【K12教育学习资料】2018年高考数学总复习第九章平面解析几何第1讲直线的方程课时作业
精选浙江专用2018版高考数学大一轮复习第九章平面解析几何9.1直线的方程教师用书
(浙江专用)2018版高考数学大一轮复习 第九章 平面解析几何 9.1直线的方程教师用书1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0°. (2)范围:直线l 倾斜角的范围是[0°,180°). 2.斜率公式(1)若直线l 的倾斜角α≠90°,则斜率k =tan α.(2)P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上且x 1≠x 2,则l 的斜率k =y 2-y 1x 2-x 1. 3.直线方程的五种形式【知识拓展】 1.直线系方程(1)与直线Ax +By +C =0平行的直线系方程是Ax +By +m =0(m ∈R 且m ≠C ). (2)与直线Ax +By +C =0垂直的直线系方程是Bx -Ay +m =0(m ∈R ). 2.两直线平行或重合的充要条件直线l 1:A 1x +B 1y +C 1=0与直线l 2:A 2x +B 2y +C 2=0平行或重合的充要条件是A 1B 2-A 2B 1=0. 3.两直线垂直的充要条件直线l 1:A 1x +B 1y +C 1=0与直线l 2:A 2x +B 2y +C 2=0垂直的充要条件是A 1A 2+B 1B 2=0. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)根据直线的倾斜角的大小不能确定直线的位置.( √ ) (2)坐标平面内的任何一条直线均有倾斜角与斜率.( × ) (3)直线的倾斜角越大,其斜率就越大.( × ) (4)直线的斜率为tan α,则其倾斜角为α.( × ) (5)斜率相等的两直线的倾斜角不一定相等.( × )(6)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.( √ )1.(2016·天津模拟)过点M (-2,m ),N (m,4)的直线的斜率等于1,则m 的值为( ) A .1 B .4 C .1或3 D .1或4 答案 A解析 依题意得m -4-2-m=1,解得m =1.2.(2016·镇海中学检测)直线x +(a 2+1)y +1=0的倾斜角的取值范围是( ) A .[0,π4] B .[3π4,π)C .[0,π4]∪(π2,π)D .[π4,π2)∪[3π4,π)答案 B解析 由直线方程可得该直线的斜率为-1a 2+1, 又-1≤-1a 2+1<0, 所以倾斜角的取值范围是[3π4,π).3.如果A ·C <0且B ·C <0,那么直线Ax +By +C =0不通过( ) A .第一象限 B .第二象限C .第三象限D .第四象限 答案 C解析 由已知得直线Ax +By +C =0在x 轴上的截距-C A >0,在y 轴上的截距-C B>0,故直线经过第一、二、四象限,不经过第三象限.4.(教材改编)直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则实数a =. 答案 1或-2解析 令x =0,得直线l 在y 轴上的截距为2+a ; 令y =0,得直线l 在x 轴上的截距为1+2a,依题意2+a =1+2a,解得a =1或a =-2.题型一 直线的倾斜角与斜率例1 (1)(2016·北京东城区期末)已知直线l 的倾斜角为α,斜率为k ,那么“α>π3”是“k >3”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件(2)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为.答案 (1)B (2)(-∞,-3]∪[1,+∞) 解析 (1)当π2<α<π时,k <0;当k >3时,π3<α<π2.所以“α>π3”是“k >3”的必要不充分条件,故选B.(2)如图,∵k AP =1-02-1=1,k BP =3-00-1=-3, ∴k ∈(-∞,- 3 ]∪[1,+∞). 引申探究1.若将题(2)中P (1,0)改为P (-1,0),其他条件不变,求直线l 斜率的取值范围. 解 ∵P (-1,0),A (2,1),B (0,3), ∴k AP =1-02--=13, k BP =3-00--= 3.如图可知,直线l 斜率的取值范围为⎣⎢⎡⎦⎥⎤13,3.2.若将题(2)中的B 点坐标改为(2,-1),其他条件不变,求直线l 倾斜角的范围. 解 如图,直线PA 的倾斜角为45°, 直线PB 的倾斜角为135°,由图象知l 的倾斜角的范围为[0°,45°]∪[135°,180°).思维升华 直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分⎣⎢⎡⎭⎪⎫0,π2与⎝ ⎛⎭⎪⎫π2,π两种情况讨论.由正切函数图象可以看出,当α∈⎣⎢⎡⎭⎪⎫0,π2时,斜率k ∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝ ⎛⎭⎪⎫π2,π时,斜率k ∈(-∞,0).(2016·南昌模拟)已知过定点P (2,0)的直线l 与曲线y =2-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取到最大值时,直线l 的倾斜角为( ) A .150° B.135° C.120° D.不存在 答案 A解析 由y =2-x 2得x 2+y 2=2(y ≥0),它表示以原点O 为圆心,以2为半径的圆的一部分,其图象如图所示.显然直线l 的斜率存在,设过点P (2,0)的直线l 为y =k (x -2),则圆心到此直线的距离d =|2k |1+k2,弦长|AB |=2 2-|2k |1+k22=22-2k21+k2, 所以S △AOB =12×|2k |1+k 2×22-2k21+k2 ≤k2+2-2k2+k2=1, 当且仅当(2k )2=2-2k 2,即k 2=13时等号成立,由图可得k =-33(k =33舍去),故直线l 的倾斜角为150°. 题型二 求直线的方程例2 根据所给条件求直线的方程: (1)直线过点(-4,0),倾斜角的正弦值为1010; (2)直线过点(5,10),到原点的距离为5;(3)过点A (-5,-4)作直线l ,使它与两坐标轴相交且与两轴所围成的三角形面积为5,求直线l 的方程.解 (1)由题设知,该直线的斜率存在,故可采用点斜式. 设倾斜角为α,则sin α=1010(0<α<π),从而cos α=±31010,则k =tan α=±13.故所求直线方程为y =±13(x +4).即x +3y +4=0或x -3y +4=0.(2)当斜率不存在时,所求直线方程为x -5=0; 当斜率存在时,设其为k ,则所求直线方程为y -10=k (x -5), 即kx -y +(10-5k )=0. 由点到直线的距离公式,得|10-5k |k 2+1=5,解得k =34.故所求直线方程为3x -4y +25=0.综上知,所求直线方程为x -5=0或3x -4y +25=0. (3)由已知,l 的两截距不为0, 设l 的方程为x a +yb=1, 则⎩⎪⎨⎪⎧-5a +-4b =1,12|ab |=5,解得⎩⎪⎨⎪⎧a =5,b =-2或⎩⎪⎨⎪⎧a =-52,b =4.∴直线l 的方程为x 5-y2=1或x -52+y4=1, 即2x -5y -10=0或8x -5y +20=0.思维升华 在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件.用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线.故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况.求适合下列条件的直线方程:(1)经过点P (3,2)且在两坐标轴上的截距相等;(2)过点A (-1,-3),斜率是直线y =3x 的斜率的-14倍;(3)过点A (1,-1)与已知直线l 1:2x +y -6=0相交于B 点且|AB |=5. 解 (1)设直线l 在x ,y 轴上的截距均为a ,若a =0,即l 过点(0,0)和(3,2), ∴l 的方程为y =23x ,即2x -3y =0.若a ≠0,则设l 的方程为x a +y a=1, ∵l 过点(3,2),∴3a +2a=1,∴a =5,∴l 的方程为x +y -5=0,综上可知,直线l 的方程为2x -3y =0或x +y -5=0. (2)设所求直线的斜率为k ,依题意k =-14×3=-34.又直线经过点A (-1,-3),因此所求直线方程为y +3=-34(x +1),即3x +4y +15=0.(3)过点A (1,-1)与y 轴平行的直线为x =1.解方程组⎩⎪⎨⎪⎧x =1,2x +y -6=0,求得B 点坐标为(1,4),此时|AB |=5, 即x =1为所求.设过A (1,-1)且与y 轴不平行的直线为y +1=k (x -1),解方程组⎩⎪⎨⎪⎧2x +y -6=0,y +1=k x-得两直线交点为⎩⎪⎨⎪⎧x =k +7k +2,y =4k -2k +2(k ≠-2,否则与已知直线平行),则B 点坐标为(k +7k +2,4k -2k +2). ∴(k +7k +2-1)2+(4k -2k +2+1)2=52, 解得k =-34,∴y +1=-34(x -1),即3x +4y +1=0.综上可知,所求直线方程为x =1或3x +4y +1=0.题型三 直线方程的综合应用命题点1 与基本不等式相结合求最值问题例3 已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A 、B 两点,如图所示,求△ABO 的面积的最小值及此时直线l 的方程.解 方法一 设直线方程为x a +y b=1(a >0,b >0), 把点P (3,2)代入得3a +2b =1≥26ab,得ab ≥24,从而S △AOB =12ab ≥12,当且仅当3a =2b 时等号成立,这时k =-b a =-23,从而所求直线方程为2x +3y -12=0.方法二 依题意知,直线l 的斜率k 存在且k <0. 则直线l 的方程为y -2=k (x -3)(k <0),且有A ⎝⎛⎭⎪⎫3-2k,0,B (0,2-3k ),∴S △ABO =12(2-3k )⎝ ⎛⎭⎪⎫3-2k =12⎣⎢⎡⎦⎥⎤12+-9k +4-k≥12⎣⎢⎡⎦⎥⎤12+2 -9k4-k =12×(12+12)=12. 当且仅当-9k =4-k ,即k =-23时,等号成立. 即△ABO 的面积的最小值为12. 故所求直线的方程为2x +3y -12=0. 命题点2 由直线方程解决参数问题例4 已知直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当四边形的面积最小时,求实数a 的值.解 由题意知直线l 1,l 2恒过定点P (2,2),直线l 1在y 轴上的截距为2-a ,直线l 2在x 轴上的截距为a 2+2,所以四边形的面积S =12×2×(2-a )+12×2×(a 2+2)=a 2-a +4=⎝ ⎛⎭⎪⎫a -122+154,当a =12时,面积最小. 思维升华 与直线方程有关问题的常见类型及解题策略(1)求解与直线方程有关的最值问题.先设出直线方程,建立目标函数,再利用基本不等式求解最值.(2)求直线方程.弄清确定直线的两个条件,由直线方程的几种特殊形式直接写出方程. (3)求参数值或范围.注意点在直线上,则点的坐标适合直线的方程,再结合函数的单调性或基本不等式求解.(2016·潍坊模拟)直线l 过点P (1,4),分别交x 轴的正半轴和y 轴的正半轴于A ,B 两点,O 为坐标原点,当|OA |+|OB |最小时,求直线l 的方程.解 依题意,直线l 的斜率存在且斜率为负, 设直线l 的斜率为k ,则直线l 的方程为y -4=k (x -1)(k <0). 令y =0,可得A (1-4k,0);令x =0,可得B (0,4-k ). |OA |+|OB |=(1-4k)+(4-k )=5-(k +4k)=5+(-k +4-k )≥5+4=9.∴当且仅当-k =4-k 且k <0,即k =-2时,|OA |+|OB |取最小值. 这时直线l 的方程为2x +y -6=0.10.求与截距有关的直线方程典例 设直线l 的方程为(a +1)x +y +2-a =0(a ∈R ). (1)若l 在两坐标轴上的截距相等,求直线l 的方程; (2)若l 在两坐标轴上的截距互为相反数,求a . 错解展示现场纠错解 (1)当直线过原点时,该直线在x 轴和y 轴上的截距为零,∴a =2,方程即为3x +y =0. 当直线不经过原点时,截距存在且均不为0. ∴a -2a +1=a -2,即a +1=1. ∴a =0,方程即为x +y +2=0.综上,直线l 的方程为3x +y =0或x +y +2=0. (2)由a -2a +1=-(a -2)得a -2=0或a +1=-1, ∴a =2或a =-2.纠错心得 在求与截距有关的直线方程时,注意对直线的截距是否为零进行分类讨论,防止忽视截距为零的情形,导致产生漏解.1.(2016·北京顺义区检测)若直线y =-2x +3k +14与直线x -4y =-3k -2的交点位于第四象限,则实数k 的取值范围是( ) A .-6<k <-2 B .-5<k <-3 C .k <-6 D .k >-2 答案 A 解析 解方程组⎩⎪⎨⎪⎧y =-2x +3k +14,x -4y =-3k -2得⎩⎪⎨⎪⎧x =k +6,y =k +2,因为直线y =-2x +3k +14与直线x -4y =-3k -2的交点位于第四象限, 所以k +6>0且k +2<0,所以-6<k <-2.2.(2016·威海模拟)过点(2,1)且倾斜角比直线y =-x -1的倾斜角小π4的直线方程是( )A .x =2B .y =1C .x =1D .y =2答案 A解析 ∵直线y =-x -1的斜率为-1,则倾斜角为3π4, 依题意,所求直线的倾斜角为3π4-π4=π2, ∴斜率不存在,∴过点(2,1)的所求直线方程为x =2. 3.(2016·济宁模拟)直线mx -y +2m +1=0经过一定点,则该定点的坐标是( )A .(-2,1)B .(2,1)C .(1,-2)D .(1,2)答案 A解析 mx -y +2m +1=0,即m (x +2)-y +1=0.令⎩⎪⎨⎪⎧ x +2=0,-y +1=0,得⎩⎪⎨⎪⎧ x =-2,y =1,故定点坐标为(-2,1).4.(2016·金华模拟)已知两点M (2,-3),N (-3,-2),直线l 过点P (1,1)且与线段MN 相交,则直线l 的斜率k 的取值范围是( )A .k ≥34或k ≤-4B .-4≤k ≤34C.34≤k ≤4 D.-34≤k ≤4 答案 A解析 如图所示,∵k PN =1--1--=34, k PM =1--1-2=-4.∴要使直线l 与线段MN 相交,当l 的倾斜角小于90°时,k ≥k PN ;当l 的倾斜角大于90°时,k ≤k PM ,由已知得k ≥34或k ≤-4. 5.直线ax +by +c =0同时要经过第一、二、四象限,则a ,b ,c 应满足( )A .ab >0,bc <0B .ab >0,bc >0C .ab <0,bc >0D .ab <0,bc <0答案 A解析 由于直线ax +by +c =0经过第一、二、四象限,所以直线存在斜率,将方程变形为y =-a b x -c b .易知-a b <0且-c b>0,故ab >0,bc <0.6.如图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则 ( )A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 2答案 D解析 直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2,故选D.7.已知A (3,0),B (0,4),直线AB 上一动点P (x ,y ),则xy 的最大值是.答案 3解析 直线AB 的方程为x 3+y 4=1,∵动点P (x ,y )在直线AB 上,则x =3-34y , ∴xy =3y -34y 2=34(-y 2+4y ) =34[-(y -2)2+4]≤3. 即当P 点坐标为⎝ ⎛⎭⎪⎫32,2时,xy 取最大值3. 8.(2016·潍坊模拟)直线l 过点(-2,2)且与x 轴,y 轴分别交于点(a,0),(0,b ),若|a |=|b |,则直线l 的方程为.答案 x +y =0或x -y +4=0解析 若a =b =0,则直线l 过点(0,0)与(-2,2),直线l 的斜率k =-1,直线l 的方程为y =-x ,即x +y =0.若a ≠0,b ≠0,则直线l 的方程为x a +y b =1,由题意知⎩⎪⎨⎪⎧ -2a +2b=1,|a |=|b |,解得⎩⎪⎨⎪⎧ a =-4,b =4,此时,直线l 的方程为x -y +4=0.9.(2016·奉化模拟)直线l :ax +(a +1)y +2=0的倾斜角大于45°,则a 的取值范围是.答案 (-∞,-12)∪(0,+∞) 解析 当a =-1时,直线l 的倾斜角为90°,符合题意.当a ≠-1时,直线l 的斜率k =-a a +1, 由题意知-a a +1>1或-aa +1<0, 解得-1<a <-12或a <-1或a >0. 综上知,a <-12或a >0. 10.(2016·山师大附中模拟)函数y =a 1-x (a >0,a ≠1)的图象恒过定点A ,若点A 在mx +ny-1=0(mn >0)上,则1m +1n的最小值为. 答案 4解析 ∵函数y =a 1-x (a >0,a ≠1)的图象恒过定点A (1,1).∴把A (1,1)代入直线方程得m +n =1(mn >0).∴1m +1n =(1m +1n )·(m +n )=2+n m +m n≥4 (当且仅当m =n =12时取等号), ∴1m +1n的最小值为4. 11.(2016·太原模拟)已知两点A (-1,2),B (m,3).(1)求直线AB 的方程;(2)已知实数m ∈[-33-1,3-1],求直线AB 的倾斜角α的取值范围. 解 (1)当m =-1时,直线AB 的方程为x =-1,当m ≠-1时,直线AB 的方程为y -2=1m +1(x +1). 即x -(m +1)y +2m +3=0.(2)①当m =-1时,α=π2; ②当m ≠-1时,m +1∈[-33,0)∪(0,3], ∴k =1m +1∈(-∞,-3]∪[33,+∞), ∴α∈[π6,π2)∪(π2,2π3]. 综合①②知,直线AB 的倾斜角α∈[π6,2π3]. 12.已知点P (2,-1).(1)求过点P 且与原点的距离为2的直线l 的方程;(2)求过点P 且与原点的距离最大的直线l 的方程,最大距离是多少?(3)是否存在过点P 且与原点的距离为6的直线?若存在,求出方程;若不存在,请说明理由. 解 (1)过点P 的直线l 与原点的距离为2,而点P 的坐标为(2,-1),显然,过点P (2,-1)且垂直于x 轴的直线满足条件,此时直线l 的斜率不存在,其方程为x =2.若斜率存在,设l 的方程为y +1=k (x -2),即kx -y -2k -1=0. 由已知得|-2k -1|k 2+1=2, 解得k =34. 此时l 的方程为3x -4y -10=0.综上可得直线l 的方程为x =2或3x -4y -10=0.(2)作图可得过点P 与原点O 的距离最大的直线是过点P 且与PO 垂直的直线,如图所示.由l ⊥OP ,得k l k OP =-1,所以k l =-1k OP =2.由直线方程的点斜式,得y +1=2(x -2),即2x -y -5=0.所以直线2x -y -5=0是过点P 且与原点O 的距离最大的直线,最大距离为|-5|5= 5. (3)由(2)可知,过点P 不存在到原点的距离超过5的直线,因此不存在过点P 且到原点的距离为6的直线.*13.如图,射线OA 、OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)作直线AB 分别交OA 、OB 于A 、B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的方程.解 由题意可得k OA =tan 45°=1, k OB =tan(180°-30°)=-33, 所以直线l OA :y =x ,l OB :y =-33x . 设A (m ,m ),B (-3n ,n ),所以AB 的中点C ⎝ ⎛⎭⎪⎫m -3n 2,m +n 2, 由点C 在直线y =12x 上,且A 、P 、B 三点共线得⎩⎪⎨⎪⎧ m +n 2=12·m -3n 2,m -0m -1=n -0-3n -1,解得m =3,所以A (3,3). 又P (1,0),所以k AB =k AP =33-1=3+32, 所以l AB :y =3+32(x -1), 即直线AB 的方程为(3+3)x -2y -3-3=0.。
2018版高考数学复习解析几何91直线的方程理
第九章 解析几何 9.1 直线的方程 理1.直线的倾斜角lxxxl 向上方向之间所成的与轴作为基准,轴相交时,取轴正向与直线(1)定义:当直线llx 轴平行或重合时,规定它的倾斜角为0°.角叫做直线与的倾斜角.当直线 l 倾斜角的范围是[0°,180°). (2)范围:直线 2.斜率公式 lk =tan α.的倾斜角α≠90°,则斜率(1)若直线 yy -12kxlPxyPxylx . (2)(,则,上且),=(≠,)在直线的斜率22112112xx -12.直线方程的五种形式3【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)根据直线的倾斜角的大小不能确定直线的位置.( √ ) (2)坐标平面内的任何一条直线均有倾斜角与斜率.( × ) (3)直线的倾斜角越大,其斜率就越大.( × ) (4)直线的斜率为tan α,则其倾斜角为α.( × )(5)斜率相等的两直线的倾斜角不一定相等.( × )PxyPxyyyxxx-()(,)的直线都可以用方程(-)(=-,,经过任意两个不同的点(6)()122111122xyy) √-)(( 表示.)121.MmNm,m的值为( ,则 () )过点4)(-2,的直线的斜率等于),11.(2016·天津模拟A.1 B.4 D.或3 1或4C.1A答案m-4m=1.1,解得解析依题意得=m--22yax) 的倾斜角的取值范围是( +)直线1+(=+1)02.(2016·合肥一六八中学检测3ππB.[,π,A.[0])44πππ3ππDC.[0,]∪(,π).[,)∪[,π)44224B答案1,由直线方程可得该直线的斜率为-解析2a1+1 ,又-1≤-<02a1+3π所以倾斜角的取值范围是[,π).4ACBCAxByC=0不通过( .如果+·+<0且·) <0,那么直线3A.第一象限 B.第二象限D.第四象限C.第三象限C答案CCyAxByCx故直线经,轴上的截距-在轴上的截距-解析由已知得直线>0+,+=0在>0BA 过第一、二、四象限,不经过第三象限.axaxlyay . 轴上的截距相等,则实数轴和=+2--0=)4.(教材改编直线在: 2或-1答案axly;在轴上的截距为2+解析令0=,得直线2xyl,1令0=,得直线+在轴上的截距为a2aaa=-或11+,解得2.=依题意2+=aA(2,-3)且在两坐标轴上的截距互为相反数的直线方程为.5.过点xyxy0=5--或0=2+3 答案.3yxxy设直②当直线不过原点时,=解析①当直线过原点时,直线方程为0=-3,即;+22yxyaxxyaA0.=5,即直线方程为-=(2,-3)代入,得线方程为-=1,即--=5,将点aayyxx0.0或-=-故所求直线的方程为3+25=直线的倾斜角与斜率题型一πkl”是的倾斜角为α,斜率为已知直线(1)(2016·北京东城区期末)>,那么“α例1 3k) >3“”的(.充分不必要条件A .必要不充分条件B C.充要条件 D.既不充分也不必要条件llPAB斜率的3)(0(2)直线为端点的线段有公共点,则直线过点,(1,0),且与以(2,1),取值范围为.-∞,-3(1)B (2)(]∪[1,+∞) 答案πk 时,;<0<解析 (1)当<απ2ππk.<<当α3>时,23πk B.3所以“α>”是“”的必要不充分条件,故选> 3 (2)如图,0-1k==1,∵AP12-03-k3,==-BP0-1k∈(-∞,-3 ]∪[1,+∞).∴引申探究.lPP斜率的取值范围.1,0)改为,其他条件不变,求直线(-1.若将本例(2)中(1,0)BPA(0,(2,1),,解∵-(1,0),3)101-k==∴,AP321--0-3k3.==BP-0-1 l3,. 如图可知,直线斜率的取值范围为??3lB倾斜角的范围.点坐标改为(2,-1)2.若将本例(2)中的,其他条件不变,求直线PA解如图,直线45°,的倾斜角为PB直线135°,的倾斜角为l由图象知的倾斜角的范围为[0°,45°]∪[135°,180°).因此根据斜而这个区间不是正切函数的单调区间,,π),思维升华直线倾斜角的范围是[0ππ??????π0,两种情况讨论.由正切函数图象可以看出,当率求倾斜角的范围时,要分与????22πππ????????kπ,0,时,斜率α∈时,斜率不存在;当=α时,斜率∈∈[0,+∞);当α????222k.∈(-∞,0)2BlyxAP两=2与曲线-,·南昌月考 (2017)相交于已知过定点(2,0)的直线lOAOB) 为坐标原点,当△的面积取到最大值时,直线的倾斜角为( 点,.150° B.135° C.120° D.不存在AA答案222Oxyyxy为半径的圆的一部分,-由解析=2得+=2(≥0),2为圆心,它表示以原点以其图象如图所示.l的斜率存在,显然直线k||2dykxPl=,(,则圆心到此直线的距离-2)设过点=(2,0)的直线为2k+12kk2-||222AB 222-,弦长||==2k+12k+12kk2|22|-1S×2所以×=AOB△2k+212k+122kk2-+2 1,≤=2k+1222kkk=2,即当且仅当(2时等号成立,)=2-333lkk由图可得舍去)=-,故直线150°.(的倾斜角为=33 求直线的方程题型二2 例根据所给条件求直线的方程:10 -4,0),倾斜角的正弦值为;(1)直线过点(10P (2)经过点,且在两坐标轴上的截距相等;(4,1)5.,到原点的距离为(3)直线过点(5,10) (1)解由题设知,该直线的斜率存在,故可采用点斜式.10π)<,α,则sin = (0<α设倾斜角为α103101k=tan α=±cos 从而α=±,则.1031yx+4).故所求直线方程为=±( 3xyxy+43==+40或0. 即3+-lxya. (2)设直线轴上的截距均为在,al过点(0,0)及(4,1),若0=,即1lyxxy=4∴的方程为=,即-0.4.yxla1≠0,则设,的方程为+若=aa14l1∵,过点(4,1),∴+=aaa,=∴5yxl0. =的方程为-+5∴yxxyl0. =或综上可知,直线-的方程为+-45=0x;=当斜率不存在时,所求直线方程为0-5(3)k当斜率存在时,设其为,xyk 5)(,则所求直线方程为--10=kkxy0. )(10-即5-=+k|53|10-k=由点到直线的距离公式,得,解得.=542k+1xy+25=-4故所求直线方程为30.xxy+254=35=0或0.综上知,所求直线方程为--思维升华在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件.用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线.故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况.求适合下列条件的直线方程:P(3,2)且在两坐标轴上的截距相等;(1)经过点1Ayx的斜率的-倍;3,-3),斜率是直线=(2)过点-(14AlxyBAB|=5. 0相交于:2点且+|-6=(3)过点(1,-1)与已知直线1lxya,在轴上的截距均为,解 (1)设直线al过点(0,0)和(3,2),若=0,即2lyxxy=0.的方程为-=3,即∴23xyla1≠0,则设,的方程为+若=aa23l,=∵1过点(3,2),∴+aaalxy-5=0的方程为+,∴5=,∴lxyxy-5=0. -3=0或+2综上可知,直线的方程为13kk=-×3=-设所求直线的斜率为(2),依题意.44.A,1,-又直线经过点3)(-3xy,++3=-(1)因此所求直线方程为4yx0.=3++415即xyA1.轴平行的直线为(1,-1)与(3)过点=x,=1??解方程组?yx,0-62=+??ABB,=,此时|5求得|点坐标为(1,4)x 1即为所求.=yA轴不平行的直线为(1,-1)设过且与xyk 1)(,-+1=yx,0-62+=??解方程组?xyk-+1=??k7+?x?,=k2+?k,得两直线交点为2,否则与已知直线平行()≠-k24-?y?=k2+kk24-7+B.(,则)点坐标为kk2++2kk24-+7222 5,1)∴(+(+=-1)kk22++33xky 1)(,=-,∴-+1=-解得44yx0.=+即31+4yxx0. =3或++4综上可知,所求直线方程为1=1 直线方程的综合应用题型三与基本不等式相结合求最值问题命题点1ByAlPx两点,如图所示,求3 已知直线轴的正半轴分别交于过点,且与(3,2)、轴、例lABO的面积的最小值及此时直线的方程.△yxba >0),1( 解方法一设直线方程为+=,>0ba623abP≥24,=1≥2+(3,2)把点代入得,得abbab 2213kSab ,从而所求直线方程为=-=从而时等号成立,这时==-≥12,当且仅当 AOB △aab 32yx 0.=-212+3kkl <0. 的斜率方法二 依题意知,直线存在且kxlyk 3)(2=,(则直线<0)的方程为--2????kAB 0,3- 且有3,,)(0,2- k ??21????kS -3 -3∴)=(2ABO △k ??24??114??k ????+129+-k=≥92-12+k ??-k 22??-112. =12)=×(12+ 224kk ,即当且仅当-9时,等号成立.==-k 3-ABO 的面积的最小值为即△12.xy -12=+3故所求直线的方程为20.命题点2 由直线方程解决参数问题22laalxaxyalayl 与两0<:2,+<2=2时,直线4 例已知直线+:4-2=2,当-4,2211a 坐标轴围成一个四边形,当四边形的面积最小时,求实数的值.xalllPly 轴,,直线恒过定点2(2,2),直线-在在轴上的截距为解 由题意知直线2112111??222a ??aaaaSa -=+2)=上的截距为4+2,所以四边形的面积=×2×(2--)+×2×(+ ??2221512a =时,面积最小.+,当42思维升华 与直线方程有关问题的常见类型及解题策略 (1)求解与直线方程有关的最值问题.先设出直线方程,建立目标函数,再利用基本不等式求解最值.(2)求直线方程.弄清确定直线的两个条件,由直线方程的几种特殊形式直接写出方程.(3)求参数值或范围.注意点在直线上,则点的坐标适合直线的方程,再结合函数的单调性或基本不等式求解. lPxy 轴的正半轴于轴的正半轴和(1,4)(2016·潍坊模拟 )直线,分别交过点ABOOAOBl 的方程.最小时,求直线 |+|,|两点,为坐标原点,当|l 的斜率存在且斜率为负,依题意,直线 解lk ,设直线 的斜率为lykxk .<0)1)(-(=4-的方程为则直线4yA(1-,0);=0,可得令kxBk).-=0,可得 (0,4令4OAOBk)-+(4=(1-|+||)|k4k+()=5-k4k+)≥5+4(-=9.=5+k-4kk<0,=且∴当且仅当-k-kOAOB|取最小值.+|=-2时,| 即|lxy-6=的方程为20. +这时直线11.求与截距有关的直线方程laxyaa∈R).-+2 =设直线典例 0(的方程为(+1)+ll的方程;在两坐标轴上的截距相等,求直线(1)若la. 在两坐标轴上的截距互为相反数,求(2)若错解展示现场纠错xyaxy=0. ,方程即为当直线过原点时,该直线在解(1)轴和轴上的截距为零,∴=23+0. 当直线不经过原点时,截距存在且均不为a-2aa+1,即==1. -∴2a1+axy+2+==0,方程即为0.∴lxyxy+2+==0综上,直线或的方程为30. +a-2aaa+1=-1=0或=-(,-2)得 (2)由-2a1+aa=-2.2∴或=纠错心得在求与截距有关的直线方程时,注意对直线的截距是否为零进行分类讨论,防止忽视截距为零的情形,导致产生漏解.yxkxyk-23-4+3的交点位于第+14与直线=-1.(2016·北京顺义区检测)若直线=-2k的取值范围是( 四象限,则实数)kk<-3 2 B.-A.-6<5<<-kk>-2-6 DC..<A答案kxkyx,=62+3++14,=-????解析得解方程组??kxyky,+2-43=-=-2????yxkxyk-2的交点位于第四象限,-4因为直线=-2=-+314+与直线3kkk<-6<2.+2<0,所以-所以6>0+且πxy的直线方程是1=-的倾斜角小-且倾斜角比直线2.(2016·威海模拟)过点(2,1)4) (yx1 BA.==2 .yx2=D.C.=1A答案π3xy1,则倾斜角为∵直线,=--1的斜率为-解析4ππ3π-依题意,所求直线的倾斜角为=,244x2.的所求直线方程为=(2,1)∴斜率不存在,∴过点yyAxxB上,线段0=0=上,点在直线2++31已知点.(2016·合肥检测3)在直线+2-y0ABPxyyx+2,则的取值范围为( >)的中点为(,,且满足 )0000x0.111B.(-∞,-]A.(-,-)552111D.(C.(-,-]-,0)225A答案y0kxykyAx,=解析设,则(,,=)0110x0yyBxxABPxy(2--),∴∵.的中点为2(,)10001,0yxxyAB 上,0和=+2∵0,+分别在直线3+2=-1yxyyxx2(20-,)∴+2+-1=0,23-=+101011yxyx0. +2,即=+∴21+4+2=000001xkxykxx.+,即∵=-=1,∴=+2000000k2+1xyxkxxk1)+2,∴,>>2+2,即(又>-00000k115+k,,即<0即(1)(--)>2kk1+221+11k A..解得-<故选<-52lMNMNlP的斜相交,则直线过点.已知两点4(1,1)(2,-3),-(3,-2),直线且与线段k) 的取值范围是( 率3kk4≥或≤-A.43k.-4≤≤B43k≤4C.≤43k D.-≤≤44A答案解析如图所示,--13k=,∵=PN4--1-1-k=4.=-PM2-1.lMN相交,与线段∴要使直线lkk;当≥的倾斜角小于90°时,PN lkk,当≤的倾斜角大于90°时,PM3kk≤-4.≥由已知得或4axbycabc应满足( .直线,+) +,=0同时要经过第一、二、四象限,则5abbc<0 >0A.,abbc>0 >0B.,abbc>0 <0C.,abbc<0 <0D.,答案 Aaxbyc=0经过第一、二、四象限,+解析由于直线+acxy. =--所以直线存在斜率,将方程变形为bbacbcab<0.>0,易知-<0且->0,故bbklkkll),,则的斜率分别为, ( 6.如图中的直线,,313221kkk<A.<321kkk<B.<213kkk<C.<123kkk D.<<213答案 Dlkll的倾斜角α与α均为锐角且<0,直线与解析直线故的倾斜角α是钝角,α23211132kkkkk D. ,因此<<0>α,所以<,故选<232313xyxyABABP.上一动点的最大值是( ,)7.已知(3,0),(0,4),直线,则 3答案xyAB+=1,解析直线的方程为433yPxxyAB3=在直线,∵动点()上,则-,4.3322xyyyyy)+(=3--4∴=4432y-2)(-+4]≤3. =[43????xyP2,取最大值点坐标为3. 即当时,??2lxya,ba||),若0),直线-过点(2,2)且与(0轴,,轴分别交于点(8.(2016·潍坊模拟)bl 的方程为,则直线.=| |xyxy+4==0或0答案+-abl过点(0,0)与(,则直线-2,2)解析若,==0lklyxxy=0. =-直线的斜率+=-1,直线,即的方程为xylab 1,的方程为若+≠0,=≠0,则直线ab22-??a,=-4,1+=??ba?解得由题意知?b,4=????ba,|||=|lxy+4=-此时,直线0.的方程为ABxybABb的取值范围是则.=0与线段(-1,0),(1,0),直线2 +相交,.9设点-答案 [-2,2]byxby轴上的截距,为直线2=-在解析+yxbABb分别取得最小值和最大值. (1,0)-如图,当直线1,0)=-2和点+时,过点(b的取值范围是[-2,2]∴.mn>0) x-1aaAAmxyany+,若点(>0函数10.(2016·山师大附中模拟),=在≠1)的图象恒过定点11上,则+的最小值为-1=0(.mn答案 4Amnmn>0).=∴把代入直线方程得x-1aayaA(1,1).解析∵函数=>0,≠1)的图象恒过定点((1,1)1(+nm1111mn)=2++≥4=∴+(+)·(+mnmnmn1mn=时取等号)(当且仅当=,2.114.∴+的最小值为nmm,AB.(2016·太原模拟)已知两点(-1,2),3)(.11AB的方程;(1)求直线3ABm的取值范围.的倾斜角-α1,3-(2)已知实数1],求直线∈[-3xABm (1)当,=-1时,直线=-的方程为1解1xABym的方程为+-2=1)当(≠-1时,直线.m1+mxym0. 3=+2即-(++1)πm;1时,α=(2)①当=-23mm+1∈[-3]②当,≠-1时,,0)∪(0,331k3,+∞),]∪[∴∈(-∞,-=m3+1π2πππ.)∪(,]∴α∈[,3226π2πAB.,]综合①②知,直线α的倾斜角∈[36P.,-12.已知点1)(2lP的直线求过点的方程;且与原点的距离为2(1)lP且与原点的距离最大的直线(2)求过点的方程,最大距离是多少?P若不存在,请说明理由.且与原点的距离为6的直线?若存在,(3)是否存在过点求出方程;PlPP,-(2,-1)与原点的距离为2,而点,显然,过点的坐标为(2解 (1)过点的直线x且垂直于1)轴的直线满足条件,xl2. 的斜率不存在,其方程为=此时直线xkly,=+1-若斜率存在,设(的方程为2)kykx0. 1--2即=-k-21||-由已知得=2,2k+13k=.解得4lxy-10=34-0.此时的方程为lxxy-10=或234-0.综上可得直线的方程为=POPPO垂直的直线,如图所示.且与的距离最大的直线是过点与原点作图可得过点 (2).kOPkl,得1由,⊥=-OPl1k2.所以==-l k OP由直线方程的点斜式,xy,-得2)+1=2(yx0.-5即2=-5||-OPxy5.2=-0-5=是过点的距离最大的直线,最大距离为且与原点所以直线5PP且到原点的距因此不存在过点5(3)的直线,由(2)可知,过点不存在到原点的距离超过离为6的直线.ABOAOBPx分别交、分别与(1,0)轴正半轴成45°和30°角,过点作直线*13.如图,射线1ABxBOAOBAABCy上时,求直线、恰好落在直线于的方程.、两点,当=的中点2k解由题意可得,=tan 45°=1OA3k,=tan(180°-30°)=-OB33ylxlyx=-:. 所以直线:,=OBOA3nBAmnm,,),-(设3(,)??nnmm+3-??CAB,所以的中点,??221CyxAPB三点共线得由点在直线=上,且、、2.nnmm31-+??,·=222?Am解得3).=3,所以(3,nm0--0?,=?m1-n1--33+33kPk=,又(1,0),所以==APAB213-3+3xyl,所以-:(=1)AB2xABy0.=3-3-2-3)+(3的方程为即直线。
2018版高考数学理人教大一轮复习讲义教师版文档第九章
1.直线与圆锥曲线的位置关系的判断将直线方程与圆锥曲线方程联立,消去一个变量得到关于x(或y)的一元方程:ax2+bx+c=0(或ay2+by+c=0).(1)若a≠0,可考虑一元二次方程的判别式Δ,有①Δ>0⇔直线与圆锥曲线相交;②Δ=0⇔直线与圆锥曲线相切;③Δ<0⇔直线与圆锥曲线相离.(2)若a=0,b≠0,即得到一个一元一次方程,则直线l与圆锥曲线E相交,且只有一个交点,①若E为双曲线,则直线l与双曲线的渐近线的位置关系是平行;②若E为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则|AB|=1+k2|x2-x1|=1+1k2|y2-y1|.【知识拓展】过一点的直线与圆锥曲线的位置关系(1)过椭圆外一点总有两条直线与椭圆相切;过椭圆上一点有且只有一条直线与椭圆相切;过椭圆内一点的直线与椭圆相交.(2)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条与对称轴平行或重合的直线;过抛物线上一点总有两条直线与抛物线有且只有一个公共点:一条切线和一条与对称轴平行或重合的直线;过抛物线内一点只有一条直线与抛物线有且只有一个公共点:一条与对称轴平行或重合的直线.(3)过双曲线外不在渐近线上的一点总有四条直线与双曲线有且只有一个交点:两条切线和两条与渐近线平行的直线;过双曲线上一点总有三条直线与双曲线有且只有一个交点:一条切线和两条与渐近线平行的直线;过双曲线内一点总有两条直线与双曲线有且只有一个交点:两条与渐近线平行的直线. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)直线l 与抛物线y 2=2px 只有一个公共点,则l 与抛物线相切.( × ) (2)直线y =kx (k ≠0)与双曲线x 2-y 2=1一定相交.( × )(3)与双曲线的渐近线平行的直线与双曲线有且只有一个交点.( √ ) (4)直线与椭圆只有一个交点⇔直线与椭圆相切.( √ ) (5)过点(2,4)的直线与椭圆x 24+y 2=1只有一条切线.( × )(6)满足“直线y =ax +2与双曲线x 2-y 2=4只有一个公共点”的a 的值有4个.( √ )1.(2016·黑龙江鹤岗一中月考)在同一平面直角坐标系中,方程a 2x 2+b 2y 2=1与ax +by 2=0(a >b >0)表示的曲线大致是( )答案 D解析 将方程a 2x 2+b 2y 2=1变形为x 21a 2+y 21b 2=1,∵a >b >0,∴1a 2<1b 2,∴椭圆焦点在y 轴上.将方程ax +by 2=0变形为y 2=-abx ,∵a >b >0,∴-ab<0,∴抛物线焦点在x 轴负半轴上,开口向左.2.(2017·青岛月考)直线y =kx -k +1与椭圆x 29+y 24=1的位置关系为( )A .相交B .相切C .相离D .不确定答案 A解析 直线y =kx -k +1=k (x -1)+1恒过定点(1,1),又点(1,1)在椭圆内部,故直线与椭圆相交.3.若直线y =kx 与双曲线x 29-y 24=1相交,则k 的取值范围是( )A.⎝⎛⎭⎫0,23B.⎝⎛⎭⎫-23,0 C.⎝⎛⎭⎫-23,23 D.⎝⎛⎭⎫-∞,-23∪⎝⎛⎭⎫23,+∞ 答案 C解析 双曲线x 29-y 24=1的渐近线方程为y =±23x ,若直线与双曲线相交,数形结合,得k ∈⎝⎛⎭⎫-23,23. 4.已知倾斜角为60°的直线l 通过抛物线x 2=4y 的焦点,且与抛物线相交于A ,B 两点,则弦|AB |=________. 答案 16解析 直线l 的方程为y =3x +1,由⎩⎨⎧y =3x +1,x 2=4y ,得y 2-14y +1=0. 设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=14,∴|AB |=y 1+y 2+p =14+2=16.5.(教材改编)已知与向量v =(1,0)平行的直线l 与双曲线x 24-y 2=1相交于A ,B 两点,则|AB |的最小值为________. 答案 4解析 由题意可设直线l 的方程为y =m , 代入x 24-y 2=1得x 2=4(1+m 2),所以x 1=4(1+m 2)=21+m 2, x 2=-21+m 2,所以|AB |=|x 1-x 2|=41+m 2, 所以|AB |=41+m 2≥4, 即当m =0时,|AB |有最小值4.第1课时 直线与圆锥曲线题型一 直线与圆锥曲线的位置关系例1 (2016·烟台模拟)已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点; (2)有且只有一个公共点; (3)没有公共点.解 将直线l 的方程与椭圆C 的方程联立,得方程组⎩⎪⎨⎪⎧y =2x +m , ①x 24+y 22=1, ②将①代入②,整理得9x 2+8mx +2m 2-4=0.③方程③根的判别式Δ=(8m )2-4×9×(2m 2-4)=-8m 2+144.(1)当Δ>0,即-32<m <32时,方程③有两个不同的实数根,可知原方程组有两组不同的实数解.这时直线l 与椭圆C 有两个不重合的公共点.(2)当Δ=0,即m =±32时,方程③有两个相同的实数根,可知原方程组有两组相同的实数解.这时直线l 与椭圆C 有两个互相重合的公共点,即直线l 与椭圆C 有且只有一个公共点. (3)当Δ<0,即m <-32或m >32时,方程③没有实数根,可知原方程组没有实数解.这时直线l 与椭圆C 没有公共点.思维升华 (1)判断直线与圆锥曲线的交点个数时,可直接求解相应方程组得到交点坐标,也可利用消元后的一元二次方程根的判别式来确定,需注意利用判别式的前提是二次项系数不(2)依据直线与圆锥曲线的交点个数求参数时,联立方程并消元,得到一元方程,此时注意观察方程的二次项系数是否为0,若为0,则方程为一次方程;若不为0,则将方程解的个数转化为判别式与0的大小关系求解.(2016·全国乙卷)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连接ON 并延长交C 于点H . (1)求|OH ||ON |;(2)除H 以外,直线MH 与C 是否有其他公共点?说明理由. 解 (1)由已知得M (0,t ),P ⎝⎛⎭⎫t 22p ,t ,又N 为M 关于点P 的对称点,故N ⎝⎛⎭⎫t 2p ,t ,ON 的方程为y =pt x ,代入y 2=2px 整理得px 2-2t 2x =0,解得x 1=0,x 2=2t 2p,因此H ⎝⎛⎭⎫2t 2p ,2t . 所以N 为OH 的中点,即|OH ||ON |=2.(2)直线MH 与C 除H 以外没有其他公共点,理由如下: 直线MH 的方程为y -t =p 2t x ,即x =2tp(y -t ).代入y 2=2px 得y 2-4ty +4t 2=0,解得y 1=y 2=2t ,即直线MH 与C 只有一个公共点,所以除H 以外直线MH 与C 没有其他公共点. 题型二 弦长问题例2 (2016·全国甲卷)已知A 是椭圆E :x 24+y 23=1的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (1)当|AM |=|AN |时,求△AMN 的面积. (2)当2|AM |=|AN |时,证明:3<k <2.(1)解 设M (x 1,y 1),则由题意知y 1>0,由|AM |=|AN |及椭圆的对称性知,直线AM 的倾斜角为π4. 又A (-2,0),因此直线AM 的方程为y =x +2.将x =y -2代入x 24+y 23=1得7y 2-12y =0,解得y =0或y =127,所以y 1=127.因此△AMN 的面积S △AMN =2×12×127×127=14449.(2)证明 将直线AM 的方程y =k (x +2)(k >0)代入x 24+y 23=1得(3+4k 2)x 2+16k 2x +16k 2-12=由x 1·(-2)=16k 2-123+4k 2得x 1=2(3-4k 2)3+4k 2,故|AM |=|x 1+2|1+k 2=121+k 23+4k 2.由题设,直线AN 的方程为y =-1k (x +2),故同理可得|AN |=12k 1+k 23k 2+4.由2|AM |=|AN |,得23+4k 2=k3k 2+4,即4k 3-6k 2+3k -8=0, 设f (t )=4t 3-6t 2+3t -8,则k 是f (t )的零点,f ′(t )=12t 2-12t +3=3(2t -1)2≥0,所以f (t )在(0,+∞)单调递增,又f (3)=153-26<0,f (2)=6>0,因此f (t )在(0,+∞)有唯一的零点,且零点k 在(3,2)内,所以3<k <2.思维升华 有关圆锥曲线弦长问题的求解方法涉及弦长的问题中, 应熟练的利用根与系数的关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数的关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.设F 1,F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左,右焦点,过F 1且斜率为1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列. (1)求E 的离心率;(2)设点P (0,-1)满足|P A |=|PB |,求E 的方程. 解 (1)由椭圆定义知|AF 2|+|BF 2|+|AB |=4a , 又2|AB |=|AF 2|+|BF 2|,得|AB |=43a ,l 的方程为y =x +c ,其中c =a 2-b 2.设A (x 1,y 1),B (x 2,y 2),则A ,B 两点的坐标满足方程组⎩⎪⎨⎪⎧y =x +c ,x 2a 2+y 2b 2=1,消去y ,化简得(a 2+b 2)x 2+2a 2cx +a 2(c 2-b 2)=0,则x 1+x 2=-2a 2c a 2+b 2,x 1x 2=a 2(c 2-b 2)a 2+b 2.因为直线AB 的斜率为1,所以|AB |=2|x 2-x 1|=2[(x 1+x 2)2-4x 1x 2],即43a =4ab 2a 2+b2,故a 2=2b 2,所以E 的离心率e =c a =a 2-b 2a =22.(2)设AB 的中点为N (x 0,y 0),由(1)知 x 0=x 1+x 22=-a 2c a 2+b 2=-2c 3,y 0=x 0+c =c 3.由|P A |=|PB |,得k PN =-1,即y 0+1x 0=-1,得c =3,从而a =32,b =3. 故椭圆E 的方程为x 218+y 29=1.题型三 中点弦问题命题点1 利用中点弦确定直线或曲线方程例3 (1)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ) A.x 245+y 236=1 B.x 236+y 227=1 C.x 227+y 218=1 D.x 218+y 29=1 (2)已知(4,2)是直线l 被椭圆x 236+y 29=1所截得的线段的中点,则l 的方程是________________.答案 (1)D (2)x +2y -8=0解析 (1)因为直线AB 过点F (3,0)和点(1,-1),所以直线AB 的方程为y =12(x -3),代入椭圆方程x 2a 2+y 2b 2=1消去y ,得⎝⎛⎭⎫a 24+b 2x 2-32a 2x +94a 2-a 2b 2=0,所以AB 的中点的横坐标为32a 22⎝⎛⎭⎫a24+b 2=1,即a 2=2b 2,又a 2=b 2+c 2,所以b =c =3,a =32,选D. (2)设直线l 与椭圆相交于A (x 1,y 1),B (x 2,y 2),则x 2136+y 219=1,且x 2236+y 229=1, 两式相减得y 1-y 2x 1-x 2=-x 1+x 24(y 1+y 2).又x 1+x 2=8,y 1+y 2=4, 所以y 1-y 2x 1-x 2=-12,故直线l 的方程为y -2=-12(x -4),即x +2y -8=0.命题点2 由中点弦解决对称问题例4 (2015·浙江)如图已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点). 解 (1)由题意知m ≠0,可设直线AB 的方程为y =-1mx +b .由⎩⎨⎧x 22+y 2=1,y =-1m x +b ,消去y ,得⎝⎛⎭⎫12+1m 2x 2-2bmx +b 2-1=0. 因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m 2>0,①将AB 中点M ⎝⎛⎭⎫2mb m 2+2,m 2b m 2+2代入直线方程y =mx +12,解得b =-m 2+22m 2,②由①②得m <-63或m >63. (2)令t =1m ∈⎝⎛⎭⎫-62,0∪⎝⎛⎭⎫0,62,则|AB |=t 2+1·-2t 4+2t 2+32t 2+12.且O 到直线AB 的距离为d =t 2+12t 2+1. 设△AOB 的面积为S (t ), 所以S (t )=12|AB |·d =12-2⎝⎛⎭⎫t 2-122+2≤22. 当且仅当t 2=12时,等号成立.故△AOB 面积的最大值为22. 思维升华 处理中点弦问题常用的求解方法(1)点差法:即设出弦的两端点坐标后,代入圆锥曲线方程,并将两式相减,式中含有x 1+x 2,y 1+y 2,y 1-y 2x 1-x 2三个未知量,这样就直接联系了中点和直线的斜率,借用中点公式即可求得斜率.(2)根与系数的关系:即联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后,由根与系数的关系求解.(3)解决对称问题除掌握解决中点弦问题的方法外,还要注意:如果点A ,B 关于直线l 对称,则l 垂直直线AB 且A ,B 的中点在直线l 上的应用.设抛物线过定点A (-1,0),且以直线x =1为准线.(1)求抛物线顶点的轨迹C 的方程;(2)若直线l 与轨迹C 交于不同的两点M ,N ,且线段MN 恰被直线x =-12平分,设弦MN 的垂直平分线的方程为y =kx +m ,试求m 的取值范围. 解 (1)设抛物线顶点为P (x ,y ),则焦点F (2x -1,y ). 再根据抛物线的定义得|AF |=2,即(2x )2+y 2=4, 所以轨迹C 的方程为x 2+y 24=1.(2)设弦MN 的中点为P ⎝⎛⎭⎫-12,y 0,M (x M ,y M ),N (x N ,y N ),则由点M ,N 为椭圆C 上的点, 可知⎩⎪⎨⎪⎧4x 2M +y 2M =4,4x 2N +y 2N=4. 两式相减,得4(x M -x N )(x M +x N )+(y M -y N )(y M +y N )=0, 将x M +x N =2×⎝⎛⎭⎫-12=-1,y M +y N =2y 0, y M -y N x M -x N=-1k 代入上式得k =-y 02.又点P ⎝⎛⎭⎫-12,y 0在弦MN 的垂直平分线上, 所以y 0=-12k +m .所以m =y 0+12k =34y 0.由点P (-12,y 0)在线段BB ′上(B ′,B 为直线x =-12与椭圆的交点,如图所示),所以y B ′<y 0<y B ,也即-3<y 0< 3. 所以-334<m <334,且m ≠0.1.(2016·泰安模拟)斜率为3的直线与双曲线x 2a 2-y 2b 2=1恒有两个公共点,则双曲线离心率的取值范围是( ) A .[2,+∞) B .(2,+∞) C .(1,3) D .(3,+∞)答案 B解析 要使直线与双曲线恒有两个公共点, 则渐近线的斜率的绝对值应大于3, 所以|ba|>3,∴e =1+b 2a2>2, 即e ∈(2,+∞),故选B.2.直线4kx -4y -k =0与抛物线y 2=x 交于A ,B 两点,若|AB |=4,则弦AB 的中点到直线x +12=0的距离等于( ) A.74 B .2 C.94 D .4 答案 C解析 易知直线4kx -4y -k =0过抛物线y 2=x 的焦点(14,0),∴|AB |为焦点弦.设A (x 1,y 1),B (x 2,y 2), 则AB 中点N (x 1+x 22,y 1+y 22),∴|AB |=x 1+x 2+p =4.∴x 1+x 22=74.∴AB 中点到直线x +12=0的距离为74+12=94.3.斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为( ) A .2 B.455 C.4105 D.8105答案 C解析 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),直线l 的方程为y =x +t ,由⎩⎪⎨⎪⎧x 2+4y 2=4,y =x +t 消去y ,得5x 2+8tx +4(t 2-1)=0, 则x 1+x 2=-85t ,x 1x 2=4(t 2-1)5. ∴|AB |=1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2=2·(-85t )2-4×4(t 2-1)5 =425·5-t 2, 当t =0时,|AB |max =4105. 4.(2017·天津质检)直线y =b a x +3与双曲线x 2a 2-y 2b2=1的交点个数是( ) A .1 B .2 C .1或2 D .0答案 A解析 因为直线y =b a x +3与双曲线的渐近线y =b ax 平行, 所以它与双曲线只有1个交点,故选A.5.设双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线与抛物线y =x 2+1只有一个公共点,则双曲线的离心率为( ) A.54 B .5 C.52D. 5 答案 D解析 双曲线x 2a 2-y 2b 2=1的一条渐近线为y =b ax , 由方程组⎩⎪⎨⎪⎧y =b a x ,y =x 2+1消去y ,得x 2-b a x +1=0有唯一解,所以Δ=(b a )2-4=0,b a=2, e =c a =a 2+b 2a = 1+(b a)2= 5. 6.已知F 为抛物线y 2=8x 的焦点,过点F 且斜率为1的直线l 交抛物线于A ,B 两点,则||F A |-|FB ||的值为( )A .4 2B .8C .8 2D .16答案 C解析 依题意知F (2,0),所以直线l 的方程为y =x -2,联立方程,得⎩⎪⎨⎪⎧y =x -2,y 2=8x , 消去y 得x 2-12x +4=0.设A (x 1,y 1),B (x 2,y 2),则x 1x 2=4,x 1+x 2=12,则||F A |-|FB ||=|(x 1+2)-(x 2+2)|=|x 1-x 2|=(x 1+x 2)2-4x 1x 2 =144-16=8 2.7.(2016·安顺月考)在抛物线y =x 2上关于直线y =x +3对称的两点M ,N 的坐标分别为________.答案 (-2,4),(1,1)解析 设直线MN 的方程为y =-x +b ,代入y =x 2中,整理得x 2+x -b =0,令Δ=1+4b >0,∴b >-14. 设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-1,y 1+y 22=-x 1+x 22+b =12+b , 由(-12,12+b )在直线y =x +3上, 即12+b =-12+3,解得b =2, 联立⎩⎪⎨⎪⎧ y =-x +2,y =x 2,解得⎩⎪⎨⎪⎧ x 1=-2,y 1=4,⎩⎪⎨⎪⎧x 2=1,y 2=1. 8.已知抛物线y 2=4x 的弦AB 的中点的横坐标为2,则|AB |的最大值为________. 答案 6解析 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4,那么|AF |+|BF |=x 1+x 2+2,又|AF |+|BF |≥|AB |⇒|AB |≤6,当AB 过焦点F 时取得最大值6.9.过椭圆x 216+y 24=1内一点P (3,1),且被这点平分的弦所在直线的方程是____________. 答案 3x +4y -13=0解析 设直线与椭圆交于A (x 1,y 1),B (x 2,y 2)两点,由于A ,B 两点均在椭圆上,故x 2116+y 214=1,x 2216+y 224=1, 两式相减得(x 1+x 2)(x 1-x 2)16+(y 1+y 2)(y 1-y 2)4=0. 又∵P 是A ,B 的中点,∴x 1+x 2=6,y 1+y 2=2,∴k AB =y 1-y 2x 1-x 2=-34. ∴直线AB 的方程为y -1=-34(x -3). 即3x +4y -13=0.10.已知双曲线C :x 2-y 23=1,直线y =-2x +m 与双曲线C 的右支交于A ,B 两点(A 在B 的上方),且与y 轴交于点M ,则|MB ||MA |的取值范围为________. 答案 (1,7+43)解析 由⎩⎪⎨⎪⎧y =-2x +m ,3x 2-y 2-3=0可得x 2-4mx +m 2+3=0, 由题意得方程在[1,+∞)上有两个不相等的实根,设f (x )=x 2-4mx +m 2+3,则⎩⎪⎨⎪⎧ 2m >1,f (1)≥0,Δ>0,得m >1,设A (x 1,y 1),B (x 2,y 2)(x 1<x 2),得x 1=2m -3(m 2-1),x 2=2m +3(m 2-1),所以|MB ||MA |=x 2x 1=2m +3(m 2-1)2m -3(m 2-1) =-1+42- 3(1-1m 2),由m >1得,|MB ||MA |的取值范围为(1,7+43).11.(2016·郑州模拟)已知椭圆的中心在原点,焦点在x 轴上,离心率为22,且椭圆经过圆C :x 2+y 2-4x +22y =0的圆心.(1)求椭圆的方程;(2)设直线l 过椭圆的焦点且与圆C 相切,求直线l 的方程.解 (1)圆C 方程化为(x -2)2+(y +2)2=6,圆心C (2,-2),半径r = 6.设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0), 则⎩⎨⎧4a 2+2b 2=1,1-⎝⎛⎭⎫b a 2=⎝⎛⎭⎫222⇒⎩⎪⎨⎪⎧a 2=8,b 2=4. ∴所求的椭圆方程是x 28+y 24=1. (2)由(1)得到椭圆的左,右焦点分别是F 1(-2,0),F 2(2,0),|F 2C |=(2-2)2+(0+2)2=2< 6.∴F 2在C 内,故过F 2没有圆C 的切线,设l 的方程为y =k (x +2),即kx -y +2k =0.点C (2,-2)到直线l 的距离d =|2k +2+2k |1+k 2, 由d =6,得|2k +2+2k |1+k 2= 6. 解得k =25或k =-2, 故l 的方程为2x -5y +22=0或2x +y +22=0.12.平面直角坐标系xOy 中,过椭圆M :x 2a 2+y 2b2=1(a >b >0)右焦点的直线x +y -3=0交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12. (1)求M 的方程;(2)C ,D 为M 上两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值. 解 (1)设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),则x 21a 2+y 21b 2=1,x 22a 2+y 22b2=1, y 2-y 1x 2-x 1=-1. 由此可得b 2(x 2+x 1)a 2(y 2+y 1)=-y 2-y 1x 2-x 1=1.因为x 1+x 2=2x 0,y 1+y 2=2y 0,y 0x 0=12,所以a 2=2b 2. 又由题意知,M 的右焦点为(3,0),故a 2-b 2=3.因此a 2=6,b 2=3.所以M 的方程为x 26+y 23=1. (2)由⎩⎪⎨⎪⎧x +y -3=0,x 26+y 23=1, 解得⎩⎨⎧ x =433,y =-33或⎩⎨⎧x =0,y = 3. 因此|AB |=463. 由题意可设直线CD 的方程为y =x +n (-533<n <3), 设C (x 3,y 3),D (x 4,y 4).由⎩⎪⎨⎪⎧y =x +n ,x 26+y 23=1, 得3x 2+4nx +2n 2-6=0.于是x 3,4=-2n ±2(9-n 2)3. 因为直线CD 的斜率为1,所以|CD |=2|x 4-x 3|=439-n 2. 由已知,四边形ACBD 的面积S =12|CD |·|AB |=869(9-n 2). 当n =0时,S 取得最大值,最大值为863. *13.(2016·广州联考)已知点P 是圆O :x 2+y 2=1上任意一点,过点P 作PQ ⊥y 轴于点Q ,延长QP 到点M ,使QP →=PM →.(1)求点M 的轨迹E 的方程;(2)过点C (m,0)作圆O 的切线l ,交(1)中曲线E 于A ,B 两点,求△AOB 面积的最大值.解 (1)设点M (x ,y ),∵QP →=PM →,∴P 为QM 的中点,又PQ ⊥y 轴,∴P (x 2,y ). ∵点P 是圆O :x 2+y 2=1上的点,∴(x 2)2+y 2=1, 即点M 的轨迹E 的方程为x 24+y 2=1. (2)由题意可知直线l 不与y 轴垂直,故可设l :x =ty +m ,t ∈R ,A (x 1,y 1),B (x 2,y 2).∵l 与圆O :x 2+y 2=1相切, ∴|m |t 2+1=1,即m 2=t 2+1.① 联立⎩⎪⎨⎪⎧ x 24+y 2=1,x =ty +m ,消去x , 得(t 2+4)y 2+2mty +m 2-4=0.其中Δ=(2mt )2-4(t 2+4)(m 2-4)=16(t 2-m 2)+64=48>0.∴y 1+y 2=-2mt t 2+4,y 1y 2=m 2-4t 2+4.② ∴|AB |=(x 1-x 2)2+(y 1-y 2)2=[t (y 1-y 2)]2+(y 1-y 2)2=t 2+1(y 1+y 2)2-4y 1y 2.将①②代入上式得|AB |=t 2+1 4m 2t 2(t 2+4)2-4(m 2-4)t 2+4 =43|m |m 2+3,|m |≥1, ∴S △AOB =12|AB |·1 =12×43|m |m 2+3 =23|m |+3|m |≤2323=1,当且仅当|m|=3|m|,即m=±3时,等号成立.∴(S△AOB)max=1.。
2018版高考数学理北师大版大一轮复习讲义教师版文档
1.直线的倾斜角与斜率(1)直线的倾斜角①定义:在平面直角坐标系中,对于一条与x轴相交的直线l,把x轴(正方向)按逆时针方向绕着交点旋转到和直线l重合所成的角,叫作直线l的倾斜角.当直线l和x轴平行或重合时,规定它的倾斜角为0°.②倾斜角的范围为[0°,180°).(2)直线的斜率①定义:一条直线的倾斜角α的正切值叫作这条直线的斜率,斜率常用小写字母k表示,即k =tan_α,倾斜角是90°的直线斜率不存在.②过两点的直线的斜率公式:经过两点P1(x1,y1),P2(x2,y2) (x1≠x2)的直线的斜率公式为k=y2-y1 x2-x1.2.直线方程的五种形式【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)根据直线的倾斜角的大小不能确定直线的位置.( √ ) (2)坐标平面内的任何一条直线均有倾斜角与斜率.( × ) (3)直线的倾斜角越大,其斜率就越大.( × ) (4)直线的斜率为tan α,则其倾斜角为α.( × ) (5)斜率相等的两直线的倾斜角不一定相等.( × )(6)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.( √ )1.(2016·天津模拟)过点M (-2,m ),N (m,4)的直线的斜率等于1,则m 的值为( ) A .1 B .4 C .1或3 D .1或4答案 A解析 依题意得m -4-2-m=1,解得m =1.2.(2016·合肥一六八中学检测)直线x +(a 2+1)y +1=0的倾斜角的取值范围是( ) A .[0,π4]B .[3π4,π)C .[0,π4]∪(π2,π)D .[π4,π2)∪[3π4,π)答案 B解析 由直线方程可得该直线的斜率为-1a 2+1,又-1≤-1a 2+1<0,所以倾斜角的取值范围是[3π4,π).3.如果A ·C <0且B ·C <0,那么直线Ax +By +C =0不通过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案 C解析 由已知得直线Ax +By +C =0在x 轴上的截距-C A >0,在y 轴上的截距-CB >0,故直线经过第一、二、四象限,不经过第三象限.4.(教材改编)直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则实数a =________. 答案 1或-2解析 令x =0,得直线l 在y 轴上的截距为2+a ; 令y =0,得直线l 在x 轴上的截距为1+2a ,依题意2+a =1+2a,解得a =1或a =-2.5.过点A (2,-3)且在两坐标轴上的截距互为相反数的直线方程为________________. 答案 3x +2y =0或x -y -5=0解析 ①当直线过原点时,直线方程为y =-32x ,即3x +2y =0;②当直线不过原点时,设直线方程为x a -ya =1,即x -y =a ,将点A (2,-3)代入,得a =5,即直线方程为x -y -5=0.故所求直线的方程为3x +2y =0或x -y -5=0.题型一 直线的倾斜角与斜率例1 (1)(2016·北京东城区期末)已知直线l 的倾斜角为α,斜率为k ,那么“α>π3”是“k >3”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为__________________.答案 (1)B (2)(-∞,-3]∪[1,+∞) 解析 (1)当π2<α<π时,k <0;当k >3时,π3<α<π2.所以“α>π3”是“k >3”的必要不充分条件,故选B.(2)如图,∵k AP =1-02-1=1,k BP =3-00-1=-3, ∴k ∈(-∞,- 3 ]∪[1,+∞). 引申探究1.若将本例(2)中P (1,0)改为P (-1,0),其他条件不变,求直线l 斜率的取值范围. 解 ∵P (-1,0),A (2,1),B (0,3), ∴k AP =1-02-(-1)=13,k BP =3-00-(-1)= 3.如图可知,直线l 斜率的取值范围为⎣⎡⎦⎤13,3.2.若将本例(2)中的B 点坐标改为(2,-1),其他条件不变,求直线l 倾斜角的范围. 解 如图,直线P A 的倾斜角为45°,直线PB 的倾斜角为135°,由图像知l 的倾斜角的范围为[0°,45°]∪[135°,180°).思维升华 直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分⎣⎡⎭⎫0,π2与⎝⎛⎭⎫π2,π两种情况讨论.由正切函数图像可以看出,当α∈⎣⎡⎭⎫0,π2时,斜率k ∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝⎛⎭⎫π2,π时,斜率k ∈(-∞,0).(2016·南昌模拟)已知过定点P (2,0)的直线l 与曲线y =2-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取到最大值时,直线l 的倾斜角为( ) A .150° B .135° C .120° D .不存在答案 A解析 由y =2-x 2得x 2+y 2=2(y ≥0),它表示以原点O 为圆心,以2为半径的圆的一部分,其图像如图所示.显然直线l 的斜率存在,设过点P (2,0)的直线l 为y =k (x -2),则圆心到此直线的距离d =|2k |1+k 2, 弦长|AB |=22-(|2k |1+k 2)2=22-2k 21+k 2, 所以S △AOB =12×|2k |1+k 2×22-2k 21+k 2≤(2k )2+2-2k 22(1+k 2)=1,当且仅当(2k )2=2-2k 2,即k 2=13时等号成立,由图可得k =-33(k =33舍去),故直线l 的倾斜角为150°. 题型二 求直线的方程例2 根据所给条件求直线的方程: (1)直线过点(-4,0),倾斜角的正弦值为1010; (2)经过点P (4,1),且在两坐标轴上的截距相等;(3)直线过点(5,10),到原点的距离为5.解 (1)由题设知,该直线的斜率存在,故可采用点斜式. 设倾斜角为α,则sin α=1010(0<α<π), 从而cos α=±31010,则k =tan α=±13.故所求直线方程为y =±13(x +4).即x +3y +4=0或x -3y +4=0. (2)设直线l 在x ,y 轴上的截距均为a . 若a =0,即l 过点(0,0)及(4,1), ∴l 的方程为y =14x ,即x -4y =0.若a ≠0,则设l 的方程为x a +ya =1,∵l 过点(4,1),∴4a +1a =1,∴a =5,∴l 的方程为x +y -5=0.综上可知,直线l 的方程为x -4y =0或x +y -5=0. (3)当斜率不存在时,所求直线方程为x -5=0; 当斜率存在时,设其为k ,则所求直线方程为y -10=k (x -5), 即kx -y +(10-5k )=0. 由点到直线的距离公式,得|10-5k |k 2+1=5, 解得k =34.故所求直线方程为3x -4y +25=0.综上知,所求直线方程为x -5=0或3x -4y +25=0.思维升华 在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件.用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线.故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况.求适合下列条件的直线方程:(1)经过点P (3,2)且在两坐标轴上的截距相等;(2)过点A (-1,-3),斜率是直线y =3x 的斜率的-14倍;(3)过点A (1,-1)与已知直线l 1:2x +y -6=0相交于B 点且|AB |=5. 解 (1)设直线l 在x ,y 轴上的截距均为a , 若a =0,即l 过点(0,0)和(3,2), ∴l 的方程为y =23x ,即2x -3y =0.若a ≠0,则设l 的方程为x a +ya =1,∵l 过点(3,2),∴3a +2a =1,∴a =5,∴l 的方程为x +y -5=0,综上可知,直线l 的方程为2x -3y =0或x +y -5=0. (2)设所求直线的斜率为k ,依题意k =-14×3=-34.又直线经过点A (-1,-3),因此所求直线方程为y +3=-34(x +1),即3x +4y +15=0.(3)过点A (1,-1)与y 轴平行的直线为x =1.解方程组⎩⎪⎨⎪⎧x =1,2x +y -6=0,求得B 点坐标为(1,4),此时|AB |=5, 即x =1为所求.设过A (1,-1)且与y 轴不平行的直线为 y +1=k (x -1),解方程组⎩⎪⎨⎪⎧2x +y -6=0,y +1=k (x -1).得两直线交点为⎩⎪⎨⎪⎧x =k +7k +2,y =4k -2k +2(k ≠-2,否则与已知直线平行),则B 点坐标为(k +7k +2,4k -2k +2).∴(k +7k +2-1)2+(4k -2k +2+1)2=52,解得k =-34,∴y +1=-34(x -1),即3x +4y +1=0.综上可知,所求直线方程为x =1或3x +4y +1=0. 题型三 直线方程的综合应用命题点1 与基本不等式相结合求最值问题例3 已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A 、B 两点,如图所示,求△ABO 的面积的最小值及此时直线l 的方程.解 方法一 设直线方程为x a +yb =1(a >0,b >0),把点P (3,2)代入得3a +2b=1≥26ab,得ab ≥24, 从而S △AOB =12ab ≥12,当且仅当3a =2b 时等号成立,这时k =-b a =-23,从而所求直线方程为2x +3y -12=0.方法二 依题意知,直线l 的斜率k 存在且k <0. 则直线l 的方程为y -2=k (x -3)(k <0), 且有A ⎝⎛⎭⎫3-2k ,0,B (0,2-3k ), 所以S △ABO =12(2-3k )⎝⎛⎭⎫3-2k =12⎣⎡⎦⎤12+(-9k )+4(-k ) ≥12⎣⎢⎡⎦⎥⎤12+2 (-9k )·4(-k )=12×(12+12)=12. 当且仅当-9k =4-k,即k =-23时,等号成立.即△ABO 的面积的最小值为12. 故所求直线的方程为2x +3y -12=0. 命题点2 由直线方程解决参数问题例4 已知直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当四边形的面积最小时,求实数a 的值.解 由题意知直线l 1,l 2恒过定点P (2,2),直线l 1在y 轴上的截距为2-a ,直线l 2在x 轴上的截距为a 2+2,所以四边形的面积S =12×2×(2-a )+12×2×(a 2+2)=a 2-a +4=⎝⎛⎭⎫a -122+154,当a =12时,面积最小.思维升华 与直线方程有关问题的常见类型及解题策略(1)求解与直线方程有关的最值问题.先设出直线方程,建立目标函数,再利用基本不等式求解最值.(2)求直线方程.弄清确定直线的两个条件,由直线方程的几种特殊形式直接写出方程. (3)求参数值或范围.注意点在直线上,则点的坐标适合直线的方程,再结合函数的单调性或基本不等式求解.(2016·潍坊模拟)直线l 过点P (1,4),分别交x 轴的正半轴和y 轴的正半轴于A ,B两点,O 为坐标原点,当|OA |+|OB |最小时,求直线l 的方程. 解 依题意,直线l 的斜率存在且斜率为负, 设直线l 的斜率为k ,则直线l 的方程为y -4=k (x -1)(k <0). 令y =0,可得A (1-4k ,0);令x =0,可得B (0,4-k ). |OA |+|OB |=(1-4k )+(4-k )=5-(k +4k )=5+(-k +4-k)≥5+4=9. 所以当且仅当-k =4-k 且k <0,即k =-2时,|OA |+|OB |取最小值. 这时直线l 的方程为2x +y -6=0.11.求与截距有关的直线方程典例 设直线l 的方程为(a +1)x +y +2-a =0(a ∈R ).(1)若l 在两坐标轴上的截距相等,求直线l 的方程; (2)若l 在两坐标轴上的截距互为相反数,求a . 错解展示现场纠错解 (1)当直线过原点时,该直线在x 轴和y 轴上的截距为零,∴a =2,方程即为3x +y =0. 当直线不经过原点时,截距存在且均不为0. ∴a -2a +1=a -2,即a +1=1. ∴a =0,方程即为x +y +2=0.综上,直线l 的方程为3x +y =0或x +y +2=0. (2)由a -2a +1=-(a -2)得a -2=0或a +1=-1,∴a =2或a =-2.纠错心得 在求与截距有关的直线方程时,注意对直线的截距是否为零进行分类讨论,防止忽视截距为零的情形,导致产生漏解.1.(2016·北京顺义区检测)若直线y =-2x +3k +14与直线x -4y =-3k -2的交点位于第四象限,则实数k 的取值范围是( ) A .-6<k <-2 B .-5<k <-3 C .k <-6D .k >-2答案 A解析 解方程组⎩⎪⎨⎪⎧ y =-2x +3k +14,x -4y =-3k -2得⎩⎪⎨⎪⎧x =k +6,y =k +2,因为直线y =-2x +3k +14与直线x -4y =-3k -2的交点位于第四象限, 所以k +6>0且k +2<0,所以-6<k <-2.2.(2016·威海模拟)过点(2,1)且倾斜角比直线y =-x -1的倾斜角小π4的直线方程是( )A .x =2B .y =1C .x =1D .y =2答案 A解析 ∵直线y =-x -1的斜率为-1,则倾斜角为3π4,依题意,所求直线的倾斜角为3π4-π4=π2,∴斜率不存在,∴过点(2,1)的所求直线方程为x =2.3.(2016·景德镇检测)已知点A 在直线x +2y -1=0上,点B 在直线x +2y +3=0上,线段AB 的中点为P (x 0,y 0),且满足y 0>x 0+2,则y 0x 0的取值范围为( )A .(-12,-15)B .(-∞,-15]C .(-12,-15]D .(-12,0)答案 A解析 设A (x 1,y 1),y 0x 0=k ,则y 0=kx 0,∵AB 的中点为P (x 0,y 0),∴B (2x 0-x 1,2y 0-y 1). ∵A ,B 分别在直线x +2y -1=0和x +2y +3=0上, ∴x 1+2y 1-1=0,2x 0-x 1+2(2y 0-y 1)+3=0, ∴2x 0+4y 0+2=0,即x 0+2y 0+1=0.∵y 0=kx 0,∴x 0+2kx 0+1=0,即x 0=-11+2k .又y 0>x 0+2,∴kx 0>x 0+2,即(k -1)x 0>2, 即(k -1)(-11+2k )>2,即5k +12k +1<0, 解得-12<k <-15.故选A.4.已知两点M (2,-3),N (-3,-2),直线l 过点P (1,1)且与线段MN 相交,则直线l 的斜率k 的取值范围是( ) A .k ≥34或k ≤-4B .-4≤k ≤34C.34≤k ≤4 D .-34≤k ≤4答案 A解析 如图所示,∵k PN =1-(-2)1-(-3)=34,k PM =1-(-3)1-2=-4. ∴要使直线l 与线段MN 相交, 当l 的倾斜角小于90°时,k ≥k PN ; 当l 的倾斜角大于90°时,k ≤k PM , 由已知得k ≥34或k ≤-4.5.直线ax +by +c =0同时要经过第一、二、四象限,则a ,b ,c 应满足( ) A .ab >0,bc <0 B .ab >0,bc >0 C .ab <0,bc >0 D .ab <0,bc <0答案 A解析 由于直线ax +by +c =0经过第一、二、四象限, 所以直线存在斜率,将方程变形为y =-a b x -cb .易知-a b <0且-cb>0,故ab >0,bc <0.6.如图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则 ( )A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 2 答案 D解析 直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2,故选D.7.已知A (3,0),B (0,4),直线AB 上一动点P (x ,y ),则xy 的最大值是________. 答案 3解析 直线AB 的方程为x 3+y4=1,∵动点P (x ,y )在直线AB 上,则x =3-34y ,∴xy =3y -34y 2=34(-y 2+4y )=34[-(y -2)2+4]≤3. 即当P 点坐标为⎝⎛⎭⎫32,2时,xy 取最大值3.8.(2016·潍坊模拟)直线l 过点(-2,2)且与x 轴,y 轴分别交于点(a,0),(0,b ),若|a |=|b |,则直线l 的方程为_________________. 答案 x +y =0或x -y +4=0解析 若a =b =0,则直线l 过点(0,0)与(-2,2), 直线l 的斜率k =-1,直线l 的方程为y =-x , 即x +y =0.若a ≠0,b ≠0,则直线l 的方程为x a +yb =1,由题意知⎩⎪⎨⎪⎧-2a +2b =1,|a |=|b |,解得⎩⎪⎨⎪⎧a =-4,b =4,此时,直线l 的方程为x -y +4=0.9.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,则b 的取值范围是________. 答案 [-2,2]解析 b 为直线y =-2x +b 在y 轴上的截距,如图,当直线y =-2x +b 过点A (-1,0)和点B (1,0)时,b 分别取得最小值和最大值. 所以b 的取值范围是[-2,2].10.(2016·山师大附中模拟)函数y =a 1-x (a >0,a ≠1)的图像恒过定点A ,若点A 在mx +ny -1=0(mn >0)上,则1m +1n 的最小值为________.答案 4解析 ∵函数y =a 1-x (a >0,a ≠1)的图像恒过定点A (1,1).∴把A (1,1)代入直线方程得m +n =1(mn >0). ∴1m +1n =(1m +1n )·(m +n )=2+n m +m n ≥4 (当且仅当m =n =12时取等号),∴1m +1n的最小值为4. 11.(2016·太原模拟)已知两点A (-1,2),B (m,3). (1)求直线AB 的方程; (2)已知实数m ∈[-33-1,3-1],求直线AB 的倾斜角α的取值范围. 解 (1)当m =-1时,直线AB 的方程为x =-1, 当m ≠-1时,直线AB 的方程为y -2=1m +1(x +1).即x -(m +1)y +2m +3=0. (2)①当m =-1时,α=π2;②当m ≠-1时,m +1∈[-33,0)∪(0,3], ∴k =1m +1∈(-∞,-3]∪[33,+∞),∴α∈[π6,π2)∪(π2,2π3].综合①②知,直线AB 的倾斜角α∈[π6,2π3].12.已知点P (2,-1).(1)求过点P 且与原点的距离为2的直线l 的方程;(2)求过点P 且与原点的距离最大的直线l 的方程,最大距离是多少?(3)是否存在过点P 且与原点的距离为6的直线?若存在,求出方程;若不存在,请说明理由. 解 (1)过点P 的直线l 与原点的距离为2,而点P 的坐标为(2,-1),显然,过点P (2,-1)且垂直于x 轴的直线满足条件,此时直线l 的斜率不存在,其方程为x =2. 若斜率存在,设l 的方程为y +1=k (x -2), 即kx -y -2k -1=0. 由已知得|-2k -1|k 2+1=2,解得k =34.此时l 的方程为3x -4y -10=0.综上可得直线l 的方程为x =2或3x -4y -10=0.(2)作图可得过点P 与原点O 的距离最大的直线是过点P 且与PO 垂直的直线,如图所示.由l ⊥OP ,得k l ·k OP =-1, 所以k l =-1k OP =2.由直线方程的点斜式, 得y +1=2(x -2), 即2x -y -5=0.所以直线2x -y -5=0是过点P 且与原点O 的距离最大的直线,最大距离为|-5|5= 5.(3)由(2)可知,过点P 不存在到原点的距离超过5的直线,因此不存在过点P 且到原点的距离为6的直线.13.如图,射线OA 、OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)作直线AB 分别交OA 、OB 于A 、B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的方程.解 由题意可得k OA =tan 45°=1, k OB =tan(180°-30°)=-33, 所以直线l OA :y =x ,l OB :y =-33x . 设A (m ,m ),B (-3n ,n ), 所以AB 的中点C ⎝⎛⎭⎪⎫m -3n 2,m +n 2,由点C 在直线y =12x 上,且A 、P 、B 三点共线得⎩⎪⎨⎪⎧m +n 2=12·m -3n 2,m -0m -1=n -0-3n -1,解得m =3,所以A (3,3).又P (1,0),所以k AB =k AP =33-1=3+32,所以l AB :y =3+32(x -1),即直线AB 的方程为(3+3)x -2y -3-3=0.。
高考数学第九章 平面解析几何
第九章平面解析几何第一节直线的倾斜角与斜率、直线的方程1.直线的倾斜角(1)定义:在平面直角坐标系中,对于一条与x轴相交的直线,把x轴所在的直线绕着交点按逆时针方向旋转到和直线重合时所转过的最小正角称为这条直线的倾斜角.当直线l与x轴平行或重合时,规定它的倾斜角为0°.(2)范围:直线l倾斜角的取值范围是0°≤α<180°.2.斜率公式(1)直线l的倾斜角为α≠90°,则斜率k=tan_α.(2)P1(x1,y1),P2(x2,y2)在直线l上,且x1≠x2,则l的斜率k=y2-y1x2-x1.3.直线方程的五种形式1.若直线l的倾斜角为60°,则该直线的斜率为________.解析:因为tan 60°=3,所以该直线的斜率为 3.答案: 32.过点(0,1),且倾斜角为45°的直线方程是________.解析:因为直线的斜率k=tan 45°=1,所以由已知及直线的点斜式方程,得y-1=x -0,即y=x+1.答案:y=x+13.已知直线l:ax+y-2-a=0在x轴和y轴上的截距相等,则实数a=________.解析:令x =0,则l 在y 轴的截距为2+a ;令y =0,得直线l 在x 轴上的截距为1+2a .依题意2+a =1+2a ,解得a =1或a =-2.答案:1或-24.已知a ≠0,直线ax +my -5m =0过点(-2,1),则此直线的斜率为________. 解析:因为直线ax +my -5m =0过点(-2,1),所以-2a +m -5m =0,得a =-2m ,所以直线方程为-2mx +my -5m =0.又a ≠0,所以m ≠0,所以直线方程-2mx +my -5m =0可化为-2x +y -5=0,即y =2x +5,故此直线的斜率为2.答案:21.利用两点式计算斜率时易忽视x 1=x 2时斜率k 不存在的情况.2.用直线的点斜式求方程时,在斜率k 不明确的情况下,注意分k 存在与不存在讨论,否则会造成失误.3.直线的截距式中易忽视截距均不为0这一条件,当截距为0时可用点斜式. 4.由一般式Ax +By +C =0确定斜率k 时易忽视判断B 是否为0,当B =0时,k 不存在;当B ≠0时,k =-AB .[小题纠偏]1.下列有关直线l :x +my -1=0的说法: ①直线l 的斜率为-m ; ②直线l 的斜率为-1m ;③直线l 过定点(0,1); ④直线l 过定点(1,0).其中正确的说法是________(填序号).解析:直线l :x +my -1=0可变为my =-(x -1).当m ≠0时,直线l 的方程又可变为y =-1m (x -1),其斜率为-1m ,过定点(1,0);当m =0时,直线l 的方程又可变为x =1,其斜率不存在,过点(1,0).所以①②不正确,④正确.又将点(0,1)代入直线方程得m -1=0,故只有当m =1时直线才会过点(0,1),即③不正确.答案:④2.过点M (3,-4),且在两坐标轴上的截距相等的直线的方程为________.解析:①若直线过原点,则k =-43,所以y =-43x ,即4x +3y =0.②若直线不过原点.设x a +ya =1,即x +y =a .则a =3+(-4)=-1, 所以直线的方程为x +y +1=0. 答案:4x +3y =0或x +y +1=0考点一 直线的倾斜角与斜率(基础送分型考点——自主练透)[题组练透]1.直线x =π3的倾斜角等于________.解析:直线x =π3,知倾斜角为π2.答案:π22.(2016·南通调研)关于直线的倾斜角和斜率,有下列说法: ①两直线的倾斜角相等,它们的斜率也相等; ②平行于x 轴的直线的倾斜角为0°或180°;③若直线过点P 1(x 1,y 1)与P 2(x 2,y 2),则该直线的斜率为y 1-y 2x 1-x 2. 其中正确说法的个数为________.解析:若两直线的倾斜角均为90°,则它们的斜率都不存在,所以①不正确.直线倾斜角α的取值范围为0°≤α<180°,所以平行于x 轴的直线的倾斜角为0°,不可能是180°,所以②不正确.当x 1=x 2时,过点P 1(x 1,y 1)与P 2(x 2,y 2)的直线的斜率不存在;当x 1≠x 2时,过点P 1(x 1,y 1)与P 2(x 2,y 2)的直线的斜率才为y 1-y 2x 1-x 2,所以③不正确.答案:03.已知线段PQ 两端点的坐标分别为P (-1,1)和Q (2,2),若直线l :x +my +m =0与线段PQ 有交点,则实数m 的取值范围是________.解析:如图所示,直线l :x +my +m =0过定点A (0,-1),当m ≠0时,k QA =32,k PA =-2,k l =-1m .∴-1m ≤-2或-1m ≥32.解得0<m ≤12或-23≤m <0;当m =0时,直线l 的方程为x =0,与线段PQ 有交点. ∴实数m 的取值范围为-23≤m ≤12.答案:⎣⎡⎦⎤-23,12 [谨记通法]求倾斜角的取值范围的2个步骤及1个注意点(1)2个步骤:①求出斜率k =tan α的取值范围;②利用三角函数的单调性,借助图象或单位圆数形结合,确定倾斜角α的取值范围. (2)1个注意点:求倾斜角时要注意斜率是否存在.考点二 直线方程(重点保分型考点——师生共研)[典例引领](1)求过点A (1,3),斜率是直线y =-4x 的斜率的13的直线方程.(2)求经过点A (-5,2),且在x 轴上的截距等于在y 轴上截距的2倍的直线方程. 解:(1)设所求直线的斜率为k ,依题意k =-4×13=-43.又直线经过点A (1,3),因此所求直线方程为y -3=-43(x -1),即4x +3y -13=0.(2)当直线不过原点时,设所求直线方程为x 2a +ya =1,将(-5,2)代入所设方程,解得a =-12,所以直线方程为x +2y +1=0;当直线过原点时,设直线方程为y =kx ,则-5k =2,解得k =-25,所以直线方程为y =-25x ,即2x +5y =0.故所求直线方程为2x +5y =0或x +2y +1=0.[由题悟法]直线方程求法中2个注意点(1)在求直线方程时,应选择适当的形式,并注意各种形式的适用条件.(2)对于点斜式、截距式方程使用时要注意分类讨论思想的运用(若采用点斜式,应先考虑斜率不存在的情况;若采用截距式,应判断截距是否为零).[即时应用]已知直线l 过(2,1),(m,3)两点,则直线l 的方程为______________. 解析:①当m =2时,直线l 的方程为x =2; ②当m ≠2时,直线l 的方程为y -13-1=x -2m -2,即2x -(m -2)y +m -6=0.因为m =2时,代入方程2x -(m -2)y +m -6=0,即为x =2, 所以直线l 的方程为2x -(m -2)y +m -6=0. 答案:2x -(m -2)y +m -6=0考点三 直线方程的综合应用(常考常新型考点——多角探明)[命题分析]直线方程的综合应用是常考内容之一,它与函数、导数、不等式、圆相结合,命题多为客观题.常见的命题角度有:(1)与基本不等式相结合的最值问题; (2)与导数几何意义相结合的问题; (3)与圆相结合求直线方程问题.[题点全练]角度一:与基本不等式相结合的最值问题1.(2015·福建高考改编)若直线x a +yb =1(a >0,b >0)过点(1,1),则a +b 的最小值等于________.解析:将(1,1)代入直线x a +y b =1得1a +1b =1,a >0,b >0,故a +b =(a +b )⎝⎛⎭⎫1a +1b =2+b a +ab ≥2+2=4,等号当且仅当a =b 时取到,故a +b 的最小值为4.答案:4角度二:与导数的几何意义相结合的问题2.(2016·苏州模拟)设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处的切线倾斜角的取值范围为⎣⎡⎦⎤0,π4,则点P 横坐标的取值范围为________. 解析:由题意知y ′=2x +2,设P (x 0,y 0), 则k =2x 0+2.因为曲线C 在点P 处的切线倾斜角的取值范围为⎣⎡⎦⎤0,π4,则0≤k ≤1,即0≤2x 0+2≤1,故-1≤x 0≤-12.答案:⎣⎡⎦⎤-1,-12 角度三:与圆相结合求直线方程问题3.在平面直角坐标系xOy 中,设A 是半圆O :x 2+y 2=2(x ≥0)上一点,直线OA 的倾斜角为45°,过点A 作x 轴的垂线,垂足为H ,过H 作OA 的平行线交半圆于点B ,则直线AB 的方程是________________.解析:直线OA 的方程为y =x ,代入半圆方程得A (1,1), ∴H (1,0),直线HB 的方程为y =x -1,代入半圆方程得B ⎝ ⎛⎭⎪⎫1+32,-1+32.所以直线AB 的方程为y -1-1+32-1=x -11+32-1,即3x +y -3-1=0. 答案:3x +y -3-1=0[方法归纳]处理直线方程综合应用的2大策略(1)含有参数的直线方程可看作直线系方程,这时要能够整理成过定点的直线系,即能够看出“动中有定”.(2)求解与直线方程有关的最值问题,先求出斜率或设出直线方程,建立目标函数,再利用基本不等式求解最值.一抓基础,多练小题做到眼疾手快1.直线x +3y +1=0的倾斜角是________. 解析:由直线的方程得直线的斜率为k =-33,设倾斜角为α,则tan α=-33,所以α=5π6. 答案:5π62.直线l :x sin 30°+y cos 150°+1=0的斜率是________. 解析:设直线l 的斜率为k ,则k =-sin 30°cos 150°=33.答案:333.倾斜角为135°,在y 轴上的截距为-1的直线方程是________.解析:直线的斜率为k =tan 135°=-1,所以直线方程为y =-x -1,即x +y +1=0. 答案:x +y +1=04.若直线l 的斜率为k ,倾斜角为α,而α∈⎣⎡⎦⎤π6,π4∪⎣⎡⎭⎫2π3,π,则k 的取值范围是__________.解析:∵k =tan α,α∈⎣⎡⎦⎤π6,π4∪⎣⎡⎭⎫2π3,π ∴-3≤k <0或33≤k ≤1. 答案:[-3,0)∪⎣⎡⎦⎤33,1 5.如果A ·C <0,且B ·C <0,那么直线Ax +By +C =0不经过第________象限. 解析:由题意知A ·B ·C ≠0,直线方程变形为y =-A B x -CB .∵A ·C <0,B ·C <0,∴A ·B >0,∴其斜率k =-A B <0,又y 轴上的截距b =-CB>0.∴直线过第一、二、四象限,不经过第三象限.答案:三二保高考,全练题型做到高考达标1.(2016·常州一中月考)已知直线l 的斜率为k ,倾斜角为θ,若30°<θ<90°,则实数k 的取值范围是________.解析:因为30°<θ<90°,所以斜率k >0,且斜率k 随着θ的增大而增大,所以k >33. 答案:⎝⎛⎭⎫33,+∞2.(2016·南京学情调研)直线x +(a 2+1)y +1=0的倾斜角的取值范围是________. 解析:依题意,直线的斜率k =-1a 2+1∈[)-1,0,因此其倾斜角的取值范围是⎣⎡⎭⎫3π4,π. 答案:⎣⎡⎭⎫3π4,π 3.若k ∈R ,直线kx -y -2k -1=0恒过一个定点,则这个定点的坐标为________. 解析:y +1=k (x -2)是直线的点斜式方程,故它所经过的定点为(2,-1). 答案:(2,-1)4.已知直线l 过点(1,0),且倾斜角为直线l 0:x -2y -2=0的倾斜角的2倍,则直线l 的方程为________.解析:由题意可设直线l 0,l 的倾斜角分别为α,2α, 因为直线l 0:x -2y -2=0的斜率为12,则tan α=12,所以直线l 的斜率k =tan 2α=2tan α1-tan 2α=2×121-⎝⎛⎭⎫122=43,所以由点斜式可得直线l 的方程为y -0=43(x -1),即4x -3y -4=0. 答案:4x -3y -4=05.直线l 1:(2m 2-5m +2)x -(m 2-4)y +5=0的斜率与直线l 2:x -y +1=0的斜率相同,则m 等于________.解析:由题意知m ≠±2,直线l 1的斜率为2m 2-5m +2m 2-4,直线l 2的斜率为1,则2m 2-5m +2m 2-4=1,即m 2-5m +6=0,解得m =2或3(m =2不合题意,舍去),故m =3.答案:36.直线l :(a -2)x +(a +1)y +6=0,则直线l 恒过定点________. 解析:直线l 的方程变形为a (x +y )-2x +y +6=0,由⎩⎪⎨⎪⎧x +y =0,-2x +y +6=0,解得x =2,y =-2, 所以直线l 恒过定点(2,-2). 答案:(2,-2)7.一条直线经过点A (2,-3),并且它的倾斜角等于直线y =13x 的倾斜角的2倍,则这条直线的一般式方程是________.解析:∵直线y =13x 的倾斜角为30°, 所以所求直线的倾斜角为60°, 即斜率k =tan 60°= 3. 又该直线过点A (2,-3),故所求直线为y -(-3)=3(x -2), 即3x -y -33=0. 答案:3x -y -33=08.(2016·盐城调研)若直线l :x a +yb =1(a >0,b >0)经过点(1,2),则直线l 在x 轴和y 轴上的截距之和的最小值是________.解析:由直线l :x a +yb =1(a >0,b >0)可知直线在x 轴上的截距为a ,直线在y 轴上的截距为b .求直线在x 轴和y 轴上的截距之和的最小值,即求a +b 的最小值.由直线经过点(1,2)得1a +2b =1.于是a +b =(a +b )×⎝⎛⎭⎫1a +2b =3+b a +2a b ,因为b a +2a b ≥2b a ·2a b =22(当且仅当b a=2ab 时取等号),所以a +b ≥3+2 2.答案:3+2 29.已知A (1,-2),B (5,6),直线l 经过AB 的中点M ,且在两坐标轴上的截距相等,求直线l 的方程.解:法一:设直线l 在x 轴,y 轴上的截距均为a . 由题意得M (3,2).若a =0,即l 过点(0,0)和(3,2), ∴直线l 的方程为y =23x ,即2x -3y =0.若a ≠0,设直线l 的方程为x a +ya =1, ∵直线l 过点(3,2),∴3a +2a=1,解得a =5, 此时直线l 的方程为x 5+y5=1,即x +y -5=0.综上所述,直线l 的方程为2x -3y =0或x +y -5=0.法二:由题意知M (3,2),所求直线l 的斜率k 存在且k ≠0,则直线l 的方程为y -2=k (x -3),令y =0,得x =3-2k ;令x =0,得y =2-3k .∴3-2k =2-3k ,解得k =-1或k =23,∴直线l 的方程为y -2=-(x -3)或y -2=23(x -3),即x +y -5=0或2x -3y =0.10.过点A (1,4)引一条直线l ,它与x 轴,y 轴的正半轴的交点分别为(a,0)和(0,b ),当a +b 最小时,求直线l 的方程.解:法一:由题意,设直线l :y -4=k (x -1),由于k <0, 则a =1-4k,b =4-k .∴a +b =5+⎝⎛⎭⎫-4k -k ≥5+4=9. 当且仅当k =-2时,取“=”. 故得l 的方程为y =-2x +6. 法二:设l :x a +yb =1(a >0,b >0),由于l 经过点A (1,4),∴1a +4b=1,∴a +b =(a +b )·⎝⎛⎭⎫1a +4b =5+4a b +b a≥9, 当且仅当4a b =ba 时,即b =2a 时,取“=”,即a =3,b =6. ∴所求直线 l 的方程为x 3+y6=1,即y =-2x +6.三上台阶,自主选做志在冲刺名校1.已知曲线y =1e x+1,则曲线的切线中斜率最小的直线与两坐标轴所围成的三角形的面积为________.解析:y ′=-e x(e x +1)2=-1e x +1ex +2,因为e x >0,所以e x+1e x ≥2e x ·1e x =2当且仅当e x =1ex ,即x =0时取等号,所以e x +1e x +2≥4,故y ′=-1e x+1e x +2≥-14(当且仅当x =0时取等号).所以当x =0时,曲线的切线斜率取得最小值,此时切点的坐标为⎝⎛⎭⎫0,12,切线的方程为y -12=-14(x -0),即x +4y -2=0.该切线在x 轴上的截距为2,在y 轴上的截距为12,所以该切线与两坐标轴所围成的三角形的面积S =12×2×12=12.答案:122.已知直线l :kx -y +1+2k =0(k ∈R). (1)证明:直线l 过定点;(2)若直线l 不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,O 为坐标原点,设△AOB 的面积为S ,求S 的最小值及此时直线l 的方程.解:(1)证明:直线l 的方程可化为y =k (x +2)+1,故无论k 取何值,直线l 总过定点(-2,1).(2)直线l 的方程为y =kx +2k +1,则直线l 在y 轴上的截距为2k +1,要使直线l 不经过第四象限,则⎩⎪⎨⎪⎧k ≥0,1+2k ≥0,解得k 的取值范围是[)0,+∞. (3)依题意,直线l 在x 轴上的截距为-1+2k k ,在y 轴上的截距为1+2k ,∴A ⎝⎛⎭⎫-1+2k k ,0,B (0,1+2k ).又-1+2kk <0且1+2k >0,∴k >0.故S =12|OA ||OB |=12×1+2k k ×(1+2k )=12⎝⎛⎭⎫4k +1k +4≥12(4+4)=4, 当且仅当4k =1k ,即k =12时,取等号.故S 的最小值为4,此时直线l 的方程为x -2y+4=0.第二节 两直线的位置关系1.两条直线平行与垂直的判定 (1)两条直线平行:①对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2. ②当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2. (2)两条直线垂直:①如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1. ②当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l 1⊥l 2. 2.两条直线的交点的求法直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解. 3.距离1.已知过点A (-2,m )和B (m,4)的直线与斜率为-2的直线平行,则实数m 的值是________.解析:由题意可知k AB =4-mm +2=-2,所以m =-8.答案:-82.已知直线l :y =3x +3,那么直线x -y -2=0关于直线l 对称的直线方程为__________.解析:由⎩⎪⎨⎪⎧x -y -2=0,3x -y +3=0,得交点坐标P ⎝⎛⎭⎫-52,-92.又直线x -y -2=0上的点Q (2,0)关于直线l 的对称点为Q ′⎝⎛⎭⎫-175,95,故所求直线(即PQ ′)的方程为y +9295+92=x +52-175+52,即7x +y +22=0.答案:7x +y +22=03.与直线y =-3x +1平行,且在x 轴上的截距为-3的直线l 的方程为________. 解析:由题意,知直线l 的斜率为-3,且在x 轴上的截距为-3,所以直线l 的方程为y -0=-3[x -(-3)],即3x +y +9=0 .答案:3x +y +9=01.在判断两条直线的位置关系时,易忽视斜率是否存在,两条直线都有斜率可根据条件进行判断,若无斜率,要单独考虑.2.运用两平行直线间的距离公式时易忽视两方程中的x ,y 的系数分别相等这一条件盲目套用公式导致出错.[小题纠偏]1.已知p :直线l 1:x -y -1=0与直线l 2:x +ay -2=0平行,q :a =-1,则p 是q 的________条件(填“充要”“充分不必要”“必要不充分”“既不充分又不必要”).解析:由于直线l 1:x -y -1=0与直线l 2:x +ay -2=0平行的充要条件是1×a -(-1)×1=0,即a =-1.答案:充要2.已知直线l 1:(t +2)x +(1-t )y =1与l 2:(t -1)x +(2t +3)y +2=0互相垂直,则t 的值为________.解析:①若l 1的斜率不存在,此时t =1,l 1的方程为x =13,l 2的方程为y =-25,显然l 1⊥l 2,符合条件;若l 2的斜率不存在,此时t =-32,易知l 1与l 2不垂直.②当l 1,l 2的斜率都存在时,直线l 1的斜率k 1=-t +21-t ,直线l 2的斜率k 2=-t -12t +3,∵l 1⊥l 2,∴k 1·k 2=-1,即⎝ ⎛⎭⎪⎫-t +21-t ·⎝ ⎛⎭⎪⎫-t -12t +3=-1,所以t =-1.综上可知t =-1或t =1. 答案:-1或1考点一 两条直线的位置关系(基础送分型考点——自主练透)[题组练透]1.(2016·金陵中学模拟)若直线ax +2y +1=0与直线x +y -2=0互相垂直,那么a 的值等于________.解析:由a ·1+2·1=0得a =-2. 答案:-22.(2016·金华十校模拟)“直线ax -y =0与直线x -ay =1平行”是“a =1”成立的________条件(填“充要”“充分不必要”“必要不充分”“既不充分又不必要”).解析:由直线ax -y =0与x -ay =1平行得a 2=1,即a =±1,所以“直线ax -y =0与x -ay =1平行”是“a =1”的必要不充分条件.答案:必要不充分3.(2016·启东调研)已知直线l 1:(a -1)x +y +b =0,l 2:ax +by -4=0,求满足下列条件的a ,b 的值.(1)l 1⊥l 2,且l 1过点(1,1);(2)l 1∥l 2,且l 2在第一象限内与两坐标轴围成的三角形的面积为2. 解:(1)∵l 1⊥l 2, ∴a (a -1)+b =0.① 又l 1过点(1,1), ∴a +b =0.②由①②,解得⎩⎪⎨⎪⎧ a =0,b =0或⎩⎪⎨⎪⎧a =2,b =-2.当a =0,b =0时不合题意,舍去. ∴a =2,b =-2.(2)∵l 1∥l 2,∴a -b (a -1)=0,③由题意,知a >0,b >0,直线l 2与两坐标轴的交点坐标分别为⎝⎛⎭⎫4a ,0,⎝⎛⎭⎫0,4b . 则12×4a ×4b =2,得ab =4,④ 由③④,得a =2,b =2.[谨记通法]由一般式确定两直线位置关系的方法在判断两直线位置关系时,比例式A 1A 2与B 1B 2,C 1C 2的关系容易记住,在解答填空题时,建议多用比例式来解答.考点二 距离问题(重点保分型考点——师生共研)[典例引领]已知A (4,-3),B (2,-1)和直线l :4x +3y -2=0,在坐标平面内求一点P ,使|PA |=|PB |,且点P 到直线l 的距离为2.解:设点P 的坐标为(a ,b ).∵A (4,-3),B (2,-1),∴线段AB 的中点M 的坐标为(3,-2). 而AB 的斜率k AB =-3+14-2=-1,∴线段AB 的垂直平分线方程为y +2=x -3, 即x -y -5=0.∵点P (a ,b )在直线x -y -5=0上,∴a -b -5=0.① 又点P (a ,b )到直线l :4x +3y -2=0的距离为2,∴|4a +3b -2|5=2,即4a +3b -2=±10,②由①②联立可得⎩⎪⎨⎪⎧a =1,b =-4或⎩⎨⎧a =277,b =-87.∴所求点P 的坐标为(1,-4)或⎝⎛⎭⎫277,-87. [由题悟法] 处理距离问题的2大策略(1)点到直线的距离问题可直接代入点到直线的距离公式去求.注意直线方程为一般式. (2)动点到两定点距离相等,一般不直接利用两点间距离公式处理,而是转化为动点在两定点所在线段的垂直平分线上,从而计算简便,如本例中|PA |=|PB |这一条件的转化处理.[即时应用](2016·苏州检测)已知三条直线2x -y -3=0,4x -3y -5=0和ax +y -3a +1=0相交于同一点P .(1)求点P 的坐标和a 的值;(2)求过点(-2,3)且与点P 的距离为25的直线方程.解:(1)由⎩⎪⎨⎪⎧ 2x -y -3=0,4x -3y -5=0,解得⎩⎪⎨⎪⎧x =2,y =1,所以点P 的坐标为(2,1).将点P 的坐标(2,1)代入直线ax +y -3a +1=0,可得a =2.(2)设所求直线为l ,当直线l 的斜率不存在时,直线l 的方程为x =-2,此时点P 与直线l 的距离为4,不合题意.当直线l 的斜率存在时,设直线l 的斜率为k , 则直线l 的方程为y -3=k (x +2), 即kx -y +2k +3=0.点P 到直线l 的距离d =|2k -1+2k +3|k 2+1=25,解得k =2,所以直线l 的方程为2x -y +7=0.考点三 对称问题(常考常新型考点——多角探明)[命题分析]对称问题是高考常考内容之一,也是考查学生转化能力的一种常见题型. 常见的命题角度有: (1)点关于点对称; (2)点关于线对称; (3)线关于线对称; (4)对称问题的应用.[题点全练]角度一:点关于点的对称问题1.(2016·苏北四市调研)点P (3,2)关于点Q (1,4)的对称点M 的坐标为________. 解析:设M (x ,y ),则⎩⎪⎨⎪⎧3+x2=1,2+y 2=4,∴x =-1,y =6, ∴M (-1,6). 答案:(-1,6)角度二:点关于线的对称问题2.已知直线l :2x -3y +1=0,点A (-1,-2),则点A 关于直线l 的对称点A ′的坐标为________.解析:设A ′(x ,y ),由已知得⎩⎨⎧y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎨⎧x =-3313,y =413,故A ′⎝⎛⎭⎫-3313,413. 答案:A ′⎝⎛⎭⎫-3313,413 角度三:线关于线的对称问题3.直线2x -y +3=0关于直线x -y +2=0对称的直线方程是________________.解析:设所求直线上任意一点P (x ,y ),则P 关于x -y +2=0的对称点为P ′(x 0,y 0),由⎩⎨⎧x +x 02-y +y 02+2=0,x -x 0=-(y -y 0),得⎩⎪⎨⎪⎧x 0=y -2,y 0=x +2, 由点P ′(x 0,y 0)在直线2x -y +3=0上, ∴2(y -2)-(x +2)+3=0, 即x -2y +3=0. 答案:x -2y +3=0 角度四:对称问题的应用4.(2016·淮安一调)已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为________.解析:设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′,所以⎩⎨⎧b -4a -(-3)·1=-1,-3+a 2-b +42+3=0,解得a =1,b =0.又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0. 答案:6x -y -6=0[方法归纳]1.中心对称问题的2个类型及求解方法 (1)点关于点对称:若点M (x 1,y 1)及N (x ,y )关于P (a ,b )对称,则由中点坐标公式得⎩⎪⎨⎪⎧x =2a -x 1,y =2b -y 1,进而求解.(2)直线关于点的对称,主要求解方法是:①在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程;②求出一个对称点,再利用两对称直线平行,由点斜式得到所求直线方程. 2.轴对称问题的2个类型及求解方法 (1)点关于直线的对称:若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称,由方程组⎩⎪⎨⎪⎧A ⎝⎛⎭⎫x 1+x 22+B ⎝⎛⎭⎫y 1+y 22+C =0,y 2-y 1x 2-x 1·⎝⎛⎭⎫-A B =-1,可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中B ≠0,x 1≠x 2). (2)直线关于直线的对称:一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.一抓基础,多练小题做到眼疾手快1.(2015·盐城二模)若直线y =kx +1与直线2x +y -4=0垂直,则k =________. 解析:因为直线2x +y -4=0的斜率为-2, 故由条件得k =12.答案:122.已知点A (-3,-4),B (6,3)到直线l :ax +y +1=0的距离相等,则实数a 的值为________.解析:由题意及点到直线的距离公式得|-3a -4+1|a 2+1=|6a +3+1|a 2+1,解得a =-13或-79.答案:-13或-793.已知直线3x +4y -3=0与直线6x +my +14=0平行,则它们之间的距离是________. 解析:因为直线3x +4y -3=0与直线6x +my +14=0平行,所以3m -24=0,解得m=8,故直线6x +my +14=0可化为3x +4y +7=0,所以两平行直线间的距离是d =|-3-7|32+42=2.答案:24.(2016·宿迁模拟)直线x -2y +1=0关于直线x =1对称的直线方程是________. 解析:设所求直线上任一点(x ,y ),则它关于直线x =1的对称点(2-x ,y )在直线x -2y +1=0上,即2-x -2y +1=0,化简得x +2y -3=0.答案:x +2y -3=05.已知点P (4,a )到直线4x -3y -1=0的距离不大于3,则a 的取值范围是________. 解析:由题意得,点P 到直线的距离为|4×4-3×a -1|5=|15-3a |5.又|15-3a |5≤3,即|15-3a |≤15,解得0≤a ≤10,所以a 的取值范围是[0,10].答案:[0,10]二保高考,全练题型做到高考达标1.(2015·苏州二模)已知直线l 1:(3+a )x +4y =5-3a 和直线l 2:2x +(5+a )y =8平行,则a =________.解析:由题意可得a ≠-5,所以3+a 2=45+a ≠5-3a 8,解得a =-7(a =-1舍去).答案:-72.(2016·南京一中检测)P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上的任意一点,则PQ 的最小值为________.解析:因为36=48≠-125,所以两直线平行,根据平面几何的知识,得PQ 的最小值为这两条平行直线间的距离.在直线3x +4y -12=0上取一点(4,0),此点到另一直线6x +8y +5=0的距离为|6×4+8×0+5|62+82=2910,所以PQ 的最小值为2910.答案:29103.(2015·苏北四市调研)已知直线l 1:ax +(3-a )y +1=0,l 2:2x -y =0.若l 1⊥l 2,则实数a 的值为________.解析:由2×a +(3-a )×(-1)=0,解得a =1. 答案:14.(2016·天一中学检测)已知直线l :x -y -1=0,l 1:2x -y -2=0.若直线l 2与l 1关于l 对称,则l 2的方程是________.解析:因为l 1与l 2关于l 对称,所以l 1上任一点关于l 的对称点都在l 2上,故l 与l 1的交点(1,0)在l 2上.又易知(0,-2)为l 1上一点,设它关于l 的对称点为(x ,y ),则⎩⎪⎨⎪⎧x +02-y -22-1=0,y +2x ×1=-1,解得⎩⎪⎨⎪⎧x =-1,y =-1,即(1,0),(-1,-1)为l 2上两点,可得l 2的方程为x -2y -1=0. 答案:x -2y -1=05.已知定点A (1,0),点B 在直线x -y =0上运动,当线段AB 最短时,点B 的坐标是________.解析:因为定点A (1,0),点B 在直线x -y =0上运动,所以当线段AB 最短时,直线AB 和直线x -y =0垂直,AB 的方程为y +x -1=0,它与x -y =0联立解得x =12,y =12,所以B 的坐标是⎝⎛⎭⎫12,12.答案:⎝⎛⎭⎫12,126.(2016·无锡调研)已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为________.解析:依题意,设直线l :y -4=k (x -3), 即kx -y +4-3k =0,则有|-5k +2|k 2+1=|k +6|k 2+1,因此-5k +2=k +6,或-5k +2=-(k +6), 解得k =-23或k =2,故直线l 的方程为2x +3y -18=0或2x -y -2=0. 答案:2x +3y -18=0或2x -y -2=07. 设A ,B 是x 轴上的两点,点P 的横坐标为3,且|PA |=|PB |,若直线PA 的方程为x -y +1=0,则直线PB 的方程是________________.解析:由|PA |=|PB |知点P 在AB 的垂直平分线上.由点P 的横坐标为3,且PA 的方程为x -y +1=0,得P (3,4).直线PA ,PB 关于直线x =3对称,直线PA 上的点(0,1)关于直线x =3的对称点(6,1)在直线PB 上,∴直线PB 的方程为x +y -7=0.答案:x +y -7=08.(2016·江苏五星级学校联考)已知点P (x ,y )到A (0,4)和B (-2,0)的距离相等,则2x +4y 的最小值为________.解析:由题意得,点P 在线段AB 的中垂线上,则易得x +2y =3,∴2x +4y ≥22x ·4y =22x +2y =42,当且仅当x =2y =32时等号成立,故2x +4y 的最小值为4 2.答案:4 29.已知光线从点A (-4,-2)射出,到直线y =x 上的B 点后被直线y =x 反射到y 轴上的C 点,又被y 轴反射,这时反射光线恰好过点D (-1,6),求BC 所在的直线方程.解:作出草图,如图所示,设A 关于直线y =x 的对称点为A ′,D 关于y 轴的对称点为D ′, 则易得A ′(-2,-4),D ′(1,6).由入射角等于反射角可得A ′D ′所在直线经过点B 与C . 故BC 所在的直线方程为y -6-4-6=x -1-2-1,即10x -3y +8=0. 10.已知直线l :(2a +b )x +(a +b )y +a -b =0及点P (3,4). (1)证明直线l 过某定点,并求该定点的坐标. (2)当点P 到直线l 的距离最大时,求直线l 的方程. 解:(1)证明:直线l 的方程可化为a (2x +y +1)+b (x +y -1)=0,由⎩⎪⎨⎪⎧2x +y +1=0,x +y -1=0,得⎩⎪⎨⎪⎧x =-2,y =3, ∴直线l 恒过定点(-2,3).(2)设直线l 恒过定点A (-2,3),当直线l 垂直于直线PA 时,点P 到直线l 的距离最大.又直线PA 的斜率k PA =4-33+2=15,∴直线l 的斜率k l =-5.故直线l 的方程为y -3=-5(x +2),即5x +y +7=0.三上台阶,自主选做志在冲刺名校1.(2016·湖北七市三联)设两条直线的方程分别为x +y +a =0,x +y +b =0,已知a ,b 是方程x 2+x +c =0的两个实根,且0≤c ≤18,则这两条直线之间的距离的最大值和最小值分别是________.解析:依题意得|a -b |=(a +b )2-4ab =1-4c ,当0≤c ≤18时,22≤|a -b |=1-4c≤1.因为两条直线间的距离等于|a -b |2,所以两条直线间的距离的最大值与最小值分别是22,12. 答案:22,122.(2016·徐州一中检测)已知平面上一点M (5,0),若直线上存在点P 使PM =4,则称该直线为“切割型直线”.下列直线中是“切割型直线”的是________(填序号).①y =x +1;②y =2;③y =43x ;④y =2x +1.解析:设点M 到所给直线的距离为d ,①d =|5+1|12+(-1)2=32>4,故直线上不存在点P 到点M 的距离等于4,不是“切割型直线”;②d =2<4,所以在直线上可以找到两个不同的点P ,使之到点M 的距离等于4,是“切割型直线”;③d =|4×5-0|(-3)2+42=4,所以直线上存在一点P ,使之到点M 的距离等于4,是“切割型直线”;④d =|2×5+1|22+(-1)2=1155>4,故直线上不存在点P ,使之到点M 的距离等于4,不是“切割型直线”.故填②③.答案:②③3.已知直线l 1:x +a 2y +1=0和直线l 2:(a 2+1)x -by +3=0(a ,b ∈R). (1)若l 1∥l 2,求b 的取值范围; (2)若l 1⊥l 2,求|ab |的最小值.解:(1)因为l 1∥l 2,所以-b -(a 2+1)a 2=0, 即b =-a 2(a 2+1)=-a 4-a 2=-⎝⎛⎭⎫a 2+122+14, 因为a 2≥0,所以b ≤0.又因为a 2+1≠3,所以b ≠-6.故b 的取值范围是(-∞,-6)∪(-6,0].(2)因为l 1⊥l 2,所以(a 2+1)-a 2b =0,显然a ≠0,所以ab =a +1a ,|ab |=⎪⎪⎪⎪a +1a ≥2,当且仅当a =±1时等号成立,因此|ab |的最小值为2.第三节 圆的方程1.圆的定义及方程点M (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系: (1)若M (x 0,y 0)在圆外,则(x 0-a )2+(y 0-b )2>r 2. (2)若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2. (3)若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2<r 2. [小题体验]1.(教材习题改编)圆x 2+y 2-4x +6y =0的圆心坐标是________. 解析:由(x -2)2+(y +3)2=13,知圆心坐标为(2,-3). 答案:(2,-3)2.圆心在y 轴上且通过点(3,1)的圆与x 轴相切,则该圆的方程是________. 解析:设圆心为(0,b ),半径为r ,则r =|b |, ∴圆的方程为x 2+(y -b )2=b 2. ∵点(3,1)在圆上,∴9+(1-b )2=b 2,解得b =5. ∴圆的方程为x 2+y 2-10y =0. 答案:x 2+y 2-10y =03.(教材习题改编)已知圆心为C 的圆过点A (1,1),B (2,-2)且圆心C 在直线l :x -y+1=0上,则圆的标准方程为________________________.答案:(x +3)2+(y +2)2=254.若点(1,1)在圆(x -a )2+(y +a )2=4的内部,则实数a 的取值范围是________. 解析:因为点(1,1)在圆(x -a )2+(y +a )2=4的内部,所以(1-a )2+(1+a )2<4. 即a 2<1,故-1<a <1. 答案:(-1,1)对于方程x 2+y 2+Dx +Ey +F =0表示圆时易忽视D 2+E 2-4F >0这一成立条件. [小题纠偏]1.方程x 2+y 2+4mx -2y +5m =0表示圆的充要条件是________. 解析:由(4m )2+4-4×5m >0,得m <14或m >1.答案:m ∈⎝⎛⎭⎫-∞,14∪(1,+∞) 2.方程x 2+y 2+ax -2ay +2a 2+3a =0表示的图形是半径为r (r >0)的圆,则该圆圆心位于第________象限.解析:因为方程x 2+y 2+ax -2ay +2a 2+3a =0表示的图形是半径为r 的圆,所以a 2+(-2a )2-4(2a 2+3a )=-3a 2-12a >0,即a (a +4)<0,所以-4<a <0.又该圆圆心坐标为⎝⎛⎭⎫-a2,a ,显然圆心位于第四象限.答案:四考点一 圆的方程(基础送分型考点——自主练透)[题组练透]1.(易错题)(2015·镇江调研)若圆C 经过(1,0),(3,0)两点,且与y 轴相切,则圆C 的方程为________.解析:由题意知圆C 的半径为2,且圆心坐标可设为(2,b ),因此有(2-1)2+(b -0)2=2,解得b =±3,从而圆C 的方程为(x -2)2+(y ±3)2=4.答案:(x -2)2+(y ±3)2=42.(2016·徐州模拟)若圆C 的半径为1,点C 与点(2,0)关于点(1,0)对称,则圆C 的标准方程为________.解析:因为点C 与点(2,0)关于点(1,0)对称,故由中点坐标公式可得C (0,0),所以所求圆的标准方程为x 2+y 2=1.答案:x 2+y 2=13.(2015·全国卷Ⅱ改编)已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为________.解析:设圆的一般方程为x 2+y 2+Dx +Ey +F =0,则⎩⎪⎨⎪⎧1+D +F =0,3+3E +F =0,7+2D +3E +F =0,解得⎩⎪⎨⎪⎧D =-2,E =-433,F =1.∴△ABC 外接圆的圆心为⎝⎛⎭⎫1,233,故△ABC 外接圆的圆心到原点的距离为 12+⎝⎛⎭⎫2332=213.答案:213[谨记通法]1.求圆的方程的2种方法(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程. (2)待定系数法:①若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值;②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值.2.确定圆心位置的3种方法(1)圆心在过切点且与切线垂直的直线上.(2)圆心在圆的任意弦的垂直平分线上,如“题组练透”第1题. (3)两圆相切时,切点与两圆圆心共线.[提醒] 解答圆的有关问题,应注意数形结合,充分运用圆的几何性质. 考点二 与圆有关的最值问题(常考常新型考点——多角探明)[命题分析]与圆有关的最值问题也是命题的热点内容,它着重考查数形结合与转化思想. 常见的命题角度有: (1)斜率型最值问题; (2)截距型最值问题; (3)距离型最值问题; (4)建立目标函数求最值问题.[题点全练]角度一:斜率型最值问题1.(2016·苏州模拟)已知实数x ,y 满足方程x 2+y 2-4x +1=0,求yx 的最大值和最小值. 解:原方程可化为(x -2)2+y 2=3, 表示以(2,0)为圆心,3为半径的圆. yx 的几何意义是圆上一点与原点连线的斜率, 所以设yx=k ,即y =kx .当直线y =kx 与圆相切时(如图),斜率k 取最大值或最小值, 此时|2k -0|k 2+1=3, 解得k =±3.所以yx 的最大值为3,最小值为- 3. 角度二:截距型最值问题2.在[角度一]条件下求y -x 的最大值和最小值.解:y -x 可看作是直线y =x +b 在y 轴上的截距,如图所示,当直线y =x +b 与圆相切时,纵截距b 取得最大值或最小值,此时|2-0+b |2=3,解得b =-2±6.所以y -x 的最大值为-2+6,最小值为-2- 6.角度三:距离型最值问题3.在[角度一]条件下求x 2+y 2的最大值和最小值.。
2018年高考数学总复习第九章平面解析几何第1讲直线的方程学案!
第1讲 直线的方程最新考纲 1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素;2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式;3.掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.知 识 梳 理1.直线的倾斜角与斜率 (1)直线的倾斜角①定义:当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角;②规定:当直线l 与x 轴平行或重合时,规定它的倾斜角为0;③范围:直线的倾斜角α的取值范围是[0,π). (2)直线的斜率①定义:当直线l 的倾斜角α≠π2时,其倾斜角α的正切值tan α叫做这条直线的斜率,斜率通常用小写字母k 表示,即k =tan__α;②斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1. 2.直线方程的五种形式若点P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),线段P 1P 2的中点M 的坐标为(x ,y ),则⎩⎪⎨⎪⎧x =x 1+x 22,y =y 1+y22,此公式为线段P 1P 2的中点坐标公式.诊 断 自 测1.判断正误(在括号内打“√”或“³”)(1)直线的倾斜角越大,其斜率就越大.( ) (2)直线的斜率为tan α,则其倾斜角为α.( ) (3)斜率相等的两直线的倾斜角不一定相等.( )(4)经过点P (x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示.( )(5)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.( )解析 (1)当直线的倾斜角α1=135°,α2=45°时,α1>α2,但其对应斜率k 1=-1,k 2=1,k 1<k 2.(2)当直线斜率为tan(-45°)时,其倾斜角为135°. (3)两直线的斜率相等,则其倾斜角一定相等.(4)当直线的斜率不存在时,不可以用方程y -y 0=k (x -x 0)表示. 答案 (1)³ (2)³ (3)³ (4)³ (5)√2.(2017²衡水金卷)直线x -y +1=0的倾斜角为( ) A.30° B.45° C.120°D.150°解析 由题得,直线y =x +1的斜率为1,设其倾斜角为α,则tan α=1,又0°≤α<180°故α=45°,故选B. 答案 B3.如果A ²C <0,且B ²C <0,那么直线Ax +By +C =0不通过( ) A.第一象限 B.第二象限 C.第三象限D.第四象限解析 由已知得直线Ax +By +C =0在x 轴上的截距-C A >0,在y 轴上的截距-C B>0,故直线经过第一、二、四象限,不经过第三象限. 答案 C4.已知A (3,5),B (4,7),C (-1,x )三点共线,则x =________. 解析 ∵A ,B ,C 三点共线,∴k AB =k AC ,∴7-54-3=x -5-1-3,∴x =-3.答案 -35.(必修2P100A9改编)过点P (2,3)且在两轴上截距相等的直线方程为________. 解析 当纵、横截距为0时,直线方程为3x -2y =0;当截距不为0时,设直线方程为x a +y a=1,则2a +3a=1,解得a =5.所以直线方程为x +y -5=0.答案 3x -2y =0或x +y -5=06.(2017²金华市调研)直线kx -y -2k +4=0过定点P 的坐标为________;若幂函数y =f (x )也过点P ,则f (x )的解析式为________.解析 直线kx -y -2k +4=0可化为y -4=k (x -2),∴直线过定点P (2,4),设幂函数y =f (x )为y =x α,把P (2,4)代入,得4=2α,∴α=2,即y =f (x )=x 2.答案 (2,4) f (x )=x 2考点一 直线的倾斜角与斜率【例1】 (1)直线2x cos α-y -3=0⎝ ⎛⎭⎪⎫α∈⎣⎢⎡⎦⎥⎤π6,π3的倾斜角的取值范围是( )A.⎣⎢⎡⎦⎥⎤π6,π3B.⎣⎢⎡⎦⎥⎤π4,π3C.⎣⎢⎡⎦⎥⎤π4,π2D.⎣⎢⎡⎦⎥⎤π4,2π3(2)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为________.解析 (1)直线2x cos α-y -3=0的斜率k =2cos α, 因为α∈⎣⎢⎡⎦⎥⎤π6,π3,所以12≤cos α≤32,因此k =2²cos α∈[1,3]. 设直线的倾斜角为θ, 则有tan θ∈[1,3].又θ∈[0,π),所以θ∈⎣⎢⎡⎦⎥⎤π4,π3, 即倾斜角的取值范围是⎣⎢⎡⎦⎥⎤π4,π3.(2)如图,∵k AP =1-02-1=1,k BP =3-00-1=-3, ∴直线l 的斜率k ∈(-∞,-3]∪[1,+∞). 答案 (1)B (2)(-∞,-3]∪[1,+∞)规律方法 直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分⎣⎢⎡⎭⎪⎫0,π2与⎝ ⎛⎭⎪⎫π2,π两种情况讨论.由正切函数图象可以看出,当α∈⎣⎢⎡⎭⎪⎫0,π2时,斜率k ∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝ ⎛⎭⎪⎫π2,π时,斜率k ∈(-∞,0).【训练1】 (2017²杭州一调)直线x sin α+y +2=0的倾斜角的取值范围是( ) A.[0,π)B.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,πC.⎣⎢⎡⎦⎥⎤0,π4D.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫π2,π解析 设直线的倾斜角为θ,则有tan θ=-sin α.因为sin α∈[-1,1],所以-1≤tan θ≤1,又θ∈[0,π),所以0≤θ≤π4或3π4≤θ<π,故选B.答案 B考点二 直线方程的求法【例2】 根据所给条件求直线的方程: (1)直线过点(-4,0),倾斜角的正弦值为1010; (2)直线过点(-3,4),且在两坐标轴上的截距之和为12; (3)直线过点(5,10),且到原点的距离为5.解 (1)由题设知,该直线的斜率存在,故可采用点斜式. 设倾斜角为α,则sin α=1010(0≤α<π), 从而cos α=±31010,则k =tan α=±13.故所求直线方程为y =±13(x +4).即x +3y +4=0或x -3y +4=0.(2)由题设知纵横截距不为0,设直线方程为x a +y12-a=1,又直线过点(-3,4),从而-3a +412-a =1,解得a =-4或a =9.故所求直线方程为4x -y +16=0或x +3y -9=0. (3)当斜率不存在时,所求直线方程为x -5=0满足题意; 当斜率存在时,设其为k ,则所求直线方程为y -10=k (x -5), 即kx -y +10-5k =0.由点线距离公式,得|10-5k |k 2+1=5,解得k =34.故所求直线方程为3x -4y +25=0.综上知,所求直线方程为x -5=0或3x -4y +25=0.规律方法 根据各种形式的方程,采用待定系数的方法求出其中的系数,在求直线方程时凡涉及斜率的要考虑其存在与否,凡涉及截距的要考虑是否为零截距以及其存在性. 【训练2】 求适合下列条件的直线方程: (1)经过点P (4,1),且在两坐标轴上的截距相等;(2)经过点A (-1,-3),倾斜角等于直线y =3x 的倾斜角的2倍; (3)经过点B (3,4),且与两坐标轴围成一个等腰直角三角形. 解 (1)设直线l 在x ,y 轴上的截距均为a , 若a =0,即l 过点(0,0)和(4,1), ∴l 的方程为y =14x ,即x -4y =0.若a ≠0,则设l 的方程为x a +y a=1, ∵l 过点(4,1),∴4a +1a=1,∴a =5,∴l 的方程为x +y -5=0.综上可知,直线l 的方程为x -4y =0或x +y -5=0.(2)由已知:设直线y =3x 的倾斜角为α ,则所求直线的倾斜角为2α. ∵tan α=3,∴tan 2α=2tan α1-tan 2α=-34. 又直线经过点A (-1,-3),因此所求直线方程为y +3=-34(x +1),即3x +4y +15=0.(3)由题意可知,所求直线的斜率为±1. 又过点(3,4),由点斜式得y -4=±(x -3). 所求直线的方程为x -y +1=0或x +y -7=0. 考点三 直线方程的综合应用【例3】 已知直线l :kx -y +1+2k =0(k ∈R ). (1)证明:直线l 过定点;(2)若直线不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,△AOB 的面积为S (O 为坐标原点),求S 的最小值并求此时直线l 的方程.(1)证明 直线l 的方程可化为k (x +2)+(1-y )=0,令⎩⎪⎨⎪⎧x +2=0,1-y =0,解得⎩⎪⎨⎪⎧x =-2,y =1. ∴无论k 取何值,直线总经过定点(-2,1).(2)解 由方程知,当k ≠0时直线在x 轴上的截距为-1+2k k,在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎪⎨⎪⎧-1+2k k ≤-2,1+2k ≥1,解得k >0; 当k =0时,直线为y =1,符合题意,故k 的取值范围是[0,+∞). (3)解 由题意可知k ≠0,再由l 的方程,得A ⎝⎛⎭⎪⎫-1+2k k,0,B (0,1+2k ).依题意得⎩⎪⎨⎪⎧-1+2k k <0,1+2k >0, 解得k >0.∵S =12²|OA |²|OB |=12²⎪⎪⎪⎪⎪⎪1+2k k ²|1+2k |=12²(1+2k )2k =12⎝⎛⎭⎪⎫4k +1k +4≥12³(2³2+4)=4, “=”成立的条件是k >0且4k =1k ,即k =12,∴S min =4,此时直线l 的方程为x -2y +4=0.规律方法 在求直线方程的过程中,若有以直线为载体的求面积、距离的最值问题,则可先设出直线方程,建立目标函数,再利用基本不等式求解最值.【训练3】 已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A ,B 两点,如图所示,求△ABO 的面积的最小值及此时直线l 的方程. 解 法一 设直线方程为x a +y b=1(a >0,b >0), 点P (3,2)代入得3a +2b =1≥26ab,得ab ≥24,从而S △ABO =12ab ≥12,当且仅当3a =2b 时等号成立,这时k =-b a =-23,从而所求直线方程为2x +3y -12=0.法二 依题意知,直线l 的斜率k 存在且k <0. 则直线l 的方程为y -2=k (x -3)(k <0),且有A ⎝⎛⎭⎪⎫3-2k,0,B (0,2-3k ),∴S △ABO =12(2-3k )⎝ ⎛⎭⎪⎫3-2k =12⎣⎢⎡⎦⎥⎤12+(-9k )+4(-k )≥12⎣⎢⎡⎦⎥⎤12+2(-9k )²4(-k )=12³(12+12)=12. 当且仅当-9k =4-k ,即k =-23时,等号成立, 即△ABO 的面积的最小值为12. 故所求直线的方程为2x +3y -12=0.[思想方法]1.直线的倾斜角和斜率的关系:(1)任何直线都存在倾斜角,但并不是任意直线都存在斜率. (2)直线的倾斜角α和斜率k 之间的对应关系:2..用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线.故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况. [易错防范]1.求直线方程时要注意判断直线斜率是否存在;每条直线都有倾斜角,但不一定每条直线都存在斜率.2.根据斜率求倾斜角,一是要注意倾斜角的范围;二是要考虑正切函数的单调性.3.截距为一个实数,既可以为正数,也可以为负数,还可以为0,这是解题时容易忽略的一点.。
2018版高考数学浙江专用文理通用大一轮复习课件:第九
答案 (2,4) f(x)=x2
考点一 直线的倾斜角与斜率
【例 1】 (1)直线 2xcos 值范围是(
π π A.6,3 π π C.4,2 π α-y-3=0α∈ 6 π , 的倾斜角的取 3
)
π π B.4,3 π 2π D.4, 3
(5)经过任意两个不同的点 P1(x1,y1),P2(x2,y2)的直线都 可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示.( )
解析 (1)当直线的倾斜角 α1=135° ,α2=45° 时,α1>α2, 但其对应斜率 k1=-1,k2=1,k1<k2. (2)当直线斜率为 tan(-45° )时,其倾斜角为 135° . (3)两直线的斜率相等,则其倾斜角一定相等. (4)当直线的斜率不存在时,不可以用方程 y-y0=k(x-x0) 表示.
(2)直线的斜率 π ①定义:当直线 l 的倾斜角 α≠ 时,其倾斜角 α 的正切值 tan α 叫 2
tan α ; 做这条直线的斜率,斜率通常用小写字母 k 表示,即 k=______
②斜率公式:经过两点 P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率 公式为 k= y2-y1 . x2-x1 _______
第1讲
直线的方程
最新考纲
1.在平面直角坐标系中,结合具体图形,确定直
线位置的几何要素;2.理解直线的倾斜角和斜率的概念,掌 握过两点的直线斜率的计算公式;3.掌握确定直线位置的几 何要素,掌握直线方程的几种形式 ( 点斜式、两点式及一般 式),了解斜截式与一次函数的关系.
知识梳理 1.直线的倾斜角与斜率 (1)直线的倾斜角 ①定义:当直线 l 与x 轴相交时,我们取 x 轴作为基准, x 轴正向 与直线l____ 向上方向之间所成的角α叫做直线l的倾斜角;②规定: 0 ;③范围: 当直线l与x轴平行或重合时,规定它的倾斜角为___ [0,π) 直线的倾斜角α的取值范围是_______.
高考数学一轮复习第九章平面解析几何第1节直线方程课件理
表示.(
)
(4)不经过原点的直线都可以用ax+by=1 表示.(
)
(5)经过任意两个不同的点 P1(x1,y1),P2(x2,y2)的直线都
可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示.(
)
[答案] (1)× (2)× (3)× (4)× (5)√
2.(2016·云南第一次检测)直线 x=π3的倾斜角等于(
是 90°的直线斜率不存在.
②过两点的直线的斜率公式
经过两点 P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公
式为 k=
y2-y1 x2-x1
.
2.直线方程的五种形式
名称
方程
适用范围
点斜式 y-y1=k(x-x1)
不含垂直于 x 轴的直线
斜截式 y=kx+b
不含垂直于 x 轴的直线
3),P(-1,0)的直线的斜率为 k2=
3-0 0--1= 3.由图可知,过 P 的直线
l 与线段 AB 有公共点的斜率的取值范围是
.
[答案] (1)D (2)
[拓展探究] (1)本例(1)改为:“若直线 l 的方程为 xsinα -ycosα+1=0,其中 α∈-π2,0”,则直线 l 的倾斜角为 ________.
[解析] (1)直线 xsinα-y+1=0 的斜率是 k=sinα, 又∵-1≤sinα≤1,∴-1≤k≤1. 当 0≤k≤1 时,倾斜角的范围是0,π4, 当-1≤k<0 时,倾斜角的范围是34π,π.
(2)如图,过 A(2,1),P(-1,0)的直线
1-0 1 的斜率为 k1=2--1=3,过 B(0,
1.直线的倾斜角与斜率
(1)直线的倾斜角
2018版高考数学大一轮复习第九章平面解析几何9.2两条直线的位置关系教师用书理新人教版
第九章 平面解析几何 9.2 两条直线的位置关系教师用书 理 新人教版1.两条直线的位置关系 (1)两条直线平行与垂直 ①两条直线平行:(ⅰ)对于两条不重合的直线l 1、l 2,若其斜率分别为k 1、k 2,则有l 1∥l 2⇔k 1=k 2. (ⅱ)当直线l 1、l 2不重合且斜率都不存在时,l 1∥l 2. ②两条直线垂直:(ⅰ)如果两条直线l 1、l 2的斜率存在,设为k 1、k 2,则有l 1⊥l 2⇔k 1·k 2=-1. (ⅱ)当其中一条直线的斜率不存在,而另一条的斜率为0时,l 1⊥l 2. (2)两条直线的交点直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解.2.几种距离(1)两点P 1(x 1,y 1),P 2(x 2,y 2)之间的距离|P 1P 2|=x 2-x 12+y 2-y 12.(2)点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2.(3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0(其中C 1≠C 2)间的距离d =|C 1-C 2|A 2+B 2.【知识拓展】 1.直线系方程(1)与直线Ax +By +C =0平行的直线系方程是Ax +By +m =0(m ∈R 且m ≠C ). (2)与直线Ax +By +C =0垂直的直线系方程是Bx -Ay +n =0(n ∈R ). 2.两直线平行或重合的充要条件直线l 1:A 1x +B 1y +C 1=0与直线l 2:A 2x +B 2y +C 2=0平行或重合的充要条件是A 1B 2-A 2B 1=0. 3.两直线垂直的充要条件直线l 1:A 1x +B 1y +C 1=0与直线l 2:A 2x +B 2y +C 2=0垂直的充要条件是A 1A 2+B 1B 2=0. 4.过直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0的交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ∈R ),但不包括l 2. 5.点到直线与两平行线间的距离的使用条件: (1)求点到直线的距离时,应先化直线方程为一般式.(2)求两平行线之间的距离时,应先将方程化为一般式且x ,y 的系数对应相等. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)当直线l 1和l 2斜率都存在时,一定有k 1=k 2⇒l 1∥l 2.( × ) (2)如果两条直线l 1与l 2垂直,则它们的斜率之积一定等于-1.( × )(3)已知直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(A 1、B 1、C 1、A 2、B 2、C 2为常数),若直线l 1⊥l 2,则A 1A 2+B 1B 2=0.( √ )(4)点P (x 0,y 0)到直线y =kx +b 的距离为|kx 0+b |1+k2.( × ) (5)直线外一点与直线上一点的距离的最小值就是点到直线的距离.( √ )(6)若点A ,B 关于直线l :y =kx +b (k ≠0)对称,则直线AB 的斜率等于-1k,且线段AB 的中点在直线l 上.( √ )1.(2016·天津模拟)过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0 D .x +2y -1=0答案 A解析 直线x -2y -2=0可化为y =12x -1,所以过点(1,0)且与直线x -2y -2=0平行的直线方程可设为y =12x +b ,将点(1,0)代入得b =-12.所以所求直线方程为x -2y -1=0.2.(教材改编)已知点(a,2)(a >0)到直线l :x -y +3=0的距离为1,则a 等于( ) A. 2 B .2- 2 C.2-1 D.2+1 答案 C解析 依题意得|a -2+3|1+1=1.解得a =-1+2或a =-1-2.∵a >0,∴a =-1+ 2.3.已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则l 的方程是( ) A .x +y -2=0 B .x -y +2=0 C .x +y -3=0 D .x -y +3=0答案 D解析 圆x 2+(y -3)2=4的圆心为点(0,3), 又因为直线l 与直线x +y +1=0垂直, 所以直线l 的斜率k =1.由点斜式得直线l :y -3=x -0,化简得x -y +3=0.4.(2017· 朝阳调研)已知过点A (-2,m )和点B (m ,4)的直线为l 1,直线2x +y -1=0为l 2,直线x +ny +1=0为l 3,若l 1∥l 2,l 2⊥l 3,则实数m +n 的值为( )A .-10B .-2C .0D .8 答案 A解析 ∵l 1∥l 2,∴k AB =4-m m +2=-2,解得m =-8.又∵l 2⊥l 3,∴(-1n)×(-2)=-1,解得n =-2,∴m +n =-10.5.(教材改编)若直线(3a +2)x +(1-4a )y +8=0与(5a -2)x +(a +4)y -7=0垂直,则a =________. 答案 0或1解析 由两直线垂直的充要条件,得(3a +2)(5a -2)+(1-4a )(a +4)=0,解得a =0或a =1.题型一 两条直线的平行与垂直例1 (1)设不同直线l 1:2x -my -1=0,l 2:(m -1)x -y +1=0.则“m =2”是“l 1∥l 2”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 答案 C解析 当m =2时,代入两直线方程中,易知两直线平行,即充分性成立. 当l 1∥l 2时,显然m ≠0,从而有2m=m -1,解得m =2或m =-1,但当m =-1时,两直线重合,不合要求, 故必要性成立,故选C.(2)已知直线l 1:ax +2y +6=0和直线l 2:x +(a -1)y +a 2-1=0. ①试判断l 1与l 2是否平行; ②当l 1⊥l 2时,求a 的值.解 ①方法一 当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1不平行于l 2;当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不平行于l 2;当a ≠1且a ≠0时,两直线可化为l 1:y =-a2x -3,l 2:y =11-ax -(a +1), l 1∥l 2⇔⎩⎪⎨⎪⎧-a 2=11-a ,-3≠-a +,解得a =-1,综上可知,a =-1时,l 1∥l 2. 方法二 由A 1B 2-A 2B 1=0, 得a (a -1)-1×2=0,由A 1C 2-A 2C 1≠0,得a (a 2-1)-1×6≠0,∴l 1∥l 2⇔⎩⎪⎨⎪⎧aa --1×2=0,aa 2--1×6≠0,⇔⎩⎪⎨⎪⎧a 2-a -2=0,a a 2-⇒a =-1,故当a =-1时,l 1∥l 2.②方法一 当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1与l 2不垂直,故a =1不成立;当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不垂直于l 2; 当a ≠1且a ≠0时,l 1:y =-a 2x -3,l 2:y =11-ax -(a +1),由(-a 2)·11-a =-1⇒a =23.方法二 由A 1A 2+B 1B 2=0,得a +2(a -1)=0⇒a =23.思维升华 (1)当直线方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x ,y 的系数不能同时为零这一隐含条件. (2)在判断两直线平行、垂直时,也可直接利用直线方程的系数间的关系得出结论.已知两直线l 1:x +y sin α-1=0和l 2:2x ·sin α+y +1=0,求α的值,使得: (1)l 1∥l 2; (2)l 1⊥l 2.解 (1)方法一 当sin α=0时,直线l 1的斜率不存在,l 2的斜率为0,显然l 1不平行于l 2.当sin α≠0时,k 1=-1sin α,k 2=-2sin α. 要使l 1∥l 2,需-1sin α=-2sin α,即sin α=±22.所以α=k π±π4,k ∈Z ,此时两直线的斜率相等.故当α=k π±π4,k ∈Z 时,l 1∥l 2.方法二 由A 1B 2-A 2B 1=0,得2sin 2α-1=0, 所以sin α=±22,所以α=k π±π4,k ∈Z . 又B 1C 2-B 2C 1≠0,所以1+sin α≠0,即sin α≠-1. 故当α=k π±π4,k ∈Z 时,l 1∥l 2.(2)因为A 1A 2+B 1B 2=0是l 1⊥l 2的充要条件,所以2sin α+sin α=0,即sin α=0,所以α=k π,k ∈Z . 故当α=k π,k ∈Z 时,l 1⊥l 2. 题型二 两条直线的交点与距离问题例2 (1)(2016·长沙模拟)求经过两条直线l 1:x +y -4=0和l 2:x -y +2=0的交点,且与直线2x -y -1=0垂直的直线方程为________________.(2)直线l 过点P (-1,2)且到点A (2,3)和点B (-4,5)的距离相等,则直线l 的方程为________________.答案 (1)x +2y -7=0 (2)x +3y -5=0或x =-1解析 (1)由⎩⎪⎨⎪⎧x +y -4=0,x -y +2=0,得⎩⎪⎨⎪⎧x =1,y =3,∴l 1与l 2的交点坐标为(1,3).设与直线2x -y -1=0垂直的直线方程为x +2y +c =0, 则1+2×3+c =0,∴c =-7. ∴所求直线方程为x +2y -7=0.(2)方法一 当直线l 的斜率存在时,设直线l 的方程为y -2=k (x +1),即kx -y +k +2=0.由题意知|2k -3+k +2|k 2+1=|-4k -5+k +2|k 2+1,即|3k -1|=|-3k -3|, ∴k =-13.∴直线l 的方程为y -2=-13(x +1),即x +3y -5=0.当直线l 的斜率不存在时,直线l 的方程为x =-1,也符合题意. 故所求直线l 的方程为x +3y -5=0或x =-1. 方法二 当AB ∥l 时,有k =k AB =-13,直线l 的方程为y -2=-13(x +1),即x +3y -5=0.当l 过AB 的中点时,AB 的中点为(-1,4). ∴直线l 的方程为x =-1.故所求直线l 的方程为x +3y -5=0或x =-1. 思维升华 (1)求过两直线交点的直线方程的方法求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程.(2)利用距离公式应注意:①点P (x 0,y 0)到直线x =a 的距离d =|x 0-a |,到直线y =b 的距离d =|y 0-b |;②两平行线间的距离公式要把两直线方程中x ,y 的系数化为相等.(1)如图,设一直线过点(-1,1),它被两平行直线l 1:x +2y -1=0,l 2:x +2y-3=0所截的线段的中点在直线l 3:x -y -1=0上,求其方程.解 与l 1、l 2平行且距离相等的直线方程为x +2y -2=0. 设所求直线方程为(x +2y -2)+λ(x -y -1)=0, 即(1+λ)x +(2-λ)y -2-λ=0.又直线过(-1,1), ∴(1+λ)(-1)+(2-λ)·1-2-λ=0. 解得λ=-13.∴所求直线方程为2x +7y -5=0.(2)(2016·济南模拟)若动点P 1(x 1,y 1),P 2(x 2,y 2)分别在直线l 1:x -y -5=0,l 2:x -y -15=0上移动,则P 1P 2的中点P 到原点的距离的最小值是( ) A.52 2 B .5 2 C.1522 D .15 2 答案 B解析 设P 1P 2的中点为P (x ,y ),则x =x 1+x 22,y =y 1+y 22.∵x 1-y 1-5=0,x 2-y 2-15=0. ∴(x 1+x 2)-(y 1+y 2)=20,即x -y =10. ∴y =x -10,∴P (x ,x -10), ∴P 到原点的距离d =x 2+x -2=x -2+50≥50=5 2.题型三 对称问题命题点1 点关于点中心对称例3 过点P (0,1)作直线l ,使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为________________. 答案 x +4y -4=0解析 设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上,代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上,所以直线l 的方程为x +4y -4=0. 命题点2 点关于直线对称例4 如图,已知A (4,0),B (0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是( )A .3 3B .6C .210D .2 5 答案 C解析 直线AB 的方程为x +y =4,点P (2,0)关于直线AB 的对称点为D (4,2),关于y 轴的对称点为C (-2,0).则光线经过的路程为|CD |=62+22=210.命题点3 直线关于直线的对称问题例5 (2016·泰安模拟)已知直线l :2x -3y +1=0,求直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程.解 在直线m 上任取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上. 设对称点M ′(a ,b ),则⎩⎪⎨⎪⎧2×⎝ ⎛⎭⎪⎫a +22-3×⎝ ⎛⎭⎪⎫b +02+1=0,b -0a -2×23=-1,解得⎩⎪⎨⎪⎧a =613,b =3013,∴M ′⎝ ⎛⎭⎪⎫613,3013. 设直线m 与直线l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,得N (4,3).又∵m ′经过点N (4,3).∴由两点式得直线m ′的方程为9x -46y +102=0. 思维升华 解决对称问题的方法 (1)中心对称①点P (x ,y )关于Q (a ,b )的对称点P ′(x ′,y ′)满足⎩⎪⎨⎪⎧x ′=2a -x ,y ′=2b -y .②直线关于点的对称可转化为点关于点的对称问题来解决. (2)轴对称①点A (a ,b )关于直线Ax +By +C =0(B ≠0)的对称点A ′(m ,n ),则有⎩⎪⎨⎪⎧n -b m -a ×⎝ ⎛⎭⎪⎫-A B =-1,A ·a +m 2+B ·b +n 2+C =0.②直线关于直线的对称可转化为点关于直线的对称问题来解决.已知直线l :3x -y +3=0,求:(1)点P (4,5)关于l 的对称点;(2)直线x -y -2=0关于直线l 对称的直线方程; (3)直线l 关于(1,2)的对称直线.解 (1)设P (x ,y )关于直线l :3x -y +3=0的对称点为P ′(x ′,y ′), ∵k PP ′·k l =-1,即y ′-yx ′-x×3=-1. ① 又PP ′的中点在直线3x -y +3=0上, ∴3×x ′+x 2-y ′+y2+3=0. ②由①②得⎩⎪⎨⎪⎧x ′=-4x +3y -95, ③y ′=3x +4y +35. ④把x =4,y =5代入③④得x ′=-2,y ′=7, ∴P (4,5)关于直线l 的对称点P ′的坐标为(-2,7). (2)用③④分别代换x -y -2=0中的x ,y , 得关于l 的对称直线方程为-4x +3y -95-3x +4y +35-2=0, 化简得7x +y +22=0.(3)在直线l :3x -y +3=0上取点M (0,3)关于(1,2)的对称点M ′(x ′,y ′), ∴x ′+02=1,x ′=2,y ′+32=2,y ′=1,∴M ′(2,1).l 关于(1,2)的对称直线平行于l ,∴k =3,∴对称直线方程为y -1=3×(x -2),即3x -y -5=0.20.妙用直线系求直线方程一、平行直线系由于两直线平行,它们的斜率相等或它们的斜率都不存在,因此两直线平行时,它们的一次项系数与常数项有必然的联系.典例1 求与直线3x +4y +1=0平行且过点(1,2)的直线l 的方程.思想方法指导 因为所求直线与3x +4y +1=0平行,因此,可设该直线方程为3x +4y +c =0(c ≠1). 规范解答解 依题意,设所求直线方程为3x +4y +c =0(c ≠1), 又因为直线过点(1,2),所以3×1+4×2+c =0,解得c =-11. 因此,所求直线方程为3x +4y -11=0. 二、垂直直线系由于直线A 1x +B 1y +C 1=0与A 2x +B 2y +C 2=0垂直的充要条件为A 1A 2+B 1B 2=0.因此,当两直线垂直时,它们的一次项系数有必要的关系.可以考虑用直线系方程求解. 典例2 求经过A (2,1),且与直线2x +y -10=0垂直的直线l 的方程. 思想方法指导 依据两直线垂直的特征设出方程,再由待定系数法求解. 规范解答解 因为所求直线与直线2x +y -10=0垂直,所以设该直线方程为x -2y +C 1=0,又直线过点(2,1),所以有2-2×1+C 1=0,解得C 1=0,即所求直线方程为x -2y =0. 三、过直线交点的直线系典例3 求经过两直线l 1:x -2y +4=0和l 2:x +y -2=0的交点P ,且与直线l 3:3x -4y +5=0垂直的直线l 的方程.思想方法指导 可分别求出直线l 1与l 2的交点及直线l 的斜率k ,直接写出方程;也可以利用过交点的直线系方程设直线方程,再用待定系数法求解. 规范解答解 方法一 解方程组⎩⎪⎨⎪⎧x -2y +4=0,x +y -2=0,得P (0,2).因为l 3的斜率为34,且l ⊥l 3,所以直线l 的斜率为-43, 由斜截式可知l 的方程为y =-43x +2, 即4x +3y -6=0.方法二 设直线l 的方程为x -2y +4+λ(x +y -2)=0,即(1+λ)x +(λ-2)y +4-2λ=0.又∵l ⊥l 3,∴3×(1+λ)+(-4)×(λ-2)=0,解得λ=11.∴直线l 的方程为4x +3y -6=0.1.设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 A解析 (1)充分性:当a =1时,直线l 1:x +2y -1=0与直线l 2:x +2y +4=0平行;(2)必要性:当直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行时有a =-2或1. 所以“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的充分不必要条件,故选A.2.(2016·济南模拟)“m =3”是“直线l 1:2(m +1)x +(m -3)y +7-5m =0与直线l 2:(m -3)x +2y -5=0垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 由l 1⊥l 2,得2(m +1)(m -3)+2(m -3)=0,∴m =3或m =-2.∴m =3是l 1⊥l 2的充分不必要条件.3.(2016·山东省实验中学质检)从点(2,3)射出的光线沿与向量a =(8,4)平行的直线射到y 轴上,则反射光线所在的直线方程为( )A .x +2y -4=0B .2x +y -1=0C .x +6y -16=0D .6x +y -8=0答案 A 解析 由直线与向量a =(8,4)平行知:过点(2,3)的直线的斜率k =12,所以直线的方程为y -3=12(x -2),其与y 轴的交点坐标为(0,2),又点(2,3)关于y 轴的对称点为(-2,3),所以反射光线过点(-2,3)与(0,2),由两点式知A 正确.4.(2017·兰州月考)一只虫子从点O (0,0)出发,先爬行到直线l :x -y +1=0上的P 点,再从P 点出发爬行到点A (1,1),则虫子爬行的最短路程是( ) A. 2 B .2 C .3 D .4答案 B解析 点O (0,0)关于直线x -y +1=0的对称点为O ′(-1,1),则虫子爬行的最短路程为|O ′A |=+2+-2=2.故选B.5.(2016·绵阳模拟)若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则|PQ |的最小值为( )A.95B.185C.2910D.295答案 C解析 因为36=48≠-125,所以两直线平行, 由题意可知|PQ |的最小值为这两条平行直线间的距离, 即|-24-5|62+82=2910, 所以|PQ |的最小值为2910,故选C. 6.(2016·厦门模拟)将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m ,n )重合,则m +n 等于( )A.345B.365C.283D.323答案 A解析 由题意可知,纸的折痕应是点(0,2)与点(4,0)连线的中垂线,即直线y =2x -3,它也是点(7,3)与点(m ,n )连线的中垂线,于是⎩⎪⎨⎪⎧ 3+n 2=2×7+m 2-3,n -3m -7=-12,解得⎩⎪⎨⎪⎧ m =35,n =315,故m +n =345,故选A. 7.(2016·忻州训练)已知两直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,若l 1∥l 2,且坐标原点到这两条直线的距离相等,则a +b =________.答案 0或83解析 由题意得⎩⎪⎨⎪⎧ a +b a -=0,4a 2+-b2=|b |a -2+1. 解得⎩⎪⎨⎪⎧ a =2,b =-2或⎩⎪⎨⎪⎧ a =23,b =2.经检验,两种情况均符合题意,∴a +b 的值为0或83. 8.已知直线l 1:ax +y -1=0,直线l 2:x -y -3=0,若直线l 1的倾斜角为π4,则a =________;若l 1⊥l 2,则a =________;若l 1∥l 2,则两平行直线间的距离为________. 答案 -1 1 2 2解析 若直线l 1的倾斜角为π4,则-a =k =tan π4=1,故a =-1;若l 1⊥l 2,则a ×1+1×(-1)=0,故a =1;若l 1∥l 2,则a =-1,l 1:x -y +1=0,两平行直线间的距离d =|1--1+1=2 2.9.如图,已知直线l 1∥l 2,点A 是l 1,l 2之间的定点,点A 到l 1,l 2之间的距离分别为3和2,点B 是l 2上的一动点,作AC ⊥AB ,且AC 与l 1交于点C ,则△ABC 的面积的最小值为________.答案 6解析 以A 为坐标原点,平行于l 1的直线为x 轴,建立如图所示的直角坐标系,设B (a ,-2),C (b,3).∵AC ⊥AB ,∴ab -6=0,ab =6,b =6a. Rt△ABC 的面积S =12a 2+4·b 2+9 =12a 2+4·36a 2+9=12 72+9a 2+144a 2 ≥1272+72=6. 10.(2016·重庆模拟)在平面直角坐标系内,到点A (1,2),B (1,5),C (3,6),D (7,-1)的距离之和最小的点的坐标是________.答案 (2,4)解析 如图,设平面直角坐标系中任一点P ,P 到点A (1,2),B (1,5),C (3,6),D (7,-1)的距离之和为|PA |+|PB |+|PC |+|PD |=|PB |+|PD |+|PA |+|PC |≥|BD |+|AC |=|QA |+|QB |+|QC |+|QD |,故四边形ABCD 对角线的交点Q 即为所求距离之和最小的点.∵A (1,2),B (1,5),C (3,6),D (7,-1),∴直线AC 的方程为y -2=2(x -1),直线BD 的方程为y -5=-(x -1).由⎩⎪⎨⎪⎧ y -2=x -,y -5=-x -,得Q (2,4).11.已知方程(2+λ)x -(1+λ)y -2(3+2λ)=0与点P (-2,2).(1)证明:对任意的实数λ,该方程都表示直线,且这些直线都经过同一定点,并求出这一定点的坐标;(2)证明:该方程表示的直线与点P 的距离d 小于4 2.证明 (1)显然2+λ与-(1+λ)不可能同时为零,故对任意的实数λ,该方程都表示直线. ∵方程可变形为2x -y -6+λ(x -y -4)=0,∴⎩⎪⎨⎪⎧ 2x -y -6=0,x -y -4=0,解得⎩⎪⎨⎪⎧ x =2,y =-2,故直线经过的定点为M (2,-2).(2)过P 作直线的垂线段PQ ,由垂线段小于斜线段知|PQ |≤|PM |,当且仅当Q 与M 重合时,|PQ |=|PM |,此时对应的直线方程是y +2=x -2,即x -y -4=0.但直线系方程唯独不能表示直线x -y -4=0,∴M 与Q 不可能重合,而|PM |=42,∴|PQ |<42,故所证成立.12.(2016·北京朝阳区模拟)已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0,求直线BC 的方程. 解 依题意知:k AC =-2,A (5,1),∴l AC 为2x +y -11=0,联立l AC 、l CM 得⎩⎪⎨⎪⎧2x +y -11=0,2x -y -5=0,∴C (4,3). 设B (x 0,y 0),AB 的中点M 为(x 0+52,y 0+12),代入2x -y -5=0,得2x 0-y 0-1=0,∴⎩⎪⎨⎪⎧ 2x 0-y 0-1=0,x 0-2y 0-5=0,∴B (-1,-3),∴k BC =65,∴直线BC 的方程为y -3=65(x -4), 即6x -5y -9=0.*13.已知三条直线:l 1:2x -y +a =0(a >0);l 2:-4x +2y +1=0;l 3:x +y -1=0,且l 1与l 2间的距离是7510. (1)求a 的值;(2)能否找到一点P ,使P 同时满足下列三个条件:①点P 在第一象限;②点P 到l 1的距离是点P 到l 2的距离的12; ③点P 到l 1的距离与点P 到l 3的距离之比是2∶ 5.若能,求点P 的坐标;若不能,说明理由.解 (1)直线l 2:2x -y -12=0,所以两条平行线l 1与l 2间的距离为d =⎪⎪⎪⎪⎪⎪a -⎝ ⎛⎭⎪⎫-1222+-2=7510, 所以⎪⎪⎪⎪⎪⎪a +125=7510,即⎪⎪⎪⎪⎪⎪a +12=72,又a >0,解得a =3.(2)假设存在点P ,设点P (x 0,y 0). 若点P 满足条件②,则点P 在与l 1, l 2平行的直线l ′:2x -y +c =0上, 且|c -3|5=12×⎪⎪⎪⎪⎪⎪c +125,即c =132或116,所以直线l ′的方程为2x 0-y 0+132=0或2x 0-y 0+116=0;若点P 满足条件③,由点到直线的距离公式, 有|2x 0-y 0+3|5=25×|x 0+y 0-1|2,即|2x 0-y 0+3|=|x 0+y 0-1|,所以x 0-2y 0+4=0或3x 0+2=0; 由于点P 在第一象限,所以3x 0+2=0不可能. 联立方程2x 0-y 0+132=0和x 0-2y 0+4=0,解得⎩⎪⎨⎪⎧x 0=-3,y 0=12(舍去);联立方程2x 0-y 0+116=0和x 0-2y 0+4=0,解得⎩⎪⎨⎪⎧ x 0=19,y 0=3718.所以存在点P ⎝ ⎛⎭⎪⎫19,3718同时满足三个条件.。
高考数学大一轮复习 第九章 平面解析几何 9.9 圆锥曲线的综合问题 第1课时 直线与圆锥曲线教师用
2018版高考数学大一轮复习第九章平面解析几何9.9 圆锥曲线的综合问题第1课时直线与圆锥曲线教师用书理新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学大一轮复习第九章平面解析几何9.9 圆锥曲线的综合问题第1课时直线与圆锥曲线教师用书理新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学大一轮复习第九章平面解析几何9.9 圆锥曲线的综合问题第1课时直线与圆锥曲线教师用书理新人教版的全部内容。
第九章平面解析几何 9.9 圆锥曲线的综合问题第1课时直线与圆锥曲线教师用书理新人教版1.直线与圆锥曲线的位置关系的判断将直线方程与圆锥曲线方程联立,消去一个变量得到关于x(或y)的一元方程:ax2+bx+c=0(或ay2+by+c=0).(1)若a≠0,可考虑一元二次方程的判别式Δ,有①Δ〉0⇔直线与圆锥曲线相交;②Δ=0⇔直线与圆锥曲线相切;③Δ〈0⇔直线与圆锥曲线相离.(2)若a=0,b≠0,即得到一个一元一次方程,则直线l与圆锥曲线E相交,且只有一个交点,①若E为双曲线,则直线l与双曲线的渐近线的位置关系是平行;②若E为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则|AB|=1+k2 |x2-x1|=错误!|y2-y1|。
【知识拓展】过一点的直线与圆锥曲线的位置关系(1)过椭圆外一点总有两条直线与椭圆相切;过椭圆上一点有且只有一条直线与椭圆相切;过椭圆内一点的直线与椭圆相交.(2)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条与对称轴平行或重合的直线;过抛物线上一点总有两条直线与抛物线有且只有一个公共点:一条切线和一条与对称轴平行或重合的直线;过抛物线内一点只有一条直线与抛物线有且只有一个公共点:一条与对称轴平行或重合的直线。
第九章第1讲 直线的倾斜角与斜率、直线的方程
第九章 平面解析几何
3.直线方程
名称 几何条件
方程
局限性
点斜式 过点(x0,y0), __y_-__y_0=____ 不含垂直于_x_轴__的直线 斜率为 k __k_(x_-__x__0)__
斜截式 斜率为 k,纵 _y_=__k_x_+__b___ 不含垂直于_x_轴___的直线 截距为 b
第九章 平面解析几何
知识点
考纲下载
在平面直角坐标系中,结合具体图形,确定直
线位置的几何要素.
直线的 方程
理解直线的倾斜角和斜率的概念,掌握过两点 的直线斜率的计算公式.
掌握确定直线位置的几何要素,掌握直线方程
的几种形式(点斜式、两点式及一般式),了解斜截
式与一次函数的关系.
第九章 平面解析几何
知识点
解:因为 P(-1,0),A(2,1),B(0, 3),
所以
kAP
=
1-0 2-(-1)
=
1 3
,
kBP
=
0-(3--01)= 3.
如图可知,直线 l 斜率的取值范围为13,
3.
栏目 导引
第九章 平面解析几何
2.若将本例(2)中的 B 点坐标改为(2,-1),其他条件不变, 求直线 l 倾斜角的范围. 解:如图,直线 PA 的倾斜角为 45°,直线 PB 的倾斜角为 135°,由图象知 l 的倾斜角的范围为[0°,45°]∪[135°, 180°).
栏目 导引
第九章 平面解析几何
2.直线的斜率 (1)定义:一条直线的倾斜角 α 的正切值叫做这条直线的斜率, 斜率常用小写字母 k 表示,即 k=tan α,倾斜角是 90°的直 线没有斜率. (2)过两点的直线的斜率公式 经过两点 P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为 k=xy22- -yx11=xy11- -yx22.
2018版高考数学浙江,文理通用大一轮复习讲义教师版文
1.直线与圆锥曲线的位置关系的判断将直线方程与圆锥曲线方程联立,消去一个变量得到关于x(或y)的一元方程:ax2+bx+c=0(或ay2+by+c=0).(1)若a≠0,可考虑一元二次方程的判别式Δ,有①Δ>0⇔直线与圆锥曲线相交;②Δ=0⇔直线与圆锥曲线相切;③Δ<0⇔直线与圆锥曲线相离.(2)若a=0,b≠0,即得到一个一元一次方程,则直线l与圆锥曲线E相交,且只有一个交点,①若E为双曲线,则直线l与双曲线的渐近线的位置关系是平行;②若E为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则|AB|=1+k2|x2-x1|=1+1k2|y2-y1|.【知识拓展】过一点的直线与圆锥曲线的位置关系(1)过椭圆外一点总有两条直线与椭圆相切;过椭圆上一点有且只有一条直线与椭圆相切;过椭圆内一点的直线与椭圆相交.(2)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条与对称轴平行或重合的直线;过抛物线上一点总有两条直线与抛物线有且只有一个公共点:一条切线和一条与对称轴平行或重合的直线;过抛物线内一点只有一条直线与抛物线有且只有一个公共点:一条与对称轴平行或重合的直线.(3)过双曲线外不在渐近线上的一点总有四条直线与双曲线有且只有一个交点:两条切线和两条与渐近线平行的直线;过双曲线上一点总有三条直线与双曲线有且只有一个交点:一条切线和两条与渐近线平行的直线;过双曲线内一点总有两条直线与双曲线有且只有一个交点:两条与渐近线平行的直线. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)直线l 与抛物线y 2=2px 只有一个公共点,则l 与抛物线相切.( × ) (2)直线y =kx (k ≠0)与双曲线x 2-y 2=1一定相交.( × )(3)与双曲线的渐近线平行的直线与双曲线有且只有一个交点.( √ ) (4)直线与椭圆只有一个交点⇔直线与椭圆相切.( √ ) (5)过点(2,4)的直线与椭圆x 24+y 2=1只有一条切线.( × )(6)满足“直线y =ax +2与双曲线x 2-y 2=4只有一个公共点”的a 的值有4个.( √ )1.(2017·杭州高级中学月考)在同一平面直角坐标系中,方程a 2x 2+b 2y 2=1与ax +by 2=0(a >b >0)表示的曲线大致是( )答案 D解析 将方程a 2x 2+b 2y 2=1变形为x 21a 2+y 21b 2=1,∵a >b >0,∴1a 2<1b 2,∴椭圆焦点在y 轴上.将方程ax +by 2=0变形为y 2=-ab x ,∵a >b >0,∴-ab<0,∴抛物线焦点在x 轴负半轴上,开口向左.2.(2016·青岛模拟)直线y =kx -k +1与椭圆x 29+y 24=1的位置关系为( )A .相交B .相切C .相离D .不确定答案 A解析 直线y =kx -k +1=k (x -1)+1恒过定点(1,1),又点(1,1)在椭圆内部,故直线与椭圆相交.3.若直线y =kx 与双曲线x 29-y 24=1相交,则k 的取值范围是( )A.⎝⎛⎭⎫0,23B.⎝⎛⎭⎫-23,0 C.⎝⎛⎭⎫-23,23 D.⎝⎛⎭⎫-∞,-23∪⎝⎛⎭⎫23,+∞ 答案 C解析 双曲线x 29-y 24=1的渐近线方程为y =±23x ,若直线与双曲线相交,数形结合,得k ∈⎝⎛⎭⎫-23,23. 4.(教材改编)已知与向量v =(1,0)平行的直线l 与双曲线x 24-y 2=1相交于A ,B 两点,则|AB |的最小值为________. 答案 4解析 由题意可设直线l 的方程为y =m ,代入x 24-y 2=1得x 2=4(1+m 2),所以x 1=4(1+m 2)=21+m 2, x 2=-21+m 2,所以|AB |=|x 1-x 2|=41+m 2, 所以|AB |=41+m 2≥4, 即当m =0时,|AB |有最小值4.第1课时 直线与圆锥曲线题型一 直线与圆锥曲线的位置关系例1 (2016·烟台模拟)已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l与椭圆C :(1)有两个不重合的公共点; (2)有且只有一个公共点; (3)没有公共点.解 将直线l 的方程与椭圆C 的方程联立, 得方程组⎩⎪⎨⎪⎧y =2x +m ,①x 24+y 22=1,②将①代入②,整理得9x 2+8mx +2m 2-4=0.③方程③根的判别式Δ=(8m )2-4×9×(2m 2-4)=-8m 2+144.(1)当Δ>0,即-32<m <32时,方程③有两个不同的实数根,可知原方程组有两组不同的实数解.这时直线l 与椭圆C 有两个不重合的公共点.(2)当Δ=0,即m =±32时,方程③有两个相同的实数根,可知原方程组有两组相同的实数解.这时直线l 与椭圆C 有两个互相重合的公共点,即直线l 与椭圆C 有且只有一个公共点. (3)当Δ<0,即m <-32或m >32时,方程③没有实数根,可知原方程组没有实数解.这时直线l 与椭圆C 没有公共点.思维升华 (1)判断直线与圆锥曲线的交点个数时,可直接求解相应方程组得到交点坐标,也可利用消元后的一元二次方程根的判别式来确定,需注意利用判别式的前提是二次项系数不为0.(2)依据直线与圆锥曲线的交点个数求参数时,联立方程并消元,得到一元方程,此时注意观察方程的二次项系数是否为0,若为0,则方程为一次方程;若不为0,则将方程解的个数转化为判别式与0的大小关系求解.(2016·全国乙卷)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连接ON 并延长交C 于点H . (1)求|OH ||ON |;(2)除H 以外,直线MH 与C 是否有其它公共点?说明理由. 解 (1)由已知得M (0,t ),P ⎝⎛⎭⎫t22p ,t , 又N 为M 关于点P 的对称点,故N ⎝⎛⎭⎫t 2p ,t ,ON 的方程为y =p t x ,代入y 2=2px 整理得px 2-2t 2x =0,解得x 1=0,x 2=2t 2p ,因此H ⎝⎛⎭⎫2t 2p ,2t . 所以N 为OH 的中点,即|OH ||ON |=2.(2)直线MH 与C 除H 以外没有其它公共点,理由如下: 直线MH 的方程为y -t =p 2t x ,即x =2tp(y -t ).代入y 2=2px 得y 2-4ty +4t 2=0,解得y 1=y 2=2t ,即直线MH 与C 只有一个公共点,所以除H 以外直线MH 与C 没有其它公共点. 题型二 弦长问题例2 (2016·全国甲卷)已知A 是椭圆E :x 24+y 23=1的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (1)当|AM |=|AN |时,求△AMN 的面积. (2)当2|AM |=|AN |时,证明:3<k <2.(1)解 设M (x 1,y 1),则由题意知y 1>0,由|AM |=|AN |及椭圆的对称性知,直线AM 的倾斜角为π4. 又A (-2,0),因此直线AM 的方程为y =x +2.将x =y -2代入x 24+y 23=1得7y 2-12y =0,解得y =0或y =127,所以y 1=127.因此△AMN 的面积S △AMN =2×12×127×127=14449.(2)证明 将直线AM 的方程y =k (x +2)(k >0)代入x 24+y 23=1得(3+4k 2)x 2+16k 2x +16k 2-12=0,由x 1·(-2)=16k 2-123+4k 2得x 1=2(3-4k 2)3+4k 2,故|AM |=|x 1+2|1+k 2=121+k 23+4k 2.由题设,直线AN 的方程为y =-1k (x +2),故同理可得|AN |=12k 1+k 23k 2+4.由2|AM |=|AN |,得23+4k 2=k3k 2+4,即4k 3-6k 2+3k -8=0, 设f (t )=4t 3-6t 2+3t -8,则k 是f (t )的零点,f ′(t )=12t 2-12t +3=3(2t -1)2≥0,所以f (t )在(0,+∞)上单调递增,又f (3)=153-26<0,f (2)=6>0,因此f (t )在(0,+∞)有唯一的零点,且零点k 在(3,2)内,所以3<k <2.思维升华 有关圆锥曲线弦长问题的求解方法涉及弦长的问题中,应熟练的利用根与系数的关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数的关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.设F 1,F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左,右焦点,过F 1且斜率为1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列. (1)求E 的离心率;(2)设点P (0,-1)满足|P A |=|PB |,求E 的方程. 解 (1)由椭圆定义知|AF 2|+|BF 2|+|AB |=4a , 又2|AB |=|AF 2|+|BF 2|,得|AB |=43a ,l 的方程为y =x +c ,其中c =a 2-b 2.设A (x 1,y 1),B (x 2,y 2),则A ,B 两点的坐标满足方程组⎩⎪⎨⎪⎧y =x +c ,x 2a 2+y 2b 2=1,消去y ,化简得(a 2+b 2)x 2+2a 2cx +a 2(c 2-b 2)=0,则x 1+x 2=-2a 2c a 2+b 2,x 1x 2=a 2(c 2-b 2)a 2+b2.因为直线AB 的斜率为1,所以|AB |=2|x 2-x 1|=2[(x 1+x 2)2-4x 1x 2],即43a =4ab 2a 2+b2,故a 2=2b 2,所以E 的离心率e =c a =a 2-b 2a =22.(2)设AB 的中点为N (x 0,y 0),由(1)知 x 0=x 1+x 22=-a 2c a 2+b 2=-2c 3,y 0=x 0+c =c3.由|P A |=|PB |,得k PN =-1,即y 0+1x 0=-1,得c =3,从而a =32,b =3. 故椭圆E 的方程为x 218+y 29=1.题型三 中点弦问题命题点1 利用中点弦确定直线或曲线方程例3 (1)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ) A.x 245+y 236=1 B.x 236+y 227=1 C.x 227+y 218=1 D.x 218+y 29=1 (2)已知(4,2)是直线l 被椭圆x 236+y 29=1所截得的线段的中点,则l 的方程是________________.答案 (1)D (2)x +2y -8=0解析 (1)因为直线AB 过点F (3,0)和点(1,-1),所以直线AB 的方程为y =12(x -3),代入椭圆方程x 2a 2+y 2b 2=1消去y ,得⎝⎛⎭⎫a 24+b 2x 2-32a 2x +94a 2-a 2b 2=0,所以AB 的中点的横坐标为32a 22⎝⎛⎭⎫a24+b 2=1,即a 2=2b 2,又a 2=b 2+c 2,所以b =c =3,a =32,选D. (2)设直线l 与椭圆相交于A (x 1,y 1),B (x 2,y 2),则x 2136+y 219=1,且x 2236+y 229=1, 两式相减得y 1-y 2x 1-x 2=-x 1+x 24(y 1+y 2).又x 1+x 2=8,y 1+y 2=4,所以y 1-y 2x 1-x 2=-12,故直线l 的方程为y -2=-12(x -4),即x +2y -8=0.命题点2 由中点弦解决对称问题例4 (2015·浙江)已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点). 解 (1)由题意知m ≠0,可设直线AB 的方程为 y =-1mx +b .由⎩⎨⎧x 22+y 2=1,y =-1m x +b ,消去y ,得⎝⎛⎭⎫12+1m 2x 2-2bmx +b 2-1=0. 因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m 2>0,①将AB 中点M ⎝⎛⎭⎫2mb m 2+2,m 2b m 2+2代入直线方程y =mx +12,解得b =-m 2+22m 2②由①②得m <-63或m >63. (2)令t =1m ∈⎝⎛⎭⎫-62,0∪⎝⎛⎭⎫0,62,则|AB |=t 2+1·-2t 4+2t 2+32t 2+12.且O 到直线AB 的距离为d =t 2+12t 2+1. 设△AOB 的面积为S (t ), 所以S (t )=12|AB |·d =12-2⎝⎛⎭⎫t 2-122+2≤22.当且仅当t 2=12时,等号成立.故△AOB 面积的最大值为22. 思维升华 处理中点弦问题常用的求解方法(1)点差法:即设出弦的两端点坐标后,代入圆锥曲线方程,并将两式相减,式中含有x 1+x 2,y 1+y 2,y 1-y 2x 1-x 2三个未知量,这样就直接联系了中点和直线的斜率,借用中点公式即可求得斜率.(2)根与系数的关系:即联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后,由根与系数的关系求解.(3)解决对称问题除掌握解决中点弦问题的方法外,还要注意:如果点A ,B 关于直线l 对称,则l 垂直直线AB 且A ,B 的中点在直线l 上的应用.已知双曲线x 2-y 23=1上存在两点M ,N 关于直线y =x +m 对称,且MN 的中点在抛物线y 2=18x 上,则实数m 的值为________. 答案 0或-8解析 设M (x 1,y 1),N (x 2,y 2),MN 的中点P (x 0,y 0), 则⎩⎪⎨⎪⎧x 21-y 213=1,①x 22-y 223=1,②x 1+x 2=2x 0,③y 1+y 2=2y 0,④由②-①得(x 2-x 1)(x 2+x 1)=13(y 2-y 1)(y 2+y 1),显然x 1≠x 2.∴y 2-y 1x 2-x 1·y 2+y 1x 2+x 1=3,即k MN ·y 0x 0=3,∵M ,N 关于直线y =x +m 对称, ∴k MN =-1, ∴y 0=-3x 0.又∵y 0=x 0+m ,∴P ⎝⎛⎭⎫-m 4,3m4, 代入抛物线方程得916m 2=18·⎝⎛⎭⎫-m 4, 解得m =0或-8,经检验都符合.1.(2016·泰安模拟)斜率为3的直线与双曲线x 2a 2-y 2b 2=1恒有两个公共点,则双曲线离心率的取值范围是( ) A .2,+∞) B .(2,+∞) C .(1,3) D .(3,+∞)答案 B解析 要使直线与双曲线恒有两个公共点, 则渐近线的斜率的绝对值应大于3, 所以|ba|>3,∴e =1+b 2a2>2, 即e ∈(2,+∞),故选B.2.(2016·青岛模拟)已知抛物线y 2=2px (p >0)与直线ax +y -4=0相交于A ,B 两点,其中A 点的坐标是(1,2).如果抛物线的焦点为F ,那么|F A |+|FB |等于( ) A .5B .6C .35D .7 答案 D解析 把点A 的坐标(1,2)分别代入抛物线y 2=2px 与直线方程ax +y -4=0,得p =2,a =2,由⎩⎪⎨⎪⎧y 2=4x ,2x +y -4=0消去y ,得x 2-5x +4=0, 则x A +x B =5.由抛物线定义得 |F A |+|FB |=x A +x B +p =7,故选D.3.(2016·丽水一模)斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为( )A .2B.455 C.4105 D.8105答案 C解析 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),直线l 的方程为y =x +t ,由⎩⎪⎨⎪⎧x 2+4y 2=4,y =x +t消去y ,得5x 2+8tx +4(t 2-1)=0, 则x 1+x 2=-85t ,x 1x 2=4(t 2-1)5.∴|AB |=1+k 2|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2 =2·(-85t )2-4×4(t 2-1)5 =425·5-t 2, 当t =0时,|AB |max =4105. 4.(2016·天津模拟)直线y =b a x +3与双曲线x 2a 2-y 2b2=1的交点个数是( ) A .1B .2C .1或2D .0答案 A解析 因为直线y =b a x +3与双曲线的渐近线y =b ax 平行, 所以它与双曲线只有1个交点,故选A.5.设双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线与抛物线y =x 2+1只有一个公共点,则双曲线的离心率为( )A.54B .5C.52D. 5 答案 D解析 双曲线x 2a 2-y 2b 2=1的一条渐近线为y =b ax , 由方程组⎩⎪⎨⎪⎧y =b a x ,y =x 2+1消去y , 得x 2-b ax +1=0有唯一解, 所以Δ=(b a )2-4=0,b a=2, e =c a =a 2+b 2a =1+(b a )2= 5. 6.过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A ,B 两点,它们到直线x =-2的距离之和等于5,则这样的直线( )A .有且仅有一条B .有且仅有两条C .有无穷多条D .不存在答案 D解析 抛物线y 2=4x 的焦点坐标为(1,0),准线方程为x =-1,设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2),则A ,B 到直线x =-1的距离之和为x 1+x 2+2.设直线方程为x =my +1,代入抛物线y 2=4x ,则y 2=4(my +1),即y 2-4my -4=0,∴x 1+x 2=m (y 1+y 2)+2=4m 2+2.∴x 1+x 2+2=4m 2+4≥4.∴A ,B 到直线x =-2的距离之和为x 1+x 2+2+2≥6>5.∴满足题意的直线不存在.7.已知抛物线y 2=4x 的弦AB 的中点的横坐标为2,则|AB |的最大值为________.答案 6解析 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4,那么|AF |+|BF |=x 1+x 2+2,又|AF |+|BF |≥|AB |⇒|AB |≤6,当AB 过焦点F 时取得最大值6.8.过椭圆x 216+y 24=1内一点P (3,1),且被这点平分的弦所在直线的方程是____________. 答案 3x +4y -13=0解析 设直线与椭圆交于A (x 1,y 1),B (x 2,y 2)两点,由于A ,B 两点均在椭圆上,故x 2116+y 214=1,x 2216+y 224=1, 两式相减得(x 1+x 2)(x 1-x 2)16+(y 1+y 2)(y 1-y 2)4=0. 又∵P 是A ,B 的中点,∴x 1+x 2=6,y 1+y 2=2,∴k AB =y 1-y 2x 1-x 2=-34. ∴直线AB 的方程为y -1=-34(x -3). 即3x +4y -13=0.9.已知F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,A 是其上顶点,且△AF 1F 2是等腰直角三角形,延长AF 2与椭圆C 交于另一点B ,若△AF 1B 的面积为6,则椭圆C 的方程为________.答案 x 29+2y 29=1 解析 因为△AF 1F 2为等腰直角三角形,所以b =c ,a =2c ,设|BF 2|=x ,则由椭圆的定义可知|BF 1|=22c -x ,在△BF 1F 2中,由余弦定理可知(22c -x )2=x 2+4c 2-2x ·2c ·cos 3π4, 解得x =2c 3, 所以1AF B S =12AF F S +12BF F S =12×2c ×c +12×2c ×23c ×sin 3π4=6, 解得c 2=92,所以b 2=92,a 2=9, 则椭圆的方程为x 29+2y 29=1. 10.已知双曲线C :x 2-y 23=1,直线y =-2x +m 与双曲线C 的右支交于A ,B 两点(A 在B 的上方),且与y 轴交于点M ,则|MB ||MA |的取值范围为________. 答案 (1,7+43)解析 由⎩⎪⎨⎪⎧y =-2x +m ,3x 2-y 2-3=0可得x 2-4mx +m 2+3=0, 由题意得方程在1,+∞)上有两个不相等的实根,设f (x )=x 2-4mx +m 2+3,则⎩⎪⎨⎪⎧ 2m >1,f (1)≥0,Δ>0,得m >1,设A (x 1,y 1),B (x 2,y 2)(x 1<x 2),得x 1=2m -3(m 2-1),x 2=2m +3(m 2-1),所以|MB ||MA |=x 2x 1=2m +3(m 2-1)2m -3(m 2-1) =-1+42- 3(1-1m 2),由m >1得,|MB ||MA |的取值范围为(1,7+43). 11.(2016·郑州模拟)已知椭圆的中心在原点,焦点在x 轴上,离心率为22,且椭圆经过圆C :x 2+y 2-4x +22y =0的圆心.(1)求椭圆的方程;(2)设直线l 过椭圆的焦点且与圆C 相切,求直线l 的方程.解 (1)圆C 方程化为(x -2)2+(y +2)2=6,圆心C (2,-2),半径r = 6.设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0), 则⎩⎨⎧4a 2+2b 2=1,1-⎝⎛⎭⎫b a 2=⎝⎛⎭⎫222⇒⎩⎪⎨⎪⎧a 2=8,b 2=4. ∴所求的椭圆方程是x 28+y 24=1. (2)由(1)得到椭圆的左,右焦点分别是F 1(-2,0),F 2(2,0),|F 2C |=(2-2)2+(0+2)2=2< 6.∴F 2在C 内,故过F 2没有圆C 的切线,设l 的方程为y =k (x +2),即kx -y +2k =0.点C (2,-2)到直线l 的距离d =|2k +2+2k |1+k 2, 由d =6,得|2k +2+2k |1+k 2= 6. 解得k =25或k =-2, 故l 的方程为2x -5y +22=0或2x +y +22=0.12.(2015·课标全国Ⅱ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点(2,2)在C 上. (1)求C 的方程;(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M ,证明:直线OM 的斜率与直线l 的斜率的乘积为定值.(1)解 由题意得a 2-b 2a =22,4a 2+2b2=1, 解得a 2=8,b 2=4.所以C 的方程为x 28+y 24=1. (2)证明 设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ).将y =kx +b 代入x 28+y 24=1,得(2k 2+1)x 2+4kbx +2b 2-8=0.故x M =x 1+x 22=-2kb 2k 2+1,y M =k ·x M +b =b 2k 2+1. 于是直线OM 的斜率k OM =y M x M =-12k, 即k OM ·k =-12. 所以直线OM 的斜率与直线l 的斜率的乘积为定值.*13.(2016·广州联考)已知点P 是圆O :x 2+y 2=1上任意一点,过点P 作PQ ⊥y 轴于点Q ,延长QP 到点M ,使QP →=PM →.(1)求点M 的轨迹E 的方程;(2)过点C (m,0)作圆O 的切线l ,交(1)中曲线E 于A ,B 两点,求△AOB 面积的最大值.解 (1)设点M (x ,y ),∵QP →=PM →,∴P 为QM 的中点,又PQ ⊥y 轴,∴P (x 2,y ). ∵点P 是圆O :x 2+y 2=1上的点,∴(x 2)2+y 2=1, 即点M 的轨迹E 的方程为x 24+y 2=1. (2)由题意可知直线l 不与y 轴垂直,故可设l :x =ty +m ,t ∈R ,A (x 1,y 1),B (x 2,y 2).∵l 与圆O :x 2+y 2=1相切, ∴|m |t 2+1=1,即m 2=t 2+1. ① 联立⎩⎪⎨⎪⎧x 24+y 2=1,x =ty +m ,消去x , 得(t 2+4)y 2+2mty +m 2-4=0.其中Δ=(2mt )2-4(t 2+4)(m 2-4)=16(t 2-m 2)+64=48>0.∴y 1+y 2=-2mt t 2+4,y 1y 2=m 2-4t 2+4. ②∴|AB |=(x 1-x 2)2+(y 1-y 2)2 =[t (y 1-y 2)]2+(y 1-y 2)2 =t 2+1(y 1+y 2)2-4y 1y 2. 将①②代入上式得|AB |=t 2+14m 2t 2(t 2+4)2-4(m 2-4)t 2+4 =43|m |m 2+3,|m |≥1, ∴S △AOB =12|AB |·1 =12×43|m |m 2+3=23|m |+3|m |≤2323=1, 当且仅当|m |=3|m |,即m =±3时,等号成立. ∴(S △AOB )max =1.。
【人教A版】2018版高考数学(文)一轮设计:第9章平面解析几何(第1讲)
基础诊断
考点突破
课堂总结
【迁移探究1】 若将题(2)中P(1,0)改为P(-1,0),其他条 件不变,求直线l斜率的取值范围.
答案 (1)× (2)×
(3)× (4)× (5)√
基础诊断
考点突破
课堂总结
2.(2017· 衡水金卷)直线x-y+1=0的倾斜角为( A.30° 解析 B.45° C.120°
) D.150°
由题得,直线y=x+1的斜率为1,设其倾斜角为α,
则tan α=1,又0°≤α<180°,故α=45°,故选B.
• 第1讲
直线的方程
基础诊断
考点突破
课堂总结
最新考纲
1. 在平面直角坐标系中,结合具体图形,
确定直线位置的几何要素; 2. 理解直线的倾斜角和斜
率的概念,掌握过两点的直线斜率的计算公式; 3. 掌 握确定直线位置的几何要素,掌握直线方程的几种形 式(点斜式、两点式及一般式),了解斜截式与一次函数 的关系.
两点式
过两点
y-y1 x-x1 = y2-y1 x2-x1 ____________
截距式
纵、横截距
x y +b=1 a ____________
一般式
Ax+By+C=0 (A2+B2≠0)
基础诊断
考点突破
课堂总结
3.线段的中点坐标公式
若点 P1,P2 的坐标分别为(x1,y1),(x2,y2),线段 P1P2 的中点 M x= x x , ________ 2 的坐标为(x,y),则 此公式为线段 P1P2 的中点坐 y y y = , 2 ________
基础诊断
考点突破
课堂总结
2.直线方程的五种形式 名称 几何条件 方程 y=kx+b _________ 与x轴不垂直的直线 与两坐标轴均不垂直 的直线 不过原点且与两坐标 轴均不垂直的直线 所有直线 适用条件
高考数学大一轮复习 第九章 平面解析几何 第1讲 直线的方程试题 理 新人教版(2021年最新整理)
理新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学大一轮复习第九章平面解析几何第1讲直线的方程试题理新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学大一轮复习第九章平面解析几何第1讲直线的方程试题理新人教版的全部内容。
试题理新人教版基础巩固题组(建议用时:30分钟)一、选择题1。
直线错误!x-y+a=0(a为常数)的倾斜角为()A。
30° B。
60° C.120° D.150°解析直线的斜率为k=tan α=错误!,又因为0°≤α<180°,所以α=60°。
答案B2。
已知直线l过圆x2+(y-3)2=4的圆心,且与直线x+y+1=0垂直,则直线l的方程是()A。
x+y-2=0 B。
x-y+2=0C.x+y-3=0 D。
x-y+3=0解析圆x2+(y-3)2=4的圆心为点(0,3),又因为直线l与直线x+y+1=0垂直,所以直线l的斜率k=1.由点斜式得直线l:y-3=x-0,化简得x-y+3=0.答案D3.直线x+(a2+1)y+1=0的倾斜角的取值范围是()A。
错误! B.错误!C.错误!∪错误!D。
错误!∪错误!解析∵直线的斜率k=-错误!,∴-1≤k<0,则倾斜角的范围是错误!.答案B4.(2017·高安市期中)经过抛物线y2=2x的焦点且平行于直线3x-2y+5=0的直线l的方程是( )A。
6x-4y-3=0 B.3x-2y-3=0C.2x+3y-2=0 D。
2x+3y-1=0解析因为抛物线y2=2x的焦点坐标为错误!,直线3x-2y+5=0的斜率为错误!,所以所求直线l的方程为y=错误!错误!,化为一般式,得6x-4y-3=0。
2018版高考数学(全国人教B版理)大一轮复习讲义:第九章平面解析几何第9讲第1课时含解析
基础巩固题组(建议用时:40分钟)一、选择题1。
过抛物线y2=2x的焦点作一条直线与抛物线交于A,B两点,它们的横坐标之和等于2,则这样的直线( )A。
有且只有一条 B.有且只有两条C.有且只有三条D。
有且只有四条解析∵通径2p=2,又|AB|=x1+x2+p,∴|AB|=3>2p,故这样的直线有且只有两条。
答案B2。
直线y=错误!x+3与双曲线错误!-错误!=1(a>0,b>0)的交点个数是()A。
1 B.2 C.1或2 D。
0解析因为直线y=错误!x+3与双曲线的渐近线y=错误!x平行,所以它与双曲线只有1个交点.答案A3.经过椭圆错误!+y2=1的一个焦点作倾斜角为45°的直线l,交椭圆于A,B两点,设O为坐标原点,则错误!·错误!等于( )A.-3 B.-错误!C 。
-错误!或-3 D.±错误!解析 依题意,当直线l 经过椭圆的右焦点(1,0)时,其方程为y -0=tan 45°(x -1),即y =x -1,代入椭圆方程x 22+y 2=1并整理得3x 2-4x =0,解得x =0或x =43,所以两个交点坐标分别为(0,-1),错误!,∴错误!·错误!=-错误!,同理,直线l 经过椭圆的左焦点时,也可得错误!·错误!=-错误!。
答案 B4。
抛物线y =x 2到直线x -y -2=0的最短距离为( )A.错误!B.错误!C.2错误! D 。
错误! 解析 设抛物线上一点的坐标为(x ,y ),则d =错误!=错误!=错误!,∴x =12时, d min =错误!. 答案 B5。
(2017·石家庄调研)椭圆ax 2+by 2=1与直线y =1-x 交于A ,B两点,过原点与线段AB 中点的直线的斜率为32,则错误!的值为( )A。
错误!B。
错误!C。
错误! D.错误!解析设A(x1,y1),B(x2,y2),线段AB中点M(x0,y0),由题设k OM=错误!=错误!.由错误!得错误!=-错误!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1讲 直线的方程基础巩固题组 (建议用时:30分钟)一、选择题1.直线3x -y +a =0(a 为常数)的倾斜角为( ) A.30° B.60° C.120°D.150°解析 直线的斜率为k =tan α=3,又因为0°≤α<180°,所以α=60°. 答案 B2.已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则直线l 的方程是( ) A.x +y -2=0 B.x -y +2=0 C.x +y -3=0D.x -y +3=0解析 圆x 2+(y -3)2=4的圆心为点(0,3),又因为直线l 与直线x +y +1=0垂直,所以直线l 的斜率k =1.由点斜式得直线l :y -3=x -0,化简得x -y +3=0. 答案 D3.直线x +(a 2+1)y +1=0的倾斜角的取值范围是( )A.⎣⎢⎡⎦⎥⎤0,π4B.⎣⎢⎡⎭⎪⎫3π4,πC.⎣⎢⎡⎦⎥⎤0,π4∪⎝ ⎛⎭⎪⎫π2,πD.⎣⎢⎡⎭⎪⎫π4,π2∪⎣⎢⎡⎭⎪⎫3π4,π解析 ∵直线的斜率k =-1a 2+1,∴-1≤k <0,则倾斜角的范围是⎣⎢⎡⎭⎪⎫3π4,π.答案 B4.(2017·浙江三市十二校联考)经过抛物线y 2=2x 的焦点且平行于直线3x -2y +5=0的直线l 的方程是( )A.6x -4y -3=0B.3x -2y -3=0C.2x +3y -2=0D.2x +3y -1=0解析 因为抛物线y 2=2x 的焦点坐标为⎝ ⎛⎭⎪⎫12,0,直线3x -2y +5=0的斜率为32,所以所求直线l 的方程为y =32⎝ ⎛⎭⎪⎫x -12,化为一般式,得6x -4y -3=0.答案 A5.(2017·湖州质检)若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为( ) A.13 B.-13C.-32D.23解析 依题意,设点P (a ,1),Q (7,b ),则有⎩⎪⎨⎪⎧a +7=2,b +1=-2,解得a =-5,b =-3,从而可知直线l 的斜率为-3-17+5=-13. 答案 B6.(2017·浙江五校联考)在同一平面直角坐标系中,直线l 1:ax +y +b =0和直线l 2:bx +y +a =0有可能是( )解析 当a >0,b >0时,-a <0,-b <0.选项B 符合. 答案 B7.(2016·衡水一模)已知直线l 的斜率为3,在y 轴上的截距为另一条直线x -2y -4=0的斜率的倒数,则直线l 的方程为( ) A.y =3x +2 B.y =3x -2 C.y =3x +12D.y =-3x +2解析 ∵直线x -2y -4=0的斜率为12,∴直线l 在y 轴上的截距为2,∴直线l 的方程为y =3x +2,故选A. 答案 A8.(2017·福州模拟)若直线ax +by =ab (a >0,b >0)过点(1,1),则该直线在x 轴、y 轴上的截距之和的最小值为( ) A.1B.2C.4D.8解析 ∵直线ax +by =ab (a >0,b >0)过点(1,1), ∴a +b =ab ,即1a +1b=1,∴a +b =(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+b a +a b≥2+2b a ·ab=4, 当且仅当a =b =2时上式等号成立.∴直线在x 轴,y 轴上的截距之和的最小值为4.答案 C 二、填空题9.(2017·温州调研)已知三角形的三个顶点A (-5,0,),B (3,-3),C (0,2),则BC 边上中线所在的直线方程为________;BC 边上中线的方程为________.解析 BC 的中点坐标为⎝ ⎛⎭⎪⎫32,-12,∴BC 边上中线所在直线方程为y -0-12-0=x +532+5,即x +13y +5=0.故BC 边上中线的方程为x +13y +5=0(-5≤x ≤32).答案 x +13y +5=0 x +13y +5=0⎝ ⎛⎭⎪⎫-5≤x ≤32 10.若直线l 的斜率为k ,倾斜角为α,而α∈⎣⎢⎡⎭⎪⎫π6,π4∪⎣⎢⎡⎭⎪⎫2π3,π,则k 的取值范围是________.解析 当π6≤α<π4时,33≤tan α<1,∴33≤k <1.当2π3≤α<π时,-3≤tan α<0, 即-3≤k <0, ∴k ∈⎣⎢⎡⎭⎪⎫33,1∪[-3,0). 答案 [-3,0)∪⎣⎢⎡⎭⎪⎫33,1 11.过点M (3,-4),且在两坐标轴上的截距相等的直线的方程为____________. 解析 ①若直线过原点,则k =-43,所以y =-43x ,即4x +3y =0.②若直线不过原点,设直线方程为x a +y a=1, 即x +y =a .则a =3+(-4)=-1, 所以直线的方程为x +y +1=0. 答案 4x +3y =0或x +y +1=012.直线l :(a -2)x +(a +1)y +6=0,则直线l 恒过定点________. 解析 直线l 的方程变形为a (x +y )-2x +y +6=0,由⎩⎪⎨⎪⎧x +y =0,-2x +y +6=0,解得x =2,y =-2, 所以直线l 恒过定点(2,-2). 答案 (2,-2)13.(2017·嘉兴检测)直线l 1:x +y +2=0在x 轴上的截距为________;若将l 1绕它与y 轴的交点顺时针旋转π2,则所得到的直线l 2的方程为________.解析 对直线l 1:x +y +2=0,令y =0,得x =-2,即直线l 1在x 轴上的截距为-2;令x =0,得y =-2,即l 1与y 轴的交点为(0,-2),直线l 1的倾斜角为135°,∴直线l 2的倾斜角为135°-90°=45°,∴l 2的斜率为1,故l 2的方程为y =x -2,即为x -y -2=0. 答案 -2 x -y -2=0能力提升题组 (建议用时:15分钟)14.已知直线l 过点(1,0),且倾斜角为直线l 0:x -2y -2=0的倾斜角的2倍,则直线l 的方程为( ) A.4x -3y -3=0 B.3x -4y -3=0 C.3x -4y -4=0D.4x -3y -4=0解析 由题意可设直线l 0,l 的倾斜角分别为α,2α,因为直线l 0:x -2y -2=0的斜率为12,则tan α=12,所以直线l 的斜率k =tan 2α=2tan α1-tan 2α=2×121-⎝ ⎛⎭⎪⎫122=43,所以由点斜式可得直线l 的方程为y -0=43(x -1),即4x -3y -4=0. 答案 D15.(2017·宁波调研)设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处的切线倾斜角的取值范围为⎣⎢⎡⎦⎥⎤0,π4,则点P 横坐标的取值范围为( )A.⎣⎢⎡⎦⎥⎤-1,-12B.[-1,0]C.[0,1]D.⎣⎢⎡⎦⎥⎤12,1解析 由题意知y ′=2x +2,设P (x 0,y 0),则k =2x 0+2.因为曲线C 在点P 处的切线倾斜角的取值范围为⎣⎢⎡⎦⎥⎤0,π4,则0≤k ≤1,即0≤2x 0+2≤1,故-1≤x 0≤-12.答案 A16.已知直线l 过坐标原点,若直线l 与线段2x +y =8(2≤x ≤3)有公共点,则直线l 的斜率的取值范围是________.解析 设直线l 与线段2x +y =8(2≤x ≤3)的公共点为P (x ,y ). 则点P (x ,y )在线段AB 上移动,且A (2,4),B (3,2), 设直线l 的斜率为k . 又k OA =2,k OB =23.如图所示,可知23≤k ≤2.∴直线l 的斜率的取值范围是⎣⎢⎡⎦⎥⎤23,2. 答案 ⎣⎢⎡⎦⎥⎤23,2 17.设M =π2 011-2 012π 2 012+2 011,N =π2 013-2 012π2 014+2 011,则M 与N 的大小关系为________.解析 设A =(-2 011,2 012),B (π 2 012,π2 011),C (π2 014,π2 013),则有M =π 2 011-2 012π2 012+2 011=k AB ,N =π 2 013-2 012π 2 014-(-2 011)=k AC (如图所示),则直线BD 的倾斜角∠BDO 和直线AC 的倾斜角∠CEO 均为锐角,且∠BDO <∠CEO ,所以k AB <k AC ,即M <N . 答案 M <N18.在平面直角坐标系xOy 中,设A 是半圆O :x 2+y 2=2(x ≥0)上一点,直线OA 的倾斜角为45°,过点A 作x 轴的垂线,垂足为H ,过H 作OA 的平行线交半圆于点B ,则 直线AB 的方程是________.解析 直线OA 的方程为y =x ,代入半圆方程得A (1,1), ∴H (1,0),直线HB 的方程为y =x -1, 代入半圆方程得B ⎝⎛⎭⎪⎫1+32,-1+32.所以直线AB 的方程为y -1-1+32-1=x -11+32-1,即3x +y -3-1=0.答案3x+y-3-1=0。