有理数的加法导学案1

合集下载

2.6有理数的加减混合运算(1)导学案

2.6有理数的加减混合运算(1)导学案

心一点,细心一点,我相信你是最棒的!
1
有理数的加减混合运算(1)
学习目标 1、使学生理解有理数的加减法可以互相转化,并了解代数和概念;
2、使学生熟练地进行有理数的加减混合运算;
3、培养学生的运算能力.
学习重点:熟练进行有理数的加减混合运算
学习难点:有理数的加减混合运算
学法指导:小组讨论、自主探究、合作交流
教学流程:
一 温故知新
复习回忆: 1、有理数加法法则.
2. 有理数减法法则.
二、创设情境导入新课(10分钟)
请按下
列规则做游戏:
(1)每人每次抽取4张卡片,如果抽到白色卡片,那么加上卡片上的数字;如果抽到红色卡片,那么减去卡片上的数字。

(2)比较两人所抽4张卡片的计算结果,结果大的为胜者。

小丽抽到的4张卡片依次为:
获胜的是谁?
心一点,细心一点,我相信你是最棒的!
2 三、课堂自主探究学习(分组展示20分钟)
计算
1.(—53)+51—54
2.( —5) —(—21
)+7—37
3. —71—(—72)+71
4.
四、当堂练习(自主完成7分钟)
课本P44页随堂练习第1题
五、课后作业
P44页知识技能第1题,问题解决第2题
六 归纳总结(1)减法可以转化为
(2)有理数的加减混合运算可以统一成____________运算。

七、课后反思
)
83
()31
(81
32
-+---。

人教新课标版七年级上数学第一章《有理数》导学案:1.3有理数的加减法(20210713001618)

人教新课标版七年级上数学第一章《有理数》导学案:1.3有理数的加减法(20210713001618)

第一章有理数《1.3有理数的加法》导教案(1) N0:8班级小组姓名小组评论________教师评价 _______一、学习目标1、能正确的进行有理数的加法运算;2、经历研究有理数加法法例的过程,加深对有理数加法法例的理解。

二、自主学习1、自学教材 16—18 页总结有理数的加法法例:(1) 同号两数相加,例 1、计算( -4 )+(-5 )第一步:确立种类(-4 )+(-5 )(同号两数相加)第二步:确立和的符号(-4 )+(-5 )=- ()(取同样的符号)第三步:确立绝对值(-4 )+(-5 )= -9(把绝对值相加)练习: 3+2 =(-3 )+(-2 )=(-1)+(-6)=(2)绝对值不相等的异号两数相加,例 2、计算( -2 )+6第一步:确立种类(-2 )+6(异号两数相加)第二步:确立符号∵6 2,∴( -2 )+6 =+()(取绝对值较大的加数的符号)第三步:确立绝对值∵ 6-2=4,∴( -2 )+6=+4(用较大的绝对值减去较小的绝对值)练习 :(-3)+4=+()=3+(-4 )=-()= 5+(-7)==( -12 )+19==同学们知道有理数的加法的步骤吗?①确立种类;②确立和的(3) 互为相反数的两个数相加得(4) 一个数同 0 相加,仍得;③最后进行绝对值的。

比方: 5+(-5)= 。

比方: 3+0=-3+3=0+。

(-5 )=2、自学检测(1)+ 8 与- 12 的和取___号,+ 4 与- 3 的和取___号。

(2)按①的格式计算以下各题① 14+(-21 )②(-18)+(-9)③(-0.8)+1.7④ -8+ 8解:①原式 = - (21-14 )=-7三、合作研究1.填空( 1)、某天气温由 -3 ℃上涨 4℃后气温是( 2)、已知两数 5 与-9 ,这两个数的和是;比-3 大 5.,这两个数的绝对值的和是,这两个数的相反数的和是.2、设a=-2 ,b= 1 ,计算33( 1) a+(-b)( 2) (-a)+b(3)a+2b3、红星队在 4 场足球赛中的战绩是:第一场 3:1 胜,第二场 2:3 负,第三场 0:0 平,第四场 2:5 负。

1.3.1有理数加法导学案(第一课时)

1.3.1有理数加法导学案(第一课时)

班级 小组 姓名课题:1.3.1 有理数的加法第1课时【学习目标】:1.借助数轴探索有理数的加法法则2.掌握有理数的加法法则,能准确地进行有理数的加法运算3.通过有理数的加法法则的探索,培养观察、比较、归纳、运算的能力【学习重点】:有理数的加法法则 及运算 【学习难点】:异号两数相加时,和的符号、绝对值的确定 【学习过程】: 一、复习、导入1.任何非零数都是由 和 两个部分构成的2. 如果水位上涨记作正数,那么下降记作________。

某天水位下降了5厘米,第二天水位上涨了8厘米,两天水位变化情况是__________ 米.用算式表示这个结果。

算式:________________。

3.小学学过的加法是正数与正数相加,正数与0相加,学习负数后,加法还有另外三种情况:_______________、 _______________、 _______________。

二、自主学习,合作交流要求:读教材16—18页,回答下列问题 ,其中展示1—6题说明:在物体作左右运动的过程中,规定向左为_______,向右为_______。

教材是借助_______来讨论有理数的加法运算的,将物体的起点放在 点,两次连续运动的总结果可以用 运算(加、减、乘、除)来表示,当结果的符号表示 。

1. 一个物体先向东走4米,再向东走2米,两次共向____走了___米,算式表示就是:① ;这个算式用数轴表示为:2.一个物体先向西走2米,再向西走4米,两次共向____走了___米,算式表示就是: ②_______________;用数轴表示为:3.如果向西走2米,再向东走4米, 那么两次运动后,物体从起点向____走了____米,写成算式就是③______________,用数轴表示为4.思考:还有哪些可能情形?你能算式表示出来吗?5.你能发现和与两个加数的符号和绝对值之间有什么关系吗由算式①②知:符号相同的两数相加,和的符号 ,绝对值由算式③知:符号相反的两数相加,和的符号取 的符号,并用 减去 。

《有理数的加减乘除混合运算》优秀导学案

《有理数的加减乘除混合运算》优秀导学案

1.4.2 有理数的加减乘除混合运算学习目标:1.能够熟练掌握有理数加减乘除的四则混合运算.2.能解决有理数加减乘除混合运算应用题3.提高分析问题和解决问题的能力.学习重点:正确进行有理数的加、减、乘、除混合运算.学习难点:如何按有理数的加减乘除混合运算顺序正确而合理地进行计算. 学习过程:一、复习引入:1、口算速算.2、填表.(求各数的倒数)二、范例学习例1 (1)982-+÷-() (2)438020-⨯--÷-()()() (3)()282÷--针对练习:1.有理数的加减乘除混合运算,应先算 ,再算 ,同级运算按从 到 的顺序计算,如果有括号则先算 里的.2.下列计算正确的是( ). A.1-34-43⨯÷= B.91-32-65-32-=⨯)()( C.41-515-=÷)( D.2-31-212=÷)( 3.计算:(1))()(5-75125-÷; (2))(41-85.52-⨯÷例2某公司去年1~3月平均每月盈利1.3万元,4~6月平均每月亏损3万元,7~10月平均每月盈利3.6万元,11~12月平均每月亏损2.7万元.这个公司去年总的盈亏情况如何?针对练习:4.某公式去年1~3月平均每月2.5万元,4~6月平均每月盈利-1万元,7~10月平均每月盈利4.5万元,11~12月平均每月盈利-1.5万元,那么这家公司去年平均每月盈利多少万元?五、课堂小结六、拓展提升思考:1、边长为a 的正方形的面积是多少?棱长为a 的正方体的体积是多少?2、观察(3)(3)(3)(3)-⨯-⨯-⨯-,22222()()()()()33333-⨯-⨯-⨯-⨯-,a a a a a ⨯⨯⨯⨯这些式子,你能发现他们有什么共同点吗?分别可以记作什么?七、布置作业1、必做题:课本37页习题1.4 1~7题2、选做题:课本38页习题1.4 8、9题。

人教版七年级数学上册《有理数的加法》导学案

人教版七年级数学上册《有理数的加法》导学案
(4)上半场输了3球,下半场赢了2球,全场输了1球,也就是(-3)+(+2)=-1; ④
(5)上半场赢了3球下半场不输不赢,全场仍赢3球,也就是(+3)+0=+3; ⑤
(6)上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是(-2)+0=-2; ⑥
(7)上半场打平,下半场也打平,全场仍是平局,也就是0+0=0.(7)
问题: 观察比较这7个算式,看能不能从这些算式中得到启发,想办法归纳出进行有理数加法的法则也就是结果的符号怎么定绝对值怎么算
明晰 有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加;
2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;
(1)+;(2)+
(3)+3(4)+;
(5)7+;(6)+;
(7)+;(8)+;
(9)+0.
二、堂清反馈
反思建议(我的收获):
四、我的疑惑:
展示案
一、我的疑惑展示:
二、重点问题探究展示:1.计算:
(1)(-10)+(+6);(2)(+12)+(-4);
(3)(-5)+(-7);(4)(+6)+(+9);
(5)67+(-73);(6)(-84)+(-59);
(7)33+48;(8)(-56)+37.
三、知识网络
训练案
一、达标检测:1.计算:
(1)上半场赢了3球,下半场赢了2球,那么全场共赢了5球.也就是(+3)+(+2)=+5.①

有理数加法--导学案

有理数加法--导学案

有理数导学案日期:第页姓名:一、预习,看书P34-36规定向右移动记为“+”,向左移动记为“”,1、数轴上的一点由原点出发,向左移动2个单位长度后又向左移动了4个单位,两次共向左移动了个单位,列式:2、数轴上的一点由原点出发,向右移动3个单位长度后又向左移动了1个单位,两次共向左移动了个单位,列式:3、数轴上的一点由原点出发,向左移动6个单位长度后又向右移动了2个单位,两次共向左移动了个单位,列式:4、数轴上的一点由原点出发,向左移动7个单位长度后又向右移动了9个单位,两次共向左移动了个单位,列式:5、数轴上的一点由原点出发,向右移动5个单位长度后又向左移动了3个单位,两次共向左移动了个单位,列式:6、数轴上的一点由原点出发,向右移动2个单位长度后又向左移动了7个单位,两次共向左移动了个单位,列式:7、数轴上的一点由原点出发,向左移动5个单位长度后又向右移动了5个单位,两次共向左移动了个单位,列式:8、数轴上的一点由原点出发,向右移动3个单位长度后又向左移动了3个单位,两次共向左移动了个单位,列式:9、数轴上的一点由原点出发,向右移动7个单位长度原地不动了,两次共向左移动了个单位,列式:10、数轴上的一点由原点出发,向左移动11个单位长度原地不动了,两次共向左移动了个单位,列式:总结:加法法则9、模仿老师的例题自己完成2()6()8()20()15(++-+++-++ 1、判:异号相加解:原式 = - (20-15) 2、定:取绝对值较大加数的符号 = - 5 3、算:大绝对值减去小的绝对值(—2.2)+3.8; (—3)+(—9)(—6)+(—2.2) (—561)+0+3 +(+6) -9 + (+4)+0.3 + 0.64)539()518()23()52()21(++++-+- + )539()518()23()52()21(+++-+-0 +(+4) - 0.5+(+0.5) +7+(-7)二、新课加法计算(直接写出得数(1)(-6)+(-8)= (2)(-4)+2.5= (3)(-7)+(+7)=(4)(-7)+(+4)= (5)(+2.5)+(-1.5)= (6)0+(-2)= (7)-3+2= (8)(+3)+(+2)=(9) -7-4=(10)(-4)+6=(11)()31-+= (12)()a a +-=-5+7 = 15()41()26()83(++-+++-= (-19)+(-24) = (+5)+(+2)= (-8)+(-6)= (+6) +(-13) = (+8)+(-3)= (-15)+(+10)= (-5) +(-3) = (+208)+0= -1+3 = (+6) +(-13) = (+6) +(-13) = (-5) +(-3) = (-5) +(=3) = (-3) +5 =. 3 +(-5) = (+20) +(+12) = (-3.4) +(+4.3)= (-13)+(+19)= (-4.7)+(-5.3)= (-2009)+ (+2010) = (+125) + (-128) = (-15.8) + (+3.6)=。

有理数的加法(1)导学案

有理数的加法(1)导学案

综合 训练 知识 拓展 学习 反思:
(1)如果 a>0,b>0,那么 a+b=___ _ 如果 a<0,b<0,那么 a+b=__ (2)如果 a>0,b<0,|a|=|b|,那么 a+b=___ 如果 a>0,b<0,且|a|>|b|,那么 a+b= 如果 a<0,b>0,且|a|>|b|,那么 a+b= (3)a+0=__ _ 二、例题分析: 例 1、计算:
教 学 流 程
1、 (1)甲水库第一天水位上涨了 3 厘米,可以记作____厘米,第二天上涨了 2 厘 米,记作____厘米,两天的水位总变化量是_____厘米,算式 。 (2)乙水库第一天水位上涨了 3 厘米,可以记作____厘米,第二天下降了 2 厘 米, 记作____厘米, 两天的水位总变化量是____厘米, 算式: ______________ _。 (3)丙水库第一天水位下降了 3 厘米,可以记作____厘米,第二天没有变化, 记作___厘米,两天的水位总变化量是______厘米,算式:___________________。 (4)丁水库第一天水位下降了 3 厘米,可以记作____厘米,第二天下降了 2 厘 米, 记作____厘米, 两天的水位总变化量是____厘米, 算式: _______________ 。 填写表中的水位总变化量和相应的算式。 (单位:厘米) 水位变化 第一天 3 -3 3 -3 3 0 第二天 4 2 -5 -5 0 -3 水位总变化量 算式
(‐89)+ (‐7)=______, 3+(‐12)=_______, (‐2.3)+3.2=________ 2.已知两数 19,‐27 这两个数和的绝对值是_____,绝对值的和是______. 3.想一想,绝对值小于 4 的所有整数的和是_________________________. 1、若|a|=7 , |b|=2,且 a、b 异号,则 a+b=( A、5 B、9 C、9 或-9 D、 5 或-5 2、若|a|+|b|=0,则 a=_____,b=_______。 3、若 a>0,b<0, |a|<|b|,则 a+b______0。 精讲点拨: )

《有理数的加法(1)》导学案

《有理数的加法(1)》导学案

2.1有理数的加法(1)导学案一.学习目标:1.学生能探索和归纳有理数的加法法则;2.学生能运用数轴来解释有理数的加法法则;3.学生能熟练地进行简单的有理数的加法运算;二.学习回顾: 已知数轴上表示有理数a、b的点如图所示:1. a、b分别表示什么数?请比较|a|与|b|的大小;2. |a|+|b|=_______ |a|-|b|=______三.探究新知:一建筑工地仓库记录星期一和星期二水泥的进货和出货数量如下,其中进货为正,出货为负(单位:吨)进出货情况库存变化星期一+5 -2星期二+3 -4合计探究问题一:列出算式表示这两天水泥进货和出货的合计数量,并算出结果.水泥进货合计为水泥出货合计为也可以在数轴上表示水泥进货的合计:你能在数轴上表示水泥出货的合计吗?试一试.以上两个算式,加数的符号怎样?和的符号与加数的符号有什么特征?和的绝对值和加数的绝对值有什么关系呢?你能发现两个正数或两个负数相加是怎么做的吗?同号两数相加的法则.a b应用一:(+5)+7= (-3)+(-10)=(-57)+(-27)= 探究问题二:上表中,星期一该建筑工地仓库的水泥库存是增加了还是减少了? 了 吨.用算式表示为星期二该建筑工地仓库的水泥库存 了 吨,用算式表示为 .也可以在数轴上表示星期一、星期二的库存变化结果,你会吗?后两种情形中两个加数符号不同(通常可称异号),所得和的符号似乎不能确定,让我们再试几次(下式中的加数仍可看作一天水泥的进出货情况):(+4)+(-3)= ( ) (+3)+(-10)= ( )(-5)+(+7)= ( ) (-6)+ 2 = ( )你能发现和与两个加数的符号和绝对值之间有什么关系吗?异号两数相加的法则 . 探究问题三: 再看两种特殊情形:星期三进货7吨,出货也是7吨,这天的库存情况怎样计算? 星期四进货7吨,出货0吨,这天的库存情况怎样计算? 归纳总结:综合以上情形,我们得到有理数的加法法则:1. 同号两数相加,取 的符号,并把 相加;2. 绝对值不等的异号两数相加,取 的符号,并用 ;3. 互为相反数的两个数相加得0;4. 一个数同0相加,仍得这个数.注意:一个有理数由符号和绝对值两部分组成,所以进行加法运算时,必须分别确定和的符号和绝对值.这与小学阶段学习加法运算不同.四.交流展示:1.计算:①(+2)+(-11) ②(+20)+(+12) ③12123⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭④(-3.4)+4.32.已知|x|=3,|y|=2,且x<y ,求x+y 的值.五.课堂检测:1.早晨的气温是-7℃,中午的气温比早晨高11℃,中午的气温是 .2.用“>”“=”或“<”填空.(1)已知a>0,b>0,则a+b 0;(2)已知a<0,b<0,则a+b 0;(3)已知a<0,b>0,且|a|>|b|,则a+b 0.(4)已知a 、b 互为相反数,则a+b 0.3.如果两个数的和为负数,那么( )A 这两个数都是负数B 这两个数一个为负数,另一个为0C 这两个数一正一负,且负数的绝对值大D 以上三种情况都有可能4.计算:①(+4)+(-12)②3121+-)( ③)()(32211-+- ④)()(5.3213-+- ⑤43175.1+-)( ⑥)()(65187++- 5.已知有理数a 、b 满足|a |=5,|b |=8,求a +b 的值.参考答案:四.交流展示:1. -9,32,126-,0.9 2. -1或-5五.课堂检测:1. 4℃2.>,<,<,=3.D4. -8, 1-6,126-,-7,0, 49 5. -13, 3, -3, 13,。

七年级数学上册 第一章 第三节 有理数的加减法导学案

七年级数学上册 第一章 第三节 有理数的加减法导学案

有理数的加法(第一课时)【学习目标】1.理解有理数加法的意义,掌握有理数加法法则.2.能准确地进行有理数的加法运算.【重点难点】有理数的加法法则的理解和运用,异号两数相加.【关键问题】有理数加法法则.【学法指导】自主学习、合作探究.【知识链接】绝对值和数轴.【预习评价】(认真阅读教材16—18页的内容并回答下列问题.)问题1:怎样进行同号两个数的加法运算?(+13)+(+7)= (-3)+(-7) = - 30 +(-20) =问题2:怎样进行异号两个数的加法运算?(1)绝对值相等的:(2)绝对值不相等的:3 +(-5)= (-5)+ 8 = -6 + 6 =问题3:一个数同零相加怎样进行运算?0+(-10)= +4 + 0 =问题4:教材18页练习题1、2【我的问题】【多元评价】自我评价:学科长评价:教师评价:《1.3.1有理数的加法(第一课时)》问题训练1.计算 -2+3 的值是()A. -3B. -1C. 1D. 32.一天早晨的气温是-7℃,中午的气温比早晨上升了11℃,中午的气温是()A.11℃B.4℃C.18℃D.-11℃3.比 -1 大2 的数是()A. -2B. -1C. 0D. 14.下列计算结果错误的是()A.(-5)+(-3)= - 8B.(-5)+(+3)= - 2C.(-3)+ 5 = 2D. 3 +(-5)= 25.如果两个数的和是正数,那么这两个数()A. 一定都是正数B. 一定都是负数C. 一正一负D. 至少有一个是正数,且正数的绝对值较大6.已知数5和 -4,这两个数的相反数的和是。

两数和的相反数是,两数和的绝对值是,两数绝对值的和是。

7.计算(1)(-25)+(-7);(2)(-13)+5;(3)(-23)+0;(4)45+(-45);1.3.1有理数的加法(第二课时)问题导读【学习目标】会运用加法运算律简化加法运算.【重点难点】加法运算律的灵活运用.【关键问题】加法运算律【学法指导】自主学习、合作探究.【知识链接】有理数加法法则及加法运算律.我们以前学过的加法交换律,用字母表示a+b= 加法结合律,用字母表示(a+b)+c=【预习评价】(认真阅读教材19—20页的内容并回答下列问题.) 问题1:认真阅读教材19页探究1,你能得出什么结论?问题2:认真阅读教材19页探究2,你能得出什么结论?问题3:怎样计算使问题简化,通过下面几道题,总结结论(1)[(-22)+(-27)]+(+27) (2)(-22)+[(-27)+(+27)](3)(-8)+10+2+(-1) (4)(-8)+(-1)+10+2 (5))528(435)532(413-++-+ (6))432(8)432()8(-++++-总结结论为: 问题4:把例4做在下面: 解法1解法2【我的问题】【多元评价】自我评价:学科长评价:教师评价:1.3.1有理数的加法(第二课时)问题训练一、计算:(1)23+(-17)+6+(-22) (2)(-2)+3+1+(-3)+2+(-4)(3))61(31)21(1-++-+ (4))528(435)532(413-++-+(5))215(75.2413)5.0(-+++-二、填空:(1) + 11 = 27 (2)7 + = 4 (3)(-9)+ = 9 (4)12 + = 0 (5)(-8)+ = - 15 (6) +(-13)= - 6 三、解答:8筐白菜,以每筐25千克为准,超过的千克数记作正数,不足的千克数记作负数, 称重的记录如下: 1.5 , -3 , 2 , -0.5 , 1 , -2 , -2 , -2.5 求8筐白菜的重量是多少?1.3.2有理数的减法(第一课时)问题导读 【学习目标】1.理解有理数减法的意义,掌握有理数减法法则.2.能准确地进行有理数的减法运算. 【重点难点】有理数的减法法则【关键问题】法则中减法到加法的转变过程及减法法则的运用. 【学法指导】自主学习、合作探究. 【知识链接】绝对值和数轴.【预习评价】(认真阅读教材21—22页的内容并回答下列问题.) 问题1:计算:(1)9 – 7 = (2)9 + = 2(3)15 – 7 = (4)15 +(-7)= (5)4 + = 7 (6) -(-3)= 7通过以上计算你有什么发现?有理数减法可以转化为 来进行计算。

有理数的加法教案通用5篇

有理数的加法教案通用5篇

有理数的加法教案通用5篇有理数的加法教案通用5篇我们将会培养和发展一系列的技能,包括思维能力、创造力、合作精神和解决问题的能力。

下面是小编为大家整理的有理数的加法教案,如果大家喜欢可以分享给身边的朋友。

有理数的加法教案(精选篇1)一、说教材:(一)地位和作用有理数的加法是小学算术加法运算的拓展,是初中数学运算最重要,最基础的内容之一。

熟练掌握有理数的加法运算是学习有理数其它运算的前提,同时,也为后继学习实数、代数式运算、方程、不等式、函数等知识奠定基础。

有理数的加法运算是建构在生产、生活实例上,有较强的生活价值,体现了数学来源于实践,又反作用于实践。

就本章而言,有理数的加法是本章的重点之一。

学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习。

(二)课程目标:1、知识与技能目标:⑴了解有理数加法的意义。

⑵经历探索有理数加法法则的过程,理解并掌握有理数加法的法则。

(3)运用有理数加法法则正确进行运算(主要是整数的运算)。

2、过程与方法目标:⑴在教师创设的熟悉情境与学生探索法则的过程中,通过观察结果的符号及绝对值与两个加数的符号及其绝对值的关系,培养学生的分类、归纳、概括的能力。

(2)在探索过程中感受数形结合和分类讨论的数学思想。

(3)渗透由特殊到一般的唯物辩证法思想3、情感态度与价值观目标:(1)通过师生交流、探索,激发学生的学习兴趣、求知欲望,养成良好的数学思维品质。

(2)让学生体会到数学知识来源于生活、服务于生活,培养学生对数学的热爱,培养学生运用数学的意识。

(3)培养学生合作意识,体验成功,树立学习自信心。

(三)教学重点、难点:重点:理解和运用有理数的加法法则难点:理解有理数加法法则,尤其是理解异号两数相加的法则二、说教法:在教学过程中一如既往的开展“新、行、省、信”四字教育模式的教学。

新:创设新的问题情境(足球净胜球数)、开展新的学习方式(自主、合作、交流)、进行新的评价体系(个人评价与小组评价相结合);行:在教师的启发引导下自主、合作探究新知(有理数的加法法则),教师关注学生是否积极思考问题(几组有理数加法的符号与绝对值特征)、是否主动参与讨论(同号与异号的特征)、是否敢于发表自己的见解(有理数加法法则的概括);省:在特殊实例的基础上观察、归纳、概括有理数的加法法则,在实例讲解和自主练习的基础上总结心得、反省得失(如:解后思)。

有理数的加法、减法、加减混合,乘法、除法导学案

有理数的加法、减法、加减混合,乘法、除法导学案

有理数的加法(1)导学案年级:七年级学科:数学主备:卞广林审核:七年级数学组课型:新授【学习目标】:1、理解有理数加法意义,掌握有理数加法法则,会正确进行有理数加法运算;2、会利用有理数加法运算解决简单的实际问题;【学习重点】:有理数加法法则【学习难点】:异号两数相加【导学指导】一、知识链接1、正有理数及0的加法运算,小学已经学过,然而实际问题中做加法运算的数有可能超出正数范围。

例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。

如果,红队进4个球,失2个球;蓝队进1个球,失1个球。

于是红队的净胜球数为4+(-2),蓝队的净胜球数为1+(-1)。

这里用到正数和负数的加法。

那么,怎样计算4+(-2)下面我们一起借助数轴来讨论有理数的加法。

二、自主探究1、借助数轴来讨论有理数的加法1)如果规定向东为正,向西为负,那么一个人向东走4米,再向东走2米,两次共向东走了米,这个问题用算式表示就是:2)如果规定向东为正,向西为负,那么一个人向西走2米,再向西走4米,两次共向西走多少米?很明显,两次共向西走了米。

这个问题用算式表示就是:如图所示:3)如果向西走2米,再向东走4米,那么两次运动后,这个人从起点向东走了米,写成算式就是这个问题用数轴表示如下图所示:4)利用数轴,求以下情况时这个人两次运动的结果:①先向东走3米,再向西走5米,这个人从起点向()走了()米;②先向东走5米,再向西走5米,这个人从起点向()走了()米;③先向西走5米,再向东走5米,这个人从起点向()走了()米。

写出这三种情况运动结果的算式有理数加法法则(1)同号的两数相加,取的符号,并把相加。

(2)绝对值不相等的异号两数相加,取的加数的符号,并用较大的绝对值较小的绝对值. 互为相反数的两个数相加得;(3)一个数同0相加,仍得。

4.新知应用例1 计算(自己动动手吧!)(1)(-3)+(-9);(2)(-4.7)+3.9.【课堂练习】:1.填空:(口答)(1)(-4)+(-6)= ;(2)3+(-8)= ;(4)7+(-7)= ;(4)(-9)+1 = ;(5)(-6)+0 = ;(6)0+(-3)= ;【要点归纳】:有理数加法法则:【拓展训练】:1.判断题:(1)两个负数的和一定是负数;(2)绝对值相等的两个数的和等于零;(3)若两个有理数相加时的和为负数,这两个有理数一定都是负数;(4)若两个有理数相加时的和为正数,这两个有理数一定都是正数。

有理数的加法(1)导学案

有理数的加法(1)导学案

有理数的加法(1)导学案本资料为woRD文档,请点击下载地址下载全文下载地址1.2有理数(7)有理数的加法(1)导学案设计题目.2有理数(7)有理数的加法(1)课时学校星火一中教者年级七年学科数学设计自我设计教学时间9月14日学习目标、探索有理数加法法则,理解有理数的加法法则;2、能运用有理数加法法则,正确进行有理数加法运算;3、经历探索有理数加法法则的过程,体验数学于实践并为实践服务的思想,同时培养学生探究性学习的能力.重点有理数加法法则的过程及和的符号的确定难点和的符号的确定学习方法师生共同合作探索有理数加法法则的过程及和的符号的确定学习过程一、有理数加法的探索.汽车在公路上行驶,规定向东为正,向西为负,据下列情况,分别列算式,并回答:汽车两次运动后方向怎样?离出发点多远?(1)向东行驶5千米后,又向东行驶2千米,(2)向西行驶5千米后,又向西行驶2千米,(3)向东行驶5千米后,又向西行驶2千米,(4)向西行驶5千米后,又向东行驶2千米,(5)向东行驶5千米后,又向西行驶5千米,(6)向西行驶5千米后,静止不动,2.足球队甲、乙两队比赛,主场甲队4:1胜乙队,赢了3球,客场甲队1:3负乙队,输了2球,甲队两场比赛累计净胜球1个,你能把这个结果用算式表示出来吗?议一议:比赛中胜负难料,两场比赛的结果还可能哪些情况呢?动动手填表:赢球数净胜球算式主场客场3‐2‐3232‐3‐23‐3你还能举出一些应用有理数加法的实际例子吗?请同学们积极思考.二、有理数加法的归纳探索:两个有理数相加,和的符号及绝对值怎样确定?你能找到有理数相加的一般方法吗?说一说:两个有理数相加有多少种不同的情形?议一议:在各种情形下,如何进行有理数的加法运算?归纳:有理数加法法则:教材第18页三、实践应用问题1.口答++++++0;问题2.某公司三年盈利情况如下表所示,规定盈利为“+”(单位:万元)第一年第二年第三年-24+15.6+42前两年盈利了多少万元?三年共盈利多少万元?列出算式并解答问题3.判断(1)两个有理数相加,和一定比加数大.()(2)绝对值相等的两个数的和为0.()(3)两有理数的和为负数,则这两个数中至少有一个是负数.四、课堂反馈:.一个正数与一个负数的和是()A、正数B、负数c、零D、以上三种情况都有可能2.两个有理数的和()A、一定大于其中的一个加数B、一定小于其中的一个加数c、大小由两个加数符号决定D、大小由两个加数的符号及绝对值而决定3.计算(1)(+10)+(-4)(2)(-15)+(-32)(3)(-9)+0(4)43+(-34)(5)(-10.5)+(+1.3)(6)(-)+达标测评一、选择题.若两数的和为负数,则这两个数一定()A.同负B.一正一负c.一个为0D.以上情况都有可能2.两个有理数相加,若它们的和小于每一个加数,则这两个数()A.都是正数B.都是负数c.互为相反数D.符号不同3.如果两个有理数的和是正数,那么这两个数()A.都是正数B.都是负数c.都是非负数D.至少有一个正数4.使等式成立的有理数是A.任意一个整数B.任意一个非负数c.任意一个非正数D.任意一个有理数5.对于任意的两个有理数,下列结论中成立的是()A.若则B.若则c.若则D.若则6.下列说法正确的是A.两数之和大于每一个加数B.两数之和一定大于两数绝对值的和c.两数之和一定小于两数绝对值的和D.两数之和一定不大于两数绝对值的和二、判断.若某数比-5大3,则这个数的绝对值为3.()2.若a&gt;0,b&lt;0,则a+b&gt;0.()3.若a+b&lt;0,则a,b两数可能有一个正数.()4.若x+y=0,则︱x︱=︱y︱.()5.有理数中所有的奇数之和大于0.()三、填空.(+5)+(+7)=_______;(-3)+(-8)=________;(+3)+(-8)=________;(-3)+(-15)=________;0+(-5)=________;(-7)+(+7)=________.2.一个数为-5,另一个数比它的相反数大4,这两数的和为________.3.(-5)+______=-8;______+(+4)=-9._______+=+11;______+=-11;4.如果则,四、计算(1)(+21)+(-31)(2)(-3.125)+(+3)(3)(-)+(+)(4)(-3)+0.3(5)(-22)+0(6)│-7│+│-9│(以下各题要求写出“解、答”并列出算式)五、土星表面夜间的平均气温为-150℃,白天的平均气温比夜间高27℃,那么白天的平均气温是多少?六、一位同学在一条由东向西的跑道上,先向东走了20米,又向西走了30米,能否确定他现在位于原来的哪个方向,与原来位置相距多少米?七、潜水员原来在水下15米处,后来上浮了8米,又下潜了20米,这时他在什么位置?要求用加法解答。

有理数加法1导学案

有理数加法1导学案

第2章有理数§2.6有理数加法课时一有理数加法法则【学习目标】1.探索有理数加法法则,向学生渗透归纳、转化等数学思想。

2.理解有理数加法的法则,能正确地运用法则进行有理数加法运算。

【课前导习】1. (+20)+(+30)= ; (-20)+(-30)= ,同号两数相。

2. (+2)+(-11)= ; (-3.4)+4.3= ,绝对值不等的异号两数相加 .3.(-30)+(+30)= ; 互为相反数的两个数相加。

4. (-30)+ 0= ; 一个数同0相加.5. 填空:(1)( )+(-3)=-8; (2)( )+(-3)= 8;(3)(-3)+( )=-1; (4)(-3)+( )= 0 .6.两个有理数相加,和是否一定大于每个加数?【主动探究】1. 填表:2. 一个有理数由和两部分组成,所以进行加法运算时,应注意确定和的与 .3.概括综合以上情形,我们得到有理数的加法法则:1. 同号两数相加,取相同的正负号,并把绝对值相加;2. 绝对值不等的异号两数相加,取绝对值较大加数的正负号,并用较大的绝对值减去较小的绝对值;3. 互为相反数的两个数相加得0;4. 一个数同0相加,仍得这个数.【当堂训练】1. 计算:(1)10+(-4); (2) (+9)+7;(3)(-15)+(-32); (4)(-9)+0;(5)100+(-100); (6)-0.5)+4.4;()()25.14117+⎪⎭⎫⎝⎛- ()⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-6121182.有理数加法法则可分三步:第一步判断两加数的 ;并求其绝对值的 ; 第二步判断和的 ;第三步 ;【回学反馈】1.计算()⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-3123111 ()()()5.15102-+-()()⎪⎭⎫⎝⎛++-+⎪⎭⎫ ⎝⎛-1715912171593 ()()()25.0375.0125.04-++-2.已知213+x 与212-y 互为相反数,求x+y 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学导学案(8)
课题:有理数的加法(1) 班级:姓名:
教学目标:
1.使学生了解有理数加法的意义。

2.使学生理解有理数加法的法则,能熟练地进行有理数加法运算。

3.培养学生分析问题、解决问题的能力,在有理数加法法则的教学过程中,注意培养学生的观察、比较、归纳及运算能力。

教学重点:有理数加法法则。

教学难点:异号两数相加的法则。

教学过程:
一、复习引入:
1.在小学里,已经学过了正数和零(称为非负数)的加法运算。

现在引入了负数,数的范围扩充到了有理数。

那么,如何进行有理数的加法运算呢?
2.问题:
一位同学沿着一条东西向的跑道,先走了20米,又走了30米,能否确定他现在位于原来位置的哪个方向,相距多少米?
二、探究新知:
1.探究发现:
我们必须把问题说得明确些,并规定向东为正,向西为负。

(1)若两次都是向东走,很明显,一共向东走了50米,写成算式就是: (+20)+(+30)=+50,
即这位同学位于原来位置的东方50米处。

这一运算在数轴上表示如图:
(2)若两次都是向西走,则他现在位于原来位置的西方50米处,
写成算式就是: (―20)+(―30)=―50。

现在我们看看以上两个算式,有什么特点呢?你还能举出这样的例子吗?你能发现两个正数或两个负数相加是怎么做的吗?
(3)若第一次向东走20米,第二次向西走30米,我们先在数轴上表示如图:
写成算式是(+20)+(―30)=―10,即这位同学位于原来位置的西方10米处。

(4)若第一次向西走20米,第二次向东走30米,写成算式是:(―20)+(+30)=( )。

即这位同学位于原来位置的( )方( )米处。

后两种情形中两个加数符号不同(通常可称异号),所得和的符号似乎不能确定,让我们再试几次(下式中的加数不仿仍可看作运动的方向和路程):
(+4)+(―3)=( ); (+3)+(―10)=( );
(―5)+(+7)=( ); (―6)+ 2 = ( )。

你能发现和与两个加数的符号和绝对值之间有什么关系吗?
再看两种特殊情形:
(5)第一次向西走了30米,第二次向东走了30米.写成算式是:(―30)+(+30)=( )。

(6)第一次向西走了30米,第二次没走.写成算式是:(―30)+ 0 =( )。

我们不难得出它们的结果。

由(5)和(6)中的两个算式,你发现了什么?
2.归纳总结:
综合以上情形,我们得到有理数的加法法则:
1. 同号两数相加,取相同的符号,并把绝对值相加;
2. 绝对值不等的异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;
3. 互为相反数的两个数相加得0;
4. 一个数同0相加,仍得这个数.
注意:
一个有理数由符号和绝对值两部分组成,所以进行加法运算时,必须分别确定和的符号和绝对值.这与小学阶段学习加法运算不同。

3.知识运用:
例1:计算:
①(+2)+(―11); ②(+20)+(+12); ③⎪⎪⎭
⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-32211; ④(―3.4)+4.3。

例2:已知|x|=3,|y|=2,且x<y ,求x+y 的值。

三、课堂检测:
1、早晨的气温是-7℃,中午的气温比早晨高11℃,中午的气温是 。

2、用“>”“=”或“<”填空。

(1)已知a>0,b>0,则a+b 0;(2)已知a<0,b<0,则a+b 0;
(3)已知a<0,b>0,且|a|>|b|,则a+b 0。

(4)已知a 、b 互为相反数,则a+b 0。

3、如果两个数的和为负数,那么( )
A 、这两个数都是负数。

B 、这两个数一个为负数,另一个为0.
C 、这两个数一正一负,且负数的绝对值大。

D 、以上三种情况都有可能。

4、计算:①(+4)+(-12)
②3121+-)(
③)()(32211-+- ④)()(5.3213-+-
⑤43
175.1+-)( ⑥)()(6
5187++-
四、小结反思。

相关文档
最新文档