'代入(1) 得 00000000(,)(,)(,)(,)y xx y f x y x y f x y x y ϕϕ'''=' 今 00000000(,)0,(,)(,)0(,)0x y xy f x y f x y x y f x y ϕ''''≠∴≠≠则 故选[D] (13)设1,2,…,s都是n 维向量,A 是m ⨯n 矩阵,则( )成立.(A) 若1,2,…,s线性相关,则A 1,A 2,…,A s线性相关. (B) 若1,2,…,s 线性相关,则A 1,A 2,…,A s线性无关. (C) 若1,2,…,s 线性无关,则A 1,A 2,…,A s线性相关. (D) 若1,2,…,s 线性无关,则A1,A2,…,As线性无关.解: (A)本题考的是线性相关性的判断问题,可以用定义解.若1,2,…,s线性相关,则存在不全为0的数c1,c2,…,c s使得c11+c22+…+c s s=0,用A左乘等式两边,得c1A1+c2A2+…+c s A s=0,于是A1,A2,…,A s线性相关.如果用秩来解,则更加简单明了.只要熟悉两个基本性质,它们是:1.1,2,…,s⇔ r(1,2,…,s)=s.2. r(AB)≤ r(B).矩阵(A1,A2,…,A s)=A(1,2,…,s),因此r(A1,A2,…,A s)≤ r(1,2,…,s).由此马上可判断答案应该为(A).(14)设A是3阶矩阵,将A的第2列加到第1列上得B,将B的第1列的-1倍加到第2列上得C.记 1 1 0P= 0 1 0 ,则0 0 1(A) C=P-1AP. (B) C=PAP-1.(C) C=P T AP. (D) C=PAP T.解: (B)用初等矩阵在乘法中的作用得出B=PA ,1 -1 0C =B 0 1 0 =BP -1= PAP -1.0 0 1三、解答题(15)试确定A ,B ,C 的常数值,使23(1)1()x e Bx Cx Ax o x ++=++其中3()o x 是当30x x →时比的高阶无穷小.解:泰勒公式2331()26xx x e x o x =++++代入已知等式得23323[1()][1]1()26x x x o x Bx Cx Ax o x ++++++=++整理得233111(1)(()1()226BB xC B x C o x Ax o x ⎛⎫+++++++++=++ ⎪⎝⎭比较两边同次幂函数得 B +1=A ①C +B +12=0 ②1026B C ++= ③ 式②-③得120233B B +==-则 代入①得 13A =代入②得 16C =(16)求arcsin xxe dx e ⎰.解:原式=22arcsin arcsin ()x x xx e t de e t dt e t =⎰⎰令1arcsin arcsin ()t td t t =-=-+⎰2arcsin arcsin 1(2)2(1)t t udu t t u u -=-+=-+-⎰ 2arcsin 1t dut u =-+-⎰ arcsin 11ln 21t u C t u -=-+++arcsin arcsin 12x x x x e e dx C e e ∴=-++⎰. (17)设区域22{(,)||,0}D x y x y x =+≤≥, 计算二重积分2211DxyI dxdy x y +=++⎰⎰. 解:用极坐标系2201D xydxdy x y ⎛⎫=⎪++⎝⎭⎰⎰11222002ln(1)ln 2122r I d dr r r ππππθ-==+=+⎰⎰. (18)设数列{}n x 满足10x π<<,1sin (1,2,3,)n n x x n +==证明:(1)1limn n x +→∞存在,并求极限;(2)计算211lim n x n n n x x +→∞⎛⎫ ⎪⎝⎭. 证:(1)212sin ,01,2x x x n =∴<≤≥因此1sin ,{}n n n n x x x x +=≤单调减少有下界()0n x ≥根据准则1,limn n x A →∞=存在 在1sin n n x x +=两边取极限得sin 0A A A =∴=因此1lim 0n n x +→∞=(2)原式1sin lim "1"n xn n n x x ∞→∞⎛⎫= ⎪⎝⎭为型离散型不能直接用洛必达法则先考虑 2011sin lim lnsin lim t t t t t t t e t →⎡⎤⎢⎥⎣⎦→⎛⎫= ⎪⎝⎭用洛必达法则2011(cos sin )limsin 2t t t t t t t te→-=2323330010()0()26cos sin lim lim22t t t t t t t t t t tt te e→→⎡⎤⎡⎤-+--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦==3330110()261lim26t t t t ee →⎛⎫-+ ⎪⎝⎭-==.(19)证明:当0a b π<<<时,1sin 2cos sin 2cos b b b b a a a aππ++>++. 证:令()sin 2cos f x x x x x π=++只需证明0a x π<<<时,()f x 严格单调增加()sin cos 2sin f x x x x x π'=+-+cos sin x x x π=-+()cos sin cos sin 0f x x x x x x x ''=--=-< ()f x '∴严格单调减少又()cos 0f ππππ'=+=故0()0()a x f x f x π'<<<>时则单调增加(严格)()()b a f b f a>>由则得证(20)设函数()(0,)f u +∞在内具有二阶导数,且Z f =满足等式22220z zx y∂∂+=∂∂.(I )验证()()0f u f u u'''+=; (II )若(1)0,(1)1f f '==求函数()f u的表达式. 证:(I)zzf f xy∂∂''==∂∂()()2223222222zx y f f xx y x y ∂'''=+∂++()()2223222222zy x f f yx y x y ∂'''=+∂++22220()()0z zf x y f u f u u∂∂''+=+=∂∂'''∴+=代入方程得成立(II )令(),;,dp p dp du c f u p c p du u p u u'==-=-+=⎰⎰则22(1)1,1,()ln ||,(1)0,0()ln ||f c f u u c f c f u u '===+==∴=由(21)已知曲线L 的方程221(0)4x t t y t t⎧=+≥⎨=-⎩(I )讨论L 的凹凸性;(II )过点(1,0)-引L 的切线,求切点00(,)x y ,并写出切线的方程; (III )求此切线与L (对应0x x ≤部分)及x 轴所围的平面图形的面积. 解:(I )4222,42,12dx dy dy t t t dt dt dx t t-==-==-222312110(0)2dy d d y dx t dx dx dt t t t dt⎛⎫ ⎪⎛⎫⎝⎭=⋅=-⋅=-<> ⎪⎝⎭处 (0L t ∴>曲线在处)是凸(II )切线方程为201(1)y x t⎛⎫-=-+ ⎪⎝⎭,设2001x t =+,20004y t t =-, 则2223200000000241(2),4(2)(2)t t t t t t t t⎛⎫-=-+-=-+ ⎪⎝⎭得200000020,(1)(2)001t t t t t t +-=-+=>∴=点为(2,3),切线方程为1y x =+ (III )设L 的方程()x g y =则()3()(1)S g y y dy =--⎡⎤⎣⎦⎰(2240221t t y x -+==±=+解出t 得 由于(2,3)在L上,由(23221()y x x g y ===+=得可知(309(1)S y y dy ⎡⎤=----⎣⎦⎰33(102)4y dy =--⎰333322002(10)4(4)214(4)3y y y y =-+-=+⨯⨯-8642213333=+-=-(22)已知非齐次线性方程组x 1+x 2+x 3+x 4=-1,4x 1+3x 2+5x 3-x 4=-1,ax 1+x 2+3x 3+bx 4=1有3个线性无关的解.① 证明此方程组的系数矩阵A 的秩为2. ② 求a,b 的值和方程组的通解. 解:① 设1,2,3是方程组的3个线性无关的解,则2-1,3-1是AX =0的两个线性无关的解.于是AX =0的基础解系中解的个数不少于2,即4-r(A )≥2,从而r(A )≤2.又因为A 的行向量是两两线性无关的,所以r(A )≥2. 两个不等式说明r(A )=2.② 对方程组的增广矩阵作初等行变换:1 1 1 1 -1 1 1 1 1 -1 (A |)= 4 3 5 -1 -1 → 0 –1 1 –5 3 ,a 1 3b 1 0 0 4-2a 4a+b-5 4-2a 由r(A )=2,得出a=2,b=-3.代入后继续作初等行变换: 1 0 2 -4 2 → 0 1 -1 5 -3 . 0 0 0 0 0 得同解方程组 x 1=2-2x 3+4x 4, x 2=-3+x 3-5x 4,求出一个特解(2,-3,0,0)T 和AX =0的基础解系(-2,1,1,0)T ,(4,-5,0,1) T .得到方程组的通解: (2,-3,0,0)T +c 1(-2,1,1,0)T +c 2(4,-5,0,1)T , c 1,c 2任意. (23) 设3阶实对称矩阵A 的各行元素之和都为3,向量1=(-1,2,-1)T ,2=(0,-1,1)T 都是齐次线性方程组AX =0的解. ① 求A 的特征值和特征向量.② 求作正交矩阵Q 和对角矩阵Λ,使得 Q T AQ =Λ. 解:① 条件说明A (1,1,1)T =(3,3,3)T ,即=(1,1,1)T 是A 的特征向量,特征值为3.又1,2都是AX =0的解说明它们也都是A 的特征向量,特征值为0.由于1,2线性无关, 特征值0的重数大于1.于是A 的特征值为3,0,0.属于3的特征向量:c 0, c ≠0. 属于0的特征向量:c 11+c 22, c 1,c 2不都为0.② 将单位化,得=(33,33,33)T .对1,2作施密特正交化,的1=(0,-22,22)T ,2=(-36,66,66)T. 作Q =(,1,2),则Q 是正交矩阵,并且3 0 0 Q T AQ =Q -1AQ = 0 0 0 . 0 0 0分数分配:11+11+11+12+12+10+9+9+9。

06年考研数四真题及答案解析

06年考研数四真题及答案解析

2006年全国硕士研究生入学考试数学(四)一、填空 1.(1)1lim()nn n n-→∞+= 2.设函数()f x 在2x =的某邻域内可导,且()()(2)1f x f x e f '-⋅=,则法(2)f '=3.设函数()f u 可微,且1()2f u '=,则22(4)z f x y =-在点(1,2)处的全微分 (1,2)|dz =4.已知12,a a 为2维列向量,矩阵1212(2,)A a a a a =+-,12(,)B a a =。

若行列式||6A =,则||B =5.设矩阵2112A ⎡⎤=⎢⎥-⎣⎦,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则B 。

6.设随机变量X 与Y 相互独立,且均服从区间[1,3]上的均匀分布,由{max(,)1}P x y ≤=二、选择7.设函数()y f x =具有二阶导数,且()0f x '>,()0f x ''>,x 为自变量x 在点0x 处的增量y 与dy 分别为()f x 在点0x 处对应的增量与微分,若0x > ,则( ) (A )0dy y << (B )0y dy << (C )0y dy <<(D )0dy y <<8.设函数()f x 在0x =处连续,且220()lim 1n f n n→==,则( ) (A )(0)0f =且(0)f '存在 (B )(0)1f =且(0)f '存在 (C )(0)0f =且(0)f +'存在(D )(0)1f =且(0)f +'存在9.设函数()f x 与()g x 在[0,1]上连续,且()()f x g x ≤,且对任何(0,1)C ∈( ) (A )1122()()c cf t dtg t dt ≥⎰⎰(B )1122()()c cf t dtg t dt ≤⎰⎰(C )11()()ccf t dtg t dt ≥⎰⎰(D )11()()ccf t dtg t dt ≤⎰⎰10.设非齐次线性微分方程()()y P x y Q x '+=有两个不同的解1()y x ,2()y x ,C 为任何常数,则该方程通解是( ) (A )12[()()]C y x y x - (B )112()[()()]y x C y x y x +- (C )12[()()]C y x y x +(D )112()[()()]y x C y x y x ++11.设(,)f x y 与(,)G x y 均为可微函数,且(,)0G x y '≠,已知00(,)x y 是(,)f x y 在约束条件(,)0G x y =下的一个极值点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档