函数概念与基本初等函数章节综合检测提升试卷(四)含答案人教版高中数学考点大全
高考数学一轮复习提高题专题复习函数的概念与基本初等函数多选题练习题含答案
高考数学一轮复习提高题专题复习函数的概念与基本初等函数多选题练习题含答案一、函数的概念与基本初等函数多选题1.已知函数()sin sin x xf x e e =+,以下结论正确的是( )A .()f x 是偶函数B .()f x 最小值为2C .()f x 在区间,2ππ⎛⎫-- ⎪⎝⎭上单调递减D .()()2g x f x x π=-的零点个数为5【答案】ABD 【分析】去掉绝对值,由函数的奇偶性及周期性,对函数分段研究,利用导数再得到函数的单调性,再对选项进行判断. 【详解】∵x ∈R ,()()f x f x -=,∴()f x 是偶函数,A 正确;因为()()2f x f x π+=,由函数的奇偶性与周期性,只须研究()f x 在[]0,2π上图像变化情况.()sin sin sin 2,01,2x x x e x f x e x e πππ⎧≤≤⎪=⎨+<≤⎪⎩, 当0x π≤≤,()sin 2cos xf x xe '=,则()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上单调递增,在,2ππ⎡⎤⎢⎥⎣⎦上单调递减,此时()[]2,2f x e ∈; 当2x ππ≤≤时,()()sin sin cos xx f x x ee -'=-,则()f x 在3,2x ππ⎡⎤∈⎢⎥⎣⎦上单调递增,在3,22x ππ⎡⎤∈⎢⎥⎣⎦上单调递减,此时()12,f x e e ⎡⎤∈+⎢⎥⎣⎦,故当02x π≤≤时,()min 2f x =,B 正确.因()f x 在,2x ππ⎛⎫∈ ⎪⎝⎭上单调递减,又()f x 是偶函数,故()f x 在,2ππ⎛⎫-- ⎪⎝⎭上单调递增,故C 错误. 对于D ,转化为()2f x x π=根的个数问题.因()f x 在0,2π⎛⎫ ⎪⎝⎭上单调递增,在,2ππ⎛⎫⎪⎝⎭上单调递减,在3,2ππ⎛⎫ ⎪⎝⎭上单调递增,在3,22ππ⎛⎫⎪⎝⎭上单调递减.当(),x π∈-∞时,()2f x ≥,22x π<,()2f x x π=无实根.()3,x π∈+∞时,()max 262x e f x π>>=,()2f x xπ=无实根,3,2x ππ⎡⎤∈⎢⎥⎣⎦,显然x π=为方程之根.()sin sin x xf x e e -=+,()()sin sin cos 0x x f x x e e -'=->,3123322f e e πππ⎛⎫=+>⨯=⎪⎝⎭,单独就这段图象,()302f f ππ⎛⎫'='=⎪⎝⎭,()f x 在3,2ππ⎡⎤⎢⎥⎣⎦上变化趋势为先快扣慢,故()g x 在3,2ππ⎛⎫⎪⎝⎭内有1个零点,由图像知()g x 在3,32ππ⎛⎫⎪⎝⎭内有3个零点,又5252f e π⎛⎫=> ⎪⎝⎭,结合图象,知D 正确.故选:ABD. 【点睛】方法点睛:研究函数性质往往从以下方面入手: (1)分析单调性、奇偶性、周期性以及对称性;(2)数形结合法:先对解析式变形,进而构造两个容易画出图象的函数,将两个函数的图象画在同一个平面直角坐标系中,利用数形结合的方法求解.2.设函数(){}22,,2f x min x x x =-+其中{},,min x y z 表示,,x y z 中的最小者.下列说法正确的有( ) A .函数()f x 为偶函数B .当[)1,x ∈+∞时,有()()2f x f x -≤C .当x ∈R 时,()()()ff x f x ≤D .当[]4,4x ∈-时,()()2f x f x -≥ 【答案】ABC 【分析】画出()f x 的图象然后依据图像逐个检验即可. 【详解】解:画出()f x 的图象如图所示:对A ,由图象可知:()f x 的图象关于y 轴对称,故()f x 为偶函数,故A 正确; 对B ,当12x ≤≤时,120x -≤-≤,()()()222f x f x x f x -=-≤-=; 当23x <≤时,021x <-≤,()()22f x x f x -≤-=;当34x <≤时,122x <-≤,()()()22242f x x x x f x -=--=-≤-=; 当4x ≥时,22x -≥,此时有()()2f x f x -<,故B 成立;对C ,从图象上看,当[)0,x ∈+∞时,有()f x x ≤成立,令()t f x =,则0t ≥,故()()f f x f x ⎡⎤≤⎣⎦,故C 正确;对D ,取32x =,则111224f f ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,3122f ⎛⎫= ⎪⎝⎭,()()2f x f x -<,故D 不正确. 故选:ABC . 【点睛】方法点睛:一般地,若()()(){}min ,f x S x T x =(其中{}min ,x y 表示,x y 中的较小者),则()f x 的图象是由()(),S x T x 这两个函数的图象的较低部分构成的.3.已知函数1(),f x x x =+221()g x x x=+则下列结论中正确的是( ) A .()()f x g x +是奇函数 B .()()f x g x ⋅是偶函数 C .()()f x g x +的最小值为4 D .()()f x g x ⋅的最小值为2【答案】BC 【分析】利用奇偶性的定义可得A 错B 对;利用均值不等式可得C 对;利用换元求导可得D 错. 【详解】2211()()f x g x x x x x+=+++ ()22221111()()()f x g x x x x x x x x x ∴-+-=-++-+=+++--()()()()f x g x f x g x ∴+=-+- ()()f x g x ∴+是偶函数, A 错;221(1)()x x xf x xg x ⎛⎫+⋅+ ⎪⎝⋅=⎭()()22221111()()f x x x x xg x x x x x ⎛⎫⎛⎫-+⋅-+=+⋅+ ⎪ ⎪ ⎪-⎝⎭-⎝∴-⋅-=⎭()()()()f x g x f x g x ∴-⋅-=⋅ ()()f x g x ∴⋅是偶函数,B 对;2211()()224f x g x x x x x +=+++≥+=,当且仅当1x x =和221=x x 时,等号成立,即当且仅当21x =时等号成立,C 对;221(1)()x x xf x xg x ⎛⎫+⋅+ ⎪⎝⋅=⎭令1t x x=+()2t ≥,则()23()()22f t t g t t x x ⋅-=-⋅= []232()()f x g x t '∴=-⋅,令2320t ->,得3t >或3t <- 2t ∴≥时,()()f x g x ⋅单调递增∴当2t =有最小值,最小值为4,D 错故选:BC. 【点睛】本题综合考查奇偶性、均值不等式、利用导数求最值等,对学生知识的运用能力要求较高,难度较大.4.若()f x 满足对任意的实数a ,b 都有()()()f a b f a f b +=且()12f =,则下列判断正确的有( ) A .()f x 是奇函数B .()f x 在定义域上单调递增C .当()0,x ∈+∞时,函数()1f x >D .()()()()()()()()()()()()2462016201820202020135201520172019f f f f f f f f f f f f +++⋅⋅⋅++= 【答案】BCD 【分析】利用新定义结合函数的性质进行判断.计算出(1)f 判断A ;先利用(1)21f =>证明所有有理数p ,有()1f p >,然后用任意无理数q 都可以看作是一个有理数列的极限,由极限的性质得()1f q >,这样可判断C ,由此再根据单调性定义判断B ,根据定义计算(2)(21)f n f n -(n N ∈),然后求得D 中的和,从而判断D .【详解】令0,1a b ==,则(1)(10)(1)(0)f f f f =+=,即22(0)f =,∴(0)1f =,()f x 不可能是奇函数,A 错;对于任意x ∈R ,()0f x ≠,若存在0x R ∈,使得0()0f x =,则0000(0)(())()()0f f x x f x f x =+-=-=,与(0)1f =矛盾,故对于任意x ∈R ,()0f x ≠,∴对于任意x ∈R ,2()022222x x x x x f x f f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+==> ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, ∵(1)21f =>,∴对任意正整数n ,11111111121nn n f n n f f f f f n n n n n n n ⎛⎫ ⎪⎝⎭⎛⎫ ⎪⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫ ⎪+++===> ⎪ ⎪ ⎪ ⎪⎢⎥ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ ⎪ ⎪⎝⎭个个,∴11f n ⎛⎫> ⎪⎝⎭, 同理()(111)(1)(1)(1)21n f n f f f f =+++==>,对任意正有理数p ,显然有m p n=(,m n是互质的正整数),则1()1mm f p f fn n ⎡⎤⎛⎫⎛⎫==> ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 对任意正无理数q ,可得看作是某个有理数列123,,,p p p 的极限,而()1i f p >,i N ∈,∴()f q 与()i f p 的极限,∴()1f q >, 综上对所有正实数x ,有()1f x >,C 正确,设12x x <,则210x x ->,∴21()1f x x ->,则21211211()(())()()()f x f x x x f x f x x f x =+-=⋅->,∴()f x 是增函数,B 正确;由已知(2)(211)(21)(1)2(21)f n f n f n f f n =-+=-=-,∴(2)2(21)f n f n =-,∴()()()()()()()()()()()()10102246201620182020222210102020135201520172019f f f f f f f f f f f f +++⋅⋅⋅++=+++=⨯=个,D 正确. 故选:BCD . 【点睛】本题考查新定义函数,考查学生分析问题,解决问题的能力,逻辑思维能力,运算求解能力,对学生要求较高,本题属于难题.5.已知定义在R 上的函数()f x 满足:()()0f x f x +-=,且当0x ≥时,()x f x e x b =+-.若((2sin ))(sin )0f k b x f x ++-≤.在x ∈R 上恒成立,则k 的可能取值为( ) A .1 B .0C .1-D .2-【答案】CD 【分析】先判断函数的奇偶性和单调性,得到sinx ≥k (2+sinx ), 再根据题意,利用检验法判断即可. 【详解】因为定义在R 上的函数()f x 满足:()()0f x f x +-=, 所以()f x 为奇函数,0x ≥时,()x f x e x b =+-,显然()f x 在[0,)+∞上单调递增, 所以()f x 在R 上单调递增,由((2sin ))(sin )0f k b x f x ++-≤恒成立, 可得(sin )((2sin ))f x f k x +在R 上恒成立, 即sin (2sin )x k x +, 整理得:(1)sin 2k x k -当1k =时,02≥,不恒成立,故A 错误; 当0k =时,sin 0x ≥,不恒成立,故B 错误; 当1k =-时,sin 1x ≥-,恒成立,故C 正确; 当2k =-时,4sin 3x ≥-,恒成立,故D 正确. 故选:CD 【点睛】本题主要考查了函数的奇偶性和单调性,不等式恒成立问题,属于中档题.6.已知()x x f x e ke -=+(k 为常数),那么函数()f x 的图象不可能是( )A .B .C .D .【答案】AD 【分析】根据选项,四个图象可知备选函数都具有奇偶性.当1k =时,()xx f x e e -=+为偶函数,当1k =-时,()xx f x e e -=-为奇函数,再根据单调性进行分析得出答案.【详解】由选项的四个图象可知,备选函数都具有奇偶性. 当1k =时,()x x f x ee -=+为偶函数,当0x ≥时,1x t e =≥且单调递增,而1y t t=+在1) [,t ∈+∞上单调递增, 故函数()xx f x ee -=+在0) [,x ∈+∞上单调递增,故选项C 正确,D 错误;当1k =-时,()xx f x e e -=-为奇函数,当0x ≥时,1x t e =≥且单调递增,而1y t t=-在1) [,t ∈+∞上单调递减, 故函数()xx f x e e -=-在0) [,x ∈+∞上单调递减,故选项B 正确,A 错误.故选:AD . 【点睛】关键点点睛:本题考查函数性质与图象,本题的关键是根据函数图象的对称性,可知1k =或1k =-,再判断函数的单调性.7.函数()f x 的定义域为D ,若存在区间[],m n D ⊆使()f x 在区间[],m n 上的值域也是[],m n ,则称区间[],m n 为函数()f x 的“和谐区间”,则下列函数存在“和谐区间”的是( ) A .()f x x =B .()222f x x x =-+C .()1f x x x=+D .()1f x x=【答案】ABD 【分析】根据题意,可知若()f x 在区间[],m n 上的值域也是[],m n ,则()f x 存在“和谐区间”[],m n ,且m n <,则()()f m m f n n ⎧=⎪⎨=⎪⎩或()()f m nf n m ⎧=⎪⎨=⎪⎩,再对各个选项进行运算求解,m n ,即可判断该函数是否存在“和谐区间”.【详解】解:由题得,若()f x 在区间[],m n 上的值域也是[],m n ,则()f x 存在“和谐区间”[],m n ,可知,m n <,则()()f m m f n n ⎧=⎪⎨=⎪⎩或()()f m nf n m ⎧=⎪⎨=⎪⎩,A :())0f x x =≥,若()()f m mf n n⎧==⎪⎨==⎪⎩,解得:01m n =⎧⎨=⎩,所以()f x =“和谐区间”[]0,1;B :()()222f x x x x R =-+∈,若 ()()222222f m m m m f n n n n ⎧=-+=⎪⎨=-+=⎪⎩,解得:12m n =⎧⎨=⎩, 所以()222f x x x =-+存在“和谐区间” []1,2;C :()()10f x x x x =+≠,若()()11f m m m mf n n n n ⎧=+=⎪⎪⎨⎪=+=⎪⎩,得1010m n ⎧=⎪⎪⎨⎪=⎪⎩,故无解;若()()11f m m nmf n n mn⎧=+=⎪⎪⎨⎪=+=⎪⎩,即 21111m n m m m n n m n ⎧+=⎪⎪⎪=⎨+⎪⎪+=⎪⎩,化简得:2210(1)m m m m ++=+, 即210m m ++=,由于2141130∆=-⨯⨯=-<,故无解; 若()0112,m n f m m <<<∴=∴= 不成立 所以()1f x x x=+不存在“和谐区间”; D :()()10f x x x =≠,函数在()()0+-0∞∞,,, 单调递减,则 ()()11f m n mf n mn ⎧==⎪⎪⎨⎪==⎪⎩, 不妨令122m n ⎧=⎪⎨⎪=⎩, 所以()1f x x =存在“和谐区间”1,22⎡⎤⎢⎥⎣⎦;综上得:存在“和谐区间”的是ABD. 故选:ABD. 【点睛】关键点点睛:本题以函数的新定义为载体,考查函数的定义域、值域以及零点等知识,解题的关键是理解“和谐区间”的定义,考查运算能力以及函数与方程的思想.8.已知函数4()nnf x x x =+(n 为正整数),则下列判断正确的是( ) A .函数()f x 始终为奇函数B .当n 为偶数时,函数()f x 的最小值为4C .当n 为奇数时,函数()f x 的极小值为4D .当1n =时,函数()y f x =的图象关于直线2y x =对称 【答案】BC 【分析】由已知得()()4()nnf x x x -=-+-,分n 为偶数和n 为奇数得出函数()f x 的奇偶性,可判断A 和;当n 为偶数时,>0n x ,运用基本不等式可判断B ;当n 为奇数时,令n t x =,则>0,>0;0,0x t x t <<,构造函数4()g t t t=+,利用其单调性可判断C ;当1n =时,取函数4()f x x x=+上点()15P ,,求出点P 关于直线2y x =对称的对称点,代入可判断D.【详解】因为函数4()nn f x x x=+(n 为正整数),所以()()4()n n f x x x -=-+-, 当n 为偶数时,()()44()()nn nnf x x x f x x x -=-+=+=-,函数()f x 是偶函数; 当n 为奇数时,()4()nnf x x f x x-=-+=--,函数()f x 是奇函数,故A 不正确;当n 为偶数时,>0n x ,所以4()4n n f x x x =+≥=,当且仅当4n n x x =时, 即2>0n x =取等号,所以函数()f x 的最小值为4,故B 正确;当n 为奇数时,令n t x =,则>0,>0;0,0x t x t <<,函数()f x 化为4()g t t t=+, 而4()g t t t=+在()()22-∞-+∞,,,上单调递增,在()()2002-,,,上单调递递减, 所以4()g t t t =+在2t =时,取得极小值4(2)242g =+=,故C 正确;当1n =时,函数4()f x x x=+上点()15P ,,设点P 关于直线2y x =对称的对称点为()000P x y ,,则000051121+5+222y x x y -⎧=-⎪-⎪⎨⎪⨯=⎪⎩,解得00175195x y ⎧=⎪⎪⎨⎪=⎪⎩,即0171955P ⎛⎫ ⎪⎝⎭,,而将0171955P ⎛⎫ ⎪⎝⎭,代入4()f x x x=+不满足, 所以函数()y f x =的图象不关于直线2y x =对称,故D 不正确, 故选:BC . 【点睛】本题考查综合考查函数的奇偶性,单调性,对称性,以及函数的最值,属于较难题.二、导数及其应用多选题9.对于定义城为R 的函数()f x ,若满足:①(0)0f =;②当x ∈R ,且0x ≠时,都有()0xf x '>;③当120x x <<且12||||x x <时,都有12()()f x f x <,则称()f x 为“偏对称函数”.下列函数是“偏对称函数”的是( ) A .()321f x x x =-+B .()21xf x e x =--C .()3ln 1,0()2,0x x f x x x ⎧-+≤=⎨>⎩D .4()sin f x x x =【答案】BC 【分析】运用新定义,分别讨论四个函数是否满足三个条件,结合奇偶性和单调性,以及对称性,即可得到所求结论. 【详解】解:经验证,1()f x ,2()f x ,3()f x ,4()f x 都满足条件①;0()0()0x xf x f x >⎧'>⇔⎨'>⎩,或0()0x f x <⎧⎨'<⎩;当120x x <<且12||||x x <时,等价于21120x x x x -<<<-<,即条件②等价于函数()f x 在区间(,0)-∞上单调递减,在区间(0,)+∞上单调递增; A 中,()321f x x x =-+,()2132f x x x '=-+,则当0x ≠时,由()()321232230x x x x f x x =-+=-≤',得23x ≥,不符合条件②,故1()f x 不是“偏对称函数”;B 中,()21xf x e x =--,()21xf x e '=-,当0x >时,e 1x >,()20f x '>,当0x <时,01x e <<,()20f x '<,则当0x ≠时,都有()20xf x '>,符合条件②, ∴函数()21xf x e x =--在(),0-∞上单调递减,在()0,∞+上单调递增,由2()f x 的单调性知,当21120x x x x -<<<-<时,()2122()f x f x <-, ∴22212222222()()()()2x x f x f x f x f x e e x --<--=-++,令()2x x F x e e x -=-++,0x >,()220x x F x e e -'=--+≤-=, 当且仅当x x e e -=即0x =时,“=”成立,∴()F x 在[0,)+∞上是减函数,∴2()(0)0F x F <=,即2122()()f x f x <,符合条件③, 故2()f x 是“偏对称函数”;C 中,由函数()3ln 1,0()2,0x x f x x x ⎧-+≤=⎨>⎩,当0x <时,31()01f x x =<-',当0x >时,3()20f x '=>,符合条件②,∴函数3()f x 在(),0-∞上单调递减,在()0,∞+上单调递增, 有单调性知,当21120x x x x -<<<-<时,()3132()f x f x <-, 设()ln(1)2F x x x =+-,0x >,则1()201F x x '=-<+, ()F x 在(0,)+∞上是减函数,可得()(0)0F x F <=,∴1222()()()()f x f x f x f x -<--()()222ln 1()0F x x f x =+-=<, 即12()()f x f x <,符合条件③,故3()f x 是“偏对称函数”;D 中,4()sin f x x x =,则()44()sin ()f x x x f x -=--=,则4()f x 是偶函数,而4()sin cos f x x x x '=+ ()x ϕ=+(tan x ϕ=),则根据三角函数的性质可知,当0x >时,4()f x '的符号有正有负,不符合条件②,故4()f x 不是“偏对称函数”; 故选:BC . 【点睛】本题主要考查在新定义下利用导数研究函数的单调性与最值,考查计算能力,考查转化与划归思想,属于难题.10.若直线l 与曲线C 满足下列两个条件: (i )直线l 在点()00,P x y 处与曲线C 相切;(ii )曲线C 在P 附近位于直线l 的两侧,则称直线l 在点P 处“切过”曲线C . 下列命题正确的是( )A .直线:0l y =在点()0,0P 处“切过”曲线3:C y x =B .直线:1l x =-在点()1,0P -处“切过”曲线()2:1C y x =+C .直线:l y x =在点()0,0P 处“切过”曲线:sin C y x =D .直线:l y x =在点()0,0P 处“切过”曲线:tan C y x = 【答案】ACD 【分析】分别求出每个选项中命题中曲线C 对应函数的导数,求出曲线C 在点P 处的切线方程,再由曲线C 在点P 处两侧的函数值对应直线上的点的值的大小关系是否满足(ii ),由此可得出合适的选项. 【详解】对于A 选项,由3y x =,可得23y x '=,则00x y ='=,所以,曲线C 在点()0,0P 处的切线方程为0y =,当0x >时,0y >;当0x <时,0y <,满足曲线C 在点()0,0P 附近位于直线0y =两侧, A 选项正确;对于B 选项,由()21y x =+,可得()21y x '=+,则10x y =-'=,而直线:1l x =-的斜率不存在,所以,直线l 在点()1,0P -处不与曲线C 相切,B 选项错误;对于C 选项,由sin y x =,可得cos y x '=,则01x y ='=,所以,曲线C 在点()0,0P 处的切线方程为y x =,设()sin x x x f -=,则()1cos 0f x x '=-≥,所以,函数()f x 为R 上的增函数, 当0x <时,()()00f x f <=,即sin x x <; 当0x >时,()()00f x f >=,即sin x x >.满足曲线C 在点()0,0P 附近位于直线y x =两侧,C 选项正确; 对于D 选项,由sin tan cos xy x x ==,可得21cos y x'=,01x y ='=,所以,曲线C 在点()0,0P 处的切线方程为y x =,当,22x ππ⎛⎫∈- ⎪⎝⎭时,设()tan g x x x =-,则()2221sin 10cos cos xg x x x=-=-≤', 所以,函数()g x 在,22ππ⎛⎫- ⎪⎝⎭上单调递减.当02x π-<<时,()()00g x g >=,即tan x x >;当02x π<<时,()()00g x g <=,即tan x x <.满足曲线C 在点()0,0P 附近位于直线y x =两侧,D 选项正确. 故选:ACD. 【点睛】关键点点睛:本题考查导数新定义,解题的关键就是理解新定义,并把新定义进行转化,一是求切线方程,二是判断在切点两侧函数值与切线对应的函数值的大小关系,从而得出结论.。
高考数学提高题专题复习函数的概念与基本初等函数多选题练习题含答案
高考数学提高题专题复习函数的概念与基本初等函数多选题练习题含答案一、函数的概念与基本初等函数多选题1.已知函数()2,021,0x x ax x f x x -⎧+≤=⎨->⎩,则( )A .()f x 的值域为()1,-+∞B .当0a ≤时,()()21f x f x >+C .当0a >时,存在非零实数0x ,满足()()000f x f x -+=D .函数()()g x f x a =+可能有三个零点 【答案】BC 【分析】A .考虑2a =时的情况,求解出各段函数值域再进行判断;B .先根据条件分析()f x 的单调性,再根据21x +与x 的大小关系进行判断;C .作出222,,y x ax y x ax y x ax =+=-+=-+的函数图象,根据图象的对称性进行分析判断;D .根据条件先分析出()0,1a ∈,再根据有三个零点确定出a 满足的不等式,由此判断出a 是否有解,并判断结论是否正确.【详解】A .当0x >时,21011x y -=->-=-,当0x ≤时,22224a a y x ax x ⎛⎫=+=+- ⎪⎝⎭,取2a =,此时()2111y x =+-≥-,所以此时的值域为[)1,-+∞,故A 错误;B .当0a ≤时,22224a a y x ax x ⎛⎫=+=+- ⎪⎝⎭的对称轴为02a x =-≥,所以()f x 在(],0-∞上单调递减,又因为()f x 在()0,∞+上单调递减,且200021a -+⨯=-,所以()f x 在R 上单调递减,又因为22131024x x x ⎛⎫+-=-+> ⎪⎝⎭,所以21x x +>,所以()()21f x f x >+,故B 正确;C .作出函数22,,21x y x ax y x ax y -=+=-+=-的图象如下图所示:由图象可知:22,y x ax y x ax =+=-+关于原点对称,且2y x ax =-+与21x y -=-相交于()00,x y ,因为点()00,x y 在函数2y x ax =-+的图象上,所以点()00,x y --在函数2y x ax =+的图象上,所以()()()00000f x f x y y +-=+-=,所以当0a >时,存在0x 使得()()000f x f x -+=,故C 正确;D .由题意知:()f x a =-有三个根,所以()f x 不是单调函数,所以0a >, 又因为()211,0xy -=-∈-,所以()1,0a -∈-,所以()0,1a ∈,且22,4a y x ax ⎡⎫=+∈-+∞⎪⎢⎣⎭,若方程有三个根,则有24a a ->-,所以4a >或0a <,这与()0,1a ∈矛盾,所以函数()()g x f x a =+不可能有三个零点,故D 错误, 故选:BC. 【点睛】思路点睛:函数与方程的综合问题,采用数形结合思想能高效解答问题,通过数与形的相互转化能使问题转化为更简单的问题,常见的图象应用的命题角度有: (1)确定方程根的个数; (2)求参数范围; (3)求不等式解集; (4)研究函数性质.2.已知函数()1y f x =-的图象关于1x =对称,且对(),y f x x R =∈,当12,(,0]x x ∈-∞时,()()21210f x f x x x -<-成立,若()()2221f ax f x <+对任意的x ∈R 恒成立,则a 的可能取值为( )A .B .1-C .1 D【答案】BC 【分析】由已知得函数()f x 是偶函数,在[0,)+∞上是单调增函数,将问题转化为2|2||21|ax x <+对任意的x ∈R 恒成立,由基本不等式可求得范围得选项. 【详解】因为函数()1y f x =-的图象关于直线1x =对称,所以函数()y f x =的图象关于直线0x =(即y 轴)对称,所以函数()f x 是偶函数.又12,(,0]x x ∈-∞时,()()21210f x f x x x -<-成立,所以函数()f x 在[0,)+∞上是单调增函数.且()()2221f ax f x <+对任意的x ∈R 恒成立,所以2|2||21|ax x <+对任意的x ∈R 恒成立,当0x =时,01<恒成立,当0x ≠时,2|21|11|||||||||2|22x a x x x x x+<=+=+,又因为1||||2x x +=≥||2x =时,等号成立,所以||a <,因此a <<,故选:BC. 【点睛】方法点睛:不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立.3.已知()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,2()2f x x x =-+,下列说法正确的是( )A .(0,)x ∈+∞时,函数解析式为2()2f x x x =-B .函数在定义域R 上为增函数C .不等式(32)3f x -<的解集为(,1)-∞D .不等式2()10f x x x -+->恒成立 【答案】BC 【分析】对于A ,利用奇函数定义求(0,)x ∈+∞时,函数解析式为2()2f x x x =+;对于B ,研究当(,0)x ∈-∞时,()f x 的单调性,结合奇函数图像关于原点对称,知()f x 在R 上的单调性;对于C ,求出(1)3f =,不等式(32)3f x -<,转化为(32)(1)f x f -<,利用单调性解不等式;对于D ,分类讨论(0,)x ∈+∞与(,0)x ∈-∞两种情况是否恒成立. 【详解】对于A ,设(0,)x ∈+∞,(,0)x -∈-∞,则2()2f x x x -=--,又()f x 是奇函数,所以2()()2f x f x x x =--=+,即(0,)x ∈+∞时,函数解析式为2()2f x x x =+,故A 错;对于B ,2()2f x x x =-+,对称轴为1x =,所以当(,0)x ∈-∞时,()f x 单调递增,由奇函数图像关于原点对称,所以()f x 在R 上为增函数,故B 对;对于C ,由奇函数在R 上为增函数,则(0,)x ∈+∞时,2()23f x x x =+=,解得11x =,23x =-(舍去),即(1)3f =,所以不等式(32)3f x -<,转化为(32)(1)f x f -<, 又()f x 在R 上为增函数,得321x -<,解得1x <, 所以不等式的解集为(,1)-∞,故C 对; 对于D ,当(,0)x ∈-∞时,2()2f x x x =-+2222()121231(21)(1)0f x x x x x x x x x x x -+-=-+-+-=-+-=-+-<,当(0,)x ∈+∞时,2()2f x x x =+222()12131f x x x x x x x x -+-=+-+-=-不恒大于0,故D 错;故选:BC 【点睛】方法点睛:考查了解抽象不等式,要设法把隐性划归为显性的不等式求解,方法是: (1)把不等式转化为[][]()()f g x f h x >的模型;(2)判断函数()f x 的单调性,再根据函数的单调性将不等式的函数符号“f ”脱掉,得到具体的不等式(组)来求解,但要注意奇偶函数的区别. 考查了利用奇偶性求函数解析式,求函数解析式常用的方法: (1)已知函数类型,用待定系数法求解析式; (2)已知函数奇偶性,用奇偶性定义求解析式;(3)已知()f x 求[()]f g x ,或已知[()]f g x 求()f x ,用代入法、换元法或配凑法; (4)若()f x 与1()f x或()f x -满足某个等式,可构造另一个等式,通过解方程组求解;4.若()f x 满足对任意的实数a ,b 都有()()()f a b f a f b +=且()12f =,则下列判断正确的有( ) A .()f x 是奇函数B .()f x 在定义域上单调递增C .当()0,x ∈+∞时,函数()1f x >D .()()()()()()()()()()()()2462016201820202020135201520172019f f f f f f f f f f f f +++⋅⋅⋅++= 【答案】BCD 【分析】利用新定义结合函数的性质进行判断.计算出(1)f 判断A ;先利用(1)21f =>证明所有有理数p ,有()1f p >,然后用任意无理数q 都可以看作是一个有理数列的极限,由极限的性质得()1f q >,这样可判断C ,由此再根据单调性定义判断B ,根据定义计算(2)(21)f n f n -(n N ∈),然后求得D 中的和,从而判断D .【详解】令0,1a b ==,则(1)(10)(1)(0)f f f f =+=,即22(0)f =,∴(0)1f =,()f x 不可能是奇函数,A 错;对于任意x ∈R ,()0f x ≠,若存在0x R ∈,使得0()0f x =,则0000(0)(())()()0f f x x f x f x =+-=-=,与(0)1f =矛盾,故对于任意x ∈R ,()0f x ≠,∴对于任意x ∈R ,2()022222x x x x x f x f f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+==> ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, ∵(1)21f =>,∴对任意正整数n ,11111111121nn n f n n f f f f f n n n n n n n ⎛⎫ ⎪⎝⎭⎛⎫ ⎪⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫ ⎪+++===> ⎪ ⎪ ⎪ ⎪⎢⎥ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ ⎪ ⎪⎝⎭个个,∴11f n ⎛⎫> ⎪⎝⎭, 同理()(111)(1)(1)(1)21n f n f f f f =+++==>,对任意正有理数p ,显然有m p n=(,m n是互质的正整数),则1()1mm f p f fn n ⎡⎤⎛⎫⎛⎫==> ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 对任意正无理数q ,可得看作是某个有理数列123,,,p p p 的极限,而()1i f p >,i N ∈,∴()f q 与()i f p 的极限,∴()1f q >, 综上对所有正实数x ,有()1f x >,C 正确,设12x x <,则210x x ->,∴21()1f x x ->,则21211211()(())()()()f x f x x x f x f x x f x =+-=⋅->,∴()f x 是增函数,B 正确;由已知(2)(211)(21)(1)2(21)f n f n f n f f n =-+=-=-,∴(2)2(21)f n f n =-,∴()()()()()()()()()()()()10102246201620182020222210102020135201520172019f f f f f f f f f f f f +++⋅⋅⋅++=+++=⨯=个,D 正确. 故选:BCD . 【点睛】本题考查新定义函数,考查学生分析问题,解决问题的能力,逻辑思维能力,运算求解能力,对学生要求较高,本题属于难题.5.已知函数()f x 满足:当-<3≤0x 时,()()1xf x e x =+,下列命题正确的是( )A .若()f x 是偶函数,则当03x <≤时,()()1xf x e x =+B .若()()33f x f x --=-,则()()32g x f x e=+在()6,0x ∈-上有3个零点 C .若()f x 是奇函数,则1x ∀,[]23,3x ∈-,()()122f x f x -<D .若()()3f x f x +=,方程()()20f x kf x -=⎡⎤⎣⎦在[]3,3x ∈-上有6个不同的根,则k 的范围为2312k e e -<<- 【答案】BC 【分析】A 选项,利用函数的奇偶性求出解析式即可判断;B 选项,函数()f x 关于直线3x =-对称,利用导数研究函数的单调性作出函数图像,由函数图像可知当()6,0x ∈-时,函数()f x 与直线32y e=-有3个交点可判断;C 选项,由函数图像关于原点对称求出函数的值域进行判断;D 选项,函数周期为3,作出函数图像知方程()0f x =在[]3,3x ∈-上有两个不同的根,则2312k e e -<≤-时方程()f x k =在[]3,3x ∈-上有4个不同的根. 【详解】A 选项,若03x <≤,则30x -≤-<,()()1xf x e x --=-+,因为函数()f x 是偶函数,所以()()()1xf x f x ex -=-=-+,A 错误;B 选项,若()()33f x f x --=-,则函数()f x 关于直线3x =-对称,当-<3≤0x 时,()()2xf x ex '=+,当()3,2x ∈--时,()0f x '<,函数()f x 单调递减,当()2,0x ∈--时,()0f x '>,函数()f x 单调递增,且()323f e -=-,()2120f e -=-<,()10f -=, 作出函数大致图像如图所示,则当()6,0x ∈-时,函数()f x 与直线32y e =-有3个交点,即函数()()32g x f x e=+在()6,0x ∈-上有3个零点,B 正确;C 选项,由B 知当[3,0)x ∈-时,()2[,1)f x e -∈-,若函数()f x 为奇函数,则当[]3,3x ∈-时()()1,1f x ∈-,所以1x ∀,[]23,3x ∈-,()()122f x f x -<,C 正确;D 选项,若()()3f x f x +=,则函数()f x 的周期为3,作出函数在[]3,3x ∈-上的图像如图所示,若方程()()20f x kf x -=⎡⎤⎣⎦即()()[]0f x f x k -=在[]3,3x ∈-上有6个不同的根,因为方程()0f x =在[]3,3x ∈-上有两个不同的根,所以()f x k =在[]3,3x ∈-上有4个不同的根,又()323f e -=-,()2120f e -=-<,所以2312k e e-<≤-,D 错误. 故选:BC 【点睛】本题考查函数的图像与性质综合应用,涉及函数的单调性、奇偶性、对称性,函数的零点与方程的根,综合性较强,属于较难题.6.已知直线2y x =-+分别与函数x y e =和ln y x =的图象交于点()()1122,,,A x y B x y ,则下列结论正确的是( ) A .122x x +=B .122x x e e e +>C .1221ln ln 0x x x x +<D .12e x x >【答案】ABC 【分析】根据互为反函数的性质可得()()1122,,,A x y B x y 的中点坐标为()1,1,从而可判断A ;利用基本不等式可判断B 、D ;利用零点存在性定理以及对数的运算性质可判断C. 【详解】函数xy e =与ln y x =互为反函数, 则xy e =与ln y x =的图象关于y x =对称,将2y x =-+与y x =联立,则1,1x y ==,由直线2y x =-+分别与函数xy e =和ln y x =的图象交于点()()1122,,,A x y B x y ,作出函数图像:则()()1122,,,A x y B x y 的中点坐标为()1,1, 对于A ,由1212x x +=,解得122x x +=,故A 正确; 对于B ,12121222222x x x x x x e e e e e e e +≥=+⋅==, 因为12x x ≠,即等号不成立,所以122x x e e e +>,故B 正确;对于C ,将2y x =-+与xy e =联立可得2x x e -+=,即20x e x +-=,设()2xf x e x =+-,且函数为单调递增函数,()010210f =+-=-<,112211320222f e e ⎛⎫=+-=-> ⎪⎝⎭,故函数的零点在10,2⎛⎫ ⎪⎝⎭上,即1102x <<,由122x x +=,则212x <<, 122112211ln ln ln lnx x x x x x x x +=- ()1222122ln ln ln 0x x x x x x x <-=-<,故C 正确;对于D,由12x x +≥,解得121x x ≤, 由于12x x ≠,则121x x <,故D 错误; 故选:ABC 【点睛】本题考查了互为反函数的性质、基本不等式的应用、零点存在性定理以及对数的运算性质,考查了数形结合的思想,属于难题.7.高斯是德国著名数学家、物理学家、天文学家、大地测量学家,近代数学奠基者之一.高斯被认为是历史上最重要的数学家之一,并享有“数学王子”之称.有这样一个函数就是以他名字命名的:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]()f x x =称为高斯函数,又称为取整函数.如:(2.3)2f =,( 3.3)4f -=-.则下列正确的是( ) A .函数()f x 是R 上单调递增函数B .对于任意实数a b ,,都有()()()f a f b f a b +≤+ C .函数()()g x f x ax =-(0x ≠)有3个零点,则实数a 的取值范围是34434532⎛⎤⎡⎫⋃ ⎪⎥⎢⎝⎦⎣⎭,, D .对于任意实数x ,y ,则()()f x f y =是1x y -<成立的充分不必要条件 【答案】BCD 【分析】取反例可分析A 选项,设出a ,b 的小数部分,根据其取值范围可分析B 选项,数形结合可分析C 选项,取特殊值可分析D 选项. 【详解】解:对于A 选项,()()1 1.21f f ==,故A 错误;对于B 选项,令[]a a r =+,[](,b b q r =+q 分别为a ,b 的小数部分), 可知[]01r a a =-<,[]01q b b =-<,[]0r q +≥, 则()[][][][][][][]()()f a b a b r q a b r q a b f a f b ⎡⎤+=+++=++++=+⎣⎦,故B 错误;对于C 选项,可知当1k x k ≤<+,k Z ∈时,则()[]f x x k ==, 可得()f x 的图象,如图所示:函数()()()0g x f x ax x =-≠有3个零点,∴函数()f x 的图象和直线y ax =有3个交点,且()0,0为()f x 和直线y ax =必过的点,由图可知,实数a 的取值范围是][3443,,4532⎛⎫⋃⎪⎝⎭,故C 正确;对于D 选项,当()()f x f y =时,即r ,q 分别为x ,y 的小数部分,可得01r ≤<,01q ≤<,[][]101x y x r y q r q -=+--=-<-=;当1x y -<时,取0.9x =-,0.09y =,可得[]1x =-,[]0y =,此时不满足()()f x f y =,故()()f x f y =是1x y -<成立的充分不必要条件,故D 正确; 故选:BCD . 【点睛】本题考查函数新定义问题,解答的关键是理解题意,转化为分段函数问题,利用数形结合思想;8.函数()f x 的定义域为D ,若存在区间[],m n D ⊆使()f x 在区间[],m n 上的值域也是[],m n ,则称区间[],m n 为函数()f x 的“和谐区间”,则下列函数存在“和谐区间”的是( )A .()f x =B .()222f x x x =-+C .()1f x x x =+D .()1f x x= 【答案】ABD【分析】 根据题意,可知若()f x 在区间[],m n 上的值域也是[],m n ,则()f x 存在“和谐区间”[],m n ,且m n <,则()()f m m f n n ⎧=⎪⎨=⎪⎩或()()f m n f n m ⎧=⎪⎨=⎪⎩,再对各个选项进行运算求解,m n ,即可判断该函数是否存在“和谐区间”.【详解】解:由题得,若()f x 在区间[],m n 上的值域也是[],m n ,则()f x 存在“和谐区间”[],m n , 可知,m n <,则()()f m m f n n ⎧=⎪⎨=⎪⎩或()()f m n f n m ⎧=⎪⎨=⎪⎩, A :())0f x x =≥,若()()f m m f n n⎧==⎪⎨==⎪⎩,解得:01m n =⎧⎨=⎩, 所以()f x =“和谐区间”[]0,1;B :()()222f x x x x R =-+∈,若 ()()222222f m m m m f n n n n ⎧=-+=⎪⎨=-+=⎪⎩,解得:12m n =⎧⎨=⎩, 所以()222f x x x =-+存在“和谐区间” []1,2; C :()()10f x x x x =+≠,若()()11f m m m m f n n n n ⎧=+=⎪⎪⎨⎪=+=⎪⎩,得1010m n⎧=⎪⎪⎨⎪=⎪⎩,故无解; 若()()11f m m n m f n n m n ⎧=+=⎪⎪⎨⎪=+=⎪⎩,即 21111m n m m m n n m n ⎧+=⎪⎪⎪=⎨+⎪⎪+=⎪⎩,化简得:2210(1)m m m m ++=+, 即210m m ++=,由于2141130∆=-⨯⨯=-<,故无解;若()0112,m n f m m <<<∴=∴= 不成立所以()1f x x x=+不存在“和谐区间”;D :()()10f x x x =≠,函数在()()0+-0∞∞,,, 单调递减,则 ()()11f m n m f n m n ⎧==⎪⎪⎨⎪==⎪⎩, 不妨令122m n ⎧=⎪⎨⎪=⎩, 所以()1f x x =存在“和谐区间”1,22⎡⎤⎢⎥⎣⎦; 综上得:存在“和谐区间”的是ABD.故选:ABD.【点睛】关键点点睛:本题以函数的新定义为载体,考查函数的定义域、值域以及零点等知识,解题的关键是理解“和谐区间”的定义,考查运算能力以及函数与方程的思想.二、导数及其应用多选题9.在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它得名于荷兰数学家鲁伊兹布劳威尔(L.E.Brouwer )简单的讲就是对于满足一定条件的连续函数()f x ,存在一个点0x ,使得()00f x x =,那么我们称该函数为“不动点”函数,而称0x 为该函数的一个不动点,依据不动点理论,下列说法正确的是( )A .函数()sin f x x =有3个不动点B .函数2()(0)f x ax bx c a =++≠至多有两个不动点C .若定义在R 上的奇函数()f x ,其图像上存在有限个不动点,则不动点个数是奇数 D.若函数()f x =[0,1]上存在不动点,则实数a 满足l a e ≤≤(e 为自然对数的底数)【答案】BCD【分析】根据题目中的定义,结合导数、一元二次方程的性质、奇函数的性质进行判断即可.【详解】令()sin g x x x =-,()1cos 0g x x '=-≥,因此()g x 在R 上单调递增,而(0)0g =,所以()g x 在R 有且仅有一个零点,即()f x 有且仅有一个“不动点”,A 错误;0a ≠,20ax bx c x ∴++-=至多有两个实数根,所以()f x 至多有两个“不动点”,B 正确;()f x 为定义在R 上的奇函数,所以(0)0f =,函数()-y f x x =为定义在R 上的奇函数,显然0x =是()f x 的一个“不动点”,其它的“不动点”都关于原点对称,个数和为偶数, 因此()f x 一定有奇数个“不动点”,C 正确;因为()f x 在[0,1]存在“不动点”,则()f x x =在[0,1]有解,x =⇒2x a e x x =+-在[0,1]有解,令2()x m x e x x =+-, ()12x m x e x '=+-,令()12x n x e x '=+-,()20x n x e '=-=,ln 2x =,()n x 在(0,ln 2)单调递减,在(ln 2,1)单调递增,∴min ()(ln 2)212ln 232ln 20n x n ==+-=->,∴()0m x '>在[0,1]恒成立,∴()m x 在[0,1]单调递增,min ()(0)1m x m ==,max ()(1)m x m e ==,∴1a e ≤≤,D 正确,.故选:BCD【点睛】方法点睛:新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.10.函数()ln f x x x =、()()f xg x x '=,下列命题中正确的是( ).A .不等式()0g x >的解集为1,e ⎛⎫+∞ ⎪⎝⎭B .函数()f x 在()0,e 上单调递增,在(,)e +∞上单调递减C .若函数()()2F x f x ax =-有两个极值点,则()0,1a ∈ D .若120x x >>时,总有()()()2212122m x x f x f x ->-恒成立,则m 1≥ 【答案】AD【分析】 对A ,根据()ln f x x x =,得到()()ln 1f x x g x x x'+==,然后用导数画出其图象判断;对B ,()1ln f x x '=+,当x e >时,()0f x '>,当0x e <<时,()0f x '<判断;对C ,将函数()()2F x f x ax =-有两个极值点,()ln 120x a x+=+∞在,有两根判断;对D ,将问题转化为22111222ln ln 22m m x x x x x x ->-恒成立,再构造函数()2ln 2m g x x x x =-,用导数研究单调性.【详解】对A ,因为()()()ln 1ln f x x f x x x g x x x'+===、, ()2ln x g x x-'=, 令()0g x '>,得()0,1x ∈,故()g x 在该区间上单调递增;令()0g x '<,得()1x ∈+∞,,故()g x 在该区间上单调递减. 又当1x >时,()0g x >,()10,11g g e ⎛⎫== ⎪⎝⎭,故()g x 的图象如下所示:数形结合可知,()0g x >的解集为1,e ⎛⎫+∞ ⎪⎝⎭,故正确; 对B ,()1ln f x x '=+,当x e >时,()0f x '>,当0x e <<时,()0f x '<,所以函数()f x 在()0,e 上单调递减,在(,)e +∞上单调递增,错误;对C ,若函数()()2F x f x ax =-有两个极值点, 即()2ln F x x x ax =-有两个极值点,又()ln 21F x x ax '=-+, 要满足题意,则需()ln 2100x ax -+=+∞在,有两根, 也即()ln 120x a x+=+∞在,有两根,也即直线()2y a y g x ==与的图象有两个交点. 数形结合则021a <<,解得102a <<.故要满足题意,则102a <<,故错误; 对D ,若120x x >>时,总有()()()2212122m x x f x f x ->-恒成立, 即22111222ln ln 22m m x x x x x x ->-恒成立, 构造函数()2ln 2m g x x x x =-,()()12g x g x >,对任意的120x x >>恒成立, 故()g x ()0+∞,单调递增,则()ln 10g x mx x '=--≥()0+∞, 恒成立, 也即ln 1x m x+≤,在区间()0,∞+恒成立,则()max 1g x m =≤,故正确. 故选:AD.【点睛】 本题主要考查导数在函数图象和性质中的综合应用,还考查了数形结合的思想、转化化归思想和运算求解的能力,属于较难题.。
高中数学--《函数概念与基本初等函数》测试题(含答案)
高中数学--《函数概念与基本初等函数》测试题(含答案)1.已知,,,则a,b,c三个数的大小关系是A. B. C. D.【答案解析】A试题分析:由基本初等函数的单调性易知a<b,c<b,可排除B、C、D三个选项,对于选项A,因为a>1,c<1,所以c<a<b,答案选A.考点:函数的单调性及其应用2.函数的零点所在区间是A. B. C. D.(1,2)【答案解析】C试题分析:因为,所以,零点在区间上,答案选C.考点:零点存在性定理3.下列函数中,在区间(0,)上是增函数的是A. B. C. D.【答案解析】D4.A. B. C. D.【答案解析】D5.函数的定义域是()A.B.C.D.【答案解析】D6.已知幂函数y=f(x)的图象过(4,2)点,则=()A.B.C.D.【答案解析】B7.函数的定义域为(A)(B)(C)(D)【答案解析】C8.若,则等于()A.B.C.D.【答案解析】B9.若上述函数是幂函数的个数是()A.个B.个C.个D.个【答案解析】C10.已知幂函数的图象经过点(4,2),则=( )A.2 B.4 C. D.8【答案解析】B11.已知函数是幂函数,则实数的值是().0B.1C.0或1D.【答案解析】A12.函数的定义域是()A、B、C、D、【答案解析】B13.设,则()A.10B.11C.12D.13【答案解析】B14.函数的定义域是()A. B. C. D.【答案解析】D15.与为同一函数的是()A. B. C. D.【答案解析】B16.函数f(x)=lg(3x+1)的定义域是A、(0,+∞);B、(-1,0);C、(-1/3,+∞);D、(-1/3,0);【答案解析】C17.,则f{f[f(-3)]}等于( )A.0B.πC.D.9 【答案解析】C18.以下函数为指数函数的是()A.B.C.D.【答案解析】B。
高中数学--《函数概念与基本初等函数》测试题(含答案)
高中数学--《函数概念与基本初等函数》测试题(含答案)1.已知集合A到B的映射,那么集合A中元素2在B中所对应的元素是()A.2 B.5 C.6 D.8【答案解析】B2.函数的定义域是()A.[-1,+∞)B.[-1,0) C.(-1,+∞) D.(-1,0)【答案解析】C3.设函数是上的减函数,则有()A.B.C.D.【答案解析】D4.下列哪组中的两个函数是同一函数()A. 与B.与C. 与D.与【答案解析】B5.()A. B. C. D.【答案解析】C6.函数y=的定义域是()A.(-∞,2) B.(2,+∞) C.(2,3)∪(3,+∞) D.(2,4)∪(4,+∞)C7.下列函数中为偶函数的是()A.y=|x+1|B.C.y=+xD. y=+【答案解析】D8.已知f(x)= ,则f[f(―1)]=( )A.0B.1C. πD. π+1【答案解析】C9.下列各组函数中表示同一函数的是()A.f(x)=,g(x)=( )2 B.f(x)= ,g(x)=x+1C.f(x)=|x|,g(x)= D.f(x)=,g(x)= 【答案解析】B10.当时A. B. C. D.【答案解析】C11.函数f(x)=的定义域为()A. B . C. D.【答案解析】D12.已知则=()A. B. C. D.C13.下列各组函数表示同一函数的是()A. B.C. D.【答案解析】C14.设,则()A.1 B. C. D.【答案解析】B15.函数恒过定点()A.B.C.D.【答案解析】B16.函数,则的值是()A、1B、C、2D、【答案解析】A17.下列各组函数是同一函数的是()A.与y=1 B.与C.与 D.与y=x+2 【答案解析】C18.已知函数,则等于A.1 B.-1 C. D.2【答案解析】C19.下列函数中,是奇函数且在区间内单调递减的函数是()A. B. C. D.【答案解析】C不是奇函数。
是奇函数且单调递增。
函数概念与基本初等函数章节综合检测提升试卷(五)附答案人教版高中数学考点大全
高中数学专题复习
《函数的概念与基本初等函数》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.如右图,OA=2(单位:m),OB=1(单位:m),OA 与OB 的夹角为
6 ,以A 为圆心,AB 为半径作圆弧BDC 与线段OA 延长线交与点 C .甲.乙两质点同时从点O 出发,甲先以速度1(单位:ms)沿线段OB 行至点B,再以速度3(单位:ms)沿圆弧BDC 行至点C 后停止,乙以速率2(单位:m/s)沿线段OA 行至A 点后停止.设t 时刻甲、乙所到的两点连线与它们经过的路径所围成图形的面积为S(t)(S(0)=0),则函数y=S(t)的图像大致是。
函数概念与基本初等函数章节综合检测专题练习(四)附答案人教版高中数学考点大全
《函数的概念与基本初等函数》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选择题)
请点击修改第I卷的文字说明
评卷人
得分
一、选择题
1.下列函数中,既是奇函数又是增函数的为( )
A. B. C. D. (2020陕西文)
7.已知定义在R上的奇函数 ,满足 ,且在区间[0,2]上是增函数,则( ).
A. B.
C. D.
【解析】:因为 满足 ,所以 ,所以函数是以8为周期的周期函数,则 , , ,又因为 在R上是奇函数, ,得 , ,而由 得 ,又因为 在区间[0,2]上是增函数,所以 ,所以 ,即 ,故选D.
8.已知 ,如果 ,那么 ------------------------------()
19.已知函数 .
(1)设集合 ,求集合 ;
(2)若 ,求 的值域;
(3)画出 的图象,写出其单调区间.
20.已知二次函数 的最小值为1,且 .
(1)求 的解析式;
(2)若 在区间 上不单调,求实数 的取值范围;
(3)在区间 上, 的图象恒在 的图象上方,试确定实数 的取值范围.
【参考答案】***试卷处理标记,请不要删除
评卷人
得分
一、选择题
1.D
解析:运用排除法,奇函数有 和 ,又是增函数的只有选项D正确.
2.B
3.A
4.A
5.B
6.B
7.D.
【命题立意】:本题综合考查了函数的奇偶性、单调性、周期性等性质,运用化归的数学思想和数形结合的思想解答问题.
基本初等函数指数函数对数函数与幂函数章节综合检测提升试卷(四)附答案人教版高中数学真题技巧总结提升
5.当0<a<b<1时,下列不等式中正确的是()
A.(1-a) >(1-a)bB.(1+a)a>(1+b)b
C.(1-a)b>(1-a) D.(1-a)a>(1-b)b(2020上海7)
6.已知f(x6)=log2x,那么f(8)等于()
(2)若要求环城公路AB段最短,且与市中心O的距离是10km,请你设计一种方案,确定A,B的位置
20.已知某公司生产品牌服装的年固定成本为10万元,每生产千件,须另投入2.7万元,设该公司年内共生产该品牌服装x千件并全部销售完,每千件的销售收入为R(x)万元,且
(1)写出年利润W(万元)关于年产量x(千件)的函数解析式:
(1)已知 ,求A、B两点的距离 。
(2)求到定点M(1,2)的“直角距离”为2的点的轨迹方程。
并写出所有满足条件的“格点”的坐标(格点是指横、纵坐标均
为整数的点)。
(3)求到两定点F1、F2的“直角距离”和为定值 的动点轨迹方程,并在直角坐标系内作出该动点的轨迹。(在以下三个条件中任选一个做答,多做不计分,基保选择条件①,满分4分;条件②满分6分;条件③,满分8分)
(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获年利润最大?(注:年利润=年销售收入—年总成本)
【参考答案】***试卷处理标记,请不要删除
评卷人
得分
一、选择题
1.B
2.C
3.D 是偶函数,图像关于y轴对称
4.A 在 时是增函数,所以 , 在 时是减函数,所以 。
5.D
6.D
7.A
解析:A本小题主要考查正确利用对数函数的图象来比较大小。
13.设函数 ,且 , 表示不超过实数 的最大整数,
函数概念与基本初等函数单元过关检测卷(四)附答案新高考高中数学辅导班专用
C.f(x)+1为奇函数D.f(x)+1为偶函数
5.右图给出了某种豆类生长枝数 (枝)与时间 (月)的散点图,那么此种豆类生长枝数与时间的关系用下列函数模型近似刻画最好的是………………………………………………………………( )
(A) ;(B) ;(C) ;(D) .
【参考答案】***试卷处理标记,请不要删除
评卷人
得分
一、选择题
1.A
2.A
3.C
4.
5.D;
6.
7.
8.
9.
10.
第II卷(非选择题)
请点击修改第II卷的文字说明
评卷人得分二、填空题11.12.13.
14.
15.
16.
评卷人
得分
三、解答题
17.解:(2) (3) 或
18.解:(1)不等式 的解集是 ,
高中数学专题复习
《函数的概念与基本初等函数》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选择题)
请点击修改第I卷的文字说明
评卷人
得分
一、选择题
1. 下列不等式一定成立的是
(A)
(B)
(C)
(D) (2020山东理)
2.设函数 ,区间M=[a,b](a<b),集合N={ },则使M=N成立的实数对(a,b)有( )
(A)0个(B)1个(C)2个(D)无数多个(2020江苏)
3.已知非0实数 成等差数列,则二次函数 +2bx+c的图象与x轴的交点个数为()
函数概念与基本初等函数40分钟限时练(四)附答案人教版高中数学考点大全
8. 是偶函数,且 不恒等于零,则 --------------------------()
(A)是奇函数(B)是偶函数(C)可能是奇函数也可能是偶函数(D)不是奇函数也不是偶函
9.函数 的最大值为 ,最小值为 ,则--------------------------------()
,又因为 ,所以 ,所以最大值出现在
时,即 ,
13.
14.
15.
16.
评卷人
得分
三、解答题
17.
18.解:(1)∵
∴ ∴ .(4分)
(2)不妨设 ; ,在 不存在最小值,∴ 或 (8分)
又 , ∴ (10分)
(3)∵ , ∴ (12分)
又 ∴ ∴ 在 上为增函数.
∴ (16分)
19.
20.
评卷人
得分
二、填空题
11.
12.解析:本题结合函数的性质考查数形结合方法的应用:由函数得到其图象如右图所示:根据图可知,最大值出现在或,由图像可知,又因为,所以,所以最大值出现在时,即,
解析:
解析:本题结合函数的性质考查数形结合方法的应用:由函数 得到其图象如右图所示:
根据图可知,最大值出现在 或 ,由图像可知
(1)求 的解析式;(2)当 ,不等式: 恒成立,求实数 的范围.
18.设函数 R的最小值为-a, 两个实根为 、 .[来源:Z。xx。]
(1)求 的值;
(2)若关于 的 不等式 解集 为 ,函数 在 上不存在最小值,求 的取值范围;
(3)若 ,求b的取值范围。
19.已知函数 的一个零点比1大,一个零点比1小,求实数 的取值范围.
函数概念与基本初等函数早练专题练习(四)附答案人教版高中数学
《函数的概念与基本初等函数》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选择题)
请点击修改第I卷的文字说明
评卷人
得分
一、选择题
1.若f(x)=-x2+2ax与 在区间[1,2]上都是减函数,则a的值范围是()
4.已知函数y= f (x)的周期为2,当x 时f (x) =x2,那么函数y = f (x)的图象与函数y = 的图象的交点共有()
A.10个B.9个C.8个D.1个(2020全国文12)
5.函数f(x)=|x-1|的图象是( )
(2020北京春季文)
6.定义在R上的偶函数 的部分图像如右图所示,则在 上,下列函数中与 的单调性不同的是
16.函数 的定义域为.(安徽卷13)
评卷人
得分
三、解答题
17.设函数 ,对于给定的负数a,有一个最大的正数 ,使得 [0, ],时,恒有| | 5,
(1)求 关于a的表达式;(2)求 的最大值及相应的a的值。
18.设关于 的函数 的最小值为 .
(1)求 ;(2)试确定满足 的 的值.
19.已知集合 ,若 ,求
13._函数的值.__专题:_计算题.__分析:_由于f(x)•f(x+2)=6,以x+2代x得f(x+2)•f(x+4)=6,所以f(x)=f(x+4).函数f(x)是周期函数,4是一个周期.在f(x
解析:
函数的值.
专题:
计算题.
分析:
由于f(x)•f(x+2)=6,以x+2代x得f(x+2)•f(x+4)=6,所以f(x)=f(x+4).函数f(x)是周期函数,4是一个周期.在f(x)•f(x+2)=6中,令x=1
函数概念与基本初等函数40分钟限时练(四)附答案人教版高中数学新高考指导
(8)映射 满足 ,则样的映射 有个.
【参考答案】***试卷处理标记,请不要删除
评卷人
得分
一、选择题
1.ABCD
解析:特殊值法:当 时, ,故可排除D项;当 时, ,故可排除A,C项;所以由排除法知选B.
2.A
3.A
4.D
解析:D函数 的定义域是 ,解得x≥4,选D.
C. , 是偶函数
D. , 是奇函数
C【命题意图】此题主要考查了全称量词与存在量词的概念和基础知识,通过对量词的考查结合函数的性质进行了交汇设问.
9.函数f(x)的定义域是 ,f(x2-1)的定义域是M,f(sinx)的定义域是N,则M N=--()
A、M B、N C、 D、
10.已知 ,则 --------------------------------------------( )
(2020湖北文)
B
2.已知函数 是定义在 上的偶函数,且在区间 上是增函数.令 , , ,则()
A. B. C. D. (2020天津理)
3.若函数 = 为奇函数,则 =()
(A) (B) (C) (D)1(2020辽宁文6)
4.函数 的定义域是()
A. B. C. D. (2020湖南理)
5.设函数 定义在实数集上,它的图像关于直线 对称,且当 时, ,则有()
高中数学专题复习
《函数的概念与基本初等函数》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选择题)
请点击修改第I卷的文字说明
人教版高三数学第二学期函数的概念与基本初等函数多选题单元达标提优专项训练试卷
人教版高三数学第二学期函数的概念与基本初等函数多选题单元达标提优专项训练试卷一、函数的概念与基本初等函数多选题1.已知当0x >时,2()24f x x x =-+;0x ≤时(2)y f x =+,以下结论正确的是( )A .()f x 在区间[]6,4--上是增函数;B .()()220212f f -+-=;C .函数()y f x =周期函数,且最小正周期为2;D .若方程()1f x kx =+恰有3个实根,则142k <<-4k =; 【答案】BD 【分析】利用函数的性质,依次对选项加以判断,ABC 考查函数的周期性及函数的单调性,重点理解函数周期性的应用,是解题的关键,D 选项考查方程的根的个数,需要转化为两个函数的交点个数,在同一图像中分别研究两个函数,临界条件是直线与函数()f x 相切,结合图像将问题简单化. 【详解】对于A ,0x ≤时(2)y f x =+,即()f x 在区间[]6,4--上的单调性与()f x 在区间[]0,2上单调性一致, 所以()f x 在[]6,5--上是增函数,在[]5,4--上是减函数,故A 错误; 对于B ,当0x ≤时,()2()f x f x +=,()()22=22242=0f f -=-⨯+⨯,()()()()20211=1+2=1=2+42f f f f -=---=,故B 正确;对于C ,当0x ≤时,()2()f x f x +=, 当0x >时,()f x 不是周期函数,故C 错误; 对于D ,由0x >时,2()24f x x x =-+;0x ≤时(2)y f x =+,可求得当20x -<<时,2()24f x x x =--;直线1y kx =+恒过点(0,1),方程()1f x kx =+恰有3个实根, 即函数()f x 和函数1y kx =+的图像有三个交点,当0k >时,直线1y kx =+与函数()f x (0x >)相切于点00(,)x y ,则020001244124k k xkx x x⎧>⎪⎪=-+⎨⎪+=-+⎪⎩,解得04222=2k x ⎧=-⎪⎨⎪⎩,要函数()f x 和函数1y kx =+的图像有三个交点, 则k 的取值范围为:14222k <<-; 当0k <时,当0x >时,直线1y kx =+与函数()f x 有两个交点, 设直线1y kx =+与函数()f x (0x ≤)相切于点00(,)x y '',则020*******k x kx x x =-'-⎧⎨'+=-'-'⎩,解得02242=k x ⎧=-⎪⎨'-⎪⎩综上,方程()1f x kx =+有3个实根, 则14222k <<-或224k =-,故D 正确.故选:BD. 【点睛】本题考查函数的性质,单调性,及函数零点个数的判断,主要考查学生的逻辑推理能力,数形结合能力,属于较难题.2.已知()x x f x e ke -=+(k 为常数),那么函数()f x 的图象不可能是( )A .B .C .D .【答案】AD 【分析】根据选项,四个图象可知备选函数都具有奇偶性.当1k =时,()xx f x e e -=+为偶函数,当1k =-时,()xx f x e e -=-为奇函数,再根据单调性进行分析得出答案.【详解】由选项的四个图象可知,备选函数都具有奇偶性. 当1k =时,()x x f x ee -=+为偶函数,当0x ≥时,1x t e =≥且单调递增,而1y t t=+在1) [,t ∈+∞上单调递增, 故函数()xx f x ee -=+在0) [,x ∈+∞上单调递增,故选项C 正确,D 错误;当1k =-时,()xx f x e e -=-为奇函数,当0x ≥时,1x t e =≥且单调递增,而1y t t=-在1) [,t ∈+∞上单调递减, 故函数()xx f x e e -=-在0) [,x ∈+∞上单调递减,故选项B 正确,A 错误.故选:AD . 【点睛】关键点点睛:本题考查函数性质与图象,本题的关键是根据函数图象的对称性,可知1k =或1k =-,再判断函数的单调性.3.已知21,1,()ln ,1,x x f x x x ⎧-≤⎪=⎨>⎪⎩,则关于x 的方程2[()]()210f x f x k -+-=,下列正确的是( )A .存在实数k ,使得方程恰有1个不同的实数解;B .存在实数k ,使得方程恰有2个不同的实数解;C .存在实数k ,使得方程恰有3个不同的实数解;D .存在实数k ,使得方程恰有6个不同的实数解; 【答案】ACD 【分析】令()0f x t =≥,根据判别式确定方程2210t t k -+-=根的个数,作出()f x 的大致图象,根据根的取值,数形结合即可求解. 【详解】令()0f x t =≥,则关于x 的方程2[()]()210f x f x k -+-=,可得2210t t k -+-=, 当58k =时,()14210k ∆=--=,此时方程仅有一个根12t =; 当58k <时,()14210k ∆=-->,此时方程有两个根12,t t , 且121t t +=,此时至少有一个正根; 当58k >时,()14210k ∆=--<,此时方程无根; 作出()f x 的大致图象,如下:当58k =时,此时12t =,由图可知()f x t =,有3个不同的交点,C 正确; 当58k <时,此时方程有两个根12,t t ,且121t t +=,此时至少有一个正根, 当()10,1t ∈、()20,1∈t ,且12t t ≠时,()f x t =,有6个不同的交点,D 正确; 当方程有两个根12,t t ,一个大于1,另一个小于0, 此时()f x t =,仅有1个交点,故A 正确;当方程有两个根12,t t ,一个等于1,另一个等于0,()f x t =,有3个不同的交点,当58k >时,()14210k ∆=--<,此时方程无根. 故选:ACD 【点睛】关键点点睛:本题考查了根的个数求参数的取值范围,解题的关键是利用换元法将方程化为2210t t k -+-=,根据方程根的分布求解,考查了数形结合的思想,分类讨论的思想.4.已知()f x 为R 上的奇函数,且当0x >时,()lg f x x =.记()sin ()cos g x x f x x =+⋅,下列结论正确的是( )A .()g x 为奇函数B .若()g x 的一个零点为0x ,且00x <,则()00lg tan 0x x --=C .()g x 在区间,2ππ⎛⎫-⎪⎝⎭的零点个数为3个 D .若()g x 大于1的零点从小到大依次为12,,x x ,则1223x x ππ<+<【答案】ABD 【分析】根据奇偶性的定义判断A 选项;将()0g x =等价变形为tan ()x f x =-,结合()f x 的奇偶性判断B 选项,再将零点问题转化为两个函数的交点问题,结合函数()g x 的奇偶性判断C 选项,结合图象,得出12,x x 的范围,由不等式的性质得出12x x +的范围. 【详解】由题意可知()g x 的定义域为R ,关于原点对称因为()()()sin ()cos sin ()cos ()g x x f x x x f x x g x -=-+-⋅-=--⋅=-,所以函数()g x 为奇函数,故A 正确; 假设cos 0x =,即,2x k k Z ππ=+∈时,sin ()co cos s sin 02x k x f x k πππ⎛⎫++⋅==≠ ⎪⎝⎭所以当,2x k k Z ππ=+∈时,()0g x ≠当,2x k k Z ππ≠+∈时,sin ()cos 0tan ()x f x x x f x +⋅=⇔=-当00x <,00x ->,则()000()()lg f x f x x =--=--由于()g x 的一个零点为0x , 则()()00000tan ()lg t lg an 0x x f x x x =-=⇒--=-,故B 正确;当0x >时,令12tan ,lg y x y x ==-,则()g x 大于0的零点为12tan ,lg y x y x ==-的交点,由图可知,函数()g x 在区间()0,π的零点有2个,由于函数()g x 为奇函数,则函数()g x 在区间,02π⎛⎫- ⎪⎝⎭的零点有1个,并且(0)sin 0(0)cos00g f =+⋅=所以函数在区间,2ππ⎛⎫- ⎪⎝⎭的零点个数为4个,故C 错误;由图可知,()g x 大于1的零点123,222x x ππππ<<<< 所以1223x x ππ<+< 故选:ABD 【点睛】本题主要考查了判断函数的奇偶性以及判断函数的零点个数,属于较难题.5.对x ∀∈R ,[]x 表示不超过x 的最大整数.十八世纪,[]y x =被“数学王子”高斯采用,因此得名为高斯函数,人们更习惯称为“取整函数”,则下列命题中的真命题是( ) A .,[]1x x x ∃∈+RB .,,[][][]x y x y x y ∀∈++RC .函数[]()y x x x =-∈R 的值域为[0,1)D .若t ∃∈R ,使得3451,2,3,,2nt t t t n ⎡⎤⎡⎤⎡⎤⎡⎤====-⎣⎦⎣⎦⎣⎦⎣⎦同时成立,则正整数n 的最大值是5 【答案】BCD 【分析】由取整函数的定义判断,由定义得[][]1x x x ≤<+,利用不等式性质可得结论. 【详解】[]x 是整数, 若[]1x x ≥+,[]1x +是整数,∴[][]1x x ≥+,矛盾,∴A 错误;,x y ∀∈R ,[],[]x x y y ≤≤,∴[][]x y x y +≤+,∴[][][]x y x y +≤+,B 正确;由定义[]1x x x -<≤,∴0[]1x x ≤-<,∴函数()[]f x x x =-的值域是[0,1),C 正确;若t ∃∈R ,使得3451,2,3,,2n t t t t n ⎡⎤⎡⎤⎡⎤⎡⎤====-⎣⎦⎣⎦⎣⎦⎣⎦同时成立,则1t ≤<,t ≤<t ≤<t ≤<,,t ≤<=6n ≥,则不存在t 同时满足1t ≤<t <5n ≤时,存在t ∈满足题意, 故选:BCD . 【点睛】本题考查函数新定义,正确理解新定义是解题基础.由新定义把问题转化不等关系是解题关键,本题属于难题.6.已知定义在R 上的函数()f x 满足:()()0f x f x +-=,且当0x ≥时,()x f x e x b =+-.若((2sin ))(sin )0f k b x f x ++-≤.在x ∈R 上恒成立,则k 的可能取值为( ) A .1 B .0C .1-D .2-【答案】CD 【分析】先判断函数的奇偶性和单调性,得到sinx ≥k (2+sinx ), 再根据题意,利用检验法判断即可. 【详解】因为定义在R 上的函数()f x 满足:()()0f x f x +-=, 所以()f x 为奇函数,0x ≥时,()x f x e x b =+-,显然()f x 在[0,)+∞上单调递增, 所以()f x 在R 上单调递增,由((2sin ))(sin )0f k b x f x ++-≤恒成立, 可得(sin )((2sin ))f x f k x +在R 上恒成立, 即sin (2sin )x k x +, 整理得:(1)sin 2k x k -当1k =时,02≥,不恒成立,故A 错误; 当0k =时,sin 0x ≥,不恒成立,故B 错误; 当1k =-时,sin 1x ≥-,恒成立,故C 正确; 当2k =-时,4sin 3x ≥-,恒成立,故D 正确. 故选:CD 【点睛】本题主要考查了函数的奇偶性和单调性,不等式恒成立问题,属于中档题.7.下列命题正确的是( )A .已知幂函数21()(1)m f x m x --=+在(0,)+∞上单调递减则0m =或2m =-B .函数2()(24)3f x x m x m =-++的有两个零点,一个大于0,一个小于0的一个充分不必要条件是1m <-.C .已知函数31()sin ln 1x f x x x x +⎛⎫=++⎪-⎝⎭,若(21)0f a ->,则a 的取值范围为1,2⎛⎫+∞ ⎪⎝⎭D .已知函数()f x 满足()()2f x f x -+=,1()x g x x+=,且()f x 与()g x 的图像的交点为()()()112288,,,,x y x y x y 则128128x x x y y y ++⋯++++⋯+的值为8【答案】BD 【分析】根据幂函数的性质,可判定A 不正确;根据二次函数的性质和充分条件、必要条件的判定,可得判定B 是正确;根据函数的定义域,可判定C 不正确;根据函数的对称性,可判定D 正确,即可求解. 【详解】对于A 中,幂函数21()(1)m f x m x--=+,可得11m +=±,解得0m =或2m =-,当0m =时,函数1()f x x -=在(0,)+∞上单调递减;当2m =-时,函数()f x x =在(0,)+∞上单调递增,所以A 不正确;对于B 中,若函数2()(24)3f x x m x m =-++的有两个零点,且一个大于0,一个小于0,则满足(0)30f m =<,解得0m <,所以1m <-是函数2()(24)3f x x m x m =-++的有两个零点,且一个大于0,一个小于0的充分不必要条件,所以B 是正确; 对于C 中,由函数31()sin ln()1x f x x x x +=++-,则满足101xx+>-,解得11x -<<, 即函数()f x 的定义域为(1,1)-,所以不等式(21)0f a ->中至少满足1211a -<-<, 即至少满足01a <<,所以C 不正确;对于D 中,函数()f x 满足()()2f x f x -+=,可得函数()y f x =的图象关于(0,1)点对称, 又由11()x x g x x x-+--==-,可得()()2g x g x -+=,所以函数()y g x =的图象关于(0,1)点对称,则1281280428x x x y y y ++⋯++++⋯+⨯+==,所以D 正确.故选:BD.【点睛】本题主要考查了以函数的基本性质为背景的命题的真假判定,其中解答中熟记函数的基本性质,逐项判定是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.8.已知定义域为R 的奇函数()f x ,满足22,2()2322,02x f x x x x x ⎧>⎪=-⎨⎪-+<≤⎩,下列叙述正确的是( )A .存在实数k ,使关于x 的方程()f x kx =有7个不相等的实数根B .当1211x x -<<<时,恒有12()()f x f x >C .若当(0,]x a ∈时,()f x 的最小值为1,则5[1,]2a ∈ D .若关于x 的方程3()2f x =和()f x m =的所有实数根之和为零,则32m =- 【答案】AC 【分析】根据奇函数()()f x f x -=-,利用已知定义域的解析式,可得到对称区间上的函数解析式,然后结合函数的图象分析各选项的正误,即可确定答案 【详解】函数是奇函数,故()f x 在R 上的解析式为:222,22322,20()0,022,022,223x x x x x f x x x x x x x ⎧<-⎪+⎪----≤<⎪⎪==⎨⎪-+<≤⎪⎪>⎪-⎩绘制该函数的图象如所示:对A :如下图所示直线1l 与该函数有7个交点,故A 正确;对B :当1211x x -<<<时,函数不是减函数,故B 错误; 对C :如下图直线2:1l y =,与函数图交于5(1,1),(,1)2, 故当()f x 的最小值为1时有5[1,]2a ∈,故C 正确对D :3()2f x =时,函数的零点有136x =、21x =+、21x =-; 若使得其与()f x m =的所有零点之和为0, 则32m =-或38m =-,如图直线4l 、5l ,故D 错误故选:AC 【点睛】本题考查了分段函数的图象,根据奇函数确定对称区间上函数的解析式,进而根据函数的图象分析命题是否成立9.已知函数()22,21ln 1,1x x f x x x e +-≤≤⎧=⎨-<≤⎩,若关于x 的方程()f x m =恰有两个不同解()1212,x x x x <,则()212)x x f x -(的取值可能是( ) A .3- B .1-C .0D .2【答案】BC 【分析】利用函数的单调性以及已知条件得到1122,e ,(1,0]2m m x x m +-==∈-,代入()212)x x f x -(,令121(),(1,0]2x g x xe x x x +=-+∈-,求导,利用导函数的单调性分析原函数的单调性,即可求出取值范围. 【详解】因为()f x m =的两根为()1212,x x x x <, 所以1122,e ,(1,0]2m m x x m +-==∈-, 从而()()211212222m m m m x x f x e m me m ++-⎛⎫-=-=-+ ⎪⎝⎭. 令121(),(1,0]2x g x xex x x +=-+∈-, 则1()(1)1x g x x e x +'=+-+,(1,0]x ∈-.因为(1,0]x ∈-,所以1010,1,10x x e e x ++>>=-+>, 所以()0g x '>在(1,0]-上恒成立, 从而()g x 在(1,0]-上单调递增. 又5(0)0,(1)2g g =-=-, 所以5(),02g x ⎛⎤∈- ⎥⎝⎦,即()()212x x f x -⋅的取值范围是5,02⎛⎤- ⎥⎝⎦, 故选:BC . 【点睛】关键点睛:本题考查利用导数解决函数的范围问题.构造函数121(),(1,0]2x g x xe x x x +=-+∈-,利用导数求取值范围是解决本题的关键.10.已知定义在R 上的函数()f x 的图象连续不断,若存在常数()t t R ∈,使得()()0f x t tf x ++=对任意的实数x 成立,则称()f x 是回旋函数.给出下列四个命题中,正确的命题是( )A .常值函数()(0)f x a a =≠为回旋函数的充要条件是1t =-;B .若(01)x y a a =<<为回旋函数,则1t >;C .函数2()f x x =不是回旋函数;D .若()f x 是2t =的回旋函数,则()f x 在[0]4030,上至少有2015个零点. 【答案】ACD 【分析】A.利用回旋函数的定义即可判断;B.代入回旋函数的定义,推得矛盾,判断选项;C.利用回旋函数的定义,令0x =,则必有0t = ,令1x =,则2310t t ++=,推得矛盾;D.根据回旋函数的定义,推得()()22f x f x +=-,再根据零点存在性定理,推得零点的个数. 【详解】A.若()f x a =,则()f x t a +=,则0a ta +=,解得:1t =-,故A 正确;B.若指数函数()01xy a a =<<为回旋函数,则0x t x a ta ++=,即0t a t +=,则0t <,故B 不正确;C.若函数()2f x x =是回旋函数,则()220x t tx ++=,对任意实数都成立,令0x =,则必有0t = ,令1x =,则2310t t ++=,显然0t =不是方程的解,故假设不成立,该函数不是回旋函数,故C 正确;D. 若()f x 是2t =的回旋函数,则()()220f x f x ++=,对任意的实数x 都成立,即有()()22f x f x +=-,则()2f x +与()f x 异号,由零点存在性定理得,在区间(),2x x +上必有一个零点,可令0,2,4,...20152x =⨯,则函数()f x 在[]0,4030上至少存在2015个零点,故D 正确. 故选:ACD 【点睛】本题考查以新定义为背景,判断函数的性质,重点考查对定义的理解,应用,属于中档题型.11.已知()f x 为定义在R 上且周期为5的函数,当[)0,5x ∈时,()243f x x x =-+.则下列说法中正确的是( )A .()f x 的增区间为()()15,2535,55k k k k ++⋃++,k Z ∈B .若y a =与()y f x =在[]5,7-上有10个零点,则a 的范围是()0,1C .当[]0,x a ∈时,()f x 的值域为[]0,3,则a 的取值范围[]1,4 D .若()20y kx k =->与()y f x =有3个交点,则k 的取值范围为12,23⎛⎫ ⎪⎝⎭【答案】BC 【分析】首先作出()f x 的图象几个周期的图象,由于单调区间不能并,可判断选项A 不正确;利用数形结合可判断选项B 、C ;举反例如1k =时经分析可得()20y kx k =->与()y f x =有3个交点,可判断选项D 不正确,进而可得正确选项. 【详解】对于选项A :单调区间不能用并集,故选项A 不正确;对于选项B :由图知若y a =与()y f x =在[]5,7-上有10个零点,则a 的范围是()0,1, 故选项B 正确;对于选项C :()10f =,()43f =,由图知当[]0,x a ∈时,()f x 的值域为[]0,3,则a 的取值范围[]1,4,故选项C 正确;对于选项D :当1k =时,直线为2y x =-过点()5,3,()f x 也过点()5,3,当10x =时,1028y =-=,直线过点()10,8,而点()10,8不在()f x 图象上,由图知:当1k =时,直线为2y x =-与()y f x =有3个交点,由排除法可知选项D 不正确,故选:BC 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.12.函数1()()0()x f x x ⎧=⎨⎩为有理数为无理数, 则下列结论正确的是( )A .()f x 是偶函数B .()f x 的值域是{0,1}C .方程(())f f x x =的解为1x =D .方程(())()f f x f x =的解为1x =【答案】ABC 【分析】 逐项分析判断即可. 【详解】当x -为有理数时,x 也为有理数∴()1f x -=当x -为无理数时,x 也为无理数∴()0f x -= ∴1()()0()x f x x ⎧-=⎨⎩为有理数为无理数∴()()f x f x -=()f x ∴是偶函数,A 对;易知B 对;1x =时,()((1))11f f f ==∴C 对(())()f f x f x =的解为全体有理数∴D 错故选:ABC. 【点睛】本题综合考查分段函数的奇偶性判断、值域、解方程等,要求学生能灵活应用知识解题,13.已知函数22,0()(2),0x x x f x f x x ⎧--<=⎨-≥⎩,以下结论正确的是( )A .函数()f x 在区间[2,4]上是减函数B .(2020)(2021)1f f +=C .若方程()10()f x mx m R --=∈恰有5个不相等的实根,则11,46m ⎛⎫∈-- ⎪⎝⎭ D .若函数()y f x k =-在区间(,6)-∞上有8个零点()*8,i x i i N ≤∈,则8116i i x ==∑【答案】BCD 【分析】对于A ,画出函数的图象即可判断;对于B ,由函数的周期性可计算求解;对于C ,方程()10()f x mx m R --=∈恰有5个不相等的实根等价于()y f x =与直线1y mx =+有5个交点,画出图形即可判断求解;对于D ,函数()y f x k =-在区间(,6)-∞上有8个零点,则()y f x =与y k =有8个交点,由对称性可求解. 【详解】由题可知当0x ≥时,()f x 是以2为周期的函数,则可画出()f x 的函数图象,对于A ,根据函数图象可得,()f x 在()2,3单调递增,在()3,4单调递减,故A 错误; 对于B ,()()()2020020f f f ==-=,()()()2021111f f f ==-=,则(2020)(2021)1f f +=,故B 正确;对于C ,方程()10()f x mx m R --=∈恰有5个不相等的实根等价于()y f x =与直线1y mx =+有5个交点,如图,直线1y mx =+过定点()0,1A ,观察图形可知AB AC k m k <<,其中()()4,0,6,0B C ,则11,46AB AC k k =-=-,故11,46m ⎛⎫∈-- ⎪⎝⎭,故对于D ,若函数()y f x k =-在区间(,6)-∞上有8个零点,则()y f x =与y k =有8个交点,如图,可知这八个零点关于2x =对称,则814416ii x==⨯=∑,故D 正确.故选:BCD. 【点睛】关键点睛:本题考查函数与方程的综合问题,解题的关键是判断出函数的周期性,画出函数的图象,即可将方程的解的个数问题、函数的零点问题转化为函数图象的交点问题,利用数形结合的思想可快捷解决问题.14.设函数(){}22,,2f x min x x x =-+其中{},,min x y z 表示,,x y z 中的最小者.下列说法正确的有( ) A .函数()f x 为偶函数B .当[)1,x ∈+∞时,有()()2f x f x -≤C .当x ∈R 时,()()()ff x f x ≤D .当[]4,4x ∈-时,()()2f x f x -≥ 【答案】ABC 【分析】画出()f x 的图象然后依据图像逐个检验即可. 【详解】解:画出()f x 的图象如图所示:对A ,由图象可知:()f x 的图象关于y 轴对称,故()f x 为偶函数,故A 正确; 对B ,当12x ≤≤时,120x -≤-≤,()()()222f x f x x f x -=-≤-=; 当23x <≤时,021x <-≤,()()22f x x f x -≤-=;当34x <≤时,122x <-≤,()()()22242f x x x x f x -=--=-≤-=; 当4x ≥时,22x -≥,此时有()()2f x f x -<,故B 成立;对C ,从图象上看,当[)0,x ∈+∞时,有()f x x ≤成立,令()t f x =,则0t ≥,故()()f f x f x ⎡⎤≤⎣⎦,故C 正确;对D ,取32x =,则111224f f ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,3122f ⎛⎫= ⎪⎝⎭,()()2f x f x -<,故D 不正确. 故选:ABC . 【点睛】方法点睛:一般地,若()()(){}min ,f x S x T x =(其中{}min ,x y 表示,x y 中的较小者),则()f x 的图象是由()(),S x T x 这两个函数的图象的较低部分构成的.15.对于函数()9f x x x=+,则下列判断正确的是( ) A .()f x 在定义域内是奇函数B .函数()f x 的值域是(][),66,-∞-⋃+∞C .()12,0,3x x ∀∈,12x x ≠,有()()12120f x f x x x ->-D .对任意()12,0,x x ∈+∞且12x x ≠,有()()1212122x x f f x f x +⎛⎫<+⎡⎤ ⎪⎣⎦⎝⎭【答案】ABD 【分析】根据函数奇偶性定义判断()f x 的奇偶性,利用基本不等式求()f x 的值域,设1203x x <<<,根据解析式判断()()12,f x f x 的大小,进而确定()()1212,0f x f x x x --的大小关系,应用作差、作商法判断12122,2()()f x f x x x f +⎛⎫⎪+⎝⎭大小关系,进而确定各项的正误. 【详解】A :由解析式知:定义域为0x ≠,99()()()f x x x f x x x-=-+=-+=--,即()f x 在定义域内是奇函数,正确; B :当0x >时,()96f x x x =+≥=当且仅当3x =时等号成立;当0x <时有0x ->,()9[()()]6f x x x=--+-≤-=-当且仅当3x =-时等号成立;故其值域(][),66,-∞-⋃+∞,正确;C :当1203x x <<<时,()()1212121212999()(1)f x f x x x x x x x x x -=-+-=--,而120x x -<,12910x x -<,则()()120f x f x ->,所以()()12120f x f x x x -<-,错误;D :若120x x >>,1212123622x x f x x x x +⎛⎫=++⎪+⎝⎭,12121299()()f x f x x x x x +=+++,所以121212123699()()]2[()2f x f x x x x x x x f +⎛⎫- ⎪⎝+=-++⎭,而121221212364199()x x x x x x x x +=<++,即()()1212122x x f f x f x +⎛⎫<+⎡⎤ ⎪⎣⎦⎝⎭,正确; 故选:ABD【点睛】关键点点睛:综合应用函数奇偶性的证明、对勾函数值域的求法、作差(作商)法比较大小,判断各选项的正误.16.下列函数求值域正确的是( )A .2()1(2)f x x x =++-的值域为[2)+∞,B .222()1x x g x x ++=+的值域为[2)+∞,C .()11h x x x =+--的值域为(02],D .()13w x x x =-++的值域为[222],【答案】CD 【分析】()12f x x x =++-去绝对值结合单调性和图象即可判断选项A ;2(1)11()(1)11x g x x x x ++==++++讨论10x +>和10x +<,利用基本不等式求值域可判断选项B ;()1111h x x x x x =+--=++-利用单调性即可判断选项C ;()w x 定义域为[31]-,,将()13w x x x =-++两边平方可得()222(1)44w x x =-+++,由于()0w x >,可得()22(1)44w x x =-+++,求出2(1)t x =-+的范围即可求()w x 值域,可判断选项D. 【详解】对于选项A :原函数化为211()12312212x x f x x x x x x -+≤-⎧⎪=++-=-<≤⎨⎪->⎩,,,, 其图象如图,原函数值域为[3)+∞,,故选项A 不正确,对于选项B :2(1)11()(1)11x g x x x x ++==++++,定义域为{}|1x x ≠-,当1x <-时,10x +<,此时[]1(1)21x x ⎛⎫-++-≥= ⎪+⎝⎭,所以1(1)21x x ++≤-+,当且仅当1(1)1x x -+=-+即2x =-时等号成立,当1x >-时,10x +>,此时1(1)21x x ++≥=+,当且仅当111x x +=+即0x =时等号成立, 所以函数()g x 值域为(2][2)-∞-⋃+∞,,,故选项B 不正确; 对于选项C :()h x 的定义域为[1)+∞,,()h x ===,因为y =y =[1)+∞,上是增函数,所以y =[1)+∞,上是增函数,又y =[1)+∞,上恒不等于0,则y =在[1)+∞,上是减函数,则()h x 的最大值为()1h =又因为()0h x >,所以()h x 的值域为(0,故选项C 正确;对于选项D :()w x 的定义域为[31]-,,()w x ======设2(1)t x =-+,则[40]t ∈-,,[]0,4,[]44,8∈,则()2,w x ⎡=⎣,()w x 的值域为[2,故选项D 正确, 故选:CD 【点睛】方法点睛:求函数值域常用的方法(1)观察法:一些简单的函数,值域可以通过观察法得到;(2)利用常见函数的值域:一次函数值域为R ;二次函数利用配方法,结合定义域求出值域;反比例函数的值域为{}|0y y ≠;指数函数的值域为{}|0y y >;对数函数值域为R ;正、余弦函数的值域为[]1,1-;正切函数值域为R ;(3)单调性法:先判断函数的单调性,再由函数的单调性求函数的值域; (4)分离常数法:将有理分式转化为反比例函数类的形式,便于求值域;(5)换元法:对于一些无理函数如y ax b cx d =±±±,通过换元将他们转化为有理函数,通过求有理函数的值域间接求原函数的值域;(6)不等式法:利用几个重要的不等式及其推论来求最值,进而求得值域,如222a b ab +≥,2a b ab +≥,以及绝对值三角不等式等;(7)判别式法:把函数解析式化为关于x 的一元二次方程,利用判别式求值域,形如2y Ax B ax bx c =+++或22ax bx c y dx ex f++=++的函数适用; (8)有界性法:充分利用三角函数或一些代数表达式的有界性,求出值域; (9)配方法:求二次函数型函数值域的基本方法,形如()()()()20F x a f x bf x c a =++≠⎡⎤⎣⎦的函数求值域,均可使用配方法;(10)数形结合法:若函数的解析式的几何意义较明显,如距离、斜率等可使用数形结合法;(11)导数法:利用导数求函数值域时,一种是利用导数判断函数的单调性,进而根据单调性求函数的值域;一种是利用导数与极值、最值的关系求函数的值域.17.已知函数()22,1,1x x f x x x -≥⎧=⎨<⎩,若存在实数a ,使得()()f a f f a ⎡⎤=⎣⎦,则a 的个数不是( ) A .2 B .3C .4D .5【答案】ABD 【分析】令()f a t =,即满足()f t t =,对t 进行分类讨论,结合已知函数解析式代入即可求得满足题意的t ,进而求得a. 【详解】令()f a t =,即满足()f t t =,转化为函数()1y f t =与2y t =有交点,结合图像由图可知,()f t t =有两个根0t =或1t =(1)当1t =,即()1f a =,由()22,1,1a a f a a a -≥⎧=⎨<⎩,得1a =±时,经检验均满足题意;(2)当0t =,即()0f a =,当1a ≥时,()20f a a =-=,解得:2a =;当1a <时,()20f a a ==,解得:0a =;综上所述:共有4个a . 故选:ABD . 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图像,利用数形结合的方法求解18.定义域和值域均为[],a a -的函数()y f x =和()y g x =的图象如图所示,其中0a c b >>>,下列四个结论中正确有( )A .方程()0f g x =⎡⎤⎣⎦有且仅有三个解B .方程()0g f x =⎡⎤⎣⎦有且仅有三个解C .方程()0f f x =⎡⎤⎣⎦有且仅有八个解D .方程()0g g x =⎡⎤⎣⎦有且仅有一个解【答案】ABD 【分析】通过利用()t f x =和()t g x =,结合函数()y f x =和()y g x =的图象,分析每个选项中外层函数的零点,再分析内层函数的图象,即可得出结论. 【详解】由图象可知,对于方程()y f x =,当a y c -≤<-或c y a <≤,方程()y f x =只有一解;当y c =±时,方程()y f x =只有两解;当c y c -<<时,方程()y f x =有三解; 对于方程()y g x =,当a y a -≤≤时,方程()y g x =只有唯一解.对于A 选项,令()t x g =,则方程()0f t =有三个根1t b =-,20t =,3t b =,方程()g x b =-、()0g x =、()g x b =均只有一解, 所以,方程()0f g x =⎡⎤⎣⎦有且仅有三个解,A 选项正确; 对于B 选项,令()t f x =,方程()0g t =只有一解1t b =,方程()f x b =只有三解,所以,方程()0g f x =⎡⎤⎣⎦有且仅有三个解,B 选项正确; 对于C 选项,设()t f x =,方程()0f t =有三个根1t b =-,20t =,3t b =,方程()f x b =-有三解,方程()0f x =有三解,方程()f x b =有三解, 所以,方程()0f f x =⎡⎤⎣⎦有且仅有九个解,C 选项错误;对于D 选项,令()t x g =,方程()0g t =只有一解1t b =,方程()g x b =只有一解, 所以,方程()0g g x =⎡⎤⎣⎦有且仅有一个解,D 选项正确. 故选:ABD. 【点睛】思路点睛:对于复合函数()y f g x ⎡⎤=⎣⎦的零点个数问题,求解思路如下: (1)确定内层函数()u g x =和外层函数()y f u =; (2)确定外层函数()y f u =的零点()1,2,3,,i u u i n ==;(3)确定直线()1,2,3,,i u u i n ==与内层函数()u g x =图象的交点个数分别为1a 、2a 、3a 、、n a ,则函数()y f g x ⎡⎤=⎣⎦的零点个数为123n a a a a ++++.19.若定义在R 上的函数()f x 满足()()0f x f x ,当0x <时,23()22f x x ax a =++(a ∈R ),则下列说法正确的是( )A .若方程()2af x ax =+有两个不同的实数根,则0a <或48a << B .若方程()2af x ax =+有两个不同的实数根,则48a << C .若方程()2af x ax =+有4个不同的实数根,则8a > D .若方程()2af x ax =+有4个不同的实数根,则4a > 【答案】AC 【分析】由题知()f x 是R 上的奇函数,则由0x <时的解析式可求出()f x 在R 上的解析式.先讨论特殊情况0x =为方程的根,则可求出0a =,此时方程化为()0f x =,而函数()f x 为R 上的减函数,则方程仅有一个根.当0x ≠时,由分段函数分类讨论得出0x <时,1(1)2(1)a x x =-+++-+,0x >时,4242a x x =-++-.利用数形结合思想,画出图象,则可得知方程()2af x ax =+不同的实数根个数分别为2个和4时,参数a 的取值范围. 【详解】 因为()()0f x f x 所以()()f x f x -=-,所以()f x 是R 上的奇函数,(0)0f =, 当0x >时,0x -<,23()22f x x ax a -=-+, 所以23()()22f x f x x ax a =--=-+-, 综上2232,02()0,032,02x ax a x f x x x ax a x ⎧++<⎪⎪==⎨⎪⎪-+->⎩,若0x =是方程()2af x ax =+的一个根, 则0a =,此时()2af x ax =+,即()0f x =, 而22,0()0,0,0x x f x x x x ⎧<⎪==⎨⎪->⎩,在R 上单调递减,当0a =时,原方程有一个实根. 当0x <时,23222a x ax a ax ++=+, 所以20x ax a ++=,当1x =-时不满足,所以21(1)21(1)x a x x x =-=-++++-+, 当0x >时,23222ax ax a ax -+-=+, 所以220x ax a -+=,当2x =时不满足,所以242422x a x x x ==-++--,如图:若方程()2af x ax =+有两个不同的实数根, 则0a <或48a <<;若方程()2af x ax =+有4个不同的实数根,则8a >. 故选:AC 【点睛】关键点点睛:本题的关键是将方程()2af x ax =+进行参数分离,再借助数形结合法,求出对应的参数的取值范围.20.已知函数()f x 满足:当-<3≤0x 时,()()1xf x e x =+,下列命题正确的是( )A .若()f x 是偶函数,则当03x <≤时,()()1xf x e x =+B .若()()33f x f x --=-,则()()32g x f x e=+在()6,0x ∈-上有3个零点 C .若()f x 是奇函数,则1x ∀,[]23,3x ∈-,()()122f x f x -<D .若()()3f x f x +=,方程()()20f x kf x -=⎡⎤⎣⎦在[]3,3x ∈-上有6个不同的根,则k 的范围为2312k e e -<<- 【答案】BC 【分析】A 选项,利用函数的奇偶性求出解析式即可判断;B 选项,函数()f x 关于直线3x =-对称,利用导数研究函数的单调性作出函数图像,由函数图像可知当()6,0x ∈-时,函数()f x 与直线32y e=-有3个交点可判断;C 选项,由函数图像关于原点对称求出函数的值域进行判断;D 选项,函数周期为3,作出函数图像知方程()0f x =在[]3,3x ∈-上有两个不同的根,则2312k e e -<≤-时方程()f x k =在[]3,3x ∈-上有4个不同的根. 【详解】A 选项,若03x <≤,则30x -≤-<,()()1xf x e x --=-+,因为函数()f x 是偶函数,所以()()()1xf x f x ex -=-=-+,A 错误;B 选项,若()()33f x f x --=-,则函数()f x 关于直线3x =-对称,当-<3≤0x 时,()()2xf x ex '=+,当()3,2x ∈--时,()0f x '<,函数()f x 单调递减,当()2,0x ∈--时,()0f x '>,函数()f x 单调递增,且()323f e-=-,()2120f e-=-<,()10f -=, 作出函数大致图像如图所示,则当()6,0x ∈-时,函数()f x 与直线32y e=-有3个交点,即函数()()32g x f x e=+在()6,0x ∈-上有3个零点,B 正确;C 选项,由B 知当[3,0)x ∈-时,()2[,1)f x e -∈-,若函数()f x 为奇函数,则当[]3,3x ∈-时()()1,1f x ∈-,所以1x ∀,[]23,3x ∈-,()()122f x f x -<,C 正确;D 选项,若()()3f x f x +=,则函数()f x 的周期为3,作出函数在[]3,3x ∈-上的图像如图所示,若方程()()20f x kf x -=⎡⎤⎣⎦即()()[]0f x f x k -=在[]3,3x ∈-上有6个不同的根,因为方程()0f x =在[]3,3x ∈-上有两个不同的根,所以()f x k =在[]3,3x ∈-上有4个不同的根,又()323f e -=-,()2120f e -=-<,所以2312k e e -<≤-,D 错误. 故选:BC 【点睛】本题考查函数的图像与性质综合应用,涉及函数的单调性、奇偶性、对称性,函数的零点与方程的根,综合性较强,属于较难题.。
高考数学提高题专题复习函数的概念与基本初等函数多选题练习题及答案
高考数学提高题专题复习函数的概念与基本初等函数多选题练习题及答案一、函数的概念与基本初等函数多选题1.已知当0x >时,2()24f x x x =-+;0x ≤时(2)y f x =+,以下结论正确的是( )A .()f x 在区间[]6,4--上是增函数;B .()()220212f f -+-=;C .函数()y f x =周期函数,且最小正周期为2;D .若方程()1f x kx =+恰有3个实根,则142k <<-4k =; 【答案】BD 【分析】利用函数的性质,依次对选项加以判断,ABC 考查函数的周期性及函数的单调性,重点理解函数周期性的应用,是解题的关键,D 选项考查方程的根的个数,需要转化为两个函数的交点个数,在同一图像中分别研究两个函数,临界条件是直线与函数()f x 相切,结合图像将问题简单化. 【详解】对于A ,0x ≤时(2)y f x =+,即()f x 在区间[]6,4--上的单调性与()f x 在区间[]0,2上单调性一致, 所以()f x 在[]6,5--上是增函数,在[]5,4--上是减函数,故A 错误; 对于B ,当0x ≤时,()2()f x f x +=,()()22=22242=0f f -=-⨯+⨯,()()()()20211=1+2=1=2+42f f f f -=---=,故B 正确;对于C ,当0x ≤时,()2()f x f x +=, 当0x >时,()f x 不是周期函数,故C 错误; 对于D ,由0x >时,2()24f x x x =-+;0x ≤时(2)y f x =+,可求得当20x -<<时,2()24f x x x =--;直线1y kx =+恒过点(0,1),方程()1f x kx =+恰有3个实根, 即函数()f x 和函数1y kx =+的图像有三个交点,当0k >时,直线1y kx =+与函数()f x (0x >)相切于点00(,)x y ,则020001244124k k x kxx x⎧>⎪⎪=-+⎨⎪+=-+⎪⎩,解得04222=2k x ⎧=-⎪⎨⎪⎩,要函数()f x 和函数1y kx =+的图像有三个交点, 则k 的取值范围为:14222k <<-; 当0k <时,当0x >时,直线1y kx =+与函数()f x 有两个交点, 设直线1y kx =+与函数()f x (0x ≤)相切于点00(,)x y '',则020*******k x kx x x =-'-⎧⎨'+=-'-'⎩,解得02242=k x ⎧=-⎪⎨'-⎪⎩综上,方程()1f x kx =+有3个实根, 则14222k <<-或224k =-,故D 正确.故选:BD. 【点睛】本题考查函数的性质,单调性,及函数零点个数的判断,主要考查学生的逻辑推理能力,数形结合能力,属于较难题.2.已知21,1,()ln ,1,x x f x x x ⎧-≤⎪=⎨>⎪⎩,则关于x 的方程2[()]()210f x f x k -+-=,下列正确的是( )A .存在实数k ,使得方程恰有1个不同的实数解;B .存在实数k ,使得方程恰有2个不同的实数解;C .存在实数k ,使得方程恰有3个不同的实数解;D .存在实数k ,使得方程恰有6个不同的实数解; 【答案】ACD 【分析】令()0f x t =≥,根据判别式确定方程2210t t k -+-=根的个数,作出()f x 的大致图象,根据根的取值,数形结合即可求解. 【详解】令()0f x t =≥,则关于x 的方程2[()]()210f x f x k -+-=,可得2210t t k -+-=, 当58k =时,()14210k ∆=--=,此时方程仅有一个根12t =; 当58k <时,()14210k ∆=-->,此时方程有两个根12,t t , 且121t t +=,此时至少有一个正根; 当58k >时,()14210k ∆=--<,此时方程无根; 作出()f x 的大致图象,如下:当58k =时,此时12t =,由图可知()f x t =,有3个不同的交点,C 正确; 当58k <时,此时方程有两个根12,t t ,且121t t +=,此时至少有一个正根, 当()10,1t ∈、()20,1∈t ,且12t t ≠时,()f x t =,有6个不同的交点,D 正确; 当方程有两个根12,t t ,一个大于1,另一个小于0, 此时()f x t =,仅有1个交点,故A 正确;当方程有两个根12,t t ,一个等于1,另一个等于0,()f x t =,有3个不同的交点,当58k >时,()14210k ∆=--<,此时方程无根. 故选:ACD 【点睛】关键点点睛:本题考查了根的个数求参数的取值范围,解题的关键是利用换元法将方程化为2210t t k -+-=,根据方程根的分布求解,考查了数形结合的思想,分类讨论的思想.3.已知()f x 为R 上的奇函数,且当0x >时,()lg f x x =.记()sin ()cos g x x f x x =+⋅,下列结论正确的是( )A .()g x 为奇函数B .若()g x 的一个零点为0x ,且00x <,则()00lg tan 0x x --=C .()g x 在区间,2ππ⎛⎫-⎪⎝⎭的零点个数为3个 D .若()g x 大于1的零点从小到大依次为12,,x x ,则1223x x ππ<+<【答案】ABD 【分析】根据奇偶性的定义判断A 选项;将()0g x =等价变形为tan ()x f x =-,结合()f x 的奇偶性判断B 选项,再将零点问题转化为两个函数的交点问题,结合函数()g x 的奇偶性判断C 选项,结合图象,得出12,x x 的范围,由不等式的性质得出12x x +的范围. 【详解】由题意可知()g x 的定义域为R ,关于原点对称因为()()()sin ()cos sin ()cos ()g x x f x x x f x x g x -=-+-⋅-=--⋅=-,所以函数()g x 为奇函数,故A 正确; 假设cos 0x =,即,2x k k Z ππ=+∈时,sin ()co cos s sin 02x k x f x k πππ⎛⎫++⋅==≠ ⎪⎝⎭所以当,2x k k Z ππ=+∈时,()0g x ≠当,2x k k Z ππ≠+∈时,sin ()cos 0tan ()x f x x x f x +⋅=⇔=-当00x <,00x ->,则()000()()lg f x f x x =--=--由于()g x 的一个零点为0x , 则()()00000tan ()lg t lg an 0x x f x x x =-=⇒--=-,故B 正确;当0x >时,令12tan ,lg y x y x ==-,则()g x 大于0的零点为12tan ,lg y x y x ==-的交点,由图可知,函数()g x 在区间()0,π的零点有2个,由于函数()g x 为奇函数,则函数()g x 在区间,02π⎛⎫- ⎪⎝⎭的零点有1个,并且(0)sin 0(0)cos00g f =+⋅=所以函数在区间,2ππ⎛⎫- ⎪⎝⎭的零点个数为4个,故C 错误;由图可知,()g x 大于1的零点123,222x x ππππ<<<< 所以1223x x ππ<+< 故选:ABD 【点睛】本题主要考查了判断函数的奇偶性以及判断函数的零点个数,属于较难题.4.定义在R 上的函数()(),()22(2)f x x g x g x x g x =+=--+--,若()f x 在区间[1,)-+∞上为增函数,且存在20t -<<,使得(0)()0f f t ⋅<.则下列不等式一定成立的是( )A .21(1)()2f t t f ++> B .(2)0()f f t ->> C .(2)(1)f t f t +>+D .(1)()f t f t +>【答案】ABC 【分析】先由()(),()22(2)f x x g x g x x g x =+=--+--推出()f x 关于1x =-对称,然后可得出B 答案成立,对于答案ACD ,要比较函数值的大小,只需分别看自变量到对称轴的距离的大小即可 【详解】因为()(),()22(2)f x x g x g x x g x =+=--+--所以(2)2(2)2()22()()f x x g x x g x x g x x f x --=--+--=--+++=+= 所以()f x 关于1x =-对称,所以(0)(2)f f =- 又因为()f x 在区间[1,)-+∞上为增函数,20t -<<所以(0)(2)()f f f t =-> 因为(0)()0f f t ⋅<所以()0,(2)(0)0f t f f <-=> 所以选项B 成立因为2231120224t t t ⎛⎫++-=++> ⎪⎝⎭所以21t t ++比12离对称轴远 所以21(1)()2f t t f ++>,所以选项A 成立 因为()()2232250t t t +-+=+>所以32t t +>+,所以2t +比1t +离对称轴远 所以(2)(1)f t f t +>+,即C 答案成立因为20t -<<,所以()()222123t t t +-+=+符号不定 所以2t +,1t +无法比较大小,所以(1)()f t f t +>不一定成立 所以D 答案不一定成立 故选:ABC 【点睛】本题考查的是函数的性质,由条件得出()f x 关于1x =-对称是解题的关键.5.德国著名数学家狄利克雷(Dirichlet ,1805~1859)在数学领域成就显著.19世纪,狄利克雷定义了一个“奇怪的函数” ()1,0,R x Qy f x x C Q ∈⎧==⎨∈⎩其中R 为实数集,Q 为有理数集.则关于函数()f x 有如下四个命题,正确的为( ) A .函数()f x 是偶函数B .1x ∀,2R xC Q ∈,()()()1212f x x f x f x +=+恒成立 C .任取一个不为零的有理数T ,f x Tf x 对任意的x ∈R 恒成立D .不存在三个点()()11,A x f x ,()()22,B x f x ,()()33C x f x ,,使得ABC ∆为等腰直角三角形 【答案】ACD 【分析】根据函数的定义以及解析式,逐项判断即可. 【详解】对于A ,若x Q ∈,则x Q -∈,满足()()f x f x =-;若R x C Q ∈,则R x C Q -∈,满足()()f x f x =-;故函数()f x 为偶函数,选项A 正确;对于B ,取12,R R x C Q x C Q ππ=∈=-∈,则()()1201f x x f +==,()()120f x f x +=,故选项B 错误;对于C ,若x Q ∈,则x T Q +∈,满足()()f x f x T =+;若R x C Q ∈,则R x T C Q +∈,满足()()f x f x T =+,故选项C 正确;对于D ,要为等腰直角三角形,只可能如下四种情况:①直角顶点A 在1y =上,斜边在x 轴上,此时点B ,点C 的横坐标为无理数,则BC 中点的横坐标仍然为无理数,那么点A 的横坐标也为无理数,这与点A 的纵坐标为1矛盾,故不成立;②直角顶点A 在1y =上,斜边不在x 轴上,此时点B 的横坐标为无理数,则点A 的横坐标也应为无理数,这与点A 的纵坐标为1矛盾,故不成立;③直角顶点A 在x 轴上,斜边在1y =上,此时点B ,点C 的横坐标为有理数,则BC 中点的横坐标仍然为有理数,那么点A 的横坐标也应为有理数,这与点A 的纵坐标为0矛盾,故不成立;④直角顶点A 在x 轴上,斜边不在1y =上,此时点A 的横坐标为无理数,则点B 的横坐标也应为无理数,这与点B 的纵坐标为1矛盾,故不成立.综上,不存在三个点()()11,A x f x ,()()22,B x f x ,()()33C x f x ,,使得ABC ∆为等腰直角三角形,故选项D 正确. 故选:ACD . 【点睛】本题以新定义为载体,考查对函数性质等知识的运用能力,意在考查学生运用分类讨论思想,数形结合思想的能力以及逻辑推理能力,属于难题.6.已知()f x 是定义域为(,)-∞+∞的奇函数,()1f x +是偶函数,且当(]0,1x ∈时,()()2f x x x =--,则( )A .()f x 是周期为2的函数B .()()201920201f f +=-C .()f x 的值域为[-1,1]D .()f x 的图象与曲线cos y x =在()0,2π上有4个交点 【答案】BCD 【分析】对于A ,由()f x 为R 上的奇函数,()1f x +为偶函数,得()()4f x f x =-,则()f x 是周期为4的周期函数,可判断A ;对于B ,由()f x 是周期为4的周期函数,则()()202000f f ==,()()()2019111f f f =-=-=-,可判断B .对于C ,当(]01x ∈,时,()()2f x x x =--,有()01f x ≤<,又由()f x 为R 上的奇函数,则[)10x ∈-,时,()10f x -≤<,可判断C . 对于D ,构造函数()()cos g x f x x =-,利用导数法求出单调区间,结合零点存在性定理,即可判断D . 【详解】 根据题意,对于A ,()f x 为R 上的奇函数,()1f x +为偶函数,所以()f x 图象关于1x =对称,(2)()()f x f x f x +=-=- 即(4)(2)()f x f x f x +=-+= 则()f x 是周期为4的周期函数,A 错误; 对于B ,()f x 定义域为R 的奇函数,则()00f =,()f x 是周期为4的周期函数,则()()202000f f ==;当(]0,1x ∈时,()()2f x x x =--,则()()11121f =-⨯-=,则()()()()201912020111f f f f =-+=-=-=-, 则()()201920201f f +=-;故B 正确.对于C ,当(]01x ∈,时,()()2f x x x =--,此时有()01f x ≤<,又由()f x 为R 上的奇函数,则[)10x ∈-,时,()10f x -≤<, (0)0f =,函数关于1x =对称,所以函数()f x 的值域[11]-,.故C 正确. 对于D ,(0)0f =,且(]0,1x ∈时,()()2f x x x =--,[0,1],()(2)x f x x x ∴∈=--,[1,2],2[0,1],()(2)(2)x x f x f x x x ∴∈-∈=-=--, [0,2],()(2)x f x x x ∴∈=--,()f x 是奇函数,[2,0],()(2)x f x x x ∴∈-=+, ()f x 的周期为4,[2,4],()(2)(4)x f x x x ∴∈=--,[4,6],()(4)(6)x f x x x ∴∈=---, [6,2],()(6)(8)x f x x x π∴∈=--,设()()cos g x f x x =-,当2[0,2],()2cos x g x x x x ∈=-+-,()22sin g x x x '=-++,设()(),()2cos 0h x g x h x x =''=-+<在[0,2]恒成立,()h x 在[0,2]单调递减,即()g x '在[0,2]单调递减,且(1)sin10,(2)2sin20g g '=>'=-+<, 存在00(1,2),()0x g x ∈'=,0(0,),()0,()x x g x g x ∈'>单调递增, 0(,2),()0,()x x g x g x ∈'<单调递减,0(0)1,(1)1cos10,()(1)0,(2)cos20g g g x g g =-=->>>=->,所以()g x 在0(0,)x 有唯一零点,在0(,2)x 没有零点, 即2(]0,x ∈,()f x 的图象与曲线cos y x =有1个交点,当[]24x ∈,时,,()()2cos 6+8cos x x g x f x x x =-=--, 则()26+sin g x x x '=-,()()26+sin x x h x g x ='=-,则()2+cos >0h x x '=,所以()g x '在[]24,上单调递增, 且()()3sin3>0,22+sin20g g '='=-<,所以存在唯一的[][]12324x ∈⊂,,,使得()0g x '=, 所以()12,x x ∈,()0g x '<,()g x 在()12,x 单调递减,()14x x ∈,,()>0g x ',()g x 在()14x ,单调递增,又()31cos30g =--<,所以()1(3)0g x g <<, 又()()2cos2>0,4cos4>0g g =-=-,所以()g x 在()12,x 上有一个唯一的零点,在()14x ,上有唯一的零点, 所以当[]24x ∈,时,()f x 的图象与曲线cos y x =有2个交点,, 当[]46x ∈,时,同[0,2]x ∈,()f x 的图象与曲线cos y x =有1个交点, 当[6,2],()(6)(8)0,cos 0x f x x x y x π∈=--<=>,()f x 的图象与曲线cos y x =没有交点,所以()f x 的图象与曲线cos y x =在()0,2π上有4个交点,故D 正确; 故选:BCD . 【点睛】本题考查抽象函数的奇偶性、周期性、两函数图像的交点,属于较难题.7.已知函数1()x x f x e+=,当实数m 取确定的某个值时,方程2()()10f x mf x ++=的根的个数可以是( ) A .0个 B .1个C .2个D .4个【答案】ABC 【分析】令()t f x =,画出1()x x f x e+=,结合210t mt ++=的解的情况可得正确的选项. 【详解】()xx f x e '=-, 故当0x <时,0f x ,故()f x 在,0上为增函数;当0x >时,0fx,故()f x 在0,上为减函数,而()10f -=且当0x >时,()0f x >恒成立,故()f x 的图象如图所示:考虑方程210t mt ++=的解的情况.24m ∆=-,当2m <-时,>0∆,此时方程210t mt ++=有两个不等的正根12t t <, 因为121t t =,故101t <<,21t >,由图象可知方程()1t f x =的解的个数为2,方程()2t f x =的解的个数为0, 故方程2()()10f x mf x ++=的根的个数是2.当2m =-时,0∆=,此时方程210t mt ++=有两个相等的正根121t t ==, 由图象可知方程1f x的解的个数为1,故方程2()()10f x mf x ++=的根的个数是1.当22m -<<时,∆<0,此时方程210t mt ++=无解, 故方程2()()10f x mf x ++=的根的个数是0.当2m =时,0∆=,此时方程210t mt ++=有两个相等的负根121t t ==-, 由图象可知方程()1f x =-的解的个数为1, 故方程2()()10f x mf x ++=的根的个数是1.当2m >时,>0∆,此时方程210t mt ++=有两个不等的负根12t t <, 由图象可知方程()1t f x =的解的个数为1,方程()2t f x =的解的个数为1, 故方程2()()10f x mf x ++=的根的个数是2. 故选:ABC . 【点睛】本题考查复合方程的解,此类问题,一般用换元法来考虑,其中不含的参数的函数的图象应利用导数来刻画,本题属于难题.8.已知定义域为R 的奇函数()f x ,满足22,2()2322,02x f x x x x x ⎧>⎪=-⎨⎪-+<≤⎩,下列叙述正确的是( )A .存在实数k ,使关于x 的方程()f x kx =有7个不相等的实数根B .当1211x x -<<<时,恒有12()()f x f x >C .若当(0,]x a ∈时,()f x 的最小值为1,则5[1,]2a ∈ D .若关于x 的方程3()2f x =和()f x m =的所有实数根之和为零,则32m =- 【答案】AC 【分析】根据奇函数()()f x f x -=-,利用已知定义域的解析式,可得到对称区间上的函数解析式,然后结合函数的图象分析各选项的正误,即可确定答案 【详解】函数是奇函数,故()f x 在R 上的解析式为:222,22322,20()0,022,022,223x x x x x f x x x x x x x ⎧<-⎪+⎪----≤<⎪⎪==⎨⎪-+<≤⎪⎪>⎪-⎩绘制该函数的图象如所示:对A :如下图所示直线1l 与该函数有7个交点,故A 正确;对B :当1211x x -<<<时,函数不是减函数,故B 错误; 对C :如下图直线2:1l y =,与函数图交于5(1,1),(,1)2, 故当()f x 的最小值为1时有5[1,]2a ∈,故C 正确对D :3()2f x =时,函数的零点有136x =、21x =+、21x =-; 若使得其与()f x m =的所有零点之和为0, 则32m =-或38m =-,如图直线4l 、5l ,故D 错误故选:AC 【点睛】本题考查了分段函数的图象,根据奇函数确定对称区间上函数的解析式,进而根据函数的图象分析命题是否成立9.已知正数,,x y z ,满足3412x y z ==,则( ) A .634z x y << B .121x y z+= C .4x y z +> D .24xy z <【答案】AC 【分析】令34121x y z m ===>,根据指对互化和换底公式得:111log 3log 4log 12m m m x y z===,,,再依次讨论各选项即可. 【详解】由题意,可令34121x y z m ===>,由指对互化得:111,,log 3log 4log 12m m m x y z ===, 由换底公式得:111log 3,log 4,log 12m m m x y z ===,则有111x y z+=,故选项B 错误; 对于选项A ,124log 12log 9log 03m m m z x -=-=>,所以2x z >,又4381log 81log 64log 064m m m x y -=-=>,所以43y x >,所以436y x z >>,故选项A 正确;对于选项C 、D ,因为111x y z +=,所以xyz x y =+,所以()()()()2222222440x y xy x y xy x y z xy x y x y -+--==-<++,所以24xy z >,则()24z x y z +>,则4x y z +>,所以选项C 正确,选项D 错误;故选:AC. 【点睛】本题考查指对数的运算,换底公式,作差法比较大小等,考查运算求解能力,是中档题.本题解题的关键在于令34121xyzm ===>,进而得111,,log 3log 4log 12m m m x y z ===,再根据题意求解.10.若()f x 满足对任意的实数a ,b 都有()()()f a b f a f b +=且()12f =,则下列判断正确的有( ) A .()f x 是奇函数B .()f x 在定义域上单调递增C .当()0,x ∈+∞时,函数()1f x >D .()()()()()()()()()()()()2462016201820202020135201520172019f f f f f f f f f f f f +++⋅⋅⋅++= 【答案】BCD 【分析】利用新定义结合函数的性质进行判断.计算出(1)f 判断A ;先利用(1)21f =>证明所有有理数p ,有()1f p >,然后用任意无理数q 都可以看作是一个有理数列的极限,由极限的性质得()1f q >,这样可判断C ,由此再根据单调性定义判断B ,根据定义计算(2)(21)f n f n -(n N ∈),然后求得D 中的和,从而判断D .【详解】令0,1a b ==,则(1)(10)(1)(0)f f f f =+=,即22(0)f =,∴(0)1f =,()f x 不可能是奇函数,A 错;对于任意x ∈R ,()0f x ≠,若存在0x R ∈,使得0()0f x =,则0000(0)(())()()0f f x x f x f x =+-=-=,与(0)1f =矛盾,故对于任意x ∈R ,()0f x ≠,∴对于任意x ∈R ,2()022222x x x x x f x f f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+==> ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, ∵(1)21f =>,∴对任意正整数n ,11111111121nn n f n n f f f f f n n n n n n n ⎛⎫ ⎪⎝⎭⎛⎫ ⎪⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫ ⎪+++===> ⎪ ⎪ ⎪ ⎪⎢⎥ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ ⎪ ⎪⎝⎭个个,∴11f n ⎛⎫> ⎪⎝⎭, 同理()(111)(1)(1)(1)21n f n f f f f =+++==>,对任意正有理数p ,显然有m p n=(,m n是互质的正整数),则1()1mm f p f fn n ⎡⎤⎛⎫⎛⎫==> ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 对任意正无理数q ,可得看作是某个有理数列123,,,p p p 的极限,而()1i f p >,i N ∈,∴()f q 与()i f p 的极限,∴()1f q >, 综上对所有正实数x ,有()1f x >,C 正确,设12x x <,则210x x ->,∴21()1f x x ->,则21211211()(())()()()f x f x x x f x f x x f x =+-=⋅->,∴()f x 是增函数,B 正确;由已知(2)(211)(21)(1)2(21)f n f n f n f f n =-+=-=-,∴(2)2(21)f n f n =-,∴()()()()()()()()()()()()10102246201620182020222210102020135201520172019f f f f f f f f f f f f +++⋅⋅⋅++=+++=⨯=个,D 正确. 故选:BCD . 【点睛】本题考查新定义函数,考查学生分析问题,解决问题的能力,逻辑思维能力,运算求解能力,对学生要求较高,本题属于难题.11.一般地,若函数()f x 的定义域为[],a b ,值域为[],ka kb ,则称为的“k 倍跟随区间”;若函数的定义域为[],a b ,值域也为[],a b ,则称[],a b 为()f x 的“跟随区间”.下列结论正确的是( )A .若[]1,b 为()222f x x x =-+的跟随区间,则2b =B .函数()11f x x=+存在跟随区间 C .若函数()f x m =1,04m ⎛⎤∈- ⎥⎝⎦D .二次函数()212f x x x =-+存在“3倍跟随区间” 【答案】ABCD 【分析】根据“k 倍跟随区间”的定义,分析函数在区间内的最值与取值范围逐个判断即可. 【详解】对A, 若[]1,b 为()222f x x x =-+的跟随区间,因为()222f x x x =-+在区间[]1,b 为增函数,故其值域为21,22b b ⎡⎤-+⎣⎦,根据题意有222b b b -+=,解得1b =或2b =,因为1b >故2b =.故A 正确; 对B,因为函数()11f x x =+在区间(),0-∞与()0,+∞上均为减函数,故若()11f x x=+存在跟随区间[],a b 则有11+11+a b b a ⎧=⎪⎪⎨⎪=⎪⎩,解得:1212a b ⎧-=⎪⎪⎨⎪=⎪⎩.故存在, B正确.对C, 若函数()f x m=[],a b,因为()f x m=,故由跟随区间的定义可知b ma ba m⎧=-⎪⇒-=⎨=⎪⎩a b<即()()()11a b a b a b-=+-+=-,因为a b<,1=.易得01≤<.所以(1a m m=-=--,令t=20t t m--=,同理t=20t t m--=,即20t t m--=在区间[]0,1上有两根不相等的实数根.故140mm+>⎧⎨-≥⎩,解得1,04m⎛⎤∈- ⎥⎝⎦,故C正确.对D,若()212f x x x=-+存在“3倍跟随区间”,则可设定义域为[],a b,值域为[]3,3a b.当1a b<≤时,易得()212f x x x=-+在区间上单调递增,此时易得,a b为方程2132x x x-+=的两根,求解得0x=或4x=-.故存在定义域[]4,0-,使得值域为[]12,0-.故D正确.故选:ABCD.【点睛】本题主要考查了函数新定义的问题,需要根据题意结合函数的性质分析函数的单调性与取最大值时的自变量值,并根据函数的解析式列式求解.属于难题.12.已知函数1(),f x xx=+221()g x xx=+则下列结论中正确的是()A.()()f xg x+是奇函数B.()()f xg x⋅是偶函数C.()()f xg x+的最小值为4D.()()f xg x⋅的最小值为2【答案】BC【分析】利用奇偶性的定义可得A错B对;利用均值不等式可得C对;利用换元求导可得D错.【详解】2211()()f xg x x xx x+=+++()22221111()()()f xg x x x x xx x xx∴-+-=-++-+=+++--()()()()f xg x f x g x∴+=-+-()()f x g x ∴+是偶函数, A 错;221(1)()x x xf x xg x ⎛⎫+⋅+ ⎪⎝⋅=⎭()()22221111()()f x x x x xg x x x x x ⎛⎫⎛⎫-+⋅-+=+⋅+ ⎪ ⎪ ⎪-⎝⎭-⎝∴-⋅-=⎭()()()()f x g x f x g x ∴-⋅-=⋅ ()()f x g x ∴⋅是偶函数,B 对;2211()()224f x g x x x x x +=+++≥+=,当且仅当1x x =和221=x x 时,等号成立,即当且仅当21x =时等号成立,C 对;221(1)()x x xf x xg x ⎛⎫+⋅+ ⎪⎝⋅=⎭令1t x x=+()2t ≥,则()23()()22f t t g t t x x ⋅-=-⋅= []232()()f x g x t '∴=-⋅,令2320t ->,得3t >或3t <- 2t ∴≥时,()()f x g x ⋅单调递增∴当2t =有最小值,最小值为4,D 错故选:BC. 【点睛】本题综合考查奇偶性、均值不等式、利用导数求最值等,对学生知识的运用能力要求较高,难度较大.13.已知函数21,01()(1)1,1x x f x f x x ⎧-≤<=⎨-+≥⎩,方程()0f x x -=在区间0,2n⎡⎤⎣⎦(*n N ∈)上的所有根的和为n b ,则( ) A .()20202019f = B .()20202020f = C .21122n n n b --=+D .(1)2n n n b +=【答案】BC 【分析】先推导出()f x 在[)()*,1n n n N+∈上的解析式,然后画出()f x 与y x =的图象,得出()f x x =时,所有交点的横坐标,然后得出n b .【详解】因为当[)0,1x ∈时,()21xf x =-,所以当[)1,2x ∈时,[)10,1x -∈,则()1121x f x --=-,故()()11112112x x f x f x --=-+=-+=,即[)10,1x -∈时,[)10,1x -∈,()12x f x -= 同理当[)2,3x ∈时,[)11,2x -∈,()()21121x f x f x -=-+=+;当[)3,4x ∈时,[)12,3x -∈,则()()31122x f x f x -=-+=+;………故当[),1x n n ∈+时,()()21x nf x n -=+-,当21,2n nx ⎡⎤∈-⎣⎦时,()()()21222n x n f x --=+-. 所以()20202020f =,故B 正确;作出()f x 与y x =的图象如图所示,则当()0f x x -=且0,2n⎡⎤⎣⎦时,x 的值分别为:0,1,2,3,4,5,6,,2n则()()121122101222221222n n n n n n n n b ---+=+++++==+=+,故C 正确.故选:BC.【点睛】本题考查函数的零点综合问题,难度较大,推出原函数在每一段上的解析式并找到其规律是关键.14.已知()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,2()2f x x x =-+,下列说法正确的是( )A .(0,)x ∈+∞时,函数解析式为2()2f x x x =-B .函数在定义域R 上为增函数C .不等式(32)3f x -<的解集为(,1)-∞D .不等式2()10f x x x -+->恒成立【答案】BC 【分析】对于A ,利用奇函数定义求(0,)x ∈+∞时,函数解析式为2()2f x x x =+;对于B ,研究当(,0)x ∈-∞时,()f x 的单调性,结合奇函数图像关于原点对称,知()f x 在R 上的单调性;对于C ,求出(1)3f =,不等式(32)3f x -<,转化为(32)(1)f x f -<,利用单调性解不等式;对于D ,分类讨论(0,)x ∈+∞与(,0)x ∈-∞两种情况是否恒成立. 【详解】对于A ,设(0,)x ∈+∞,(,0)x -∈-∞,则2()2f x x x -=--,又()f x 是奇函数,所以2()()2f x f x x x =--=+,即(0,)x ∈+∞时,函数解析式为2()2f x x x =+,故A 错;对于B ,2()2f x x x =-+,对称轴为1x =,所以当(,0)x ∈-∞时,()f x 单调递增,由奇函数图像关于原点对称,所以()f x 在R 上为增函数,故B 对;对于C ,由奇函数在R 上为增函数,则(0,)x ∈+∞时,2()23f x x x =+=,解得11x =,23x =-(舍去),即(1)3f =,所以不等式(32)3f x -<,转化为(32)(1)f x f -<, 又()f x 在R 上为增函数,得321x -<,解得1x <, 所以不等式的解集为(,1)-∞,故C 对; 对于D ,当(,0)x ∈-∞时,2()2f x x x =-+2222()121231(21)(1)0f x x x x x x x x x x x -+-=-+-+-=-+-=-+-<,当(0,)x ∈+∞时,2()2f x x x =+222()12131f x x x x x x x x -+-=+-+-=-不恒大于0,故D 错;故选:BC 【点睛】方法点睛:考查了解抽象不等式,要设法把隐性划归为显性的不等式求解,方法是: (1)把不等式转化为[][]()()f g x f h x >的模型;(2)判断函数()f x 的单调性,再根据函数的单调性将不等式的函数符号“f ”脱掉,得到具体的不等式(组)来求解,但要注意奇偶函数的区别. 考查了利用奇偶性求函数解析式,求函数解析式常用的方法: (1)已知函数类型,用待定系数法求解析式; (2)已知函数奇偶性,用奇偶性定义求解析式;(3)已知()f x 求[()]f g x ,或已知[()]f g x 求()f x ,用代入法、换元法或配凑法; (4)若()f x 与1()f x或()f x -满足某个等式,可构造另一个等式,通过解方程组求解;15.函数()f x 的定义域为D ,若存在区间[],m n D ⊆使()f x 在区间[],m n 上的值域也是[],m n ,则称区间[],m n 为函数()f x 的“和谐区间”,则下列函数存在“和谐区间”的是( ) A .()f x =B .()222f x x x =-+C .()1f x x x=+D .()1f x x=【答案】ABD 【分析】根据题意,可知若()f x 在区间[],m n 上的值域也是[],m n ,则()f x 存在“和谐区间”[],m n ,且m n <,则()()f m m f n n ⎧=⎪⎨=⎪⎩或()()f m nf n m ⎧=⎪⎨=⎪⎩,再对各个选项进行运算求解,m n ,即可判断该函数是否存在“和谐区间”.【详解】解:由题得,若()f x 在区间[],m n 上的值域也是[],m n ,则()f x 存在“和谐区间”[],m n ,可知,m n <,则()()f m m f n n ⎧=⎪⎨=⎪⎩或()()f m nf n m ⎧=⎪⎨=⎪⎩,A :())0f x x =≥,若()()f m mf n n⎧==⎪⎨==⎪⎩,解得:01m n =⎧⎨=⎩,所以()f x =“和谐区间”[]0,1;B :()()222f x x x x R =-+∈,若 ()()222222f m m m m f n n n n ⎧=-+=⎪⎨=-+=⎪⎩,解得:12m n =⎧⎨=⎩, 所以()222f x x x =-+存在“和谐区间” []1,2;C :()()10f x x x x =+≠,若()()11f m m m m f n n n n ⎧=+=⎪⎪⎨⎪=+=⎪⎩,得1010mn ⎧=⎪⎪⎨⎪=⎪⎩,故无解;若()()11f m m nmf n n mn⎧=+=⎪⎪⎨⎪=+=⎪⎩,即 21111m n m m m n n m n ⎧+=⎪⎪⎪=⎨+⎪⎪+=⎪⎩,化简得:2210(1)m m m m ++=+,即210m m ++=,由于2141130∆=-⨯⨯=-<,故无解; 若()0112,m n f m m <<<∴=∴= 不成立 所以()1f x x x=+不存在“和谐区间”; D :()()10f x x x =≠,函数在()()0+-0∞∞,,,单调递减,则 ()()11f m n mf n mn ⎧==⎪⎪⎨⎪==⎪⎩, 不妨令122m n ⎧=⎪⎨⎪=⎩, 所以()1f x x =存在“和谐区间”1,22⎡⎤⎢⎥⎣⎦; 综上得:存在“和谐区间”的是ABD. 故选:ABD. 【点睛】关键点点睛:本题以函数的新定义为载体,考查函数的定义域、值域以及零点等知识,解题的关键是理解“和谐区间”的定义,考查运算能力以及函数与方程的思想.16.已知()f x 是定义域为(,)-∞+∞的奇函数,(1)f x +是偶函数,且当(]0,1x ∈时,()(2)f x x x =--,则( )A .()f x 是周期为2的函数B .()()201920201f f +=-C .()f x 的值域为[]1,1-D .()y f x =在[]0,2π上有4个零点【答案】BCD 【分析】对于A ,由()f x 为R 上的奇函数,()1f x +为偶函数,得(4)()f x f x +=,则()f x 是周期为4的周期函数,可判断A.对于B ,由()f x 是周期为4的周期函数,则()()202000f f ==,()()()2019111f f f =-=-=-,可判断B .对于C ,当(]01x ∈,时,()()2f x x x =--,有()01f x ≤<,又由()f x 为R 上的奇函数,则[)10x ∈-,时,()10f x -≤<,可判断C . 对于D ,根据函数的周期性和对称性,可以求出函数在各段上的解析式,从而求出函数的零点,可判断D . 【详解】 解:对于A ,()1f x +为偶函数,其图像关于x 轴对称,把()1f x +的图像向右平移1个单位得到()f x 的图像,所以()f x 图象关于1x =对称, 即(1)(1)f x f x +=-,所以(2)()f x f x +=-,()f x 为R 上的奇函数,所以()()f x f x -=-,所以(2)()f x f x +=-,用2x +替换上式中的x 得, (4)(2)f x f x +=-+,所以,(4)()f x f x +=,则()f x 是周期为4的周期函数.故A 错误. 对于B ,()f x 定义域为R 的奇函数,则()00f =,()f x 是周期为4的周期函数,则()()202000f f ==;当(]0,1x ∈时,()()2f x x x =--,则()()11121f =-⨯-=,则()()()()201912020111f f f f =-+=-=-=-, 则()()201920201f f +=-.故B 正确.对于C ,当(]01x ∈,时,()()2f x x x =--,此时有()01f x <≤,又由()f x 为R 上的奇函数,则[)1,0x ∈-时,()10f x -≤<,(0)0f =,函数关于1x =对称,所以函数()f x 的值域[]1,1-.故C 正确.对于D ,(0)0f =,且(]0,1x ∈时,()()2f x x x =--,[0,1]x ∴∈,()(2)f x x x =--,[1,2]x ∴∈,2[0,1]x -∈,()(2)(2)f x f x x x =-=--①[0,2]x ∴∈时,()(2)f x x x =--,此时函数的零点为0,2;()f x 是奇函数,[2,0],()(2)x f x x x ∴∈-=+,②(]2,4x ∴∈时,()f x 的周期为4,[]42,0x ∴-∈-,()()()()424f x f x x x =-=--,此时函数零点为4;③(]4,6x ∴∈时,[]40,2x ∴-∈,()()4(4)(6)f x f x x x =-=---,此时函数零点为6;④(]6,2x π∴∈时,(]42,4x ∴-∈,()()()()468f x f x x x =-=--,此时函数无零点;综合以上有,在(0,2)π上有4个零点.故D 正确; 故选:BCD 【点睛】关键点点睛:由(1)f x +是偶函数,通过平移得到()f x 关于1x =对称,再根据()f x 是奇函数,由此得到函数的周期,进一步把待求问题转化到函数的已知区间上,本题综合考查抽象函数的奇偶性、周期性.17.设函数2,0()12,02x e xf x x x x ⎧≤⎪=⎨-++>⎪⎩,对关于x 的方程2()()20f x bf x b -+-=,下列说法正确的有( ).A .当223b =-+时,方程有1个实根B .当32b =时,方程有5个不等实根 C .若方程有2个不等实根,则17210b <≤ D .若方程有6个不等实根,则32232b -+<< 【答案】BD 【分析】先作出函数()f x 的图象,进行换元()f x t =,将方程转化成关于t 的二次方程,结合()f x 函数值的分布,对选项中参数值与根的情况逐一分析判断四个选项的正误即可. 【详解】函数()22,0,0()132,01,022x x e x e x f x x x x x x ⎧⎧≤≤⎪⎪==⎨⎨-++>--+>⎪⎪⎩⎩,作图如下:由图可知,3(),2f x ⎛⎤∈-∞ ⎥⎝⎦,令()f x t =,则3,2t ⎛⎤∈-∞ ⎥⎝⎦,则方程转化为220b bt t +-=-,即222()22204b b t t b t t b b ϕ⎛⎫=--- +-=+⎪-⎝=⎭选项A 中,223b =-+时方程为(22234230t t -+-=+,即(2310t +=,故31t =,即131,12()f x ⎛⎫∈ ⎪⎝⎭=,看图知存在三个根,使得()31f x =,故A错误; 选项B 中,32b =,方程即231022t t -+=,即22310t t -+=,解得1t =或12t =,当()1f x t ==时看图可知,存在3个根,当1()2f x t ==时看图可知,存在2个根,故共5个不等的实根,B 正确;选项C 中,方程有2个不等实根,则有两种情况:(1)122bt t ==,则31,22b ⎛⎫∈ ⎪⎝⎭或10,22b ⎛⎤∈ ⎥⎝⎦,此时2204b b +--=,即2480b b -+=,解得223b =-±,132b =-±,均不满足上面范围,舍去;(2)12t t ≠时,即(]123,,02t t =∈-∞或(]12,,0t t ∈-∞.①当(]123,,02t t =∈-∞时132t =,代入方程得2220332b b +⎛⎫-⋅ ⎪⎝-=⎭,解得1710b =,由123210t t b =-=,得(]21,05t =∉-∞,不满足题意,舍去;②当(]12,,0t t ∈-∞时220b bt t +-=-,则()2420b b ∆=-->,1220t t b =-≥,120t t b +=<,解得223t <--,故C 错误;选项D 中,方程有6个不等实根,则1211,1,,122t t ⎛⎤⎛⎤∈∈⎥⎥⎝⎦⎝⎦且12t t ≠,222()2422b b t t b t t b b ϕ⎛⎫=--- ⎪⎝⎭+-=+-图象如下:需满足:()2193024*********b b b b b ϕϕϕ⎧⎛⎫=-> ⎪⎪⎝⎭⎪⎪=-≥⎨⎪⎛⎫⎪=-+-< ⎪⎪⎝⎭⎩,解得:32232b -+<<,故D 正确.故选:BD. 【点睛】 关键点点睛:本题解题关键在于对方程2()()20f x bf x b -+-=进行换元()f x t =,变成关于t 的二次方程根的分布问题,结合函数()f x 图象中函数值的分布情况来突破难点.18.已知函数()22,1,1x x f x x x -≥⎧=⎨<⎩,若存在实数a ,使得()()f a f f a ⎡⎤=⎣⎦,则a 的个数不是( ) A .2 B .3 C .4 D .5 【答案】ABD 【分析】令()f a t =,即满足()f t t =,对t 进行分类讨论,结合已知函数解析式代入即可求得满足题意的t ,进而求得a. 【详解】令()f a t =,即满足()f t t =,转化为函数()1y f t =与2y t =有交点,结合图像由图可知,()f t t =有两个根0t =或1t = (1)当1t =,即()1f a =,由()22,1,1a a f a a a -≥⎧=⎨<⎩,得1a =±时,经检验均满足题意; (2)当0t =,即()0f a =,当1a ≥时,()20f a a =-=,解得:2a =;当1a <时,()20f a a ==,解得:0a =;综上所述:共有4个a . 故选:ABD . 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图像,利用数形结合的方法求解19.已知()f x 为定义在R 上且周期为5的函数,当[)0,5x ∈时,()243f x x x =-+.则下列说法中正确的是( )A .()f x 的增区间为()()15,2535,55k k k k ++⋃++,k Z ∈B .若y a =与()y f x =在[]5,7-上有10个零点,则a 的范围是()0,1C .当[]0,x a ∈时,()f x 的值域为[]0,3,则a 的取值范围[]1,4D .若()20y kx k =->与()y f x =有3个交点,则k 的取值范围为12,23⎛⎫ ⎪⎝⎭【答案】BC 【分析】首先作出()f x 的图象几个周期的图象,由于单调区间不能并,可判断选项A 不正确;利用数形结合可判断选项B 、C ;举反例如1k =时经分析可得()20y kx k =->与()y f x =有3个交点,可判断选项D 不正确,进而可得正确选项. 【详解】对于选项A :单调区间不能用并集,故选项A 不正确;对于选项B :由图知若y a =与()y f x =在[]5,7-上有10个零点,则a 的范围是()0,1, 故选项B 正确;对于选项C :()10f =,()43f =,由图知当[]0,x a ∈时,()f x 的值域为[]0,3,则a 的取值范围[]1,4,故选项C 正确;对于选项D :当1k =时,直线为2y x =-过点()5,3,()f x 也过点()5,3,当10x =时,1028y =-=,直线过点()10,8,而点()10,8不在()f x 图象上,由图知:当1k =时,直线为2y x =-与()y f x =有3个交点,由排除法可知选项D 不正确,故选:BC 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.20.已知定义在R 上的函数()f x 的图象连续不断,若存在常数()t t R ∈,使得()()0f x t tf x ++=对任意的实数x 成立,则称()f x 是回旋函数.给出下列四个命题中,正确的命题是( )A .常值函数()(0)f x a a =≠为回旋函数的充要条件是1t =-;B .若(01)x y a a =<<为回旋函数,则1t >;C .函数2()f x x =不是回旋函数;D .若()f x 是2t =的回旋函数,则()f x 在[0]4030,上至少有2015个零点. 【答案】ACD 【分析】A.利用回旋函数的定义即可判断;B.代入回旋函数的定义,推得矛盾,判断选项;C.利用回旋函数的定义,令0x =,则必有0t = ,令1x =,则2310t t ++=,推得矛盾;D.根据回旋函数的定义,推得()()22f x f x +=-,再根据零点存在性定理,推得零点的个数. 【详解】A.若()f x a =,则()f x t a +=,则0a ta +=,解得:1t =-,故A 正确;B.若指数函数()01xy a a =<<为回旋函数,则0x t x a ta ++=,即0t a t +=,则0t <,故B 不正确;C.若函数()2f x x =是回旋函数,则()220x t tx ++=,对任意实数都成立,令0x =,则必有0t = ,令1x =,则2310t t ++=,显然0t =不是方程的解,故假设不成立,该函数不是回旋函数,故C 正确;D. 若()f x 是2t =的回旋函数,则()()220f x f x ++=,对任意的实数x 都成立,即有()()22f x f x +=-,则()2f x +与()f x 异号,由零点存在性定理得,在区间(),2x x +上必有一个零点,可令0,2,4,...20152x =⨯,则函数()f x 在[]0,4030上至少存在2015个零点,故D 正确. 故选:ACD 【点睛】本题考查以新定义为背景,判断函数的性质,重点考查对定义的理解,应用,属于中档题型.。
高考数学提高题专题复习函数的概念与基本初等函数多选题练习题含答案
高考数学提高题专题复习函数的概念与基本初等函数多选题练习题含答案一、函数的概念与基本初等函数多选题1.设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,也叫取整函数.令()[]f x x x =-,以下结论正确的有( ) A .()1.10.9f -= B .函数()f x 为奇函数 C .()()11f x f x +=+ D .函数()f x 的值域为[)0,1【答案】AD 【分析】根据高斯函数的定义逐项检验可得正确的选项. 【详解】对于A ,()[]1.11 1.120..9.111f --=-+=-=-,故A 正确. 对于B ,取 1.1x =-,则()1.10.9f -=,而()[]1.1-1.1 1.110.11.1f =-==, 故()()1.1 1.1f f -≠-,所以函数()f x 不为奇函数,故B 错误.对于C ,则()[][]()11111f x x x x x f x +=+-+=+--=,故C 错误.对于D ,由C 的判断可知,()f x 为周期函数,且周期为1, 当01x ≤≤时,则当0x =时,则()[]0000f =-=, 当01x <<时,()[]0f x x x x x =-=-=, 当1x =时,()[]11110f x =-=-=,故当01x ≤≤时,则有()01f x ≤<,故函数()f x 的值域为[)0,1,故D 正确.故选:AD . 【点睛】思路点睛:对于函数的新定义问题,注意根据定义展开讨论性质的讨论,并且注意性质讨论的次序,比如讨论函数值域,可以先讨论函数的奇偶性、周期性.2.下列选项中a 的范围能使得关于x 的不等式220x x a +--<至少有一个负数解的是( ) A .9,04⎛⎫-⎪⎝⎭B .()2,3C .1,2D .0,1【答案】ACD 【分析】将不等式变形为22x a x -<-,作出函数2,2y x a y x =-=-的图象,根据恰有一个负数解时判断出临界位置,再通过平移图象得到a 的取值范围. 【详解】因为220x x a +--<,所以22x a x -<-且220x ,在同一坐标系中作出2,2y x a y x =-=-的图象如下图:当y x a =-与22y x =-在y 轴左侧相切时,22x a x -=-仅有一解,所以()1420a ∆=++=,所以94a =-, 将y x a =-向右移动至第二次过点()0,2时,02a -=,此时2a =或2a =-(舍), 结合图象可知:9,24a ⎛⎫∈- ⎪⎝⎭,所以ACD 满足要求. 故选:ACD. 【点睛】本题考查函数与方程的综合应用,着重考查数形结合的思想,难度较难.利用数形结合可解决的常见问题有:函数的零点或方程根的个数问题、求解参数范围或者解不等式、研究函数的性质等.3.设函数cos2cos2()22x x f x -=-,则( ) A .()f x 在0,2π⎛⎫⎪⎝⎭单调递增 B .()f x 的值域为33,22⎡⎤-⎢⎥⎣⎦C .()f x 的一个周期为πD .4f x π⎛⎫+ ⎪⎝⎭的图像关于点,04π⎛⎫ ⎪⎝⎭对称【答案】BC 【分析】根据余弦函数及指数函数的单调性,分析复合函数的单调区间及值域,根据周期定义检验所给周期,利用函数的对称性判断对称中心即可求解. 【详解】令cos2t x =,则12222ttt t y -=-=-,显然函数12222t t tty -=-=-为增函数,当0,2x π⎛⎫∈ ⎪⎝⎭时,cos2t x =为减函数, 根据复合函数单调性可知,()f x 在0,2π⎛⎫⎪⎝⎭单调递减, 因为cos2[1,1]t x =∈-, 所以增函数12222ttt t y -=-=-在cos2[1,1]t x =∈-时,3322y -≤≤, 即()f x 的值域为33,22⎡⎤-⎢⎥⎣⎦; 因为cos2()cos2(cos2c )os222)(2()2x x x x x x f f πππ+-+-=-=+-=,所以()f x 的一个周期为π,因为sin 2sin 2224x x f x π-⎛⎫+=- ⎪⎝⎭,令sin 2sin 22(2)xx h x --=, 设(,)P x y 为sin 2sin 22(2)xx h x --=上任意一点,则(,)2P x y π'--为(,)P x y 关于,04π⎛⎫⎪⎝⎭对称的点, 而sin 2(sin 2())22sin 2sin 2()22222x x x x h y x y πππ-----=-==≠--,知点(,)2P x y π'--不在函数图象上,故()h x 的图象不关于点,04π⎛⎫⎪⎝⎭对称,即4f x π⎛⎫+ ⎪⎝⎭的图像不关于点,04π⎛⎫ ⎪⎝⎭对称.故选:BC 【点睛】本题主要考查了余弦函数的性质,指数函数的性质,复合函数的单调性,考查了函数的周期性,值域,对称中心,属于难题.4.对x ∀∈R ,[]x 表示不超过x 的最大整数.十八世纪,[]y x =被“数学王子”高斯采用,因此得名为高斯函数,人们更习惯称为“取整函数”,则下列命题中的真命题是( ) A .,[]1x x x ∃∈+RB .,,[][][]x y x y x y ∀∈++RC .函数[]()y x x x =-∈R 的值域为[0,1)D .若t ∃∈R ,使得3451,2,3,,2nt t t t n ⎡⎤⎡⎤⎡⎤⎡⎤====-⎣⎦⎣⎦⎣⎦⎣⎦同时成立,则正整数n 的最大值是5 【答案】BCD 【分析】由取整函数的定义判断,由定义得[][]1x x x ≤<+,利用不等式性质可得结论. 【详解】[]x 是整数, 若[]1x x ≥+,[]1x +是整数,∴[][]1x x ≥+,矛盾,∴A 错误;,x y ∀∈R ,[],[]x x y y ≤≤,∴[][]x y x y +≤+,∴[][][]x y x y +≤+,B 正确;由定义[]1x x x -<≤,∴0[]1x x ≤-<,∴函数()[]f x x x =-的值域是[0,1),C 正确;若t ∃∈R ,使得3451,2,3,,2n t t t t n ⎡⎤⎡⎤⎡⎤⎡⎤====-⎣⎦⎣⎦⎣⎦⎣⎦同时成立,则1t ≤<,t ≤<t ≤<t ≤<,,t ≤<=6n ≥,则不存在t 同时满足1t ≤<t <5n ≤时,存在t ∈满足题意, 故选:BCD . 【点睛】本题考查函数新定义,正确理解新定义是解题基础.由新定义把问题转化不等关系是解题关键,本题属于难题.5.已知函数1()x x f x e+=,当实数m 取确定的某个值时,方程2()()10f x mf x ++=的根的个数可以是( ) A .0个 B .1个C .2个D .4个【答案】ABC 【分析】令()t f x =,画出1()x x f x e+=,结合210t mt ++=的解的情况可得正确的选项. 【详解】()xx f x e '=-, 故当0x <时,0f x ,故()f x 在,0上为增函数;当0x >时,0fx,故()f x 在0,上为减函数,而()10f -=且当0x >时,()0f x >恒成立,故()f x 的图象如图所示:考虑方程210t mt ++=的解的情况.24m ∆=-,当2m <-时,>0∆,此时方程210t mt ++=有两个不等的正根12t t <, 因为121t t =,故101t <<,21t >,由图象可知方程()1t f x =的解的个数为2,方程()2t f x =的解的个数为0, 故方程2()()10f x mf x ++=的根的个数是2.当2m =-时,0∆=,此时方程210t mt ++=有两个相等的正根121t t ==, 由图象可知方程1f x的解的个数为1,故方程2()()10f x mf x ++=的根的个数是1.当22m -<<时,∆<0,此时方程210t mt ++=无解, 故方程2()()10f x mf x ++=的根的个数是0.当2m =时,0∆=,此时方程210t mt ++=有两个相等的负根121t t ==-, 由图象可知方程()1f x =-的解的个数为1, 故方程2()()10f x mf x ++=的根的个数是1.当2m >时,>0∆,此时方程210t mt ++=有两个不等的负根12t t <, 由图象可知方程()1t f x =的解的个数为1,方程()2t f x =的解的个数为1, 故方程2()()10f x mf x ++=的根的个数是2. 故选:ABC . 【点睛】本题考查复合方程的解,此类问题,一般用换元法来考虑,其中不含的参数的函数的图象应利用导数来刻画,本题属于难题.6.设函数()f x 是定义在区间I 上的函数,若对区间I 中的任意两个实数12,x x ,都有1212()()(),22x x f x f x f ++≤则称()f x 为区间I 上的下凸函数.下列函数中是区间(1,3)上的下凸函数的是( ) A .()21f x x =-+ B .()2f x x =-- C .3()5f x x =+ D .21()1x f x x +=- 【答案】ACD 【分析】根据函数的解析式,求得1212()()()22x x f x f x f ++=,可判定A 正确;根据特殊值法,可判定B 不正确;根据函数的图象变换,结合函数的图象,可判定C 、D 正确. 【详解】对于A 中,任取12,(1,3)x x ∈且12x x ≠,则1212()()12x x f x x +=-++, 121212()()1(2121)()122f x f x x x x x +=-+-+=-++,可得1212()()()22x x f x f x f ++=,满足1212()()()22++≤x x f x f x f ,所以A 正确; 对于B 中,取1235,22x x ==,则1222x x +=, 可得351()()222f f ==-,所以12()()122f x f x +=-,12()(2)02x x f f +==, 此时1212()()()22x x f x f x f ++>,不符合题意,所以B 不正确; 对于C 中,函数3()5f x x =+,由幂函数3y x =的图象向上移动5个单位,得到函数3()5f x x =+的图象, 如图所示,取12,(1,3)x x ∈且12x x ≠,由图象可得12()2C x x f y +=,12()()2D f x f x y +=, 因为D C y y >,所以1212()()()22++≤x x f x f x f ,符合题意,所以是正确的;对于D中,函数213 ()211xf xx x+==+--由函数3yx=的图象向右平移1个单位,再向上平移2个单位,得到21()1xf xx+=-的图象,如图所示,取12,(1,3)x x∈且12x x≠,由图象可得12()2Cx xf y+=,12()()2Df x f xy+=,因为D Cy y>,所以1212()()()22++≤x x f x f xf,符合题意,所以是正确的;【点睛】本题主要考查了函数的新定义及其应用,其中解答中正确理解函数的新定义,以及结合函数的图象求解是解答的关键,着重考查了数形结合法,以及推理与运算能力,属于中档试题.7.已知函数()()()52log1,122,1x xf xx x⎧-<⎪=⎨--+≥⎪⎩,则方程12f x ax⎛⎫+-=⎪⎝⎭的实根个数可能为( ) A .8 B .7C .6D .5【答案】ABC 【分析】以()1f x =的特殊情形为突破口,解出1x =或3或45或4-,将12x x+-看作整体,利用换元的思想进一步讨论即可. 【详解】 由基本不等式可得120x x +-≥或124x x+-≤-, 作出函数()()()52log 1,122,1x x f x x x ⎧-<⎪=⎨--+≥⎪⎩的图像,如下:①当2a >时,1224x x +-≤-或1021x x<+-<, 故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为4; ②当2a =时,1224x x +-=-或1021x x <+-<或122x x+-=, 故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为6; ③当12a <<时,12424x x -<+-<-或1021x x <+-<或1122x x<+-< 或1223x x<+-<, 故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为8; ④当1a =时,124x x +-=-或1021x x <+-<或121x x +-=或123x x+-=,故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为7; ⑤当01a <<时,1420x x -<+-<或1324x x<+-<,故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为2; ⑥当0a =时,120x x +-=或1324x x<+-<, 故方程12f x a x ⎛⎫+-=⎪⎝⎭的实数根个数为3; ⑦当0a <时,123x x+->, 故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为2; 故选:ABC 【点睛】本题考查了求零点的个数,考查了数形结合的思想以及分类讨论的思想,属于难题.8.函数()f x 的定义域为D ,若存在区间[],m n D ⊆使()f x 在区间[],m n 上的值域也是[],m n ,则称区间[],m n 为函数()f x 的“和谐区间”,则下列函数存在“和谐区间”的是( ) A .()f x =B .()222f x x x =-+C .()1f x x x=+D .()1f x x=【答案】ABD 【分析】根据题意,可知若()f x 在区间[],m n 上的值域也是[],m n ,则()f x 存在“和谐区间”[],m n ,且m n <,则()()f m m f n n ⎧=⎪⎨=⎪⎩或()()f m n f n m ⎧=⎪⎨=⎪⎩,再对各个选项进行运算求解,m n ,即可判断该函数是否存在“和谐区间”.【详解】解:由题得,若()f x 在区间[],m n 上的值域也是[],m n ,则()f x 存在“和谐区间”[],m n , 可知,m n <,则()()f m m f n n ⎧=⎪⎨=⎪⎩或()()f m n f n m ⎧=⎪⎨=⎪⎩,A :())0f x x =≥,若()()f m mf n n⎧==⎪⎨==⎪⎩,解得:01m n =⎧⎨=⎩,所以()f x =“和谐区间”[]0,1;B :()()222f x x x x R =-+∈,若 ()()222222f m m m m f n n n n ⎧=-+=⎪⎨=-+=⎪⎩,解得:12m n =⎧⎨=⎩, 所以()222f x x x =-+存在“和谐区间” []1,2;C :()()10f x x x x =+≠,若()()11f m m m mf n n n n ⎧=+=⎪⎪⎨⎪=+=⎪⎩,得1010m n ⎧=⎪⎪⎨⎪=⎪⎩,故无解;若()()11f m m nmf n n mn⎧=+=⎪⎪⎨⎪=+=⎪⎩,即 21111m n m m m n n m n ⎧+=⎪⎪⎪=⎨+⎪⎪+=⎪⎩,化简得:2210(1)m m m m ++=+, 即210m m ++=,由于2141130∆=-⨯⨯=-<,故无解; 若()0112,m n f m m <<<∴=∴= 不成立 所以()1f x x x=+不存在“和谐区间”; D :()()10f x x x =≠,函数在()()0+-0∞∞,,, 单调递减,则 ()()11f m n mf n mn ⎧==⎪⎪⎨⎪==⎪⎩, 不妨令122m n ⎧=⎪⎨⎪=⎩, 所以()1f x x =存在“和谐区间”1,22⎡⎤⎢⎥⎣⎦; 综上得:存在“和谐区间”的是ABD. 故选:ABD. 【点睛】关键点点睛:本题以函数的新定义为载体,考查函数的定义域、值域以及零点等知识,解题的关键是理解“和谐区间”的定义,考查运算能力以及函数与方程的思想.9.已知21,1,()ln ,1,xx f x x x ⎧-≤⎪=⎨>⎪⎩,则关于x 的方程2[()]()210f x f x k -+-=,下列正确的是( )A .存在实数k ,使得方程恰有1个不同的实数解;B .存在实数k ,使得方程恰有2个不同的实数解;C .存在实数k ,使得方程恰有3个不同的实数解;D .存在实数k ,使得方程恰有6个不同的实数解; 【答案】ACD 【分析】令()0f x t =≥,根据判别式确定方程2210t t k -+-=根的个数,作出()f x 的大致图象,根据根的取值,数形结合即可求解. 【详解】令()0f x t =≥,则关于x 的方程2[()]()210f x f x k -+-=,可得2210t t k -+-=, 当58k =时,()14210k ∆=--=,此时方程仅有一个根12t =; 当58k <时,()14210k ∆=-->,此时方程有两个根12,t t , 且121t t +=,此时至少有一个正根; 当58k >时,()14210k ∆=--<,此时方程无根; 作出()f x 的大致图象,如下:当58k =时,此时12t =,由图可知()f x t =,有3个不同的交点,C 正确; 当58k <时,此时方程有两个根12,t t ,且121t t +=,此时至少有一个正根, 当()10,1t ∈、()20,1∈t ,且12t t ≠时,()f x t =,有6个不同的交点,D 正确; 当方程有两个根12,t t ,一个大于1,另一个小于0,此时()f x t =,仅有1个交点,故A 正确;当方程有两个根12,t t ,一个等于1,另一个等于0,()f x t =,有3个不同的交点,当58k >时,()14210k ∆=--<,此时方程无根. 故选:ACD 【点睛】关键点点睛:本题考查了根的个数求参数的取值范围,解题的关键是利用换元法将方程化为2210t t k -+-=,根据方程根的分布求解,考查了数形结合的思想,分类讨论的思想.10.已知()f x 是定义域为(,)-∞+∞的奇函数,(1)f x +是偶函数,且当(]0,1x ∈时,()(2)f x x x =--,则( )A .()f x 是周期为2的函数B .()()201920201f f +=-C .()f x 的值域为[]1,1-D .()y f x =在[]0,2π上有4个零点【答案】BCD 【分析】对于A ,由()f x 为R 上的奇函数,()1f x +为偶函数,得(4)()f x f x +=,则()f x 是周期为4的周期函数,可判断A.对于B ,由()f x 是周期为4的周期函数,则()()202000f f ==,()()()2019111f f f =-=-=-,可判断B .对于C ,当(]01x ∈,时,()()2f x x x =--,有()01f x ≤<,又由()f x 为R 上的奇函数,则[)10x ∈-,时,()10f x -≤<,可判断C . 对于D ,根据函数的周期性和对称性,可以求出函数在各段上的解析式,从而求出函数的零点,可判断D . 【详解】 解:对于A ,()1f x +为偶函数,其图像关于x 轴对称,把()1f x +的图像向右平移1个单位得到()f x 的图像,所以()f x 图象关于1x =对称, 即(1)(1)f x f x +=-,所以(2)()f x f x +=-,()f x 为R 上的奇函数,所以()()f x f x -=-,所以(2)()f x f x +=-,用2x +替换上式中的x 得, (4)(2)f x f x +=-+,所以,(4)()f x f x +=,则()f x 是周期为4的周期函数.故A 错误. 对于B ,()f x 定义域为R 的奇函数,则()00f =,()f x 是周期为4的周期函数,则()()202000f f ==;当(]0,1x ∈时,()()2f x x x =--,则()()11121f =-⨯-=,则()()()()201912020111f f f f =-+=-=-=-, 则()()201920201f f +=-.故B 正确.对于C ,当(]01x ∈,时,()()2f x x x =--,此时有()01f x <≤,又由()f x 为R 上的奇函数,则[)1,0x ∈-时,()10f x -≤<,(0)0f =,函数关于1x =对称,所以函数()f x 的值域[]1,1-.故C 正确.对于D ,(0)0f =,且(]0,1x ∈时,()()2f x x x =--,[0,1]x ∴∈,()(2)f x x x =--,[1,2]x ∴∈,2[0,1]x -∈,()(2)(2)f x f x x x =-=--①[0,2]x ∴∈时,()(2)f x x x =--,此时函数的零点为0,2;()f x 是奇函数,[2,0],()(2)x f x x x ∴∈-=+,②(]2,4x ∴∈时,()f x 的周期为4,[]42,0x ∴-∈-,()()()()424f x f x x x =-=--,此时函数零点为4;③(]4,6x ∴∈时,[]40,2x ∴-∈,()()4(4)(6)f x f x x x =-=---,此时函数零点为6;④(]6,2x π∴∈时,(]42,4x ∴-∈,()()()()468f x f x x x =-=--,此时函数无零点;综合以上有,在(0,2)π上有4个零点.故D 正确; 故选:BCD 【点睛】关键点点睛:由(1)f x +是偶函数,通过平移得到()f x 关于1x =对称,再根据()f x 是奇函数,由此得到函数的周期,进一步把待求问题转化到函数的已知区间上,本题综合考查抽象函数的奇偶性、周期性.11.已知函数123,12()1,222x x f x x f x ⎧--≤≤⎪=⎨⎛⎫> ⎪⎪⎝⎭⎩,则下列说法正确的是( )A .若函数()=-y f x kx 有4个零点,则实数k 的取值范围为11,246⎛⎫⎪⎝⎭ B .关于x 的方程*1()0()2n f x n N -=∈有24n +个不同的解 C .对于实数[1,)x ∈+∞,不等式2()30xf x -≤恒成立D .当1[2,2](*)n n x n N -∈∈时,函数()f x 的图象与x 轴围成的图形的面积为1【分析】根据函数的表达式,作出函数的图像,对于A ,C 利用数形结合进行判断,对于B ,D 利用特值法进行判断. 【详解】 当312x ≤≤时,()22f x x =-;当 322x <≤时,()42f x x =-;当23x <≤,则3122<≤x , 1()1222⎛⎫==- ⎪⎝⎭x x f x f ;当34x <≤,则3222<≤x, 1()2222⎛⎫==- ⎪⎝⎭x x f x f ;当46x <≤,则232<≤x, 11()2242⎛⎫==- ⎪⎝⎭x x f x f ; 当68x <≤,则342<≤x,1()1224⎛⎫==- ⎪⎝⎭x x f x f ;依次类推,作出函数()f x 的图像:对于A ,函数()=-y f x kx 有4个零点,即()y f x =与y kx =有4个交点,如图,直线y kx =的斜率应该在直线m , n 之间,又16m k =,124=n k ,11,246⎛⎫∴∈ ⎪⎝⎭k ,故A 正确; 对于B ,当1n =时,1()2f x =有3个交点,与246+=n 不符合,故B 错误; 对于C ,对于实数[1,)x ∈+∞,不等式2()30xf x -≤恒成立,即3()2≤f x x恒成立,由图知函数()f x 的每一个上顶点都在曲线32y x =上,故3()2≤f x x恒成立,故C 正确; 对于D , 取1n =,[1,2]x ∈,此时函数()f x 的图像与x 轴围成的图形的面积为111122⨯⨯=,故D 错误;【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.12.已知函数()()()22224x x f x x x m m ee --+=-+-+(e 为自然对数的底数)有唯一零点,则m 的值可以为( ) A .1 B .1-C .2D .2-【答案】BC 【分析】由已知,换元令2t x =-,可得()()f t f t -=,从而f t 为偶函数,()f x 图象关于2x =对称,结合函数图象的对称性分析可得结论. 【详解】∵22222222()4()()(2)4()()x x x x f x x x m m e e x m m e e --+--+=-+-+=--+-+, 令2t x =-,则22()4()()ttf t t m m e e -=-+-+,定义域为R ,22()()4()()()t t f t t m m e e f t --=--+-+=,故函数()f t 为偶函数,所以函数()f x 的图象关于2x =对称, 要使得函数()f x 有唯一零点,则(2)0f =, 即2482()0m m -+-=,解得1m =-或2 ①当1m =-时,2()42()t t f t t e e -=-++ 由基本不等式有2t t e e -+≥,当且仅当0t =时取得2()4t t e e -∴+≥故2()42()0ttf t t e e -=-++≥,当且仅当0t =取等号 故此时()f x 有唯一零点2x =②当2m =时,2()42()t t f t t e e -=-++,同理满足题意. 故选:BC . 【点睛】方法点睛:①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴.②()y f x =的图象关于直线x a =对称 ()()f a x f a x ⇔-=+()()2f x f a x ⇔-=+13.对于函数()9f x x x=+,则下列判断正确的是( ) A .()f x 在定义域内是奇函数B .函数()f x 的值域是(][),66,-∞-⋃+∞ C .()12,0,3x x ∀∈,12x x ≠,有()()12120f x f x x x ->-D .对任意()12,0,x x ∈+∞且12x x ≠,有()()1212122x x f f x f x +⎛⎫<+⎡⎤ ⎪⎣⎦⎝⎭【答案】ABD 【分析】根据函数奇偶性定义判断()f x 的奇偶性,利用基本不等式求()f x 的值域,设1203x x <<<,根据解析式判断()()12,f x f x 的大小,进而确定()()1212,0f x f x x x --的大小关系,应用作差、作商法判断12122,2()()f x f x x x f +⎛⎫⎪+⎝⎭大小关系,进而确定各项的正误. 【详解】A :由解析式知:定义域为0x ≠,99()()()f x x x f x x x-=-+=-+=--,即()f x 在定义域内是奇函数,正确; B :当0x >时,()96f x x x =+≥=当且仅当3x =时等号成立;当0x <时有0x ->,()9[()()]6f x x x=--+-≤-=-当且仅当3x =-时等号成立;故其值域(][),66,-∞-⋃+∞,正确;C :当1203x x <<<时,()()1212121212999()(1)f x f x x x x x x x x x -=-+-=--,而120x x -<,12910x x -<,则()()120f x f x ->,所以()()12120f x f x x x -<-,错误;D :若120x x >>,1212123622x x f x x x x +⎛⎫=++⎪+⎝⎭,12121299()()f x f x x x x x +=+++,所以121212123699()()]2[()2f x f x x x x x x x f +⎛⎫- ⎪⎝+=-++⎭,而121221212364199()x x x x x x x x +=<++,即()()1212122x x f f x f x +⎛⎫<+⎡⎤ ⎪⎣⎦⎝⎭,正确; 故选:ABD 【点睛】关键点点睛:综合应用函数奇偶性的证明、对勾函数值域的求法、作差(作商)法比较大小,判断各选项的正误.14.下列函数求值域正确的是( )A.()1f x x =+的值域为[2)+∞,B .222()1x x g x x ++=+的值域为[2)+∞,C.()h x =(0D.()w x =的值域为[2【答案】CD 【分析】()12f x x x =++-去绝对值结合单调性和图象即可判断选项A ;2(1)11()(1)11x g x x x x ++==++++讨论10x +>和10x +<,利用基本不等式求值域可判断选项B;()h x ==利用单调性即可判断选项C ;()w x 定义域为[31]-,,将()w x =()24w x =,由于()0w x >,可得()w x =2(1)t x =-+的范围即可求()w x 值域,可判断选项D. 【详解】对于选项A :原函数化为211()12312212x x f x x x x x x -+≤-⎧⎪=++-=-<≤⎨⎪->⎩,,,, 其图象如图,原函数值域为[3)+∞,,故选项A 不正确,对于选项B :2(1)11()(1)11x g x x x x ++==++++,定义域为{}|1x x ≠-, 当1x <-时,10x +<,此时[][]11(1)2(1)211x x x x ⎛⎫⎛⎫-++-≥-+⨯-= ⎪ ⎪++⎝⎭⎝⎭,所以1(1)21x x ++≤-+,当且仅当1(1)1x x -+=-+即2x =-时等号成立, 当1x >-时,10x +>,此时11(1)(1)211x x x x ++≥+⨯=++,当且仅当111x x +=+即0x =时等号成立, 所以函数()g x 值域为(2][2)-∞-⋃+∞,,,故选项B 不正确; 对于选项C :()h x 的定义域为[1)+∞,, (11)(11)()111111x x x x h x x x x x x x ++-+--=+-==++-++-,因为1y x =+1y x =-[1)+∞,上是增函数,所以11y x x =+-[1)+∞,上是增函数,又11y x x =+-[1)+∞,上恒不等于0,则11y x x =++-在[1)+∞,上是减函数,则()h x 的最大值为()12h = 又因为()0h x >,所以()h x 的值域为(02],,故选项C 正确;对于选项D :()w x 的定义域为[31]-,, ()2()131313213w x x x x x x x x x =-+=-++=-+++-⋅+222(1)(3)422342(1)44x x x x x =-++=--++=-+++设2(1)t x =-+,则[40]t ∈-,,[]240,4t +,[]2444,8t +∈, 则2()2(1)442,22w x x ⎡=-+++⎣,()w x 的值域为[222],,故选项D 正确,故选:CD 【点睛】方法点睛:求函数值域常用的方法(1)观察法:一些简单的函数,值域可以通过观察法得到;(2)利用常见函数的值域:一次函数值域为R ;二次函数利用配方法,结合定义域求出值域;反比例函数的值域为{}|0y y ≠;指数函数的值域为{}|0y y >;对数函数值域为R ;正、余弦函数的值域为[]1,1-;正切函数值域为R ;(3)单调性法:先判断函数的单调性,再由函数的单调性求函数的值域; (4)分离常数法:将有理分式转化为反比例函数类的形式,便于求值域;(5)换元法:对于一些无理函数如y ax b =±±数,通过求有理函数的值域间接求原函数的值域;(6)不等式法:利用几个重要的不等式及其推论来求最值,进而求得值域,如222a b ab +≥,a b +≥,以及绝对值三角不等式等;(7)判别式法:把函数解析式化为关于x 的一元二次方程,利用判别式求值域,形如y Ax =+22ax bx c y dx ex f++=++的函数适用; (8)有界性法:充分利用三角函数或一些代数表达式的有界性,求出值域; (9)配方法:求二次函数型函数值域的基本方法,形如()()()()20F x a f x bf x c a =++≠⎡⎤⎣⎦的函数求值域,均可使用配方法;(10)数形结合法:若函数的解析式的几何意义较明显,如距离、斜率等可使用数形结合法;(11)导数法:利用导数求函数值域时,一种是利用导数判断函数的单调性,进而根据单调性求函数的值域;一种是利用导数与极值、最值的关系求函数的值域.15.已知函数()2,021,0x x ax x f x x -⎧+≤=⎨->⎩,则( )A .()f x 的值域为()1,-+∞B .当0a ≤时,()()21f x f x >+C .当0a >时,存在非零实数0x ,满足()()000f x f x -+=D .函数()()g x f x a =+可能有三个零点 【答案】BC 【分析】A .考虑2a =时的情况,求解出各段函数值域再进行判断;B .先根据条件分析()f x 的单调性,再根据21x +与x 的大小关系进行判断;C .作出222,,y x ax y x ax y x ax =+=-+=-+的函数图象,根据图象的对称性进行分析判断;D .根据条件先分析出()0,1a ∈,再根据有三个零点确定出a 满足的不等式,由此判断出a 是否有解,并判断结论是否正确.【详解】A .当0x >时,21011x y -=->-=-,当0x ≤时,22224a a y x ax x ⎛⎫=+=+- ⎪⎝⎭,取2a =,此时()2111y x =+-≥-,所以此时的值域为[)1,-+∞,故A 错误;B .当0a ≤时,22224a a y x ax x ⎛⎫=+=+- ⎪⎝⎭的对称轴为02a x =-≥,所以()f x 在(],0-∞上单调递减,又因为()f x 在()0,∞+上单调递减,且200021a -+⨯=-,所以()f x 在R 上单调递减,又因为22131024x x x ⎛⎫+-=-+> ⎪⎝⎭,所以21x x +>,所以()()21f x f x >+,故B 正确;C .作出函数22,,21x y x ax y x ax y -=+=-+=-的图象如下图所示:由图象可知:22,y x ax y x ax =+=-+关于原点对称,且2y x ax =-+与21x y -=-相交于()00,x y ,因为点()00,x y 在函数2y x ax =-+的图象上,所以点()00,x y --在函数2y x ax =+的图象上,所以()()()00000f x f x y y +-=+-=,所以当0a >时,存在0x 使得()()000f x f x -+=,故C 正确;D .由题意知:()f x a =-有三个根,所以()f x 不是单调函数,所以0a >, 又因为()211,0xy -=-∈-,所以()1,0a -∈-,所以()0,1a ∈,且22,4a y x ax ⎡⎫=+∈-+∞⎪⎢⎣⎭,若方程有三个根,则有24a a ->-,所以4a >或0a <,这与()0,1a ∈矛盾,所以函数()()g x f x a =+不可能有三个零点,故D 错误, 故选:BC. 【点睛】思路点睛:函数与方程的综合问题,采用数形结合思想能高效解答问题,通过数与形的相互转化能使问题转化为更简单的问题,常见的图象应用的命题角度有: (1)确定方程根的个数; (2)求参数范围; (3)求不等式解集; (4)研究函数性质.16.若定义在R 上的函数()f x 满足()()0f x f x ,当0x <时,23()22f x x ax a =++(a ∈R ),则下列说法正确的是( )A .若方程()2af x ax =+有两个不同的实数根,则0a <或48a << B .若方程()2af x ax =+有两个不同的实数根,则48a << C .若方程()2af x ax =+有4个不同的实数根,则8a > D .若方程()2af x ax =+有4个不同的实数根,则4a > 【答案】AC 【分析】由题知()f x 是R 上的奇函数,则由0x <时的解析式可求出()f x 在R 上的解析式.先讨论特殊情况0x =为方程的根,则可求出0a =,此时方程化为()0f x =,而函数()f x 为R 上的减函数,则方程仅有一个根.当0x ≠时,由分段函数分类讨论得出0x <时,1(1)2(1)a x x =-+++-+,0x >时,4242a x x =-++-.利用数形结合思想,画出图象,则可得知方程()2af x ax =+不同的实数根个数分别为2个和4时,参数a 的取值范围. 【详解】因为()()0f x f x 所以()()f x f x -=-,所以()f x 是R 上的奇函数,(0)0f =, 当0x >时,0x -<,23()22f x x ax a -=-+, 所以23()()22f x f x x ax a =--=-+-, 综上2232,02()0,032,02x ax a x f x x x ax a x ⎧++<⎪⎪==⎨⎪⎪-+->⎩,若0x =是方程()2af x ax =+的一个根, 则0a =,此时()2af x ax =+,即()0f x =, 而22,0()0,0,0x x f x x x x ⎧<⎪==⎨⎪->⎩,在R 上单调递减,当0a =时,原方程有一个实根. 当0x <时,23222a x ax a ax ++=+, 所以20x ax a ++=,当1x =-时不满足,所以21(1)21(1)x a x x x =-=-++++-+, 当0x >时,23222ax ax a ax -+-=+, 所以220x ax a -+=,当2x =时不满足,所以242422x a x x x ==-++--,如图:若方程()2af x ax =+有两个不同的实数根, 则0a <或48a <<;若方程()2af x ax =+有4个不同的实数根,则8a >. 故选:AC 【点睛】关键点点睛:本题的关键是将方程()2af x ax =+进行参数分离,再借助数形结合法,求出对应的参数的取值范围.17.已知()f x 为定义在R 上且周期为5的函数,当[)0,5x ∈时,()243f x x x =-+.则下列说法中正确的是( )A .()f x 的增区间为()()15,2535,55k k k k ++⋃++,k Z ∈B .若y a =与()y f x =在[]5,7-上有10个零点,则a 的范围是()0,1C .当[]0,x a ∈时,()f x 的值域为[]0,3,则a 的取值范围[]1,4 D .若()20y kx k =->与()y f x =有3个交点,则k 的取值范围为12,23⎛⎫ ⎪⎝⎭【答案】BC 【分析】首先作出()f x 的图象几个周期的图象,由于单调区间不能并,可判断选项A 不正确;利用数形结合可判断选项B 、C ;举反例如1k =时经分析可得()20y kx k =->与()y f x =有3个交点,可判断选项D 不正确,进而可得正确选项. 【详解】对于选项A :单调区间不能用并集,故选项A 不正确;对于选项B :由图知若y a =与()y f x =在[]5,7-上有10个零点,则a 的范围是()0,1, 故选项B 正确;对于选项C :()10f =,()43f =,由图知当[]0,x a ∈时,()f x 的值域为[]0,3,则a 的取值范围[]1,4,故选项C 正确;对于选项D :当1k =时,直线为2y x =-过点()5,3,()f x 也过点()5,3,当10x =时,1028y =-=,直线过点()10,8,而点()10,8不在()f x 图象上,由图知:当1k =时,直线为2y x =-与()y f x =有3个交点,由排除法可知选项D 不正确,故选:BC 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.18.已知函数22(2)log (1),1()2,1x x x f x x +⎧+>-⎪=⎨≤-⎪⎩,若关于x 的方程()f x m =有四个不等实根1x ,2x ,3x ,()41234x x x x x <<<,则下列结论正确的是( )A .12m <≤B .11sin cos 0x x ->C .3441x x +>- D.2212log mx x ++10【答案】ACD 【分析】画出()f x 的图象,结合图象求得1234,,,,m x x x x 的取值范围,利用特殊值确定B 选项错误,利用基本不等式确定CD 选项正确. 【详解】画出()f x 的图象如下图所示,由于关于x 的方程()f x m =有四个不等实根1x ,2x ,3x ,()41234x x x x x <<<, 由图可知12m <≤,故A 选项正确. 由图可知12,x x 关于直线2x =-对称,故12122,42x x x x +=-+=-, 由()()22221x x +=≤-解得3x =-或1x =-,所以1232,21x x -≤<--<≤-,3324π-<-<-,当134x π=-时,1212sin cos ,sin cos 02x x x x ==--=,所以B 选项错误. 令()()2221x m x +=≤-,()22log 2log 1x m m m +==,()22log 21m x +=,()222log 1m x +=,12,x x 是此方程的解,所以()211log 22m x =+,或()221log 22m x =+,故()()22221211211log 422m x x x x x ++=+--++()()2121122881022x x =+++≥=+,当且仅当()()211211522,222x x x +==-+时等号成立,故D 选项正确. 由图象可知()()2324log 1log 1x x +=-+,()()2324log 1log 10x x +++=,()()34111x x +⋅+=,4433111,111x x x x +==-++, 由()()2log 111x x +=>-,解得1x =或12x =-,由()()2log 121x x +=>-,解得3x =或34x =-,所以3431,1342x x -≤<-<≤, ()3433331144145111x x x x x x +=+-+=-+++ ()332151141x x +≥+⋅-=-①. 令()()21134,1,1421x x x x +===-++或12x =-,所以①的等号不成立,即3441x x +>-,故C 选项正确. 故选:ACD【点睛】求解有关方程的根、函数的零点问题,可考虑结合图象来求解.求解不等式、最值有关的问题,可考虑利用基本不等式来求解.19.已知函数()()()sin 0f x x ωϕω=+>满足()01()12f x f x +=-=0,且()f x 在()00,1x x +上有最小值,无最大值.则下列说法正确的是()A .01()12f x +=- B .若00x =,则()sin 26f x x ππ⎛⎫=-⎪⎝⎭C .()f x 的最小正周期为3D .()f x 在()0,303上的零点个数最少为202个 【答案】AC 【分析】由题意知()00,1x x +在一个波谷的位置且有对称性,有01()12f x +=-且23πω=,进而可判断A 、B 、C 的正误,又[0,303]上共有101个周期,最多有203个零点,最少有202个零点,进而可知()0,303零点个数最少个数,即知D 的正误. 【详解】由()01()12f x f x +=-=0,且()f x 在()00,1x x +上有最小值,无最大值,∴()00,1x x +在一个波谷的位置且有对称性,即01()12f x +=-,002(1)()3x x πωϕωϕω++-+==, ∴()f x 的最小正周期为23T πω==,故A 、C 正确,B 错误;在[0,303]上共有101个周期,若每个周期有两个零点时,共有202个零点,此时区间端点不为零点;若每个周期有三个零点时,共有203个零点,此时区间端点为零点; ∴()0,303上零点个数最少为201个,即每个周期有三个零点时,去掉区间的两个端点,故D 错误. 故选:AC. 【点睛】关键点点睛:由条件推出()00,1x x +在一个波谷的位置且有对称性,可确定01()2f x +及最小正周期,再由正弦函数的性质判断()0,303上零点个数,进而确定最少有多少个零点.20.设函数(){}22,,2f x min x x x =-+其中{},,min x y z 表示,,x y z 中的最小者.下列说法正确的有( ) A .函数()f x 为偶函数B .当[)1,x ∈+∞时,有()()2f x f x -≤C .当x ∈R 时,()()()ff x f x ≤D .当[]4,4x ∈-时,()()2f x f x -≥ 【答案】ABC 【分析】画出()f x 的图象然后依据图像逐个检验即可.【详解】解:画出()f x 的图象如图所示:对A ,由图象可知:()f x 的图象关于y 轴对称,故()f x 为偶函数,故A 正确; 对B ,当12x ≤≤时,120x -≤-≤,()()()222f x f x x f x -=-≤-=; 当23x <≤时,021x <-≤,()()22f x x f x -≤-=;当34x <≤时,122x <-≤,()()()22242f x x x x f x -=--=-≤-=; 当4x ≥时,22x -≥,此时有()()2f x f x -<,故B 成立;对C ,从图象上看,当[)0,x ∈+∞时,有()f x x ≤成立,令()t f x =,则0t ≥,故()()f f x f x ⎡⎤≤⎣⎦,故C 正确;对D ,取32x =,则111224f f ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,3122f ⎛⎫= ⎪⎝⎭,()()2f x f x -<,故D 不正确. 故选:ABC . 【点睛】方法点睛:一般地,若()()(){}min ,f x S x T x =(其中{}min ,x y 表示,x y 中的较小者),则()f x 的图象是由()(),S x T x 这两个函数的图象的较低部分构成的.。
函数概念与基本初等函数章节综合检测提升试卷(三)附答案人教版高中数学考点大全
B.
C. D. (2020广东)
5.设 是R上的任意函数,则下列叙述正确的是()
(A) 是奇函数(B) 是奇函数
(C) 是偶函数(D) 是偶函数(2020辽宁理)
6.若 ,则 的定义域为()
A. B. C. D. (2020江西理3)
【精讲精析】选A.
7.函数 的定义域是()
A.(- ,1)B.(1,+ )C.(-1,1)∪(1,+ )D.(- ,+ )(2020广东文4)
10.已知函数 在区间 上是增函数,则 必须满足
A. B. C. D.
第II卷(非选择题)
请点击修改第II卷的文字说明
评卷人
得分
二、填空题
11.设函数 ,若 ,则 的值为▲.
12.设 ,若函数 在区间 上是增函数,则 的取值范围是
13.已知 在 上是减函数,则实数 的取值范围是_____.
14.对于定义在 上的函数 ,下列正确的命题的序号是▲.
2.函数f(x)= (x∈R)的值域是( )
A.(0,1)B.(0,1]C.[0,1)D.[0,1] (2020陕西文)
3.设 ,则 的定义域为( )
A. B. C. D. (2020湖北理)
4.在同一平面直角坐标系中,函数 和 的图象关于直线 对称.现将 的图象沿 轴向左平移2个单位,再沿 轴向上平移1个单位,所得的图象是由两条线段组成的折线(如图2所示),则函数 的表达式为()
15.
16.
评卷人
得分
三、解答题
17.(本小题满分8分)[来源:学+科+网]
解:(Ⅰ)由条件得 ,3分[来源:学科网ZXXK]
解得: .4分
函数概念与基本初等函数章节综合检测提升试卷(二)附答案人教版高中数学考点大全
轨迹是图中的线段( (A)AB 和 AD (C)AD 和 BC
) (B)AB 和 CD (D)AC 和 BD
9.若函数 f (x) 是R上的增函数,对实数 a,b,若 a+b>0,则有------------ --
--------( )
A. f (a) f (b) f ( a) f ( b) B. f (a) f (b) f ( a) f ( b)
2 (1)求 f (1);
(2)求 a,b, c 的值;
( 3 ) 当 x [1, 1]时 , 函 数 g(x) f (x) mx ( m 是 实 数 ) 是 单 调 函 数 , 求 m 的 取
值范围。
18.设函数 y 2x m 2x 1, x [1,5] 的最小值为 g(m) ,求 g(m) 的解析式。
f (x) =
。
15.已知函数 f x是偶函数,并且对于定义域内任意的 x ,满足
f
x 2
f
1
x
,
若当 2 x 3 时, f x x,则 f (2007.5) =__________
_
16.定义在 R 上的函数 f (x) 满足 f ( x) f ( x),且 f (1 x) f (1 x ),当
高中数学专题复习
《函数的概念与基本初等函数》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载! 注意事项:
1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上
第 I 卷(选择题)
请点击修改第 I 卷的文字说明
评卷人 得分
一、选择题
1.设
f (x)
x 1
x
,则
函数概念与基本初等函数单元过关检测卷(四)含答案人教版高中数学艺考生专用
高中数学专题复习《函数的概念与基本初等函数》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分 一、选择题1.已知定义在区间(0,2)上的函数()y f x =的图像如图所示,则(2)y f x =--的图像为(2020湖北文)B2.若函数)1,0)((log ≠>+=a a b x y a 的图象过两点(-1,0)和(0,1),则 ( ) (A)a=2,b=2 (B)a= 2 ,b=2 (C)a=2,b=1 (D)a= 2 ,b= 2 (2020江苏)3.设集合044|{},01|{2<-+∈=<<-=mx mx R m Q m m P 对任意实数x 恒成立},则下列关系中成立的是( )( A .P Q B .Q P C .P=Q D .P Q=(2020湖北理)4.函数ln cos ()22y x x ππ=-<<的图象是 ( )(2020山东)5.设函数y =f (x )定义在实数集上,则函数y =f (x -1)与y =f (1-x )的图象关于( )A .直线y =0对称B .直线x =0对称C .直线y =1对称D .直线x =1对称(2020全国文7)6.如图所示,单位圆中AB 的长为x ,()f x 表示弧AB 与弦AB 所围成的弓形面积的2倍,则函数()y f x =的图像是( )(2020重庆理)7.函数f(x)=|x-1|的图象是( )(2020北京春季文)8.函数y=22log 2x y x-=+的图像 (A ) 关于原点对称 (B )关于主线y x =-对称(C ) 关于y 轴对称 (D )关于直线y x =对称9.已知f (x )=ax 2+bx+c (a ≠0)是偶函数,那么g (x )=ax 3+bx 2+cx 是 ( )(A )偶函数 (B )奇函数 (C )非奇非偶函数 (D )是奇函数又是偶函数10.奇函数y=f (x )(x ∈R )的图象上必有点 ( )(A )(a ,f (-a ))(B )(-a ,f (a ))(C )(-a ,-f (a ))(D )(a ,f (a -1))第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分 二、填空题11.关于x 的方程21x ax +=有正实数根,则实数a 的取值范围是 .12.设函数2()(0)f x ax bx c a =++<的定义域为D ,若所有点(,())(,)s f t s t D ∈构成一个正方形区域,则a 的值为 ▲13.若f (x )=2x -1,则f (x +1)的表达式为___ ___.14. 定义在实数集R 上的偶函数()f x 在区间[0,)+∞上是单调增函数,若(2)(lg )f f x >,则x 的取值范围是__1(,100)100____. 15.已知函数y=f(2x-1)的定义域为[-1,2],则f(x) 的定义域为16.若函数2()()2f x x F x =∈-的值域为1(,]3-∞-,则其定义域为 .评卷人得分 三、解答题17.设2()36f x axx a =--不等式()0f x >的解集是(-3,2). (1)求()f x ;(2)当函数f (x )的定义域是[0,1]时,求函数()f x 的值域.(本题满分14分)18.已知函数f(x)=|x|(x-a),(a ∈R).(1)讨论f(x)在R 上的奇偶性;(2)当-2≤a ≤0时,求函数f(x)在闭区间[-1,12]上的最大值.19.讨论函数12-=x ax x f )((-1<x<1)的单调性20.已知二次函数2()f x ax bx c =++和一次函数()g x bx =-,其中,,a b c R ∈,且满足a b c >>,(1)0f =. ⑴证明:函数()f x 与()g x 的图像交于不同的两点,A B ;⑵若函数()()()F x f x g x =-在[2,3]上的最小值为9,最大值为21,试求,a b 的值.【例3】⑴略;⑵2,1a b ==【参考答案】***试卷处理标记,请不要删除评卷人得分 一、选择题1.ABCD解析:特殊值法:当2x =时,()()()22200y f x f f =--=--=-=,故可排除D 项;当1x =时,()()()22111y f x f f =--=--=-=-,故可排除A,C 项;所以由排除法知选B.2.A3.A4.BCD解析:A解析 本题考查复合函数的图象。
函数概念与基本初等函数一轮复习专题练习(四)含答案人教版高中数学
高中数学专题复习《函数的概念与基本初等函数》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明评卷人得分一、选择题1.已知函数()f x 是定义在R 上的偶函数,且在区间[)0+,∞上是增函数.令2s i n 7a f π⎛⎫= ⎪⎝⎭,5cos 7b f π⎛⎫= ⎪⎝⎭,5tan 7c f π⎛⎫= ⎪⎝⎭,则( )A .b a c <<B .c b a <<C .b c a <<D .a b c <<(2020天津理)2.函数y =-e x 的图象( )(A )与y =e x 的图象关于y 轴对称 (B )与y =e x 的图象关于坐标原点对称 (C )与y =e-x的图象关于y 轴对称 (D )与y =e-x的图象关于坐标原点对称(2020全国2理6)3.定义在(-∞,+∞)上的任意函数f (x )都可以表示成一个奇函数g (x )和一个偶函数h (x )之和,如果f (x )=lg (10x+1),x ∈(-∞,+∞),那么( )A .g (x )=x ,h (x )=lg (10x+10-x+2)B .g (x )=21lg [(10x +1)+x ],h (x )=21lg [(10x+1)-x ] C .g (x )=2x ,h (x )=lg (10x+1)-2x D .g (x )=-2x ,h (x )=lg (10x+1)+2x (1994全国15) 4.函数f (x )=|x|和g (x )=x (2-x )的递增区间依次是( ) A .(-∞,0],(-∞,1] B .(-∞,0],[1,+∞)C .[0,+∞),(-∞,1]D .[0,+∞),[1,+∞)(2020北京春文8) 5.若定义在R上的函数f (x )满足:对任意x 1,x 2∈R有f (x 1+x 2)=f (x 1)+f (x 2)+1,,则下列说法一定正确的是CA .f (x )为奇函数B .f (x )为偶函数C . f (x )+1为奇函数D .f (x )+1为偶函数6.设函数()f x 定义在实数集上,它的图像关于直线1x =对称,且当1x ≥时,()31x f x =-,则有( )A .132()()()323f f f << B .231()()()323f f f <<C .213()()()332f f f <<D .321()()()233f f f <<(2020江苏6)7.函数11y x=-的图象与函数2sin (24)y x x π=-≤≤的图象所有交点的横坐标之和等于( )A.2B. 4C. 6D.8(2020全国理12) 8.如图所示,一质点(,)P x y 在xOy 平面上沿曲线运动,速度大小不 变,其在x 轴上的投影点(,0)Q x 的运动速度()V V t =的图象大致为A B C D (2020江西卷文)9.函数()||f x x =和()(2)g x x x =-的递增区间分别是_________________10.若函数3()f x x x =--,且122331,,x x x x x x +++均大于零,则)()()(321x f x f x f ++的值----( )A.正数B.负数C.0D.正、负都有可能第II 卷(非选择题)请点击修改第II 卷的文字说明yxO(,)P x y (,0)Q x O ()V t t O ()V t tO ()V t tO ()V t t评卷人得分二、填空题11.已知函数8||2)(2-+=x x x f ,定义域为],[b a ),(Z b a ∈,值域为]0,8[-,则满足条件的整数对),(b a 有 对.512.对于区间[]()1212,x x x x <,我们定义其长度为21x x -,若已知函数12log y x =的定义域为[],a b ,值域为[]0,2,则区间[],a b 长度的最大值为 .13.设M 是由满足下列性质的函数()f x 构成的集合:在定义域内存在0x ,使得()()()0011f x f x f +=+成立.已知下列函数:①()1f x x=;②()2xf x =;③()()2lg 2f x x =+;④()cos f x x π=,其中属于集合M 的函数是 ▲ (写出所有满足要求的函数的序号).②④ 14.函数f (θ)=sin θ2+cos θ的最大值为________.关键字:求最值;分式函数;数形结合;转化为斜率 解析:sin θ2+cos θ可以与两点连线的斜率联系起来,它实际上是点P (cos θ,sin θ)与点A (-2,0)连线的斜率,而点P (cos θ,sin θ)在单位圆上移动,问题变为:求单位圆上的点与A (-2,0)连线斜率的最大值.如右图,显然,当P 点移动到B 点(此时,AB与圆相切)时,AP 的斜率最大,最大值为tan ∠BAO =|OB ||AB |=1.15.若)(x f y =的图象关于a x =对称,又关于b x =对称,则)(x f y =为周期函数,它的一个周期为T =||2a b -;16.奇函数()f x 在[3,6]上单调递增,且在[3,6]上的最大值为8,最小值为1-,则2(6)(3)f f -+-= .评卷人得分三、解答题17.1.已知)(x f 是定义在R 上的奇函数,且当0>x 时,)0(12)(23>++-=a bx ax ax x f(1)求函数)(x f y =的解析式;(2)若函数xx f x g 1)()(-=在区间[]3,2上有最大值4,最小值1,求b a ,的值.18.已知)(x f 是定义在[-1,1]上的增函数,且)()(112-<-x f x f 。
函数概念与基本初等函数单元过关检测卷(四)含答案人教版高中数学真题技巧总结提升辅导班专用
高中数学专题复习《函数的概念与基本初等函数》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明评卷人得分一、选择题1.下列函数中,既是奇函数又是增函数的为 ( )A .1y x =+B .2y x =-C .1y x=D .||y x x =(2020陕西文)2.已知()f x 是周期为2的奇函数,当01x <<时,()lg .f x x =设63(),(),52a f b f ==5(),2c f =则( )A .a b c <<B .b a c <<C .c b a <<D .c a b <<(2020)3.若函数)1,0)((log ≠>+=a a b x y a 的图象过两点(-1,0)和(0,1),则 ( )(A)a=2,b=2 (B)a= 2 ,b=2 (C)a=2,b=1 (D)a= 2 ,b= 2 (2020江苏) 4.已知函数()|lg |f x x =.若a b ≠且,()()f a f b =,则a b +的取值范围是( )(A)(1,)+∞ (B)[1,)+∞(C) (2,)+∞ (D) [2,)+∞(2020全国1文7)【解析1】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或1b a=,所以a+b=1a a+又0<a<b,所以0<a<1<b ,令()f a a a=+1由“对勾”函数的性质知函数()f a 在a ∈(0,1)上为减函数,所以f(a)>f(1)=1+1=2,即a+b 的取值范围是(2,+∞).【解析2】由0<a<b,且f (a )=f (b )得:0111a b ab <<⎧⎪<⎨⎪=⎩,利用线性规划得:0111x yxy <<⎧⎪<⎨⎪=⎩,化为求z x y =+的取值范围问题,z x y y x z =+⇒=-+,2111y y x x'=⇒=-<-⇒过点()1,1时z 最小为2,∴(C) (2,)+∞ 5.已知非0实数c b a ,,成等差数列,则二次函数2)(ax x f =+2bx+c 的图象与x 轴的交点个数为( ) A .1B .2C .1或2D .0(2020)6.若定义在区间(-1,0)内的函数f (x )=log 2a (x +1)满足f (x )>0,则a 的取值范围是 ( )A.⎝⎛⎭⎫0,12B.⎝⎛⎦⎤0,12C.⎝⎛⎭⎫12,+∞ D .(0,+∞) 解析:∵-1<x <0, ∴0<x +1<1.又f (x )=log 2a (x +1)>0, ∴0<2a <1,即0<a <12.7.函数221()ln(3234)f x x x x x x=-++--+的定义域为( ) A . (,4][2,)-∞-+∞B . (4,0)(0.1)- C . [-4,0)(0,1]D . [4,0)(0,1)-(2020湖北理4文1)8.函数()sin f x x x m n =++为奇函数的充要条件是………………………………………( ) A 、220m n += B 、0mn =C 、0m n +=D 、0m n -=9.设,函数的图像可能是(2020安徽卷文)【解析】可得2,()()0x a x b y x a x b ===--=为的两个零解. 当x a <时,则()0x b f x <∴<当a x b <<时,则()0,f x <当x b >时,则()0.f x >选C 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学专题复习
《函数的概念与基本初等函数》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明
评卷人
得分
一、选择题
1.已知定义在区间(0,2)上的函数()y f x =的图像如图所示,则(2)y f x =--的图像为
(2020湖北
文) B
2.设()1f x x x =--,则1()2f f ⎡⎤
=⎢⎥⎣⎦
( )
(A) 12- (B)0 (C)
1
2
(D) 1(2020浙江文) 3.一给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关系式
)(1n n a f a =+得到的数列}{n a 满足)(*1N n a a n n ∈>+,则该函数的图象是( )
1
1
o y x 1
1
o
y x 1
1
o
y x 11
o
y x
(
2020辽宁)
A B C D
4.设f (x )、g (x )都是单调函数,有如下四个命题:
①若f (x )单调递增,g (x )单调递增,则f (x )-g (x )单调递增; ②若f (x )单调递增,g (x )单调递减,则f (x )-g (x )单调递增; ③若f (x )单调递减,g (x )单调递增,则f (x )-g (x )单调递减; ④若f (x )单调递减,g (x )单调递减,则f (x )-g (x )单调递减. 其中,正确的命题是( ) A .①② B .①④
C .②③
D .②④(2020全国
10)
5.若定义在区间(-1,0)内的函数f (x )=log 2a (x +1)满足f (x )>0,则a 的取值范
围是 ( )
A.⎝⎛⎭⎫0,12
B.⎝⎛⎦⎤0,12
C.⎝⎛⎭⎫12,+∞ D .(0,+∞) 解析:∵-1<x <0, ∴0<x +1<1.
又f (x )=log 2a (x +1)>0, ∴0<2a <1,即0<a <12.
6.若函数f(x)=
1
21
+X
, 则该函数在(-∞,+∞)上是( ) A .单调递减无最小值 B . 单调递减有最小值
C .单调递增无最大值
D . 单调递增有最大值(2020上海)
7.已知函数2
()22(4)1f x mx m x =--+,
()g x mx =,若对于任一实数x ,()f x 与()g x 至少有一个为正数,则实数m 的取值范围是A . (0,2) B .(0,8)
C .(2,8)
D . (,0)-∞(江西卷12)
8.定义在R 上的偶函数()f x 的部分图像如右图所示,则在()2,0-上,下列函数中与()f x 的单调性不同的是
A .2
1y x =+ B. ||1y x =+
C. 3
21,01,0
x x y x x +≥⎧=⎨
+<⎩
D .,,0
x x e x o
y e x -⎧≥⎪=⎨<⎪⎩
解析 解析 根据偶函数在关于原点对称的区间上单调性相反,故可知求在()2,0-上单调递减,注意到要与()f x 的单调性不同,故所求的函数在()2,0-上应单调递增。
而函数2
1y x =+在(],1-∞上递减;函数1y x =+在(],0-∞时单调递减;函
数
⎩⎨⎧++=0
,10
,123
x x x x y 在(]0,∞-上单调递减,理由如下y ’=3x 2>0(x<0),故函数单调递增,显然符合题意;而函数⎪⎩⎪⎨⎧≥=-0
,0, x e x e y x x ,有y ’=-x
e -<0(x<0),故其在
(]0,∞-上单调递减,不符合题意,综上选C 。
9.2
()(1)(),(0)21
x
F x f x x =+
≠-是偶函数,且()f x 不恒等于零,则()f x --------------------------( )
(A)是奇函数 (B)是偶函数 (C)可能是奇函数也可能是偶函数 (D)不是奇函数也不是偶函 10.函数1
()f x x x
=-的图像关于( C )(全国二3) A .y 轴对称
B . 直线x y -=对称
C . 坐标原点对称
D . 直线x y =对称
第II 卷(非选择题)
请点击修改第II 卷的文字说明 评卷人
得分
二、填空题
11.设1a >,若函数2
()log ()a f x ax x =-在区间1[,4]2
上是增函数,则a 的取值
范围是 ()∞+,
2
12.函数2
lg(654)y x x =--+的定义域为_________________
13.函数2
1x
x y -=
的值域____________
14.如果3
3
7
7
sin cos sin cos θθθθ->-,且()0,2θπ∈,那么θ的取值范围是
5,44
ππ
⎛⎫
⎪⎝⎭
点评:该题设计新颖,意在考察函数思想,注意,函数3
7
y x x =+是增函数. 15.右图是某公交线路收支差额y ,与乘客量x 之间的关系图(收支差额=车票收入+财政补贴一支出费用.假设财政补贴和支出费用与乘客量无关).在票价听证会上,市民代表提出“增加财政补贴,票价实行8折优惠”的建议.则下列四个图中反映了市民代表建议的是 (虚线表示调整后y 与x 的关系图).
16.函数()2
p
x p x x f +-=在(1,+∞)上是增函数,则实数p 的取值范围是__________ 评卷人
得分
三、解答题
17.已知函数2
()1(,),f x ax bx a b x R =++∈为实数,()0)
()(0f x x F x f x x >⎧=⎨
-<⎩ () ()
(1)若(1)0f -=,且函数()f x 的值域为[0,)+∞,求()F x 的表达式;
(2)在(1)的条件下,当[2,2]x ∈-时,()()g x f x kx =-是单调函数,求实数k 的取值范围;
(3)设m>0,n<0,m+n>0,a>0且()f x 为偶函数,判断()()F m F n +能否大于零,并说明理由。
18.已知函数21)(+--=x x x f (1)用分段函数的形式表示该函数;
(2)在右边所给的坐标第中画出该函数的图象;
(3)写出该函数的定义域、值域、奇偶性、单调区间(不要求证明)。
19.已知2
()3f x x ax =++
(1)当x R ∈时,()f x a ≥恒成立,求实数a 的取值范围;
(2)当[2,2]x ∈-时,()f x a ≥恒成立,求实数a 的取值范围;
(3)当[2,2]x ∈-时,()3f x a ≤恒成立,求实数a 的取值范围.
x
y
O
20.定义符号函数1,0sgn 0,01,0x x x x >⎧⎪
==⎨⎪-<⎩
(1)函数sgn x 的定义域为 ;值域
为 ; (2)不等式sgn 2(21)x x x +>-的解集为
【参考答案】***试卷处理标记,请不要删除
评卷人
得分
一、选择题
1.ABCD
解析:特殊值法:当2x =时,()()()22200y f x f f =--=--=-=,故可排除D 项;当1x =时,()()()22111y f x f f =--=--=-=-,故可排除A,C 项;所以由排除法知选B.
3.A 4.C 5.A 6.A 7.B 8. 9. 10.
第II 卷(非选择题)
请点击修改第II 卷的文字说明 评卷人
得分
二、填空题
11.
12. 41{|}32
x x -<<
13. 14. 15.② 16.1-≥p
评卷人
得分
三、解答题
17.
19.20.。