高三一轮复习课件绝对值不等式的解法(共16张PPT)
合集下载
不等式和绝对值不等式 复习课件 PPT
二 分类讨论的思想方法 【例 2】 函数 f(x)的定义域为[0,1],且 f(0)=f(1),当 x1、x2 ∈[0,1],x1≠x2 时都有|f(x2)-f(x1)|<|x2-x1|,求证:|f(x2)-f(x1)|<12.
【证明】 不妨设 0≤x1<x2≤1,以下分两种情形讨论. ①若 x2-x1≤12,则|f(x2)-f(x1)|<|x2-x1|≤12, ∴|f(x2)-f(x1)|<12. ②若 x2-x1>12,∵f(0)=f(1), ∴|f(x2)-f(x1)|=|f(x2)-f(1)+f(0)-f(x1)|
(3)各种类型绝对值不等式的解法. ①|x|<a(a>0)⇔-a<x<a. ②|x|>a(a>0)⇔x>a 或 x<-a. ③|ax+b|≤c(c>0)⇔-c≤ax+b≤c. ④|ax+b|≥c(c>0)⇔ax+b≥c 或 ax+b≤-c. ⑤|x-a|+|x-b|≥c 和|x-a|+|x-b|≤c 有三种方法选择:
熟悉以上三个基本不等式及它的变形应用,如 a+b≥2 ab, abc≤a+3b+c3.在应用等号求最值时,要满足“一正、二定、三相 等”的条件,否则等号不一定成立.
还有由基本不等式推出的常用不等式: a2+b2≥2|ab|≥2ab;(a+b)2≥4ab; a2+b2≥12(a+b)2;a2+2 b2≥a+2 b2; ba+ab≥2(ab>0);ba+ab≤-2(ab<0).
【解】 (1)∵a=1,∴lg(|x+5|+|x-5|)<1=lg10.∴|x+5|+|x -5|<10.
由实数绝对值的几何意义知,不等式的解就是数轴上表示到- 5 与 5 两点距离之和小于 10 个单位的点的集合.如图所示.
高三数学一轮复习 第14篇 第1节 含绝对值的不等式及其解法课件 理
第十四篇 不等式选讲(选修4-5) 第1节 含绝对值的不等式及其解法
精选ppt
1
最新考纲 1.理解绝对值的几何意义,并能利用含 绝对值不等式的几何意义证明以下不等 式:①|a+b|≤|a|+|b|;②|a-b|≤ |a-c|+|c-b|.
2.会利用绝对值的几何 意义求解以下类型的不 等式: |ax+b|≤c;|ax+b|≥ c;|x-a|+|x-b|≥c.
精选ppt
7
基础自测
1.|2x-1|>3的解集为( B )
(A)(-∞,-2)∪(1,+∞)
(B)(-∞,-1)∪(2,+∞)
(C)(-2,1)
(D)(-1,2)
解析:由|2x-1|>3得2x-1<-3或2x-1>3,
解得x<-1或x>2.
故选B.
精选ppt
8
2.不等式1<|x+1|<3的解集为( D ) (A)(0,2) (B)(-2,0)∪(2,4) (C)(-4,0) (D)(-4,-2)∪(0,2) 解析:原不等式等价于1<x+1<3或-3<x+1<-1, 解之得0<x<2或-4<x<-2, 故应选D.
(3)c=0,则|ax+b|≤c 可转化为 ax+b=0,然后根据 a,b 的取值求解即 可;|ax+b|≥c 的解集为 R.
精选ppt
10
4.(2014高考广东卷)不等式|x-1|+|x+2|≥5的解集为
.
解析:本题考查绝对值不等式的解法.|x-1|+|x+2|≥5的几何意义是数
精选ppt
1
最新考纲 1.理解绝对值的几何意义,并能利用含 绝对值不等式的几何意义证明以下不等 式:①|a+b|≤|a|+|b|;②|a-b|≤ |a-c|+|c-b|.
2.会利用绝对值的几何 意义求解以下类型的不 等式: |ax+b|≤c;|ax+b|≥ c;|x-a|+|x-b|≥c.
精选ppt
7
基础自测
1.|2x-1|>3的解集为( B )
(A)(-∞,-2)∪(1,+∞)
(B)(-∞,-1)∪(2,+∞)
(C)(-2,1)
(D)(-1,2)
解析:由|2x-1|>3得2x-1<-3或2x-1>3,
解得x<-1或x>2.
故选B.
精选ppt
8
2.不等式1<|x+1|<3的解集为( D ) (A)(0,2) (B)(-2,0)∪(2,4) (C)(-4,0) (D)(-4,-2)∪(0,2) 解析:原不等式等价于1<x+1<3或-3<x+1<-1, 解之得0<x<2或-4<x<-2, 故应选D.
(3)c=0,则|ax+b|≤c 可转化为 ax+b=0,然后根据 a,b 的取值求解即 可;|ax+b|≥c 的解集为 R.
精选ppt
10
4.(2014高考广东卷)不等式|x-1|+|x+2|≥5的解集为
.
解析:本题考查绝对值不等式的解法.|x-1|+|x+2|≥5的几何意义是数
高考一轮复习理科数学课件绝对值不等式的解法及其应用
知识点梳理和归纳总结
01
绝对值不等式的定义 和性质
明确绝对值不等式的概念,掌握其基 本性质,如正数的绝对值是其本身, 负数的绝对值是它的相反数,0的绝 对值是0。
02
绝对值不等式的解法
熟练掌握绝对值不等式的解法,包括 分段讨论法、平方法、几何意义法等 ,能够根据不同的题型选择合适的解 法。
03
绝对值不等式的应用
了解绝对值不等式在解决实际问题中 的应用,如求解最值问题、证明不等 式等。
针对性地进行专项训练和模拟考试
专项训练
针对绝对值不等式的各类题型进行专 项训练,如含参绝对值不等式、绝对 值三角不等式等,提高解题速度和准 确率。
模拟考试
定期进行模拟考试,模拟真实考试环 境,检验自己的备考效果,查漏补缺 。
其他相关定理和性质介绍
绝对值的非负性
对于任意实数x,都有|x|≥0,且 |x|=0当且仅当x=0。
绝对值的单调性
对于任意实数x、y,若x≤y,则 |x|≤|y|。但反之不成立,即若|x|≤|y|
,不能推出x≤y。
绝对值的几何意义
在数轴上,一个数到原点的距离叫 做该数的绝对值。因此,绝对值与 距离、长度等几何概念密切相关。
绝对值不等式分类
03
根据不等号方向分类
可分为严格不等式(如$|x|<a$)和非严 格不等式(如$|x|leq a$)。
根据涉及绝对值个数分类
可分为单一绝对值不等式(如$|x-1|<2$ )和多个绝对值不等式(如$|x1|+|x+2|geq 3$)。
根据解法不同分类
可分为可直接去绝对值符号求解的不等式 和需要讨论绝对值内部表达式正负情况求 解的不等式。
绝对值不等式PPT课件
x x
a, a
3x
0
或
x a
a, x
3x
0,
即
x x
aa, 或
4
x x
a, a
2
.
结合a>0,解得x≤-
a 2
,即不等式f(x)≤0的解集为
x
|
x
a 2
.
∵不等式f(x)≤0的解集为{x|x≤-1},
∴- a =-1,故a=2.
2
考点二 利用绝对值不等式求参数
典例2 (1)对任意x,y∈R,求|x-1|+|x|+|y-1|+|y+1|的最小值. (2)对于实数x,y,若|x-1|≤1,|y-2|≤1,求|x-2y+1|的最大值.
.
答案 {x|-3<x<2}
解析
原不等式等价于
x (x
2, 1)
(x
2)
5
或
2 x 1, (x 1) (
x
2)
5
或
x x
1, 1
x
2
5,
即
x
x
23, 或 32 5
x
1,
或
x
x
1, 2,
亦即-3<x<-2或-2≤x≤1或1<x<2.
∴原不等式的解集为
(-3,-2)∪[-2,1]∪(1,2)=(-3,2).
方法技巧
1.形如|ax+b|≤c(≥c)(c>0)的三种解法 解法一:等价法 |ax+b|≤c⇔-c≤ax+b≤c. (|ax+b|≥c⇔ax+b≤-c或ax+b≥c) 解法二:分类讨论法
高中数学绝对值不等式的解法 PPT
例5、解不等式|x+1|+|x-1|≥3.
方法二:将原不等式转化为|x+1|+|x-1|-3≥0.
构造函数y=|x+1|+|x-1|-3,即
y 2x 3, x 1,
1,
1 x 1,
2x 3,
x 1.
作出函数的图象(如图).函数的零点是 3 , 3 ,
方法二:利用绝对值的定义去掉绝对值符号, 需要分类讨论
方法三:两边同时平方去掉绝对值符号
方法四:利用函数图象观察 这是解含绝对值不等式的四种常用思路
探索:不等式|x|<1的解集。 方法一:利用绝对值的几何意义观察
不等式|x|<1的解集表示到原点的距离小于1 的点的集合。
-1
0
1
所以,不等式|x|<1的解集为{x|-1<x<1}
的解.设在A点左侧有一点A1到A,B两点的距离和为3,A1对应数
轴上的 x 3. . 2
同理设B点右侧有一点B1到A,B两点的距离和为3,B1对应数轴
上的 x 3 . , 2
从数轴上可看到,
点A1的左边或点B1的右边的任何点到A,B的距离之和都大于3,
所以原不等式的解集是 (, 3] [3 ,). 22
形如|x+m|±|x+n|<(或>)a恒成立的问题
例6 (1)对任意x∈R,若|x-3|+|x+2|>a恒成立, 求实数a的取值范围.
(2)关于x的不等式a>|x-3|+|x+2|的解集非空, 求实数a的取值范围.
(3)关于x的不等式a>|x-3|+|x+2|在R上无解,求 实数a的取值范围.
【思路点拨】 对(1)(2)(3)来说,问题的关键是 如何转化,求出函数f(x)=|x-3|+|x+2|的最值, 则问题获解.
绝对值不等式的解法 PPT
5
5
2. 设不等式 x a b 的解集为 x 1 x 2 ,
则 a 与 b 的值为( D)
(A) a 1,b 3 (B) a 1,b 3(C) a1,b3 (D) a 1 ,b 3 22
课堂小结
绝对值不等式的解法: 1.公式法 |f(x)|>g(x)⇔f(x)>g(x)或f(x)<-g(x); |f(x)|<g(x)⇔-g(x)<f(x)<g(x). 2.平方法 |f(x)|>|g(x)|⇔[f(x)]2>[g(x)]2.
练习一:解下列不等式: (1)|x|>5 (2)|x-1|<5 (3)| 5x-6 | < 6–x (4)|x-1| > |x-3|
2020/7/19
练习二:
1. 不等式 |x2-5x+6|≤x2-4 的解集( A)
(A){x| x≥2} (B){x| x≤2} (C){x| x≥ 4 }(D){x| 4 x≤2}
2020/7/19
小结:不等式|x|<a和|x|>a (a>0)的解集。 ① 不等式|x|<a的解集为{x|-a<x<a}
-a
0
a
② 不等式|x|>a的解集为{x|x<-a或x>a }源自-a2020/7/19
0
a
典型例题
例3.解不等式: 2x 3 5
例4.解不等式: x2 2x x
例5.解不等式: x 9 x 1
不等式|x|<1的解集表示到原点的距离小于1 的点的集合。
-1
0
1
所以,不等式|x|<1的解集为{x|-1<x<1}
例2:求不等式|x|>1的解集。 方法: 利用绝对值的几何意义观察
高三一轮复习课件绝对值不等式的解法(共16张PPT)
x 1 1≤ x ≤1 x 1 (利用绝对值几何意义求解)
高三一轮复习 不等式选讲
或 或 , 分别解得 一般地说,解含有绝对值的不等式,关键在于设法去掉绝对值符号,把问题转化为不含绝对值的普通不等式或不等式组求解.
2x ≤ 4 2 ≤ 4 2x ≤ 4 解不等式
.
第二节 绝对值不等式的解法
含有绝对值不等式 x a 与 x a 的解集:
不等式
a0
a0
a0
x a
x a x a
x a
x x a或x a x x 0
R
高三一轮复习
典例导练 变式1.不等式 x 1 1的解集为 (0,2) . (利用绝对值几何意义求解)
x 1 1
f (x) 1
f (x) a, a 0
f (x) a, a 0 a f (x) a f (x) a, a 0 f (x) a或f (x) a
x
x
“合”:设g(x) ax, x (0,1), 当a 0时不合题意,
当a
0时,00≤≤
g(0) ≤ 2 g(1) ≤ 2
,即a
(0,
2].
高三一轮复习
课堂小结
1. f (x) g(x)和 f (x) g(x)型不等式的一般解法
f (x) (2018全国Ⅰ卷23)已知 g(x) f (x) g(x)或f (x) g(x)
(2)若x (0,1)时,不等式f (x) x成立,求a的取值范围.
2, x 1
解:(1)当a 1时,f (x) x 1 x 1,即f (x) 2x, 1≤ x ≤1,
2, x 1
Hale Waihona Puke f(x)1的解集为x
x
1 2
高三一轮复习课件绝对值不等式的解法
x
x
“合”:设g(x) ax, x (0,1), 当a 0时不合题意,
当a
0时,00≤≤
g(0) ≤ 2 g(1) ≤ 2
,即a
(0,
2].
高三一轮复习
课堂小结
1. f (x) g(x)和 f (x) g(x)型不等式的一般解法 f (x) g(x) f (x) g(x)或f (x) g(x) f (x) g(x) g(x) f (x) g(x)
变式2.不等式 2x 1 x 1 ≤ 4的解集为 [6,2] .
解析:(1)
x
1 2
或
1 2
≤
x
≤
1 2
或
x
1 2
4x ≤ 4 2 ≤ 4
4x ≤ 4
(2)
x1 2
x 2 ≤
4
或
1≤x 2 3x ≤
≤1或 4
或 1
x
x ≥1 1≥ x
1
解得x ≤ 0或x
所以原不等式的解集为( ,0].
高三一轮复习
典例导练
江西省宁都中学
变式2.解不等式 x 1 ≥ x 1 .
解析:பைடு நூலகம்(2)函数图像
(3)平方
原不等式可化为
(
x
x 1 1)2 ≥ (
0 x
1)2
或
x
(1)当a 1时,求不等式f (x) ≥ g(x)的解集; (2)若不等式f (x) ≥ g(x)的解集包含[1,1], 求a取值范围.
高三一轮复习
高三一轮复习 不等式选讲
绝对值不等式(法)课件PPT
解:原不等式 2x 3 7
2 x 3 7或2 x 3 7
x 2或x 5
原不等式的解集为{x | x 2或x 5}.
变式练习: 解不等式 | 3 2 | 1 .
x
答案: (,0) (1, )
例2.解不等式 | x 5x | 6.
实数a,b之差的绝对值 |a-b|,表示它们在数轴上 对应的A,B之间的距离.
3.绝对值的运算性质:
a a,
2
a |a| ab a b , | | b |b|
提出问题:
你能看出下面两个不等式的解集吗? ⑴ x 1 ⑵ x 1
主要方法有:
法一:利用绝对值的几何意义观察;
法二:利用绝对值的定义去掉绝对值符号,需要分类讨论;
2
2 x 5 x 6 2 解:原不等式 6 x 5x 6 2 x 5x 6
2 x x 2或x 3 5x 6 0 2 1 x 6 x 5x 6 0
1 x 2或3 x 6,
1、绝对值三角不等式
在数轴上,
a 的几何意义
表示点A到原点的距离
a b 的几何意义 表示数轴上A,B两点之间的距离 a b 的几何意义 表示数轴上A,B两点之间的距离
a
0 A a x
a b
B -b
A
a
a b
O b
B
x
探 究
设a, b为实数, 你能比较 a b 与 a b 之 间的大小关系吗?
原不等式的解集为(1, 2) (3,6).
变式练习: 解不等式 1 | 3x 4 | 6. 10 5 2 答案 : [ , ) (1, ] 3 3 3
2 x 3 7或2 x 3 7
x 2或x 5
原不等式的解集为{x | x 2或x 5}.
变式练习: 解不等式 | 3 2 | 1 .
x
答案: (,0) (1, )
例2.解不等式 | x 5x | 6.
实数a,b之差的绝对值 |a-b|,表示它们在数轴上 对应的A,B之间的距离.
3.绝对值的运算性质:
a a,
2
a |a| ab a b , | | b |b|
提出问题:
你能看出下面两个不等式的解集吗? ⑴ x 1 ⑵ x 1
主要方法有:
法一:利用绝对值的几何意义观察;
法二:利用绝对值的定义去掉绝对值符号,需要分类讨论;
2
2 x 5 x 6 2 解:原不等式 6 x 5x 6 2 x 5x 6
2 x x 2或x 3 5x 6 0 2 1 x 6 x 5x 6 0
1 x 2或3 x 6,
1、绝对值三角不等式
在数轴上,
a 的几何意义
表示点A到原点的距离
a b 的几何意义 表示数轴上A,B两点之间的距离 a b 的几何意义 表示数轴上A,B两点之间的距离
a
0 A a x
a b
B -b
A
a
a b
O b
B
x
探 究
设a, b为实数, 你能比较 a b 与 a b 之 间的大小关系吗?
原不等式的解集为(1, 2) (3,6).
变式练习: 解不等式 1 | 3x 4 | 6. 10 5 2 答案 : [ , ) (1, ] 3 3 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三一轮复习
谢 谢观 看
人生从来没有真正的绝境。无论遭受多少艰辛,无论经历多少苦难,心中都要怀着一粒信念的种子,有什么样的眼界和胸襟,就看到什么样的风景。你的心有多宽,你的舞台就有多大;你的格 局有多大,你的心就能有多宽。我很平凡,却不简单,只要我想要,就会通过自己的努力去得到。羡慕别人不如自己拥有,现在的努力奋斗成就未来的自己。人生要学会储蓄。你若耕耘,就储 存了一次丰收;你若努力,就储存了一个希望;你若微笑,就储存了一份快乐。你能支取什么,取决于你储蓄了什么。没有储存友谊,就无法支取帮助;没有储存学识,就无法支取能力;没有 储存汗水,就无法支取成长。想要取之不尽的幸福,要储蓄感恩和付出。人生之路并非只有坦途,也有不少崎岖与坎坷,甚至会有一时难以跨越的沟坎儿。在这样的紧要关头我们只有一种选择: 再向前跨出一步!尽管可能非常艰难,但请相信:只要坚持下去,你的人生会无比绚丽!弯得下腰,才抬得起头。在人生路上,不是所有的门都很宽阔,有的门需要你弯腰侧身才进得去。所以, 必要时要能够弯得下自己的腰,才可能在人生路上畅通无阻。跟着理智走,要有勇气;跟着感觉走,就要有倾其所有的决心。从不曾放弃追求,从不愿放弃自己的所有,一路走下来,路过太多的 风景,领略太多的是是非非,才渐渐明白,人活着不只为了自己,而活着,却要活出自己你不会的东西,觉得难的东西,一定不要躲。先搞明白,后精湛,你就比别人优秀了。因为大部分人都 不舍得花力气去钻研,自动淘汰,所以你执着的努力,就占了大便宜。女生年轻时的奋斗不是为了嫁个好人,而是为了让自己找一份好工作,有一个在哪里都饿不死的一技之长,有一份不错的 收入。因为:只有当你经济独立了,才能做到说走就走,才能灵魂独立,才能有资本选择自己想要伴侣和生活。成功没有快车道,幸福没有高速路,一份耕耘一份收获,所有的成功都来自不倦 的努力和奔跑,所有幸福都来自平凡的奋斗和坚持。也许你要早上七点起床,晚上十二点睡觉,日复一日,踽踽独行。但只要笃定而动情地活着,即使生不逢时,你人生最坏的结果,也只是大 器晚成。无论遇到什么困难,受到什么伤害,都不要放弃和抱怨。放弃,再也没有机会;抱怨,会让家人伤心;只要不放弃,扛下去,生活一定会给你想要的惊喜!无论遇到什么困难,受到什 么伤害,都不要放弃和抱怨。放弃,再也没有机会;抱怨,会让家人伤心;只要不放弃,扛下去,生活一定会给你想要的惊喜!行动力,是我们对平庸生活最好的回击。人与人之所以拉开距离, 就在于行动力。不行动,梦想就只是好高骛远;不执行,目标就只是海市蜃楼。想做一件事,最好的开始就是现在。每个人的心里,都藏着一个了不起的自己,只要你不颓废,不消极,一直悄 悄酝酿着乐观,培养着豁达,坚持着善良,只要在路上,就没有到达不了的远方!每个人的心里,都藏着一个了不起的自己,只要你不颓废,不消极,一直悄悄酝酿着乐观,培养着豁达,坚持 着善良,只要在路上,就没有到达不了的远方!自己丰富才能感知世界丰富,自己善良才能感知社会美好,自己坦荡才能感受生活喜悦,自己成功才能感悟生命壮观!前进的理由只要一个,后 退的理由却有一百个。每条路都是孤独的,慢慢的你会相信没有什么事不可原谅,没有什么人会永驻身旁,也许现在的你很累,未来的路还很长,不要忘了当初为何而出发,是什么让你坚持到 现在,勿忘初心。每条路都是孤独的,慢慢的你会相信没有什么事不可原谅,没有什么人会永驻身旁,也许现在的你很累,未来的路还很长,不要忘了当初为何而出发,是什么让你坚持到现在, 勿忘初心。人活一世,实属不易,做个善良的人,踏实,做个简单的人,轻松。不管以前受过什么伤害,遇到什么挫折,做人贵在善良,做事重在坚持!别人欠你的,上天会还你,善良,终有 好报;坚持,必有收获!人活一世,实属不易,做个善良的人,踏实,做个简单的人,轻松。不管以前受过什么伤害,遇到什么挫折,做人贵在善良,做事重在坚持!别人欠你的,上天会还你, 善良,终有好报;坚持,必有收获!不要凡事都依靠别人。在这个世界上,最能让你依靠的人是自己,最能拯救你的人也只能是自己。要想事情改变,首先要改变自己。只有改变自己,才会最 终改变别人。有位哲人说得好:如果你不能成为大道,那就当一条小路;如果你不能成为太阳,那就当一颗星星。生活有一百种过法,别人的故事再好,始终容不下你。活成什么样子,自己决 定。不要羡慕别人,你有更好的,只是你还不知道。水再浑浊,只要长久沉淀,依然会分外清澄;人再愚钝,只要足够努力,一样能改写命运。更何况比我差的人还没放弃,比我
解析:(1)
x
1 2
或
1 2
≤
x≤
1 2
或
x
1 2
4x ≤ 4 2 ≤ 4
4x ≤ 4
(2)
x1 2
x 2 ≤
4
或
1≤x 2 3x ≤
≤1或 4
x
x 1 2≤
4
高三一轮复习
实战演练
(2018年全国Ⅰ卷23)已知 f (x) x 1 ax 1.
(1)当a 1时,求不等式f (x) 1的解集;
(1)当a 1时,求不等式f (x) 1的解集;
(2)若x (0,1)时,不等式f (x) x成立,求a的取值范围.
(2)当x (0,1)时,x 1 x 1, f (x) x可化为 ax 1 1,
当x (0,1)时,不等式 1 ax 1 1恒成立,即0 ax 2恒成立,
“分”:0 a 2 恒成立,而x (0,1)时,2 (2,), a (0,2].
2.含两个绝对值不等式的一般解法 零点分段.
3.数学思想 由特殊到一般,数形结合,分类讨论,化归等数学思想.
高三一轮复习
课外作业
(2017全国Ⅰ卷23)已知函数 f (x) x2 ax 4, g(x) x 1 x 1.
(1)当a 1时,求不等式f (x) ≥ g(x)的解集; (2)若不等式f (x) ≥ g(x)的解集包含[1,1], 求a取值范围.
高三一轮复习
高三一轮复习 不等式选讲
第二节 绝对值不等式的解法
知识回顾
一般地说,解含有绝对值的不等式,关键在于设法去掉绝对值 符号,把问题转化为不含绝对值的普通不等式或不等式组求解. 去掉绝对值符号的常见方法有:
1.绝对值的几何意义; 2.零点分段; 3.分段函数图像; 4.平方(注意等价性). 高三一轮复习
高考回顾
(2018全国Ⅰ卷23)已知 f (x) x 1 ax 1. (1)当a 1时,求不等式f (x) 1的解集; (2)若x (0,1)时不等式f (x) x成立,求a的取值范围.
(2017全国Ⅰ卷23)已知函数 f (x) x2 ax 4, g(x) x 1 x 1. (1)当a 1时,求不等式f (x) ≥ g(x)的解集; (2)若不等式f (x) ≥ g(x)的解集包含[1,1], 求a取值范围.
原不等式可化为
(
xபைடு நூலகம்
x 1 1)2 ≥ (
0 x
1)2
或
x
1≤ xR
0
高三一轮复习
典例导练
例2.解不等式 x 1 x 1 ≤ 4. 解析:(1)几何意义
所以原不等式的解集为[2,2].
高三一轮复习
典例导练
例2.解不等式 x 1 x 1 ≤ 4.
2x, x 1
解析:(2)零点分段,因为 x 1 x 1 2, 1≤ x ≤1,所以原不等式等价于
(2)若x (0,1)时,不等式f (x) x成立,求a的取值范围.
2, x 1
解:(1)当a 1时,f (x) x 1 x 1,即f (x) 2x, 1≤ x ≤1,
2, x 1
f
(x)
1的解集为x
x
1 2
.
高三一轮复习
实战演练
(2018年全国Ⅰ卷23)已知 f (x) x 1 ax 1.
高三一轮复习
典例导练
变式2.解不等式 x 1 ≥ x 1 .
解析:(1)零点分段
原不等式可化为
1
x 1 x≥ x
或 1
x
x ≥1 1≥ x
1
解得x ≤ 0或x
所以原不等式的解集为( ,0].
高三一轮复习
典例导练
江西省宁都中学
变式2.解不等式 x 1 ≥ x 1 .
解析: (2)函数图像
(3)平方
含有绝对值不等式 x a 与 x a 的解集:
不等式
a0
a0
a0
x a
x a x a
x a
x x a或x a x x 0
R
高三一轮复习
典例导练 变式1.不等式 x 1 1的解集为 (0,2) . (利用绝对值几何意义求解)
x 1 1
f (x) 1
f (x) a, a 0
f (x) a, a 0 a f (x) a f (x) a, a 0 f (x) a或f (x) a
高三一轮复习
典例导练
变式2.解不等式 x 1 ≥ x 1 .(利用绝对值几何意义求解)
不等式
x a
x a
a0
a0
a0
x a x a x a x a x a x a
x x a或x ax x a或x a x x a或x a
化为同解 f (x) g(x) g(x) f (x) g(x) 不等式 f (x) g(x) f (x) g(x)或f (x) g(x)
xa
a x, x a x a, x ≥ a
典例导练
例1.请利用绝对值的几何意义快速解出下列不等式的解集并完成表格.
(1) x 1; (2) x 0 ; (3) x 1; (1)x 1 x 1 (2) (3)
(4) x 1; (5) x 0 ; (6) x 1. (4)x x 1或x 1 (5)x x 0 (6)R
2x, x 1
x 2
1 x≤4
或
1≤ x
2≤
≤1或 4
x 2x
1 ≤4
, 分别解得
2 ≤ x 1或 1≤ x ≤1或1 x ≤ 2,
谢 谢观 看
人生从来没有真正的绝境。无论遭受多少艰辛,无论经历多少苦难,心中都要怀着一粒信念的种子,有什么样的眼界和胸襟,就看到什么样的风景。你的心有多宽,你的舞台就有多大;你的格 局有多大,你的心就能有多宽。我很平凡,却不简单,只要我想要,就会通过自己的努力去得到。羡慕别人不如自己拥有,现在的努力奋斗成就未来的自己。人生要学会储蓄。你若耕耘,就储 存了一次丰收;你若努力,就储存了一个希望;你若微笑,就储存了一份快乐。你能支取什么,取决于你储蓄了什么。没有储存友谊,就无法支取帮助;没有储存学识,就无法支取能力;没有 储存汗水,就无法支取成长。想要取之不尽的幸福,要储蓄感恩和付出。人生之路并非只有坦途,也有不少崎岖与坎坷,甚至会有一时难以跨越的沟坎儿。在这样的紧要关头我们只有一种选择: 再向前跨出一步!尽管可能非常艰难,但请相信:只要坚持下去,你的人生会无比绚丽!弯得下腰,才抬得起头。在人生路上,不是所有的门都很宽阔,有的门需要你弯腰侧身才进得去。所以, 必要时要能够弯得下自己的腰,才可能在人生路上畅通无阻。跟着理智走,要有勇气;跟着感觉走,就要有倾其所有的决心。从不曾放弃追求,从不愿放弃自己的所有,一路走下来,路过太多的 风景,领略太多的是是非非,才渐渐明白,人活着不只为了自己,而活着,却要活出自己你不会的东西,觉得难的东西,一定不要躲。先搞明白,后精湛,你就比别人优秀了。因为大部分人都 不舍得花力气去钻研,自动淘汰,所以你执着的努力,就占了大便宜。女生年轻时的奋斗不是为了嫁个好人,而是为了让自己找一份好工作,有一个在哪里都饿不死的一技之长,有一份不错的 收入。因为:只有当你经济独立了,才能做到说走就走,才能灵魂独立,才能有资本选择自己想要伴侣和生活。成功没有快车道,幸福没有高速路,一份耕耘一份收获,所有的成功都来自不倦 的努力和奔跑,所有幸福都来自平凡的奋斗和坚持。也许你要早上七点起床,晚上十二点睡觉,日复一日,踽踽独行。但只要笃定而动情地活着,即使生不逢时,你人生最坏的结果,也只是大 器晚成。无论遇到什么困难,受到什么伤害,都不要放弃和抱怨。放弃,再也没有机会;抱怨,会让家人伤心;只要不放弃,扛下去,生活一定会给你想要的惊喜!无论遇到什么困难,受到什 么伤害,都不要放弃和抱怨。放弃,再也没有机会;抱怨,会让家人伤心;只要不放弃,扛下去,生活一定会给你想要的惊喜!行动力,是我们对平庸生活最好的回击。人与人之所以拉开距离, 就在于行动力。不行动,梦想就只是好高骛远;不执行,目标就只是海市蜃楼。想做一件事,最好的开始就是现在。每个人的心里,都藏着一个了不起的自己,只要你不颓废,不消极,一直悄 悄酝酿着乐观,培养着豁达,坚持着善良,只要在路上,就没有到达不了的远方!每个人的心里,都藏着一个了不起的自己,只要你不颓废,不消极,一直悄悄酝酿着乐观,培养着豁达,坚持 着善良,只要在路上,就没有到达不了的远方!自己丰富才能感知世界丰富,自己善良才能感知社会美好,自己坦荡才能感受生活喜悦,自己成功才能感悟生命壮观!前进的理由只要一个,后 退的理由却有一百个。每条路都是孤独的,慢慢的你会相信没有什么事不可原谅,没有什么人会永驻身旁,也许现在的你很累,未来的路还很长,不要忘了当初为何而出发,是什么让你坚持到 现在,勿忘初心。每条路都是孤独的,慢慢的你会相信没有什么事不可原谅,没有什么人会永驻身旁,也许现在的你很累,未来的路还很长,不要忘了当初为何而出发,是什么让你坚持到现在, 勿忘初心。人活一世,实属不易,做个善良的人,踏实,做个简单的人,轻松。不管以前受过什么伤害,遇到什么挫折,做人贵在善良,做事重在坚持!别人欠你的,上天会还你,善良,终有 好报;坚持,必有收获!人活一世,实属不易,做个善良的人,踏实,做个简单的人,轻松。不管以前受过什么伤害,遇到什么挫折,做人贵在善良,做事重在坚持!别人欠你的,上天会还你, 善良,终有好报;坚持,必有收获!不要凡事都依靠别人。在这个世界上,最能让你依靠的人是自己,最能拯救你的人也只能是自己。要想事情改变,首先要改变自己。只有改变自己,才会最 终改变别人。有位哲人说得好:如果你不能成为大道,那就当一条小路;如果你不能成为太阳,那就当一颗星星。生活有一百种过法,别人的故事再好,始终容不下你。活成什么样子,自己决 定。不要羡慕别人,你有更好的,只是你还不知道。水再浑浊,只要长久沉淀,依然会分外清澄;人再愚钝,只要足够努力,一样能改写命运。更何况比我差的人还没放弃,比我
解析:(1)
x
1 2
或
1 2
≤
x≤
1 2
或
x
1 2
4x ≤ 4 2 ≤ 4
4x ≤ 4
(2)
x1 2
x 2 ≤
4
或
1≤x 2 3x ≤
≤1或 4
x
x 1 2≤
4
高三一轮复习
实战演练
(2018年全国Ⅰ卷23)已知 f (x) x 1 ax 1.
(1)当a 1时,求不等式f (x) 1的解集;
(1)当a 1时,求不等式f (x) 1的解集;
(2)若x (0,1)时,不等式f (x) x成立,求a的取值范围.
(2)当x (0,1)时,x 1 x 1, f (x) x可化为 ax 1 1,
当x (0,1)时,不等式 1 ax 1 1恒成立,即0 ax 2恒成立,
“分”:0 a 2 恒成立,而x (0,1)时,2 (2,), a (0,2].
2.含两个绝对值不等式的一般解法 零点分段.
3.数学思想 由特殊到一般,数形结合,分类讨论,化归等数学思想.
高三一轮复习
课外作业
(2017全国Ⅰ卷23)已知函数 f (x) x2 ax 4, g(x) x 1 x 1.
(1)当a 1时,求不等式f (x) ≥ g(x)的解集; (2)若不等式f (x) ≥ g(x)的解集包含[1,1], 求a取值范围.
高三一轮复习
高三一轮复习 不等式选讲
第二节 绝对值不等式的解法
知识回顾
一般地说,解含有绝对值的不等式,关键在于设法去掉绝对值 符号,把问题转化为不含绝对值的普通不等式或不等式组求解. 去掉绝对值符号的常见方法有:
1.绝对值的几何意义; 2.零点分段; 3.分段函数图像; 4.平方(注意等价性). 高三一轮复习
高考回顾
(2018全国Ⅰ卷23)已知 f (x) x 1 ax 1. (1)当a 1时,求不等式f (x) 1的解集; (2)若x (0,1)时不等式f (x) x成立,求a的取值范围.
(2017全国Ⅰ卷23)已知函数 f (x) x2 ax 4, g(x) x 1 x 1. (1)当a 1时,求不等式f (x) ≥ g(x)的解集; (2)若不等式f (x) ≥ g(x)的解集包含[1,1], 求a取值范围.
原不等式可化为
(
xபைடு நூலகம்
x 1 1)2 ≥ (
0 x
1)2
或
x
1≤ xR
0
高三一轮复习
典例导练
例2.解不等式 x 1 x 1 ≤ 4. 解析:(1)几何意义
所以原不等式的解集为[2,2].
高三一轮复习
典例导练
例2.解不等式 x 1 x 1 ≤ 4.
2x, x 1
解析:(2)零点分段,因为 x 1 x 1 2, 1≤ x ≤1,所以原不等式等价于
(2)若x (0,1)时,不等式f (x) x成立,求a的取值范围.
2, x 1
解:(1)当a 1时,f (x) x 1 x 1,即f (x) 2x, 1≤ x ≤1,
2, x 1
f
(x)
1的解集为x
x
1 2
.
高三一轮复习
实战演练
(2018年全国Ⅰ卷23)已知 f (x) x 1 ax 1.
高三一轮复习
典例导练
变式2.解不等式 x 1 ≥ x 1 .
解析:(1)零点分段
原不等式可化为
1
x 1 x≥ x
或 1
x
x ≥1 1≥ x
1
解得x ≤ 0或x
所以原不等式的解集为( ,0].
高三一轮复习
典例导练
江西省宁都中学
变式2.解不等式 x 1 ≥ x 1 .
解析: (2)函数图像
(3)平方
含有绝对值不等式 x a 与 x a 的解集:
不等式
a0
a0
a0
x a
x a x a
x a
x x a或x a x x 0
R
高三一轮复习
典例导练 变式1.不等式 x 1 1的解集为 (0,2) . (利用绝对值几何意义求解)
x 1 1
f (x) 1
f (x) a, a 0
f (x) a, a 0 a f (x) a f (x) a, a 0 f (x) a或f (x) a
高三一轮复习
典例导练
变式2.解不等式 x 1 ≥ x 1 .(利用绝对值几何意义求解)
不等式
x a
x a
a0
a0
a0
x a x a x a x a x a x a
x x a或x ax x a或x a x x a或x a
化为同解 f (x) g(x) g(x) f (x) g(x) 不等式 f (x) g(x) f (x) g(x)或f (x) g(x)
xa
a x, x a x a, x ≥ a
典例导练
例1.请利用绝对值的几何意义快速解出下列不等式的解集并完成表格.
(1) x 1; (2) x 0 ; (3) x 1; (1)x 1 x 1 (2) (3)
(4) x 1; (5) x 0 ; (6) x 1. (4)x x 1或x 1 (5)x x 0 (6)R
2x, x 1
x 2
1 x≤4
或
1≤ x
2≤
≤1或 4
x 2x
1 ≤4
, 分别解得
2 ≤ x 1或 1≤ x ≤1或1 x ≤ 2,