2006年北京科技大学高等代数825考研真题

合集下载

北京科技大学825高等代数二2020年考研专业课初试大纲

北京科技大学825高等代数二2020年考研专业课初试大纲

《高等代数I》考试大纲一、考试性质与范围高等代数是高等学校数学专业的基础课之一,主要研究线性空间的理论,也兼顾一部分多项式和代数基本知识,考试内容主要包括矩阵、行列式和线性空间等相关理论。

要求学生对相关的概念把握清楚,在此基础上展开对相关理论和问题的分析处理。

二、测试考生对于高等代数相关基本概念、基础理论的掌握和运用能力。

三、考试方式与分值1. 试卷满分为150分,考试时间180分钟。

2. 答题方式为闭卷、笔试。

不允许使用计算器。

四.考试内容1.集合及运算,等价关系,映射、数域;2.多项式带余除法,整除性,最大公因式的定义、性质、算法,多项式的唯一分解定理,重因式及其判断方法、不可约多项式及性质,余式定理及其应用,代数学基本定理,复系数、实系数多项式在相应数域中的分解形式,根与系数的关系定理,本原多项式,Gauss引理,Eisenstein判别法.3.矩阵矩阵的基本运算,矩阵的初等变换,矩阵的相抵和标准形、矩阵的逆及其计算,矩阵的分块运算,矩阵的秩和秩的基本性质.4. 线性空间线性空间的概念及重要的线性空间实例,向量的线性相关、线性无关,基、维数的概念、坐标变换和过渡矩阵,线性子空间的条件,子空间的和与交和直和的等价条件,线性空间的同构5.线性变换线性映射的定义及矩阵表示,线性映射的像与核,基和维数的关系,线性变换的定义及矩阵表示,线性变换的运算,不变子空间的定义及相关结论,线性变换的特征值与特征向量的定义与性质,矩阵对角化.6.欧氏空间内积,度量矩阵、标准正交基,正交化和正交子空间,正交变换,对称变换7.二次型二次型,二次型的标准形,正定二次型及半正定等充要条件.8.线性方程组Gauss消元法、线性方程组的解的结构及求解方法.9.行列式逆序,行列式性质与计算,Crame法则.10.相似标准形特征值与特征向量的计算,对称矩阵的标准形的计算,特征多项式与最小多项式,矩阵对角化的条件,Jordan标准形,λ-矩阵,初等因子,不变因子1。

2006考研数学(二)真题及参考答案

2006考研数学(二)真题及参考答案

2006年全国硕士研究生入学考试数学(二)一、填空题 (1)曲线4sin 52cos x xy x x+=-的水平渐近线方程为 .(2)设函数231sin ,0,(),x t dt x f x x a x ⎧≠⎪=⎨⎪=⎩⎰在0x =处连续,则a = .(3)广义积分22(1)xdxx +∞=+⎰.(4)微分方程(1)y x y x-'=的通解是 . (5)设函数()y y x =由方程1yy xe =-确定,则A dy dx== .(6)设矩阵2112A ⎛⎫= ⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2B A BE =+,则B = . 二、选择题(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在0x 处的增量,y ∆与dy 分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则 (A )0.dy y <<∆ (B )0.y dy <∆<(C )0.y dy ∆<<(D )0.dy y <∆<【 】(8)设()f x 是奇函数,除0x =外处处连续,0x =是其第一类间断点,则()x f t dt ⎰是(A )连续的奇函数. (B )连续的偶函数(C )在0x =间断的奇函数 (D )在0x =间断的偶函数. 【 】(9)设函数()g x 可微,1()(),(1)1,(1)2g x h x e h g +''===,则(1)g 等于(A )ln 31-. (B )ln 3 1.--(C )ln 2 1.--(D )ln 2 1.-【 】(10)函数212xxx y C e C e xe -=++满足一个微分方程是(A )23.xy y y xe '''--= (B )23.xy y y e '''--=(C )23.xy y y xe '''+-=(D )23.xy y y e '''+-=(11)设(,)f x y 为连续函数,则140(cos ,sin )d f r r rdr πθθθ⎰⎰等于(A )22120(,).x xdx f x y dy -⎰⎰(B )22120(,).x dx f x y dy -⎰⎰(C )22120(,).y ydy f x y dx -⎰⎰(D )22120(,).y dy f x y dx -⎰⎰【 】(12)设(,)f x y 与(,)x y ϕ均为可微函数,且1(,)0y x y ϕ≠. 已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是(A )若00(,)0x f x y '=,则00(,)0y f x y '=. (B )若00(,)0x f x y '=,则00(,)0y f x y '≠. (C )若00(,)0x f x y '≠,则00(,)0y f x y '=. (D )若00(,)0x f x y '≠,则00(,)0y f x y '≠.【 】(13)设12,,,,a a a 均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是 (A )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性相关. (B )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性无关.(C )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性相关.(D )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性无关. 【 】(14)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001P ⎛⎫⎪= ⎪ ⎪⎝⎭,则(A )1.C P AP -= (B )1.C PAP -=(C ).T C P AP =(D ).TC PAP =三 解答题15.试确定A ,B ,C 的常数值,使得23(1)1()xe Bx Cx Ax o x ++=++,其中3()o x 是当30x x →时比的高阶无穷小.16.arcsin xxe dx e ⎰求. 17.{}22(,)1,0D x y x y x =+≤≥设区域,221.1DxyI dxdy x y +=++⎰⎰计算二重积分 18.{}110,sin (0,1,2,)n n n x x x x n π+<<== 设数列满足1lim n x x +→∞证明: (1) 存在,并求极限;211(2)lim()n x n x nx x +→∞计算. 19.sin 2cos sin cos .<a <b b b b b a a a a a πππ<++>++证明: 当0时, 20 设函数()()0,,f u +∞在内具有二阶导数且()22z fx y=+满足等式22220z zx y∂∂+=∂∂.(Ⅰ)验证()()0f u f u u'''+=;(Ⅱ)若()()()10,11,f f f u '==求函数的表达式. 21 已知曲线L 的方程为221,(0),4x l t y l t⎧=+≥⎨=-⎩(Ⅰ)讨论L 的凹凸性;(Ⅱ)过点(-1,0)引L 的切线,求切点00(,)x y ,并写出切线的方程; (Ⅲ)求此切线与L (对应于0x x ≤的部分)及x 轴所围成的平面图形的面积.22 已知非齐次线性方程组12341234123414351331x x x x x x x x ax x x bx +++=-⎧⎪++-=-⎨⎪++-=⎩有个线性无关的解Ⅰ证明方程组系数矩阵A 的秩()2r A =; Ⅱ求,a b 的值及方程组的通解.23 设3阶实对称矩阵A 的各行元素之和均为3,向量()()121,2,1,0,1,1TTαα=--=-是线性方程组A x =0的两个解, (Ⅰ)求A 的特征值与特征向量 (Ⅱ)求正交矩阵Q 和对角矩阵A,使得TQ AQ A =.真题解析一、填空题 (1)曲线4sin 52cos x xy x x+=-的水平渐近线方程为15y =4sin 11lim lim2cos 55x x xx y x x→∞→∞+==-(2)设函数2301sin ,0(),0xt dt x f x x a x ⎧≠⎪=⎨⎪=⎩⎰ 在x =0处连续,则a =132200()1lim ()lim 33x x sm x f x x →→==(3)广义积分22(1)xdxx +∞=+⎰1222222201(1)11110(1)2(1)2(1)22xdx d x x x x +∞+∞+∞+==-⋅=+=+++⎰⎰(4)微分方程(1)y x y x-'=的通解是xy cxe -=)0(≠x(5)设函数()y y x =由方程1yy xe =-确定,则0x dy dx==e-当x =0时,y =1,又把方程每一项对x 求导,y yy e xe y ''=--01(1)1x x y yyyye y xe ey e xe ===''+=-=-=-+(6) 设A = 2 1 ,2阶矩阵B 满足BA =B +2E ,则|B |= .-1 2解:由BA =B +2E 化得B (A -E )=2E ,两边取行列式,得|B ||A -E |=|2E |=4, 计算出|A -E |=2,因此|B |=2. 二、选择题(7)设函数()y f x =具有二阶导数,且()0,()0,f x f x x '''>>∆为自变量x 在点x 0处的增量,0()y dy f x x ∆与分别为在点处对应增量与微分,若0x ∆>,则[A](A )0dy y <<∆(B )0y dy <∆<(C )0y dy ∆<<(D )0dy y <∆<由()0()f x f x '>可知严格单调增加()0()f x f x ''>可知是凹的即知(8)设()f x 是奇函数,除0x =外处处连续,0x =是其第一类间断点,则()xf t dt ⎰是[B](A )连续的奇函数 (B )连续的偶函数(C )在x =0间断的奇函数 (D )在x =0间断的偶函数(9)设函数()g x 可微,1()(),(1)1,(1)2,g x h x e h g +''===则g (1)等于[C] (A )ln 31- (B )ln 31--(C )ln 21--(D )ln 21- ∵ 1()()()g x h x g x e +''=,1(1)12g e+= g (1)= ln 21--(10)函数212x x x y c e c xe -=++满足的一个微分方程是[D] (A )23x y y y xe '''--= (B )23x y y y e '''--=(C )23xy y y xe '''+-=(D )23xy y y e '''+-=将函数212x x x y c e c xe -=++代入答案中验证即可.(11)设(,)f x y 为连续函数,则14(cos ,sin )d f r r rd πθθθγ⎰⎰等于[C](A )2212(,)x xdx f x y dy -⎰⎰(B )2212(,)x dx f x y dy -⎰⎰(C )2212(,)y ydy f x y dx -⎰⎰(D )2212(,)y dy f x y dx -⎰⎰(12)设(,)(,)f xyxy ϕ与均为可微函数,且(,)0,y x y ϕ'≠已知00(,)(,)x y f x y 是在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是[D](A )若0000(,)0,(,)0x y f x y f x y ''==则(B )若0000(,)0,(,)0x y f x y f x y ''=≠则 (C )若0000(,)0,(,)0x y f x y f x y ''≠=则 (D )若0000(,)0,(,)0x y f x y f x y ''≠≠则(,)(,)(,)(,)0(1)(,)(,)0(2)(,)0x x xy y y F f x y x y F f x y x y F f x y x y F x y λλϕλϕλϕϕ=+'''=+=⎧⎪'''=+=⎨⎪'==⎩令今000000(,)(,)0,(,)y y y f x y x y x y ϕλϕ''≠∴=-'代入(1) 得 00000000(,)(,)(,)(,)y xx y f x y x y f x y x y ϕϕ'''='今 00000000(,)0,(,)(,)0(,)0x y xy f x y f x y x y f x y ϕ''''≠∴≠≠则 故选[D] (13)设α1,α2,…,αs 都是n 维向量,A 是m ⨯n 矩阵,则( )成立.(A) 若α1,α2,…,αs 线性相关,则A α1,A α2,…,A αs 线性相关. (B) 若α1,α2,…,αs 线性相关,则A α1,A α2,…,A αs 线性无关. (C) 若α1,α2,…,αs 线性无关,则A α1,A α2,…,A αs 线性相关. (D) 若α1,α2,…,αs 线性无关,则A α1,A α2,…,A αs 线性无关. 解: (A)本题考的是线性相关性的判断问题,可以用定义解.若α1,α2,…,αs 线性相关,则存在不全为0的数c 1,c 2,…,c s 使得c 1α1+c 2α2+…+c s αs =0,用A 左乘等式两边,得c 1A α1+c 2A α2+…+c s A αs =0,于是A α1,A α2,…,A αs 线性相关.如果用秩来解,则更加简单明了.只要熟悉两个基本性质,它们是: 1. α1,α2,…,αs 线性无关⇔ r(α1,α2,…,αs )=s. 2. r(AB )≤ r(B ).矩阵(A α1,A α2,…,A αs )=A ( α1, α2,…,αs ),因此r(A α1,A α2,…,A αs )≤ r(α1, α2,…,αs ).由此马上可判断答案应该为(A).(14)设A 是3阶矩阵,将A 的第2列加到第1列上得B ,将B 的第1列的-1倍加到第2列上得C .记 1 1 0P = 0 1 0 ,则 0 0 1(A) C =P -1AP . (B) C =PAP -1. (C) C =P TAP . (D) C =PAP T. 解: (B)用初等矩阵在乘法中的作用得出B =PA , 1 -1 0C =B 0 1 0 =BP -1= PAP -1. 0 0 1三、解答题(15)试确定A ,B ,C 的常数值,使23(1)1()x e Bx Cx Ax o x ++=++其中3()o x 是当30x x →时比的高阶无穷小.解:泰勒公式2331()26xx x e x o x =++++代入已知等式得 23323[1()][1]1()26x x x o x Bx Cx Ax o x ++++++=++整理得233111(1)()()1()226BB xC B x C o x Ax o x ⎛⎫+++++++++=++ ⎪⎝⎭比较两边同次幂函数得B +1=A ①C +B +12=0 ② 1026B C ++= ③ 式②-③得120233B B +==-则 代入①得13A = 代入②得16C = (16)求arcsin xxe dx e ⎰.解:原式=22arcsin arcsin ()x x xx e t de e t dt e t =⎰⎰令21arcsin arcsin ()1t dttd t t t t =-=-+-⎰⎰2222arcsin arcsin 1(2)12(1)1t tdt t udu t u t t u u t t -=-+-==-+--⎰⎰令2arcsin 1t dut u =-+-⎰arcsin 11ln 21t u C t u -=-+++22arcsin arcsin 111ln 211x x x x x x e e e dx C e e e --∴=-++-+⎰. (17)设区域22{(,)||,0}D x y x y x =+≤≥,计算二重积分2211DxyI dxdy x y +=++⎰⎰.解:用极坐标系2201D xydxdy x y ⎛⎫= ⎪++⎝⎭⎰⎰11222002ln(1)ln 2122r I d dr r r ππππθ-==+=+⎰⎰. (18)设数列{}n x 满足10x π<<,1sin (1,2,3,)n n x x n +==证明:(1)1lim n n x +→∞存在,并求极限;(2)计算211lim n x n n n x x +→∞⎛⎫ ⎪⎝⎭. 证:(1)212sin ,01,2x x x n =∴<≤≥ 因此 1sin ,{}n n n n x x x x +=≤单调减少有下界()0n x ≥根据准则1,lim n n x A →∞=存在在1sin n n x x +=两边取极限得sin 0A A A =∴=因此1lim 0n n x +→∞=(2)原式21sin lim "1"n x n n n x x ∞→∞⎛⎫= ⎪⎝⎭为型 离散型不能直接用洛必达法则先考虑 22011s i n l i m l n 0s i n l i m t t t t t t t e t →⎡⎤⎢⎥⎣⎦→⎛⎫= ⎪⎝⎭用洛必达法则2011(cos sin )limsin 2t t t t t tt te→-=23233310()0()26cos sin limlim22t t t t t t t t t t tt t ee →→⎡⎤⎡⎤-+--+⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦==3330110()261lim26t t t t ee →⎛⎫-++ ⎪⎝⎭-==.(19)证明:当0a b π<<<时,1sin 2cos sin 2cos b b b b a a a aππ++>++. 证:令()sin 2cos f x x x x x π=++ 只需证明0a x π<<<时,()f x 严格单调增加()sin cos 2sin f x x x x x π'=+-+cos sin x x x π=-+()cos sin cos sin 0f x x x x x x x ''=--=-< ()f x '∴严格单调减少又()cos 0f ππππ'=+=故0()0()a x f x f x π'<<<>时则单调增加(严格)()()b a f b f a >>由则得证(20)设函数()(0,)f u +∞在内具有二阶导数,且()22Z fx y=+满足等式22220z zx y∂∂+=∂∂.(I )验证()()0f u f u u'''+=; (II )若(1)0,(1)1f f '== 求函数()f u 的表达式.证:(I )()()22222222;zx zy f x y f x y xyx yx y∂∂''=+=+∂∂++()()()()22222223222222zx y f x yf x yx x y x y ∂'''=+++∂++()()()()22222223222222zy x f x yf x yy x y x y ∂'''=+++∂++()2222222222()0()()0f x y z zf x yx y x yf u f u u'+∂∂''+=++=∂∂+'''∴+=代入方程得成立(II )令(),;,dp p dp du c f u p c p du u p u u'==-=-+=⎰⎰则22(1)1,1,()ln ||,(1)0,0()ln ||f c f u u c f c f u u '===+==∴= 由(21)已知曲线L 的方程221(0)4x t t y t t⎧=+≥⎨=-⎩(I )讨论L 的凹凸性;(II )过点(1,0)-引L 的切线,求切点00(,)x y ,并写出切线的方程; (III )求此切线与L (对应0x x ≤部分)及x 轴所围的平面图形的面积.解:(I )4222,42,12dx dy dy t t t dt dt dx t t-==-==-222312110(0)2dy d d y dx t dx dx dt t t t dt ⎛⎫⎪⎛⎫⎝⎭=⋅=-⋅=-<> ⎪⎝⎭处(0L t ∴>曲线在处)是凸(II )切线方程为201(1)y x t ⎛⎫-=-+⎪⎝⎭,设2001x t =+,20004y t t =-,则2223200000000241(2),4(2)(2)t t t t t t t t ⎛⎫-=-+-=-+⎪⎝⎭得200000020,(1)(2)001t t t t t t +-=-+=>∴=点为(2,3),切线方程为1y x =+(III )设L 的方程()x g y =则()3()(1)S g y y dy =--⎡⎤⎣⎦⎰ ()224024241t t y y x y -+==±-=±-+解出t 得由于(2,3)在L 上,由()232241()y x x y g y ===--+=得可知()30944(1)S y y y dy ⎡⎤=-----⎣⎦⎰ 3300(102)44y dy ydy =---⎰⎰3333220002(10)44(4)214(4)3y y yd y y =-+--=+⨯⨯-⎰8642213333=+-=- (22)已知非齐次线性方程组 x 1+x 2+x 3+x 4=-1,4x 1+3x 2+5x 3-x 4=-1,a x 1+x 2+3x 3+bx 4=1有3个线性无关的解.① 证明此方程组的系数矩阵A 的秩为2.② 求a,b 的值和方程组的通解.解:① 设α1,α2,α3是方程组的3个线性无关的解,则α2-α1,α3-α1是AX =0的两个线性无关的解.于是AX =0的基础解系中解的个数不少于2,即4-r(A )≥2,从而r(A )≤2.又因为A 的行向量是两两线性无关的,所以r(A )≥2.两个不等式说明r(A )=2.② 对方程组的增广矩阵作初等行变换:1 1 1 1 -1 1 1 1 1 -1(A |β)= 4 3 5 -1 -1 → 0 –1 1 –5 3 ,a 1 3b 1 0 0 4-2a 4a+b-5 4-2a由r(A )=2,得出a=2,b=-3.代入后继续作初等行变换:1 02 -4 2→ 0 1 -1 5 -3 .0 0 0 0 0得同解方程组x 1=2-2x 3+4x 4,x 2=-3+x 3-5x 4,求出一个特解(2,-3,0,0)T 和AX =0的基础解系(-2,1,1,0)T ,(4,-5,0,1) T.得到方程组的通解: (2,-3,0,0)T +c 1(-2,1,1,0)T +c 2(4,-5,0,1)T , c 1,c 2任意.(23) 设3阶实对称矩阵A 的各行元素之和都为3,向量α1=(-1,2,-1)T , α2=(0,-1,1)T 都是齐次线性方程组AX =0的解.① 求A 的特征值和特征向量.② 求作正交矩阵Q 和对角矩阵Λ,使得 Q T AQ =Λ.解:① 条件说明A (1,1,1)T =(3,3,3)T ,即 α0=(1,1,1)T 是A 的特征向量,特征值为3.又α1,α2都是AX =0的解说明它们也都是A 的特征向量,特征值为0.由于α1,α2线性无关, 特征值0的重数大于1.于是A 的特征值为3,0,0.属于3的特征向量:c α0, c ≠0.属于0的特征向量:c 1α1+c 2α2, c 1,c 2不都为0.② 将α0单位化,得η0=(33,33,33)T . 对α1,α2作施密特正交化,的η1=(0,-22,22)T , η2=(-36,66,66)T . 作Q =(η0,η1,η2),则Q 是正交矩阵,并且 3 0 0Q T AQ =Q -1AQ = 0 0 0 .0 0 0。

北京科技大学2005-2006概率论与数理统计试题

北京科技大学2005-2006概率论与数理统计试题

北京科技大学2005— 2006学年度第二学期概率论与数理统计A 试题 (时间120分钟)学院 班级 学号 姓名一. 选择题(3×5=15分)1. 同时抛两枚质地均匀的硬币,观察它们同时出现正面的概率为[ ]A:12 B:14 C:34 D:162. 下列[ ]为连续型随机变量X 服从的分布.A:二点分布 B:二项分布 C:泊松分布 D: 指数分布 3. 随机事件,A B 互不相容,则[ ]A:()0P AB = B:()0P AB > C: ()1P A B = D: ()()()P AB P A P B =4. 从一副52张的扑克牌中,任意抽5张,其中没有K 字牌的概率为[ ](A )5248(B)552548C C (C)52548C (D) 5552485. 有一摸奖工具是这样设计的:在一箱内放100个白球,50个绿球,20个黄球,10个红球,如果不放回地从中摸出3个球都是红球,就是中了一等奖,那么中一等奖的概率是[ ](A )18010 (B) 318010)( (C) 1808180918010⨯⨯ (D) 1098180179178⨯⨯二. 填空题(3×5=15分) 1.设X 服从普哇松分布,则()()=E X D X ____________. 2. 设~(,)X B n p ,则()=D X ____________. 3.标准正态分布的概率密度函数为______________.4.三人独立地去破译一个密码,他们能译出的概率分别为111534,,,能将此密码译出的概率为______________. 5. 设随机变量X 的分布列为1234515{},,,,,===kP X k k , 则12{}≤≤=P X ____________. 三. 简答题(8×7=56分)1. 从一批由7件正品,3件次品组成的产品中任取3件产品,求 (1) 3件中恰有1件次品的概率; (2) 3件全是次品的概率; (3) 3件中至少有1件次品的概率.2. 设2(42)02()k x x xf x⎧-<<=⎨⎩,,其它是某连续型随机变量X的概率密度,(1)求常数k;(2)求{13}P X<<.3. X在区间[,]a b上服从均匀分布,求(1)X的分布函数与分布函数()F x的图形;(2){2}(2)<<<<P a X a b.4.一台机床用31时间加工零件A ,停机的概率为0.3,其余时间加工零件B ,停机的概率为0.4,求(1)这台机床的停机率;(2)发现停机了,是加工零件B 时停机的概率。

北京科技大学(已有10试题)

北京科技大学(已有10试题)

北京科技大学土木与环境工程学院地质学2003——2010工程流体力学2003——2005,2007——2010结构力学2004,2007——2010安全原理2008——2010生物化学2005岩石力学2000——2005,2007——2010晶体光学2004——2006,2008——2010普通化学2006——2010普通化学(A)2004——2005结晶学及矿物学2003——2005,2008材料力学2003(注:试卷上面标注的是:材料加工工程专业)材料力学B 2004——2005(注:试卷上面标注的是:材料加工工程、材料科学与工程专业)材料力学2003(注:试卷上面标注的是:车辆工程、机械制造及自动化、机械电子工程、机械设计及理论、固体力学专业)材料力学C 2010(注:试卷上面标注的是:车辆工程、物流工程、机械工程专业)材料力学C 2004——2008(注:试卷上面标注的是:车辆工程、机械制造及自动化、机械电子工程、机械设计及理论、机械工程、物流工程、机械装备及控制专业)材料力学D 2004——2005,2007——2010(注:试卷上面标注的是:固体力学专业)电工技术2003——2005,2008——2010化工原理2003——2005普通地质学2003,2005,2007,2010流体力学2003——2008水处理原理2003——2010钢筋混凝土结构2003——2005工程地质学2003——2005微生物学A 2008——2010微生物学B 2008——2010微生物学2007环境微生物学2004——2005环境规划与管理2007——2010有机化学A(分析化学专业)2004有机化学(分析化学专业)2005有机化学(生物化工、环境科学专业)2004有机化学(生物化工专业)2003有机化学B(生物化工、环境科学、环境工程专业)2005有机化学(B)(化学专业)2010有机化学(B)(分析化学、无机化学、有机化学、物理化学专业)2007——2008 建筑材料学2004——2005矿床学2003——2004矿山岩石力学2007——2010浮选原理2008——2010土力学2004——2005土力学与地基基础2003液压与液力传动2003——2005环境学2004——2005单考数学2003——2004,2008——2010单考俄语2008——2010单考英语2008——2010单考政治2008——2010冶金与生态工程学院传输原理2003——2010冶金物理化学2003——2010普通生态学2006——2010普通物理2008——2010普通物理(A)2004——2005普通化学2006——2010普通化学(A)2004——2005物理化学(A)2003——2010物理化学(B)2005——2010综合科技史2003——2010文物保护基础2004——2006,2008——2010中国古代史2004——2010社会学理论2010社会学2003——2008材料力学2003(注:试卷上面标注的是:材料加工工程专业)材料力学B 2004——2005(注:试卷上面标注的是:材料加工工程、材料科学与工程专业)材料力学2003(注:试卷上面标注的是:车辆工程、机械制造及自动化、机械电子工程、机械设计及理论、固体力学专业)材料力学C 2010(注:试卷上面标注的是:车辆工程、物流工程、机械工程专业)材料力学C 2004——2008(注:试卷上面标注的是:车辆工程、机械制造及自动化、机械电子工程、机械设计及理论、机械工程、物流工程、机械装备及控制专业)材料力学D 2004——2005,2007——2010(注:试卷上面标注的是:固体力学专业)钢筋混凝土结构2003——2005微生物学A 2008——2010微生物学B 2008——2010微生物学2007环境微生物学2004——2005生物化学2005统计物理2003——2005,2010单考数学2003——2004,2008——2010单考俄语2008——2010单考英语2008——2010单考政治2008——2010材料科学与工程学院物理化学(A)2003——2010物理化学(B)2005——2010材料化学2005金属学2003——2005,2007——2010材料力学2003(注:试卷上面标注的是:材料加工工程专业)材料力学B 2004——2005(注:试卷上面标注的是:材料加工工程、材料科学与工程专业)材料力学2003(注:试卷上面标注的是:车辆工程、机械制造及自动化、机械电子工程、机械设计及理论、固体力学专业)材料力学C 2010(注:试卷上面标注的是:车辆工程、物流工程、机械工程专业)材料力学C 2004——2008(注:试卷上面标注的是:车辆工程、机械制造及自动化、机械电子工程、机械设计及理论、机械工程、物流工程、机械装备及控制专业)材料力学D 2004——2005,2007——2010(注:试卷上面标注的是:固体力学专业)钢筋混凝土结构2003——2005统计物理2003——2005,2010传输原理2003——2010冶金物理化学2003——2010普通化学2006——2010普通化学(A)2004——2005综合科技史2003——2010文物保护基础2004——2006,2008——2010社会学理论2010社会学2003——2008设计基础2004——2006,2008——2010设计理论2004——2010传热学2003——2005,2007——2010工程热力学2003——2005,2007——2010生产运作与管理2003——2004现代生产管理2005,2007——2010电路及数字电子技术2003——2010通信原理2004——2010计算机组成原理及数据结构2006——2008计算机组成原理2003计算机组成原理及计算机网络2004——2005计算机组成原理及计算机系统结构2004——2005数据结构1999——2000,2003(2003有答案)数据结构及软件工程2004——2005高等代数2003——2010数学分析2004——2010常微分方程2003——2005概率统计2004——2005概率与数理统计2003——2005普通物理2008——2010普通物理(A)2004——2005固体物理2007——2010固体物理(A)2003——2005量子力学2007——2010量子力学(B)2003——2005(2004有答案)热力学与统计物理(B)2003——2005基础化学2003——2005无机化学2003——2010有机化学A(分析化学专业)2004有机化学(分析化学专业)2005有机化学(生物化工、环境科学专业)2004有机化学(生物化工专业)2003有机化学B(生物化工、环境科学、环境工程专业)2005有机化学(B)(化学专业)2010有机化学(B)(分析化学、无机化学、有机化学、物理化学专业)2007——2008 综合化学(含有机化学、分析化学)2004模拟电子技术与数字电子技术基础2004——2010(注:2007年试卷共4页,缺P4)理论力学(A)2005,2007——2010理论力学(B)2003——2005微生物学A 2008——2010微生物学B 2008——2010微生物学2007环境微生物学2004——2005单考数学2003——2004,2008——2010单考俄语2008——2010单考英语2008——2010单考政治2008——2010机械工程学院设计基础2004——2006,2008——2010设计理论2004——2010材料力学2003(注:试卷上面标注的是:材料加工工程专业)材料力学B 2004——2005(注:试卷上面标注的是:材料加工工程、材料科学与工程专业)材料力学2003(注:试卷上面标注的是:车辆工程、机械制造及自动化、机械电子工程、机械设计及理论、固体力学专业)材料力学C 2010(注:试卷上面标注的是:车辆工程、物流工程、机械工程专业)材料力学C 2004——2008(注:试卷上面标注的是:车辆工程、机械制造及自动化、机械电子工程、机械设计及理论、机械工程、物流工程、机械装备及控制专业)材料力学D 2004——2005,2007——2010(注:试卷上面标注的是:固体力学专业)理论力学(A)2005,2007——2010理论力学(B)2003——2005传热学2003——2005,2007——2010工程热力学2003——2005,2007——2010工程流体力学2003——2005,2007——2010生产运作与管理2003——2004现代生产管理2005,2007——2010单考数学2003——2004,2008——2010单考俄语2008——2010单考英语2008——2010单考政治2008——2010信息工程学院自动检测技术2007——2010电路及数字电子技术2003——2010通信原理2004——2010概率统计2004——2005计算机组成原理及数据结构2006——2008计算机组成原理2003计算机组成原理及计算机网络2004——2005计算机组成原理及计算机系统结构2004——2005数据结构1999——2000,2003(2003有答案)数据结构及软件工程2004——2005信号系统与数字电路2008——2010单考数学2003——2004,2008——2010单考俄语2008——2010单考英语2008——2010单考政治2008——2010经济管理学院管理学与经济学基础2006——2010(注:2006年缺页)管理学原理2004——2010(2004——2005有答案)数据库原理与管理系统2003单考数学2003——2004,2008——2010单考俄语2008——2010单考英语2008——2010单考政治2008——2010应用科学学院高等代数2003——2010数学分析2004——2010常微分方程2003——2005概率统计2004——2005概率与数理统计2003——2005普通物理2008——2010普通物理(A)2004——2005固体物理2007——2010固体物理(A)2003——2005量子力学2007——2010量子力学(B)2003——2005(2004有答案)热力学与统计物理(B)2003——2005基础化学2003——2005无机化学2003——2010分析化学2006——2010物理化学(A)2003——2010物理化学(B)2005——2010有机化学A(分析化学专业)2004有机化学(分析化学专业)2005有机化学(生物化工、环境科学专业)2004有机化学(生物化工专业)2003有机化学B(生物化工、环境科学、环境工程专业)2005有机化学(B)(化学专业)2010有机化学(B)(分析化学、无机化学、有机化学、物理化学专业)2007——2008 综合化学(含有机化学、分析化学)2004模拟电子技术与数字电子技术基础2004——2010(注:2007年试卷共4页,缺P4)材料力学2003(注:试卷上面标注的是:材料加工工程专业)材料力学B 2004——2005(注:试卷上面标注的是:材料加工工程、材料科学与工程专业)材料力学2003(注:试卷上面标注的是:车辆工程、机械制造及自动化、机械电子工程、机械设计及理论、固体力学专业)材料力学C 2010(注:试卷上面标注的是:车辆工程、物流工程、机械工程专业)材料力学C 2004——2008(注:试卷上面标注的是:车辆工程、机械制造及自动化、机械电子工程、机械设计及理论、机械工程、物流工程、机械装备及控制专业)材料力学D 2004——2005,2007——2010(注:试卷上面标注的是:固体力学专业)理论力学(A)2005,2007——2010理论力学(B)2003——2005生物化学与分子生物学2008——2010细胞生物学2007——2010微生物学A 2008——2010微生物学B 2008——2010微生物学2007环境微生物学2004——2005运筹学2007——2008单考数学2003——2004,2008——2010单考俄语2008——2010单考英语2008——2010单考政治2008——2010文法学院文学原理2010中国语言文学2010民法学2004——2010综合考试(民商法学、经济法学专业)2005——2010合同法2004民事诉讼法2004知识产权法2004社会学研究方法2007——2010社会学理论2010社会学2003——2008马克思主义哲学原理2007——2010马克思主义政治经济学原理2007——2010文艺美学2004文艺学原理2004——2005,2007——2008中国文论史2005,2007——2008历史唯物主义2004——2005思想政治教育原理2003——2010科学技术史2007——2010科学技术概论2007——2010现代科学技术概论2005综合科技史2003——2010行政管理学2003——2010政治经济学2003——2005教育史2005(2005有答案)普通教育学2003——2005,2007——2010(2004——2005有答案)管理学原理2004——2010(2004——2005有答案)普通心理学2003——2005,2007——2010计算机基础2003——2005,2007——2010教育学专业基础综合(全国统考试卷)2007——2008单考数学2003——2004,2008——2010单考俄语2008——2010单考英语2008——2010单考政治2008——2010外国语学院二外法语2004——2010二外日语2004——2010二外俄语2004——2010二外德语2004——2008综合英语2003——2006,2008——2010基础英语2004——2010新金属材料国家重点实验室物理化学(A)2003——2010物理化学(B)2005——2010金属学2003——2005,2007——2010材料力学2003(注:试卷上面标注的是:材料加工工程专业)材料力学B 2004——2005(注:试卷上面标注的是:材料加工工程、材料科学与工程专业)材料力学2003(注:试卷上面标注的是:车辆工程、机械制造及自动化、机械电子工程、机械设计及理论、固体力学专业)材料力学C 2010(注:试卷上面标注的是:车辆工程、物流工程、机械工程专业)材料力学C 2004——2008(注:试卷上面标注的是:车辆工程、机械制造及自动化、机械电子工程、机械设计及理论、机械工程、物流工程、机械装备及控制专业)材料力学D 2004——2005,2007——2010(注:试卷上面标注的是:固体力学专业)钢筋混凝土结构2003——2005单考数学2003——2004,2008——2010单考俄语2008——2010单考英语2008——2010单考政治2008——2010下面是余秋雨经典励志语录,欢迎阅读。

2006年北京大学高等代数真题解答

2006年北京大学高等代数真题解答

2006年北京大学研究生入学考试高等代数与解析几何试题解答高等代数部分(100分)1.(16分)(1) 设,A B 分别是数域K 上,s n s m ××矩阵,叙述矩阵方程AX B =有解的充要条件,并且给予证明。

解: 方程AX B =有解的充分必要条件是: ()(,)r A r A B =. 令1(,,)m B ββ=", 其中k β为列向量. 则矩阵方程AX B =有解⇔方程组12,,,,k k Ay k m β=="有解. ⇔A 的列向量组构成的向量组与(,)A B 的列向量组构成的向量组等价. ⇔()(,)r A r A B =.注: 方程有解的一个等价含义是可由列向量线性表示, 从而转化为等价向量组上来.(2) 设A 是数域K 上s n ×列满秩矩阵,试问:方程n XA E =是否有解?有解,写出它的解集;无解,说明理由。

解:方程n XA E =有解. 理由: 因为A 列满秩, 所以()()Tr A r A n ==.又(,)Tn r A E n =, 因此()(,)TTn r A r A E =,从而Tn A Y E =有解,两边取转置可知方程n XA E =有解.我个人觉得本题似乎考察的是:广义逆矩阵方面的知识, 如果大家对这部分知识不熟悉, 建议大家去看看丘维声老先生编著的<<高等代数>>.矩阵方程AXA A =的解X A −=一般称为A 的广义逆矩阵. 广义逆是存在的, 对于本题因为A 是列满秩的, 故由相抵标准型知,存在可逆矩阵,P Q 满足n E PAQ O ⎛⎞⎟⎜⎟⎜=⎟⎜⎟⎟⎜⎝⎠, 则可以取(,)n A Q E O P −=. 此时X 的所有解为: (),n sn X A Z E AA KZ −−×∈=+−∀.因为 11(,)n n nE A Q E O PP Q A E O −−−⎛⎞⎟⎜⎟⎜==⎟⎜⎟⎟⎜⎝⎠, 所以A −是矩阵方程n A A E −=的特解. 下面证明XA O =的全部通解为: (),n sn X Z E AA Z K−×∈=−∀.首先, 由()()n Z E AA A Z A A O −−=−=,知()n Z E AA −−是方程的解. 其次, 任取XA O =的一个解0X , 则由0000()n X E AA X X AA X −−−=−=, 取0Z X =即可.由矩阵方程解的结构定理可知, (),n sn X Z E AA Z K −×∈=−∀(3) 设A 是数域K 上s n ×列满秩矩阵,试问:对于数域K 上任意s m ×矩阵B ,矩阵方程AX B =是否一定有解?当有解时,它有多少个解?求出它的解集。

2006考研数二真题及解析

2006考研数二真题及解析

2006年全国硕士研究生入学统一考试数学二试题一、填空题:1-6小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (1) 曲线4sin 52cos x xy x x+=-的水平渐近线方程为(2) 设函数2301sin ,0(),0xt dt x f x x a x ⎧≠⎪=⎨⎪=⎩⎰ 在0x =处连续,则a =(3) 广义积分22(1)xdxx +∞=+⎰(4) 微分方程(1)y x y x-'=的通解是(5) 设函数()y y x =由方程1yy xe =-确定,则0x dy dx==(6) 设2112A ⎛⎫=⎪- ⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则B = .二、选择题:9-14小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7) 设函数()y f x =具有二阶导数,且()0,()0,f x f x x '''>>为自变量x 在点0x 处的增量,y 与dy 分别为()f x 在点0x 处对应增量与微分,若0x >,则( ) (A)0dy y << (B)0y dy <<(C)0y dy <<(D)0dy y <<(8) 设()f x 是奇函数,除0x =外处处连续,0x =是其第一类间断点,则0()xf t dt ⎰是( )(A)连续的奇函数 (B)连续的偶函数(C)在0x =间断的奇函数(D)在0x =间断的偶函数(9) 设函数()g x 可微,1()(),(1)1,(1)2,g x h x e h g +''===则(1)g 等于( )(A)ln 31-(B)ln 31--(C)ln 21--(D)ln 21-(10) 函数212x x x y c e c e xe -=++满足的一个微分方程是( ) (A)23xy y y xe '''--= (B)23xy y y e '''--=(C)23x y y y xe '''+-=(D)23xy y y e '''+-=(11) 设(,)f x y 为连续函数,则14(cos ,sin )d f r r rdr πθθθ⎰⎰等于( )(A)(,)xf x y dy ⎰(B)(,)f x y dy ⎰(C)(,)yf x y dx ⎰(D)(,)f x y dx ⎰(12) 设(,)(,)f x y x y ϕ与均为可微函数,且(,)0,y x y ϕ'≠已知00(,)(,)x y f x y 是在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是( )(A)若0000(,)0,(,)0x y f x y f x y ''==则 (B)若0000(,)0,(,)0x y f x y f x y ''=≠则(C)若0000(,)0,(,)0x y f x y f x y ''≠=则 (D)若0000(,)0,(,)0x y f x y f x y ''≠≠则(13) 设12,,,s ααα均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是( ) (A)若12,,,s ααα线性相关,则12,,,s A A A ααα线性相关. (B)若12,,,s ααα线性相关,则12,,,s A A A ααα线性无关.(C)若12,,,s ααα线性无关,则12,,,s A A A ααα线性相关. (D)若12,,,s ααα线性无关,则12,,,s A A A ααα线性无关.(14) 设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001P ⎛⎫⎪= ⎪⎝⎭,则( )(A)1.C P AP -=(B)1.C PAP -= (C).TC P AP =(D).TC PAP =三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)试确定常数,,A B C 的值,使得23(1)1()x e Bx Cx Ax o x ++=++,其中3()o x 是当0x →时比3x 高阶的无穷小.(16)(本题满分10分)求arcsin xxe dx e ⎰ (17)(本题满分10分)设区域22{(,)|1,0}D x y x y x =+≤≥,计算二重积分2211DxyI dxdy x y +=++⎰⎰ (18)(本题满分12分)设数列{}n x 满足10x π<<,1sin (1,2,)n n x x n +==(I) 证明lim n n x →∞存在,并求该极限;(II) 计算211lim n x n n n x x +→∞⎛⎫ ⎪⎝⎭. (19)(本题满分10分)证明:当0a b π<<<时,sin 2cos sin 2cos b b b b a a a a ππ++>++. (20)(本题满分12分)设函数()(0,)f u +∞在内具有二阶导数,且Z f=满足等式22220z zx y∂∂+=∂∂(I)验证()()0f u f u u'''+=; (II)若(1)0,(1)1f f '==, 求函数()f u 的表达式. (21)(本题满分12分)已知曲线L 的方程221,(0),4x t t y t t⎧=+≥ ⎨=-⎩(I) 讨论L 的凹凸性;(II) 过点(1,0)-引L 的切线,求切点00(,)x y ,并写出切线的方程; (III) 求此切线与L (对应0x x ≤的部分)及x 轴所围成的平面图形的面积. (22)(本题满分9分)已知非齐次线性方程组1234123412341,4351,31x x x x x x x x ax x x bx +++=-⎧⎪++-=-⎨⎪+++=⎩ 有3个线性无关的解.(I) 证明此方程组系数矩阵A 的秩()2r A =; (Ⅱ) 求,a b 的值及方程组的通解. (23)(本题满分9分)设3阶实对称矩阵A 的各行元素之和均为3,向量()()121,2,1,0,1,1TTαα=--=-是线性方程组0Ax =的两个解.(I) 求A 的特征值与特征向量;(II) 求正交矩阵Q 和对角矩阵Λ,使得TQ AQ =Λ.2006年全国硕士研究生入学统一考试数学二试题解析一、填空题 (1)【答案】15y =【详解】 由水平渐近线的定义及无穷小量的性质----“无穷小量与有界函数的乘积是无穷小量”可知4sin lim lim 52cos x x x x y x x →∞→∞+=-4sin 1lim2cos 5x xx x x→∞+=-10lim 50x →∞+=-15= 0x →时1x为无穷小量,sin x ,cos x 均为有界量. 故,15y =是水平渐近线.(2)【答案】13【详解】按连续性定义,极限值等于函数值,故lim ()x f x →203sin limx x t x →=⎰220sin()lim 3x x x →洛220lim 3x x x→=13= 注:00型未定式,可以采用洛必达法则;等价无穷小量的替换22sin x x(3)【答案】12【详解】222222001111(1)2(1)212xdx dx x x x +∞+∞+∞==-⋅=+++⎰⎰(4) 【答案】xCxe-.【详解】分离变量,(1)dy y x dx x -=⇒(1)dy x dx y x -=⇒1(1)dy dx y x =-⇒1dy dx dx y x=-⎰⎰⎰ ⇒ln ln y x x c =-+ ⇒ln ln y x x ce e -+= ⇒xy Cxe -=(5)【答案】e -【详解】题目考察由方程确定的隐函数在某一点处的导数.在原方程中令0(0)1x y =⇒= .将方程两边对x 求导得y y y e xe y ''=--,令0x =得(0)y e '=-(6) 【答案】 2【详解】由已知条件2BA B E =+变形得,2BA E B -=⇒()2B A E E -=, 两边取行列式, 得()244B A E E E -=== 其中,2110112120111A E ⎡⎤⎡⎤-=-==⎢⎥⎢⎥--⎣⎦⎣⎦, 222E 4E == 因此,2422E B A E===-.二、选择题.(7)【答案】A 【详解】方法1: 图示法.因为()0,f x '>则()f x 严格单调增加;因为()0,f x ''> 则()f x 是凹函数,又0x >,画2()f x x =的图形yy结合图形分析,就可以明显得出结论:0dy y <<. 方法2:用两次拉格朗日中值定理000()()()y dy f x x f x f x x '-=+--(前两项用拉氏定理)0()()f x f x x ξ''=- (再用一次拉氏定理)0()()f x x ηξ=-'', 其中000,x x x x ξηξ<<+<<由于()0f x ''>,从而0y dy ->. 又由于0()0dy f x x '=>,故选[]A 方法3: 用拉格朗日余项一阶泰勒公式. 泰勒公式:000()()()()f x f x f x x x '=+-()20000()()()()2!!n n n f x f x x x x x R n ''+-++-+,其中(1)00()()(1)!n nn fx R x x n +=-+. 此时n 取1代入,可得20001()()()()()02y dy f x x f x f x x f x ξ'''∆-=+∆--∆=∆> 又由0()0dy f x x '=∆>,选()A .(8)【答案】(B ) 【详解】方法1:赋值法特殊选取1,0()0,01,0x f x x x >⎧⎪==⎨⎪-<⎩,满足所有条件,则0,0(),0x x x f t dt x x x ≥⎧==⎨-<⎩⎰ . 它是连续的偶函数. 因此,选(B )方法2:显然()f x 在任意区间[],a b 上可积,于是0()()xF x f t dt =⎰记处处连续,又()()()()()s txxxF x f t dt f t dt f s ds F x =----==--==⎰⎰⎰即()F x 为偶函数 . 选 (B ) .(9)【答案】(C )【详解】利用复合函数求导法1()()g x h x e +=两边对x 求导⇒1()()()g x h x g x e +''=将1x =代入上式,⇒1(1)12g e+=⇒1(1)ln 1ln 212g =-=--. 故选(C ).(10)【答案】(C )【详解】题目由二阶线性常系数非齐次方程的通解,反求二阶常系数非齐次微分方程,分两步进行,先求出二阶常系数齐次微分方程的形式,再由特解定常数项.因为212x x x y c e c e xe -=++是某二阶线性常系数非齐次方程的通解,所以该方程对应的齐次方程的特征根为1和-2,于是特征方程为2(1)(2)20λλλλ-+=+-=,对应的齐次微分方程为-20y y y '''+=所以不选(A )与(B ),为了确定是(C )还是(D ),只要将特解x y xe *=代入方程左边,计算得()()-23x y y y e ***'''+=,故选(D ). (11) 【答案】()C【详解】记140(cos ,sin )(,)Dd f r r rdr f x y dxdy πθθθ=⎰⎰⎰⎰,则区域D 的极坐标表示是:01r ≤≤ ,04πθ≤≤. 题目考察极坐标和直角坐标的互化问题,画出积分区间,结合图形可以看出,直角坐标的积分范围(注意 y x = 与 221x y += 在第一象限的交点是22(,),于是:02D y y x ≤≤≤≤所以,原式0(,)yf x y dx =. 因此选 ()C(12) 【答案】D 【详解】方法1: 化条件极值问题为一元函数极值问题。

北京科技大学825高等代数一2020年考研专业课初试大纲

北京科技大学825高等代数一2020年考研专业课初试大纲

《高等代数I》考试大纲一、课程教学基本要求1.课程重点:高等代数主要分为以下部分:矩阵,线性空间,线性变换, 多项式理论,线性方程组理论,行列式.矩阵理论的重点在矩阵的运算、分块矩阵.线性空间理论的重点在线性空间的概念、向量的线性关系、基、维数、坐标以及线性空间的直和分解.线性变换的重点是线性变换的像、核求法以及不变子空间的判定.多项式理论的重点在多项式的整除性,及多项式的因式分解理论.线性方程组理论的重点在线性方程组的解的结构和求解的算法.行列式的重点在行列式的计算.欧氏空间、二次型等内容上.矩阵与行列式是研究线性关系的重要工具,也是课程的重点内容之一,矩阵的方法贯穿课程的始终.2.课程难点:本课程的难点很多,从知识上讲,线性空间的概念、向量的线性相关性、线性映射,多项式在有理数域的分解、方程组解的判定、二次型正定的判定等等;从方法上讲,高等代数课程解决问题的方法比较灵活,技巧性比较强,是不易学习和掌握的.3.能力培养要求:要求学生熟练掌握线性空间和线性变换的基本理论,熟练掌握矩阵的初等变换、行列式这种重要的数学工具,掌握多项式的因式分解理论、向量组线性相关及线性无关理论.初步掌握线性代数的方法和技巧.二、课程教学内容与学时1.预备知识熟悉基本的概念:集合及运算,等价关系,映射、数域;2.多项式2.1 多项式,带余除法,整除性掌握带余除法,多项式的整除性.2.2 最大公因式了解公因式的概念,掌握最大公因式的定义、性质、算法.2.3 因式分解了解多项式的唯一分解定理,了解重因式及其判断方法、掌握不可约多项式及性质.2.4多项式的根熟练掌握余式定理及其应用.2.5复系数、实系数多项式掌握代数学基本定理,了解复系数、实系数多项式在相应数域中的分解形式,掌握根与系数的关系定理.2.6整系数多项式了解本原多项式的概念及Gauss引理,掌握Eisenstein判别法.3.矩阵3.1 矩阵的概念及运算了解矩阵的背景,熟练掌握矩阵的和、差、数乘、乘法、转置运算.3.2 矩阵的初等变换1。

北京科技大学历年高等代数考研真题汇编(2003-2017)

北京科技大学历年高等代数考研真题汇编(2003-2017)

九.(本题 20 分)设线性空间V W1 W2 L Ws ,证明:存在V 的线性变换1, 2 ,L , s
使得(1)

2 i
i
,1
i

s
;(2) i
j

0
,i

j ;(3)1 2 L
s I 为恒等变
换;(4) Im i Wi ,1 i s 。
1 ( 1,2,1,3 ),2 ( 1,1,2,1 ),3 ( 1,3,0,5 ), 1 ( 1,0,4,2 ), 2 ( 0,5,9,14 ) .
求(1)V1 的维数与一组基;(2)V2 的维数与一组基;(3)V1 V2 的维数 与一组基;(4)V1 V2 的维数与一组基.
注意:第一、二大题不必抄题,在答题纸上写清题号即可。
一.填空题(本题 20 分,每小题 4 分)
1. 已知 A 为 n 阶方阵且 A 3 ,则 A1 2 A*

2 . 设 A是 3 阶 可 逆 矩 阵 , A的 第 1 行 与 第 2 行 交 换 后 得 到 矩 阵 B, 则
AB1
一(15 分)、判断 f ( x ) x5 3x4 5x3 7 x2 6 x 2 有无重因式,若有,请求出 f (x)
的所有重因式并指出其重数.
1
二(20
分)、设矩阵
A


2 1
1 1 1
1
0 1

,
B

2

1
1 1
2 1
.
(1)计算矩阵 ABT 以及行列式 ABT BAT ;
-3-
北京科技大学 2012 年硕士学位研究生入学考试试题

2006-2007学年度第二学期线性代数期末考试试题A卷

2006-2007学年度第二学期线性代数期末考试试题A卷

北京科技大学2006--2007学年第二学期线性代数 试卷(试卷(A A 卷)院(系) 班级 学号 姓名试卷卷面成绩占课程占课程考核成绩考核成绩 85 % 平时平时成绩占成绩占 15% 课程考核成绩 题号 一 二 三 四 五 六 七 八 小计 得分 评阅 审核一、填空题(本题共15分,每小题3分)1.四维向量()()1,1,1,1,2,0,3,6TT=--=--a b 的夹角是 。

2.设A 是5阶方阵,且2=-A ,那么2A -= 。

3.设12304501A æöç÷=ç÷ç÷èø,则()1A -*= 。

4.与向量()()1,2,2,2,1,2-TT同时正交的单位向量是 。

5.若二次型()()222123123121323,,1424f x x x x t x tx x x x x x x =++++--正定,那么参数t 应该满足的条件是 。

得 分装订线内不得答题自觉遵守考试规则,诚信考试,绝不作弊二、选择题(本题共15分,每小题3分)1.若12312,,,,a a a b b 均为四维列向量,且满足行列式1312,,,2=a a b a ,2231,,,3=a b a a ,那么行列式12312,,,+=a a a b b 。

(A )5 (B )-5 (C )1 (D )-1 2.具有零特征值是方阵不可逆的 。

(A )充分条件,但不是必要条件 (B )必要条件,但不是充分条件 (C )充分必要条件(D )既非充分条件,也非必要条件3.若向量组1234,,,a a a a 线性无关,则下列向量组线性相关的是 。

(A )1121231234,,,++++++a a a a a a a a a a(B )12123434,,,-+-+a a a a a a a a (C )12233441,,,++++a a a a a a a a(D )1121231234,,,--+-+-a a a a a a a a a a 4.下列命题正确的是 。

(NEW)中国人民大学《828高等代数》历年考研真题汇编

(NEW)中国人民大学《828高等代数》历年考研真题汇编
1.第i行j列元素为1,其他元素为0的n阶方阵记为Eij,那么EijEkl= _______.
2.设A为3阶方阵且|A|=-1/3,A*是A的伴随矩阵,那么|(2A)-1+ 3A*|=________,|(A*)*+3(A*)-1|=________.
3.向量组α1=(1,2,2)T,α2=(2,4,4)T,α3=(1,0,3)T, α4=(0,4,-2)T的秩为________,它的一个极大无关组为 _________.
2005年中国人民大学450高等代数考研真题
2006年中国人民大学494高等代数考研真题
2007年中国人民大学436高等代数考研真题
第2部分 其他院校高等代数考研真题 2017年中山大学862高等代数考研真题
2017年中国传媒大学高等代数考研真题
4.设A、B是同阶方阵,则( )成立.
A.若A、B有相同的特征多项式,则A、B有相同的初等因子
B.若A相似于B,则|A|=|B|
C.若A、B有相同的各阶行列式因子,则A、B相似 D.若A、B均为实对称矩阵,且存在非奇异矩阵P使PTAP=B,则A、B 相似
5.已知T(x1,x2,…,xn)=(0,x1,x2,…,xn-1)是线性空间Pn 的线性变换,KerT,ImT分别表示线性变换T的核和值域,则下列结论 中正确的有( ).
求正交矩阵T,使T-1AT成对角矩阵. 五、(10分)证明平面上三条互异直线
相交于一点的充分必要条件是a+b+c=0. 六、(20分)设A、B、C分别是r×s,s×m,m×n矩阵,r(B)= r(AB).求证: (1)线性方程组BX=0与ABX=0同解; (2)r(BC)=r(ABC). 七、(20分)设A、B是n×n实对称矩阵,A正定.证明: (1)AB可对角化; (2)若B也正定,则AB的特征值全是正的.

北京科技大学824初试真题

北京科技大学824初试真题

北京科技大学824初试真题北京科技大学2012年硕士学位研究生入学考试试题=============================================================================================================试题编号:824试题名称:管理学与经济学基础(共6页)适用专业:国际贸易学、管理科学与工程、金融学、会计学企业管理、技术经济及管理、产业经济学说明:所有答案必须写在答题纸上,做在试题或草稿纸上无效。

=============================================================================================================管理学部分(75分)一、选择题(每题1分,共15分。

注:全部为单选题,请选择最合适的答案)1.根据领导生命周期理论,下列应采取参与型领导风格的是()。

A.下属既无能力又不情愿B.下属有能力但不愿意干领导分配的工作C.下属无能力但有很大的积极性D.下属既有能力又对分配的工作有积极性2.当管理者激励下属,指导他们的活动,选择最有效的沟通渠道解决组织成员之间的冲突时,就是在执行()。

A.计划职能B.组织职能C.领导职能D.控制职能3.一家用器械制造商以往从未向美国大型百货店提供过产品,最近却与希尔斯百货公司签订了一份三年期合同,将其洗衣机产品40%的生产量集中出售给希尔斯公司。

这一行动使该制造商的经营环境发生了何种变化?()A.环境复杂性降低B.环境复杂性升高C.环境动态性降低D.环境动态性升高4.某公司召集中层以上管理人员开会,把上级有关政策通报给大家,并要求所有参加的管理人员向各自的部门传达上级的政策。

在这个管理过程中,存在哪几种类型的沟通模式?()A.轮式链式B.轮式全通道式C.Y式环式D.环式轮式5.由纵向的职能领导系统和为完成某一任务而组成的横向项目系统构成的组织结构是()。

北京科技大学《825高等代数》历年考研真题专业课考试试题

北京科技大学《825高等代数》历年考研真题专业课考试试题

目 录
2004年北京科技大学高等代数考研真题
2005年北京科技大学425高等代数考研真题
2006年北京科技大学425高等代数考研真题
2007年北京科技大学425高等代数考研真题
2008年北京科技大学825高等代数考研真题
2009年北京科技大学825高等代数考研真题
2010年北京科技大学825高等代数考研真题
2011年北京科技大学825高等代数考研真题
2012年北京科技大学825高等代数考研真题
2013年北京科技大学825高等代数考研真题
2014年北京科技大学825高等代数考研真题
2004年北京科技大学高等代数考研真题。

名校高等代数历年考研试题(1-3章)

名校高等代数历年考研试题(1-3章)

第一章 多项式例 1.1(华南理工大学, 2006年) 设 ( ) ( ) x g x f , 是数域F 上的多项式. 证明:( ) ( ) x g x f | 当且仅当对于任意的大于1的自然数n 有, ( ) ( ). | xg x f n n 证明 必要性显然成立,下证充分性. 设 ( ) g x 在数域F 上的不可约分解为( ) ( ) ( ) ( ) 12 12 k lllk g x cp x p x p x =××× ,其中 ( ) ,1,2,..., il i p x i k = 是互不相同的不可约多项式.若有 ( ) ( ) | nnf xg x ,则( ) ( ) ( ) ( ) 12 12 ,0,1,2,...,.k nf nf nfn k i i f x dp x p x p x f l i k =×××££= 其中d 是某个常数,因此有( ) ( ) x g x f | .例 1.2(大连理工大学,2007 年)设 ( ) ( ) ( ) x hx g x f , , 是实系数多项式,如果 ( ) ( ) ( ) x xhx xg x f 22 2 + = ,则 ( ) ( ) ( ) . 0 = = = x h x g x f 证明 由 ( ) ( ) ( ) ( ) 222 f x x g x h x =+ ,可知 ( ) 2 | x f x ,易推得 ( ) | x f x . 于是有 ( ) ( ) 2221 f x x f x= ,代入方程并在两边约去 x 有 () ( ) ( ) x h x g x xf 2 2 21 + = (*)于是有 ( ) ( ) ( ) 22 | x g x h x + ,若多项式 ( ) g x 或 ( ) h x 中的常数项不为零的话,都可 以推出( ) ( )( )x h x g x 2 2 | + 于是有( ) ( ) ( ) () ( )x h x g x x h x g 21 2 1 2 2 2 + = + 代入(*)式并约去 x 有( ) ( ) () ( )x h x g x x f 21 2 1 21 + = 这样又回到原来的方程,所不同的是 ( ) ( ) ( ) 111 ,, f x g x h x 比 ( ) ( ) ( ) ,, f x g x h x 的次数要小 1. 于是经过有限次后必可以使得方程的左边为零次多项式,即为某个常 数c ,使得( ) () ( )x h x g x c k k 22 + = 比较两边的次数易得 0 = c ,并代入方程有( ) () 0 22 = + x h x g k k 于是( ) () 0 = = x h x g k k 那么 ( ) ( ) ( ) ,, f x g x h x 都是某个多项式乘以数0. 由此可推得( ) ( ) ( ) 0 = = = x h x g xf . 例 1.3(大连理工大学,2007年)证明多项式 1 | 1 - - n d x x 的充分必要条件是n d | .证明 充分性显然,下证必要性.若 d r r dq n < < + = 0 ,,则 ( ) ( )11 1 1 - + - = - + - = - r dq r r r n n x x x x x x x 由于 1 - dq x 可被 1 - d x 整除, 而 1 - r x 不能被 1 - d x 整除, 于是 1 - n x 不能被 1 - dx 整除.由其逆否命题可知必要性成立.例 1.4 (北京科技大学,2004年)求一个三次多项式 ( ) x f ,使得 ( ) 1 + x f 能 被( ) 21 - x 整除,而 ( ) 1 - x f 能被( ) 21 + x 整除.解 由题知 ( ) 'f x 能被( ) 1 x - 和( ) 1 x + 整除,又由 ( ) f x 是一个三次多项式, 那么 ( ) 'f x 是一个二次多项式,于是可设( ) ( )( ) aax x x a x f - = - + = 2 ' 1 1 积分易得( ) 33a f x x axb =-+ (其中a, b 为常数) 由题设可知 ( ) 1 f x =- ,易解得3 2 0a b ì = ïí ï = î 那么显然有( ) xx x f 2 3 2 1 3 - = .例 1.5(兰州大学,2004)设 () f x 和 () g x 是数域F 上的两个不完全为零的多 项式,令{ [ ]}()()()()(),() I u x f x v x g x u x v x F x =+Î 证明:(1) I 关于多项式的加法和乘法封闭,并且对任意的 () h x I Î 和任意的 [ ] (), k x F x Î 有 ()() h x k x I Î .(2) I 中存在次数最小的首项系数为 1 的多项式 () d x , 并且()((),()) d x f x g x = .证明 (1) 容易证明,略.(2) 考虑{ [ ] 0 (()()()())(),() I u x f x v x g x u x v x F x =¶+Î 且 } ()()()()0 u x f x v x g x +¹ 则 0 I 是非负整数的一个子集,由最小数原理, 0 I 中存在最小数,也就是说,I 中存在次数最小的首项系数为1的多项式:11 ()()()()()d x u x f x v x g x =+ 设 () h x 是 I 中任意多项式,且 ()()()() h x d x q x r x =+ ,其中 ()0 r x = 或者(()) r x ¶< (()) d x ¶ .若 (()) r x ¶< (()) d x ¶ , 则 ()()()() r x h x d x q x =- .由(1)可知 () r x I Î , 与 () d x 是I 中次数最小的多项式矛盾. 故 ()0 r x = ,所以 ()() d x h x .显然 (),() f x g x I Î ,所以 ()() d x f x , ()() d x g x .如果 ()() p x f x , ()() p x g x ,则11 ()()()()()p x u x f x v x g x +即 ()() p x d x ,所以 ()((),()) d x f x g x = .例 1.6(上海交通大学,2004)假设 1 () f x 与 2 () f x 为次数不超过 3 的首项系数为1的互异多项式,若 42343 12 1()() x x f x x f x +++ ,试求 1 () f x 与 2 () f x 的最大公因式.解 由于42 1x x ++ = 22222 (1)(1)(1) x x x x x x +-=++-+ 设它的4个根分别为 1212 ,,, w w e e 其中1212 13131313 ,,, 2222i i i i w w e e -+--+- ==== 由于 4234312 1()() x x f x x f x +++ ,就有 343 12 ()() f x x f x + = 42 (1) x x ++ () g x . 于是有下面的方程组112 122 (1)(1)0 (1)(1)0 f f f f w w += ì í+= î 与 112 122 (1)(1)0 (1)(1)0f f f f e e ---= ì í ---= î 分别解这两个方程组得,12 (1)(1)0 f f == , 12 (1)(1)0f f -=-= 于是有,11 (1)(),(1)() x f x x f x +- , 22 (1)(),(1)() x f x x f x +- .进而有 1 (1)(1)() x x f x +- , 2 (1)(1)() x x f x +- .而 1 () f x , 2 ,() f x 是互异的次数不超过 3 的首系数为 1 的多项式,所以 2 12 ((),())1 f x f x x =- .例 1.7 (浙江大学,2006 年)设 P 为数域, ( ) [] i i f f x p x =Î , ( ) [],1,2 i i g g x p x i =Î= .证明:( )( ) ( )2 1 2 1 2 1 2 1 2 2 1 1 , , , , , g g f g g f f f g f g f = 证明 设 ( )( ), , , , 2 2 2 1 1 1 g f d g f d = = 有( ) ( ) ( ) ( ) ( ) ( ) ( )( )12121212 12121212 1212 1121122 ,,, ,,, , , ,,. f f f g g f g g f f f g g f g g f d g d f g d f g f g = = = = 例 1.8 (哈尔滨工业大学, 2005年) 设 ( ) ( ) x g x f , 都是实数R 上的多项式,R a Î (1) 证明: ( ) ( ) ( ) ( ) ( ) ( ).| a g f x g f a g x g - - (2) 问 ( )( ) a f x f a x - - 33 | 是否成立,为什么?解 (1) 令 ( ), y g x = 考虑多项式( ) ( ) ( ) ( ) a g f y f y h- = 由 ( ) ( ) ( ) ( ) ( ) ( ) 0= - = a g f a g f a g h 可知 ( ) ( ) ( )y h a g y | - 即( ) ( ) ( ) ( ) ( ) ( ) a g f x g f a g x g - - | .(2) 令 3 b a R =Î ,注意用到(1)的结论,将(1)中a 的换成这里的b ,将(1)的( ) g x 换成这里的 3 x ,可得( ) ( ) 33 | x a f x f a -- .例 1.9(上海大学,2005)设22 1231 1(1)()()()() n n n n n nn x x f x xf x x f x x f x - - éù --++++ ëûL ( 2 n ³ )求证: 1() i x f x - (1,2,,1) i n =- L . 证明 由题设易知1222 1231 1()()()()n n n n n n n n x x x f x xf x x f x x f x --- - ++++++++ L L 这里令e 是n 次本原单位根,那么22 1231 22222 1231 11212 1231 (1)(1)(1)(1)0(1)(1)()(1)()(1)0(1)(1)()(1)()(1)0n n n n n n n n n f f f f f f f f f f f f e e e e e e e e e - - - - ---- - ì ++++= ï ++++= ï íï ï ++++= î L L L LL于是关于 1231 (1),(1),(1),,(1) n f f f f - L 的齐次线性方程组的系数行列式为22 22222112121 1()() 0 1()()n n n n n n ee e e e e e e e - - ---- ¹ L L MMMML .故齐次线性方程组只有零解,于是 121 (1)(1)(1)0 n f f f - ==== L ,所以 1()i x f x - (1,2,,1) i n =- L .例 1.10(哈尔滨工业大学,2006 年)已知 ( ) ( ) x g x f , 是数域 P 上两个次数大 于零的多项式,且存在 ( ) ( ) 11 ,[], u x v x p x Î 使得 ( ) ( ) ( ) ( ) 1 1 1 = + x g x v x f x u ,问是否存 在 ( ) ( ) ,[] u x v x p x Î ,使得 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) x f x v x g x u x g x v x f x u ¶ < ¶ ¶ < ¶ = + , , 1 . 如果存在,这样是唯一的吗?说明理由.解 由于 ( ) ( ) ( ) 11 ()1 u x f x v x g x += ,若 ( ) 1 u x 的次数大于 ( ) g x 的次数,则由 带余除法得( ) ( ) ( ) ( ) 1 u x g x q x u x =+ , ( ) ( ) ( ) ( )u x g x ¶<¶ 代入上式得( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 1f xg x q x u x g x v x ++= 即( ) ( ) ( ) ( ) ( ) () ( ) 1 1 = + + x v x q x f x g x u x f 令 ( ) ( ) ( ) ( ) 1 v x f x q x v x =+ ,则有( ) ( ) ( ) ( )x f x v ¶ > ¶ 否则由比较次数可知上式将不可能成立.关于唯一性的证明,可以假设 ( ) 2 u x , ( ) 2 v x 也满足条件,那么有( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1122 1f x u xg x v x f x u x g x v x +=+= 易得( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1221 f x u x u x g x v x v x -=- 由 ( ) f x 与 ( ) g x 互素,可知 ( ) ( ) ( ) ( ) 12 | g x u x u x - .又由 ( ) ( ) ( ) ( ) ( ) 12 u x u x g x ¶-<¶ ,可得 ( ) ( ) 12 0 u x u x -= ,即 ( ) ( ) 12 u x u x = ,这时有( ) ( ) 12 v x v x = .例 1.11(华南理工大学,2005年)证明:如果 ( ) ( )( ) 1 , = x g x f ,那么 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,1f xg x f x g x f x f x g x g x +++= 证明 由已知条件有 ( ) ( ) ( ) ( ) ,1 f x f x g x += , ( ) ( ) ( ) ( ) ,1 g x f x g x += ,由多 项式互素的性质可得( ) ( ) ( ) ( ) ( ) ,1f xg x f x g x += 于是有( ) ( ) ( ) ( ) ( ) ( ) ( ) ,1f xg x f x g x f x g x ++= ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,1f xg x f x g x f x g x +++= 综合上述两个等式以及多项式互素的性质有( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,1 f x g x f x g x f x g x f x g x +++= .例 1.12(苏州大学,2005)设 () f x 是一个整系数多项式,证明:如果存在 一个偶数m 和一个奇数n ,使得 () f m 和 () f n 都是奇数,则 () f x 没有整数根.证明 (反证法) 假设 () f x 有整数根k ,则 ()()() f x x k g x =- ,因为x k - 是 本原多项式,故 () g x 是整系数多项式. 又由于()()() f m m k g m =- , ()()() f n n k g n =- .且 () f m 和 () f n 都是奇数,那么m k - ,n k - 都是奇数,与m 是偶数且n 是 奇数矛盾,所以 () f x 没有整数根.例1.13 (四川大学, 2004年) (1) 设多项式 ( ) ( )( ) ( ) ( ) 1 1 2 2 1 + - - × × × - - = n x x x x f , 其中n 为非负整数. 证明: ( ) x f 在有理数域上一定不可约.(2) 在有理数域上求多项式 ( ) 36 12 11 2 2 3 4 + - - + = x x x x x g 的标准分解式.(1) 证明 假设 ( ) f x 在有理数域上可约, 故 ( ) f x 可分解为两个整系数多项式 的积, 即存在两个整系数多项式 ( ) ( ) , h x k x 使得( ) ( ) ( )f x h x k x = 注意到 ( ) 1,1,2,,21 f i i n ==×××- ,于是( ) ( ) 1,1,2,,21h i k i i n ==×××- 令 ( ) ( ) ( ) l x h x k x =- ,由 ( ) h x 与 ( ) k x 的次数小于21 n - 知 ( ) l x 的次数也小于 21 n - ,但是 ( ) l x 有21 n - 个不同的根为 1,2,,21 x n =×××- ,那么有 ( ) 0 l x º ,于是 ( ) ( ) h x k x = ,推得( ) ( ) ( ) 2f x k x =³ 但是 ( ) 00 f = ,矛盾. 于是 ( ) f x 在有理数域上不可约.(2) 注意到 ( ) ( ) 230 g g =-= ,由综合除法可得( ) ( ) ( )2223 g x x x =-+ 上式为 ( ) g x 在有理数域上的标准分解式.例 1.14(上海大学,2005)设 1 ()2n nf x x x + =+- (1) n ³ ,求 () f x 在有理数域上的不可约因式并说明理由. 解11 ()2(1)(1)n n n nf x x x x x ++ =+-=-+- 112 12 (1)(1)(1)(1) (1)(2222)(1)()n n n n n n n x x x x x x x x x x x x g x --- -- =-++++-+++ =-+++++ =- L L L 对 () g x , 令 2 p = , 用Eisenstein 判别法容易证明 () g x 在有理数域上不可约, 因此 () f x 在有理数域的不可约因式是: 1 x - 及 12 2222 n n n x x x x -- +++++ L .例 1.15(大连理工大学,2004)设R Q 分别表示实数域和有理数域,(),()[] f x g x Q x Î . 证明:(1) 若在 [] R x 中有 ()() g x f x ,则在 [] Q x 中也有 ()() g x f x .(2) () f x 与 () g x 在 [] Q x 中互素,当且仅当 () f x 与 () g x 在 [] R x 中互素.(3) 设 () f x 是 [] Q x 中不可约多项式,则 () f x 的根都是单根.证明 (1)(反证)假设在 [] Q x 中 () g x 不能整除 () f x ,作带余除法有()()()(),(),()[]f x q xg x r x q x r x Q x =+Î 且 (()) r x ¶< (()) g x ¶ .以上带余除法的结果在 [] R x 中也成立,所以在 [] R x 中 () g x 不能整除 () f x , 与在 [] R x 中有 ()() g x f x 矛盾. 因此,结论成立.(2) 如果 () f x 与 () g x 在 [] Q x 中互素,那么存在 (),()[] u x v x Q x Î ,使得()()()()1 f x u x g x v x += .以上等式在 [] R x 中也成立,所以 () f x 与 () g x 在 [] R x 中互素.如果 () f x 与() g x 在 [] Q x 中不互素,那么 () f x 与 () g x 在 [] Q x 存在非零次公因式.即()[] d x Q x Î , (())1,d x ¶³ 1 ()()() f x d x f x = , 1 ()()() g x d x g x = ,11 (),()[]f xg x Q x Î 以上两个等式在 [] R x 中也成立. 因此, () f x 与 () g x 在 [] R x 中不互素. (3) () f x 是 [] Q x 中的不可约多项式 , 则 ' ((),())1 f x f x = , 否则 ' ((),())()1, f x f x d x =¹ 则 () f x 有重因式, 与 () f x 不可约矛盾. 于是 () f x 没有重 因式,所以 () f x 的根都是单根.例 1.16(南京理工大学,2005年)设 p 是奇素数,试证 1 + + px x p 在有理数 域上不可约.证明 令 1 x y =- ,代入 ( ) 1 p f x x px =++ 有( ) ( ) ( ) ( ) ( ) 1111 pg y f x f y y p y ==-=-+-+ .考查多项式 ( ) ( ) ( ) 1! h y p g y =- ,注意到 p 是一个奇素数,那么 ( ) h y 的常数项为 ! p - ,于是对于素数 p 有, |! p p - ,而 2p 不整除 ! p - ,对于 ( ) h y 的首项,显然有 ( ) |1! p p - .对于其他的项,利用二项式定理对( ) ( ) 1!1 pp y -- 展开可知 p 能整除除了首项和 常数项之外的所有项系数. 又 ( ) 1 p y - 中关于 y 的一次项的系数也为 p 的倍数, 于是 p 整除 ( ) h y 的除了首项和常数项之外的所有系数. 利用Eisenstein 判别法可 知 ( ) h y 在有理数域上不可约,即 ( ) g y 在有理数域上不可约,也即 ( ) f x 有理数 域上不可约.例 1.17(陕西师范大学, 2006年) 11 ()()(),()()(), f x af x bg x g x cf x dg x =+=+ 且0 a bc d¹ ,证明: 11 ((),())((),()) f x g x f x g x= . 证明 令 111 ()((),()) d x f x g x = , ()((),()) d x f x g x = .由1 ()()() f x af x bg x =+ (*) 1 ()()()g x cf x dg x =+ (**)于是 1 ()() d x f x , 1 ()() d x g x . 那么 1 ()() d x d x .由式(*)与式(**)可以看成是关于 (),() f x g x 的线性方程组,解得,( ) ( )11 11 1()()() 1()()() g x ag x cf x ad bc f x df x bg x ad bc=- - =- - 于是 11 ()() d x f x , 11 ()() d x g x . 那么 1 ()() d x d x . 显然 1 ()() d x d x .于是11 ((),())((),()) f x g x f x g x = .例 1.18(华南理工大学,2006年)设 ( ) 1 2 34 + + + + = x x x x x f .(1) 将 ( ) x f 在实数域上分解因式.(2) 证明: ( ) x f 在有理数域上不可约. 由此证明 ( ) 5/ 2 cos p 不是有理数. (1) 解 不妨设 2 2 5, i e pa b a == , 于是 ,,, a a b b 是1的四个非实数的 5次方根. 显然有( ) ( )( )( )( )( ) ( ) ( ) ( )2222 11 24 2cos 12cos 1 55 f x x x x x x x x x x x x x a ab b a a b b p p =---- =-++-++ æöæö =-+-+ ç÷ç÷èøèø上式为 ( ) f x 在实数域上的因式分解. (2) 证明 令 1 x y =+ ,代入 ( ) f x .有( ) ( )1 g y f y =+ ( ) ( ) 5432 11 11510105y y y y y y +- =+- =++++ 对素数5 用Eisenstein 判别法可得 ( ) g y 是有理数域上不可约的多项式, 于是 有 ( ) f x 在有理数域上不可约 . 若 ( ) cos 2/5 p 是有理数 , 由 ( ) ( ) 2 cos 4/52cos 2/51 p p =- 可知 ( ) cos 4/5 p 也是有理数.于是由(1)的结论可知( ) 22 24 2cos 12cos 1 55 f x x x x x p p æöæö=-+-+ ç÷ç÷ èøèø.上式为 ( ) f x 在有理数域上的分解,这将导致 ( ) f x 在有理数域上可约,矛盾. 故结论成立.例 1.19(华东师范大学,2005 年)试在有理数域、实数域及复数域上将 ( ) 1 7 8 9 + + × × × + + + = x x x x x f 分解为不可约因式的乘积(结果用根式表示),并简 述理由.解 由( ) ( ) 1011 x f x x -=- ( )( )( )( )1 1 1 1 23 4 2 3 4 + - + - + + + + + - = x x x x x x x x x x 可知它在有理数域上的不可约分解为( ) ( )( )( )432432 111 f x x x x x x x x x x =+++++-+-+ (这里设 ( ) 432 1 1 g x x x x x =++++ ,并取 1 x y =+ 代入,并对素数 5用 Eisenstein 判别法可知 ( ) 1 1 g y + 在有理数域上不可约. 同理设 ( ) 432 2 1 g x x x x x =-+-+ ,并取 1 x y =- 代入,可知 ( ) 2 1 g y - 在有理数域上不可约.)设 243 55551212 ,,, i iii eee e pp ppa ab b ==== ,显然 1 的五次方根为 1122 1,,,, a a a a ;‐1的五次方根为 1122 1,,,, b b b b - . 于是在实数域上 ( ) f x 可分解为( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2222 11221122 11111f x x x x x x x x x x a a a a b b b b =+-++-++-++-++ 显然在复数域上 ( ) f x 可分解为( ) ( )( )( )( )( )( )( )( )( ) 112211221 f x x x x x x x x x x a a a a b b b b =+-------- .第二章 行列式例 2.1(兰州大学,2004年) 计算下列行列式的值121 121 121 1231 n n n n n n n n xa a a a a x a a a D a a x a a a a a a x- - - - = L L L M M M M M L 解 将 n D 的第2列到第 1 n +列加到第1列,且提取公因子有 121 21 21 1231 1 1 ()1 1 n n n n nn i n n i n a a a a xa a a D x a a x a a a a a x- - - = - =+ å L L L M M M M M L 121 12121213212 1 00()000 0 n n ni i n n na a a a x a x a a a x a a a a a a a x a - = -- - =+-- ---- å L LL M M M M M L 11()() nni i i i x a x a = = =+- å Õ .例 2.2(中山大学,2009年) 计算n 阶行列式22 111122 2222 22 111122 1...1... ..................1... 1... n n n nn n nn n n n n nn n n nx x x x x x x x D x x x x x x x x - - - ---- - = 解 首先考虑 1 n + 阶范德蒙行列式221 1111 1 221 2222 2 221 1111 1 221 2211... 1... .................. ... () 1... 1 (1)... n n n n n n n n n n n n n n n n n n n n n nn n n x x x x x x x x x x g x x x x x x x x x x x x xx x x-- -- -- ---- - -- -- =213111 3222 ()()...()() .()...()()...()n n n x x x x x x x x x x x x x x x x =---- ---- 从上面 1 n + 阶范德蒙行列式知,多项式 () g x 的 1 n x - 的系数为 21(1) n D D + -=- ;但从上式右端看, 1 n x - 的系数为12 1 (...).()n ji i j nx x x xx £<£ -+++- Õ 二者应相等,故 12 1 (...).() n n ji i j nD x x x xx £<£ =+++- Õ .例 2.3(北京交通大学,2004年)计算n 阶行列式111 23 222341222123 111 122111...11... 1... ............1 (1)... nn n n n n n n n n n nn n C C C C C C D C C C C C C + --- -- --- +- =.解 从最后一行起将每一行减去前面一行便可将行列式降一阶, 再对降一阶的行列式做同样的处理,不断这样下去可得 1 D = .例 2.4(大连理工大学,2005年) n 阶行列式21...11 13 (11) (1)1...11n =+ .解 答案是 1 1!(1) ni n i= + å . 这是因为原式 21...1111...11 13 (1102)...11 (1)1...1101...11n n ==++ 将上述行列式的第二行到 1 n + 行分别减去第一行,可得原式 11...11 11...00 (1)...n- =- 然后依次将第二列乘以1,第三列乘以 1 2 ,........,第 1 n + 列乘以 1n都加到第一列可得1 11 11...1 (11)2 101...00 !(1) ............... 00...0 ni n n i n= ++++ =+ å .例 2.5(南开大学,2003年) 计算下列行列式的值1112121 1212222 1122 ... ... ............... n n n n n n n n n na b c a b c a b c a b c a b c a b c D a b c a b c a b c +++ +++ =+++ 解法 1 将 n D 按第一行拆成两个n 阶行列式相加,并由于 3 n ³ ,故得1211121 12122221212222 11221122 ...... ...... .............................. n n n n n nn n n n n nn n n n n a a a b c b c b c a b c a b c a b c a b c a b c a b c D a b c a b c a b c a b c a b c a b c++++++ =+++++++ 000=+= 解法 2 将原n 阶行列式加边成一个 1 n + 阶行列式11112121 21212222 112 100...0 ... ... ............... ... n nn n nnn n n n n x a b c a b c a b c D x a b c a b c a b c x a b c a b c a b c+++ =+++ +++由于 3 n ³ ,故对上面的 1 n + 阶行列式按第一行展开可知,其每个元素的余子式 都是一个至少有两列元素对应成比例的n 阶行列式,从而都等于零. 因此 0 D = .例 2.6(浙江大学,2004年) 计算n 阶行列式... ... .................. ... ... ... n b b b b a b b b a b D b b a b b b a b b b a b b b b=解 ......() ......0 .................................... ......0 ......0 ......0 n b b b b a b b b b a b b b b b a b b b b a b D b b a b b b b a b b b a b b b b a b b b abbbb a b b b b -+ + == + + + 11 ... ... .................. (1)() ... ... ...n n b b b b b b b b a b a b D b b a b b b a b b b a bbbb+ - =--+(3) 1121 (1)()(1)()n n n n n a b D b a b + +- - =--+-- 注意到 222 D b a=- 递推可得(3) 1 2(1)()((1)) n n n n D a b a n b + - =--+- .例 2.7(复旦大学,2005年) 设 12 ...,0,1,2,... k k kk n s x x x k =+++= , 计算 1 n + 阶行列式11 121122 121 ...1 ... .................. ... n nn n n n n nnn n s s s s s s xD s s s xs s s x- - -- -- = 解 根据 k s 的定义、行列式的乘法以及范德蒙行列式知,所给的 1 n + 阶行列 式D可表示成两个 1 n + 阶行列式相乘111112 221111 112 12 11...11 1...0 ...1...0 ................................ 1...0 ... 00 (01)n n nn n n n n n n n n nnnn n x x x x x x x x D x x x x x x x x x x - - ---- - = 2 11 ()(())nj ji i i j nx x xx =£<£ =-- ÕÕ 211 ()() ni ij i i j nx x xx =£<£ =-- ÕÕ .例 2.8(华东师范大学,2008年) 计算n 阶行列式1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 32 1 L L M M M M M L L L n n n n n n D n- - - - - = ∙ 解 将第2列,第 3列,…,第n 列都加到第 1 列上11 11 01 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 32 2 ) 1 ( L L M M M M M L LL nn nn n n n n D n - - - - - + =111 1 1 1 1 1 11 11 1 1 11 2) 1 ( LL M M MM L L n n n n n n - - - - + = 1111 1 1 1 1 11 11 1 1 1 1 2) 1 ( LL M M MM L L - - - - - - - + = n n n n n111 10 0 0 0 0 00 0 0 2) 1 ( L L M M M ML L - - - - + = n n n n n 2)1 ,2 , 2 , 1 ( ) ( ) 1 ( ) 1 ( 2) 1 ( - - - - × - - + =n n n n n n L t 21 2)2 )( 1 ( ) ( ) 1 ( )1 (2 ) 1 ( - - - - - × - - + = n n n n n n n 2)1 ( )1 ( 1 2)1 ( + ×- = - - n n n n n 1) 2 )]( 1 ( 2 [ - - - = = n x n x 例 2.9(大连理工大学, 2004年) 计算n 阶行列式1 1 1 12 1 2 1 1 12 1 1 1 1 L M M M M M L L nn n D n - - - =解 将第2行,第 3行,…,第n 行都加到第 1 行上1 1 1 12 1 2 1 1 11 1 1 1 1 L M M M M M L L n n D n - - =0 01 0 1 0 0 0 1 1 1 1 1 L M M M M M L L nn - - =1 2) 1 ( )1 ,2 , , 1 , ( 1 ) 1 ( ) 1 ( ) 1 ( ) 1 ( - - - - - - = - - = n n n n n n n n L t .例 2.10(北京航空航天大学, 2004年) 计算下列行列式的值.12 12 12... .................. n n n n a a a a a a D a a a l l l+ + =+ 解 将行列式的所有列加到第一列, 并提取公因子 12 (...) n a a a l ++++ 可得1212 1212 1 1212...... ......().............................. n n nn n i i n n a a a a a a a a a a a a a a a a a a a l l l l l l l= ++ ++ =+ ++ å 然后将第 2 列到第n 列依次减去第一列乘以 12 ,,..., n a a a 得到一个下三角的行列式, 易得12 12 1112... ...()............... n nn n i i n a a a a a a a a a a l l ll l- = + + =+ + å 例 2.11(上海交通大学,2004年)求下面多项式的所有根23 2 3 23 2 3 3 2 3 2 22 23 2 2 2 2 3 ) ( nn n n nnna x a a a a a a a a x a a a a a a a a x a a a a x x f - - - - - - - - - - - - - - - - - - - = L MM M M L L L 解 将第一列的 2 a - 倍,3 a - 倍,L , n a - 倍分别加到第 2 列,第3列, L ,第n 列2323 221 3333 100100 ()010(2)010 0101n n n nnx a a a x a a a a a f x a x a a a - ------- -- =-=-- -- L L L L L L M M M M M M M M LL第2列的 2 a 倍,第 3列的 3 a倍,L ,第n 列的 n a 倍都加到第一列 22223 13 0100 ()(2)0010 001n n n x a a a a a f x x - ------ =- L L L L M M M M L1222 (2)(3)n n x x a a - =---- L 所以, 2 x = 是 () f x 的 1 n - 重根, 222 3 n a a +++ L 是 () f x的单根. 例 2.12 (北京交通大学,2005年)计算 1 n + 阶行列式11111 (1)(2)...()(1)(2)...()............... 12... 111 (1)n n n nn n n n n x x x x n x x x x n D x x x x n ---- + +++ +++ = +++ 解 注意到依次把第一行和第 1 n + 行交换次序,第2行和第n 行交换次序, ...,可得2 1 1111111...1 12... (1) ............... (1)(2)...()(1)(2)...() nn n n n n n n n nx x x x n D x x x x n x x x x n + ---- +++ =-+++ +++ 21 (1)(()()) n i j n x j x i £<£ =-+-+ Õ 21 (1)()n i j nj i £<£ =-- Õ 第三章 线 性 方 程 组例 3.1(清华大学,2006 年)设 12 ,,, s a a a L 是一组线性无关的向量,则122311 ,,,, s s s a a a a a a a a - ++++ L 是否线性无关? 证明之.证明 若 112223111()()()()0 s s s s s k k k k a a a a a a a a -- ++++++++= L 将上式展开并利用 12 ,,, s a a a L 的线性无关,可得关于 121 ,,, s s k k k k - L 的线性方程 组为1 2 1 100...10 110...00 ... 011...0... ...............0 00...110 s s k k k k - æö æöæö ç÷ ç÷ç÷ ç÷ ç÷ç÷ ç÷ ç÷ç÷= ç÷ ç÷ç÷ ç÷ ç÷ç÷ ç÷ç÷ ç÷ èøèø èø 令其系数矩阵为 A ,显然有 1 1(1) s A + =+- .当 S 为偶数时 , 0 A = , 则方程组有非零解 , 这是122311 ,,,, s s s a a a a a a a a - ++++ L 线性相关.当 S 为奇数时 , 0 A ¹ , 则方程组仅有零解 , 这是122311 ,,,, s s s a a a a a a a a - ++++ L 线性无关.例3.2 (北京科技大学, 2005年) 设 0 h 是线性方程组的一个解, 而 12 th h h L , , , 是它的导出方程组的一个基础解系, 1021010 ,,..., t t g h g h h g h h + ==+=+ .证明:线性方程组的任一解g , 都可表成 112211 ... t t g m g m g m g ++ =+++ , 其中 121 (1)t m m m + +++= . 证明 设 0211 ... t t g h m h m h + =+++ ,令 121 1... t m m m - =--- , 即 121 ...1 t m m m - +++= ,则由于 1021010 ,,..., t t g h g h h g h h + ==+=+ ,1210211 (...)... t t tg m m m h m h m h ++ =++++++ 1021010 ()...() t t m h m h h m h h + =+++++ 112211... t t m g m g m g ++ =+++ 例 3.3(哈尔滨工业大学,2005 年)设 12 ,,, r a a a L 是一组线性无关的向量,1,1,2,..., ri ij j j k i r b a = == å ,证明: 12 ,,, r b b b L 线性相关的充要条件是矩阵11121 21222 12... ... ............ ... r r r r rr k k k k k k K k k k æöç÷ ç÷ = ç÷ ç÷ èø不可逆.证明 12 ,,, r b b b L 线性无关Û 10 ri i b = = å 仅有零解Û 10 rij i j j k x a = = å 仅有零解Û(由 12 ,,, r a a a L 线性无关性仅有零解)方程组 ' 0 K X = 仅有零解Û ' K 可逆Û矩阵 11121 21222 12... ... ............ ... r r r r rr k k k kk k K k k k æöç÷ ç÷ = ç÷ ç÷ èø是可逆的.例 3.4(上海大学,2005 年)设b 是非齐次线性方程组AX b = 的一个解,12 ,,, n r a a a - L 是其导出组的一个基础解系,证明:(1) 12 ,,,, n r a a a b - L 线性无关.(2) 12 ,,,, n r b a b a b a b - +++ L 线性无关.证明 (1) 假定 12 ,,,, n r a a a b - L 线性相关,而 12 ,,, n r a a a - L 线性无关,那么b 可由 12 ,,, n r a a a - L 线性表出,则b 是导出组的一个解与b 是AX b = 的一个解矛 盾.(2)令( ) ( ) ( ) 1122 0n r n r x x x x b a b a b a b -- +++++++= L 于是( ) 112212 0n r n r n r x x x x x x x a a a b --- ++++++++= L L 由 12 ,,,, n r a a a b - L 线性无关,则12 0n r x x x - ==== L 且12 0 n r x x x x - ++++= L ,于是 12 0 n r x x x x - ===== L ,故(2)成立.例 3.5(东北大学, 2003年) 设 1 2 ... r A a aa æö ç÷ ç÷ = ç÷ ç÷ èø是一个r n ´ 阶矩阵() r n < 且秩为r ,已知:b 是 0 AX = 的非零解,讨论 12 ,,, r a a a L 与b 的线性相关性.证明 由于对矩阵A , 有 () r A r = , 记 12 ,,, r U a a a =<> L . 显然有 12 ,,, ra a a L 为空间U 的一组基,由于b 是方程组 0 AX = 的一个非零解,所以有 T b 与12 ,,, r a a a L 相正交,于是有 U b ^^ Î ,对于 12 ,,, r a a a L 与 T b 的线性组合1122 0T r r l l l l a a a b ++++= L 两边同时与 T b 做内积,注意到 T U b ^ ,可得(,)0T T l b b = 由于 0 T b ¹ ,可得 0 l = ,于是1122 0r r l l l a a a +++= L 由 12 ,,, r a a a L 的线性无关性可得0(1,2,...,)i l i r == 即 12 ,,,, r a a a b L 的线性无关.例 3.6(浙江大学,2004 年) 令 12 ,,, s a a a L 是 n R 中s 个线性无关的向量, 证明:存在含n 个未知量的齐次线性方程组,使得 12 ,,, s a a a L 是它的一个基础解 系.证明 以列向量 12 ,,, s a a a L 的转置为行构成矩阵A1 2 TT T s A a a a æö ç÷ ç÷= ç÷ ç÷ ç÷ èøM 考虑以A 为系数矩阵的齐次线性方程组AX = 它的基础解系由 n s - 个 n 维列向量组成,设基础解系为 12 ,,, n s b b b - L 以12 ,,, T T T n s b b b - L 为行构成矩阵B ,则以B 为系数矩阵的齐次线性方程组 0 BX = 满足要求.因为 12 ,,, n s b b b - L 是 0 AX = 的解,则 0,1,,;1,, T j i s j n s a b ===- L L .它同 时说明,作为 n 维向量, 12 ,,, s a a a L 是齐次线性方程组 0 BX = 的解,而() r B n s =- .故 12 ,,, s a a a L 是 0 BX = 的一个基础解系.例 3.7(西安交通大学,2005年)讨论 , a b 为何值时,如下方程组有唯一解?无解?无穷多解? 当有无穷多解时,求出它的通解.1234 234 234 1234 0 221 (3)2 321 x x x x x x x x a x x b x x x ax +++= ì ï ++= ï í-+--= ï ï +++=- î解 将增广矩阵进行初等行变换化为行阶梯形矩阵,有1111011110 0122101221 01320132 321101231 A a b a b a a æöæö ç÷ç÷ ç÷ç÷ =® ç÷ç÷ ------ ç÷ç÷ ---- èøèø11110 01221 00101 00010 a b a æöç÷ ç÷ ® ç÷ -+ ç÷- èø.(1)当 1 a ¹ 时方程组有唯一解. (2)当 1 a = 且 1 b ¹- 时方程组无解. (3)当 1 a = 且 1 b =- 时方程组有无穷多解. 解方程组1234 234 0 221 x x x x x x x+++= ì í++= î 方程组的特解为 0 1 1 0 0 a - æöç÷ç÷ = ç÷ ç÷ èø,导出组的基础解系为 12 11 22 , 10 00 h h æöæö ç÷ç÷ -- ç÷ç÷ == ç÷ç÷ ç÷ç÷ èøèø, 于是通解为 01122 k k a a h h =++ .例 3.8(东南大学,2005年) 问:参数 , a b 取何值时,线性方程组1234 1234 234 1234 1 32 223 54(3)3 x x x x x x x x a x x xx x a x x b +++= ì ï+++= ï í++= ï ï ++++= î有解?当线性方程组有解时,求出其通解.解 将增广矩阵做初等行变换可化为10112 01223 0002 0000 a b a --- æöç÷ç÷ç÷ - ç÷èø. 显然若要方程组有解,必须有 0 a = 且 2 b = , 这时增广矩阵变为10112 01223 0002 0000 a b a --- æöç÷ç÷ ç÷- ç÷èø 方程组的一个特解为 ' (2,3,0,0) - ,基础解系为 ''(1,2,1,0),(1,2,0,1) -- ,于是通解为12 211 322 010 001 x C C - æöæöæöç÷ç÷ç÷ -- ç÷ç÷ç÷ =++ ç÷ç÷ç÷ ç÷ç÷ç÷ èøèøèø. 例 3.9(东南大学,2004年) 已知线性方程组1122 1122 1122 () 0()...0 ........................... ...()0 n n n n n na b x a x a x a x a b x a x a x a x a b x ++++= ì ï++++= ï íï ï ++++= î (*)其中 10 ni i a = ¹ å .试讨论 12 ,,, n a a a L 和b 满足什么条件时,(1)方程组仅有零解.(2)方程组有非零解,此时用基础解系表示所有解.解 由于方程组(*)的系数行列式为2 1 12 12 2 111 ............ ............... ... nin i n n n in i nn nin n i b a a a a b a a a a b a b a a b a a a a bb a a a b = = = + + + ++ =+ ++ å å å .2 2 1111 1100 1 10()()() ............ ............1 (1)0... n nnnn n i i i i i i nn a a a b a bb a b a b a ba a bb- === + =+=+=+ + ååå(1)当 0 b ¹ ,且 1()0 ni i b a = +¹ å 时,方程组(*)的系数行列式不等于零. 于是此方程组只有唯一零解.(2) 当 0 b ¹ ,且 1()0 ni i b a = += å 时,方程组(*)的系数行列式为零. 因此方程组(1)有非零解,它的基础解系为 '(1,1,...,1) ,此时方程组的一切解可表为' (1,1,...,1), k k R Î .(3) 当 0 b = 时,方程组的系数行列式为零. 此时方程组(*)有非零解,并且方 程组等价于1122 0n n a x a x a x +++= (**)由于 10 ni i a = ¹ å ,故在 12 ,,, n a a a L 中必有一个不为零,不妨设 0 ia ¹ ,则有 11 1111 ....... i i n i i i n i i i i a a a a x x x x x a a a a-+ -+ =------ 其中 111 ,...,,,..., i i n x x x x -+ 为自由未知量,因此原方程组的一个基础解系为' 1 1 (1,0,...,0,,0, 0i aah =- ..................................' 11 (0,0,...,1,,0,...,0) i i i a a h - - =-' 11 (0,0,...,0,,1,...,0) i i i a ah + + =-..................................' (0,0,...,0,,0,...,1) nn i a ah =-此时,方程组(*)的一切解可表为111111 ...() i i i i n n i X k k k k k Rh h h h --++ =+++++Î L . 例 3.10(大连理工大学,2004年)设 A 是n 阶矩阵,若 ()1 r A n =- ,且代数 余子式 11 0 A ¹ ,则齐次线性方程组 0 AX = 的通解是.。

北京科技大学《高等数学》2006-2007学年第二学期期末试卷A卷

北京科技大学《高等数学》2006-2007学年第二学期期末试卷A卷

北京科技大学 2006 --2007 学年第二学期高等数学 试卷 (A )院(系) 班级 学号 姓名试卷卷面成绩占课程考核成绩80 % 平时成绩 占 20 %课程考核 成绩 题号 一二 三 四 五 六 七 小计 得分阅卷审核一、填空题(15 分)1.曲面z =+ y 2 在点(2,1, 3) 的切平面方程为2.交换积分次序 dx ∫0ln x f (x , y )dy =3.设l 是球面 x 2 + y 2 + z 2 = R 2 与平面 x + y + z = 0 的交线,则(x 2 + y 2 + z 2 )dl = 4.级数x 2n −1 的收敛半径是5.求微分方程 y "+ y '− 2y = 0 的通解 y =二、单选题(15 分)1.设u = f (x + y , xz ) 有二阶连续偏导数,则= ( )( A ) f '2+ (x + z )f 12'' + xzf '2'2 (B ) x f 12''+ xzf '2'2( C ) f '2 + xf 12''+ xzf '2'2 (D ) x zf '2'2得 分得 分自 觉 遵 守 考 试 规 则, 诚 信 考 试, 绝 不 作 弊装 订 线 内 不 得 答 题2. 若 f (x , y )dxdy = ∫d θcos θf (r cos θ, r sin θ)rdr , 其中a > 0 为常数, 则积分区域 D 是D 2( )( A ) x 2 + y 2 ≤ a 2 (B ) x 2 + y 2 ≤ a 2 , x > 0 ( C ) x 2 + y 2 ≤ ax (D ) x 2 + y 2 ≤ ay3. 设∑ 为球面 x 2 + y 2 + z 2 = 1, ∑1 为上半球面 z = , D xy 为曲面 ∑ 在 xoy 平面上的投影区域,则下列等式成立的是( ) ( A ) ∫ zdS = 2∫ zdS (B )∫ zdS = 0 ∑ ∑1 ∑( C ) ∫ z 2 dS = 2∫ z 2dxdy (D )∫ z 2dS = 2∫ z 2dxdy ∑ ∑1 ∑ D xy4.设幂级数a n (x − 1)n 在 x = 2 处条件收敛,则该级数在x = 处是( )( A ) 条件收敛 (B )绝对收敛 ( C ) 发散 (D )敛散性不一定5. 设线性无关的函数 y 1 , y 2 , y 3 都是二阶非齐次线性方程 y "+ p (x )y '+ q (x )y = f (x ) 的解, c 1 , c 2 为任意常数,则该方程的通解是( )( A ) c 1y 1 + c 2 y 2 + y 3 (B ) c 1y 1 + c 2 y 2 + (c 1 + c 2 )y 3 ( C ) c 1y 1 + c 2 y 2 − (1 − c 1 − c 2 )y 3 (D ) c 1y 1 + c 2 y 2 + (1 − c 1 − c 2 )y 31.(8 分) 设u = x 2 + 2y 2 + 3z 2 + xy + 3x − 2y − 6z , 求点 P 0 (1,1,1) 处从点 P 0 到点 P 1 (3, 0, − 1) 方 向的方向导数P 0 和在点 P 0 处的梯度 gradu (1,1,1)2.(8 分)计算 I = x 2 + y 2 − 4 dxdy , 其中 D : x 2 + y 2 ≤ 9D3.(8 分) 计算∫∫ (x2+ y 2 )dv , 其中Ω 是由曲线绕 z 轴旋转一周而成的曲面与两平面 z = 2, z = 8 所围成的区域。

北京科技大学研究生期末考试计算方法2006

北京科技大学研究生期末考试计算方法2006
计算方法研究生试题(2006)答案
一、填空题(1-7 每空 2%*10,8-9 每空 3%*10) 1、数值 x* 的近似值 x = 0.1234×10−3 ,若满足 x − x∗ ≤ ( 0.5 ×10−7 ),则称 x 有 4 位有效
数字.
2、已知 X = (3,4,0)T , A = XX T 则范数 X =5, A =(28).
6
6 56 56
6 125 125
75 7
∫ 所以
1
−1 f ( x)dx ≈ A1 f (−1) + A2 f (− x1 ) + A2 f ( x1 ) + A1 f (1)

A1
=
1 6

A2
=
5 6

x1 = ±
1 时达到最高代数精确度 5。 5
六、(10 分)找出合适的四次多项式ϕ(x) ,使得ϕ(i) = i 0 ≤ i ≤ 2
五、(12 分)找出合适的 A1, A2 , x1 使求积公式

∫1
−1 f ( x)dx ≈ A1 f (−1) + A2 f (− x1 ) + A2 f ( x1 ) + A1 f (1) 代数精度尽可能高。并给出此最高代数精确度。
∫ 解:令 f (x) = 1
1
f (x)dx = 2
−1
A1 f (0) + A2 f (x1) + A2 f (x2 ) + A1 f (1) = 2 A1 + 2 A2
1
1
∫ ∫ 令 f (x) = x f (x)dx = xdx = 0
−1
−1
A1 f (−1) + A2 f (x1) + A2 f (−x1) + A1 f (1) = A2 (x1 − x1) =0

高等代数825考研真题

高等代数825考研真题

高等代数825考研真题高等代数是数学中的一门重要课程,对于提高数学建模能力和解决实际问题具有重要作用。

本文将针对高等代数825考研真题展开讨论。

第一部分:选择题(1)设V是数域K上的线性空间,S是V的子空间,则下列命题中正确的是()A. V⊂SB. V⊂VC. V=VD. V≠V(2)设A,B都是n阶方阵,则下列命题中正确的是()A. VV(VV+VV)≤VV V+VV VB. VVV V+VVV V=VV(VV+VV)C. VV(VV+VV)≥VV V+VV VD. VVV V+VVV V≥VV(VV+VV)第二部分:解答题1. 证明引理:设V={V1, V2,..., VV} ,V是V的一个非零子空间,则V(V1+V2+V+VV)≥2。

其中,V(V) 表示向量V的秩。

解:假设V1+V2+V+VV= V0 ,其中V0≠V为一线性组合等于零向量,需要证明线性相关,即证明存在VV≠V使得VV是线性相关向量。

首先,假设V1+V2+V+VV= V0 成立,则可以得到其中至少有一项VV=0。

其次,如果保持原假设成立,那么对于其他项V j ∈V中的向量V j,可以写成V j= −(V1+V2+V+VV)+2V i ,可知V j 是线性相关向量。

综上所述,线性空间V中至少存在两个线性相关的向量。

2. 设V,V,V是V阶方阵。

证明:如果V,V是可逆的,则VV和VV也是可逆的,并且特征值λ(VV) = 特征值λ(VV)。

解:首先,V,V是可逆的,则存在V的逆矩阵V^-1 和V的逆矩阵V^-1 。

其次,考虑矩阵VV,假设存在非零向量V使得 (VV)V= 0 ,则有V(VV)=0。

由于V是可逆的,所以V^-1 存在,因此可以得到VV=0。

由于V是可逆的,所以只有V为零向量才能使等式成立,即零向量是唯一解。

综上所述,矩阵VV是可逆的。

类似地,可以证明矩阵VV也是可逆的。

在特征值方面,由于可逆矩阵与其逆矩阵存在相同的特征值,所以特征值λ(VV) = 特征值λ(VV)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档