北京科技大学2004年高等代数考研试题
北京科技大学2004年高等代数考研试题

北京科技大学2004年高等代数考研试题北京科技大学2004年硕士学位研究生入学考试试题考试科目:禹等代數 ________________________________ (共两页)适用专盘:应用数学.计算数学、迳舟学与握制工釋________说明:①所帝答案関须写在答题銀上,做在试题或草稿纸上无效. ②考试用具:不得便用任啊电子计算仪器.a b b ■■ bt a h …b—,(15分)计算疔列式,c c a广1 1 1]二(巧分)设三阶方阵/ = 111,试计算f nIl 11 丿三. (却分}证明:(1)若4左都是川阶方阵’ 11 = 0,.则rankA + rankB n・(产劝匕哀示矩阵川的軼) C2)若幷阶方阵/简足条件A—E, Ki] rank{A + £) + rank{A-E) = n.四. ⑴分)已知:在四维向量空间P中a严〔丄丄丄丄L a JL L L1{2222)戈(6 6 2 6丿W^L(a},a2)r求莊丄°五・〔却分)设師M QQF,是二维向量空闻/的一组基,a = (2,3)\0 = (一4,9)『・b是卩上的一个线性变换,Rcr(^) = a, CT(^)=/3<(1)写出线性变换rr在基话,闰之下的矩阵。
(2)求出线性变换cr的逆变换.(3)求出线性变换c的特征值和特征向瞳。
<4)求岀线性变换b的全部不变子空间.六.(20分)(D若矩阵d与矩阵占相似.证明」A^B有相同的特征值.C2)举例说明,上述命题的逆命题玮成立。
<3)若A ^B均为对称矩阵,则(1)的逆命题成立。
能被(兀+ 1)2整除。
A. (15分)若/是刃阶方阵,且对任意的非零向fta,都有a T Aa> 0 •证明: 存在正定矩阵B及反对称矩阵C,使得A = R・C・并且对任意向Sta,都有a T Aa = a T Ba , a T Ca = 0.九.(15分)如果cr,7■都是幕等(cr'ub, r2 = r)的线性变换。
2004年考研数学(一)试题及答案解析

2004年数学一试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为 1-=x y .【分析】 本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标。
【详解】 由11)(ln =='='xx y ,得x=1, 可见切点为)0,1(,于是所求的切线方程为 )1(10-⋅=-x y , 即 1-=x y .【评注】 本题也可先设切点为)ln ,(00x x ,曲线y=lnx 过此切点的导数为11=='=x y x x ,得10=x ,由此可知所求切线方程为)1(10-⋅=-x y , 即 1-=x y .本题比较简单,类似例题在一般教科书上均可找到. (2)已知xxxee f -=')(,且f(1)=0, 则f(x)=2)(ln 21x . 【分析】 先求出)(x f '的表达式,再积分即可。
【详解】 令t e x=,则t x ln =,于是有t t t f ln )(=', 即 .ln )(x xx f =' 积分得 C x dx x x x f +==⎰2)(ln 21ln )(. 利用初始条件f(1)=0, 得C=0,故所求函数为f(x)= 2)(ln 21x . 【评注】 本题属基础题型,已知导函数求原函数一般用不定积分。
完全类似的例题见《数学复习指南》P89第8题, P90第11题.(3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-Lydx xdy 2的值为π23 . 【分析】 利用极坐标将曲线用参数方程表示,相应曲线积分可化为定积分。
【详解】 正向圆周222=+y x 在第一象限中的部分,可表示为.20:,sin 2,cos 2πθθθ→⎩⎨⎧==y x于是θθθθθπd ydx xdy L]sin 2sin 22cos 2cos 2[220⋅+⋅=-⎰⎰=.23sin 2202πθθππ=+⎰d 【评注】 本题也可添加直线段,使之成为封闭曲线,然后用格林公式计算,而在添加的线段上用参数法化为定积分计算即可.完全类似例题见《数学题型集粹与练习题集》P143例10.11,《考研数学大串讲》P122例5、例7 .(4)欧拉方程)0(024222>=++x y dx dyx dx y d x 的通解为 221x c x c y +=.【分析】 欧拉方程的求解有固定方法,作变量代换te x =化为常系数线性齐次微分方程即可。
2004考研数一真题及答案解析

令 Y
1 n
n i 1
Xi
,
则
(A)
Cov(
X1,
Y
)
2 n
(B) Cov( X1,Y ) 2
(C)
D( X 1
Y)
n
n
2
2
(D)
D( X 1
Y)
n 1 n
2
三、解答题(本题共 9 小题,满分 94 分.解答应写出文字说明、证明过程或演算
步骤)
(15)(本题满分 12 分)
设
e
a
b
e2
,证明
(2)已知 f (e x ) xex ,且 f(1)=0, 则 f(x)= 1 (ln x)2 . 2
【分析】 先求出 f (x) 的表达式,再积分即可。
【详解】 令 e x t ,则 x ln t ,于是有
f (t) ln t , 即 f (x) ln x .
t
x
积分得 f (x) ln xdx 1 (ln x)2 C . 利用初始条件 f(1)=0, 得 C=0,故所求函数为 f(x)= 1 (ln x)2 .
【详解】
x2
lim x0
lim x0
tan tdt
0
x cos t 2dt
lim
x0
tan x 2x cos x 2
0 ,可排除(C),(D)选项,
0
又
lim lim
x0
x0
x sin t 3dt
0 x2
tan tdt
lim
x0
3
sin x 2
1
2x
2x tan x
0
= 1 lim 4 x0
0 0 1
2004考研数学一真题及答案解析

2004年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上) (1)曲线ln y x =上与直线1=+y x 垂直的切线方程为__________ . (2)已知(e )e x x f x -'=,且(1)0f =,则()f x =__________ .(3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-L ydx xdy 2的值为__________.(4)欧拉方程)0(024222>=++x y dx dyx dxy d x 的通解为__________ . (5)设矩阵210120001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,矩阵B 满足**2=+ABA BA E ,其中*A 为A 的伴随矩阵,E 是单位矩阵,则B =__________ .(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >= __________ .二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(7)把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===03002sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A)γβα,, (B)βγα,, (C)γαβ,, (D)αγβ,, (8)设函数()f x 连续,且,0)0(>'f 则存在0>δ,使得(A)()f x 在(0,)δ内单调增加 (B)()f x 在)0,(δ-内单调减少 (C)对任意的),0(δ∈x 有()(0)f x f > (D)对任意的)0,(δ-∈x 有()(0)f x f >(9)设∑∞=1n n a 为正项级数,下列结论中正确的是(A)若n n na ∞→lim =0,则级数∑∞=1n n a 收敛(B)若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n n a 发散(C)若级数∑∞=1n n a 收敛,则0lim 2=∞→n n a n (D)若级数∑∞=1n n a 发散, 则存在非零常数λ,使得λ=∞→n n na lim(10)设()f x 为连续函数,⎰⎰=t ty dx x f dy t F 1)()(,则)2(F '等于 (A)2(2)f (B)(2)f (C)(2)f - (D) 0(11)设A 是3阶方阵,将A 的第1列与第2列交换得B ,再把B 的第2列加到第3列得C ,则满足=AQ C 的可逆矩阵Q 为(A)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010(B)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010 (C)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010(D)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110 (12)设,A B 为满足=AB O 的任意两个非零矩阵,则必有 (A)A 的列向量组线性相关,B 的行向量组线性相关 (B)A 的列向量组线性相关,B 的列向量组线性相关 (C)A 的行向量组线性相关,B 的行向量组线性相关 (D)A 的行向量组线性相关,B 的列向量组线性相关(13)设随机变量X 服从正态分布(0,1),N 对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A)2αu (B)21α-u(C)21α-u (D) α-1u(14)设随机变量)1(,,,21>n X X X n 独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则(A)21Cov(,)X Y nσ= (B)21Cov(,)X Y σ=(C)212)(σnn Y X D +=+ (D)211)(σnn Y X D +=-三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤)(15)(本题满分12分) 设2e e a b <<<,证明2224ln ln ()e b a b a ->-.(16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg的飞机,着陆时的水平速度为700km/h 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).k问从着陆点=10⨯0.66算起,飞机滑行的最长距离是多少?(注:kg表示千克,km/h表示千米/小时)(17)(本题满分12分)计算曲面积分,)1(322233dxdy z dzdx y dydz x I ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧.(18)(本题满分11分)设有方程10nx nx+-=,其中n为正整数.证明此方程存在惟一正实根n x,并证明当1α>时,级数1nn xα∞=∑收敛.(19)(本题满分12分)设(,)z z x y =是由2226102180x xy y yz z -+--+=确定的函数,求(,)z z x y =的极值点和极值.(20)(本题满分9分)设有齐次线性方程组121212(1)0,2(2)20,(2),()0,nnna x x xx a x xnnx nx n a x++++=⎧⎪++++=⎪≥⎨⎪⎪++++=⎩试问a取何值时,该方程组有非零解,并求出其通解.(21)(本题满分9分)设矩阵12314315a-⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦A的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.(22)(本题满分9分)设,A B 为随机事件,且111(),(|),(|)432P A P B A P A B ===,令;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧= 求:(1)二维随机变量(,)X Y 的概率分布. (2)X 和Y 的相关系数.XY ρ(23)(本题满分9分) 设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x x x F ββ其中未知参数n X X X ,,,,121 >β为来自总体X 的简单随机样本,求:(1)β的矩估计量. (2)β的最大似然估计量2004年数学一试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为 1-=x y .【分析】 本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标。
2004考研数四真题及解析

2004年全国硕士研究生入学统一考试数学四试题一、填空题:本题共6小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (1) 若0sin lim(cos )5x x xx b e a→-=-,则a =,b =.(2) 设1ln arctan 22+-=x xxe e e y ,则1x dy dx ==.(3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则212(1)f x dx -=⎰.(4) 设⎪⎪⎪⎭⎫⎝⎛--=100001010A ,AP P B 1-=,其中P 为三阶可逆矩阵, 则200422B A -=.(5) 设()33⨯=ij a A 是实正交矩阵,且111=a ,Tb )0,0,1(=,则线性方程组b Ax =的解是.(6) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X P .二、选择题:本题共8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内. (7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界( ) (A) (-1 , 0).(B) (0 , 1).(C) (1 , 2).(D) (2 , 3).(8) 设f (x )在(,)-∞+∞内有定义,且a x f x =∞→)(lim ,⎪⎩⎪⎨⎧=≠=0,00,)1()(x x x f x g ,则( )(A)0x =必是()g x 的第一类间断点. (B) 0x =必是()g x 的第二类间断点. (C) 0x =必是()g x 的连续点.(D) ()g x 在点0x =处的连续性与a 的取值有关.(9) 设()(1)f x x x =-, 则 ( )(A) 0x =是()f x 的极值点, 但(0,0)不是曲线()y f x =的拐点. (B) 0x =不是()f x 的极值点, 但(0,0)是曲线()y f x =的拐点. (C) 0x =是()f x 的极值点, 且(0,0)是曲线()y f x =的拐点. (D) 0x =不是()f x 的极值点, (0,0)也不是曲线()y f x =的拐点.(10) 设⎪⎩⎪⎨⎧<-=>=0,10,00,1)(x x x x f ,⎰=x dt t f x F 0)()(,则 ( )(A) ()F x 在0x =点不连续.(B) ()F x 在(,)-∞+∞内连续,但在0x =点不可导. (C) ()F x 在(,)-∞+∞内可导,且满足)()(x f x F ='.(D) ()F x 在(,)-∞+∞内可导,但不一定满足)()(x f x F ='.(11) 设)(x f '在[,]a b 上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是( )(A) 至少存在一点0(,)x a b ∈,使得)(0x f >()f a . (B) 至少存在一点),(0b a x ∈,使得)(0x f > ()f b . (C) 至少存在一点),(0b a x ∈,使得0)(0='x f .(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0.(12) 设n 阶矩阵A 与B 等价, 则必有( )(A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时, a B -=||. (C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B .(13) 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{,若αx X P =<}|{|, 则x 等于( ) (A) 2αu . (B) 21αu-. (C) 21αu -. (D) αu -1.(14) 设随机变量)1(,,,21>n X X X n Λ独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则( )(A) Cov(.),21nY X σ= (B) 21),(σ=Y X Cov .(C) 212)(σn n Y X D +=+. (D) 211)(σnn Y X D +=-.三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (15) (本题满分8分)求)cos sin 1(lim 2220xxx x -→. (16) (本题满分8分)求⎰⎰++Dd y y x σ)(22,其中D 是由圆422=+y x和1)1(22=++y x 所围成的平面区域(如图).(17) (本题满分8分)设(,)f u v f (u , v )具有连续偏导数,且满足(,)(,)u v f u v f u v uv ''+=. 求),()(2x x f e x y x -=所满足的一阶微分方程,并求其通解. (18) (本题满分9分) 设某商品的需求函数为1005Q P =-,其中价格(0,20)P ∈,Q 为需求量. (I) 求需求量对价格的弹性d E (d E > 0);(II) 推导)1(d E Q dPdR-=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时, 降低价格反而使收益增加.(19) (本题满分9分)设⎪⎩⎪⎨⎧>≤=-0,0,)(22x ex e x F x x ,S 表示夹在x 轴与曲线()y F x =之间的面积. 对任何0t >,)(1t S 表示矩形t x t -≤≤,0()y F x ≤≤的面积. 求(I) ()S t = S -)(1t S 的表达式; (II) ()S t 的最小值.(20) (本题满分13分)设线性方程组⎪⎩⎪⎨⎧=+++++=+++=+++,14)4()2(3,022,0432143214321x x μx λx x x x x x x μx λx 已知T)1,1,1,1(--是该方程组的一个解,试求(I) 方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解; (II) 该方程组满足32x x =的全部解. (21) (本题满分13分)设三阶实对称矩阵A 的秩为2,621==λλ是A 的二重特征值.若Tα)0,1,1(1=,T α)1,1,2(2=, T α)3,2,1(3--=, 都是A 的属于特征值6的特征向量.(I) 求A 的另一特征值和对应的特征向量; (II) 求矩阵A .(22) (本题满分13分)设A ,B 为两个随机事件,且41)(=A P , 31)|(=AB P , 21)|(=B A P , 令 ⎩⎨⎧=不发生,,发生,A A X 0,1 ⎩⎨⎧=.0,1不发生,发生,B B Y 求:(I) 二维随机变量),(Y X 的概率分布;(II) X 与Y 的相关系数 XY ρ; (III) 22Y X Z +=的概率分布.(23) (本题满分13分)设随机变量X 在区间)1,0(内服从均匀分布,在)10(<<=x x X 的条件下,随机变量Y 在区间),0(x 上服从均匀分布,求(I) 随机变量X 和Y 的联合概率密度;(II) Y 的概率密度; (III) 概率}1{>+Y X P .2004年全国硕士研究生入学统一考试数学四试题解析一、填空题(1)【答案】1,4a b ==-【详解】本题属于已知极限求参数的反问题. 方法1:根据结论:)()(limx g x f =A ,(1) 若()0g x →,则()0f x →;(2) 若()0f x →,且0A ≠,则()0g x →因为5)(cos sin lim0=--→b x a e xx x ,且0)(cos sin lim 0=-⋅→b x x x ,所以0)(lim 0=-→a e x x (否则根据上述结论(2)给极限是0,而不是5),由 0lim()lim lim 10xxx x x e a e a a →→→-=-=-=得a = 1.极限化00sin lim(cos )lim (cos )151x x x x xx b x b b e x→→- -=-=-等价无穷小,得b = -4.因此,a = 1,b = -4.方法2:由极限与无穷小的关系,有sin (cos )5x xx b e aα-=+-,其中0lim 0x α→=,解出 (5)(cos )sin ,5x e x b xa αα+--=+上式两端求极限,000(5)(cos )sin (cos )sin limlim lim 10155x x x x x e x b x x b xa e ααα→→→+---==-=-=++ 把a = 1代入,再求b ,(5)(1)cos sin x e b x xα+-=-,两端同时对0x →取极限,得0(5)(1)lim(cos )sin x x e b x xα→+-=-000(5)(1)(5)limcos lim 1lim 15sin x x x x e x x x xαα→→→+-+=-=-=-4=- 因此,a = 1,b = -4.(2)【答案】211e e -+. 【详解】因为()()()222222111ln ln 12ln 1ln 11222x x xx x x e e e x e x e e ⎡⎤⎡⎤=-+=-+=-+⎣⎦⎣⎦+ 由 1ln arctan 22+-=x x xe e e y ,得 )1ln(21arctan 2++-=xx e x e y ,所以 222222222()1()1211112112111x x x x x xx x x x x xe e e e e e y e e e e e e '''=-+=-+=-+++++++,所以22222221111111111x x x x x x dye e e e e dxe e e e e ==⎛⎫-=-+=-+= ⎪+++++⎝⎭.(3)【答案】12- 【详解】方法1:作积分变换,令1x t -=,则11:2:122x t →⇒-→ 所以211122(1)()f x dx f t dt --=⎰⎰=1121122()(1)f t dt dt -+-⎰⎰22211112222111122221111(1)(1)2222xx xxe dx dx e dx e ---=+-=--=-⎰⎰⎰11022=-=.(也可直接推出212120x xe dx -=⎰,因为21212x xe dx -⎰积分区间对称,被积函数是关于x 是奇函数,则积分值为零) 方法2:先写出的(1)f x -表达式()()21111,122(1)11,12x x e x f x x -⎧--≤-<⎪⎪-=⎨⎪- -≥⎪⎩即:2(1)13(1),22(1)31,2x x e x f x x -⎧-≤<⎪⎪-=⎨⎪-≥⎪⎩所以2322(1)2131222(1)(1)(1)x f x dx x edx dx --=-+-⎰⎰⎰2233(1)2(1)2211221311(1)22222x x e d x e --⎛⎫=---=- ⎪⎝⎭⎰11441111()02222e e =--=-=-.(4)【答案】⎪⎪⎪⎭⎫ ⎝⎛-100030003【详解】因为2A 010010100100001001--⎛⎫⎛⎫ ⎪⎪= ⎪⎪ ⎪⎪--⎝⎭⎝⎭100010001-⎛⎫ ⎪=- ⎪ ⎪⎝⎭,为对角阵,故有422100100()010*********A A E --⎛⎫⎛⎫⎪⎪==--= ⎪⎪ ⎪⎪⎝⎭⎝⎭所以 211B P APP AP --=11()P A PP AP --=12,,P A P -=L200412004B P A P -=()50114P A P -=11P EP P P --==E =所以 200422B A -1002010001E -⎛⎫ ⎪=-- ⎪ ⎪⎝⎭300030001⎛⎫ ⎪= ⎪ ⎪-⎝⎭.(5)【答案】T)0,0,1( 【详解】方法1:设12132122233132331a a A a a a a a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,是正交矩阵,故的每个行(列)向量都是单位向量 所以有 22121311a a ++=,22213111a a ++=,得121321310,0.a a a a ====故 2223323310000A a a a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,又由正交矩阵的定义T AA E =知A 是可逆矩阵,且1TA A -=. 则b Ax =,有唯一解.1x A b -=T A b =2232233310011000000a a a a ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦方法2:同方法1,求得111=a 的正交阵为2223323310000A a a a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A 是正交阵,由正交矩阵的性质可知,11A =-或不等于零,故A 22231122233233323310(1)0a a a a a a a a +==-222332330a a a a =≠,即有222332330a a a a ≠,则原方程b Ax =为1222233322333100x a x a x a x a x =⎧⎪+=⎨⎪+=⎩ 解得1231,0x x x ===,即方程组有唯一解. (其中,由222332330a a a a ≠及齐次线性方程组0Ax =只有零解的充要条件是0A ≠,可知,方程组22223332233300a x a x a x a x +=⎧⎨+=⎩ 只有零解,故230x x ==. 进而1222233322333100x a x a x a x a x =⎧⎪+=⎨⎪+=⎩的解为1231,0x x x ===.)(6) 【答案】e1 【详解】本题应记住常见指数分布等的期望与方差的数字特征,而不应在考试时再去推算. 指数分布的概率密度为,0()00x e x f x x λλ-⎧>⎪=⎨≤⎪⎩若若,其方差21λ=DX .于是,由一维概率计算公式,{}()bX aP a X b f x dx ≤≤=⎰,有}{DX X P >=dx e X P x ⎰+∞-=>λλλλ1}1{=11xe eλλ+∞--=二、选择题 (7)【答案】(A) 【详解】方法1:如果()f x 在(,)a b 内连续,且极限)(lim x f a x +→与)(lim x f b x -→存在,则函数()f x 在(,)a b 内有界.当x ≠ 0 , 1 , 2时()f x 连续,而2211sin(2)sin(12)sin 3lim ()lim (1)(2)(11)(12)18x x x x f x x x x ++→-→------===-------,220sin(2)sin(02)sin 2lim ()lim (1)(2)(01)(02)4x x x x f x x x x --→→----===-----,22sin(2)sin(02)sin 2lim ()lim (1)(2)(01)(02)4x x x x f x x x x ++→→--===----, 22111sin(2)sin(12)lim ()limlim (1)(2)(1)(12)x x x x x f x x x x x →→→--===∞----,222222sin(2)sin(2)1lim ()limlim lim (1)(2)(2)2x x x x x x x f x x x x x x →→→→--====∞----, 所以,函数f (x )在(-1 , 0)内有界,故选(A).方法2:因为0lim ()x f x -→存在,根据函数极限的局部有界性,所以存在0δ>,在区间[,0)δ-上()f x 有界,又如果函数f (x )在闭区间[a , b ]上连续,则f (x )在闭区间[a , b ]上有界,根据题设()f x 在[1,]δ--上连续,故()f x 在区间上有界,所以()f x 在区间(1,0)-上有界,选(A).(8)【答案】 (D) 【详解】考查极限)(lim 0x g x →是否存在,如果存在,是否等于g (0),通过换元xu 1=, 可将极限)(lim 0x g x →转化为)(lim x f x ∞→.因为 011lim ()lim ()lim ()x x u g x f u f u x x→→→∞= = = a ,又(0)0g =,所以, 当0a =时,)0()(lim 0g x g x =→,即()g x 在点0x =处连续,当0a ≠时,)0()(lim 0g x g x ≠→,即0x =是()g x 的第一类间断点,因此,()g x 在点0x =处的连续性与a 的取值有关,故选(D).(9) 【答案】C【详解】由于是选择题,可以用图形法解决,也可用分析法讨论.方法1:由于是选择题,可以用图形法解决, 令()(1)x x x ϕ=-,则211()24x x ϕ⎛⎫=-- ⎪⎝⎭,是以直线12x =为对称轴,顶点坐标为11,24⎛⎫- ⎪⎝⎭,开口向上的一条抛物线,与x 轴相交的两点坐标为()()0,0,1,0,()()y f x x ϕ==的图形如图.点0x =是极小值点;又在点(0,0)左侧邻近曲线是凹的,右侧邻近曲线是凸的,所以点(0,0)是拐点,选C.方法2:写出()y f x =的分段表达式: ()f x =(1),10(1),01x x x x x x ---<≤⎧⎨-<<⎩,从而()f x '=12,1012,01x x x x -+-<<⎧⎨-<<⎩, ()f x ''=2,102,01x x -<<⎧⎨-<<⎩,()0lim ()lim 1210x x f x x ++→→'=-=>,所以01x <<时,()f x 单调增, ()00lim ()lim 1210x x f x x --→→'=-+=-<,所以10x -<≤时,()f x 单调减, 所以0x =为极小值点.当10x -<<时, ()20f x ''=>,()f x 为凹函数; 当10x >>时,()20f x ''=-<,()f x 为凸函数, 于是(0,0)为拐点.(10)【答案】 (B)【详解】先求分段函数()f x 的变限积分⎰=xdt t f x F 0)()(,再讨论函数()F x 的连续性与可导性即可.方法1:关于具有跳跃间断点的函数的变限积分,有下述定理:设()f x 在[,]a b 上除点(),c a b ∈ 外连续,且x c =为()f x 的跳跃间断点,又设()()xcF x f t dt =⎰,则(1)()F x 在[],a b 上必连续;(2))()(x f x F =',当[],x a b ∈ ,但x c ≠;(3)()F c '必不存在,并且()(),()()F c f c F c f c +-+-''= =直接利用上述结论,这里的0c =,即可得出选项(B)正确. 方法2:当0x <时,x dt x F x-=-=⎰0)1()(;当0x >时,x dt x F x==⎰01)(,当0x =时,(0)0F =. 即()F x x =,显然,()F x 在(,)-∞+∞内连续,排除选项(A),又0(0)lim 10x x F x ++→-'==-,0(0)lim 10x x F x --→--'==--,所以在0x =点不可导. 故选 (B).(11)【答案】(D) 【详解】利用介值定理与极限的保号性可得到三个正确的选项,或应用举例法找出错误选项. 方法1:举例说明(D)是错误的. 例:2()4,11f x x x =--≤≤,11(1)220,(1)220x x f x f x =-=''-=-=>=-=-<.但在[1,1]-上()30f x ≥>.方法2:证明(A)、(B)、(C)正确.由已知)(x f '在[,]a b 上连续,且0)(,0)(<'>'b f a f ,则由介值定理,至少存在一点),(0b a x ∈,使得0)(0='x f ,所以选项(C)正确;另外,由导数的定义0)()(lim)(>--='+→ax a f x f a f a x ,根据极限的保号性,至少存在一点),(0b a x ∈使得0)()(00>--ax a f x f ,即)()(0a f x f >,所以选项(A)正确.同理,()()()lim 0x bf b f x f b b x-→-'=<-,根据极限的保号性,至少存在一点),(0b a x ∈使得)()(0b f x f >. 所以选项(B)正确,故选(D).(12)【答案】(D ) 【详解】方法1:矩阵等价的充分必要条件:矩阵A 与B 等价⇔A ,B 是同型矩阵且有相同的秩,故由A 与B 等价,知A 与B 有相同的秩.因此,当0||=A 时, n A r <)(, 则有n B r <)(, 即0||=B , 故选(D).方法2:矩阵等价的充分必要条件:A 与B 等价⇔存在可逆,P Q ,使得PAQ B =. 两边取行列式,由矩阵乘积的行列式等于行列式的积,得PAQ P A Q B ==. ,P Q 可逆,由矩阵A 可逆的充分必要条件:0A ≠,故00P Q ≠≠,但不知具体数值.由P A Q B =,知0A ≠时,B 不能确定.但0A =有0B =.故应选(D).方法3:由经过若干次初等变换变为矩阵的初等变换对矩阵的行列式的影响有:(1)A 中某两行(列)互换得B ,则B A =-. (2)A 中某行(列)乘(0)k k ≠得B ,则B k A =. (3)A 中某行倍加到另一行得B ,则B A =.又由A 与B 等价,由矩阵等价的定义:矩阵A 经有限次初等变换变成矩阵B ,则称A 与B 等价,知.B k A =±故当0A ≠时,0B k A =±≠,虽仍不等于0,但数值大、小、正负要改变,但0||=A ,则0B =,故有结论:初等变换后,矩阵的行列式的值要改变,但不改变行列式值的非零性,即若0||=A 0B ⇒=,若0A ≠0B ⇒≠.故应选(D).(13) 【答案】(C)【详解】利用正态分布概率密度函数图形的对称性,对任何0x >有{}{}{}12P X x P X x P X x >=<-=>. 或直接利用图形求解. 方法1:由标准正态分布概率密度函数的对称性知,αα=-<}{u X P ,于是}{2}{}{}{}{11x X P x X P x X P x X P x X P ≥=-≤+≥=≥=<-=-α即有 21}{α-=≥x X P ,可见根据分位点的定义有21α-=u x ,故应选(C). 方法2:图一 图二Oxy()f x{}P X u αα=Oxy{}P X x <=12α- ()f x如图一所示题设条件.图二显示中间阴影部分面积α,{}P X x α<=.两端各余面积12α-,所以12{}P X u αα-<=,答案应选(C).(14)【答案】A.【详解】由于随机变量)1(,,,21>n X X X n Λ独立同分布,所以必有:2, (,)0, i j i jCov X X i j σ⎧==⎨≠⎩又 222111()n n ni i i i i i i i D a X a D X a σ===⎛⎫== ⎪⎝⎭∑∑∑下面求1(,)Cov X Y 和1()D X Y +.而11,ni i Y X n ==∑故本题的关键是将Y 中的1X 分离出来,再用独立性来计算.对于选项(A):1111112111(,)(,)(,)(,)n n i i i i Cov X Y Cov X X Cov X X Cov X X n n n ====+∑∑11DX n =21nσ=所以(A)对,(B)不对.为了熟悉这类问题的快速、正确计算. 可以看本题(C),(D)选项. 因为X 与Y 独立时,有()()()D X Y D X D Y ±=+. 所以,这两个选项的方差也可直接计算得到:22211222111(1)1()()n n n n D X Y D X X X n n n n n σσ++-+=+++=+L =222233σσn n nn n +=+, 222222111)1()111()(σσn n n n X n X n X n n D Y X D n -+-=----=-Λ=.222222σσn n nn n -=- 所以本题选 (A)三、解答题(15)【详解】求“∞-∞”型极限的首要步骤是通分,或者同乘、除以某一式以化简.22201cos lim()sin x x x x →- 通分222220sin cos lim sin x x x x x x →-sin x x :等价22240sin cos lim x x x x x →- 22401sin 24lim x x x x →-=洛()22041sin 24lim x x x x→'⎛⎫- ⎪⎝⎭'3012sin 42lim 4x x x x →-= 洛()0312sin 42lim 4x x x x →'⎛⎫- ⎪⎝⎭'201cos 4lim 6x x x →-=2202sin 2lim 6x x x →=sin 22x x :等2202(2)lim 6x x x →43=.(16)【详解】利用对称性与极坐标计算.方法1:令}1)1(|),{(},4|),{(222221≤++=≤+=y x y x D y x y x D ,根据二重积分的极坐标变换:()()12{(,)|,}D x y r r r αθβθθ=≤≤≤≤,则:()()()()21,cos ,sin r r Df x y d f r r rdr βθαθσθθ=⎰⎰⎰⎰122D x y d σ+化为极坐标:221{(,)|4}{(,)|02,0D x y x y x y θπ=+≤=≤≤所以122D x y d σ+222220cos sin d r r rdr πθθθ=+⎰⎰2220d r dr πθ=⎰⎰;222D x y d σ+化为极坐标:2223{(,)|(1)1}{(,)|,02cos }22D x y x y x y r ππθθ=++≤=≤≤≤≤-所以222D x y d σ+32cos 222222cos sin d r r rdr πθπθθθ-=+⎰⎰32cos 222d r dr πθπθ-=⎰⎰所以⎰⎰⎰⎰⎰⎰+-+=+21222222D D Dd y x d y x d y x σσσ⎰⎰⎰⎰--=θπππθθcos 20223220220dr r d dr r d 22cos 33322020033r rd d θπππθθ-=-⎰⎰332288cos 233d ππθπθ-=⋅-⎰()32228821sin sin 33d πππθθ=⋅+-⎰332288sin 2sin 333ππθπθ⎛⎫=⋅+- ⎪⎝⎭16822333π⎛⎫=+-+ ⎪⎝⎭)23(916932316-=-=ππ 区域D 关于x 轴对称,Dyd σ⎰⎰中被积函数y 为y 的奇函数,根据区域对称性与被积函数的奇偶性:设(),f x y 在有界闭区域D 上连续,若D 关于x 轴对称,(),f x y 对y 为奇函数,则(),0Df x y d σ=⎰⎰,所以0=⎰⎰Dyd σ所以22()Dx y y d σ+⎰⎰22DDx y d yd σσ=++⎰⎰16(32)9π=-. 方法2:22()Dx y y d σ++⎰⎰22DDx y d yd σσ=++⎰⎰22D 20x y d σ=++⎰⎰上半极坐标变换22222002cos 22[]d r dr d r dr πππθθθ-+⎰⎰⎰⎰2233202cos 2[]233r r d ππθπθ-=⋅+⎰32888cos 2333d πππθθ⎛⎫=++ ⎪⎝⎭⎰()2288161sin sin 333d ππππθθ=++-⎰ 321616sin sin 333πππθθ⎛⎫=+- ⎪⎝⎭16(32)9π=-.(17)【详解】求复合函数的偏导数,求一阶线性微分方程的解 方法1:由2()(,)xy x ef x x -=,两边对x 求导有,222122(,)(,)(,)x x x y e f x x e f x x e f x x ---'''=-++()22122(,)(,)(,)x x e f x x e f x x f x x --''=-++()2122(,)(,)x y e f x x f x x -''=-++已知uv v u f v u f v u='+'),(),(,即12(,)(,)f u v f u v uv ''+=,则212(,)(,)f x x f x x x ''+=. 因此,()y x 满足下述一阶微分方程为 x e x y y 222-=+'.由一阶线性微分方程()()dyP x y Q x dx+=通解公式:()()()()P x dx P x dx f x e C Q x e dx -⎛⎫⎰⎰=+ ⎪⎝⎭⎰ 这里()()222,x P x Q x x e -= =,代入上式得:2222()dx dxx y e x e e dx C --⎰⎰=+⎰2222()x x x e x e e dx C --=+⎰22()xex dx C -=+⎰323xx eC -⎛⎫=+ ⎪⎝⎭(C 为任意常数). 方法2:由2()(,)xy x ef x x -=有 2(,)()x f x x e y x = (1)已知(,)f u v 满足 (,)(,)u v f u v f u v uv ''+= (2)这是一个偏微分方程,当,u x v x ==时(2)式变为212(,)(,)f x x f x x x ''+=2(,)df x x x dx= 以(1)代入,有 22(())xe y x x '=,即2222()()xxe y x e y x x '+=, 化简得 22()2()xy x y x x e -'+=,由通解公式得x dxx dx e C x C dx e e x e y 232222)31()(---+=+⎰⎰=⎰(C 为任意常数).(18)【详解】(I) 由于需求量对价格的弹性d E > 0,所以dPdQQ P E d =1005Q P =-()10051005P P P '--20P P -=-(0,20)P ∈ 20P P -; (II) 由R PQ =,得dR dP ()d PQ dP =dQ Q P dP =+(1)P dQ Q Q dP =+(1)20PQ P-=+-(1)d Q E =-要说明在什么范围内收益随价格降低反而增加,即收益为价格的减函数,0<dPdR,即证(1)01d d Q E E -<⇒>,换算成P 为120PP>-,解之得:10P >,又已知(0,20)P ∈,所以2010P >>,此时收益随价格降低反而增加.(19)【详解】当0x >时,0x -<,所以()()22()x x F x ee F x ---===,同理:当0x <时,x->,所以()()22()x xF x e e F x---===,所以()y F x=是关于y轴对称的偶函数.又2lim()lim0xx xF x e-→+∞→+∞==,2lim()lim0xx xF x e→-∞→-∞==,所以x轴与曲线()y F x=围成一无界区域,面积S可用广义积分表示.()y F x=图形如下:(I) ()S F x dx+∞-∞=⎰()F x偶函数22xe dx+∞-⎰2(2)xe d x+∞-=--⎰201xe+∞-=-= )(1tS表示矩形t x t-≤≤,0()y F x≤≤的面积,所以ttetS212)(-=,因此21()()12tS t S S t te-=-=-,(0,)t∈+∞.(II) 由于tettS2)21(2)(---=',令()0S t'=,得()S t的唯一驻点为21=t,又()S t''()22(12)tt e-'=--222448t t te e te---=+-28(1)tt e-=-,04)21(>=''eS,所以eS11)21(-=为极小值,它也是最小值.(20)【详解】已知T)1,1,1,1(--是该方程组的一个解,故可将T)1,1,1,1(--代入方程组,有110,21120,3(2)(4)41,λμλμ-+-=⎧⎪-++=⎨⎪-+++-=⎩解得μλ=.代入原方程,并对方程组的增广矩阵A施以初等行变换, 得1102112032441Aλλλλ⎛⎫⎪= ⎪⎪++⎝⎭1101(-2),(-3)0121200230224211λλλλλλ⎛⎫⎪--⎪⎪--⎝⎭u u u u u u u u u u u u u u u u r行乘分别加到,行110110(-1)012120001311 3013110121200λλλλλλλλ⎛⎫⎛⎫⨯ ⎪ ⎪--⎪ ⎪⎪ ⎪--⎝⎭⎝⎭u u u u u u u u u r u u u u u u u r2行2,3行加到行互换1102(21)013113002(21)2121λλλλλλ⎛⎫⨯- ⎪⎪ ⎪---⎝⎭u u u u u u u u u u u u u u r 行加到行 ()I 当21≠λ时,有 A 3(21)λ÷-u u u u u u u u u u u u u u r 行 1100131100211λλ⎛⎫ ⎪ ⎪ ⎪⎝⎭,故43)()(<==A r A r . 定理:设A 是m n ⨯矩阵,方程组Ax b =,则,(1)有唯一解()()r A r A n ⇔==;(2)有无穷多解()()r A r A n ⇔=<;(3)无解:()1()r A r A ⇔+=,故方程组有无穷多解.所以,该方程组有无穷多解,对应的齐次线性方程组同解方程组为1234234343020x x x x x x x x x λλ+++=⎧⎪++=⎨⎪+=⎩ 由于此方程组的系数矩阵的秩为3,则基础解系的个数为43n r -=-=1,故有1个自由未知量.选2x 为自由未知量,取21x =-,得方程组的基础解系为Tη)2,1,1,2(--=,取非齐次方程的一个特解为0(1,0,0,1)Tξ=-,故方程组的全部解为0k ηξ+(k 为任意常数).当21=λ时,有 11110220131100000A ⎛⎫ ⎪⎪→ ⎪ ⎪⎪⎝⎭, 可知,42)()(<==A r A r ,所以该方程组有无穷多解,对应的齐次线性方程组的同解方程组为12342341102230x x x x x x x ⎧+++=⎪⎨⎪++=⎩ 则基础解系的个数为42n r -=-=2,故有2个自由未知量.选34,x x 为自由未知量,将两组值:(1,0),(0,2)代入,得方程组的基础解系为Tη)0,1,3,1(1-=,Tη)2,0,2,1(2--=,取非齐次方程的一个特解为0(1,0,0,1)Tξ=-,故方程组的全部解为0112212(1,0,0,1)(1,3,1,0)(1,2,0,2)T T T k k k k ξξηη=++=-+-+--(21,k k 为任意常数).()II 当21≠λ时,方程组的通解为 0(1,0,0,1)(2,1,1,2)(21,,,21)T T T k k k k k k ξξη=+=-+--=---+若32x x =,即k k =-得0k =,故原方程组满足条件32x x =的全部解为(1,0,0,1)T-.当21=λ时,方程组的通解为 0112212(1,0,0,1)(1,3,1,0)(1,2,0,2)T T T k k k k ξξηη=++=-+-+--=121212(1,32,,21)Tk k k k k k ----+若32x x =,即 12132k k k --=,得212k k =-,代入通解,得满足条件32x x =的全部解为1(3,1,14)(1,0,0,1)T Tk -+-(21)【分析】由矩阵A 的秩为2, 立即可得A 的另一特征值为0. 再由实对称矩阵不同特征值所对应的特征向量正交可得相应的特征向量, 此时矩阵A 也立即可得.【详解】()I A 的秩为2,于是0||=A ,所以|0|0E A A ⋅-==,因此A 的另一特征值03=λ.特征值的性质:若i λ是矩阵A 的k 重特征值,则矩阵A 属于的线性无关的特征向量的个数不超过k 个又621==λλ是A 的二重特征值,故A 的属于特征值6的线性无关的特征向量个数2≤. 因此123,,ααα必线性相关.由题设知T α)0,1,1(1=,T α)1,1,2(2=为A 的属于特征值6的线性无关的两个特征向量.定理:实对称矩阵对应与不同特征值的特征向量是正交的.设03=λ所对应的特征向量为Tx x x α),,(321=,所以,01=ααT,02=ααT,即⎩⎨⎧=++=+,02,032121x x x x x则基础解系的个数为32n r -=-=1,故有1个自由未知量. 选2x 为自由未知量,取21x =得方程组的基础解系为Tα)1,1,1(-=,故A 的属于特征值03=λ全部特征向量为T k αk )1,1,1(-= (k 为任意不为零的常数).()II 令矩阵),,(21αααP =,求1P -121100111010011001-⎛⎫ ⎪ ⎪ ⎪⎝⎭M M M 1211001(1)2012110011001-⎛⎫ ⎪⨯--- ⎪ ⎪⎝⎭MM u u u u u u u u u u u u u u u u u u u r M 行加到行 12110012012110003111-⎛⎫ ⎪-- ⎪ ⎪-⎝⎭M M u u u u u u u u u u u u r M 行加到行1211000121100011/31/31/3-⎛⎫ ⎪÷-- ⎪ ⎪-⎝⎭M M u u u u u u u r M 3行3 1211000101/31/32/30011/31/31/3-⎛⎫ ⎪⨯--- ⎪⎪-⎝⎭M M u u u u u u u u u u u u u u u u r M 3行(-2)+2行10001120101/31/32/30011/31/31/3-⎛⎫ ⎪⨯--- ⎪ ⎪-⎝⎭M Mu u u u u u u u u u u u u u u u u u u u u u u u u u u u u r M 3行,2行依次加到1行, 1000112(1)0101/31/32/30011/31/31/3-⎛⎫ ⎪⨯-- ⎪ ⎪-⎝⎭M M u u u u u u u u u u r M 行则 1P -=011112333111333⎛⎫ ⎪- ⎪ ⎪- ⎪ ⎪ ⎪-⎝⎭,⎪⎪⎪⎭⎫ ⎝⎛=-0661AP P ,所以 1066-⎪⎪⎪⎭⎫⎝⎛=P P A ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=3131313231311100661********⎪⎪⎪⎭⎫ ⎝⎛--=422242224.(22)【分析】本题尽管难度不大,但考察的知识点很多,综合性较强.通过随机事件定义随机变量或通过随机变量定义随机事件,可以比较好地将概率论的知识前后连贯起来,这种命题方式值得注意。
2004考研数一真题及解析

2004年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上) (1)曲线ln y x =上与直线1=+y x 垂直的切线方程为__________ . (2)已知(e )e x x f x -'=,且(1)0f =,则()f x =__________ .(3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-L ydx xdy 2的值为__________.(4)欧拉方程)0(024222>=++x y dx dyx dxy d x 的通解为__________ . (5)设矩阵210120001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,矩阵B 满足**2=+ABA BA E ,其中*A 为A 的伴随矩阵,E 是单位矩阵,则B =__________ .(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >= __________ .二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(7)把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===03002sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A)γβα,, (B)βγα,, (C)γαβ,, (D)αγβ,, (8)设函数()f x 连续,且,0)0(>'f 则存在0>δ,使得(A)()f x 在(0,)δ内单调增加 (B)()f x 在)0,(δ-内单调减少 (C)对任意的),0(δ∈x 有()(0)f x f > (D)对任意的)0,(δ-∈x 有()(0)f x f >(9)设∑∞=1n n a 为正项级数,下列结论中正确的是(A)若n n na ∞→lim =0,则级数∑∞=1n n a 收敛(B)若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n n a 发散(C)若级数∑∞=1n n a 收敛,则0lim 2=∞→n n a n (D)若级数∑∞=1n n a 发散, 则存在非零常数λ,使得λ=∞→n n na lim(10)设()f x 为连续函数,⎰⎰=t ty dx x f dy t F 1)()(,则)2(F '等于 (A)2(2)f (B)(2)f (C)(2)f - (D) 0(11)设A 是3阶方阵,将A 的第1列与第2列交换得B ,再把B 的第2列加到第3列得C ,则满足=AQ C 的可逆矩阵Q 为(A)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010(B)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010 (C)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010(D)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110 (12)设,A B 为满足=AB O 的任意两个非零矩阵,则必有 (A)A 的列向量组线性相关,B 的行向量组线性相关 (B)A 的列向量组线性相关,B 的列向量组线性相关 (C)A 的行向量组线性相关,B 的行向量组线性相关 (D)A 的行向量组线性相关,B 的列向量组线性相关(13)设随机变量X 服从正态分布(0,1),N 对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A)2αu (B)21α-u(C)21α-u (D) α-1u(14)设随机变量)1(,,,21>n X X X n Λ独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则(A)21Cov(,)X Y nσ= (B)21Cov(,)X Y σ=(C)212)(σnn Y X D +=+ (D)211)(σnn Y X D +=-三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤)(15)(本题满分12分) 设2e e a b <<<,证明2224ln ln ()e b a b a ->-.(16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg的飞机,着陆时的水平速度为700km/h 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).k问从着陆点=10⨯0.66算起,飞机滑行的最长距离是多少?(注:kg表示千克,km/h表示千米/小时)(17)(本题满分12分)计算曲面积分,)1(322233dxdy z dzdx y dydz x I ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧.(18)(本题满分11分)设有方程10nx nx+-=,其中n为正整数.证明此方程存在惟一正实根n x,并证明当1α>时,级数1nn xα∞=∑收敛.(19)(本题满分12分)设(,)z z x y =是由2226102180x xy y yz z -+--+=确定的函数,求(,)z z x y =的极值点和极值.(20)(本题满分9分)设有齐次线性方程组121212(1)0,2(2)20,(2),()0,nnna x x xx a x xnnx nx n a x++++=⎧⎪++++=⎪≥⎨⎪⎪++++=⎩LLL L L L L LL试问a取何值时,该方程组有非零解,并求出其通解.(21)(本题满分9分)设矩阵12314315a-⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦A的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.(22)(本题满分9分)设,A B 为随机事件,且111(),(|),(|)432P A P B A P A B ===,令;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧= 求:(1)二维随机变量(,)X Y 的概率分布. (2)X 和Y 的相关系数.XY ρ(23)(本题满分9分) 设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x x x F ββ其中未知参数n X X X ,,,,121Λ>β为来自总体X 的简单随机样本,求:(1)β的矩估计量. (2)β的最大似然估计量2004年数学一试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为 1-=x y .【分析】 本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标。
2004年考研数学一真题(含解析)

2004年全国硕士研究生入学统一考试数学一真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为__________ . (2)已知x x xe e f -=')(,且f(1)=0, 则f(x)=__________ . (3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-Lydx xdy 2的值为__________.(4)欧拉方程)0(024222>=++x y dx dyx dx y d x的通解为. __________ . (5)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100021012A ,矩阵B 满足E BA ABA +=**2,其中*A 为A 的伴随矩阵,E 是单位矩阵,则=B __________ .(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >= __________ .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)把+→0x 时的无穷小量dt t dt t dt txx x⎰⎰⎰===302sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A) γβα,,. (B) βγα,,. (C) γαβ,,. (D) αγβ,,. [ ] (8)设函数f(x)连续,且,0)0(>'f 则存在0>δ,使得(A) f(x)在(0,)δ内单调增加. (B )f(x)在)0,(δ-内单调减少. (C) 对任意的),0(δ∈x 有f(x)>f(0) .(D) 对任意的)0,(δ-∈x 有f(x)>f(0) . [ ](9)设∑∞=1n na为正项级数,下列结论中正确的是(A) 若n n na ∞→lim =0,则级数∑∞=1n na收敛.(B ) 若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n na发散.(C) 若级数∑∞=1n na收敛,则0lim 2=∞→n n a n .(D) 若级数∑∞=1n na发散, 则存在非零常数λ,使得λ=∞→n n na lim . [ ](10)设f(x)为连续函数,⎰⎰=t tydx x f dy t F 1)()(,则)2(F '等于(A) 2f(2). (B) f(2). (C) –f(2). (D) 0. [ ](11)设A 是3阶方阵,将A 的第1列与第2列交换得B,再把B 的第2列加到第3列得C, 则满足AQ=C 的可逆矩阵Q 为(A) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010. (B) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010. (C) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010. (D) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110. [ ](12)设A,B 为满足AB=O 的任意两个非零矩阵,则必有 (A) A 的列向量组线性相关,B 的行向量组线性相关. (B) A 的列向量组线性相关,B 的列向量组线性相关. (C) A 的行向量组线性相关,B 的行向量组线性相关.(D) A 的行向量组线性相关,B 的列向量组线性相关. [ ](13)设随机变量X 服从正态分布N(0,1),对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A) 2αu . (B) 21α-u. (C) 21α-u . (D) α-1u . [ ](14)设随机变量)1(,,,21>n X X X n 独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则(A) Cov(.),21nY X σ= (B) 21),(σ=Y X Cov .(C) 212)(σn n Y X D +=+. (D) 211)(σnn Y X D +=-. [ ] (15)(本题满分12分)设2e b a e <<<, 证明)(4ln ln 222a b ea b ->-. (16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h. 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).100.66⨯=k 问从着陆点算起,飞机滑行的最长距离是多少?注kg 表示千克,km/h 表示千米/小时. (17)(本题满分12分) 计算曲面积分 ,)1(322233dxdy z dzdx y dydz x I ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧.(18)(本题满分11分)设有方程01=-+nx x n,其中n 为正整数. 证明此方程存在惟一正实根n x ,并证明当1>α时,级数∑∞=1n n x α收敛.(19)(本题满分12分)设z=z(x,y)是由0182106222=+--+-z yz y xy x 确定的函数,求),(y x z z =的极值点和极值. (20)(本题满分9分) 设有齐次线性方程组)2(,0)(,02)2(2,0)1(212121≥⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++n x a n nx nx x x a x x x x a n n n试问a 取何值时,该方程组有非零解,并求出其通解. (21)(本题满分9分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=51341321a A 的特征方程有一个二重根,求a 的值,并讨论A 是否可相似对角化. (22)(本题满分9分) 设A,B 为随机事件,且21)(,31)(,41)(===B A P A B P A P ,令 ;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧= 求:(I )二维随机变量(X,Y)的概率分布; (II )X 和Y 的相关系数.XY ρ(23)(本题满分9分)设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x xx F ββ其中未知参数n X X X ,,,,121 >β为来自总体X 的简单随机样本,求:(I ) β的矩估计量; (II ) β的最大似然估计量.2004年数学一试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为1-=x y .【分析】 本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标. 【详解】 由11)(ln =='='xx y ,得x=1, 可见切点为)0,1(,于是所求的切线方程为 )1(10-⋅=-x y , 即 1-=x y .【评注】 本题也可先设切点为)ln ,(00x x ,曲线y=lnx 过此切点的导数为11=='=x y x x ,得10=x ,由此可知所求切线方程为)1(10-⋅=-x y , 即 1-=x y .本题比较简单,类似例题在一般教科书上均可找到. (2)已知xxxe e f -=')(,且f(1)=0, 则f(x)=2)(ln 21x . 【分析】 先求出)(x f '的表达式,再积分即可.【详解】 令t e x=,则t x ln =,于是有t t t f ln )(=', 即 .ln )(x xx f =' 积分得 C x dx x x x f +==⎰2)(ln 21ln )(. 利用初始条件f(1)=0, 得C=0,故所求函数为f(x)= 2)(ln 21x . 【评注】 本题属基础题型,已知导函数求原函数一般用不定积分. (3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-Lydx xdy 2的值为π23 . 【分析】 利用极坐标将曲线用参数方程表示,相应曲线积分可化为定积分. 【详解】 正向圆周222=+y x 在第一象限中的部分,可表示为 .20:,sin 2,cos 2πθθθ→⎩⎨⎧==y x于是θθθθθπd y d x x d y L]s i n 2s i n 22c o s 2c o s 2[220⋅+⋅=-⎰⎰=.23sin 2202πθθππ=+⎰d 【评注】 本题也可添加直线段,使之成为封闭曲线,然后用格林公式计算,而在添加的线段上用参数法化为定积分计算即可.(4)欧拉方程)0(024222>=++x y dx dyx dxy d x 的通解为 221x c x c y +=. 【分析】 欧拉方程的求解有固定方法,作变量代换te x =化为常系数线性齐次微分方程即可. 【详解】 令te x =,则dtdyx dt dy e dx dt dt dy dx dy t 1==⋅=-,][11122222222dtdydt y d x dx dt dt y d x dt dy x dx y d -=⋅+-=, 代入原方程,整理得02322=++y dt dydty d , 解此方程,得通解为 .221221xc x c e c ec y t t+=+=-- 【评注】 本题属基础题型,也可直接套用公式,令te x =,则欧拉方程)(222x f cy dx dybx dxy d ax =++, 可化为 ).(][22t e f cy dt dyb dt dy dty d a =++- (5)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100021012A ,矩阵B 满足E BA ABA +=**2,其中*A 为A 的伴随矩阵,E 是单位矩阵,则=B91 . 【分析】 可先用公式E A A A =*进行化简 【详解】 已知等式两边同时右乘A ,得A A BA A ABA +=**2, 而3=A ,于是有 AB AB +=63, 即 A B E A =-)63(,再两边取行列式,有363==-A B E A ,而 2763=-E A ,故所求行列式为.91=B【评注】 先化简再计算是此类问题求解的特点,而题设含有伴随矩阵*A ,一般均应先利用公式E A AA A A ==**进行化简.(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >=e1 . 【分析】 已知连续型随机变量X 的分布,求其满足一定条件的概率,转化为定积分计算即可. 【详解】 由题设,知21λ=DX ,于是}{DX X P >=dx e X P x ⎰+∞-=>λλλλ1}1{=.11eex=-∞+-λλ 【评注】 本题应记住常见指数分布等的期望与方差的数字特征,而不应在考试时再去推算.二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===302sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A) γβα,,. (B) βγα,,. (C) γαβ,,. (D) αγβ,,. [ B ] 【分析】 先两两进行比较,再排出次序即可.【详解】 0c o s 2t a n lim cos tan limlim 22002=⋅==+++→→→⎰⎰xxx dtt dt t x xx x x αβ,可排除(C),(D)选项, 又 xx x x dtt dtt x x xx x tan 221sin lim tan sin limlim 230302⋅==+++→→→⎰⎰βγ=∞=+→20lim 41x x x ,可见γ是比β低阶的无穷小量,故应选(B). 【评注】 本题是无穷小量的比较问题,也可先将γβα,,分别与nx 进行比较,再确定相互的高低次序. (8)设函数f(x)连续,且,0)0(>'f 则存在0>δ,使得(A) f(x)在(0,)δ内单调增加. (B )f(x)在)0,(δ-内单调减少.(C) 对任意的),0(δ∈x 有f(x)>f(0) . (D) 对任意的)0,(δ-∈x 有f(x)>f(0) .[ C ]【分析】 函数f(x)只在一点的导数大于零,一般不能推导出单调性,因此可排除(A),(B)选项,再利用导数的定义及极限的保号性进行分析即可.【详解】 由导数的定义,知0)0()(l i m)0(0>-='→xf x f f x ,根据保号性,知存在0>δ,当),0()0,(δδ -∈x 时,有0)0()(>-xf x f即当)0,(δ-∈x 时,f(x)<f(0); 而当),0(δ∈x 时,有f(x)>f(0). 故应选(C). 【评注】 题设函数一点可导,一般均应联想到用导数的定义进行讨论. (9)设∑∞=1n na为正项级数,下列结论中正确的是(A) 若n n na ∞→lim =0,则级数∑∞=1n na收敛.(B ) 若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n na发散.(C) 若级数∑∞=1n na收敛,则0lim 2=∞→n n a n .(E) 若级数∑∞=1n na发散, 则存在非零常数λ,使得λ=∞→n n na lim . [ B ]【分析】 对于敛散性的判定问题,若不便直接推证,往往可用反例通过排除法找到正确选项.【详解】 取n n a n ln 1=,则n n na ∞→lim =0,但∑∑∞=∞==11ln 1n n n nn a 发散,排除(A),(D);又取nn a n 1=,则级数∑∞=1n na收敛,但∞=∞→n n a n 2lim ,排除(C), 故应选(B).【评注】 本题也可用比较判别法的极限形式,01l i m l i m ≠==∞→∞→λna na n n n n ,而级数∑∞=11n n 发散,因此级数∑∞=1n n a 也发散,故应选(B). (10)设f(x)为连续函数,⎰⎰=t tydx x f dy t F 1)()(,则)2(F '等于(A) 2f(2). (B) f(2). (C) –f(2). (D) 0. [ B ]【分析】 先求导,再代入t=2求)2(F '即可.关键是求导前应先交换积分次序,使得被积函数中不含有变量t.【详解】 交换积分次序,得⎰⎰=tt ydx x f dy t F 1)()(=⎰⎰⎰-=t x tdx x x f dx dy x f 111)1)((])([于是,)1)(()(-='t t f t F ,从而有 )2()2(f F =',故应选(B).【评注】 在应用变限的积分对变量x 求导时,应注意被积函数中不能含有变量x: ⎰'-'=')()()()]([)()]([])([x b x a x a x a f x b x b f dt t f否则,应先通过恒等变形、变量代换和交换积分次序等将被积函数中的变量x 换到积分号外或积分线上.(11)设A 是3阶方阵,将A 的第1列与第2列交换得B,再把B 的第2列加到第3列得C, 则满足AQ=C 的可逆矩阵Q 为(A) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010. (B) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010. (C) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010. (D) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110. [ D ]【分析】 本题考查初等矩阵的的概念与性质,对A 作两次初等列变换,相当于右乘两个相应的初等矩阵,而Q 即为此两个初等矩阵的乘积.【详解】由题设,有B A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001010,C B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100110001, 于是, .100001110100110001100001010C A A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡可见,应选(D).【评注】 涉及到初等变换的问题,应掌握初等矩阵的定义、初等矩阵的性质以及与初等变换的关系. (12)设A,B 为满足AB=O 的任意两个非零矩阵,则必有 (D) A 的列向量组线性相关,B 的行向量组线性相关. (E) A 的列向量组线性相关,B 的列向量组线性相关. (F) A 的行向量组线性相关,B 的行向量组线性相关.(D) A 的行向量组线性相关,B 的列向量组线性相关. [ A ]【分析】A,B 的行列向量组是否线性相关,可从A,B 是否行(或列)满秩或Ax=0(Bx=0)是否有非零解进行分析讨论.【详解1】 设A 为n m ⨯矩阵,B 为s n ⨯矩阵,则由AB=O 知,n B r A r <+)()(.又A,B 为非零矩阵,必有r(A)>0,r(B)>0. 可见r(A)<n, r(B)<n, 即A 的列向量组线性相关,B 的行向量组线性相关,故应选(A).【详解2】 由AB=O 知,B 的每一列均为Ax=0的解,而B 为非零矩阵,即Ax=0存在非零解,可见A 的列向量组线性相关.同理,由AB=O 知,O A B T T =,于是有TB 的列向量组,从而B 的行向量组线性相关,故应选(A). 【评注】 AB=O 是常考关系式,一般来说,与此相关的两个结论是应记住的: 1) AB=O ⇒n B r A r <+)()(; 2) AB=O ⇒B 的每列均为Ax=0的解.(13)设随机变量X 服从正态分布N(0,1),对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A) 2αu . (B) 21α-u. (C) 21α-u . (D) α-1u . [ C ]【分析】 此类问题的求解,可通过αu 的定义进行分析,也可通过画出草图,直观地得到结论. 【详解】 由标准正态分布概率密度函数的对称性知,αα=-<}{u X P ,于是}{2}{}{}{}{11x X P x X P x X P x X P x X P ≥=-≤+≥=≥=<-=-α即有 21}{α-=≥x X P ,可见根据定义有21α-=u x ,故应选(C). 【评注】 本题αu 相当于分位数,直观地有2(14)设随机变量)1(,,,21>n X X X n 独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则(A) Cov(.),21nY X σ= (B) 21),(σ=Y X Cov .(C) 212)(σn n Y X D +=+. (D) 211)(σnn Y X D +=-. [ A ] 【分析】 本题用方差和协方差的运算性质直接计算即可,注意利用独立性有:.,3,2,0),(1n i X X Cov i ==【详解】 Cov(∑∑==+==ni i n i i X X Cov n X X Cov n X n X Cov Y X 2111111),(1),(1)1,(),=.1121σnDX n = 【评注】 本题(C),(D) 两个选项的方差也可直接计算得到:如222222111)1()111()(σσn n n n X n X n X n n D Y X D n -++=++++=+ =222233σσn n nn n +=+, 222222111)1()111()(σσn n n n X n X n X n n D Y X D n -+-=----=-=.222222σσn n nn n -=- (15)(本题满分12分)设2e b a e <<<, 证明)(4ln ln 222a b ea b ->-. 【分析】 根据要证不等式的形式,可考虑用拉格朗日中值定理或转化为函数不等式用单调性证明. 【证法1】 对函数x 2ln 在[a,b]上应用拉格朗日中值定理,得 .),(ln 2ln ln 22b a a b a b <<-=-ξξξ设t t t ln )(=ϕ,则2ln 1)(ttt -='ϕ, 当t>e 时, ,0)(<'t ϕ 所以)(t ϕ单调减少,从而)()(2e ϕξϕ>,即2222ln ln ee e =>ξξ,故 )(4ln ln 222a b ea b ->-. 【证法2】 设x e x x 224ln )(-=ϕ,则 24ln 2)(e x x x -='ϕ, 2ln 12)(xxx -=''ϕ, 所以当x>e 时,,0)(<''x ϕ 故)(x ϕ'单调减少,从而当2e x e <<时, 044)()(222=-='>'ee e x ϕϕ, 即当2e x e <<时,)(x ϕ单调增加.因此当2e x e <<时,)()(a b ϕϕ>,即 a ea b e b 22224ln 4ln ->-, 故 )(4ln ln 222a b ea b ->-.【评注】 本题也可设辅助函数为2222),(4ln ln )(e x a e a x ea x x <<<---=ϕ或 2222),(4ln ln )(e b x e x b ex b x <<<---=ϕ,再用单调性进行证明即可. (16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h. 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).100.66⨯=k 问从着陆点算起,飞机滑行的最长距离是多少?注kg 表示千克,km/h 表示千米/小时.【分析】 本题是标准的牛顿第二定理的应用,列出关系式后再解微分方程即可.【详解1】 由题设,飞机的质量m=9000kg ,着陆时的水平速度h km v /7000=. 从飞机接触跑道开始记时,设t 时刻飞机的滑行距离为x(t),速度为v(t).根据牛顿第二定律,得kv dt dvm -=. 又dxdv v dt dx dx dv dt dv =⋅=, 由以上两式得 dv kmdx -=, 积分得 .)(C v k m t x +-= 由于0)0(,)0(0==x v v ,故得0v k mC =,从而 )).(()(0t v v kmt x -=当0)(→t v 时, ).(05.1100.67009000)(60km k mv t x =⨯⨯=→所以,飞机滑行的最长距离为1.05km. 【详解2】 根据牛顿第二定律,得 kv dtdvm -=, 所以.dt mk v dv -= 两端积分得通解t mkCe v -=,代入初始条件00v vt ==解得0v C =,故 .)(0t mk ev t v -=飞机滑行的最长距离为 ).(05.1)(000km kmv ekmv dt t v x tm k==-==∞+-∞+⎰或由t m ke v dtdx-=0,知)1()(000--==--⎰t m kt t m ke m kv dt e v t x ,故最长距离为当∞→t 时,).(05.1)(0km mkv t x =→【详解3】 根据牛顿第二定律,得 dt dxk dt x d m -=22,022=+dtdxm k dt x d , 其特征方程为 02=+λλm k ,解之得mk -==21,0λλ, 故 .21t mk eC C x -+=由 002000,0v e mkC dtdxv x t t m kt t t =-====-===,得 ,021k m v C C =-= 于是 ).1()(0t m ke kmv t x --= 当+∞→t 时,).(05.1)(0km km v t x =→所以,飞机滑行的最长距离为1.05km.【评注】 本题求飞机滑行的最长距离,可理解为+∞→t 或0)(→t v 的极限值,这种条件应引起注意. (17)(本题满分12分) 计算曲面积分 ,)1(322233dxdy zdzdx y dydz x I ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧.【分析】 先添加一曲面使之与原曲面围成一封闭曲面,应用高斯公式求解,而在添加的曲面上应用直接投影法求解即可.【详解】 取1∑为xoy 平面上被圆122=+y x 所围部分的下侧,记Ω为由∑与1∑围成的空间闭区域,则dxdy z dzdx ydydz x I ⎰⎰∑+∑-++=1)1(322233.)1(3221233dxdy z dzdx y dydz x ⎰⎰∑-++-由高斯公式知d x d y d zz y x d x d y z d z d x y d y d zx ⎰⎰⎰⎰⎰Ω∑+∑++=-++)(6)1(322222331=rdz r z dr d r )(62011022⎰⎰⎰-+πθ=.2)]1()1(21[12232210ππ=-+-⎰dr r r r r 而⎰⎰⎰⎰≤+∑=--=-++123322133)1(322y x dxdy dxdy zdzdx y dydz x π,故 .32πππ-=-=I【评注】 本题选择1∑时应注意其侧与∑围成封闭曲面后同为外侧(或内侧),再就是在1∑上直接投影积分时,应注意符号(1∑取下侧,与z 轴正向相反,所以取负号).(18)(本题满分11分)设有方程01=-+nx x n,其中n 为正整数. 证明此方程存在惟一正实根n x ,并证明当1>α时,级数∑∞=1n n x α收敛.【分析】 利用介值定理证明存在性,利用单调性证明惟一性.而正项级数的敛散性可用比较法判定. 【证】 记.1)(-+=nx x x f n n 由01)0(<-=n f ,0)1(>=n f n ,及连续函数的介值定理知,方程01=-+nx x n存在正实数根).1,0(∈n x当x>0时,0)(1>+='-n nx x f n n ,可见)(x f n 在),0[+∞上单调增加, 故方程01=-+nx x n存在惟一正实数根.n x由01=-+nx x n与0>n x 知nn x x nn n 110<-=<,故当1>α时,αα)1(0n x n <<. 而正项级数∑∞=11n n α收敛,所以当1>α时,级数∑∞=1n n x α收敛.【评注】 本题综合考查了介值定理和无穷级数的敛散性,题型设计比较新颖,但难度并不大,只要基本概念清楚,应该可以轻松求证.(19)(本题满分12分)设z=z(x,y)是由0182106222=+--+-z yz y xy x 确定的函数,求),(y x z z =的极值点和极值. 【分析】 可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然后用二阶偏导确定是极大值还是极小值,并求出相应的极值.【详解】 因为 0182106222=+--+-z yz y xy x ,所以 02262=∂∂-∂∂--xz z x z yy x , 0222206=∂∂-∂∂--+-yzz y z yz y x . 令 ⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂0,0yz xz得⎩⎨⎧=-+-=-,0103,03z y x y x 故 ⎩⎨⎧==.,3y z y x将上式代入0182106222=+--+-z yz y xy x ,可得⎪⎩⎪⎨⎧===3,3,9z y x 或 ⎪⎩⎪⎨⎧-=-=-=.3,3,9z y x 由于 02)(22222222=∂∂-∂∂-∂∂-xzz x z x z y ,,02222622=∂∂∂-∂∂⋅∂∂-∂∂∂-∂∂--yx zz x z y z y x z y x z02)(22222022222=∂∂-∂∂-∂∂-∂∂-∂∂-yzz y z y z y y z y z ,所以 61)3,3,9(22=∂∂=x zA ,21)3,3,9(2-=∂∂∂=y x zB ,35)3,3,9(22=∂∂=yzC , 故03612>=-B AC ,又061>=A ,从而点(9,3)是z(x,y)的极小值点,极小值为z(9,3)=3. 类似地,由61)3,3,9(22-=∂∂=---x zA ,21)3,3,9(2=∂∂∂=---y x zB ,35)3,3,9(22-=∂∂=---yzC ,可知03612>=-B AC ,又061<-=A ,从而点(-9, -3)是z(x,y)的极大值点,极大值为 z(-9, -3)= -3.【评注】 本题讨论由方程所确定的隐函数求极值问题,关键是求可能极值点时应注意x,y,z 满足原方程.(20)(本题满分9分) 设有齐次线性方程组)2(,0)(,02)2(2,0)1(212121≥⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++n x a n nx nx x x a x x x x a n n n试问a 取何值时,该方程组有非零解,并求出其通解.【分析】 本题是方程的个数与未知量的个数相同的齐次线性方程组,可考虑对系数矩阵直接用初等行变换化为阶梯形,再讨论其秩是否小于n ,进而判断是否有非零解;或直接计算系数矩阵的行列式,根据题设行列式的值必为零,由此对参数a 的可能取值进行讨论即可.【详解1】 对方程组的系数矩阵A 作初等行变换,有.00002111122221111B a na a a a a n n n n a a A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++= 当a=0时, r(A)=1<n ,故方程组有非零解,其同解方程组为 ,021=+++n x x x 由此得基础解系为,)0,,0,1,1(1T -=η ,)0,,1,0,1(2T -=η,)1,,0,0,1(,1T n -=-η于是方程组的通解为,1111--++=n n k k x ηη 其中11,,-n k k 为任意常数.当0≠a 时,对矩阵B 作初等行变换,有.1000012002)1(10000121111⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--++→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→nn n a n a B可知2)1(+-=n n a 时,n n A r <-=1)(,故方程组也有非零解,其同解方程组为⎪⎪⎩⎪⎪⎨⎧=+-=+-=+-,0,03,0213121n x nx x x x x由此得基础解系为T n ),,2,1( =η, 于是方程组的通解为ηk x =,其中k 为任意常数.【详解2】 方程组的系数行列式为1)2)1((22221111-++=+++=n a n n a an n n n a a A .当0=A ,即a=0或2)1(+-=n n a 时,方程组有非零解. 当a=0时,对系数矩阵A 作初等行变换,有⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=000000000111122221111 n n n n A , 故方程组的同解方程组为 ,021=+++n x x x 由此得基础解系为,)0,,0,1,1(1T -=η ,)0,,1,0,1(2T -=η,)1,,0,0,1(,1T n -=-η于是方程组的通解为,1111--++=n n k k x ηη 其中11,,-n k k 为任意常数.当2)1(+-=n n a 时,对系数矩阵A 作初等行变换,有 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++=a na a a a a n n n n a a A 00002111122221111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→1000012000010000121111 n n a , 故方程组的同解方程组为⎪⎪⎩⎪⎪⎨⎧=+-=+-=+-,0,03,0213121n x nx x x x x由此得基础解系为T n ),,2,1( =η, 于是方程组的通解为ηk x =,其中k 为任意常数.【评注】 矩阵A 的行列式A 也可这样计算:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++=a n n n n a a A 22221111=aE +⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n n n n 22221111,矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n n n n 22221111的特征值为2)1(,0,,0+n n ,从而A 的特征值为a,a,2)1(,++n n a , 故行列式.)2)1((1-++=n a n n a A (21)(本题满分9分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=51341321a A 的特征方程有一个二重根,求a 的值,并讨论A 是否可相似对角化. 【分析】 先求出A 的特征值,再根据其二重根是否有两个线性无关的特征向量,确定A 是否可相似对角化即可.【详解】 A 的特征多项式为513410)2(251341321-------=------=-λλλλλλλλaa A E=).3188)(2(51341011)2(2a a++--=------λλλλλλ 当2=λ是特征方程的二重根,则有,03181622=++-a 解得a= -2.当a= -2时,A 的特征值为2,2,6, 矩阵2E-A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----321321321的秩为1,故2=λ对应的线性无关的特征向量有两个,从而A 可相似对角化.若2=λ不是特征方程的二重根,则a 31882++-λλ为完全平方,从而18+3a=16,解得 .32-=a当32-=a 时,A 的特征值为2,4,4,矩阵4E-A=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---1321301323秩为2,故4=λ对应的线性无关的特征向量只有一个,从而A 不可相似对角化.【评注】 n 阶矩阵A 可对角化的充要条件是:对于A 的任意i k 重特征根i λ,恒有.)(i i k A E r n =--λ 而单根一定只有一个线性无关的特征向量.(22)(本题满分9分)设A,B 为随机事件,且21)(,31)(,41)(===B A P A B P A P ,令 ;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧= 求:(I )二维随机变量(X,Y)的概率分布; (II )X 和Y 的相关系数.XY ρ【分析】 先确定(X,Y)的可能取值,再求在每一个可能取值点上的概率,而这可利用随机事件的运算性质得到,即得二维随机变量(X,Y)的概率分布;利用联合概率分布可求出边缘概率分布,进而可计算出相关系数.【详解】 (I ) 由于121)()()(==A B P A P AB P , ,61)()()(==B A P AB P B P所以, 121)(}1,1{====AB P Y X P , 61)()()(}0,1{=-====AB P A P B A P Y X P , ,121)()()(}1,0{=-====AB P B P B A P Y X P )(1)(}0,0{B A P B A P Y X P +-=====32)()()(1=+--AB P B P A P (或32121611211}0,0{=---===Y X P ), 故(X,Y)的概率分布为 YX 0 10 32121 1 61121 (II) X, Y 的概率分布分别为X 0 1 Y 0 1P 43 41 P 65 61 则61,41==EY EX ,163=DX ,DY=365, E(XY)=121,故 241)(),(=⋅-=EY EX XY E Y X Cov ,从而.1515),(=⋅=DYDX Y X Cov XY ρ 【评注】 本题尽管难度不大,但考察的知识点很多,综合性较强.通过随机事件定义随机变量或通过随机变量定义随机事件,可以比较好地将概率论的知识前后连贯起来,这种命题方式值得注意.(23)(本题满分9分) 设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x xx F ββ 其中未知参数n X X X ,,,,121 >β为来自总体X 的简单随机样本,求:(I ) β的矩估计量; (II ) β的最大似然估计量.【分析】 先由分布函数求出概率密度,再根据求矩估计量和最大似然估计量的标准方法进行讨论即可.【详解】 X 的概率密度为.1,1,0,),(1≤>⎪⎩⎪⎨⎧=+x x x x f βββ(I ) 由于第 - 21 - 页 共 21 页- 21 - 1);(11-=⋅==⎰⎰+∞++∞∞-βββββdx x x dx x xf EX , 令X =-1ββ,解得 1-=X X β,所以参数β的矩估计量为 .1ˆ-=X X β(II )似然函数为⎪⎩⎪⎨⎧=>==+=∏其他,0),,,2,1(1,)();()(1211n i x x x x x f L i n nni i ββββ 当),,2,1(1n i x i =>时,0)(>βL ,取对数得∑=+-=ni i x n L 1ln )1(ln )(ln βββ,两边对β求导,得∑=-=ni i x n d L d 1ln )(ln βββ, 令0)(ln =ββd L d ,可得 ∑==n i ixn 1ln β, 故β的最大似然估计量为.ln ˆ1∑==n i iXnβ 【评注】 本题是基础题型,难度不大,但计算量比较大,实际做题时应特别注意计算的准确性.。
北京科技大学线性代数04--05第一学期期末考试卷

北京科技大学2004—2005年第一学期(A 卷)学院________ 班级_________ 姓名__________ 学号_________一.选择题(共12分,每题2分)1.设121213()2534223xx x f x x x----=-, 则()f x 中3x 的系数为〔 〕.(A)3- (B)2 (C)6 (D) 32.设,,A B C 为n 阶方阵且A C B E =,则下述结论正确的是〔 〕. (A)A B C E = (B)C A B E = (C) B A C E = (D)B C A E =3.设有向量组:(1,0,1),(1,1,1),(0,0,1)TTTαβγ==-=,则下列向量组中线性无关的是〔 〕. (A) ,,αββγγα+-+ (B) ,2,2αββγγα--- (C) ,,αββγγα--- (D) ,,αββγ+4.A 是一个三阶实矩阵,它的特征值123,,λλλ互不相同,123,,ααα分别是相应的特征向量,则下述结论正确的是〔 〕.(A) A 一定相似于对角阵 (B) A 可逆(C) 123,,ααα相互正交 (D) 123,,ααα可能线性相关5.设A 是m n ⨯矩阵,若()R A r n =<,则n 元线性方程组A x b = 〔 〕.(A) 不一定有解 (B) 有无穷多解 (C) 有唯一解 (D) 无解6.下列矩阵中为初等矩阵的是〔 〕. (A) 100013001⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B) 200022002⎛⎫ ⎪⎪⎪⎝⎭(C) 010001100⎛⎫ ⎪ ⎪ ⎪⎝⎭ (D) 001013100⎛⎫⎪⎪ ⎪⎝⎭二.填空题(共18分,每空3分)1. 设 101311011A ⎛⎫⎪=-- ⎪ ⎪⎝⎭,012034200B ⎛⎫⎪= ⎪ ⎪⎝⎭, 则秩()AB B -= 。
2.若三阶非零方阵B 的每一列都是方程组1231231232202030x x x x x ax x x x +-=⎧⎪-+=⎨⎪+-=⎩的解,则a = ,B = 。