数学人教版六年级下册鸽巢问题例1例2
六年级下册数学教学设计-5《鸽巢原理例1、例2》人教新课标
六年级下册数学教学设计5《鸽巢原理例1、例2》人教新课标在教学设计中,我以六年级下册《鸽巢原理例1、例2》为例,详细描述了教学内容、教学目标、教学难点与重点、教具与学具准备、教学过程、板书设计、作业设计以及课后反思和拓展延伸。
一、教学内容:本节课的教学内容选自人教新课标六年级下册数学教材,主要涉及鸽巢原理的应用。
具体包括两个例题:例1是关于将一些物品放入鸽巢中的问题,例2是关于将一些人分配到不同组别的问题。
通过这两个例题,学生可以理解并掌握鸽巢原理的基本概念和应用方法。
二、教学目标:本节课的教学目标有三个:一是让学生理解鸽巢原理的概念,二是培养学生运用鸽巢原理解决实际问题的能力,三是培养学生的逻辑思维和解决问题的能力。
三、教学难点与重点:本节课的重点是让学生掌握鸽巢原理的基本概念和应用方法。
难点是让学生能够灵活运用鸽巢原理解决实际问题。
四、教具与学具准备:为了更好地进行教学,我准备了一些教具和学具,包括黑板、粉笔、多媒体教具以及一些与鸽巢原理相关的图片和实例。
五、教学过程:1. 引入:我通过展示一些图片,如一群鸽子停在巢上,引发学生对鸽巢原理的思考。
2. 讲解:我详细讲解鸽巢原理的概念和应用方法,通过例1和例2的讲解,让学生理解并掌握鸽巢原理的基本原理。
3. 练习:我设计了一些随堂练习题,让学生运用鸽巢原理解决问题,巩固所学知识。
六、板书设计:我在黑板上用粉笔写下鸽巢原理的定义和例题的解题步骤,以便学生跟随和复习。
七、作业设计:我布置了一道有关鸽巢原理的应用题,要求学生独立解决并写出解题过程。
作业题目如下:例题:假设有一个班级有30名学生,现在要将这些学生分配到5个小组中,每个小组至少要有1名学生。
请运用鸽巢原理,找出所有可能的分配方案。
答案:方案1:1个小组有10名学生,其余4个小组各有5名学生;方案2:2个小组有6名学生,其余3个小组各有4名学生;方案3:3个小组有5名学生,其余2个小组各有4名学生;方案4:4个小组有4名学生,另1个小组有6名学生;方案5:5个小组各有3名学生。
人教版,六年级数学,下册,第5单元,鸽巢问题,例1、例2、例3,课件
把7本书放进3个抽屉,不管怎么放,总有一个抽屉里 至少放进3本书。为什么? 如果每个抽屉最多放2本,那 么3个抽屉最多放6本,可题目 要求放的是7本书。所以……
我随便放放看, 一个抽屉1本, 一个抽屉2本, 一个抽屉4本。
两种放法都有一个 抽屉放了3本或多于 3本,所以……
二、探究新知
(二)例2
德国 数学家 狄里克雷 (1805.2.13.~1859.5.5.)
四、布置作业
作业:第71页练习十三,第4题、
第5题、第6题。
第二种情况:
第三种情况:
一、探究新知
猜测2:摸出5个球,肯定有2个是同色的。 第一种情况:
第二种情况:
第三种情况:
验证:把红、蓝两种颜色看成2 个“鸽巢”,因为5÷2=2……1, 所以摸出5个球时,至少有3个球 是同色的,显然,摸出5个球不 是最少的。
第四种情况:
一、探究新知
猜测3:有两种颜色。那摸3个 球就能保证有2个同色的球。
如果有8本书会怎么样呢? 10本呢? 7本书放进3个抽屉,有一个抽屉 至少放3本书。8本书…… 7÷3=2……1 8÷3=2……2 10÷3=3……1
你是这样想的吗?你有什么发现?
二、探究新知
(二)例2
我发现……
物体数÷抽屉数=商……余数 至少数:商+1 如果物体数除以抽屉数有余数,用所得的商加1,就会 发现“总有一个抽屉里至少有商加1个物体”。
我们从最不利的原则 去考虑: 假设我们每种颜色的都拿一个,需要拿4个,但是没有同色的,要想有同 色的需要再拿1个球,不论是哪一种颜色的,都一定有2个同色的。
二、知识应用
(二)解决问题
1. 希望小学篮球兴趣小组的同学中,最大的12岁,最小的6岁, 最少从中挑选几名学生,就一定能找到两个学生年龄相同。
人教版数学六年级下册鸽巢问题例1例2
“鸽巢问题”教学设计2017-5-23 吴永萍教学内容:教材第68-70 页例1、例2,及“做一做”,及第71 页练习十三的1-2 题。
教学目标:1、知识与技能:了解“鸽巢问题”的特点,理解“鸽巢原理”的含义。
使学生学会用此原理解决简单的实际问题。
2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。
3、情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。
教学重点:引导学生把具体问题转化成“鸽巢问题” 。
教学难点:找出“鸽巢问题”解决的窍门进行反复推理。
教具准备:多媒体课件。
教学过程:一、创设情境,导入新知在上课之前,我给大家表演一个“魔术” 。
一副牌,取出大小王,还剩52 张牌,请5 位同学上前随意抽一张,我知道至少有2 张牌是同花色的。
相信吗?师:像这样的现象中隐藏着什么数学奥秘呢?这节课我们就一起来研究这个原理。
出示课题二、合作交流,探究新知1、教学例1(课件出示例题1 情境图)温馨提示:1、所有的笔都必须放进笔筒里,不考虑笔筒的顺序,只考虑笔筒内笔的支数。
2、用杯子代替笔筒,分组操作,小组长把操作的结果记录下来。
(生读例1 和温馨提示。
)思考问题:把4 支铅笔放进3 个笔筒中,不管怎么放,总有1 个笔筒里至少有几支铅笔。
为什么呢?“总有”和“至少”是什么意思?(1)操作发现规律:通过把4 支铅笔放进3 个笔筒中,可以发现:不管怎么放,总有1 个笔筒里至少有2 支铅笔。
(2)理解关键词的含义:“总有”和“至少”是指把4 支铅笔放进3 个笔筒中,不管怎么放,一定有1 个笔筒里的铅笔数大于或等于2 支。
(3)探究证明。
方法一:用“枚举法”证明。
发现:枚举法很直观,但有一定的局限性。
方法二:用“假设法”证明。
(平均分的方法)通过以上几种方法证明都可以发现:把4 只铅笔放进3 个笔筒中,无论怎么放,总有1 个笔筒里至少放进2 只铅笔。
数学人教版六年级下册《鸽巢问题例1、2》
人教版六年级12册数学教案《鸽巢问例1、2》教案孟州市花园小学杨凤杰人教版六年级12册数学《鸽巢问例1、2》教案教学内容:《义务教育课程标准实验教科书数学》人教版六年级下册第68-69页。
教学目标:1、知识与技能:经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2、过程与方法:经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。
3、情感与态度:通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。
教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”,并会简单应用。
教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
教学准备:多媒体课件、相应数量的铅笔、文具盒、扑克牌。
教学过程一、游戏导入,激发兴趣师:同学们,一副扑克牌(除去大小王)52张中有四种花色,从中随意抽5张牌,至少两张牌是同一花色的。
你相信吗?师:老师为什么能做出准确的判断呢?道理是什么?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。
【设计意图:根据学生的认知特点,从学生熟悉的“玩扑克牌”游戏开始,让学生初步体验不管抽牌,至少有2两张牌是同一花色的。
一是引起探究的愿望;二是为探究埋下伏笔。
激发了学生的学习兴趣,收到了寓教于趣、寓学于乐的效果。
】二、动手操作,探究新知(一)教学例1:观察猜测课件出示例1:把4支铅笔放进3个文具盒中,不管怎么放总有一个文具盒至少放进()支铅笔。
1、猜一猜:不管怎么放,总有一个文具盒至少放进()支铅笔。
2、独立思考:怎样解释这一现象?3、小组合作:拿铅笔和文具盒实际摆一摆、放一放,看一共有几种情况?【设计意图:先让学生观察、猜想,然后自己想办法“证明”自己的猜想。
这样设计,给学生自主思考的时间和空间。
在独立思考的基础上,再小组合作。
把动脑思考与动手操作有机结合,把独立思考与小组合作有机结合,有利于提高探索活动的实效性。
人教版六年级下册数学5.1 鸽巢问题 (例1、2)(课件)
100只鸽子要飞到8个笼子里,不管鸽子飞到哪个鸽笼里, 总有一个鸽笼里至少有( )只鸽子(用列举法研究)
今天,我们研究的问题是:总有一个笼子里至少有几只鸽子 的问题(分到鸽子数最多的笼子里至少有几只鸽子的问题), 至少有几只这个数量叫做至少数,怎样分鸽子才能很容易的找到 至少数呢?
至少数
6
5
6÷5=1……1 1+1=2
7
5
7÷5=1……2 1+1=2
8
5
8÷5=1……3 1+1=2
9
5
9÷5=1……4 1+1=2
10 5
10÷5=2
2 =2
鸽子数把鸽鸽子笼数放进总鸽有一笼个里鸽,笼里如至果少平有几均只分鸽子后有剩余, 那么6 总有一5 个鸽笼6÷里5至=1少…有…1“商1++11”=2只;
6
5
6÷5=1……1 1+1=2
7
5
7÷5=1……2
鸽子数 鸽笼数 总有一个鸽笼里至少有几只鸽子
6
5
6÷5=1……1 1+1=2
7
5
7÷5=1……2 1+
鸽子数
6 7
鸽笼数
5 5
总有一个鸽笼里至少有几只鸽子
6÷5=1……1 1+1=2 7÷5=1……2 1+1=2
鸽子数
6 7 8
鸽笼数
5 5 5
平均分
下面那种分法最接近平均分
2. 1. 1 2. 1. 1 2. 2. 0 3. 1. 0 4. 0. 0
4÷3=1……1
1.1.0 3.1.1.0 3.2.0.0 4.1.0.0 5.0.0.0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“鸽巢问题”教学设计
2017-5-23 吴永萍
教学内容:
教材第68-70页例1、例2,及“做一做”,及第71页练习十三的1-2题。
教学目标:
1、知识与技能:了解“鸽巢问题”的特点,理解“鸽巢原理”的含义。
使学生学会用此原理解决简单的实际问题。
2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。
3、情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。
教学重点:引导学生把具体问题转化成“鸽巢问题”。
教学难点:找出“鸽巢问题”解决的窍门进行反复推理。
教具准备:多媒体课件。
教学过程:
一、创设情境,导入新知
在上课之前,我给大家表演一个“魔术”。
一副牌,取出大小王,还剩52张牌,请5位同学上前随意抽一张,我知道至少有2张牌是同花色的。
相信吗?
师:像这样的现象中隐藏着什么数学奥秘呢?这节课我们就一起来研究这个原理。
-------出示课题
二、合作交流,探究新知
1、教学例1(课件出示例题1情境图)
温馨提示:
1、所有的笔都必须放进笔筒里,不考虑笔筒的顺序,只考虑笔筒内笔的支数。
2、用杯子代替笔筒,分组操作,小组长把操作的结果记录下来。
(生读例1和温馨提示。
)
思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有几支铅笔。
为什么呢?“总有”和“至少”是什么意思?
(1)操作发现规律:通过把4支铅笔放进3个笔筒中,可以发现:不管怎么放,总有1个笔筒里至少有2支铅笔。
(2)理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。
(3)探究证明。
方法一:用“枚举法”证明。
发现:枚举法很直观,但有一定的局限性。
方法二:用“假设法”证明。
(平均分的方法)
通过以上几种方法证明都可以发现:把4只铅笔放进3个笔筒中,无论怎么放,总有1个笔筒里至少放进2只铅笔。
(4)认识“鸽巢问题”
像上面这样的问题就是“鸽巢问题”,也叫“抽屉原理”。
在这里,4支铅笔是要分放的物体,就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”
或“抽屉”,把此问题用“鸽巢问题”的语言描述就是把4只鸽子放进3个笼子,总有1个笼子里至少有2只鸽子。
这里的“总有”指的是“一定有”或“肯定有”的意思;而“至少”指的是最少,即在所有方法中,放的鸽子最多的那个“笼子”里鸽子“最少”的个数。
拓展:把6枝铅笔放进5个文具盒里呢?
把7枝铅笔放进6个文具盒里呢?
把8枝铅笔放进7个文具盒里呢?
把100枝铅笔放进99个文具盒里呢?
…
小结:只要铅笔的支数比文具盒的数量多1,总有一个盒子里至少有2支铅笔。
如果放的铅笔数比笔筒的数量多2,那么总有1个笔筒至少放2支铅笔;如果放的铅笔比笔筒的数量多3,那么总有1个笔筒里至少放2只铅笔…
小结:只要放的铅笔数比笔筒的数量多,就总有1个笔筒里至少放2支铅笔。
(5)归纳总结:
鸽巢原理(一):如果把m个物体任意放进n个抽屉里(m>n,且n是非零自然数),那么一定有一个抽屉里至少放进了放进了2个物体。
2、教学例2(课件出示例题2情境图)
思考问题:(一)把7本书放进3个抽屉,不管怎么放,总有1个抽屉里至少有3本书。
为什么呢?
(二)如果有8本书会怎样呢?10本书呢?
学生通过“探究证明→得出结论”的学习过程来解决问题(一)。
(1)探究证明。
方法一:用数的分解法证明。
把7分解成3个数的和。
把7本书放进3个抽屉里,共有如下8种情况:由图可知,每种情况分得的3个数中,至少有1个数不小于3,也就是每种分法中最多那个数最小是3,即总有1个抽屉至少放进3本书。
方法二:用假设法证明。
把7本书平均分成3份,7÷3=2(本)......1(本),若每个抽屉放2本,则还剩1本。
如果把剩下的这1本书放进任意1个抽屉中,那么这个抽屉里就有3本书。
(2)得出结论。
通过以上两种方法都可以发现:7本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。
学生通过“假设分析法→归纳总结”的学习过程来解决问题(二)。
(1)用假设法分析。
8÷3=2(本)......2(本),剩下2本,分别放进其中2个抽屉中,使其中2个抽屉都变成3本,因此把8本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。
10÷3=3(本)......1(本),把10本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进4本书。
(2)归纳总结:
综合上面两种情况,要把a本书放进3个抽屉里,如果a÷3=b
(本)......1(本)或a÷3=b(本)......2(本),那么一定有1个抽屉里至少放进(b+1)本书。
鸽巢原理(二):把多与kn个的物体任意分别放进n个空抽屉(k是正整数,n是非0的自然数),那么一定有一个抽屉中至少放进了(k+1)个物体。
三、巩固新知,拓展应用
1、完成教材第70页的“做一做”。
学生独立思考解答问题,集体交流、纠正。
2、完成教材第71页练习十三的1-2题。
学生独立思考解答问题,集体交流、纠正。
四、课堂总结通过今天的学习你有什么收获?
板书设计
鸽巢问题
4÷3=1……1 7÷3=2(本)......1(本)
5÷4=1……1 8÷3=2(本)......2(本)
6÷5=1……1 10÷3=3(本)......1(本)
……
m÷n=1……1(m>n)
物体数÷鸽巢数=商……余数至少数=商+1。