最全线性规划题型总结

合集下载

线性规划的常见题型

线性规划的常见题型

线性规划的常见题型一、基础能力【一】已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则目标函数z =2x +3y 的取值范围为( )A .[7,23]B .[8,23]C .[7,8]D .[7,25]【二】变量x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1,(1)设z =y2x -1,求z 的最小值;(2)设z =x 2+y 2,求z 的取值范围;(3)设z =x 2+y 2+6x -4y +13,求z 的取值范围.技能掌握1.求目标函数的最值的一般步骤为:一画二移三求.其关键是准确作出可行域,理解目标函数的意义.2.常见的目标函数有: (1)截距型:形如z =ax +by .求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-a b x +z b ,通过求直线的截距zb 的最值,间接求出z 的最值.(2)距离型:形一:如z =(x -a )2+(y -b )2,z =x 2+y 2+Dx +Ey +F ,此类目标函数常转化为点(x ,y )与定点的距离;形二:z =(x -a )2+(y -b )2,z =x 2+y 2+Dx +Ey +F ,此类目标函数常转化为点(x ,y )与定点的距离的平方.(3)斜率型:形如z =y x ,z =ay -b cx -d ,z =ycx -d ,z =ay -b x ,此类目标函数常转化为点(x ,y )与定点所在直线的斜率.二、题型分解题型一:求线性目标函数的最值1.设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤0,3x -y -5≥0,则z =2x -y 的最大值为( )A .10B .8C .3D .22.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2≥0,x -y +3≥0,2x +y -3≤0,则目标函数z =x +6y 的最大值为( )A .3B .4C .18D .403.若点(x ,y )位于曲线y =|x |与y =2所围成的封闭区域,则2x -y 的最小值为( ) A .-6 B .-2 C .0D .2题型二:求非线性目标的最值4.在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x -y -2≥0,x +2y -1≥0,3x +y -8≤0所表示的区域上一动点,则直线OM斜率的最小值为( )A .2B .1C .-13D .-125.已知实数x ,y 满足⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y ,则z =2x +y -1x -1的取值范围 . 6.设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +y ≤2y -x ≤2,y ≥1,则x 2+y 2的取值范围是( )A .[1,2]B .[1,4]C .[2,2]D .[2,4]7.设D 为不等式组⎩⎪⎨⎪⎧x ≥0,2x -y ≤0,x +y -3≤0所表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为________.8.设不等式组⎩⎪⎨⎪⎧x ≥1,x -2y +3≥0,y ≥x所表示的平面区域是Ω1,平面区域Ω2与Ω1关于直线3x -4y -9=0对称.对于Ω1中的任意点A 与Ω2中的任意点B ,|AB |的最小值等于( )A .285B .4C .125D .2题型三:求线性规划中的参数9.若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是A .73B .37C .43D .3410.若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为( )A .2B .-2C .12D .-1211.x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为A .12或-1B .2或12C .2或1D .2或-112.在约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤s ,y +2x ≤4.下,当3≤s ≤5时,目标函数z =3x +2y 的最大值的取值范围是( )A .[6,15]B .[7,15]C .[6,8]D .[7,8]13.设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x 3a +y 4a ≤1,若z =x +2y +3x +1的最小值为32,则a 的值为________.题型四:线性规划的实际应用14.A,B两种规格的产品需要在甲、乙两台机器上各自加工一道工序才能成为成品.已知A产品需要在甲机器上加工3小时,在乙机器上加工1小时;B产品需要在甲机器上加工1小时,在乙机器上加工3小时.在一个工作日内,甲机器至多只能使用11小时,乙机器至多只能使用9小时.A产品每件利润300元,B产品每件利润400元,则这两台机器在一个工作日内创造的最大利润是________元.15.某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)试用每天生产的卫兵个数x与骑兵个数y表示每天的利润w(元);(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?三、练习巩固一、选择题1.已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为( ) A .(-24,7)B .(-7,24)C .(-∞,-7)∪(24,+∞)D .(-∞,-24)∪(7,+∞)2.若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x +2y ≥3,2x +y ≤3,则z =x -y 的最小值是( )A .-3B .0C .32D .33.已知O 为坐标原点,A (1,2),点P 的坐标(x ,y )满足约束条件⎩⎪⎨⎪⎧x +|y |≤1,x ≥0,则z =OA →·OP →的最大值为( )A .-2B .-1C .1D .24.已知实数x ,y 满足:⎩⎪⎨⎪⎧x -2y +1≥0,x <2,x +y -1≥0,则z =2x -2y -1的取值范围是( )A .⎣⎡⎦⎤53,5B .[0,5]C .⎣⎡⎭⎫53,5D .⎣⎡⎭⎫-53,5 5.如果点(1,b )在两条平行直线6x -8y +1=0和3x -4y +5=0之间,则b 应取的整数值为( ) A .2 B .1 C .3D .06.已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z =-x +y 的取值范围是( )A .(1-3,2)B .(0,2)C .(3-1,2)D .(0,1+3)7.在平面直角坐标系xOy 中,P 为不等式组⎩⎪⎨⎪⎧y ≤1,x +y -2≥0,x -y -1≤0,所表示的平面区域上一动点,则直线OP 斜率的最大值为( )A .2B .13C .12D .18.在平面直角坐标系xOy 中,已知平面区域A ={(x ,y )|x +y ≤1,且x ≥0,y ≥0},则平面区域B ={(x +y ,x -y )|(x ,y )∈A }的面积为( )A .2B .1C .12D .149.设x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -2≤0,x -y ≥0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为4,则ab的取值范围是( )A .(0,4)B .(0,4]C .[4,+∞)D .(4,+∞)10.设动点P (x ,y )在区域Ω:⎩⎪⎨⎪⎧x ≥0,y ≥x ,x +y ≤4上,过点P 任作直线l ,设直线l 与区域Ω的公共部分为线段AB ,则以AB 为直径的圆的面积的最大值为( )A .πB .2πC .3πD .4π11.变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥-1,x -y ≥2,3x +y ≤14,若使z =ax +y 取得最大值的最优解有无穷多个,则实数a 的取值集合是( )A .{-3,0}B .{3,-1}C .{0,1}D .{-3,0,1}12.设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a =( )A .-5B .3C .-5或3D .5或-313.若a ≥0,b ≥0,且当⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1时,恒有ax +by ≤1,则由点P (a ,b )所确定的平面区域的面积是( )A .12B .π4C .1D .π214.设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m <0,y -m >0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2.求得m 的取值范围是( )A .⎝⎛⎭⎫-∞,43B .⎝⎛⎭⎫-∞,13 C .⎝⎛⎭⎫-∞,-23D .⎝⎛⎭⎫-∞,-53 15.设不等式组⎩⎪⎨⎪⎧x +y -11≥0,3x -y +3≥0,5x -3y +9≤0表示的平面区域为D .若指数函数y =a x 的图象上存在区域D 上的点,则a 的取值范围是 ( )A .(1,3]B .[2,3]C .(1,2]D .[3,+∞)16.已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为( )A .5B .29C .37D .4917.在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧y ≥0,y ≤x ,y ≤k (x -1)-1表示一个三角形区域,则实数k 的取值范围是( )A .(-∞,-1)B .(1,+∞)C .(-1,1)D .(-∞,-1)∪(1,+∞)18.已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,|x |-y -1≤0,则z =2x +y 的最大值为( )A .4B .6C .8D .1019.当变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥x x +3y ≤4x ≥m 时,z =x -3y 的最大值为8,则实数m 的值是( )A .-4B .-3C .-2D .-120.已知O 为坐标原点,A ,B 两点的坐标均满足不等式组⎩⎪⎨⎪⎧x -3y +1≤0,x +y -3≤0,x -1≥0,则tan ∠AOB 的最大值等于( )A .94B .47C .34D .12二、填空题21.不等式组 ⎩⎪⎨⎪⎧x +y -2≥0,x +2y -4≤0,x +3y -2≥0表示的平面区域的面积为________.22.若实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1,则x +y 的取值范围是________.23.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,x -3y +4≤0,则目标函数z =3x -y 的最大值为____.24.已知实数x ,y 满足⎩⎪⎨⎪⎧x +y -1≤0,x -y +1≥0,y ≥-1,则w =x 2+y 2-4x -4y +8的最小值为________.25.在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x +3y -6≤0,x +y -2≥0,y ≥0所表示的区域上一动点,则|OM |的最小值是________.26.某企业生产甲、乙两种产品,已知生产每吨甲产品要用水3吨、煤2吨;生产每吨乙产品要用水1吨、煤3吨.销售每吨甲产品可获得利润5万元,销售每吨乙产品可获得利润3万元,若该企业在一个生产周期内消耗水不超过13吨,煤不超过18吨,则该企业可获得的最大利润是______万元.27.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表:________亩. 28.若A 为不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x ≤2表示的平面区域,则当a 从-2连续变化到1时,动直线x +y =a 扫过A 中的那部分区域的面积为________.29.当实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a 的取值范围是________.30.已知动点P (x ,y )在正六边形的阴影部分(含边界)内运动,如图,正六边形的边长为2,若使目标函数z =kx +y (k >0)取得最大值的最优解有无穷多个,则k 的值为________.31.设m >1,在约束条件⎩⎪⎨⎪⎧y ≥x ,y ≤mx ,x +y ≤1下,目标函数z =x +my 的最大值小于2,则m 的取值范围 .32.已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,若目标函数z =x -y 的最小值的取值范围是[-2,-1],则目标函数的最大值的取值范围是________.33.给定区域D :⎩⎪⎨⎪⎧x +4y ≥4,x +y ≤4,x ≥0.令点集T ={(x 0,y 0)∈D |x 0,y 0∈Z ,(x 0,y 0)是z =x +y 在D 上取得最大值或最小值的点},则T 中的点共确定________条不同的直线.34.已知向量a =(x +z,3),b =(2,y -z ),且a ⊥b .若x ,y 满足不等式|x |+|y |≤1,则z 的取值范围为__________.35.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +4y -13≤02y -x +1≥0x +y -4≥0且有无穷多个点(x ,y )使目标函数z =x +my 取得最小值,则m =________.。

八种经典线性规划例题最全总结(经典)

八种经典线性规划例题最全总结(经典)

线性规划常见题型及解法由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。

一、求线性目标函数的取值范围例1、若x、y满足约束条件,则z=x+2y的取值范围是()A、[2,6]B、[2,5]C、[3,6]D、(3,5]解:如图,作出可行域,作直线l:x+2y=0,将l向右上方平移,过点A(2,0)时,有最小值2,过点B(2,2)时,有最大值6,故选A二、求可行域的面积例2、不等式组表示的平面区域的面积为()A、4B、1C、5D、无穷大解:如图,作出可行域,△ABC的面积即为所求,由梯形OMBC的面积减去梯形OMAC的面积即可,选B三、求可行域中整点个数例3、满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有()A、9个B、10个C、13个D、14个解:|x|+|y|≤2等价于作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选D四、求线性目标函数中参数的取值范围例4、已知x、y满足以下约束条件,使z=x+ay(a>0)取得最小值的最优解有无数个,则a的值为()A、-3B、3C、-1D、1解:如图,作出可行域,作直线l:x+ay=0,要使目标函数z=x+ay(a>0)取得最小值的最优解有无数个,则将l向右上方平移后与直线x+y=5重合,故a=1,选D五、求非线性目标函数的最值例5、已知x、y满足以下约束条件,则z=x2+y2的最大值和最小值分别是()A、13,1B、13,2C、13,D、,解:如图,作出可行域,x2+y2是点(x,y)到原点的距离的平方,故最大值为点A(2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x+y-2=0的距离的平方,即为,选C六、求约束条件中参数的取值范围例6、已知|2x-y+m|<3表示的平面区域包含点(0,0)和(-1,1),则m的取值范围是()A、(-3,6)B、(0,6)C、(0,3)D、(-3,3)解:|2x-y+m|<3等价于由右图可知,故0<m<3,选C七、比值问题当目标函数形如时,可把z看作是动点与定点连线的斜率,这样目标函数的最值就转化为PQ连线斜率的最值。

线性规划常见题型及解法 均值不等式(含答案)

线性规划常见题型及解法 均值不等式(含答案)

线性规划常见题型及解法一.基础知识:(一)二元一次不等式表示的区域二元一次不等式0>++C By Ax 表示直线0=++C By Ax 某一侧的所有点组成的区域,把直线画成虚线表示不包括边界, 0≥++C By Ax 所表示的区域应包括边界,故边界要画成实线.由于在直线0=++C By Ax 同一侧的所有点(x,y ),把它的坐标(x,y )代入C By Ax ++,所得的符号相同,所以只需在此直线的某一侧取一个特殊点(0,0y x ),从C By Ax ++00的正负即可判断0≥++C By Ax 表示直线哪一侧的平面区域。

通常代特殊点(0,0)。

(二)线性规划(1)不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件.z =A x +B y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数.由于z =A x +B y 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数.另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示.(2)一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.(3)那么,满足线性约束条件的解(x ,y )叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部分表示的三角形区域.其中可行解(11,y x )和(22,y x )分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解.线性目标函数的最值常在可行域的顶点处取得;而求最优整数解必须首先要看它们是否在可行(4)用图解法解决简单的线性规划问题的基本步骤:1.首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域).2.设z =0,画出直线l 0.3.观察、分析,平移直线l 0,从而找到最优解.4.最后求得目标函数的最大值及最小值. (5) 利用线性规划研究实际问题的解题思路:首先,应准确建立数学模型,即根据题意找出约束条件,确定线性目标函数.然后,用图解法求得数学模型的解,即画出可行域,在可行域内求得使目标函数取得最值的解. 最后,还要根据实际意义将数学模型的解转化为实际问题的解,即结合实际情况求得最优解.线性规划是新教材中新增的内容之一,由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下常见题型。

线性规划题型总结

线性规划题型总结

3.【安徽卷(理05)】y x ,满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+02202202y x y x y x ,若ax y z -=获得最大值旳最优解不唯一,则实数 a 旳值为(A )21或1-(B )2或21(C )2或1(D )2或1-【答案】D【解析】可行域如右图所示,ax y z -=可化为z ax y +=,由题意知2=a 或1-4.【天津卷(理02)】设变量x 、y 满足约束条件20201x y x y y +-≥⎧⎪--≤⎨⎪≥⎩,则目旳函数2z x y =+旳最小值为A.2B.3C.4D.5【答案】B【解析】画出可行域,如图所示.解方程组⎩⎪⎨⎪⎧x +y -2=0,y =1,得⎩⎪⎨⎪⎧x =1,y =1,即点A (1,1).2=2=-当目旳函数线过可行域内A 点时,目旳函数有最小值,即z min =1×1+2×1=3.5.【山东卷(理09)】已知y x,满足旳约束条件⎩⎨⎧≥≤0,3-y -2x 0,1-y -x 当目旳函数0)b 0,by(a ax z >>+=在该约束条件下获得最小值52时,22a b +旳最小值为(A )5(B )4(C )5(D )2【答案】B【解析】10230x y x y --≤⎧⎨--≥⎩求得交点为()2,1,则225a b +=,即圆心()0,0到直线2250a b +-=旳距离旳平方2225245⎛⎫== ⎪ ⎪⎝⎭。

6.【全国新课标Ⅰ(理09)】不等式组124x y x y +≥⎧⎨-≤⎩旳解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥, 3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-.其中真命题是A .2p ,3PB .1p ,4pC .1p ,2pD .1p ,3P【答案】:C【解析】:作出可行域如图:设2x y z +=,即122zy x =-+,当直线过()2,1A -时,min 220z =-+=,∴0z ≥,∴命题1p 、2p 真命题,选C.7.【全国新课标Ⅱ(理09)】设x,y 满足约束条件70310350x y x y x y +-⎧⎪-+⎨⎪--⎩≤≤≥,则2z x y =-旳最大值为( )A. 10B. 8C. 3D. 2【答案】 B【解析】..8,)2,5(07-013--2B z y x y x y x z 故选取得最大值处的交点与在两条直线可知目标函数三角形,经比较斜率,画出区域,可知区域为==+=+=9.【北京卷(理06)】若,x y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩且z y x =-旳最小值为-4,则k 旳值为( ).2A .2B - 1.2C 1.2D -【答案】D【解析】由约束条件作出可行域如图,由kx ﹣y+2=0,得x=,∴B (﹣).由z=y ﹣x 得y=x+z .由图可知,当直线y=x+z 过B (﹣)时直线在y 轴上旳截距最小,即z 最小.此时,解得:k=﹣.故选:D11.【广东卷(理03)】若变量,x y 满足约束条件121y xx y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且旳最大值和最小值分别为M 和m ,则M-m=A .8 B.7 C.6 D.5【答案】C【解析】由题画出如图所示旳可行域;由图可知当直线2z x y +通过点(2,1)B -时,max 2213z =⨯-=,当直线2z x y =+通过点(1,1)A --时,min 2(1)13z =⨯--=-,因此6M N -=,故选C.2246510y = -1x +y -1=0y = xBAC O1 .(高考湖南卷(理))若变量,x y 满足约束条件211y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,2x y +则的最大值是 ( )A .5-2B .0C .53D .52【答案】C2 .(一般高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))已知0a >,,x y满足约束条件13(3)x x y y a x ≥⎧⎪+≤⎨⎪≥-⎩,若2z x y =+旳最小值为1,则a =( )A .14B .12C .1D .2【答案】B3 .(一般高等学校招生统一考试天津数学(理)试题(含答案))设变量x , y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩则目旳函数z = y -2x 旳最小值为 ( )A .-7B .-4[来源:学.科.网]C .1D .2【答案】A4.(一般高等学校招生统一考试山东数学(理)试题(含答案))在平面直角坐标系xoy 中,M为不等式组220,210,380,x y x y x y --≥⎧⎪+-≥⎨⎪+-≤⎩所示旳区域上一动点,则直线OM 斜率旳最小值为( )A .2B .1C .13-D .12-5.(高考北京卷(理))设有关x ,y 旳不等式组210,0,0x y x m y m -+>⎧⎪+<⎨⎪->⎩表达旳平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,求得m 旳取值范围是( )[来源:学#A .4,3⎛⎫-∞ ⎪⎝⎭B .1,3⎛⎫-∞ ⎪⎝⎭C .2,3⎛⎫-∞-⎪⎝⎭D .5,3⎛⎫-∞- ⎪⎝⎭[来源:学,科,网Z,X,X,K]【答案】C 二、填空题6.(一般高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))记不等式组0,34,34,x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所示旳平面区域为D ,若直线()1y a x =+与D 公共点,则a 旳取值范围是______.【答案】1[,4]27.(高考陕西卷(理))若点(x , y )位于曲线|1|y x =-与y =2所围成旳封闭区域, 则2x -y 旳最小值为___-4_____.【答案】- 48.(高考四川卷(理))已知()f x 是定义域为R 旳偶函数,当x ≥0时,2()4f x x x =-,那么,不等式(2)5f x +<旳解集是____________.【答案】(7,3)- 910.(一般高等学校招生统一考试浙江数学(理)试题(纯WORD 版))设y kx z +=,其中实数y x ,满足⎪⎩⎪⎨⎧≤--≥+-≥-+04204202y x y x y x ,若z 旳最大值为12,则实数=k ________.[来源:学_科_网Z_X_X_K]【答案】2。

线性规划基本题型

线性规划基本题型

例5
(2023年北京-7)设不等式组
3x表x达y旳y平1面13
0 0
区(A域)(1为,D3,] 若(B指)数[2,函3数] y=(aCx旳) (1图,像2上] 存在(D区)[域35D,x上+旳∞3]点y,则9a旳0取值范围是
解:作出可行域如右图所示绿色
区域. 0<a<1 时 , x>0 时 , 0<ax<1 , y=ax
离旳平方旳最值问题.
题型三 求非线性目旳函数旳最值—斜率型
例3
x+y-6≥0, 已知实数 x,y 满足4x-3y+12≥0,
x≤4.
求xy的最大值与最小值.
【解】
x+y-6≥0, 作出不等式组4x-3y+12≥0,
x≤4
平面区域,如图所示.
表示的
(1)令 z=xy,则 y=zx.故求xy的最大值与最小值就是求 不等式组所表示的平面区域内的点与原点连线的斜率的 最大值与最小值,由图易知,kOC 最小,kOA 最大.
联立2x+x+2yy= =4500 ,得xy==2100 , ∴A(10,20). ∴z=3x+2y 的最大值为 z=3×10+2×20=70.
题型二 求非线性目旳函数旳最值—距离型
若目旳函数不是线性函数,我们可先将目旳函数变形找 到它旳几何意义,再利用解析几何知识求最值.
例2
x-y+2≥0 已知x+y-4≥0 ,求:
的交点(4,6)时,目标函数 z=ax+by(a>0,
b>0)取得最大值 12,即 4a+6b=12,即 2a+3b=6,而2a+3b=(2a+3b)2a+6 3b=163+(ba+ab)≥163+2= 265,故2a+3b的最小值为265.
检测:

高考数学线性规划题型总结

高考数学线性规划题型总结

高考数学线性规划题型总结文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]线性规划常见题型及解法 一、已知线性约束条件,探求线性目标关系最值问题例1、设变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为 。

解析:如图1,画出可行域,得在直线2x-y=2与直线x-y=-1的交点A(3,4)处,目标函数z 最大值为18点评:本题主要考查线性规划问题,由线性约束条件画出可行域,然后求出目标函数的最大值.,是一道较为简单的送分题。

数形结合是数学思想的重要手段之一。

习题1、若x 、y 满足约束条件222x y x y ≤⎧⎪≤⎨⎪+≥⎩,则z=x+2y 的取值范围是 ( )A 、[2,6]B 、[2,5]C 、[3,6]D 、(3,5] 解:如图,作出可行域,作直线l :x+2y =0,将l 向右上方平移,过点A (2,0)时,有最小值 2,过点B (2,2)时,有最大值6,故选A二、已知线性约束条件,探求非线性目标关系最值问题例2、已知1,10,220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩则22x y +的最小值是 .22x y +解析:如图2,只要画出满足约束条件的可行域,而表示可行域内一点到原点的距离的平方。

由图易知A (1,2)是满足条件的最优解。

22x y +的最小值是为5。

点评:本题属非线性规划最优解问题。

求解关键是在挖掘目标关系几何意义的前提下,作出可行域,寻求最优解。

习题2、已知x 、y 满足以下约束条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则z=x 2+y 2的最大值和最小值分别是( ) A 、13,1 B 、13,2C 、13,45D 、13,25图2x y O22 x=2y =2 x + y =2BA2x + y - 2= 0x – 2y + 4 = 0 3x – y – 3 = 0OyxA解:如图,作出可行域,x 2+y 2是点(x ,y )到原点的距离的平方,故最大值为点A (2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x +y -2=0的距离的平方,即为45,选C 练习2、已知x ,y 满足⎪⎩⎪⎨⎧≥-+≥≥≤-+0320,1052y x y x y x ,则x y 的最大值为___________,最小值为____________. 2,0三、设计线性规划,探求平面区域的面积问题例3、在平面直角坐标系中,不等式组20200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域的面积是()(A)42 (B)4 (C) 22 (D)2 解析:如图6,作出可行域,易知不等式组20200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域是一个三角形。

线性规划的12种题型

线性规划的12种题型

线性规划的12种题型线性规划是高考必考的知识点,学生对这个知识点认识多数停留在简单应用阶段,现将常见题型归纳如下:一、 考查不等式表示的平面区域:例1、不等式0x y ->所表示的平面区域是( ) A. B. C. D.分析:法一:代入特殊点验证;法二:看系数的符号,若x 系数为正数,则左小右大,选B练习1、不等式()20y x y +-≥在平面直角坐标系中表示的区域(用阴影部分表示)是 ( )选C2、已知点()3,1-和()4,3--在直线320x y a -+=的同侧,则a 的取值范围是__________.【答案】611a a ><-或二、 判断可行域形状例2、不等式组 (5)()0,03x y x y x -++≥⎧⎨≤≤⎩表示的平面区域是( ) A.矩形 B.三角形 C.直角梯形 D.等腰梯形分析:画图可知为等腰梯形,选D练习2、已知约束条件400x k x y x y ≥⎧⎪+-≤⎨⎪-≤⎩表示面积为1的直角三角形区域,则实数k 的值为( )A.0B.1C.1或3D.3选B三、 最值型简单线性规划例3、设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥≤+≥-041y y x y x ,则目标函数y x z 42+=的最大值为( )A .2B .4C .8D .11分析:1.画可行域,2画l 0:2x+4y=0,3平移到可行域的最右侧确定最优解的位置,4联立求出最优解坐标,4代入目标函数求最大值11选D练习3、若实数,x y 满足1000x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,则23x y z +=的最小值为.答案:1四、最优解问题例4、如图所示的坐标平面的可行域(阴影部分且包括边界)内,目标函数ay x z -=2取得最大值的最优解有无数个,则a 为( )A.-2B.2C.-6D.6分析:因为x 的系数为正,所以目标函数与BC 重合时,取最大值,最优解有无数个 代入B 、C 的坐标两式相等,求出a=-2选A五、斜率型线性规划例5、若x 、y 满足约束条件10040x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩,则1y x -的最大值为 . 分析:1y x -相当于P (x,y )与Q (0,1)连线的斜率,直线最陡时,斜率最大,P 取(1,3)答案:2练习:5、设,x y 满足约束条件04312x y x x y ≥⎧⎪≥⎨⎪+≤⎩,且231x y z x ++=+,则z 的取值范围是( ) A.[3,11] B.[2,10] C.[2,6] D.[1,5]选A六、距离型例6、设实数,x y 满足约束条件250403100x y x y x y --≤⎧⎪+-≤⎨⎪+-≥⎩,则22z x y =+的最小值为 ( )10 C.8 D.5分析:所求式子相当于原点与可行域内点距离的平方,利用点到直线距离公式可求 选B练习6、设x ,y 满足0,10,3220,y ax y x y ≥⎧⎪+-≤⎨⎪--≤⎩若210z x x y =-+2的最小值为12-,则实数a的取值范围是( )A .32a <B .32a <-C .12a ≥D .12a ≤- 选D七、含绝对值型例7、实数y x ,满足⎪⎩⎪⎨⎧≤≥-++≤20222x y x x y ,则||y x z -=的最大值是( )A .2B .4C .6D .8分析:先求出z=x-y 的最值,再取绝对值选B八、向量型例8、已知()21A ,,()00O ,,点()M x y ,满足12222x y x y ≤≤⎧⎪≤⎨⎪-≤⎩,则z OA AM =的最大值为( )A .1B .0 C.1- D .5-分析:先将向量化简,再求最值选A九、变换型例9、已知点(),M a b 在由不等式组002x y x y ≥⎧⎪≥⎨⎪+≤⎩确定的平面区域内,则点(),N a b a b +-所在平面区域的面积是( )A .1B .2C .4D .8分析:设x=a+b,y=a-b,求出x,y 满足的关系式,再求解选C练习9设变量x ,y 满足1,0,0,x y x y +≤⎧⎪≥⎨⎪≥⎩则点(,)P x y x y +-所在区域的面积为( )A .2B .1C .12D .14 选B十、隐含型例10、已知关于x 的方程2(1)210x a x a b +++++=的两个实根分别为1x ,2x ,且101x <<,21x >,则b a的取值范围是( ) A .1(1,)4-- B .1(1,]4-- C .(1,)-+∞ D .1(,)4-∞- 分析:根据条件,利用根的分布列出关系式,提供约束条件,再求解选A练习10、若关于的方程22222(6)2410x a b b x a b a b -+-+++-+=的两个实数根1x ,2x 满足1201x x ≤≤≤,则224a b a ++的最大值和最小值分别为( ) A.12和5+ B.72-和5+ C.72-和12 D.12-和15-选B十一、含参型例11、设1m >,变量x ,y 在约束条件,,1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值为2,则m =_________.分析:画大致图像,确定最优解位置,解方程组,代入求解1m =+练习1、当x ,y 满足不等式组22,4,72x y y x x y +≤⎧⎪-≤⎨⎪-≤⎩时,22kx y -≤-≤恒成立,则实数k 的取值范围是( )A .[]1,1-B .[]2,0-C .13,55⎡⎤-⎢⎥⎣⎦D .1,05⎡⎤-⎢⎥⎣⎦练习2、已知变量y x ,满足约束条件⎪⎩⎪⎨⎧≥-≤-≤+1236x y x y x ,则目标函数(0,0)z ax by a b =+>>的最小值为2,则b a 11+的最小值为( )A .2B .4C .53+D .223+十二、曲线型例12已知实数,x y 满足401010x y y x +-≤⎧⎪-≥⎨⎪-≥⎩,则2y z x =的最大值是 A .13B .9C .2D .11 分析:所求函数变形后为抛物线,代最高点取最大值【答案】B练习12已知P (x,y)的坐标满足021,x y x y x ≤⎧⎪>⎨⎪<+⎩________ 分析:可转化为向量夹角余弦,再画图求解答案:((注:可编辑下载,若有不当之处,请指正,谢谢!)。

高中简单线性规划基础题型总结

高中简单线性规划基础题型总结

高中简单线性规划基础题型总结熊明军简单线性规划属于操作性知识,是高考必考知识点,历年不变,必有一选择或填空题。

下面结合例题,总结高中简单线性规划问题的基础题型,方便同学们快速掌握相关内容。

线性规划问题的基础题型,可根据目标函数的特点,将其分为三类: 类型一(直线):by ax z +=【理论】点到直线的距离。

【步骤】①作出可行域;②作出直线by ax +=0;③判断可行域顶点到直线by ax +=0的距离:()max max ,z y x P d ⇒⇒和()min min ,'z y x P d ⇒⇒【例题】已知y x ,满足不等式组⎪⎩⎪⎨⎧≤--≥-+≥+-0520402y x y x y x ,求y x z 2-=的最值。

【解析】分三步走:①作出可行域:②作出直线y x 20-=:③判断直线y x 20-=到可行域顶点C B A 、、间的距离:平移、目测或代点都能判断,得()()11231,3,max max =⨯-=⇒⇒=z B l B d d ;()()119279,7,min min -=⨯-=⇒⇒=z C l C d d 。

类型二(圆):()()22b y a x z -+-= 【理论】两点之间的距离。

【步骤】①作出可行域;②作出圆()()222b y a x d -+-=;③判断可行域上的点到圆心()b a ,的距离(即半径r ):()max max max ,z y x P d r ⇒⇒=和()min min min ,'z y x P d r ⇒⇒=【例题】已知y x ,满足不等式组⎪⎩⎪⎨⎧≤--≥-+≥+-0520402y x y x y x ,求()()2211-+-=y x z 的最值。

【解析】分三步走:①作出可行域:②作出圆()()22211-+-=y x d :r d =且半径r 由小到大逐渐作圆。

③判断圆心()1,1到可行域上点间的距离,也就是与可行域有交点的圆中半径r 的大小:目测或用圆规作圆都能判断,得()()()()10019179,7,22max max max =-+-=⇒⇒==z C D C d d r ;()()211411,2222min min min min =⎪⎪⎭⎫ ⎝⎛+-+==⇒==d z l D d d r AB . 类型三(斜率):m n x a b y m a m n x m a b y a n mx b ay z --⨯=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=--= 【理论】两点确定的直线的斜率。

最全线性规划题型总结

最全线性规划题型总结

线性规划题型总结1.“截距”型考题在线性约束条件下, 求形如z =ax • by (a,b ・R )的线性目标函数的最值问题, 通常转化为求 直线在y 轴上的截距 的取值.结合图形易知,目标函数的最值一般在可行域的顶点处取得 掌握此规律可以有效避免因画图太草而造成的视觉误差最大值为()A — B1 C- D 3答案:D目标函数z=x+y 结果可行域的A 点时,目标函数取得最 大值,由{厂;可得A (0,3),目标函数z=x+y 的最大值为:3.2. (2017?新课标川)若x,y 满足约束条件x4y-2<0 , [y>0则z=3x - 4y 的最小值为答案:-1.解:由z=3x - 4y ,得y=:x -丰,作出不等式对应的可 行域(阴影部分),平移直线y=^x -手,由平移可知当直线y^x -手,4 4 4 4 经过点B ( 1, 1)时,直线y=^x -号的截距最大,此 时z 取得最小值,将B 的坐标代入z=3x - 4y=3 - 4=- 1, 即目标函数z=3x - 4y 的最小值为-1.:1X..乂1. (2017?天津)设变量x , y 满足约束条件v+2y-2^0,则目标函数z=x+y 的解:变量x ,y 满足约束条件 x+2y-2^0KO的可行域如图: -3 -4 -543.(2017?浙江)若x 、y 满足约束条件x+y-3>0 ,则z=x+2y 的取值范围是(A. [0 , 6]B. [0 , 4]C. [6 , +x)D. [4 , +^ 答案:D. 解:x 、y 满足约束条件《 ,表示的可行域如图: 目标函数z=x+2y 经过C 点时,函数取得最小值, :打解得C (2,1), 目标函数的最小值为:4 1 7目标函数的范围是[4 , +x 4. ( 2016?河南二模)已知x , y € R,且满足 A. 10 B. 8 C. 6 D. 3 答案:C. 解:作出不等式组 由 z=|x+2y| , 平移直线y=- 十, 1 x -2由图象可知当直线 y=- ,则z=|x+2y|的最大值为( ,对应的平面区域如图:(阴影部分) 许经过点A 时, 值, 此时z 最大. 即 A (- 2,- 2), 代入目标函数z=|x+2y|得z=2X 2+2=6。

高考线性规划题型归纳

高考线性规划题型归纳

线性规划常见题型及解法一、已知线性约束条件,探求线性目标关系最值问题例1、设变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为 。

解析:如图1,画出可行域,得在直线2x-y=2与直线x-y=-1的交点A(3,4)处,目标函数z 最大值为18 点评:本题主要考查线性规划问题,由线性约束条件画出可行域,然后求出目标函数的最大值.,是一道较为简单的送分题。

数形结合是数学思想的重要手段之一。

习题1、若x 、y 满足约束条件222x y x y ≤⎧⎪≤⎨⎪+≥⎩,则z=x+2y 的取值范围是 ( )A 、[2,6]B 、[2,5]C 、[3,6]D 、(3,5] 解:如图,作出可行域,作直线l :x+2y =0,将l 向右上方平移,过点A (2,0)时,有最小值2,过点B (2,2)时,有最大值6,故选A 二、已知线性约束条件,探求非线性目标关系最值问题例2、已知1,10,220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩则22x y +的最小值是 .解析:如图2,只要画出满足约束条件的可行域,而22x y +表示可行域内一点到原点的距离的平方。

由图易知A (1,2)是满足条件的最优解。

22x y +的最小值是为5。

点评:本题属非线性规划最优解问题。

求解关键是在挖掘目标关系几何意义的前提下,作出可行域,寻求最优解。

习题2、已知x 、y 满足以下约束条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则z=x 2+y 2的最大值和最小值分别是( )图2x y O22 x=2 y =2 x + y =2 BAA 、13,1B 、13,2C 、13,45D 、13,255解:如图,作出可行域,x 2+y 2是点(x ,y )到原点的距离的平方,故最大值为点A (2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x +y -2=0的距离的平方,即为45,选C练习2、已知x ,y 满足⎪⎩⎪⎨⎧≥-+≥≥≤-+0320,1052y x y x y x ,则x y 的最大值为___________,最小值为____________.2,0三、设计线性规划,探求平面区域的面积问题例3、在平面直角坐标系中,不等式组20200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域的面积是()(A)42 (B)4 (C) 22 (D)2解析:如图6,作出可行域,易知不等式组20200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域是一个三角形。

高考线性规划必考题型(非常全),DOC

高考线性规划必考题型(非常全),DOC

线性规划专题一、命题规律讲解1、求线性(非线性)目标函数最值题2、求可行域的面积题3、求目标函数中参数取值范围题4、求约束条件中参数取值范围题5、利用线性规划解答应用题一、线性约束条件下线性函数的最值问题例1例2(或一例3例4,标(),x y即最优解。

例5 已知实数,x y满足不等式组10101x yx yy+-≤⎧⎪-+≥⎨⎪≥-⎩,求22448x y x y+--+的最小值。

例6 实数,x y满足不等式组220yx yx y≥⎧⎪-≥⎨⎪--≥⎩,求11yx-+的最小值四、非线性约束条件下非线性函数的最值问题在高中数学中还有一些常见的问题也可以用线性规划的思想来解决,它的约束条件是一个二元不等式组,目标函数也是一个二元函数,可行域是由曲线或直线所围成的图形(或一条曲线段),区域内的各点的点坐标(),x y即可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标(),x y即最优解。

例7 已知,x y满足y=2yx+的最大值和最小值1.“截距”型考题方法:求交点求最值在线性约束条件下,求形如(,)z ax by a b R=+∈的线性目标函数的最值问题,通常转化为求直线在y轴上的截距的取值.结合图形易知,目标函数的最值一般在可行域的顶点处取得.掌握此规律可1.2.(3.(4.(1,0)处5.54万元,植面积,50 6.(.已原料2千克;生产乙产品1桶需耗A原料2千克,B原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A、B原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是()A、1800元B、2400元C、2800元D、3100元2.“距离”型考题方法:求交点求最值10.【福建卷理8】设不等式组x 1x-2y+30y x ≥⎧⎪≥⎨⎪≥⎩所表示的平面区域是1Ω,平面区域是2Ω与1Ω关于直线3490x y --=对称,对于1Ω中的任意一点A 与2Ω中的任意一点B,||AB 的最小值等于()A.285B.4C.125D.2 11.(北京卷理2)设不等式组⎩⎨⎧≤≤≤≤20,20y x ,表示平面区域为D ,在区域D 内随机取一个点,则此点到12.13. 4.14.则A B15.且x A .2B .1C .12D .1416.(·安徽卷理15)若A 为不等式组002x y y x ≤⎧⎪≥⎨⎪-≤⎩表示的平面区域,则当a 从-2连续变化到1时,动直线x y a +=扫过A 中的那部分区域的面积为.17.(安徽卷理7)若不等式组03434x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域被直线43y kx =+分为面积相等的两部分,则k 的值是(A )73(B )37(C )43(D )3418.(浙江卷理17)若0,0≥≥b a ,且当⎪⎩⎪⎨⎧≤+≥≥1,0,0y x y x 时,恒有1≤+by ax ,则以a ,b 为坐标点(,)P a b 所5.21.y =22.区域D A(1,25.0)处取得最小值,则a 的取值范围是()A .(1-,2)B .(4-,2)C .(4,0]-D .(2,4)-26.(湖南卷理7)设m >1,在约束条件下,⎪⎩⎪⎨⎧≤+≤≥1y x mx y xy 目标函数z=x+my 的最大值小于2,则m 的取值范围为A .)21,1(+B .),21(+∞+C .(1,3)D .),3(+∞6.求约束条件中参数取值范围题 一、必考知识点讲解规律方法:当参数在线性规划问题的约束条件中时,作可行域,要注意应用“过定点的直线系”知识,使直线“初步稳定”,再结合题中的条件进行全方面分析才能准确获得答案. 二、经典例题分析19.(福建卷)在平面直角坐标系中,若不等式组101010x y x ax y +-≥⎧⎪-≤⎨⎪-+≥⎩(α为常数)所表示的平面区域内的面积等于2,则a 的值为A.-5B.1C.2D.320.的最大值23.是24.m =7.27.0)的值是A.625B.38C.311D.4 28.(·安徽卷理13)设,x y 满足约束条件2208400 , 0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,若目标函数()0,0z abx y a b =+>>的最大值为8,则a b +的最小值为________.6、利用线性规划解答应用题.(2012年高考·四川卷理9)某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克,B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A、B原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是()A、1800元B、2400元C、2800元D、3100元。

高考线性规划必考题型非常全

高考线性规划必考题型非常全

高考线性规划必考题型非常全YUKI was compiled on the morning of December 16, 2020线性规划专题一、命题规律讲解1、求线性(非线性)目标函数最值题2、求可行域的面积题3、求目标函数中参数取值范围题4、求约束条件中参数取值范围题5、利用线性规划解答应用题一、线性约束条件下线性函数的最值问题线性约束条件下线性函数的最值问题即简单线性规划问题,它的线性约束条件是一个二元一次不等式组,目标函数是一个二元一次函数,可行域就是线性约束条件中不等式所对应的方程所表示的直线所围成的区域,区域内的各点的点坐标(),x y 即简单线性规划的可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标(),x y 即简单线性规划的最优解。

例1 已知4335251x y x y x -≤-⎧⎪+≤⎨⎪≥⎩,2z x y =+,求z 的最大值和最小值例2已知,x y 满足124126x y x y x y +=⎧⎪+≥⎨⎪-≥-⎩,求z=5x y -的最大值和最小值二、非线性约束条件下线性函数的最值问题高中数学中的最值问题很多可以转化为非线性约束条件下线性函数的最值问题。

它们的约束条件是一个二元不等式组,目标函数是一个二元一次函数,可行域是直线或曲线所围成的图形(或一条曲线段),区域内的各点的点坐标(),x y 即可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标(),x y 即最优解。

例3 已知,x y 满足,224x y +=,求32x y +的最大值和最小值例4 求函数4y x x=+[]()1,5x ∈的最大值和最小值。

三、线性约束条件下非线性函数的最值问题这类问题也是高中数学中常见的问题,它也可以用线性规划的思想来进行解决。

它的约束条件是一个二元一次不等式组,目标函数是一个二元函数,可行域是直线所围成的图形(或一条线段),区域内的各点的点坐标(),x y 即可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标(),x y 即最优解。

最全线性规划题型总结

最全线性规划题型总结

线性规划题型总结1. “截距”型考题在线性约束条件下,求形如(,)z ax by a b R =+∈的线性目标函数的最值问题,通常转化为求直线在y 轴上的截距的取值. 结合图形易知,目标函数的最值一般在可行域的顶点处取得.掌握此规律可以有效避免因画图太草而造成的视觉误差.1.(2017•天津)设变量x ,y 满足约束条件,则目标函数z=x+y 的最大值为( )A .B .1C .D .3答案:D 解:变量x ,y 满足约束条件的可行域如图:目标函数z=x+y 结果可行域的A 点时,目标函数取得最大值,由可得A (0,3),目标函数z=x+y 的最大值为:3.2.(2017•新课标Ⅲ)若x ,y 满足约束条件,则z=3x ﹣4y 的最小值为 .答案:﹣1.解:由z=3x ﹣4y ,得y=x ﹣,作出不等式对应的可行域(阴影部分),平移直线y=x ﹣,由平移可知当直线y=x ﹣,经过点B (1,1)时,直线y=x ﹣的截距最大,此时z 取得最小值,将B的坐标代入z=3x﹣4y=3﹣4=﹣1,即目标函数z=3x﹣4y的最小值为﹣1.(2017•浙江)若x、y满足约束条件,则z=x+2y的取值范围是()3.A.[0,6] B.[0,4] C.[6,+∞)D.[4,+∞)答案:D.解:x、y满足约束条件,表示的可行域如图:目标函数z=x+2y经过C点时,函数取得最小值,由解得C(2,1),目标函数的最小值为:4目标函数的范围是[4,+∞).4.(2016•河南二模)已知x,y∈R,且满足,则z=|x+2y|的最大值为()A.10 B.8 C.6 D.3答案:C.解:作出不等式组,对应的平面区域如图:(阴影部分)由z=|x+2y|,平移直线y=﹣x+z,由图象可知当直线y=﹣x﹣z经过点A时,z取得最大值,此时z最大.即A(﹣2,﹣2),代入目标函数z=|x+2y|得z=2×2+2=6。

5.(2016•湖南模拟)设变量x、y满足约束条件,则z=32x﹣y的最大值为()A.B.C.3 D.9答案:D.解:约束条件对应的平面区域如图:令2x﹣y=t,变形得y=2x﹣t,根据t的几何意义,由约束条件知t过A时在y轴的截距最大,使t最小,由得到交点A(,)所以t最小为;过C时直线y=2x﹣t在y轴截距最小,t最大,由解得C(1,0),所以t的最大值为2×1﹣0=2,所以,故。

(完整word)线性规划题型总结,推荐文档

(完整word)线性规划题型总结,推荐文档

线性规划题型总结一、设变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x 【类型一:已知线性约束条件,探求线性目标关系最值问题】例1.求y x z 32+=的最大值.【类型二:已知线性约束条件,探求分式目标关系最值问题】例2.求112++=y x z 的取值范围.【类型三:已知线性约束条件,探求平方和目标关系最值问题】例3.求22)2(-+=y x z 的最值,以及此时对应点的坐标.【类型四:已知线性约束条件,探求区域面积与周长问题】例4.试求所围区域的面积与周长.【类型五:已知最优解,探求目标函数参数问题】例5.已知目标函数z ax y =+(其中0<a )仅在(3,4)取得最大值,求a 的取值范围.【类型六:已知最优解,探求约束条件参数问题】 例6.设变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+≥-≤-122y x m y x y x ,目标函数y x z 32+=在(4,6)取得最大值,求m .二、线性规划的实际应用线性规划的实际应用题型大体有两类,一类是一项任务确定后,如何统一安排,做到以最少的人力物力完成任务;另一类是在人力物力一定的条件下,如何安排使得最大化的发挥效益.两类题型是同一个问题的两面,主要依据以下步骤:1.认真分析实际问题的数学背景,将对象间的生产关系列成表格;2.根据问题设未知量,并结合表格将生产关系写出约束条件;3.结合图形求出最优解.例1.配制A 、B 两种药剂,需要甲、乙两种原料,已知配一剂A 种药需甲料3 mg ,乙料5 mg ;配一剂B 种药需甲料5 mg ,乙料4 mg.今有甲料20 mg ,乙料25 mg ,若A 、B 两种药至少各配一剂,问共有多少种配制方法?例2. 某汽车公司有两家装配厂,生产甲、乙两种不同型号的汽车,若A 厂每小时可完成1辆甲型车和2辆乙型车;B 厂每小时可完成3辆甲型车和1辆乙型车.今欲制造40辆甲型车和20辆乙型车,问这两家工厂各工作几小时,才能使所费的总工作时数最少?针对练习一、选择题1.下列四个命题中真命题是( )A .经过点P (x o ,y o )的直线都可以用方程y -y o =k (x -x o )表示;B .经过任意两不同点P 1(x 1,y 1), P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示;C .不经过原点的直线都可以用方程1=+by a x 表示; D .经过定点A (0,b )的直线都可以用方程y =kx +b 表示2.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( ).A 1=+b a .B 1=-b a .C 0=+b a .D 0=-b a3.下面给出四个点中,位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( ) A.(02), B.(20)-,C.(02)-, D.(20), 4.若变量x 、y 满足约束条件 1.0.20.y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则z =x-2y 的最大值为A.4B.3C.2D.15.在约束条件0024x y y x s y x ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩下,当35s ≤≤时,目标函数32z x y =+最大值的变化范围是( ) A.[6,15] B. [7,15] C. [6,8] D. [7,8]6.在平面直角坐标系中,不等式组20200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域的面积是()A. B.4C. D.27.某公司招收男职员x 名,女职员y 名,x 和y 须满足约束条件⎪⎩⎪⎨⎧≤≥+-≥-.112,932,22115x y x y x 则1010z x y =+的最大值是( )A.80B.85C. 90D.958.已知变量x y ,满足约束条件20170x y x x y -+⎧⎪⎨⎪+-⎩≤,≥,≤,则y x 的取值范围是( ).A ⎥⎦⎤⎢⎣⎡6,59 .B [)965⎛⎤-∞+∞ ⎥⎝⎦U ,, .C (][)36-∞+∞U ,, .D [36],二、填空题9.已知1,10,220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩则22x y +的最小值是 ;10.若A 为不等式组002x y y x ≤⎧⎪≥⎨⎪-≤⎩表示的平面区域,则当a 从-2连续变化到1时,动直线x y a +=扫过A 中的那部分区域的面积为 ;11.已知变量x ,y 满足约束条件1422x y x y ≤+≤⎧⎨-≤-≤⎩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性规划题型总结1. “截距”型考题在线性约束条件下,求形如(,)z ax by a b R =+∈的线性目标函数的最值问题,通常转化为求直线在轴上的截距的取值. 结合图形易知,目标函数的最值一般在可行域的顶点处取得.掌握此规律可以有效避免因画图太草而造成的视觉误差.1.(2017天津)设变量x ,y 满足约束条件,则目标函数z=x+y 的最大值为( )A .B .1C .D .3答案:D 解:变量x ,y 满足约束条件的可行域如图:目标函数z=x+y 结果可行域的A 点时,目标函数取得最大值,由可得A (0,3),目标函数z=x+y 的最大值为:3.2.(2017新课标Ⅲ)若x ,y 满足约束条件,则z=3x ﹣4y 的最小值为 .答案:﹣1. 解:由z=3x ﹣4y ,得y=x ﹣,作出不等式对应的可行域(阴影部分),平移直线y=x ﹣,由平移可知当直线y=x ﹣,经过点B (1,1)时,直线y=x ﹣的截距最大,此时z 取得最小值,将B 的坐标代入z=3x ﹣4y=3﹣4=﹣1,即目标函数z=3x﹣4y的最小值为﹣1.3.(2017浙江)若x、y满足约束条件,则z=x+2y的取值范围是()A.[0,6] B.[0,4] C.[6,+∞)D.[4,+∞)答案:D.解:x、y满足约束条件,表示的可行域如图:目标函数z=x+2y经过C点时,函数取得最小值,由解得C(2,1),目标函数的最小值为:4目标函数的范围是[4,+∞).4.(2016河南二模)已知x,y∈R,且满足,则z=|x+2y|的最大值为()A.10 B.8 C.6 D.3答案:C.解:作出不等式组,对应的平面区域如图:(阴影部分)由z=|x+2y|,平移直线y=﹣x+z,由图象可知当直线y=﹣x﹣z经过点A时,z取得最大值,此时z最大.即A(﹣2,﹣2),代入目标函数z=|x+2y|得z=2×2+2=6。

5.(2016湖南模拟)设变量x、y满足约束条件,则z=32x﹣y的最大值为()A.B.C.3 D.9答案:D.解:约束条件对应的平面区域如图:令2x﹣y=t,变形得y=2x﹣t,根据t的几何意义,由约束条件知t过A时在y轴的截距最大,使t最小,由得到交点A(,)所以t最小为;过C时直线y=2x﹣t在y轴截距最小,t最大,由解得C(1,0),所以t的最大值为2×1﹣0=2,所以,故。

2 . “距离”型考题在线性约束条件下,求形如z=(x-a)2+(y-b)2的线性目标函数的最值问题,通常转化为求点(a,b)到阴影部分的某个点的距离的平方的取值.6.(2016山东)若变量x,y满足,则x2+y2的最大值是()A.4 B.9C.10 D.12答案:C.解:由约束条件作出可行域如图,∵A(0,﹣3),C(0,2),∴|OA|>|OC|,联立,解得B(3,﹣1).∵,∴x2+y2的最大值是10.7.(2016浙江)在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影,由区域中的点在直线x+y﹣2=0上的投影构成的线段记为AB,则|AB|=()A.2 B.4 C.3 D.6答案:C解:作出不等式组对应的平面区域如图:(阴影部分),区域内的点在直线x+y ﹣2=0上的投影构成线段R′Q′,即SAB ,而R′Q′=RQ , 由得,即Q (﹣1,1), 由得,即R (2,﹣2),则|AB|=|QR|===3, 8.(2016安徽模拟)如果实数x ,y 满足,则z=x 2+y 2﹣2x 的最小值是( )A .3B .C .4D .答案:B .解:由z=x 2+y 2﹣2x=(x ﹣1)2+y 2﹣1,设m=(x ﹣1)2+y 2,则m 的几何意义是区域内的点到点D (1,0)的距离的平方,作出不等式组对应的平面区域如图:由图象知D 到AC 的距离为最小值,此时d==,则m=d 2=()2=,则z=m ﹣1=﹣1=。

3. “斜率”型考题在线性约束条件下,求形如z=ax b y --的线性目标函数的最值问题,通常转化为求过点(a ,b )阴影部分的某个点的直线斜率的取值.9.(2016唐山一模)若x ,y 满足不等式组,则的最大值是( ) A . B .1 C .2 D .3答案:C解:由题意作平面区域如下,的几何意义是阴影内的点(x ,y )与原点的连线的斜率,结合图象可知,过点A(1,2)时有最大值,此时==2,10.(2016莱芜一模)已知x,y满足约束条件,则z=的范围是()A.[,2] B.B[﹣,] C.[,] D.[,]答案:C解:画出满足条件的平面区域,如图示:,由,解得A(1,2),由,解得B(3,1),而z=的几何意义表示过平面区域内的点与(﹣1,﹣1)的直线的斜率,显然直线AC斜率最大,直线BC斜率最小,K AC==,K BC==.11.(2016衡阳二模)已知变量x,y满足,则的取值范围是()A.B. C. D.答案:[,]解:作出满足所对应的区域(如图阴影),变形目标函数可得==1+,表示可行域内的点与A(﹣2,﹣1)连线的斜率与1的和,由图象可知当直线经过点B(2,0)时,目标函数取最小值1+=;当直线经过点C(0,2)时,目标函数取最大值1+=.4.“平面区域的面积”型考题12.设平面点集A={(x,y)|(y-x)(y-1x)≥0},B={(x ,y)|(x-1)2+(y-1)2≤1},则A∩B所表示的平面图形的面积为()A.3π4B .3π5C.4π7D.π2答案:D解:不等式(y-x)(y-1x)≥0可化为0,1y xyx-≥⎧⎪⎨-≥⎪⎩或0,10.y xyx-≤⎧⎪⎨-≤⎪⎩集合B表示圆(x-1)2+(y-1)2=1上以及圆内部的点所构成的集合,A∩B所表示的平面区域如图阴影部所示.由线1yx=,圆(x-1)2+(y-1)2=1均关于直线y=x对称,所以阴影部分占圆面积的一半,故选D项.5. “求约束条件中的参数”型考题规律方法:当参数在线性规划问题的约束条件中时,作可行域,要注意应用“过定点的直线系”知识,使直线“初步稳定”,再结合题中的条件进行全方面分析才能准确获得答案.13.(2016兴安盟一模)若x,y满足不等式组,且y+x的最大值为2,则实数m的值为()A.﹣2 B.C.1 D.答案:D解:∵y+x的最大值为2,∴此时满足y+x=2,作出不等式组对应的平面区域如图:则由,解得,即A(1,),同时A也在直线y=mx上,则m=,14.(2016绍兴一模)若存在实数x,y满足,则实数m的取值范围是()A.(0,)B.(,)C.(,)D.(,)答案:D解:作出所对应的区域(如图△ABC即内部,不包括边界),直线m(x+1)﹣y=0,可化为y=m(x+1),过定点D(﹣1,0),斜率为m,存在实数x,y满足,则直线需与区域有公共点,,解得B(,),,解得A(,)K PA==,K PB==,∴<m<.6. “求目标函数中的参数”型考题规律方法:目标函数中含有参数时,要根据问题的意义,转化成“直线的斜率”、“点到直线的距离”等模型进行讨论与研究.15.(2015山东)已知x,y满足约束条件,若z=ax+y的最大值为4,则a=()A.3 B.2 C.﹣2 D.﹣3答案:B解:作出不等式组对应的平面区域如图:(阴影部分).则A(2,0),B(1,1),若z=ax+y过A时取得最大值为4,则2a=4,解得a=2,目标函数为z=2x+y,即y=﹣2x+z,平移直线y=﹣2x+z,当直线经过A(2,0)时,截距最大,此时z最大为4,满足条件,若z=ax+y过B时取得最大值为4,则a+1=4,解得a=3,此时,目标函数为z=3x+y,即y=﹣3x+z,平移直线y=﹣3x+z,当直线经过A(2,0)时,截距最大,此时z最大为6,不满足条件,故a=216.(2016扶沟县一模)设x,y满足约束条件,若目标函数z=ax+by(a>0,b>0)的最小值为2,则ab的最大值为()A.1 B.C.D.答案:C解:满足约束条件的可行域如下图所示:∵目标函数z=ax+by(a>0,b>0)故z A=2a+2b,z B=2a+3b,由目标函数z=ax+by(a>0,b>0)的最小值为2,则2a+2b=2,即a+b=1则ab≤=故ab的最大值为7. 其它型考题17.(2016四川)设p:实数x,y满足(x﹣1)2+(y﹣1)2≤2,q:实数x,y满足,则p是q的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件答案:A解:(x﹣1)2+(y﹣1)2≤2表示以(1,1)为圆心,以为半径的圆内区域(包括边界);满足的可行域如图有阴影部分所示,故p是q的必要不充分条件.18.某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料,乙材料1kg,用5个工时;生产一件产品B需要甲材料,乙材料,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为216000元.解:(1)设甲、乙两种产品每件分别是x件和y件,获利为z元.由题意,得,z=2100x+900y.不等式组表示的可行域如图:由题意可得,解得:,A(60,100),目标函数z=2100x+900y.经过A时,直线的截距最大,目标函数取得最大值:2100×60+900×100=216000元.答案为:216000.19.(2016天津)某化工厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料,生产1扯皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如表所示:A B C甲483乙5510现有A种原料200吨,B种原料360吨,C种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车品乙种肥料,产生的利润为3万元、分别用x,y表示计划生产甲、乙两种肥料的车皮数.(1)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;(2)问分别生产甲、乙两种肥料,求出此最大利润.解:(1)x,y满足的条件关系式为:.作出平面区域如图所示:(2)设利润为z万元,则z=2x+3y.∴y=﹣x+.∴当直线y=﹣x+经过点B时,截距最大,即z最大.解方程组得B(20,24).∴z的最大值为2×20+3×24=112.答:当生产甲种肥料20吨,乙种肥料24吨时,利润最大,最大利润为112万元.。

相关文档
最新文档