1.1.3导数的几何意义
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f ' (1)=f ' ( x) x1 2 (1) 2 f ' (2) f ' ( x) x2 2 2 4
下面来看导数的几何意义:
如图,曲线C是函数y=f(x)
的图象,P(x0,y0)是曲线C上的
y y=f(x) Q
任意一点,Q(x0+Δx,y0+Δy)
0
例:设f ( x) x , 求f '( x), f '(1), f '(2)
2
思路:先根据导数的定义求f ' ( x), 再将自变量 的值代入求得导数值。 解:由导数的定义有
f ( x x) f ( x) ( x x)2 x 2 f ' ( x)= lim lim x0 x0 x x x(2 x x) lim 2x x0 x
1
y
M
求曲线在某点处的切线方程 的基本步骤:先利用切线斜率 的定义求出切线的斜率,然后 利用点斜式求切线方程.
j
x
-1 O
1
1 3 8 y x 上一点P ( 2, ) 练习:如图已知曲线 3 3 ,求: (1)点P处的切线的斜率; (2)点P处的切线方程.
1 1 3 3 ( x x ) x 1 3 y 3 解: ) y x , y lim (1 lim 3 x 0 x x 0 3 x y 1 y x 3 4 1 3 x 2 x 3 x ( x ) 2 ( x ) 3 lim 3 3 x 0 x 2 1 2 2 2 lim[3 x 3 xx ( x ) ] x . 1 3 x 0
y f ( x0 ) f ( x0 )( x x0 ).
无限逼近的极限思想是建立导数 概念、用导数定义求 函数的导数的 基本思想,丢掉极限思想就无法理解 导 数概念。
作业:
1.求函数y
2.
1 x
在x 1处的导数。
y=f(x) Q
割 线 T 切线
P
x
o
我们发现,当点Q沿着曲线无限接近点P即Δ x→0时,割线PQ 有一个极限位置PT.则我们把直线PT称为曲线在点P处的切线.
初中平面几何中圆的切线的定义:直线和圆有唯一公共点时, 叫做直线和圆相切。这时直线叫做圆的切线,唯一的公共点 叫做切点。
割线趋近于确定的位置的直线定义为切线. 曲线与直线相切,并不一定只有一个公共点。
为P邻近一点,PQ为C的割线, PM//x轴,QM//y轴,β为PQ的 倾斜角.
则 : MP x , MQ y , y tan . x y 请问: 是割线PQ的什么? x
O P
β
Δy M x
Δx
斜 率!
请看当点Q沿着曲线逐渐向点P接近时,割线PQ绕着 点P逐渐转动的情况. y
设切线的倾斜角为α ,那么当Δx→0时,割线PQ的斜率,称 为曲线在点P处的切线的斜率.
f ( x0 x) f ( x0 ) y lim 即: k切线 f ( x0 ) lim x 0 x x 0 x
'
这个概念:①提供了求曲线上某点切线的斜率的一种方法;② 切线斜率的本质——函数在x=x0处的导数.
导数的几何意义
先来复习导数的概念
定义:设函数y=f(x)在点x0处及其附近有定义,当 自变量x在点x0处有改变量Δ x时函数有相应的改变量 Δ y=f(x0+ Δx)- f(x0).如果当Δx0 时,Δy/Δx的极限存在, 这个极限就叫做函数f(x)在点x0处的导数(或变化率)记 f ( x0 )或y 即: , |x x 作 f ( x0 x) f ( x0 ) y f ( x0 ) lim lim . x 0 x x 0 x
3
P
wk.baidu.com
y | x 2 2 2 4.
即点P处的切线的斜率等于4.
x
-2 -1
O -1 -2
1
2
(2)在点P处的切线方程是y-8/3=4(x-2),即12x-3y-16=0.
归纳:求切线方程的步骤
(1)求出函数在点x0处的变化率 f ( x0 ) ,得到曲线 在点(x0,f(x0))的切线的斜率。 (2)根据直线方程的点斜式写出切线方程,即
例1:求曲线y=f(x)=x2+1在点P(1,2)处的切线方程. f ( x 0 x ) f ( x 0 ) 解 : k lim y x 0 Q x (1 x ) 2 1 (1 1) lim 2 x 0 x y = x +1 2x ( x ) 2 lim 2. x 0 x P 因此,切线方程为y-2=2(x-1), x 即y=2x.