第一章计数原理1.2.2组合教案新人教B版选修2_3
2017-2018年度高中数学 第一章 计数原理 1.2 排列与组合 1.2.2.1 组合及组合数公式讲义 新人教B版选修2-3
12
知识拓展 (1)如果两个组合中的元素完全相同,不管它们的顺序 如何,都是相同的组合.
(2)当两个组合中的元素不完全相同(即使只有一个元素不同)时, 就是不同的组合.例如从a,b,c三个不同的元
素中取出两个元素的所有组合有3个,它们分别是ab,ac,bc.要注意 ba,ab是相同的组合.
(3)组合问题与排列问题的共同点是:都要“从n个不同元素中,任 取m个元素”,不同点是:前者是“不管顺序并成一组”,而后者要“按照 一定顺序排成一列”.
题型一 题型二 题型三 题型四
题型四 易错辨析
【例 4】
已知C15������
−
1 C6������
=
107C7������,求
m.
错解:由已知得������!(55!-������)!
−
������!(6-������)! 6!
=
7(170-������)7!!������!,
即 60-10(6-m)=(7-m)(6-m),
1234 5
4.已知C������2������-1
=
C������������ 3
=
C���������4���+1,则
m
与
n
的值分别为
.
解析:
由C������������-1
2
=
C������������可得
3
5m=2n+2,①
由C������������
3
=
C������������+1可得
=
������! ������!(������-������)!
=
������(������-1)(������-2���)���…! (������-������+1),这里
人教版数学选修2-3第一章《计数原理》教案
XX中学课时教学设计模板XX中学课时教学设计模板XX中学课时教学设计模板一、复习知识点:1、分类计数原理:(1)加法原理:如果完成一件工作有k种途径,由第1种途径有n1种方法可以完成,由第2种途径有n2种方法可以完成,……由第k种途径有n k种方法可以完成。
那么,完成这件工作共有n1+n2+……+n k种不同的方法。
2,乘法原理:如果完成一件工作可分为K个步骤,完成第1步有n1种不同的方法,完成第2步有n2种不同的方法,……,完成第K步有n K种不同的方法。
那么,完成这件工作共有n1×n2×……×n k种不同方法二、典型例题1、.用5种不同颜色给图中的A、B、C、D四个区域涂色, 规定一个区域只涂一种颜色, 相邻区域必须涂不同的颜色, 不同的涂色方案有种。
2、将一个四棱锥的每个顶点染上一种颜色,并使同一条棱上的两端异色,若只有5种颜色可用,则不同的染色方法共有多少种?3、用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为_______.4、用0,1,2,3,4五个数字(1)可以排出多少个三位数字的电话号码?(2)可以排成多少个三位数?(3)可以排成多少个能被2整除的无重复数字的三位数?5、用0,1,2,3,4,5可以组成无重复数字的比2000大的四位奇数______个。
XX中学课时教学设计模板求以按依次填个空位来考虑,排列数公式:=()说明:(1)公式特征:第一个因数是,后面每一个因数比它前面一个 少1,最后一个因数是,共有个因数;(2)全排列:当时即个不同元素全部取出的一个排列全排列数:(叫做n 的阶乘)4.例子:例1.计算:(1); (2); (3). 解:(1) ==3360 ; (2) ==720 ; (3)==360例2.(1)若,则 , .(2)若则用排列数符号表示 . 解:(1) 17 , 14 . (2)若则= .例3.(1)从这五个数字中,任取2个数字组成分数,不同值的分数共有多少个?(2)5人站成一排照相,共有多少种不同的站法?(3)某年全国足球甲级(A 组)联赛共有14队参加,每队都要与其余各队在主客场分别比赛1次,共进行多少场比赛?解:(1); (2); (3)课堂练习:P20 练习 第1题mn A m (1)(2)(1)m n A n n n n m =---+(1)(2)(1)m n A n n n n m =---+!()!n n m -,,m n N m n *∈≤n 1n m -+m n m =n (1)(2)21!nn A n n n n =--⋅=316A 66A 46A 316A 161514⨯⨯66A 6!46A 6543⨯⨯⨯17161554m n A =⨯⨯⨯⨯⨯n =m =,n N ∈(55)(56)(68)(69)n n n n ----n =m =,n N ∈(55)(56)(68)(69)n n n n ----1569n A -2,3,5,7,11255420A =⨯=5554321120A =⨯⨯⨯⨯=2141413182A =⨯=XX 中学课时教学设计模板解排列问题问题时,当问题分成互斥各类时,当问题考虑先后次序时,根据乘法原理,可用位置法;当问题的反面简单明了时,可通过求差排除采用间接法求解;问题可以用“捆绑法”;“分离”2)(n m -+(1)(2)21!n n n n =-⋅=等.解排列问题和组合问题,一定要防止“重复”与“遗漏”.互斥分类——分类法先后有序——位置法反面明了——排除法相邻排列——捆绑法分离排列——插空法例1求不同的排法种数:(1)6男2女排成一排,2女相邻;(2)6男2女排成一排,2女不能相邻;(3)4男4女排成一排,同性者相邻;(4)4男4女排成一排,同性者不能相邻.例2在3000与8000之间,数字不重复的奇数有多少个?分析符合条件的奇数有两类.一类是以1、9为尾数的,共有P21种选法,首数可从3、4、5、6、7中任取一个,有P51种选法,中间两位数从其余的8个数字中选取2个有P82种选法,根据乘法原理知共有P21P51P82个;一类是以3、5、7为尾数的共有P31P41P82个.解符合条件的奇数共有P21P51P82+P31P41P82=1232个.答在3000与8000之间,数字不重复的奇数有1232个.例3 某小组6个人排队照相留念.(1)若分成两排照相,前排2人,后排4人,有多少种不同的排法?(2)若分成两排照相,前排2人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种排法?(3)若排成一排照相,甲、乙两人必须在一起,有多少种不同的排法?(4)若排成一排照相,其中甲必在乙的右边,有多少种不同的排法?(5)若排成一排照相,其中有3名男生3名女生,且男生不能相邻有多少种排法?(6)若排成一排照相,且甲不站排头乙不站排尾,有多少种不同的排法?分析:(1)分两排照相实际上与排成一排照相一样,只不过把第3~6个位子看成是第二排而已,所以实际上是6个元素的全排列问题.(2)先确定甲的排法,有P21种;再确定乙的排法,有P41种;最后确定其他人的排法,有P44种.因为这是分步问题,所以用乘法原理,有P21·P41·P44种不同排法.(3)采用“捆绑法”,即先把甲、乙两人看成一个人,这样有P55种不同排法.然后甲、乙两人之间再排队,有P22种排法.因为是分步问题,应当用乘法原理,所以有P55·P22种排法.(4)甲在乙的右边与甲在乙的左边的排法各占一半,有P66种排法.(5)采用“插空法”,把3个女生的位子拉开,在两端和她们之间放进4张椅子,如____女____女____女____,再把3个男生放到这4个位子上,就保证任何两个男生都不会相邻了.这样男生有P43种排法,女生有P33种排法.因为是分步问题,应当用乘法原理,所以共有P43·P33种排法.(6)符合条件的排法可分两类:一类是乙站排头,其余5人任意排有P55种排法;一类是乙不站排头;由于甲不能站排头,所以排头只有从除甲、乙以外的4人中任选1人有P41种排法,排尾从除乙以外的4人中选一人有P41种排法,中间4个位置无限制有P44种排法,因为是分步问题,应用乘法原理,所以共有P41P41P44种排法.XX 中学课时教学设计模板一、复习引入:1.排列数公式及其推导:()2、解排列问题问题时,当问题分成互斥各类时,根据加法原理,可用分类法;当问题考虑先后次序时,根据乘法原理,可用位置法;这两种方法又称作直接法.当问题的反面简单明了时,可通过求差排除采用间接法求解;另外,排列中“相邻”问题可以用“捆绑法”;“分离”问题可能用“插空法”等.二、典型例题1.满足不等式>12的n 的最小值为 ( ) A .7 B . 8C .9D .10【解析】选D .由排列数公式得:>12,即(n -5)(n -6)>12, 整理得n 2-11n +18>0, 所以n <2(舍去)或n >9. 又因为n ∈N *,所以n min =10. 2.若=89,则n =______.【解析】原方程左边==(n -5)(n -6)-1.(1)(2)(1)m n A n n n n m =---+,,m n N m n *∈≤所以原方程可化为(n-5)(n-6)-1=89,即n2-11n-60=0,解得n=15或n=-4(舍去).15>7满足题意.3.解关于x的不等式:>6.【解析】原不等式可变形为>,即(11-x)(10-x)>6,(x-8)(x-13)>0,所以x>13或x<8,又所以2<x≤9且x∈N*,所以2<x<8且x∈N*,所以原不等式的解集为.4.求证:+m+m(m-1)=(n,m∈N*,n≥m>2).【证明】因为左边=+m+m(m-1)======右边,所以等式成立.习题1.2 B组第2、3题XX 中学课时教学设计模板组合的概念:一般地,从个不同元素中取出个不同元素中取出个元素的一个组合说明:⑴不同元素;⑵“只取不排”——无序性;⑶相同组合:元素相同2)(n m -+(1)(2)21!n n n n =-⋅=n m(2);2)(1)!n m m -+710C2)(1)!n m m -+,m N ∈*且XX 中学课时教学设计模板.2)(1)!n m m -+mn n C -=XX 中学课时教学设计模板.=+2)(1)!n m m -+mn n C -=m C.2)(1)!n m m -+,N m ∈*且mn n C -=XX 中学课时教学设计模板a+b )相乘,每个(a+b )在相乘时,有两种选择,(r n r rn nn n C a b C b n N -++++∈叫二项式系数表示,即通项0,1,)n 1+1)1n r rn n n C C x x =+++++23344111)()()C x x x++(r n r rn nn n C a b C b n N -++++∈XX 中学课时教学设计模板9)的展开式常数项; (r n r r n nn n C a b C b n N -++++∈(r n r r n nn n C a b C b n N -++++∈XX 中学课时教学设计模板.二项展开式的通项公式:二项式系数表(杨辉三角)展开式的二项式系数,当依次取…时,二项式系数表,表)增减性与最大值.的增减情况由二项式系数逐渐增大.的,且在中间取得最大值;(r n r r n n n n C a b C b n N -++++∈1r n r rr n T C a b -+=n 1,2,32)(1)!n k k -+n,的展开式中,奇数项的二项式系数的和等于偶数项的二项,,,的展开式中,奇数项的二项式系数的和等于偶数项的二项式系说明:由性质(3)及例1知.,求:;); (.时,,展开式右边为,,∴ ,r r n n C x x ++++12rnn n n n C C C C ++++++(nr n r r n nn n a b C a b C b n N -++++∈23(1)n nn n n C C C +-++-13)()n n C C +-++13n n C C +=++021312n n n n n C C C C -++=++=7277(12)x a a x a x a x -=++++7a ++1357a a a a +++7||a ++1x =7(122)1-=-127a a a ++++27a a +++1=-1=127a a a +++=-0127a a a ++++1=-234567a a a a a a +-+-+-77)13a +=--(1+x)+(1+x)2+…+(1+x)+3x+2)5的展开式中,求本节课学习了二项式系数的性质 7||a ++=61)(a a +-。
高中数学 1.1计数原理教案 新人教B版选修2-3
1.1 基本计数原理一、教学重点:分类计数原理(加法原理)与分步计数原理(乘法原理)二、新课探究:完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法. 那么完成这件事共有___________________________种不同的方法.一般归纳:完成一件事情,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法……在第n 类办法中有n m 种不同的方法.那么完成这件事共有______________________种不同的方法.完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法. 那么完成这件事共有 ___________________________种不同的方法.一般归纳:完成一件事情,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法……做第n 步有n m 种不同的方法.那么完成这件事共有______________________________种不同的方法.①相同点:都是完成一件事的不同方法种数的问题②不同点:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事,是独立完成;而分步乘法计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事,是合作完成.三、典例分析例1.在填写高考志愿表时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣的强项专业,具体情况如下:A大学 B大学生物学数学化学会计学医学信息技术学物理学法学工程学如果这名同学只能选一个专业,那么他共有多少种选择呢?例2.设某班有男生30名,女生24名. 现要从中选出男、女生各一名代表班级参加比赛,共有多少种不同的选法?例3. 书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放2本不同的体育书.①从书架上任取1本书,有多少种不同的取法?②从书架的第1、2、3层各取1本书,有多少种不同的取法?③从书架上任取两本不同学科的书,有多少种不同的取法?例4. 要从甲、乙、丙3幅不同的画中选出2幅,分别挂在左、右两边墙上的指定位置,问共有多少种不同的挂法?例5. 用0,1,2,3,4这五个数字可以组成多少个无重复数字的:(1)银行存折的四位密码?(2)四位数?(3)四位奇数?例6:我们把壹元硬币有国徽的一面叫做正面,有币值的一面叫做反面。
人教B版选修2-3第一章计数原理全部教案---两个计数原理
1.1分类加法计数原理和分步乘法计数原理教学目标:知识与技能:①理解分类加法计数原理与分步乘法计数原理;②会利用两个原理分析和解决一些简单的应用问题;过程与方法:培养学生的归纳概括能力;情感、态度与价值观:引导学生形成“自主学习〞与“合作学习〞等良好的学习方式教学重点:分类计数原理(加法原理)与分步计数原理(乘法原理)教学难点:分类计数原理(加法原理)与分步计数原理(乘法原理)的准确理解授课类型:新授课课时安排:2课时教具:多媒体、实物投影仪教学过程:引入课题先看下面的问题:①从我们班上推选出两名同学担任班长,有多少种不同的选法?②把我们的同学排成一排,共有多少种不同的排法?要解决这些问题,就要运用有关排列、组合知识. 排列组合是一种重要的数学计数方法.总的来说,就是研究按某一规那么做某事时,一共有多少种不同的做法.在运用排列、组合方法时,经常要用到分类加法计数原理与分步乘法计数原理. 这节课,我们从具体例子出发来学习这两个原理.1 分类加法计数原理〔1〕提出问题问题1.1:用一个大写的英文字母或一个阿拉伯数字给教室里的座位编号,总共能够编出多少种不同的?问题1.2:从甲地到乙地,可以乘火车,也可以乘汽车.如果一天中火车有3班,汽车有2班.那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?探究:你能说说以上两个问题的特征吗?〔2〕发现新知分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法. 那么完成这件事共有=nN+m种不同的方法.〔3〕知识应用例1.在填写高考志愿表时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣的强项专业,具体情况如下:A大学 B大学生物学数学化学会计学医学信息技术学物理学法学工程学如果这名同学只能选一个专业,那么他共有多少种选择呢?分析:由于这名同学在 A , B 两所大学中只能选择一所,而且只能选择一个专业,又由于两所大学没有共同的强项专业,因此符合分类加法计数原理的条件.解:这名同学可以选择 A , B 两所大学中的一所.在 A 大学中有 5 种专业选择方法,在 B 大学中有 4 种专业选择方法.又由于没有一个强项专业是两所大学共有的,因此根据分类加法计数原理,这名同学可能的专业选择共有5+4=9〔种〕.变式:假设还有C 大学,其中强项专业为:新闻学、金融学、人力资源学.那么,这名同学可能的专业选择共有多少种?探究:如果完成一件事有三类不同方案,在第1类方案中有1m 种不同的方法,在第2类方案中有2m 种不同的方法,在第3类方案中有3m 种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事情有n 类不同方案,在每一类中都有假设干种不同方法,那么应当如何计数呢?一般归纳:完成一件事情,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法……在第n 类办法中有n m 种不同的方法.那么完成这件事共有n m m m N +⋅⋅⋅++=21种不同的方法.理解分类加法计数原理:分类加法计数原理针对的是“分类〞问题,完成一件事要分为假设干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事.2 分步乘法计数原理〔1〕提出问题问题2.1:用前6个大写英文字母和1—9九个阿拉伯数字,以1A ,2A ,…,1B ,2B ,…的方式给教室里的座位编号,总共能编出多少个不同的?用列举法可以列出所有可能的:我们还可以这样来思考:由于前 6 个英文字母中的任意一个都能与 9 个数字中的任何一个组成一个,而且它们各不相同,因此共有 6×9 = 54 个不同的.探究:你能说说这个问题的特征吗?〔2〕发现新知分步乘法计数原理 完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法. 那么完成这件事共有 n m N ⨯=种不同的方法.〔3〕知识应用例2.设某班有男生30名,女生24名. 现要从中选出男、女生各一名代表班级参加比赛,共有多少种不同的选法?分析:选出一组参赛代表,可以分两个步骤.第 l 步选男生.第2步选女生.解:第 1 步,从 30 名男生中选出1人,有30种不同选择;第 2 步,从24 名女生中选出1人,有 24 种不同选择.根据分步乘法计数原理,共有30×24 =720种不同的选法.探究:如果完成一件事需要三个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,做第3步有3m 种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事情需要n 个步骤,做每一步中都有假设干种不同方法,那么应当如何计数呢?一般归纳:完成一件事情,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法……做第n 步有n m 种不同的方法.那么完成这件事共有n m m m N ⨯⋅⋅⋅⨯⨯=21种不同的方法.理解分步乘法计数原理:分步计数原理针对的是“分步〞问题,完成一件事要分为假设干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事.3.理解分类加法计数原理与分步乘法计数原理异同点①相同点:都是完成一件事的不同方法种数的问题②不同点:分类加法计数原理针对的是“分类〞问题,完成一件事要分为假设干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事,是独立完成;而分步乘法计数原理针对的是“分步〞问题,完成一件事要分为假设干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事,是合作完成.3 综合应用例3.书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放2本不同的体育书.①从书架上任取1本书,有多少种不同的取法?②从书架的第1、2、3层各取1本书,有多少种不同的取法?③从书架上任取两本不同学科的书,有多少种不同的取法?[分析]①要完成的事是“取一本书〞,由于不论取书架的哪一层的书都可以完成了这件事,因此是分类问题,应用分类计数原理.②要完成的事是“从书架的第1、2、3层中各取一本书〞,由于取一层中的一本书都只完成了这件事的一部分,只有第1、2、3层都取后,才能完成这件事,因此是分步问题,应用分步计数原理.③要完成的事是“取2本不同学科的书〞,先要考虑的是取哪两个学科的书,如取计算机和文艺书各1本,再要考虑取1本计算机书或取1本文艺书都只完成了这件事的一部分,应用分步计数原理,上述每一种选法都完成后,这件事才能完成,因此这些选法的种数之间还应运用分类计数原理.解: (1) 从书架上任取1本书,有3类方法:第1类方法是从第1层取1本计算机书,有4 种方法;第2 类方法是从第2 层取1本文艺书,有3 种方法;第3类方法是从第 3 层取 1 本体育书,有 2 种方法.根据分类加法计数原理,不同取法的种数是123N m m m =++=4+3+2=9;( 2 〕从书架的第 1 , 2 , 3 层各取 1 本书,可以分成3个步骤完成:第 1 步从第 1 层取 1 本计算机书,有 4 种方法;第 2 步从第 2 层取1本文艺书,有 3 种方法;第 3 步从第3层取1 本体育书,有 2 种方法.根据分步乘法计数原理,不同取法的种数是123N m m m =⨯⨯=4×3×2=24 .〔3〕26232434=⨯+⨯+⨯=N 。
高中数学第一章 计数原理教案 1.2.2组合选修2-3
1.2.2组合教学目标:知识与技能:理解组合的意义,能写出一些简单问题的所有组合。
明确组合与排列的联系与区别,能判断一个问题是排列问题还是组合问题。
过程与方法:了解组合数的意义,理解排列数m n A 与组合数之间的联系,掌握组合数公式,能运用组合数公式进行计算。
情感、态度与价值观:能运用组合要领分析简单的实际问题,提高分析问题的能力。
教学重点:组合的概念和组合数公式教学难点:组合的概念和组合数公式授课类型:新授课课时安排:2课时教 具:多媒体、实物投影仪内容分析:排列与组合都是研究从一些不同元素中任取元素,或排成一排或并成一组,并求有多少种不同方法的问题.排列与组合的区别在于问题是否与顺序有关.与顺序有关的是排列问题,与顺序无关是组合问题,顺序对排列、组合问题的求解特别重要.排列与组合的区别,从定义上来说是简单的,但在具体求解过程中学生往往感到困惑,分不清到底与顺序有无关系. 指导学生根据生活经验和问题的内涵领悟其中体现出来的顺序.教的秘诀在于度,学的真谛在于悟,只有学生真正理解了,才能举一反三、融会贯通.能列举出某种方法时,让学生通过交换元素位置的办法加以鉴别.学生易于辨别组合、全排列问题,而排列问题就是先组合后全排列.在求解排列、组合问题时,可引导学生找出两定义的关系后,按以下两步思考:首先要考虑如何选出符合题意要求的元素来,选出元素后再去考虑是否要对元素进行排队,即第一步仅从组合的角度考虑,第二步则考虑元素是否需全排列,如果不需要,是组合问题;否则是排列问题.排列、组合问题大都来源于同学们生活和学习中所熟悉的情景,解题思路通常是依据具体做事的过程,用数学的原理和语言加以表述.也可以说解排列、组合题就是从生活经验、知识经验、具体情景的出发,正确领会问题的实质,抽象出“按部就班”的处理问题的过程.据笔者观察,有些同学之所以学习中感到抽象,不知如何思考,并不是因为数学知识跟不上,而是因为平时做事、考虑问题就缺乏条理性,或解题思路是自己主观想象的做法(很可能是有悖于常理或常规的做法).要解决这个问题,需要师生一道在分析问题时要根据实际情况,怎么做事就怎么分析,若能借助适当的工具,模拟做事的过程,则更能说明问题.久而久之,学生的逻辑思维能力将会大大提高.教学过程:一、复习引入:1分类加法计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有 12n N m m m =+++种不同的方法2.分步乘法计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有12n N m m m =⨯⨯⨯ 种不同的方法3.排列的概念:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺序.....排成一列,叫做从n 个不同元素中取出m 个元素的一个排列....4.排列数的定义:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号m n A 表示 5.排列数公式:(1)(2)(1)mn A n n n n m =---+(,,m n N m n *∈≤)6阶乘:!n 表示正整数1到n 的连乘积,叫做n 的阶乘规定0!1=. m n C7.排列数的另一个计算公式:m n A =!()!n n m - 8.提出问题:示例1:从甲、乙、丙3名同学中选出2名去参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的选法?示例2:从甲、乙、丙3名同学中选出2名去参加一项活动,有多少种不同的选法? 引导观察:示例1中不但要求选出2名同学,而且还要按照一定的顺序“排列”,而示例2只要求选出2名同学,是与顺序无关的引出课题:组合... 二、讲解新课:1组合的概念:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合说明:⑴不同元素;⑵“只取不排”——无序性;⑶相同组合:元素相同例1.判断下列问题是组合还是排列(1)在北京、上海、广州三个民航站之间的直达航线上,有多少种不同的飞机票?有多少种不同的飞机票价?(2)高中部11个班进行篮球单循环比赛,需要进行多少场比赛?(3)从全班23人中选出3人分别担任班长、副班长、学习委员三个职务,有多少种不同的选法?选出三人参加某项劳动,有多少种不同的选法?(4)10个人互相通信一次,共写了多少封信?(5)10个人互通电话一次,共多少个电话?问题:(1)1、2、3和3、1、2是相同的组合吗?(2)什么样的两个组合就叫相同的组合2.组合数的概念:从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数....用符号m n C 表示. 3.组合数公式的推导:(1)从4个不同元素,,,a b c d 中取出3个元素的组合数34C 是多少呢?启发:由于排列是先组合再排列.........,而从4个不同元素中取出3个元素的排列数34A 可以求得,故我们可以考察一下34C 和34A 的关系,如下:组 合 排列dcbcdb bdc dbc cbd bcd bcd dcacda adc dac cad acd acd dba bda adb dab bad abd abd cbabca acb cab bac abc abc ,,,,,,,,,,,,,,,,,,,,→→→→由此可知,每一个组合都对应着6个不同的排列,因此,求从4个不同元素中取出3个元素的排列数34A ,可以分如下两步:① 考虑从4个不同元素中取出3个元素的组合,共有34C 个;② 对每一个组合的3个不同元素进行全排列,各有33A 种方法.由分步计数原理得:34A =⋅34C 33A ,所以,333434A A C =. (2)推广:一般地,求从n 个不同元素中取出m 个元素的排列数m n A ,可以分如下两步:① 先求从n 个不同元素中取出m 个元素的组合数mn C ;② 求每一个组合中m 个元素全排列数m m A ,根据分步计数原理得:m n A =m n C m m A ⋅. (3)组合数的公式:(1)(2)(1)!m mn nm m A n n n n m C A m ---+==或)!(!!m n m n C mn -=),,(n m N m n ≤∈*且 规定: 01n C =. 三、讲解范例:例2.用计算器计算710C .解:由计算器可得例3.计算:(1)47C ; (2)710C ; (1)解: 4776544!C ⨯⨯⨯==35; (2)解法1:710109876547!C ⨯⨯⨯⨯⨯⨯==120. 解法2:71010!10987!3!3!C ⨯⨯===120. 例4.求证:11+⋅-+=m n m n C mn m C . 证明:∵)!(!!m n m n C m n -= 111!(1)!(1)!m n m m n C n m n m m n m +++⋅=⋅--+-- =1!(1)!()(1)!m n m n m n m +⋅+--- =!!()!n m n m - ∴11+⋅-+=m n m n C mn m C 例5.设,+∈N x 求321132-+--+x x x x C C 的值 解:由题意可得:⎩⎨⎧-≥+-≥-321132x x x x ,解得24x ≤≤, ∵x N +∈, ∴2x =或3x =或4x =,当2x =时原式值为7;当3x =时原式值为7;当4x =时原式值为11.∴所求值为4或7或11.例6. 一位教练的足球队共有 17 名初级学员,他们中以前没有一人参加过比赛.按照足球比赛规则,比赛时一个足球队的上场队员是11人.问:(l)这位教练从这 17 名学员中可以形成多少种学员上场方案?(2)如果在选出11名上场队员时,还要确定其中的守门员,那么教练员有多少种方式做这件事情?分析:对于(1),根据题意,17名学员没有角色差异,地位完全一样,因此这是一个从 17 个不同元素中选出11个元素的组合问题;对于( 2 ) ,守门员的位置是特殊的,其余上场学员的地位没有差异,因此这是一个分步完成的组合问题.解: (1)由于上场学员没有角色差异,所以可以形成的学员上场方案有 C }手= 12 376 (种) .(2)教练员可以分两步完成这件事情:第1步,从17名学员中选出 n 人组成上场小组,共有1117C 种选法;第2步,从选出的 n 人中选出 1 名守门员,共有111C 种选法.所以教练员做这件事情的方法数有1111711C C ⨯=136136(种). 例7.(1)平面内有10 个点,以其中每2 个点为端点的线段共有多少条?(2)平面内有 10 个点,以其中每 2 个点为端点的有向线段共有多少条?解:(1)以平面内 10 个点中每 2 个点为端点的线段的条数,就是从10个不同的元素中取出2个元素的组合数,即线段共有 2101094512C ⨯==⨯(条). (2)由于有向线段的两个端点中一个是起点、另一个是终点,以平面内10个点中每 2 个点为端点的有向线段的条数,就是从10个不同元素中取出2个元素的排列数,即有向线段共有21010990A =⨯=(条).例8.在 100 件产品中,有 98 件合格品,2 件次品.从这 100 件产品中任意抽出 3 件 .(1)有多少种不同的抽法?(2)抽出的 3 件中恰好有 1 件是次品的抽法有多少种?(3)抽出的 3 件中至少有 1 件是次品的抽法有多少种?解:(1)所求的不同抽法的种数,就是从100件产品中取出3件的组合数,所以共有 31001009998123C ⨯⨯=⨯⨯= 161700 (种). (2)从2 件次品中抽出 1 件次品的抽法有12C 种,从 98 件合格品中抽出 2 件合格品的抽法有298C 种,因此抽出的 3 件中恰好有 1 件次品的抽法有12298C C ⋅=9506(种). (3)解法 1 从 100 件产品抽出的 3 件中至少有 1 件是次品,包括有1件次品和有 2件次品两种情况.在第(2)小题中已求得其中1件是次品的抽法有12298C C ⋅种,因此根据分类加法计数原理,抽出的3 件中至少有一件是次品的抽法有12298C C ⋅+21298C C ⋅=9 604 (种) .解法2 抽出的3 件产品中至少有 1 件是次品的抽法的种数,也就是从100件中抽出3 件的抽法种数减去3 件中都是合格品的抽法的种数,即3310098C C -=161 700-152 096 = 9 604 (种). 说明:“至少”“至多”的问题,通常用分类法或间接法求解。
高中数学 第一章 计数原理 1.2.2 组合教案 新人教B版选修2-3(2021年整理)
1
1.2.2组合
教学过程设计
辽宁省本溪满族自治县高中数学第一章计数原理 1.2.2 组合教案新人教B版选修2-3
教材处理师生活动任取5个球:
(2)一人得4本,一人得3本,一人得2本;
辽宁省本溪满族自治县高中数学 第一章 计数原理 1.2.2 组合教案 新人教B 版选修2-3
3
例9。
把12个
的三个盒子中:
(1)要求每个
(2)要求每个
的装法?
练习:若把1
共有多少种分配
板书设计:
教学过程设计
教材处理 师生活动
(1)小组赛:经抽签分成甲、乙两组,每组6队进行单循
(2)半决赛:甲组第一名与乙组第二名,乙组第一名与甲
(3)决赛:两个胜队参加决赛一场,决出胜负选择(保留4位有效数字)?若把10份不同的纪念品发给选
出的幸运游客每人一份,又有多少种不同的选择?
辽宁省本溪满族自治县高中数学第一章计数原理 1.2.2 组合教案新人教B版选修2-3
教学
目标
1。
人教版高中选修(B版)2-3第一章计数原理课程设计
人教版高中选修(B版)2-3第一章计数原理课程设计1. 前言计数原理是数字电路的基础,是数字系统设计的基础。
理解计数原理是深入理解数字电路的前提条件,其在电子信息、计算机科学等领域具有广泛的应用。
本课程设计旨在通过理论与实践相结合,掌握计数器的设计与应用,为同学们打下扎实的数字电路基础,为今后更深入的学习提供支撑。
2. 教学目标2.1 知识与能力1.掌握计数器的设计原理;2.掌握常用的计数器电路:二进制同步计数器、缓存计数器、环形计数器;3.掌握计数器的应用,如频率分频、频率合成等;4.熟练使用 M74HC74 、 M74HC4018 、 M74HC4024 、M74HC4040 、 M74HC4060 等常用集成电路。
2.2 过程与方法1.通过理论授课与案例分析,掌握计数原理的基本概念和设计思路;2.通过小组实验,熟悉计数器的电路原理、性能特点、故障现象及排除方法;3.通过课堂练习和作业,检验学生掌握计数器设计的能力。
2.3 情感态度与价值观1.培养同学们的创新意识与实践能力;2.强化同学们的团队协作意识和合作精神;3.倡导同学们的独立思考与对知识的终身追求。
3. 教学内容与时长3.1 教学内容本次计数原理课程设计将涉及以下内容:1.计数原理;2.二进制同步计数器;3.缓存计数器;4.环形计数器;5.频率分频;6.频率合成。
3.2 时长课程总时长为 20 学时。
4. 教学方法与手段本课程设计将采用以下方法与手段:1.理论授课:通过讲解计数原理基本概念、设计思路等,帮助学生掌握计数原理的基本知识;2.实验实践:通过小组实验,帮助学生进一步理解计数器的电路原理、性能特点、故障现象及排除方法;3.互动答疑:通过课堂练习和作业,帮助学生掌握计数器设计的能力;4.案例分析:通过实际案例分析,培养学生的创新意识和实践能力。
5. 教学评价学生的学习效果将通过以下评价方式进行考核:1.实验成绩占总成绩的 40%;2.课堂练习和作业成绩占总成绩的 30%;3.期末考试成绩占总成绩的 30%。
人教B版选修2-3第一章计数原理全部教案---二项式定理
1.3.1二项式定理教学目标:知识与技能:进一步掌握二项式定理和二项展开式的通项公式 过程与方法:能解决二项展开式有关的简单问题情感、态度与价值观:教学过程中,要让学生充分体验到归纳推理不仅可以猜想到一般性的结果,而且可以启发我们发现一般性问题的解决方法。
教学重点:二项式定理及通项公式的掌握及运用 教学难点:二项式定理及通项公式的掌握及运用 授课类型:新授课课时安排:3课时教 具:多媒体、实物投影仪 内容分析:二项式定理是初中乘法公式的推广,是排列组合知识的具体运用,是学习概率的重要基础.这部分知识具有较高应用价值和思维训练价值.中学教材中的二项式定理主要包括:定理本身,通项公式,杨辉三角,二项式系数的性质等.通过二项式定理的学习应该让学生掌握有关知识,同时在求展开式、其通项、证恒等式、近似计算等方面形成技能或技巧;进一步体会过程分析与特殊化方法等等的运用;重视学生正确情感、态度和世界观的培养和形成.二项式定理本身是教学重点,因为它是后面一切结果的基础.通项公式,杨辉三角,特殊化方法等意义重大而深远,所以也应该是重点.二项式定理的证明是一个教学难点.这是因为,证明中符号比较抽象、需要恰当地运用组合数的性质2、需要用到不太熟悉的数学归纳法.在教学中,努力把表现的机会让给学生,以发挥他们的自主精神;尽量创造让学生活动的机会,以让学生在直接体验中建构自己的知识体系;尽量引导学生的发展和创造意识,以使他们能在再创造的氛围中学习. 教学过程: 一、复习引入:⑴22202122222()2a b a ab b C a C ab C b +=++=++;⑵33223031222333333()33a b a a b ab b C a C a b C ab C b +=+++=+++⑶4()()()()()a b a b a b a b a b +=++++的各项都是4次式, 即展开式应有下面形式的各项:4a ,3a b ,22a b ,3ab ,4b ,展开式各项的系数:上面4个括号中,每个都不取b 的情况有1种,即04C 种,4a 的系数是04C ;恰有1个取b 的情况有14C 种,3a b 的系数是14C ,恰有2个取b 的情况有24C 种,22a b 的系数是24C ,恰有3个取b 的情况有34C 种,3ab 的系数是34C ,有4都取b 的情况有44C 种,4b 的系数是44C ,∴40413222334444444()a b C a C a b C a b C a b C b +=++++.二、讲解新课:二项式定理:01()()n n n r n r rn nn n n n a b C a C a b C a b C b n N -*+=+++++∈⑴()n a b +的展开式的各项都是n 次式,即展开式应有下面形式的各项:n a ,n a b ,…,n r r a b -,…,n b ,⑵展开式各项的系数:每个都不取b 的情况有1种,即0n C 种,na 的系数是0n C ; 恰有1个取b 的情况有1n C 种,na b 的系数是1n C ,……, 恰有r 个取b 的情况有r n C 种,n r r ab -的系数是rn C ,……,有n 都取b 的情况有n n C 种,n b 的系数是nn C , ∴01()()n n n r n r rn nn n n n a b C a C a b C a b C b n N -*+=+++++∈,这个公式所表示的定理叫二项式定理,右边的多项式叫()n a b +的二项展开式,⑶它有1n +项,各项的系数(0,1,)rn C r n =叫二项式系数,⑷r n r r n C a b -叫二项展开式的通项,用1r T +表示,即通项1r n r r r n T C a b -+=. ⑸二项式定理中,设1,a b x ==,则1(1)1n r rn n n x C x C x x +=+++++三、讲解范例:例1.展开41(1)x+.解一: 411233444411111(1)1()()()()C C C x x x x x +=++++23446411x x x x =++++. 解二:4444413123444111(1)()(1)()1x x C x C x C x x x x⎡⎤+=+=++++⎣⎦ 23446411x x x x=++++.例2.展开6.解:6631(21)x x =-61524332216666631[(2)(2)(2)(2)(2)(2)1]x C x C x C x C x C x x=-+-+-+ 32236012164192240160x x x x x x=-+-+-+.例3.求12()x a +的展开式中的倒数第4项解:12()x a +的展开式中共13项,它的倒数第4项是第10项,9129933939911212220T C x a C x a x a -+===.例4.求(1)6(23)a b +,(2)6(32)b a +的展开式中的第3项.解:(1)24242216(2)(3)2160T C a b a b +==, (2)24242216(3)(2)4860T C b a b a +==.点评:6(23)a b +,6(32)b a +的展开后结果相同,但展开式中的第r 项不相同 例5.(1)求9(3x+的展开式常数项; (2)求9(3x +的展开式的中间两项 解:∵399292199()33r r r r r r r x T C C x ---+==⋅,∴(1)当390,62r r -==时展开式是常数项,即常数项为637932268T C =⋅=; (2)9(3x +的展开式共10项,它的中间两项分别是第5项、第6项,489912593423T C xx--=⋅=,15951092693T C x --=⋅=例6.(1)求7(12)x +的展开式的第4项的系数;(2)求91()x x-的展开式中3x 的系数及二项式系数解:7(12)x +的展开式的第四项是333317(2)280T C x x +==,∴7(12)x +的展开式的第四项的系数是280.(2)∵91()x x-的展开式的通项是9921991()(1)r rr r r r r T C xC x x--+=-=-, ∴923r -=,3r =,∴3x 的系数339(1)84C -=-,3x 的二项式系数3984C =.例7.求42)43(-+x x 的展开式中x 的系数分析:要把上式展开,必须先把三项中的某两项结合起来,看成一项,才可以用二项式定理展开,然后再用一次二项式定理,,也可以先把三项式分解成两个二项式的积,再用二项式定理展开解:(法一)42)43(-+x x 42]4)3[(-+=x x02412344(3)(3)4C x x C x x =+-+⋅22224(3)4C x x ++⋅3234444(3)44C x x C -+⋅+⋅,显然,上式中只有第四项中含x 的项,∴展开式中含x 的项的系数是76843334-=⋅⋅-C(法二):42)43(-+x x 4)]4)(1[(+-=x x 44)4()1(+-=x x)(4434224314404C x C x C x C x C +-+-=0413222334444444(4444)C x C x C x C x C +⋅+⋅+⋅+⋅ ∴展开式中含x 的项的系数是34C -334444C +768-=.例8.已知()()nmx x x f 4121)(+++= *(,)m n N ∈的展开式中含x 项的系数为36,求展开式中含2x 项的系数最小值分析:展开式中含2x 项的系数是关于n m ,的关系式,由展开式中含x 项的系数为36,可得3642=+n m ,从而转化为关于m 或n 的二次函数求解解:()()1214mnx x +++展开式中含x 的项为1124m n C x C x ⋅+⋅=11(24)m n C C x + ∴11(24)36m n C C +=,即218m n +=,()()1214mnx x +++展开式中含2x 的项的系数为t =222224mn C C +222288m m n n =-+-, ∵218m n +=, ∴182m n =-,∴222(182)2(182)88t n n n n =---+-216148612n n =-+23715316()44n n =-+,∴当378n =时,t 取最小值,但*n N ∈, ∴ 5n =时,t 即2x 项的系数最小,最小值为272,此时5,8n m ==.例9.已知n 的展开式中,前三项系数的绝对值依次成等差数列,(1)证明展开式中没有常数项;(2)求展开式中所有的有理项 解:由题意:1221121()22n n C C ⋅=+⋅,即0892=+-n n ,∴8(1n n ==舍去)∴818(rr rr T C-+=⋅82481()2r r r r C x x --=-⋅⋅()1638412r rr r C x -=-⋅08r r Z ≤≤⎛⎫⎪∈⎝⎭①若1+r T 是常数项,则04316=-r,即0316=-r , ∵r Z ∈,这不可能,∴展开式中没有常数项; ②若1+r T 是有理项,当且仅当4316r-为整数, ∴08,r r Z ≤≤∈,∴ 0,4,8r =,即 展开式中有三项有理项,分别是:41x T =,x T 8355=,292561-=x T 例10.求60.998的近似值,使误差小于0.001.解:66011666660.998(10.002)(0.002)(0.002)C C C =-=+-++-,展开式中第三项为2260.0020.00006C =,小于0.001,以后各项的绝对值更小,可忽略不计,∴66011660.998(10.002)(0.002)0.998C C =-≈+-=,一般地当a 较小时(1)1na na +≈+ 四、课堂练习:1.求()623a b +的展开式的第3项. 2.求()632b a +的展开式的第3项. 3.写出n 33)x21x (-的展开式的第r+1项.4.求()732x x+的展开式的第4项的二项式系数,并求第4项的系数.5.用二项式定理展开:(1)5(a ;(2)5. 6.化简:(1)55)x 1()x 1(-++;(2)4212142121)x 3x 2()x 3x 2(----+7.()5lg xx x +展开式中的第3项为610,求x .8.求nx x 21⎪⎭⎫ ⎝⎛-展开式的中间项答案:1. 262242216(2)(3)2160T C a b a b -+== 2. 262224216(3)(2)4860T C b a a b -+==3.2311(2rn rr n r rr r n n T C C x --+⎛⎫==- ⎪⎝⎭4.展开式的第4项的二项式系数3735C =,第4项的系数3372280C =5. (1)552(510105a a a a a b =++; (2)52315(2040322328x x x x =+-. 6. (1)552(1(122010x x +=++; (2)1111442222432(23)(23)192x x x x x x--+--=+ 7. ()5lg xx x +展开式中的第3项为232lg 632lg 551010x x C xx ++=⇒=22lg 3lg 50x x ⇒+-=5lg 1,lg 2x x ⇒==-10,x x ⇒== 8. nx x 21⎪⎭⎫ ⎝⎛-展开式的中间项为2(1)n nn C -五、小结 :二项式定理的探索思路:观察——归纳——猜想——证明;二项式定理及通项公式的特点六、课后作业: P36 习题1.3A 组1. 2. 3.4 七、板书设计(略)八、教学反思:(a+b) n=这个公式表示的定理叫做二项式定理,公式右边的多项式叫做 (a+b)n的 ,其中r n C (r=0,1,2,……,n )叫做 , 叫做二项展开式的通项,它是展开式的第 项,展开式共有 个项. 掌握二项式定理和二项展开式的通项公式,并能用它们解决与二项展开式有关的简单问题。
人教B版选修2-3第一章计数原理全部教案---排列
1.2.1排列教学目标:知识与技能:了解排列数的意义,掌握排列数公式及推导方法,从中体会“化归”的数学思想,并能运用排列数公式进行计算。
过程与方法:能运用所学的排列知识,正确地解决的实际问题情感、态度与价值观:能运用所学的排列知识,正确地解决的实际问题.教学重点:排列、排列数的概念教学难点:排列数公式的推导授课类型:新授课课时安排:2课时教 具:多媒体、实物投影仪内容分析:分类计数原理是对完成一件事的所有方法的一个划分,依分类计数原理解题,首先明确要做的这件事是什么,其次分类时要根据问题的特点确定分类的标准,最后在确定的标准下进行分类.分类要注意不重复、不遗漏,保证每类办法都能完成这件事.分步计数原理是指完成一件事的任何方法要按照一定的标准分成几个步骤,必须且只需连续完成这几个步骤后才算完成这件事,每步中的任何一种方法都不能完成这件事.分类计数原理和分步计数原理的地位是有区别的,分类计数原理更具有一般性,解决复杂问题时往往需要先分类,每类中再分成几步.在排列、组合教学的起始阶段,不能嫌罗嗦,教师一定要先做出表率并要求学生严格按原理去分析问题. 只有这样才能使学生认识深刻、理解到位、思路清晰,才会做到分类有据、分步有方,为排列、组合的学习奠定坚实的基础分类计数原理和分步计数原理既是推导排列数公式、组合数公式的基础,也是解决排列、组合问题的主要依据,并且还常需要直接运用它们去解决问题,这两个原理贯穿排列、组合学习过程的始终.搞好排列、组合问题的教学从这两个原理入手带有根本性.排列与组合都是研究从一些不同元素中任取元素,或排成一排或并成一组,并求有多少种不同方法的问题.排列与组合的区别在于问题是否与顺序有关.与顺序有关的是排列问题,与顺序无关是组合问题,顺序对排列、组合问题的求解特别重要.排列与组合的区别,从定义上来说是简单的,但在具体求解过程中学生往往感到困惑,分不清到底与顺序有无关系. 教学过程:一、复习引入:1分类加法计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有 12n N m m m =+++种不同的方法2.分步乘法计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有12n N m m m =⨯⨯⨯ 种不同的方法分类加法计数原理和分步乘法计数原理,回答的都是有关做一件事的不同方法种数的问题,区别在于:分类加法计数原理针对的是“分类”问题,其中各种方法相互独立,每一种方法只属于某一类,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对的是“分步”问题,各个步骤中的方法相互依存,某一步骤中的每一种方法都只能做完这件事的一个步骤,只有各个步骤都完成才算做完这件事应用两种原理解题:1.分清要完成的事情是什么;2.是分类完成还是分步完成,“类”间互相独立,“步”间互相联系;3.有无特殊条件的限制二、讲解新课:1问题:问题1.从甲、乙、丙3名同学中选取2名同学参加某一天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动,有多少种不同的方法?分析:这个问题就是从甲、乙、丙3名同学中每次选取2名同学,按照参加上午的活动在前,参加下午活动在后的顺序排列,一共有多少种不同的排法的问题,共有6种不同的排法:甲乙甲丙乙甲乙丙丙甲丙乙,其中被取的对象叫做元素解决这一问题可分两个步骤:第 1 步,确定参加上午活动的同学,从 3 人中任选 1 人,有 3 种方法;第 2 步,确定参加下午活动的同学,当参加上午活动的同学确定后,参加下午活动的同学只能从余下的 2 人中去选,于是有 2 种方法.根据分步乘法计数原理,在 3 名同学中选出 2 名,按照参加上午活动在前,参加下午活动在后的顺序排列的不同方法共有 3×2=6 种,如图 1.2一1 所示.图 1.2一1把上面问题中被取的对象叫做元素,于是问题可叙述为:从3个不同的元素 a , b ,。
高中数学第一章计数原理1.2排列与组合1.2.2组合第1课时预习导学案新人教B版选修2-3
高中数学第一章计数原理1.2排列与组合1.2.2组合第1课时预习导学案新人教B 版选
修2-3
1 / 1 1.2.
2 组合
预习导航
一、组合
1.一般地,从n 个不同元素中,任意取出m (m ≤n )个元素并成一组,叫做从n 个不同元素中任取m 个元素的一个组合.从排列和组合的定义可知,排列与取出元素的顺序有关,而组合与取出元素的顺序无关.
2.从n 个不同元素中,任意取出m (m ≤n )个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m 个元素的组合数,用符号C m n 表示.
思考1组合与排列的异同点是什么?
提示:共同点:都是“从n 个不同元素中取出m (m ≤n )个元素”;
不同点:组合是对元素的顺序没有限制,并成一组,而排列是元素按照一定的顺序排成一列.
思考2一个组合与组合数有何区别?
提示:一个组合是具体的一件事,它不是一个数;而组合数是指所有组合的个数,它是一个数.
二、组合数公式
1.组合数的计算公式:C m n =
n !m !(n -m )!=n (n -1)(n -2)…(n -m +1)m !,这里m ∈N ,n ∈N +,并且m ≤n .
2.C 0
n =1.。
高中数学 第一章 计数原理 1.2.1 排列教案 新人教B版选修2-3(2021年整理)
辽宁省本溪满族自治县高中数学 第一章 计数原理 1.2.1 排列教案 新人教B 版选修2-3
1
1.2.1 排列
辽宁省本溪满族自治县高中数学 第一章 计数原理 1.2.1 排列教案 新人教B 版选修2-3 辑整理:
议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活
愉快
辽宁省本溪满族自治县高中数学 第一章 计数原理 1.2.1 排列教案 新人教B 版选修2-3
2
教学过程设计
教材处理
师生活动
比赛,每名运动员比赛一局,有多少不同的方法排定他们(2)有5名大学毕业生,到3个招聘雇员的公司应聘,每个公司只招聘一名新雇员,并且不允许兼职,现假定这3杆上表示信号,每次可以挂一面,两面或三面,并且不同的顺序表示不同的信号,一共可以表示多少种不同的信号?
2-3
教学过程设计
教材处理师生活动
例8.有6个人
(1)甲和乙两
(2)甲、乙、
(3)甲、乙两
排法有多少种?
(4)甲、乙中
(5)甲在乙左
(6)甲不在排头(2)7位同学站成两排(前3后4),共有多少种不同
板书设计:
3
辽宁省本溪满族自治县高中数学第一章计数原理 1.2.1 排列教案新人教B版选修2-3
课题
1。
高中数学第一章计数原理1.2排列与组合1.2.2组合第1课时课堂探究教案新人教B版选修2-3
1.2.2 组合课堂探究探究一 组合的概念判断一个问题是排列问题还是组合问题,关键在于选出的元素与顺序是否有关,若交换某两个元素的位置对结果产生影响,则是排列问题;若交换任意两个元素的位置对结果没有影响,则是组合问题.【典型例题1】 判断下列问题是排列问题还是组合问题,并求出相应的排列数或组合数.(1)10人相互通一次电话,共通多少次电话?(2)10支球队以单循环进行比赛(每两队比赛一次),共进行多少场次?(3)从10个人中选出3个人作为代表去开会,有多少种选法?(4)从10个人中选出3个人担任不同学科的课代表,有多少种选法?思路分析:先分清是否与顺序有关,再确定是用排列数公式还是用组合数公式计算. 解:(1)是组合问题,因为甲与乙通了一次电话,也就是乙与甲通了一次电话,没有顺序的区别,组合数为C 210=45.(2)是组合问题,因为每两个队比赛一次,并不需要考虑谁先谁后,没有顺序的区别,组合数为C 210=45.(3)是组合问题,因为三个代表之间没有顺序的区别,组合数为C 310=120.(4)是排列问题,因为三个人担任哪一科的课代表是有顺序区别的,排列数为A 310=720. 探究二 组合数公式的应用解决有关涉及组合数的具体数字计算问题,可用展开式形式进行计算.而对于含有字母的组合数的式子进行变形或论证通常利用阶乘式,在应用组合数公式的过程中,应注意隐含条件(m ,n ∈N +,m ≤n ).【典型例题2】 (1)计算C 410-C 37·A 33=__________.(2)解方程:3C x -7x -3=5A 2x -4.思路分析:(1)应用组合数展开式计算.(2)应用组合数阶乘式求解,并注意检验.(1)解析:C 410-C 37A 33=C 410-A 37=10×9×8×74×3×2×1-7×6×5=210-210=0. 答案:0(2)解:由排列数和组合数公式,原方程可化为3·(x -3)!(x -7)!4!=5·(x -4)!(x -6)!,则3(x-3)4!=5x-6,即为(x-3)(x-6)=40.所以x2-9x-22=0,解之,可得x=11或x=-2.经检验知x=11是原方程的根,x=-2是原方程的增根.所以方程的根为x=11.探究三组合应用问题解决有关组合的实际问题,应首先确定是否是一个组合问题,再灵活选用直接法或间接法,结合两个计数原理进行计算.【典型例题3】在6名内科医生和4名外科医生中,内科主任和外科主任各1名,现要组成5人医疗小组送医下乡,依下列条件各有多少种选派方法.(1)有3名内科医生和2名外科医生;(2)既有内科医生,又有外科医生;(3)至少有1名主任参加;(4)既有主任,又有外科医生.思路分析:本题各个小题中被选出的元素均没有顺序,因而是组合问题.解:(1)先选内科医生有C36种选法;再选外科医生有C24种选法.故有选派方法C36·C24=120(种).(2)既有内科医生又有外科医生,正面思考应包括四种情况,共有选派方法C16·C44+C26·C34+C36·C24+C46·C14=246(种).若用间接法,则有C510-C56=246(种).(3)包含两类情况:选1名主任有C12·C48种;选2名主任有C22C38种.故共有选派方法C12·C48+C22·C38=196(种).若用间接法,则有C510-C58=196(种).(4)外科主任成为“热点”元素.若选外科主任,则其余可任意选取,有C49种选取方法;若不选外科主任,则必选内科主任,且剩余的四人不能全选内科医生,有(C48-C45)种.故共有选派方法C49+C48-C45=191(种).点评有限制条件的组合问题,其限制条件主要表现在取出的元素中“含”或“不含”某些元素,一般遵循先特殊再一般、正难则反的策略.对“至多”“至少”“最多”等问题要仔细审题,理解其含义,灵活选择合适方法(直接法、间接法)解决.用间接法时要注意“至少”“最多” “至多”等词语的含义,找到其对立面;用直接法时常以某条件为主线进行分类,做到不重复、不遗漏.探究四 易错辨析易错点:对组合数公式中隐含条件重视不够导致增解【典型例题4】 已知1C m 5-1C m 6=710C m 7,求m . 错解:由已知得m !(5-m )!5!-m !(6-m )!6!=7(7-m )!m !10×7!,即60-10(6-m )=(7-m )(6-m ),整理得m 2-23m +42=0,解得m =21或m =2.错因分析:这是一个关于m 的方程.上面解法中,将原式转化为关于m 的一元二次方程后,忽略了m 的取值范围导致错误.解这类题时,要将C m n 中m ,n 的取值范围与方程的解综合考虑,切忌盲目求解.正解:由题意可知m 的取值范围是{m |0≤m ≤5,m ∈N }.由已知得m !(5-m )!5!-m !(6-m )!6!=7(7-m )!m !10×7!,整理得m 2-23m +42=0,解得m =21或m =2.因为m ∈{m |0≤m ≤5,m ∈N },所以m =2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)不许有空盒子的放法有多少种?
(2)允许有空盒子的放法有多少种?
(3)若把四个小球分别标上1、2、3、4的标号,不许有空盒子且任意一个小球都不能放入标有相同标号的盒子中,共有多少种不同的放法?
(5)分成三份,一份4本,一份3本,一份2本;
(6)分成三份,两份2本,一份5本;
(7)分成四份,三份2本,一份3本;
(8)分成六份:三份2本,三份1本。
教学过程设计
教材处理
师生活动
例9.把12个完全相同的小球全部装入编号分别为1、2、3的三个盒子中:
(1)要求每个盒子 不空,共有多少种不同的装法?
(2)要求每个盒子的球数不小于其编号数,共有多少种不同的装法?
练习:若把10个名额分配给6个班,每班至少一个名额,共有多少种分配方法?
板书设计:
教学日记:
教学过程设计
教材处理
师生活动
例6.某次足球赛共12支球队参加,分三个阶段进行:
(1)小组赛:经抽签分成甲、乙两组,每组6队进 行单循环比赛,以积分及净剩球数取前两名
(2)半决赛:甲组 第一名与乙组第二名,乙组第一名与甲组第二名作主客场交叉淘汰赛(每两队主客场各赛一场)决出胜者
(3)决赛:两个胜队参加决赛一场,决出胜负
例7.设北京故宫博物院某日接待游客10000人,如果从这些游客中任意选出10名幸运游客,一共有多少种不同的选择(保留4 位有效数字)?若把10份不同的纪念品发给选出的幸运 游客每人一份,又有多少种不同的选择?
(4)恰好有一件是次品,再把抽出的3件产品放在展台上,排成一排进行对比展览,共有多少种不同的排法?
例5.有9本不同的课外书,分给甲、乙、丙三名同学,求在下列条件下,各有多少种不同的分法?
(1)甲得4本,乙得3本,丙得2本;
(2)一人得4本,一人得3本,一人得2本;
(3)甲、乙、丙各得3本;
(4)平均分成三份;
(2)其中恰有一个红球,共有多少种不同的取法?
(3)其中不含红球,共有多少种不同的取法?
例4.在产品质量检验时,常从产品中抽出一部分进行检查.现在从98件正品和2件次品共100件产品中,任意抽出3件检查:
(1)共有多少种不同的抽法?
(2)恰好有一件是次品的抽法有多少种?
(3)至少有一件是次品的抽法有多少种?
(2):。
二、组合的简单应用
例1.计算:(1) (2)
例2.平面内有10个点,其中任何3个点不共线,以其中任意2个点为端点的
(1)线段有多少条?
(2)有向线段有多少条?
1.2.2组合
教学过程设计
教材处理
师生活动
例3.一个口袋里装有7个不同白球和1个红球,从口袋中任取5个球:
(1)共有多少种不同的取法?
教学
目标
1.了解组合的相关概念,组合数的性培养学生分析问题、解决问题的能力.
重点
难点
重点:组合数的性质.
难点:理解排列与组合的区别.
教法
尝试、变式、互动
教具
教学过程设计
教材处理
师生活动
一、新知探究
1.组合的定义: 。
2.组合数定义:。
3.组合数公式:。
4.组合数的性质(1): 。