2.用配方法求解一元二次方程(一).2 用配方法求解一元二次方程(一)教学设计
用配方法求解一元二次方程1 (2)
开平方,得:x+4=±5
即:x+4=5,或x +4=―5
所以:x1=1,x2=―9
5、配方法:通过配成完全平方式的方法得到了一元二次方程的根,这种解一元二次方程的方法称为配方法。
三、课堂练习
课本P37随堂练习
四、课时小结
五、课后作业
(一)课本P37习题2.3
(二)1.预习内容P38
教学方法
讲练结合法
教学后记
教学内容及过 程
学习活动
一、复习:
1、解下列方程:
(1)x2=5(2)2x2+3=5(3)x2+2x+1=5
(4)(x+6)2+ 72=102
2、什么 是完全平方式?
利用公式计算:
(1)(x+6)2=36(2)(x- )2=4
注意:它们的常数项等于一次项系数一半的平方。
3、解方程:(梯子滑动问题)
(2)配方法.
板书设计:
学生积极思考,认真做题。
这种方法叫直接开 平方法:
(x十m) =n(n 0).
因此,解一元 二次方程的基本思路是将方程转化为(x+m)2=n 的形式,它的一边是一个完全平方式,另 一边是一个常数,当n≥0时,两边开平方便可求出它的根。
这节课我们研究了一元二次方程的解法:
(1)直接开平方法.
第二章一元二次方程
2.2用配方法求解一元二次方程(一)
课题
2.2用配方法求解一元二次方程(一)
课型
新授课
教学 目标
1.会用开平方法解形如( x+m)2=n(n>0)的方程.
2.理解一元二次方程的解法:配方法.
配方法解一元二次方程教案
配方法解一元二次方程教案IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】配方法解一元二次方程(一)一、教材分析方程是刻画现实世界中数量关系的一个有效数学模型,应用比较广泛,而从实际问题中抽象出方程,并求出方程的解是解决问题的关键。
配方法既是解一元二次方程的一种重要方法,同时也是推导公式法的基础。
配方法又是初中数学的重要内容,在二次根式、代数式的变形及二次函数中都有广泛应用。
二、教学目标1.知识与技能:理解配方法的意义,会用配方法解二次项系数为1的一元二次方程;2.过程与方法:通过探索配方法的过程,让学生体会转化的数学思想方法;3.情感态度价值观:学生在独立思考和合作探究中感受成功的喜悦,并体验数学的应用价值,增强学生学习数学的兴趣。
三、教学重点运用配方法解二次项系数为1的一元二次方程。
四、教学难点发现并理解配方的方法。
五、学情分析学生的知识基础:学生会解一元一次方程,了解平方根的概念、平方根的性质以及完全平方公式,并刚刚学习了一元二次方程的概念和直接开平方法解一元二次方程;学生的技能基础:学生在之前的学习中已经学习过“转化” “整体”等数学思想方法,具备了学习本课时内容的较好基础;学生活动经验基础:以前的数学学习中学生已经经历了很多合作学习的过程,具备了一定的合作学习的经验和能力。
本节课中研究的方程不具备直接开平方法的结构特点,需要合理添加条件进行转化,即“配方”,而学生在以前的学习中没有类似经验,理解起来会有一定的困难,同时完全平方公式的理解对学生来说也是一个难点,所以在教学过程中要注意难点的突破。
六、教具准备教学课件七、教学过程设计环节一:创设情境,引出新知如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m.如果梯子的顶端下滑1m,那么梯子的底端滑动多少米?在知识引入阶段,创设了一个实际问题的情境,将学生放置在实际问题的背景下,既让学生感受到生活中处处有数学,又有利于激发学生的主动性和求知欲。
用配方法解一元二次方程说课稿
五 学法分析
1. 再现原有认知:因为配方法的推导过程是建 立在直接开平法的基础上的,因此有必要让 学生回忆完全平方公式。
❖ 作业是P-15的1、2、3题, 大家下去认真做一下这3道题,巩固和消化 一下本堂课学习的内容.
❖ 2.过程与方法:理解配方法,知道配方是一种常 用的数学方法;了解配方法解一元二次方程的基 本步骤。
❖ 3.情感、态度与价值观:通过创设情境,培养学 生主动探究的精神与积极参与数学活动的意识。
三、教学重点与难点
重点:运用配方法解一元二次方程。 难点:发现与理解配方法的思想方法。
四 学情与教学方法
一、教材分析。 二、教学目标分析。 三、教学重点、难点。 四、学情与教学方法分析。 五、学法分析。 六、教学过程 七、板书设计。 八、总结反思。
一、教材分析
1.配方法:是选自人民教育出版社义务教育课程标
准九年级上册第22章一元二次方程第二节课的内
容。在此之前,学生掌握了一元二次方程的概念,
及其一些简单特征,并且会用直接开平方法解形
七、板书设计
情境创设 总结归纳 例题讲解 回顾复习。配方法基 作业布置
本思想以 及求解一 元二次方 程的步骤。
八、总结反思
❖ 教师引导学生进行反思、归纳配方法解一元 二次方程的基本思路、步骤及注意事项。巩 固对课堂知识的理解和掌握,同时进一步体 会解一元二次方程时类比、转化及降次的基 本数学思想。
两边同时加上1: x2 2x 1 4
用配方法求解一元二次方程(第1课时)北师大版九年级数学上册教学详案
第二章 一元二次方程2 用配方法求解一元二次方程第1课时 用配方法求解简单的一元二次方程教学目标1.根据平方根的意义解形如x 2=n (n ≥0)的方程.2.理解配方法,会用配方法求解二次项系数为1的一元二次方程.3.把一元二次方程通过配方转化为(x+m )2=n (n ≥0)的形式,体会转化的数学思想.教学重难点重点:利用配方法解一元二次方程.难点:把一元二次方程通过配方转化为(x +m )2=n (n ≥0)的形式.教学过程导入新课试一试:解下列方程,并说明你所用的方法,与同伴交流.(1)x 2=4; (2) x 2=0; (3) x 2+1=0.解:根据平方根的意义,得(1)x 1=2,x 2=-2 ;(2)x 1=x 2=0 ;(3)x 2=-1,因为负数没有平方根,所以原方程无解.探究新知思考:如果我们把x 2=4,x 2=0,x 2+1=0变形为x 2=p ,各方程的解会是什么情形?老师总结:一般地,对于方程x 2=p :(1)当p >0 时,根据平方根的意义,方程x 2=p 有两个不相等的实数根x 1=−√p ,x 2=√p ;(2)当p =0 时,根据平方根的意义,方程x 2=p 有两个相等的实数根x 1=x 2=0; (3)当p <0 时,因为对任何实数x ,都有x 2≥0,所以方程x 2=p 无实数根. 例1:利用直接开平方法解下列方程: (1)x 2=25; (2) x 2-900=0; (3)(x +2)2=7; (4)2(1−3x)2-18=0. 解:(1) x 2=25 直接开平方,得x =±5,即x 1=5,x 2=-5. (2)x 2-900=0,移项,得x 2=900,直接开平方,得x =±30,即x 1=30,x 2=-30.(3)(x +2)2=7,直接开平方,得x +2=±√7,即x 1=-2+√7,x 2=-2-√7. (4)2(1−3x)2-18=0,移项,得2(1−3x)2=18,则(1−3x)2=9,直接开平方,得1-3x =±3, 即1-3x =3或1-3x = -3,解得x 1=−23,x 2=43. 注意:(1)采用直接开平方法解一元二次方程的理论依据是平方根的意义,直接开平方法只适用于能转化为x 2=p 或(mx +n )2= p (p ≥0)的形式的方程,可得方程的根为x =±√p 或mx +n =±√p .(2)利用直接开平方法解一元二次方程时,只有当p 为非负常数时,方程才有解,并且要注意开方的结果有“正”“负”两种情况.做一做:填上适当的数,使下列等式成立.(1)x 2+12x +36=(x +6)2+6)2= x 2+12x +36; (2)x 2―4x +4=(x ―2)2 x ―2)2= x 2―4x +4; (3)x 2+8x +16=(x +4)2 +4)2=x 2+8x +16; (4)a 2+2ab +b 2=( a +b )2 (a +b )2= a 2+2ab +b 2;教学反思(5)a 2-2ab +b 2=( a -b )2-b )2= a 2-2ab +b 2.问题:上面左侧等式的左边的常数项和一次项系数有什么关系?老师总结:二次项系数为1的完全平方式:常数项等于一次项系数一半的平方. 对于形如 x 2+ax+(a 2)2的式子如何配成完全平方式?老师总结:x 2+ax +(a 2)2=(x +a 2)2.将不是平方形式的方程,通过配成完全平方式的方法得到一元二次方程的根,这种解一元二次方程的方法叫配方法. 例2:用配方法解方程:x 2+8x ―9=0. 分析:先把它变成(x +m )2=n 的形式再用直接开平方法求解. 解:移项,得x 2+8x =9.两边同时加上一次项系数8的一半的平方,得x 2+8x +42=9+42,即(x +4)2=25.两边开平方,得x +4=±5,即x +4=5或x +4=-5,所以x 1=1,x 2=−9.用配方法求解二次项系数为1的一元二次方程的步骤: (1)移 —— 移项,使方程左边为二次项和一次项,右边为常数项. (2)配 —— 配方,方程两边都加上一次项系数一半的平方,使原方程变为(x +m )2=n 的形式.(3)开 —— 如果方程的右边是非负数,即n ≥0,就可左右两边开平方得x +m =±√n ;当n <0时,原方程无解.(4)解 —— 方程的解为x =-m ±√n .即用配方法解方程的基本思路:把方程化为(x +n )2=p 的形式,将一元二次方程降次,转化为两个一元一次方程求解. 问题解决: 上节课梯子底部滑动问题:x 2+12x -15=0.(让学生仿照例2,独立解决) 解:x 2+12x -15=0,移项,得x 2+12x =15.两边同时加上一次项系数12的一半的平方,得x 2+12x +62=15+62,即(x +6)2=51.两边开平方,得x +6=±√51.所以x 1=√51―6,x 2=―√51―6(不合实际).注意:在实际问题中,要根据具体问题中的实际意义检验方程解的合理性. 课堂练习1.一元二次方程x 2-16=0的根是( ) A.x =2 B.x =4 C.x 1=2,x 2=2 D.x 1=4,x 2=-42.一元二次方程x 2-6x -6=0配方后为 ( ) A.(x -3)2=15 B.(x -3)2=3 C.(x +3)2=15 D.(x +3)2=33.用配方法解方程x 2-3x -3=0时,配方结果正确的是( ) A.(x −3)2=3 B.(x −32)2=3 C. (x −3)2=34 D.(x −32)2=2144.若一元二次方程x 2+bx +5=0配方后为(x −3)2=k ,则b ,k 的值分别教学反思为()A. 6,13B.6,4C.-6,4D.-6,135.用配方法解方程:(1)x2-2x=4; (2)x2+4x-1=0.参考答案1.D2.A3.D4.C5.解:(1)方程两边都加上1,得x2-2x+1=5,即(x-1)2=5,所以x-1=±√5,所以原方程的解是x1=1+√5,x2=1-√5.(2)移项,得x2+4x=1.配方,得x2+4x+4=1+4,即(x+2)2=5.开方,得x+2=±√5.所以x1=-2+√5,x2=-2-√5.课堂小结1.配方法:x2+ax+(a2)2=(x+a2)2.2.用配方法求解二次项系数为1的一元二次方程的步骤:布置作业课本习题2.3 知识技能 1 问题解决2,3板书设计2用配方法求解一元二次方程第1课时用配方法求解简单的一元二次方程1.配方法:x2+ax+(a2)2=(x+a2)2.2. 用配方法求解二次项系数为1的一元二次方程的步骤:.教学反思。
初中数学_用配方法解一元二次方程教学设计学情分析教材分析课后反思
《用配方法解一元二次方程》教学设计一、教学目标:1.知识与技能:(1)理解配方法的意义,会用配方法解数字系数的一元二次方程;(2)在学习的过程,体会配方法的运用,进一步发展符号感,提高代数运算能力。
2.过程与方法:通过探索配方法的过程,让学生体会转化的数学思想方法。
3.情感态度与价值观:学生在独立思考中感受探究的兴趣,并体验数学的价值,促进形成学好数学的自信心。
二、教学重、难点:教学重点:配方并运用配方法解二次项系数不为1的一元二次方程。
教学难点:发现并理解配方的方法。
三、教学准备:多媒体、PPT课件四、教学过程:(一):复习导入x2 + 6x + 8 = 0(二):新课讲授:任务一:1自主学习:观察下面两个一元二次方程,总结它们之间的联系和区别:①x2 + 6x + 8 = 0 ; ②3x2 +8x -3 = 0.联系: 区别:2 .想一想怎么来解方程? 3x 2 + 8x -3 = 0. (只写出第一步)跟练: 将下列一元二次方程转换成x 2+px+q=0的形式.(1) -5x 2-2x+4=0 (2) 0.5x 2+6x -3=0 (3)31x 2 +9x -3=0(4)6x 2-7x+1=04 解方程: 3x 2 + 8x -3 = 0.跟踪练习(独立完成)(1) 2x 2+3x -2=0 (2) 2x 2-4x+2=0 (3) x 2+2x+3=0(4) (2x -1)(x+3)=45 小组合作: (1)讨论解决解一元二次方程中遇到的问题.(2)总结出利用配方法解一般的一元二次方程的步骤.任务二: 一元二次方程的应用(数学来源于生活,又服务于生活)1.自主练习: 一个小球从地面上以15m/s 的初速度竖直向上弹出,它在空中的高度h (m)与时间 t (s)满足关系:h=15t - 5t 2. 小球何时能达到10m 高?2.小组合作:小组成员互对答案,解决疑难.(三):归纳总结:1.强调易错点:(1)二次项系数要化为1;(2)在二次项系数化为1时,常数项也要除以二次项系数;(3)配方时,两边同时加上一次项系数一半的平方.2.微视频总结.3.转化、降次的思想.(四): 当堂检测:A 组:解方程 (1)3x 2-4x+1=0 (2) 2x 2+3=7xB组:课本p61 问题解决2题.(五):作业布置:必做数学同步p63-p64 1-5题,10题. 选做p65 11题作业分为必做题和选做题,这样既保证“面向全体学生”, 又兼顾“提优”和“辅差”, 有利于全面提高作业质量, 有利于全体学生达到练习的目的。
初中数学_用配方法求解一元二次方程教学设计学情分析教材分析课后反思
《用配方法解一元二次方程》教学设计一、教材内容分析配方法是以直接开方法为基础的对一元二次方程解法的探究,是一个由特殊到一般的思考和发现过程。
首先,对继续学习后面的公式法有着指导和铺垫的作用,同时也是学习二次函数等知识的基础,所以它既是第三学段数与代数的重点内容,更是今后继续学习的重要基础。
其次,在探索配方法以及用配方法解一元二次方程的过程中所体现转化的数学思想方法,以及归纳的数学思维方法,不仅有助于学生掌握知识、技能和方法,而且体会学习数学和研究数学的一般规律,提升数学的思维能力。
二、学情分析在前几册学生已经学习了一元一次方程、二元一次方程组、可化为一元一次方程的分式方程等,初步感受了方程的模型作用,并积累了一些利用方程解决实际问题的经验,解决了一些实际问题。
但生活中有关方程的模型并不都是线性的,另一种方程——一元二次方程在现实生活中具有同意广泛的应用。
本章研究一元二次方程的有关概念、解法和应用等。
本节课是在学生已经学习了本章的第一课——认识一元二次方程的基础上进行的。
并且七年级已经学过的一元一次方程的解法、完全平方公式,八年级学习的平方根的定义都为本节课的学习打下基础。
三、教学目标确定知识与技能目标:1. 能够根据平方根的意义解形如2()(0)x m n n +=≥ 的方程。
2. 理解配方法,会用配方法解简单的数字系数的一元二次方程。
过程与方法目标:经历配方法解一元二次方程的过程,进一步体会转化的数学思想方法以及归纳的思维方法。
情感、态度与价值观目标:培养学生主动探究的精神与积极参与的意识,增强学生学好数学的自信,体会用数学解决问题的乐趣。
四、教学重点、难点确定1. 教学重点:理解配方法,会用配方法解简单的数字系数的一元二次方程。
2. 教学难点:准确地对一元二次方程进行配方,关键是掌握完全平方式的结构特征。
五、教学方法分析本节课堂教学的过程着重关注了两个方面的情况:一是关注学生对配方法的自主探究与合作交流的过程,发展学生思维能力。
九年级数学上册《用配方法求解一元二次方程》教案、教学设计
-鼓励学生在解题过程中,尝试不同的解题方法,培养创新思维和灵活运用知识的能力。
3.拓展作业:针对学有余力的学生,布置一些具有挑战性的题目,如涉及一元二次方程的根与系数关系的研究,或是一些开放性问题,激发学生的探究欲望和深入学习兴趣。
-鼓励学生提出不同的解题思路和方法,培养学生的创新思维和数学思维能力。
四、教学内容与过程
(一)导入新课
在导入新课时,我将利用学生已有的数学知识,通过以下方式激发学生的学习兴趣:
1.提问方式:复习一元二次方程的常见求解方法,如因式分解、公式法等,让学生回顾这些方法的原理和应用。
2.创设情境:以生活中的实际问题பைடு நூலகம்例,如“小明在计算一块矩形菜地的面积时,发现菜地的长度比宽度多2米,且面积是20平方米,请问他应该如何计算菜地的长度和宽度?”引导学生思考如何用已学的数学知识解决该问题。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生学习一元二次方程的积极性。
2.培养学生勇于探索、克服困难的意志品质,增强学生解决问题的自信心。
3.引导学生体会数学在解决实际问题中的应用价值,提高学生的数学素养。
4.培养学生的团队合作意识,让学生在合作中学会互相尊重、互相帮助。
本章节将通过生动的实例、丰富的教学活动,引导学生掌握配方法求解一元二次方程的知识与技能,培养学生在解决问题过程中的思维方法和情感态度,使学生在轻松愉快的氛围中学习数学,提高数学素养。
3.例题讲解:选取具有代表性的例题,逐步讲解如何运用配方法求解一元二次方程,让学生跟随解题过程,加深理解。
初中数学_《用配方法解一元二次方程》第1课时教学设计学情分析教材分析课后反思
用配方法解一元二次方程(1)___开平方法教学教案一、教学目标知识与技能目标:1、使学生知道形如x2=n (n≥0)或(x+m)2=n (n≥0)的一元二次方程可以用直接开平方法求解;2、使学生知道直接开平方法求一元二次方程的解的依据是数的开平方;3、使学生能够熟练而准确的运用直接开平方法求一元二次方程的解。
过程与方法目标:在学习与探究中使学生体会“化归”、“换元”与“分类讨论”的数学思想及运用类比进行学习的方法。
情感、态度、价值观:使学生在学习中体会愉悦与成功感,感受数学学习的价值。
重点: 使学生能够熟练而准确的运用直接开平方法求一元二次方程的解。
难点: 准确地求解二、教学方法和教学手段的选择教学方法:教师启发引导下的学生自主探究、小组合作学习以及分层教学、分层评价教学手段:计算机及计算器辅助教学三、教学过程设计:引入→复习诊断→探究新知→巩固应用→深化提高→学习小结→分享收获四、教学过程:(一)开门见山导入新课(二)复习与诊断说出下列各数的平方根.49();9 (); 5 ();253();8 (); 24 ();163 ( ) ; 1.2 ()2(三)探究新知探究(1):1、解一元二次方程x2=4引导学生类比思考,利用求平方根的方法求出此方程的解,并概括总结出开平方法.2、你能求出一元二次方程 x2-4=0 和2x2-8=0的解吗?若能请写出求解迏程,若不能说明为什么。
给学生充足时间思考,由学生讲述.体会转化思想.归纳总结:形如x2=n (n≥0)或可化为x2=n (n≥0)形式的一元二次方程可用开平方法来求解.设计意图:使学生进一步体验直接开平方法适用的一元二次方程的形式;培养学生思维的灵活性、决策能力以及善于思考、勇于质疑的精神。
说明:在探究中要给学生较充分的时间进行独立思考、小组交流,让学生的思维互相启发互相碰撞,让个人智慧与集体智慧充分交融。
在探究过程中教师应适当巡视,适时指导点播,保证各小组探究学习的有效性。
2022年数学精品初中教学设计《用配方法求解一元二次方程》特色教案
2 用配方法求解一元二次方程【知识与技能】理解配方法的意义, 会用配方法解二次项系数为1的一元二次方程.【过程与方法】通过探索配方法的过程, 让学生体会转化的数学思想方法.【情感态度】学生在独立思考和合作探究中感受成功的喜悦, 并体验数学的价值, 增强学生学习数学的兴趣.【教学重点】运用配方法解二次项系数为1的一元二次方程.【教学难点】了解并掌握用配方求解一元二次方程.一、情境导入,初步认识1.根据完全平方公式填空:〔1〕x2+6x+9=〔〕2〔2〕x2-8x+16=〔〕2〔3〕x2+10x+〔〕2=〔〕2〔4〕x2-3x+〔〕2=〔〕22.解以下方程:〔1〕〔x+3〕2=25;〔2〕12〔x-2〕2-9=0.2+6x-16=0吗?你会将它变成〔x+m〕2=n〔n为非负数〕的形式吗?试试看, 如果是方程2x2+1=3x呢?【教学说明】利用完全平方知识填空, 为后面学习打下根底.二、思考探究, 获取新知思考:怎样解方程x2+6x-16=0?x2+6x-16=0移项:x2+6x=16两边都加上9,即262⎛⎫⎪⎝⎭, 使左边配成x2+2bx+b2的形式:x2+6x+9, 右边为:16+9;写成平方形式:〔x+3〕2=25降次:x+3=±5解一次方程:x+3=5, x+3=-5,∴x1=2, x2=-8【教学说明】通过这一过程, 学生发现能用直接开平方法求解的方程都可以转化成一般形式, 一般形式的方程也能逆向转化为可以直接开平方的形式, 所以总结出解一元二次方程的根本思路是将x2+px+q=0形式转化为〔x+m〕2=n〔n≥0〕的形式.【归纳结论】通过配成完全平方式的方法得到一元二次方程的根, 这种方法称为配方法.三、运用新知, 深化理解1.解方程〔注:学生练习, 教师巡视, 适当辅导〕.〔1〕x2-10x+24=0;〔2〕(2x-1)(x+3)=5;〔3〕3x2-6x+4=0.解:〔1〕移项, 得x2-10x=-24配方, 得x2-10x+25=-24+25,由此可得(x-5)2=1,x-5=±1,∴x1=6, x2=4〔2〕整理, 得2x2+5x-8=0.移项, 得2x2+5x=8二次项系数化为1得x2+52x=4配方, 得x2+52x+〔54〕2=4+〔54〕2由此可得〔x+54〕2=8916x+54=∴x 1 x 2 〔3〕移项, 得3x 2-6x=-4二次项系数化为1, 得x 2-2x=4-3配方, 得x 2-2x+12=4-3+12 (x-1)2=1-3因为实数的平方不会是负数, 所以x 取任何实数时, (x-1)2都是非负数, 上式不成立, 即原方程无实数根.2.用配方法将以下各式化为a 〔x+h 〕2+k 的形式.〔1〕-3x 2-6x+1;〔2〕23y 2+13y-2; 〔3〕0.4x-0.8x-1.【教学说明】化二次三项式ax 2+bx+c(a ≠0)为a(x+h)2+k 形式分以下几个步骤:〔1〕提取二次项系数使括号内的二次项系数为1;〔2〕配方:在括号内加上一次项系数一半的平方, 同时减去一次项系数一半的平方;〔3〕化简、整理.此题既让学生稳固配方法, 又为后面学习二次函数打下根底.四、师生互动, 课堂小结1.本节课学习的数学知识是用配方法解一元二次方程;2.本节课学习的数学方法是:①转化思想, ②根据实际问题建立数学模型;3.用配方法求解一元二次方程的一般步骤是什么?(1)把二次项系数化为1, 方程的两边同时除以二次项系数;(2)移项, 使方程左边为二次项和一次项, 右边为常数项;(3)配方, 方程的两边都加上一次项系数一半的平方, 把方程化为(x+h)2=k 的形式;(4)用直接开平方法解变形后的方程.【教学说明】使学生在直观的根底上学习归纳, 促进学生形成科学的、系统的数学知识体系.1.布置作业:教材“〞中第1题.2.完成练习册中相应练习.在教学过程中, 由简单到复杂, 由特殊到一般的原那么, 采用了观察比照, 合作探究等不同的学习方式, 充分发挥学生的主体作用, 让学生主动探究并发现结论, 教师做学生学习的引导者、合作者、促进者, 要适时鼓励学生, 实现师生互动.同时, 我认识到教师不仅仅要教给学生知识, 更要在教学中渗透数学中的思想方法, 培养学生良好的数学素养和学习能力, 让学生学会学习.第一课时【学习目标】1、经历探索等腰三角形的性质过程, 掌握等腰三角形的轴对称性、三线合一、两底角相等等性质.2、通过小组合作探究, 发现并理解等腰三角形的性质.3、能够利用等腰三角形的性质解决相关题目.【学习重点、难点】重点:等腰三角形的性质.难点:等腰三角形的性质及探索过程【学具准备】等腰三角形的半透明纸片【学习过程】〔一〕分组合作, 实验探究现在请同学们做一张等腰三角形的半透明纸片, 每个人的等腰三角形的大小和形状可以不一样, 把纸片对折, 让两腰AB、AC重叠在一起, 折痕为AD, 如下图, 你有什么新发现?你发现了什么?尝试归纳、概括, 并与同伴交流, 结合刚刚你的发现, 思考:〔1〕等腰三角形是轴对称图形吗?.〔2〕∠BAD与∠CAD相等吗?为什么?〔3〕∠B与∠C相等吗?为什么?〔4〕折痕所在直线AD与底边BC有什么位置关系?〔5〕线段BD与线段CD的长相等吗?〔6〕折痕所在直线AD具有怎样的性质?由此, 我们可以得到等腰三角形的性质:〔1〕等腰三角形是轴对称图形, 其对称轴是〔2〕等腰三角形的____________、___________、_________互相重合〔三线合一〕〔3〕等腰三角形两个_________相等. 〔即等边对等角〕〔二〕知识应用〔1〕在△ABC中, AB=AC, D在BC上,如果AD⊥BC, 那么∠BAD=∠, BD=如果∠BAD=∠CAD, 那么AD⊥, BD=如果BD=CD, 那么∠BAD=∠, AD⊥〔2〕一个等腰三角形一腰上的高与另一腰的夹角是40°, 求顶角的度数.〔三〕例题探究如下图, 屋椽AB和AC的长相等, ∠A=120度, 求∠B的度数.自主解决:h a 〔四〕分组合作, 实验探究根据等腰三角形的性质作图:底边及底边上的高作等腰三角形.:底边a 、及底边上的高h. 〔画出两条线段a 、h 〕求作:△ABC, 使得一底边为a 、底边上的高为h.小组交流:问题1:要完成这个作图, 先作出 ,再 , 最后 . 问题2:为什么这样画出的三角形是等腰三角形? 请你写出作法, 并独立完成作图.〔五〕反思提高通过这节课的学习, 你有哪些收获?〔六〕课堂测试1、假设等腰三角形的顶角为80°, 那么它的底角度数为〔 〕A .80°B .50°C .40°D .20°2、一个等腰三角形两边的长分别为4和9, 那么这个三角形的周长是〔 〕A .13B .17C .22D .17或223、 如图, 在△ABC 中, AB=AC, ∠A=40°, BD 为∠ABC 的平分线, 那么∠BDC=4、 如下图, 等腰三角形ABC, AB 边的垂直平分线交AC 于D, AB=AC=8, BC=6, 求△BDC 周长.参考答案:1、B2、C3、75°4、解:由等腰三角形的性质及题意得△BDC 周长=BC+CD+BD= BC+CD+AD= BC+AC=14。
《用配方法解一元二次方程》教案
《用配方法解一元二次方程》教案一、教学目标本节课的教学目标是让学生掌握用配方法解一元二次方程的基本思路和步骤,培养学生的逻辑思维能力和数学运算能力。
通过本节课的学习,学生应能够:培养学生的数学兴趣和自信心,提高学生的数学素养,让学生认识到数学在解决实际问题中的重要性。
学生还应能够应用所学知识去解决一些实际问题,如求解二次函数的零点等,从而加深对配方法解一元二次方程的理解和掌握。
通过本节课的教学,旨在为学生打下坚实的数学基础,为其后续学习和发展奠定良好的基础。
1. 知识与技能:使学生掌握配方法解一元二次方程的基本原理和方法使学生掌握配方法解一元二次方程的基本原理和方法。
这是学生掌握代数知识的重要组成部分,并且对学生的数学思维和解题能力有重要意义。
理解配方法的本质,即利用完全平方公式将一元二次方程转化为一个容易解决的形式。
学生能够掌握配方法的基本步骤,包括移项、配方等关键操作。
我们需要理解一元二次方程的基本形式以及解的性质。
在此基础上,引入配方法的概念和原理。
通过具体的例子,展示如何将一元二次方程通过配方转化为完全平方的形式,从而方便求解。
这是本节课的核心内容,也是学生需要掌握的重点技能。
我们将详细介绍每一步的具体操作方法和注意事项。
在这个过程中,要注意引导学生理解每一步操作的数学原理,以及为什么要这么做。
也要强调操作的规范性,以确保解题的准确性。
通过讲解与示范相结合的方式,使学生在理解和掌握理论知识的通过具体的例子来实际操作和练习。
教师需要在讲解过程中及时纠正学生的错误,帮助学生理解和掌握配方法解一元二次方程的基本原理和方法。
鼓励学生主动提问,积极参与课堂讨论,以提高学生的学习兴趣和主动性。
在教学过程中,通过观察学生的反应和操作情况,了解学生对配方法解一元二次方程的理解和掌握情况。
通过布置作业和进行课堂测试等方式,评估学生对配方法的掌握程度和应用能力。
根据评估结果,及时调整教学策略和方法,以更好地帮助学生理解和掌握配方法解一元二次方程的原理和方法。
最新北师大版九年级数学上册2.2_用配方法求解一元二次方程教案(教学设计)
2.2 用配方法求解一元二次方程第1课时用配方法求解二次项系数为1的一元二次方程1.能根据平方根的意义解形如(x+m)2=n(n≥0)的方程.2.理解配方法,会用配方法求解二次项系数为1的一元二次方程.(重点)3.会用转化的数学思想解决有关问题.(难点)阅读教材P36~37,完成下列问题:(一)知识探究1.解一元二次方程的思路是将方程转化为(x+m)2=n的形式,它的一边是一个________,另一边是一个________,当n________时,两边同时开平方,转化为一元一次方程,便可得到方程的根是x1=________,x2=________.2.通过配成____________的方法得到了一元二次方程的根,这种解一元二次方程的方法称为配方法.3.用配方法求解二次项系数为1的一元二次方程的步骤:(1)移——移项,使方程左边为二次项和一次项,右边为________;(2)配——________,方程两边都加上________________的平方,使原方程变为(x+m)2=n的形式;(3)开——如果方程的右边是非负数,即n≥0,就可左右两边开平方得________;(4)解——方程的解为x=________.(二)自学反馈1.填上适当的数,使下列等式成立:(1)x2+12x+________=(x+6)2;(2)x2-4x+________=(x-________)2;(3)x2+8x+________=(x+________)2.2.(1)若x2=4,则x=________.(2)若(x+1)2=4,则x=________.(3)若x2+2x+1=4,则x=________.(4)若x2+2x=3,则x=________.3.解方程:x2-36x+70=0.活动1 小组讨论例1解下列方程:(1)x2=5; (2)2x2+3=5;(3)x2+2x+1=5; (4)(x+6)2+72=102.解:(1)方程两边同时开平方,得x1=5,x2=- 5.(2)移项,得2x2=2,即x2=1.方程两边同时开平方,得x1=1,x2=-1.(3)配方,得(x+1)2=5.方程两边同时开平方,得x+1=± 5.∴x1=-1+5,x2=-1- 5.(4)移项,得(x +6)2=102-72,即(x +6)2=51.方程两边同时开平方,得x +6=±51.∴x 1=-6+51,x 2=-6-51.例2 解方程:x 2+8x -9=0.解:可以把常数项移到方程的右边,得x 2+8x =9.两边都加上42(一次项系数8的一半的平方),得x 2+8x +42=9+42,即(x +4)2=25.两边开平方,得x +4=±5,即x +4=5,或x +4=-5.所以x 1=1,x 2=-9.活动2 跟踪训练1.用配方法解方程x 2-2x -1=0时,配方后得到的方程为( )A .(x +1)2=0B .(x -1)2=0C .(x +1)2=2D .(x -1)2=22.填空:(1)x 2+10x +________=(x +________)2;(2)x 2-12x +________=(x -________)2;(3)x 2+5x +________=(x +________)2;(4)x 2-23x +________=(x -________)2. 3.用直接开平方法解下列方程:(1)4x 2=81; (2)36x 2-1=0;(3)(x +5)2=25; (4)x 2+2x +1=4.4.用配方法解下列关于x 的方程:(1)x 2+2x -35=0; (2)x 2-8x +7=0;(3)x 2+4x +1=0; (4)x 2+6x +5=0.活动3 课堂小结1.用直接开平方法解形如(x +m)2=n(n ≥0)的方程可以达到降次转化的目的.2.用配方法解二次项系数为1的一元二次方程的步骤.3.用配方法解二次项系数为1的一元二次方程的注意事项.【预习导学】(一)知识探究1.完全平方式 常数 ≥0 -m +n -m -n 2.完全平方式 3.(1)常数项 (2)配方 一次项系数一半 (3)x +m =±n (4)-m ±n(二)自学反馈1.(1)36 (2)4 2 (3)16 42.(1)2,-2 (2)1,-3 (3)1,-3 (4)1,-33.可以把常数项移到方程的右边,得x 2-36x =-70.两边都加上(-18)2(一次项系数-36的一半的平方),得x 2-36x +(-18)2=-70+(-18)2,即(x -18)2=254.两边开平方,得x -18=±254,即x -18=254,或x -18=-254.所以x 1=18+254,x 2=18-254.【合作探究】活动2 跟踪训练1.D 2.(1)25 5 (2)36 6 (3)254 52 (4)19 133.(1)x 1=92,x 2=-92.(2)x 1=16,x 2=-16.(3)x 1=0,x 2=-10.(4)x 1=1,x 2=-3. 4.(1)x 1=5,x 2=-7.(2)x 1=1,x 2=7.(3)x 1=-2+3,x 2=-2- 3.(4)x 1=-1,x 2=-5.第2课时 用配方法求解二次项系数不为1的一元二次方程1.会用配方法求解二次项系数不为1的一元二次方程.(重点)2.会用转化的数学思想解决有关问题.(难点)阅读教材P38~39,完成下列问题:(一)知识探究1.用配方法求解二次项系数不为1的一元二次方程的步骤:(1)化——化二次项系数为________;(2)配——________,使原方程变为(x +m)2-n =0的形式;(3)移——移项,使方程变为(x +m)2=n 的形式;(4)开——如果n ≥0,就可左右两边开平方得________;(5)解——方程的解为x =________.(二)自学反馈1.某学生解方程3x 2-x -2=0的步骤如下:解:3x 2-x -2=0→x 2-13x -23=0,①→x 2-13x =23,②→(x -23)2=23+49,③→x -34=±103,④→x 1=2+103,x 2=2-103,上述解题过程中,最先发生错误的是( ) A .第①步 B .第②步C .第③步D .第④步2.解方程:2x 2+5x +3=0.活动1 小组讨论例 解方程:3x 2+8x -3=0.解:两边同除以3,得x 2+83x -1=0. 配方,得x 2+83x +(43)2-(43)2-1=0,即 (x +43)2-259=0. 移项,得(x +43)2=259. 两边开平方,得x +43=±53,即 x +43=53,或x +43=-53. 所以x 1=13,x 2=-3. 活动2 跟踪训练1.用配方法解下列方程时,配方有错误的是( )A .x 2-4x -1=0可化为(x -2)2=5B .x 2+6x +8=0可化为(x +3)2=1C .2x 2-7x -6=0可化为(x -74)2=9716D .9x 2+4x +2=0可化为(3x +2)2=22.将方程2x 2-4x -6=0化为a(x +m)2=k 的形式为____________.3.用配方法解方程:2x 2-4x -1=0.①方程两边同时除以2,得________;②移项,得________;③配方,得________;④方程两边开方,得________;⑤x 1=________,x 2=________.4.解下列方程:(1)3x 2+6x -5=0;(2)9y 2-18y -4=0.活动3 课堂小结1.用配方法解二次项系数不为1的一元二次方程的步骤.2.用配方法解二次项系数不为1的一元二次方程的注意事项.【预习导学】(一)知识探究1.(1)1 (2)配方 (4)x +m =±n (5)-m ±n(二)自学反馈1.B 2.两边同除以2,得x 2+52x +32=0.配方,得x 2+52x +(54)2-(54)2+32=0,即(x +54)2-116=0.移项,得(x +54)2=116.两边开平方,得x +54=±14,即x +54=14或x +54=-14.所以x 1=-1,x 2=-32. 【合作探究】活动2 跟踪训练1.D 2.2(x -1)2=8 3.①x 2-2x -12=0 ②x 2-2x =12 ③(x -1)2=32 ④x -1=62或x -1=-62 ⑤1+621-62 4.(1)x 1=263-1,x 2=-263-1.(2)y 1=1+133,y 2=1-133.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 一元二次方程2.用配方法求解一元二次方程(一)吉安县横江中学 文培礼一、学生知识状况分析学生的知识技能基础:学生在初二上学期已经学习过开平方,知道一个正数有两个平方根,会利用开方求一个正数的两个平方根,并且也学习了完全平方公式。
在本章前面几节课中,又学习了一元二次方程的概念,并经历了用估算法求一元二次方程的根的过程,初步理解了一元二次方程解的意义;学生活动经验基础:在相关知识的学习过程中,学生已经经历了用计算器估算一元二次方程解的过程,解决了一些简单的现实问题,感受到解一元二次方程的必要性和作用,基于学生的学习心理规律,在学习了估算法求解一元二次方程的基础上,学生自然会产生用简单方法求其解的欲望;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
二、教学任务分析教科书基于学生用估算的方法求解一元二次方程的基础之上,提出了本课的具体学习任务:用配方法解二次项系数为1的一元二次方程。
但这仅仅是这堂课具体的教学目标,或者说是一个近期目标。
而数学教学的远期目标,应该与具体的课堂教学任务产生实质性联系。
本课《用配方法求解一元二次方程》内容从属于“方程与不等式”这一数学学习领域,因而务必服务于方程教学的远期目标:“让学生经历由具体问题抽象出方程的过程,体会方程是刻画现实世界中数量关系的一个有效模型,并在解一元二次方程的过程中体会转化的数学思想”,同时也应力图在学习中逐步达成学生的有关情感态度目标。
为此,本节课的教学目标是:1、会用开方法解形如n m x =+2)()0(≥n 的方程,理解配方法,会用配方法解二次项系数为1的一元二次方程;2、经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效模型,增强学生的数学应用意识和能力;3、体会转化的数学思想方法;4、能根据具体问题中的实际意义检验结果的合理性。
三、教学过程分析本节课设计了五个教学环节:第一环节:复习回顾;第二环节:自主探究;第三环节:讲授新课;第四环节:练习提高;第五环节:课堂小结;第六环节:布置作业。
第一环节:复习回顾活动内容:1、如果一个数的平方等于4,则这个数是 ,若一个数的平方等于7,则这个数是 。
一个正数有几个平方根,它们具有怎样的关系?2、用字母表示因式分解的完全平方公式。
活动目的:通过前两个问题,引导学生复习开平方和完全平方公式,为学生后面配方法的学习作好铺垫。
实际效果:第1和第2问选两三个学生口答,由于问题较简单,学生很快回答出来。
第二环节:自主探究(1)你能解哪些一元二次方程?(2)你会解下列一元二次方程吗?你是怎么做的?52=x ; 5322=+x ; 5122=++x x ; 222107)6(=++x 。
(3)上节课,我们研究梯子底端滑动的距离)(m x 满足方程015122=-+x x ,你能仿照上面几个方程的解题过程,求出x 的精确解吗?你认为用这种方法解这个方程的困难在哪里?(合作交流)活动目的:利用实际问题,让学生初步体会开方法在解一元二次方程中的应用,为后面学习配方法作好铺垫;培养学生善于观察分析、乐于探索研究的学习品质及与他人合作交流的意识。
实际效果:在复习了开方的基础上,学生很快口答出了第1问,为解决第二问做好了准备。
第2问让学生合作解决,学生在交流如何求原来正方形的边长时,产生了不同的方法,有的学生直接开方先求出了新正方形的边,再减增加的边长,求出原来的正方形的边长;有的同学用了方程,设原正方形的边长为xcm ,根据题意列出了一元二次方程48)3(;64)3(22=+=+x x 然后两边开方,根据实际情况求出了原来正方形的边长,这样,再一次经历了用一元二次方程解决实际问题的过程,并初步了解了开方法在一元二次方程中的简单应用。
在第2问的基础上,学生很快解决了第3问。
但学生在解决第4问时遇到了困难,他们发现等号的左端不是完全平方式,不能直接化成n m x =+2)( )0(≥n 的形式,因此大部分同学认为这个方程不能用开方法解,那么如何解决这样的方程问题呢?这就是我们本节课要来研究的问题(自然引出课题),为后面探索配方法埋好了伏笔。
第三环节:讲授新课活动内容1:做一做:(填空配成完全平方式,体会如何配方)填上适当的数,使下列等式成立。
(选4个学生口答)22)6(_____12+=++x x x 22)3(____6-=+-x x x22___)(____8+=++x x x 22___)(____4-=+-x x x问题:上面等式的左边常数项和一次项系数有什么关系?对于形如ax x +2的式子如何配成完全平方式?(小组合作交流)活动目的:配方法的关键是正确配方,而要正确配方就必须熟悉完全平方式的特征,在此通过几个填空题,使学生能够用语言叙述并充分理解左边填的是“一次项系数一半的平方”,右边填的是“一次项系数的一半”,进一步复习巩固完全平方式中常数项与一次项系数的关系,为后面学习掌握配方法解一元二次方程做好充分的准备。
实际效果:由于在复习回顾时已经复习过完全平方式,所以大部分学生很快解决四个小填空题。
通过小组的合作交流,学生发现要把形如ax x +2的式子如何配成完全平方式,只要加上一次项系数一半的平方即加上2)2(a 即可。
而且讲解中小组之间互相补充、互相竞争,气氛热烈,使如何配成完全平方式的方法更加透彻。
事实上,通过对配方的感知的过程,学生都能用自己的语言归纳总结出配成完全平方式的方法,这就为下一环节“用配方法解一元二次方程”打好基础。
由此也反映出学生善于观察分析的良好品质,而这种品质是在学生自觉行为中得到培养的,体现了学生良好的情感、态度、价值观。
活动内容2:解决例题(1)解方程:x 2+8x-9=0.(师生共同解决)解:可以把常数项移到方程的右边,得x 2+8x =9两边都加上(一次项系数8的一半的平方),得x 2+8x +42=9+42.(x+4)2=25开平方,得 x+4=±5,即 x+4=5,或x+4=-5.所以 x1=1, x2=-9.(2)解决梯子底部滑动问题:015122=-+x x (仿照例1,学生独立解决) 解:移项得 x 2+12x=15,两边同时加上62得,x 2+12x+62=15+36,即(x+6)2=51两边开平方,得x+6=±51 所以:6511-=x ,6512--=x ,但因为x 表示梯子底部滑动的距离所以6512--=x 不合题意舍去。
答:梯子底部滑动了)651(-米。
活动内容3:及时小结、整理思路用这种方法解一元二次方程的思路是什么?其关键又是什么?(小组合作交流)活动目的:通过对例1和例2的讲解,规范配方法解一元二次方程的过程,让学生充分理解掌握用配方法解一元二次方程的基本思路及关键是将方程转化成)0()(2≥=+n n m x 形式,同时通过例2提醒学生注意:有的方程虽然有两个不同的解,但在处理实际问题时要根据实际意义检验结果的合理性,对结果进行取舍。
由于此问题在情境引入时出现过,因此也达到前后呼应的目的。
最后由问题“用这种方法解一元二次方程的思路是什么?”引出配方法的定义。
实际效果:学生经过前一环节对配方法的特点有了初步的认识,通过两个例题的处理,进一步完善对配方法基本思路的把握,是对配方法的学习由探求迈向实际应用的第一步。
最后利用两个问题,通过小组的合作交流得出配方法的基本思路和解决问题的关键,结论的得出来源于学生在实例分析中的亲身感受,体现学生学习的主动性。
讨论,学生发现这三种方法都正确,并且指出第一种方法可以利用平移水渠,把分割成的四部分拼在一起,构成了一个较大的矩形(如下图),然后再利用矩形的面积公式列出方程,此种方法在解决此类问题时最简单。
这样通过学生之间的争论、辩论提高了课堂效率,激发了学生学习数学的热情,达到了资源共享。
第四环节:练习与提高活动内容:解下列方程x x x x x x x x x 822)4(;13)3(;814)2(;72510)1(2222=++=+=-=+- 活动目的:对本节知识进行巩固练习。
实际效果:此处留给学生充分的时间与空间进行独立练习,通过练习,学生基本都能用配方法解解二次项系数为1、一次项系数为偶数的一元二次方程,取得了较好的教学效果,加深了学生对“用配方法解简单一元二次方程”的理解。
第五环节:课堂小结活动内容:师生互相交流、总结配方法解一元二次方程的基本思路和关键,以及在应用配方法时应注意的问题。
活动目的:鼓励学生结合本节课的学习,谈自己的收获与感想(学生畅所欲言,教师给予鼓励)。
实际效果:学生畅所欲言谈自己的切身感受与实际收获,掌握了配方法的基本思路和过程。
第六环节:布置作业课本39页习题2.3 1题、2、3题四、教学反思1、创造性地使用教材教材只是为教师提供最基本的教学素材,教师完全可以根据学生的实际情况进行适当调整。
学生在初一、初二已经学过完全平方公式和如何对一个正数进行开方运算,而且普遍掌握较好,所以本节课从这两个方面入手,利用几个简单的实际问题逐步引入配方法。
教学中将难点放在探索如何配方上,重点放在配方法的应用上。
本节课老师安排了三个例题,通过前两个例题规范用配方法解一元二次方程的过程,帮助学生充分掌握用配方法解一元二次方程的技巧,同时本节课创造性地使用教材,把配方法(3)中的一个是设计方案问题改编成一个实际应用问题,让学生体会到了方程在实际问题中的应用,感受到了数学的实际价值。
培养了学生分析问题,解决问题的能力。
2、相信学生并为学生提供充分展示自己的机会课堂上要把激发学生学习热情和获得学习能力放在教学首位,通过运用各种启发、激励的语言,以及组织小组合作学习,帮助学生形成积极主动的求知态度。
本节课多次组织学生合作交流,通过小组合作,为学生提供展示自己聪明才智的机会,并且在此过程中教师发现了学生在分析问题和解决问题时出现的独到见解,以及思维的误区,这样使得老师可以更好地指导今后的教学。
3、注意改进的方面在小组讨论之前,应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。
教师应对小组讨论给予适当的指导,包括知识的启发引导、学生交流合作中注意的问题及对困难学生的帮助等,使小组合作学习更具实效性。