高考数学专题总复习课件2
合集下载
高三数学二轮复习建议——专题二:概率统计 PPT课件 图文
概率与统计
目目 录录
CCOONNTTEENNTTSS
1 历年高考分析 22 重点、热点分析 3 复习目标、方案专题 4 命题预测、优题展示
一 高考试题分析
1.1 2012——2017年高考考查内容分析
2 道 小 题
1 道 大 题
年份 题号
理科 考查 内容
题号
文科 考查 内容
2017 年
2016 年 2015 年 2014 年 2013 年 2012 年
T1 9
相关系数、统计、均值、方差、3 σ原则、概率的意义
T14 二项式定理
2016 年
T4 几何概型
T3 古典概型
从文科高考试题看,解答题一般以工农业生产和生活中的实 频数分布、频率与概率、事件的
频数分布、频率与概率、事件的
T19 独立性、互斥事件、分布列、概 T19 独立性、互斥事件、分布列、概
√√
√
古典概型
几何概型 率 随机模拟
√√√ √ √
随机变量间的函数关系
√
√
二 重点、热点分析
重点、热点、规律方法(一)二项式定理
例
1.(1)(2017▪全国卷Ⅰ理科▪T6)
(1
1 x2
)(1
x)6
展开式中
x2
的系数为
A.15
B.20
C.30
D.35
(2)(2016▪全国卷Ⅰ理科▪T14) (2x x )5 的展开式中,x3 的系数是
T1 8
分步乘法计数原理、组合
正态分布、对立事件
T3
函数、频率与概率、分布列、期 望、方差、概率的意义
T 18
数字特征及其意义 几何概型
相关系数、统计、均值、方差、3 σ原则、概率的意义
目目 录录
CCOONNTTEENNTTSS
1 历年高考分析 22 重点、热点分析 3 复习目标、方案专题 4 命题预测、优题展示
一 高考试题分析
1.1 2012——2017年高考考查内容分析
2 道 小 题
1 道 大 题
年份 题号
理科 考查 内容
题号
文科 考查 内容
2017 年
2016 年 2015 年 2014 年 2013 年 2012 年
T1 9
相关系数、统计、均值、方差、3 σ原则、概率的意义
T14 二项式定理
2016 年
T4 几何概型
T3 古典概型
从文科高考试题看,解答题一般以工农业生产和生活中的实 频数分布、频率与概率、事件的
频数分布、频率与概率、事件的
T19 独立性、互斥事件、分布列、概 T19 独立性、互斥事件、分布列、概
√√
√
古典概型
几何概型 率 随机模拟
√√√ √ √
随机变量间的函数关系
√
√
二 重点、热点分析
重点、热点、规律方法(一)二项式定理
例
1.(1)(2017▪全国卷Ⅰ理科▪T6)
(1
1 x2
)(1
x)6
展开式中
x2
的系数为
A.15
B.20
C.30
D.35
(2)(2016▪全国卷Ⅰ理科▪T14) (2x x )5 的展开式中,x3 的系数是
T1 8
分步乘法计数原理、组合
正态分布、对立事件
T3
函数、频率与概率、分布列、期 望、方差、概率的意义
T 18
数字特征及其意义 几何概型
相关系数、统计、均值、方差、3 σ原则、概率的意义
高考数学一轮总复习 第2章 函数的概念与基本初等函数 第二节 函数的基本性质课件(理)
奇偶性
定义
图象特点
如果对于函数f(x)的定义域内任意一个x, 偶函数 都有 f(-x)=f(x) ,那么函数f(x)是偶 关于
y轴
对
称
函数
奇函数
如果对于函数f(x)的定义域内任意一个x, 都有 f(-x)=-f(x) ,那么函数f(x)是奇 关于
原点
对
称
函数
2.周期性 (1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使 得当x取定义域内的任何值时,都有f(x+T)= f(x) ,那么就 称函数y=f(x)为周期函数,称T为这个函数的周期. (2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最 小的正数,那么这个 最小 正数就叫做f(x)的最小正周期.
数f(x)在区间D上是减函数
(2)单调性、单调区间的定义 若函数f(x)在区间D上是增函数或 减函数 ,则称函数f(x)在这 一区间上具有(严格的)单调性,区间D叫做f(x)的单调区间. 2.函数的最值
前提 设函数y=f(x)的定义域为I,如果存在实数M满足
条件
对于任意x∈I,都有 f(x)≤M ;
2
减函数,故 f(x)的单调递增区间为(-∞,-1).故选 C.
答案 C [点评] 判断函数的单调性,应首先求出函数的定义域,在定
义域内求解.
函数的奇偶性解题方略 奇偶性的判断 (1)定义法
答案 [-2,+∞)
►单调性的两个易错点:单调性;单调区间.
(2)[函数的单调递增(减)区间有多个时,不能用并集表示,:可
以 用 逗 号 或 “ 和 ”] 函 数
f(x)
=xBiblioteka +1 x的
单
调
递
增
高考理科数学一轮总复习课标通用版课件:第2章函数2-4
考纲原文下载
命题规律分析
知识梳理整合
挖教材赢高考
高频考点透析 直通高考202X 第26页
经典品质/超出梦想
高考总复习/新课标版 数学·理
[强化训练 1.1] 已知 y=f(x)是二次函数,且 f(-32+x)=f(-23-x)对 x∈R 恒成立,f(- 32)=49,方程 f(x)=0 的两实根之差的绝对值等于 7.求此二次函数的解析式.
考纲原文下载
命题规律分析
知识梳理整合
挖教材赢高考
高频考点透析 直通高考202X 第12页
经典品质/超出梦想
高考总复习/新课标版
答案
1.(1)ax2+bx+c (2)a(x-h)2+k
(3)a(x-x1)(x-x2) 2.(1)-2ba (2)(-2ba,4ac4-a b2) (3)向上 向下 (4)[4ac4-a b2,+∞) (-∞,4ac4-a b2]
经典品质/超出梦想
高考总复习/新课标版 数学·理
02 函数的概念、基本初等函数 (Ⅰ)及函数的应用
考纲原文下载
命题规律分析
知识梳理整合
挖教材赢高考
高频考点透析 直通高考202X 第1页
经典品质/超出梦想
高考总复习/新课标版 数学·理
§2.4 二次函数
考纲原文下载
命题规律分析
知识梳理整合
挖教材赢高考
高频考点透析 直通高考202X 第15页
经典品质/超出梦想
高考总复习/新课标版 数学·理
2.(教材改编)若函数 f(x)=4x2-kx-8 在区间[5,20]上是单调函数,则实数 k 的取 值范围是________.
解析:二次函数的对称轴方程是 x=8k,
故只需8k≤5 或8k≥20,即 k≤40 或 k≥160. 故所求 k 的取值范围是(-∞,40]∪[160,+∞) 答案:(-∞,40]∪[160,+∞)
专题2第2讲数列求和及其综合应用-2021届高三高考数学二轮复习课件
【解析】 (1)由(n+2)a2n+1-(n+1)a2n+anan+1=0, 可得[(n+2)an+1-(n+1)an]×(an+1+an)=0 又因为an>0,所以aan+n 1=nn+ +12.
又a1=1,则an=aan-n 1·aann- -12·…·aa21·a1 =n+n 1·n-n 1·…·32·1=n+2 1.故选B.
q(p≠0,1,q≠0),第一个使用累加的方法、第二个使用累积的方法、第
三个可以使用待定系数法化为等比数列(设an+1+λ=p(an+λ),展开比较
系数得出λ).
(3)周期数列,通过验证或者推理得出数列的周期性后得出其通项公
式.
1.(2019·洛阳三模)在数列{an}中,a1=2,an+1=an+ln
● (文科)
年份 卷别 Ⅰ卷
2020 Ⅱ卷 Ⅲ卷
题号 16 14 17
考查角度 数列的递推公式的应用,以及数列的 并项求和
等差数列的前n项和 等比数列通项公式基本量的计算,以 及等差数列求和公式的19 Ⅱ卷 Ⅲ卷
题号 14,18
18 6,14
考查角度 等比数列求和;等差数列的通项公式 以及求和 等比数列的通项公式、等差数列的求 和 等比数列的通项公式,等差数列的通 项公式以及求和
第二部分
专题篇•素养提升()
专题二 数列(文理)
第2讲 数列求和及其综合应用(文理)
1 解题策略 • 明方向 2 考点分类 • 析重点 3 易错清零 • 免失误 4 真题回放 • 悟高考 5 预测演练 • 巧押题
● 1.高考对数列求和的考查主要以解答题的形式出现,通过分组转化、错位相减、裂项相消 等方法求数列的前n项和,难度中等偏下.
【解析】 (1)由题意,设an=a1qn-1(q>0),
高考数学总复习 第2节 参数方程课件 新人教A版选修44
数的关系 y=g(t)
x=ft ,那么 y=gt 就是曲线的参数方程.
第五页,共70页。
在参数方程与普通(pǔtōng)方程的互化中,x,y的取值范围必 须保持一致.
第六页,共70页。
三、常见曲线的参数方程的一般形式
1.直线的参数方程
经过点 P0(x0,y0),倾斜角为 α 的直线的参数方程为
x= x0+tcos α y= y0+tsin α
第十四页,共70页。
2.若 P(2,-1)为圆xy==15+sin5θcos θ, (θ 为参数且 0≤θ
<2π)的弦的中点,则该弦所在的直线方程为( )
A.x-y-3=0
B.x+2y=0
C.x+y-1=0
D.2x-y-5=0
第十五页,共70页。
解析:由xy= =15+sin5θc,os θ 消去参数 θ,得(x-1)2+y2=25, ∴圆心 C(1,0),∴kCP=-1. ∴弦所在的直线的斜率为 1. ∴弦所在的直线方程为 y-(-1)=1·(x-2), 即 x-y-3=0,故选 A.
第二十页,共70页。
解析:曲线
C1:xy==34++csions
θ θ
(θ 为参数)的直角坐标方
程为(x-3)2+(y-4)2=1,可知曲线 C1 是以(3,4)为圆心,1 为半径的圆;曲线 C2:ρ=1 的直角坐标方程是 x2+y2=1, 故 C2 是以原点为圆心,1 为半径的圆.由题意知|AB|的最小 值即为分别在两个圆上的两点 A,B 间的最短距离.由条件
① ②
①2+②2 得 x2+(y-1)2=1,
即所求普通方程为 x2+(y-1)2=1,
答案(dáàn):x2+(y-1)2=1
第二十六页,共70页。
高考数学一轮总复习课件:导数的应用(二) ——极值与最值
可导函数求极值的步骤 (1)确定函数的定义域. (2)求方程f′(x)=0的根. (3)用方程f′(x)=0的根和不可导点的x的值顺次将函数的定 义域分成若干个小开区间,并形成表格. (4)由f′(x)=0的根左右的符号以及f′(x)在不可导点左右的 符号来判断f(x)在这个根或不可导点处取极值的情况,此步骤不 可缺少,f′(x)=0是函数有极值的必要条件.
(2)(2020·河北冀州中学摸底)已知函数f(x)的导数f′(x)=a(x +1)(x-a),若f(x)在x=a处取得极大值,则a的取值范围是 __(_-_1_,__0)_.
【解析】 若a=0,则f′(x)=0,函数f(x)不存在极值;若a= -1,则f′(x)=-(x+1)2≤0,函数f(x)不存在极值;若a>0,当 x∈(-1,a)时,f′(x)<0,当x∈(a,+∞)时,f′(x)>0,所以函数 f(x)在x=a处取得极小值;若-1<a<0,当x∈(-1,a)时,f′ (x)>0,当x∈(a,+∞)时,f′(x)<0,所以函数f(x)在x=a处取得极 大值;若a<-1,当x∈(-∞,a)时,f′(x)<0,当x∈(a,-1)时,f ′(x)>0,所以函数f(x)在x=a处取得极小值.综上所述,a∈(-1, 0).
第3课时 导数的应用(二) ——极值与最值
[复习要求] 1.了解函数在某点处取得极值的必要条件和 充分条件.2.会用导数求函数的极大值、极小值(其中多项式函数 不超过三次).3.会求闭区间上的最大值、最小值(其中多项式函 数不超过三次).
课前自助餐
函数的极值 (1)设函数 f(x)在点 x0附近有定义,如果对 x0附近的所有的点, 都有 f(x)___<___f(x0),那么 f(x0)是函数 f(x)的一个极大值,记作 y 极大值=f(x0);如果对 x0 附近的所有的点,都有 f(x)__>____f(x0), 那么 f(x0)是函数 f(x)的一个极小值,记作 y 极小值=f(x0).极大值与 极小值统称为极值.
(2)(2020·河北冀州中学摸底)已知函数f(x)的导数f′(x)=a(x +1)(x-a),若f(x)在x=a处取得极大值,则a的取值范围是 __(_-_1_,__0)_.
【解析】 若a=0,则f′(x)=0,函数f(x)不存在极值;若a= -1,则f′(x)=-(x+1)2≤0,函数f(x)不存在极值;若a>0,当 x∈(-1,a)时,f′(x)<0,当x∈(a,+∞)时,f′(x)>0,所以函数 f(x)在x=a处取得极小值;若-1<a<0,当x∈(-1,a)时,f′ (x)>0,当x∈(a,+∞)时,f′(x)<0,所以函数f(x)在x=a处取得极 大值;若a<-1,当x∈(-∞,a)时,f′(x)<0,当x∈(a,-1)时,f ′(x)>0,所以函数f(x)在x=a处取得极小值.综上所述,a∈(-1, 0).
第3课时 导数的应用(二) ——极值与最值
[复习要求] 1.了解函数在某点处取得极值的必要条件和 充分条件.2.会用导数求函数的极大值、极小值(其中多项式函数 不超过三次).3.会求闭区间上的最大值、最小值(其中多项式函 数不超过三次).
课前自助餐
函数的极值 (1)设函数 f(x)在点 x0附近有定义,如果对 x0附近的所有的点, 都有 f(x)___<___f(x0),那么 f(x0)是函数 f(x)的一个极大值,记作 y 极大值=f(x0);如果对 x0 附近的所有的点,都有 f(x)__>____f(x0), 那么 f(x0)是函数 f(x)的一个极小值,记作 y 极小值=f(x0).极大值与 极小值统称为极值.
高考总复习二轮数学精品课件 专题2 数列 培优拓展(二) 数列中的情境创新与数学文化
1
A,a2=192×2=96,故此人第二天走了九十六里路,A
对于
正确;
对于 B,后五天所走的路程为 378-192=186 里,
则第一天比后五天多走的路程是 192-186=6 里,B 正确;
对于
对于
1
48
1
C,a3=192×4=48,而378 > 8,C 错误;
1
1
1
D,a4+a5+a6=192×(8 + 16 + 32)=42,
天起,每天比前一天多织多少尺布?”已知 1 匹=4 丈,1 丈=10 尺,若这个月有
30 天,记该女子这个月中第 n 天所织布的尺数为 an,bn=2 ,则( BD )
A.b10=8b5
B.数列{bn}是等比数列
3 + 5 + 7
209
C.a1b30=105
D.
=
2 + 4 + 6
A.a4=12
2
C. Sn=+1
B.an+1=an+n+1
D.a100=4950
解析 各层球数为1,3,6,10,15,21,…,
所以a2-a1=2,a3-a2=3,a4-a3=4,an-an-1=n(n≥2,n∈N*),
显然可得an+1=an+n+1,因此选项A不正确,选项B正确;
当n≥2,n∈N*时,an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
奇数时,n+1为偶数,则an+2=an+1+n+1,an+1=an+n+1,可得an+2=an+2(n+1),当
高考总复习二轮数学精品课件 专题1 函数与导数 第2讲 基本初等函数、函数的应用
3.函数的零点问题
(1)函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图象与
函数y=g(x)的图象交点的横坐标.
(2)确定函数零点的常用方法:①直接解方程法;②利用零点存在性定理;③
数形结合,利用两个函数图象的交点求解.
温馨提示函数的零点是一个实数,而不是几何图形.
质与相关函数的性质之间的关系进行判断.
对点练2
9 0.1
(1)(2023·广东湛江一模)已知 a=(11) ,b=log910,c=lg
A.b>c>a
B.c>b>a
C.b>a>c
D.c>a>b
11,则( A )
解析 根据指数函数和对数函数的性质,
可得
9 0.1
9 0
a=(11) < 11 =1,b=log910>log99=1,c=lg
1 1
B. - 2 , 2
1
C. 0, 2
1
1
D. - 2 ,0 ∪ 0, 2
(3)换底公式:logaN= log (a,b>0,且 a,b≠1,N>0).
(4)对数值符号规律:已知a>0,且a≠1,b>0,则logab>0⇔(a-1)(b-1)>0,
logab<0⇔(a-1)(b-1)<0.
1
温馨提示对数的倒数法则:logab= log
(a,b>0,且a,b≠1).
11>lg 10=1,
又由 2=lg 100>lg 99=lg 9+lg 11>2 lg9 × lg11,所以 1>lg
高考一轮总复习数学(理)课件 第2章 函数、导数及其应用 2-11 板块一 知识梳理 自主学习ppt版本
一轮总复习·数学(理)
第2章 函数、导数及其应用 第11讲 导数在研究函数中的应用
板块一 知识梳理·自主学习
[必备知识] 考点1 函数的导数与单调性的关系 函数y=f(x)在某个区间内可导: (1)若f′(x)>0,则f(x)在这个区间内 单调递增 ; (2)若f′(x)<0,则f(x)在这个区间内 单调递减 ; (3)若f′(x)=0,则f(x)在这个区间内是 常数函数 .
1
-
a.
∴
f′(x)
=
1 x
-
ax
+
a
-
1
=
-ax2+1+ x
ax-x.①若
a≥0,当
0<x<1
时,f′(x)>0,f(x)
单调递增;当 x>1 时,f′(x)<0,f(x)单调递减,所以 x=1
是 f(x)的极大值点.②若 a<0,由 f′(x)=0,得 x=1 或 x
=-1a.因为 x=1 是 f(x)的极大值点,所以-1a>1,解得-
命题角度2 根据函数的单调性求参数范围
例2 已知a≥0,函数f(x)=(x2-2ax)ex,若f(x)在[-1,1]
上是单调减函数,则a的取值范围是(
)
A.0,34
C.34,+∞
B.12,34 D.0,12
[解 析 ] f′(x)= (2x- 2a)ex + (x2 - 2ax)ex = [x2 + (2 - 2a)x-2a]ex,由题意知当 x∈[-1,1]时,f′(x)≤0 恒成立, 即 x2+(2-2a)x-2a≤0 恒成立.
①当-a2≤1 时,即-2≤a<0 时,f(x)在[1,4]上的最小
值为 f(1),由 f(1)=4+4a+a2=8,得 a=±2 2-2,均不符
第2章 函数、导数及其应用 第11讲 导数在研究函数中的应用
板块一 知识梳理·自主学习
[必备知识] 考点1 函数的导数与单调性的关系 函数y=f(x)在某个区间内可导: (1)若f′(x)>0,则f(x)在这个区间内 单调递增 ; (2)若f′(x)<0,则f(x)在这个区间内 单调递减 ; (3)若f′(x)=0,则f(x)在这个区间内是 常数函数 .
1
-
a.
∴
f′(x)
=
1 x
-
ax
+
a
-
1
=
-ax2+1+ x
ax-x.①若
a≥0,当
0<x<1
时,f′(x)>0,f(x)
单调递增;当 x>1 时,f′(x)<0,f(x)单调递减,所以 x=1
是 f(x)的极大值点.②若 a<0,由 f′(x)=0,得 x=1 或 x
=-1a.因为 x=1 是 f(x)的极大值点,所以-1a>1,解得-
命题角度2 根据函数的单调性求参数范围
例2 已知a≥0,函数f(x)=(x2-2ax)ex,若f(x)在[-1,1]
上是单调减函数,则a的取值范围是(
)
A.0,34
C.34,+∞
B.12,34 D.0,12
[解 析 ] f′(x)= (2x- 2a)ex + (x2 - 2ax)ex = [x2 + (2 - 2a)x-2a]ex,由题意知当 x∈[-1,1]时,f′(x)≤0 恒成立, 即 x2+(2-2a)x-2a≤0 恒成立.
①当-a2≤1 时,即-2≤a<0 时,f(x)在[1,4]上的最小
值为 f(1),由 f(1)=4+4a+a2=8,得 a=±2 2-2,均不符
高考数学总复习 2-2 函数的单调性与最值课件 新人教B版
若 0<a<1,x=0 时,y 有最大值 1;x=1 时,y 有最 小值 a,由题设 a+1=3,则 a=2,与 0<a<1 矛盾,故选 B. 解法 2:当 a>0,a≠1 时,y=ax 是定义域上的单调 函数,因此其最值在 x∈[0,1]的两个端点得到,于是必有 1+a=3,∴a=2.
一、复合函数的单调性 对于复合函数 y=f[g(x)],若 t=g(x)在区间(a,b)上 是单调增(减)函数, 且 y=f(t)在区间(g(a), g(b))或者(g(b), g(a))上是单调函数,那么函数 y=f[g(x)]在区间(a,b)上 的单调性由以下表格所示,实施该法则时首先应考虑函 数的定义域.
(2)设函数 y=f(x)在某区间 D 内可导. 如果 f ′(x)>0, 则 f(x)在区间 D 内为增函数;如果 f ′(x)<0,则 f(x)在区 间 D 内为减函数. 2.函数最值的求法 (1)配方法,(2)判别式法,(3)基本不等式法,(4)换元 法,(5)数形结合法,(6)单调性法,(7)导数法.
t=g(x) 增 增 减 减
y=f(t) 增 减 增 减
y=f[g(x)] 增 减 减 增
二、解题技巧 1.函数单调性的证明方法 (1)利用定义证明函数单调性的一般步骤是: ①任取 x1、x2∈D,且 x1<x2; ②作差 f(x1)-f(x2),并适当变形(“分解因式”、配 方成同号项的和等); ③依据差式的符号确定其增减性.
)
解析: 由 4+3x-x2>0 得, 函数 f(x)的定义域是(-1, 3 2 25 3 4), u(x)=-x +3x+4=-(x- ) + 的减区间为[ , 4), 2 4 2
2
3 ∵e>1,∴函数 f(x)的单调减区间为[ ,4). 2 答案:D
高考数学一轮总复习课件:抛物线(二)
答案 (1)× (2)× (3)√ (4)√ (5)√ (6)√
2.(课本习题改编)过点(0,1)作直线,使它与抛物线y2=4x
仅有一个公共点,这样的直线有( C )
A.1条
B.2条
C.3条
D.4条
解析 两条切线,另一条平行于对称轴.
3.(2020·辽宁五校期末联考)已知AB是抛物线y2=2x的一条
【解析】 设斜率为k,则切线为y=k x+p2 ,代入y2=2px 中,得k2x2+p(k2-2)x+k24p2=0.
Δ=0,即p2(k2-2)2-4·k2·k24p2=0.解得k2=1,∴k=±1.
(2)(2021·河南新乡市模拟)若抛物线x2=ay(a≠0)的准线与抛
物线y=-x2-2x+1相切,则a=( B )
=2.故选C.
5.(2021·湖南长沙质检)设经过抛物线C的焦点的直线l与抛
物线C交于A,B两点,那么抛物线C的准线与以AB为直径的圆
的位置关系为( B )
A.相离
B.相切
C.相交但不经过圆心 D.相交且经过圆心
解析 设圆心为M,过点A,B,M分别作准线l的垂线,垂
足分别为A1,B1,M1(图略),则|MM1|=
【证明】 (1)∵y2=2px(p>0)的焦点为Fp2,0, 当k不存在时,直线方程为x=p2. 这时y1=p,y2=-p,则y1y2=-p2,x1x2=p42.
当k存在时,设直线方程为y=kx-p2(k≠0). 由y=kx-p2,消去x,得ky2-2py-kp2=0.①
y2=2px ∴y1y2=-p2,x1x2=(y41py22)2=p42. 因此,总有y1y2=-p2,x1x2=p42成立.
斜角为
π 6
的直线交C于A,B两点.若线段AB中点的纵坐标为
2.(课本习题改编)过点(0,1)作直线,使它与抛物线y2=4x
仅有一个公共点,这样的直线有( C )
A.1条
B.2条
C.3条
D.4条
解析 两条切线,另一条平行于对称轴.
3.(2020·辽宁五校期末联考)已知AB是抛物线y2=2x的一条
【解析】 设斜率为k,则切线为y=k x+p2 ,代入y2=2px 中,得k2x2+p(k2-2)x+k24p2=0.
Δ=0,即p2(k2-2)2-4·k2·k24p2=0.解得k2=1,∴k=±1.
(2)(2021·河南新乡市模拟)若抛物线x2=ay(a≠0)的准线与抛
物线y=-x2-2x+1相切,则a=( B )
=2.故选C.
5.(2021·湖南长沙质检)设经过抛物线C的焦点的直线l与抛
物线C交于A,B两点,那么抛物线C的准线与以AB为直径的圆
的位置关系为( B )
A.相离
B.相切
C.相交但不经过圆心 D.相交且经过圆心
解析 设圆心为M,过点A,B,M分别作准线l的垂线,垂
足分别为A1,B1,M1(图略),则|MM1|=
【证明】 (1)∵y2=2px(p>0)的焦点为Fp2,0, 当k不存在时,直线方程为x=p2. 这时y1=p,y2=-p,则y1y2=-p2,x1x2=p42.
当k存在时,设直线方程为y=kx-p2(k≠0). 由y=kx-p2,消去x,得ky2-2py-kp2=0.①
y2=2px ∴y1y2=-p2,x1x2=(y41py22)2=p42. 因此,总有y1y2=-p2,x1x2=p42成立.
斜角为
π 6
的直线交C于A,B两点.若线段AB中点的纵坐标为
2023高考数学基础知识综合复习专题2平面向量的几何意义极化恒等式等和线 课件(共12张PPT)
2
4
a·b=
考点三
等和线
例 6 已知△AOB,点
解 由已知 =
P 在直线
||
AB 上,且满足=2t+t(t∈R),求 .
||
2
+
,点
1+2
1+2
P 在直线 AB 上,
2
+
=1,t=1.
1+2 1+2
得
2
3
1
3
可得 = + ,2 = ,
π
2
易得 sin(θ+4)∈[- 2 ,1],
故 ·∈[0,1+ 2].
例2已知单位向量e,平面向量a,b满足a·e=2,b·e=3,a·b=0,求|a-b|的
最小值.
解 由题意得,a在e上的投影数量为2,b在e上的投影数量为3,
建系如图:
设 A(2,m),B(3,n),a=(2,m),b=(3,n),m>0,n<0,
例 1 在平面直角坐标系中,已知
A(1,0),B(0,-1),P 是曲线 y= 1- 2 上一
个动点,求 ·的取值范围.
解 设 P(cos θ,sin θ),0≤θ≤π,=(1,1),=(cos θ,1+sin θ),
π
∴ ·=cos θ+1+sin θ= 2sin(θ+4)+1,θ∈[中线来表示,即 a·b=||2-|| .它揭
4
示了三角形的中线与边长的关系.
三、等和线
如图,平面内一组基底, 及任一向量 , =x+y .连接
AB,OP 相交于点 Q,则 x+y= ,过 P 作 AB 的平行线分别交
4
a·b=
考点三
等和线
例 6 已知△AOB,点
解 由已知 =
P 在直线
||
AB 上,且满足=2t+t(t∈R),求 .
||
2
+
,点
1+2
1+2
P 在直线 AB 上,
2
+
=1,t=1.
1+2 1+2
得
2
3
1
3
可得 = + ,2 = ,
π
2
易得 sin(θ+4)∈[- 2 ,1],
故 ·∈[0,1+ 2].
例2已知单位向量e,平面向量a,b满足a·e=2,b·e=3,a·b=0,求|a-b|的
最小值.
解 由题意得,a在e上的投影数量为2,b在e上的投影数量为3,
建系如图:
设 A(2,m),B(3,n),a=(2,m),b=(3,n),m>0,n<0,
例 1 在平面直角坐标系中,已知
A(1,0),B(0,-1),P 是曲线 y= 1- 2 上一
个动点,求 ·的取值范围.
解 设 P(cos θ,sin θ),0≤θ≤π,=(1,1),=(cos θ,1+sin θ),
π
∴ ·=cos θ+1+sin θ= 2sin(θ+4)+1,θ∈[中线来表示,即 a·b=||2-|| .它揭
4
示了三角形的中线与边长的关系.
三、等和线
如图,平面内一组基底, 及任一向量 , =x+y .连接
AB,OP 相交于点 Q,则 x+y= ,过 P 作 AB 的平行线分别交
高考数学二轮复习 第二部分 专题二 数列 第1讲 等差数列与等比数列课件 理
因此an=1(,λ+n=1)1,·2n-2,n≥2. 若数列{an}是等比数列,则a2=1+λ=2a1=2. 所以λ=1,经验证当λ=1时,数列{an}是等比数 列.
[迁移探究] 若本例中条件“a1=1”改为“a1= 2”,其他条件不变,试求解第(2)问.
解:由本例(2),得an+1=2an(n≥2,n∈N*).
所以{an+bn}是首项为1,公比为12的等比数列. 由题设得4(an+1-bn+1)=4(an-bn)+8, 即an+1-bn+1=an-bn+2. 又因为a1-b1=1, 所以{an-bn}是首项为1,公差为2的等差数列. (2)解:由(1)知,an+bn=2n1-1,an-bn=2n-1, 所以an=12[(an+bn)+(an-bn)]=21n+n-12, bn=12[(an+bn)-(an-bn)]=21n-n+12.
由S1n=b2n-bn2+1,得Sn=2(bbnn+b1n-+1bn).
当n≥2时,由bn=Sn-Sn-1,得 bn=2(bbnn+b1n-+1bn)-2(bbnn--1bbnn-1),
整理得bn+1+bn-1=2bn. 所以数列{bn}是首项和公差均为1的等差数列. 因此,数列{bn}的通项公式为bn=n(n∈N*).
又S4=a1(1+q+q2+q3)=15,所以a1=1. 故a3=a1q2=4. 答案:C
2.(2019·全国卷Ⅲ)记Sn为等差数列{an}的前n项 和.若a1≠0,a2=3a1,则SS150=________.
解析:由a1≠0,a2=3a1,可得d=2a1, 所以S10=10a1+10× 2 9d=100a1, S5=5a1+5×2 4d=25a1,所以SS150=4. 答案:4
专题二 数 列
第1讲 等差数列与等比数列