第一节 三角函数的基本概念
三角函数与解三角形题型归纳及习题含详解
题型 53 终边相同的角的集合的表示与区别 思路提示
(1) 终边相同的角的集合的表示与识别可用列举归纳法和双向等差数列的方 法解决.
(2) 注意正角、第一象限角和锐角的联系与区别,正角可以是任一象限角,也 可以是坐标轴角;锐角是正角,也是第一象限角,第一象限角不包含坐标
4. 熟练运用同角三角函数函数关系式和诱导公式进行三角函数式的化简、求值
和简单恒等式的证明.
命题趋势探究
1.一般以选择题或填空题的形式进行考查.
2.角的概念考查多结合函数的基础知识.
3.利用同角三角函数关系式和诱导公式进行三角函数式的化简、求值是重要考点. 知识点精讲 一、基本概念
正角---逆时针旋转而成的角; (1)任意角 负角---顺时针旋转而成的角;
二、任意角的三角函数 1.定义 已 知 角 终 边 上 的 任 一 点 P(x, y) ( 非 原 点 O ), 则 P 到 原 点 O 的 距 离
r OP x2 y2 0 . sin y , cos x , tan y .
r
r
x
此定义是解直三角形内锐角三角函数的推广.类比,对 y ,邻 x ,斜 r , 如图 4-2 所示.
的终边逆时针旋转整数圈,终边位置不变.
注:弧度或 rad 可省略 (5)两制互化:一周角= 3600 2 r 2 (弧度),即 1800 .
r
1(弧度)
180
0
57.30
57018
故在进行两制互化时,只需记忆 1800 ,10 两个换算单位即可:如: 180
5 5 1800 1500 ; 360 36 .
C. 0, ,是第一、二象限角
高中数学-三角函数知识点总结
三角函数知识点一、三角函数知识点 1.角的定义:(1)00~0360角的定义:从一点O 出发的两条射线OB OA ,所形成的图形叫做角,这点O 叫做角的顶点,射线OB OA ,叫做角的两边(2)任意角的定义:角可以看成是平面内一条射线绕着它的端点从一个位置OA 旋转到另一个位置OB 所形成的图形,端点O 叫做角的顶点,射线OA 叫做角的始边,射线OB 叫做角的终边2.规定:(1)正角:按逆时针方向旋转形成的角叫正角 (2)负角:按顺时针方向旋转形成的角叫负角 (3)零角:一条射线不作任何旋转形成的角叫零角这样,我们就把角的概念推广到了任意角,包括正角,负角,零角 注:角的度量需注意:既要考虑旋转方向,又要考虑旋转量3.终边相同的角:所有与α终边相同的角连同α在内组成的集合{}Z k k S ∈⋅+==,3600αββ 4.象限角和轴线角:将角放在直角坐标系中,让角的顶点与原点重合,角的始边与x 轴非负半轴重合,则(1)象限角:角的终边落在第几象限,则称该角为第几象限角 (2)轴线角:角的终边落在坐标轴上,则称该角为轴线角 5.1º的角的定义:规定周角的3601为1度的角,记作:01,这种用度作为单位来度量角的单位制叫做角度制6.1弧度角的定义:我们把长度等于半径长的弧所对的圆心角叫做1弧度的角,记作1rad ,读作:1弧度,这种以弧度为单位来度量角的制度叫做弧度制7.弧度数(1)我们规定,正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零 (2)半径为R 的圆的圆心角α所对的弧长为l ,则角α的弧度数为Rl=α,角α的正负由α终边的旋转方向决定注:弧度制与角度制区别:(1)弧度制是以“弧度”为单位来度量角的单位制,角度制是以“度”为单位来度量角的单位制,1弧度≠1度(2)1弧度是弧长等于半径长的圆弧所对的圆心角的大小,而1度是周角的3601所对的圆心角的大小(3)弧度制是十进制,它的表示是用一个实数表示,而角度制是六十进制; (4)以弧度和度为单位的角,都是一个与半径无关的定值 8.弧度制与角度制的换算(1)弧度制与角度制下的一些特殊角①角度制下零度的角:00,弧度制下零度的角:0rad , 区别数值相同,单位不同 ②角度制下平角:0180,弧度制下平角:πrad ③角度制下周角:0360,弧度制下平角:2πrad (2)弧度制与角度制的换算①角度化成弧度:=0360 π2 ,0180 π2 ,01 01745.0 ②弧度化成角度:π2 0360 ,π 0180 ,rad 1 '01857 注:角度和弧度互化9.扇形的弧长公式和面积公式(1)角度制下扇形的弧长公式:180Rn l π=;扇形的面积公式:3602R n S π=(2)弧度制下扇形的弧长公式:R l α=;扇形的面积公式:Rl R S 21212==α10.角度制下和弧度制下轴线角和象限角的集合 (1)轴线角的集合①终边在x 轴的非负半轴上{}Z k k x x ∈⋅=,3600={}Z k k x x ∈=,2π②终边在x 轴的非正半轴上{}Z k k x x ∈+⋅=,18036000={}Z k k x x ∈+=,2ππ ③终边在x 轴上{}Z k k x x ∈⋅=,1800={}Z k k x x ∈=,π④终边在y 轴的非负半轴上{}Z k k x x ∈+⋅=,9036000={}Z k k x x ∈=,2π ⑤终边在y 轴的非正半轴上{}Z k k x x ∈-⋅=,9036000={}Z k k x x ∈+=,2ππ⑥终边在y 轴上{}Z k k x x ∈+⋅=,9018000=⎭⎬⎫⎩⎨⎧∈+=Z k k x x ,2ππ⑦终边在坐标轴上{}Z k k x x ∈⋅=,900=⎭⎬⎫⎩⎨⎧∈=Z k k x x ,2π (2)象限角的集合①第一象限角的集合{}Z k k x k x ∈+⋅<<⋅,90360360000=⎭⎬⎫⎩⎨⎧∈+<<Z k k x k x ,222πππ②第二象限角的集合{}Z k k x k x ∈+⋅<<+⋅,180360903600000=⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,222ππππ③第三象限角的集合{}Z k k x k x ∈+⋅<<+⋅,2703601803600000=⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,2322ππππ④第四象限角的集合{}Z k k x k x ∈+⋅<<+⋅,3603602703600000=⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,22232ππππ ={}Z k k x k x ∈⋅<<-⋅,36090360000=⎭⎬⎫⎩⎨⎧∈<<-Z k k x k x ,222πππ11.两角的终边对称结论(1)α与β的终边关于x 轴对称Z k k ∈=+,2πβα (2)α与β的终边关于y 轴对称Z k k ∈+=+,2ππβα (3)α与β的终边关于原点轴对称Z k k ∈++=,2ππβα (4)α与β的终边共线Z k k ∈+=,πβα(5)α与β的终边关于直线x y =对称Z k k ∈+=+,22ππβα(6)α与β的终边关于直线x y -=对称Z k k ∈+=+,232ππβα (7)α与β的终边互相垂直Z k k ∈++=,2ππβα12.三角函数定义:(1)任意角的三角函数定义1:设角α的顶点与原点重合,始边与x 轴的非负半轴重合,角α的终边上任意一点P 的坐标为),(y x ,它到原点的距离022>+=y x r ,则 ①比值r y 叫做角α的正弦,记作αsin ,即=αsin r y ②比值r x 叫做角α的余弦,记作αcos ,即=αcos r x ③比值x y 叫做角α的正切,记作αtan ,即=αtan x y ④比值y x 叫做角α的余切,记作αcot ,即=αcot yx (2)任意角的三角函数定义2:设角α的顶点与原点重合,始边与x 轴的非负半轴重合,角α的终边与单位圆的交点为P ),(y x ,则 ①=αsin y ②αcos x ③=αtan xy④=αcot y x三角函数都是以角为自变量,以比值为函数值的函数,又由于角与实数是一一对应的,所以三角函数也可以看作是以实数为自变量的函数13.三角函数的定义域和值域三角函数定义域值域αsin =yR ]1,1[- αcos =y R]1,1[-αtan =y⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,2ππR αcot =y{}Z k k x x ∈≠,πR14.三角函数值在各象限的符号αsin αcos αtan记法1:正弦上正,余弦右正,正切一三正 记法2:一全正,二正弦,三正切,四余弦 15.诱导公式:公式一:终边相同的角的同一三角函数值相等角度制下 弧度制下=+⋅)360sin(0αk αsin =+)2sin(απk αsin =+⋅)360cos(0αk αcos =+)2cos(απk αcos =+⋅)360tan(0αk αtan =+)2tan(απk αtan =+⋅)360cot(0αk αcot =+)2cot(απk αcot公式二:角度制下 弧度制下=+)180sin(0ααsin - =+)sin(απαsin - =+)180cos(0ααcos - =+)cos(απαcos - =+)180tan(0ααtan =+)tan(απαtan =+)180cot(0ααcot =+)cot(απαcot公式三:角度制下 弧度制下=-)180sin(0ααsin =-)sin(απαsin =-)180cos(0ααcos - =-)cos(απαcos - =-)180tan(0ααtan - =-)tan(απαtan - =-)180cot(0ααcot - =-)cot(απαcot -公式四:角度制下 弧度制下=-)sin(ααsin - =-)sin(ααsin - =-)cos(ααcos =-)cos(ααcos =-)tan(ααtan - =-)tan(ααtan - =-)cot(ααcot - =-)cot(ααcot -公式五:角度制下 弧度制下=-)90sin(0ααcos =-)2sin(απαcos=-)90cos(0ααsin =-)2cos(απαsin-)90tan(0ααcot =-)2tan(απαcot=-)90cot(0ααtan =-)2cot(απαtan公式六:角度制下 弧度制下=+)90sin(0ααcos =+)2sin(απαcos=+)90cos(0ααsin - =+)2cos(απαsin -=+)90tan(0ααtan - =+)2tan(απαtan -=+)90cot(0ααcot - =+)2cot(απαcot -公式七:角度制下 弧度制下=+)270sin(0ααcos - =+)23sin(απαcos -=+)270cos(0ααsin =+)23cos(απαsin=+)270tan(0ααcot - =+)23tan(απαcot -=+)270cot(0ααtan - =+)23cot(απαtan -公式八:角度制下 弧度制下=-)270sin(0ααcos - =-)23sin(απαcos -=-)270cos(0ααsin - =-)23cos(απαsin -=-)270tan(0ααcot =-)23tan(απαcot=-)270cot(0ααtan - =-)23cot(απαtan -记忆口诀:奇变偶不变符号看象限 16.部分特殊角的三角函数:αcos21 22 23 1αtan/3-1-33- 017.三角函数线:(1)有向线段:当角α的终边不在坐标轴上时,我们把MP 、OM 、AT 都看成带有方向的线段,这种带方向的线段叫有向线段规定:与坐标轴相同的方向为正方向(2)这几条与单位圆有关的有向线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线,统称为三角函数线注:(1)正弦线、余弦线、正切线分别解释了正弦函数x y sin =,余弦函数x y cos =、正切函数x y tan =的几何意义(2)正弦线、余弦线、正切线的方向与坐标轴正方向相同时,对应的三角函数值为正,与坐标轴正方向相反时,对应的三角函数值为负 18.同角三角函数的关系:(1)平方关系:1cos sin 22=+αα (2)商数关系:=αtan ααcos sin 、=αcot ααsin cos (3)倒数关系:1cot tan =αα 注意公式的变形:(1)1cos sin 22=+x x ⇒x x 22cos 1sin -=、x x 22sin 1cos -= (2)⇒=αααcos sin tan =αsin ααcos tan 、⇒=αααsin cos cot =αcos ααsin cot (3)ααααααcos sin ,cos sin ,cos sin -+的关系:①=+2)cos (sin ααααcos sin 21+ ②=-2)cos (sin ααααcos sin 21- ③=-++22)cos (sin )cos (sin αααα219.正弦函数x y sin =、余弦函数x y cos =、正切函数x y tan =的图像和性质 函数x y sin = x y cos = x y tan =图形定义域 RR⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,2ππ值域]1,1[-]1,1[-R最值当Z k k x ∈+=,22ππ时,有最大值当Z k k x ∈-=,22ππ时,有最大值当Z k k x ∈=,2π时,有最大值当Z k k x ∈+=,22ππ时,有最大值无最大值无最小值单调性在Zk k k ∈+-],22,22[ππππ上递增在Zk k k ∈++],232,22[ππππ上递减在Z k k k ∈-],2,2[πππ上递增在Z k k k ∈+],2,2[πππ上递减在Zk k k ∈+-),2,2(ππππ上递增奇偶性 奇函数偶函数奇函数周期性π2=Tπ2=Tπ=T 对称性关于Z k k x ∈+=,2ππ对称关于点Z k k ∈),0,(π中心对称关于Z k k x ∈=,π对称 关于点Zk k ∈+),0,2(ππ中心对称关于点Z k k ∈),0,2(π中心对称20.三角函数周期结论(1)函数B x A y ++=)sin(ϕω(其中0,≠ωA )的周期=T ωπ2函数B x A y ++=)cos(ϕω(其中0,≠ωA )的周期=T ωπ2函数)tan(ϕω+=x A y (其中0,≠ωA )的周期=T ωπ (2)函数)sin(ϕω+=x A y (其中0,≠ωA )的周期=T ωπ 函数)cos(ϕω+=x A y (其中0,≠ωA )的周期=T ωπ 函数)tan(ϕω+=x A y (其中0,≠ωA )的周期=T ωπ (3)函数B x A y ++=)sin(ϕω(其中0,,≠B A ω)的周期=T ωπ2函数B x A y ++=)cos(ϕω(其中0,,≠B A ω)的周期=T ωπ221.函数B x A y ++=)sin(ϕω)0,0(>>ωA 的图像的作法(1)图像变换法:函数B x A y ++=)sin(ϕω的图像可由正弦函数x y sin =经过一系列的变换得到:①先平移变换,再周期变换:x y sin =———————————→)sin(ϕ+=x y —————————→)sin(ϕω+=x y——————————→)sin(ϕω+=x A y ——————————→B x A y ++=)sin(ϕω ②先周期变换,再平移变换:x y sin =———————————→)sin(x y ω=——————————→)sin(ϕω+=x y——————————→)sin(ϕω+=x A y ——————————→B x A y ++=)sin(ϕω (2)五点作图法:函数B x A y ++=)sin(ϕω的图像画法:一个周期内起关键作用的五个点的横坐标可由=+ϕωx ππππ2,23,,2,0得到 22.函数变换结论: (1)平移变换01左右平移:①将函数)(x f y =的图象向左移a 个单位得函数)(a x f y +=的图象 ②将函数)(x f y ω=的图象向左移a 个单位得函数))((a x f y +=ω的图象02上下平移:将函数)(x f y =的图象向上移b 个单位得函数b x f y +=)(的图象(2)伸缩变换①函数)(x f y ω=的图象可由函数)(x f y =的图象上每一点的纵坐标不变,横坐标变为原来的ω1倍得到 ②函数)(x Af y =的图象可由函数)(x f y =的图象上每一点的横坐标不变,纵坐标变为原来的A 倍得到 (3)翻折变换①函数)(x f y =的图象可将函数)(x f y =的图像y 轴右侧的图像保留,y 轴左侧的图像由y 轴右侧的图像沿y 轴翻折得到②函数)(x f y =的图象可将函数)(x f y =的图像在x 轴上方的图像保留,x 轴下方的图像沿x 轴翻折到x 轴上方得到 23.两个函数的对称性结论(1)函数)(x f y -=与)(x f y =的图象关于x 轴对称 (2)函数)(x f y -=与)(x f y =的图象关于y 轴对称 (3)函数)(x f y --=与)(x f y =的图象关于原点对称 (4)函数)(1x fy -=与)(x f y =的图象关于x y =对称(5)函数)2(x a f y -=与)(x f y =的图象关于a x =对称(6)函数)2(x a f y --=与)(x f y =的图象关于点)0,(a 对称24.函数)sin(ϕω+=x A y 和)cos(ϕω+=x A y )0,0(>>ωA 的奇偶性结论 (1)函数)sin(ϕω+=x A y 为奇函数⇔Z k k ∈=,πϕ(2)函数)sin(ϕω+=x A y 为偶函数⇔Z k k ∈+=,2ππϕ(3)函数)cos(ϕω+=x A y 为奇函数⇔Z k k ∈+=,2ππϕ(4)函数)cos(ϕω+=x A y 为偶函数⇔Z k k ∈=,πϕ 二、三角变换25.两角和与差的正弦余弦正切公式:(1)=+)sin(βαβαβαsin cos cos sin +,记作)(βα+ S (2)=-)sin(βαβαβαsin cos cos sin -,记作)(βα- S (3)=+)cos(βαβαβαsin sin cos cos -,记作)(βα+C (4)=-)cos(βαβαβαsin sin cos cos +,记作)(βα-C (5)=+)tan(βαβαβαtan tan 1tan tan -+,记作)(βα+T(6)=-)tan(βαβαβαtan tan 1tan tan +-,记作)(βα-T26.二倍角的正弦、余弦、正切公式 (1)=α2sin ααcos sin 2(2)=α2cos αα22sin cos -=1cos 22-α=α2sin 21-(3)=α2tan αα2tan 1tan 2- 注:二倍角公式的变形:(1)=+2)cos (sin ααααcos sin 21+;=-2)cos (sin ααααcos sin 21-(2)升幂缩角公式:=+αcos 12cos 22α;=-αcos 12sin 22α(3)降幂扩角公式:=α2sin 22cos 1α-;=α2cos 22cos 1α+ =α2sin 2α2cos 1-;=α2cos 2α2cos 1+27.半角公式:(1) =2sinα22cos 1α-±=2cosα22cos 1α+±=2tanααα2cos 12cos 1+-±(2)=2tanαααsin cos 1-=ααcos 1sin +28.辅助角公式: (1)=+θθcos sin b a )sin(22ϕ++x b a ,其中=ϕsin 22b a b +,=ϕcos 22b a a +(2)=+θθcos sin b a )cos(22ϕ-+x b a ,其中=ϕsin 22ba a +,=ϕcos 22ba b +29.万能公式=α2sin αα2tan 1tan 2+ =α2cos αα22tan 1tan 1+- =α2tan αα2tan 1tan 2- 30.积化和差公式=βαcos sin )]sin()[sin(21βαβα-++=βαsin cos )]sin()[sin(21βαβα--+ =βαcos cos )]cos()[cos(21βαβα-++ =βαsin sin )]cos()[cos(21βαβα--+-31.和差化积公式=+βαsin sin 2cos2sin2βαβα-+=-βαsin sin 2sin2cos2βαβα-+=+βαcos cos 2cos2cos2βαβα-+=-βαcos cos 2sin2sin2βαβα-+-。
三角函数基础知识
三角函数基础知识整理一.角的概念:1.角的概念的推广⑴“旋转”形成角一条射线由原来的位置OA,绕着它的端点O按逆时针方向旋转到另一位置OB,就形成角α.旋转开始时的射线OA叫做角α的始边,旋转终止的射线OB叫做角α的终边,射线的端点O叫做角α的顶点.⑵.“正角”与“负角”“0角”⑶意义:用“旋转”定义角之后,角的范围大大地扩大了,角的概念推广以后,它包括任意大小的正角、负角和零角.2.“象限角”角的顶点合于坐标原点,角的始边合于x轴的正半轴,这样一来,角的终边落在第几象限,我们就说这个角是第几象限的角(角的终边落在坐标轴上,则此角不属于任何一个象限)3.终边相同的角结论:所有与终边相同的角连同在内可以构成一个集合:{}Z k k S ∈⋅+==,360|οαββ即:任何一个与角终边相同的角,都可以表示成角与整数个周角的和.注意: (1)Z k ∈ (2)是任意角; (3)0360⋅k 与之间是“+”号,如:0360⋅k -30°,应看成0360⋅k +(-30°);(4)终边相同的角不一定相等,但相等的角,终边一定相同,终边相同的角有无数多个,它们相差360°的整数倍.二. 弧度制:1. 定义:长度等于半径长的弧所对的圆心角称为1弧度的角它的单位是rad 读作弧度,这种用“弧度”做单位来度量角的制度叫做弧度制.如下图,依次是1rad , 2rad , 3rad ,αradr rr1rad2rr2rad3rr 3radlrα rad2.弧长公式:α⋅=r l由公式:⇒=r l α α⋅=r l 比公式180r n l π=简单 即弧长等于弧所对的圆心角(的弧度数)的绝对值与半径的积 3.扇形面积公式 lR S 21=其中l 是扇形弧长,R 是圆的半径oR Sl三. 三角函数的定义:1. 设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y ) 则P 与原点的距离02222>+=+=y x yx r2. 比值ry叫做α的正弦 记作: r y =αsin比值r x叫做α的余弦 记作: rx =αcos比值xy叫做α的正切 记作: x y =αtan比值yx叫做α的余切 记作: y x =αcot比值x r叫做α的正割 记作: xr =αsec比值yr叫做α的余割 记作: y r =αcsc以上六种函数,统称为三角函数. 3. 突出探究的几个问题:①角是“任意角”,当=2k +(k Z)时,与的同名三角函数值应该是相等的,即凡是终边相同的角的三角函数值相等②实际上,如果终边在坐标轴上,上述定义同样适用③三角函数是以“比值”为函数值的函数④0>r 而x,y 的正负是随象限的变化而不同,故三角函数的符号应由象限确定. ⑤定义域:r y=αsin 的定义域: R r x=αcos 的定义域:Rx y =αtan 的定义域:⎭⎬⎫⎩⎨⎧∈+≠Z k k ,2|ππαα注意:(1)以后我们在平面直角坐标系内研究角的问题,其顶点都在原点,始边都与x 轴的非负半轴重合. (2)比值只与角的大小有关.ry)(x,αP4. 三角函数在各象限内的符号规律:正弦在第一、二象限为正;余弦在第一、四象限为正; 正切在第一、三象限为正.四. 诱导公式:1.必须熟记的两组诱导公式:诱导公式一(其中Z ∈k ): 用弧度制可写成ααsin )360sin(=︒⋅+k απαsin )2sin(=+k ααcos )360cos(=︒⋅+k απαcos )2cos(=+k ααtan )360tan(=︒⋅+k απαtan )2tan(=+k诱导公式二:αα-sin sin(=-) ααcos cos(=-) ααtan tan(-=-)2. 诱导公式的变形规则:奇变偶不变,符号看象限.诱导公式三: 用弧度制可表示如下:ααsin 180sin(=-︒) ααπsin sin(=-) αα-cos 180cos(=-︒) ααπ-cos cos(=-) ααtan 180tan(-=-︒) ααπtan tan(-=-)诱导公式四: 用弧度制可表示如下:αα-sin 180sin(=+︒) ααπ-sin sin(=+) αα-cos 180cos(=+︒) ααπ-cos cos(=+) ααtan 180tan(=+︒) ααπtan tan(=+)诱导公式五: 用弧度制可表示如下:ααcos )90sin(=-︒ ααπcos )2sin(=-ααsin )90cos(=-︒ ααπsin )2cos(=-ααcot )90tan(=-︒ααπcot )2tan(=-诱导公式六: 用弧度制可表示如下:ααcos )90sin(-=+︒ ααπcos )2sin(-=+ααsin )90cos(-=+︒ ααπsin )2cos(-=+ααcot )90tan(=+︒ ααπcot )2tan(=+补充公式七: 用弧度制可表示如下:αα-sin 360sin(=-︒) ααπ-sin 2sin(=-) ααcos 360cos(=-︒) ααπcos 2cos(=-) ααtan 360tan(-=-︒) ααπtan 2tan(-=-)补充公式八: 用弧度制可表示如下:ααcos )270sin(-=-︒ ααπcos )23sin(-=- ααsin )270cos(-=-︒ ααπsin )23cos(-=-ααcot )270tan(=-︒ααπcot )23tan(=-补充公式九: 用弧度制可表示如下:ααcos )270sin(-=+︒ ααπcos )23sin(-=+ ααsin )270cos(=+︒ ααπsin )23cos(=+ααcot )270tan(-=+︒ ααπcot )23tan(-=+五.两角和与差的三角函数关系式:1.两角和与差的三角函数关系式βαβαβαsin sin cos cos )cos(-=+ βαβαβαsin sin cos cos )cos(+=- βαβαβαcos sin cos sin )sin(+=+ βαβαβαcos sin cos sin )sin(-=-βαβαβαtan tan 1tan tan )tan(-+=+βαβαβαtan tan 1tan tan )tan(+-=-2 推导公式:)cos sin (cos sin 222222ααααba b ba ab a b a ++++=+因为1)()(222222=+++ba b ba a .所以sin 2θ+cos 2θ=1(1)若令22ba a +=sin θ,则22ba b +=cos θ则asin α+bcos α=22b a +(sin θsin α+cos θcos α)=22b a +cos (θ-α) (或=22b a +cos (α-θ))(2)若令22ba a +=cos ϕ,则22ba b +=sin ϕ.则a sin α+b cos α=22b a +(sin αcos ϕ+cos αsin ϕ)=22b a +sin (α+ϕ)六.二倍角公式:1.二倍角公式:αααcos sin 22sin =;)(2αS ααα22sin cos 2cos -=;)(2αC ααα2tan 1tan 22tan -=;)(2αT1cos 22cos 2-=αααα2sin 212cos -=)(2αC ' 注意:(1)二倍角公式的作用在于用单角的三角函数来表达二倍角的三角函数,它适用于二倍角与单角的三角函数之间的互化问题.(2)二倍角公式为仅限于α2是α的二倍的形式,尤其是“倍角”的意义是相对的(3)二倍角公式是从两角和的三角函数公式中,取两角相等时推导出,记忆时可联想相应角的公式.(4) 公式)(2αS ,)(2αC ,)(2αC ',)(2αT 成立的条件是: 公式)(2αT 成立的条件是Z k k k R ∈+≠+≠∈,4,2,ππαππαα.其他R ∈α(5) 熟悉“倍角”与“二次”的关系(升角—降次,降角—升次)(6) 特别注意公式的三角表达形式,且要善于变形:22cos 1sin ,22cos 1cos 22α-=αα+=α 这两个形式今后常用七.万能公式:1.万能公式2tan 12tan2tan ,2tan 12tan 1cos ,2tan 12tan2sin 2222ααααααααα-=+-=+=证明:12tan 12tan22cos 2sin 2cos 2sin 21sin sin 222α+α=α+ααα=α=α22tan 12tan 12cos 2sin 2sin 2cos 1cos cos 222222α+α-=α+αα-α=α=α32tan 12tan22sin 2cos 2cos 2sin2cos sin tan 222α-α=α-ααα=αα=α八. 三角函数的图象与性质:1.正弦线、余弦线:设任意角α的终边与单位圆相交于点P(x ,y),过P 作x 轴的垂线,垂足为M ,则有MP r y ==αsin ,OM rx==αcos 注:有向线段MP 叫做角α的正弦线,有向线段OM 叫做角α的余弦线.2.用单位圆中的正弦线、余弦线作正弦函数y=sinx ,x ∈[0,2π]、余弦函数y=cosx ,x ∈[0,2π]的图象(几何法):把y=sinx ,x ∈[0,2π]和y=cosx ,x ∈[0,2π]的图象,沿着x 轴向右和向左连续地平行移动,每次移动的距离为2π,就得到y=sinx ,x ∈R 和y=cosx ,x ∈R 的图象,分别叫做正弦曲线和余弦曲线.-11y x-6π-5π6π5π-4π-3π-2π-π4π3π2ππf x () = sin x ()-11y x-6π-5π6π5π-4π-3π-2π-π4π3π2ππf x () = cos x ()3.用五点法作正弦函数和余弦函数的简图(描点法):正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是:(0,0) (2π,1) (,0) (23π,-1) (2,0)(1)y=cosx, x R 与函数y=sin(x+2π) x R 的图象相同(2)将y=sinx 的图象向左平移2π即得y=cosx 的图象 (3)也同样可用五点法作图:y=cosx x[0,2]的五个点关键是(0,1) (2π,0) (,-1) (23π,0) (2,1)4.定义域:正弦函数、余弦函数的定义域都是实数集R [或(-∞,+∞)], 分别记作: y =sin x ,x ∈R y =cos x ,x ∈R 5.值域正弦函数、余弦函数的值域都是[-1,1] 其中正弦函数y =sin x ,x ∈R①当且仅当x =2π+2k π,k ∈Z 时,取得最大值1 ②当且仅当x =-2π+2k π,k ∈Z 时,取得最小值-1而余弦函数y =cos x ,x ∈R①当且仅当x =2k π,k ∈Z 时,取得最大值1②当且仅当x =(2k +1)π,k ∈Z 时,取得最小值-16.周期性一般地,对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期对于一个周期函数f (x ),如果在它所有的周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期注意:1 周期函数x 定义域M ,则必有x+T M, 且若T>0则定义域无上界;T<0则定义域无下界;2 “每一个值”只要有一个反例,则f (x )就不为周期函数(如f (x 0+t)f (x 0))3 T 往往是多值的(如y=sinx 2,4,…,-2,-4,…都是周期)周期T 中最小的正数叫做f (x )的最小正周期(有些周期函数没有最小正周期)正弦函数、余弦函数都是周期函数,2k π(k ∈Z 且k ≠0)都是它的周期,最小正周期是2π 7.奇偶性y =sinx 为奇函数,y =cosx 为偶函数正弦曲线关于原点O 对称,余弦曲线关于y 轴对称8.单调性正弦函数在每一个闭区间[-2π+2k π,2π+2k π](k ∈Z )上都是增函数,其值从-1增大到1;在每一个闭区间[2π+2k π,23π+2k π](k ∈Z )上都是减函数,其值从1减小到-1余弦函数在每一个闭区间[(2k -1)π,2k π](k ∈Z )上都是增函数,其值从-1增加到1;在每一个闭区间[2k π,(2k +1)π](k ∈Z )上都是减函数,其值从1减小到-1九. 函数()()0,0sin >>+=ωψωA x A y 的图象与性质:1.振幅变换:y=Asinx ,x R(A>0且A 1)的图象可以看作把正数曲线上的所有点的纵坐标伸长(A>1)或缩短(0<A<1)到原来的A 倍得到的它的值域[-A, A] 最大值是A, 最小值是-A .若A<0 可先作y=-Asinx 的图象 ,再以x 轴为对称轴翻折A 称为振幅 2.周期变换:函数y=sin ωx, x R (ω>0且ω1)的图象,可看作把正弦曲线上所有点的横坐标缩短(ω>1)或伸长(0<ω<1)到原来的ω1倍(纵坐标不变).若 ω<0则可用诱导公式将符号“提出”再作图ω决定了函数的周期3 相位变换: 函数y =sin(x +ϕ),x ∈R (其中ϕ≠0)的图象,可以看作把正弦曲线上所有点向左(当ϕ>0时)或向右(当ϕ<0时=平行移动|ϕ|个单位长度而得到(用平移法注意讲清方向:“加左”“减右”)十. 正切函数的图象与性质:1. 正切线:正切函数R x xy ∈=tan ,且()z k k x ∈+≠ππ2的图象,称“正切曲线”余切函数y =cotx ,x ∈(k π,k π+π),k ∈Z 的图象(余切曲线)正切函数的性质:1.定义域:⎭⎬⎫⎩⎨⎧∈+≠z k k x x ,2|ππ, 2.值域:R 3.当z k k k x ∈⎪⎭⎫⎝⎛+∈2,πππ时0>y , 当z k k k x ∈⎪⎭⎫⎝⎛-∈πππ,2时0<y 4.周期性:π=T5.奇偶性:()x x tan tan -=-奇函数6.单调性:在开区间z k k k ∈⎪⎭⎫⎝⎛++-ππππ2,2内,函数单调递增十一. 正、余弦定理:1 正弦定理:在任一个三角形中,各边和它所对角的正弦比相等,即A a sin =B b sin =Ccsin =2R (R 为△ABC 外接圆半径) 2 正弦定理的应用 从理论上正弦定理可解决两类问题: (1)两角和任意一边,求其它两边和一角;(2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角(见图示)已知a, b 和A, 用正弦定理求B 时的各种情况:①若A 为锐角时:⎪⎪⎩⎪⎪⎨⎧≥<<=<)( b a ) ,( b a bsinA )( bsinA asin 锐角一解一钝一锐二解直角一解无解A b a已知边a,b 和∠A有两个解仅有一个解无解CH=bsinA<a<b a=CH=bsinA a<CH=bsinA②若A 为直角或钝角时:⎩⎨⎧>≤)(b a 锐角一解无解b a3. 余弦定理:A bc c b a cos 2222-+=⇔bca cb A 2cos 222-+=B ca a c b cos 2222-+=⇔cab ac B 2cos 222-+=C ab b a c cos 2222-+=⇔abc b a C 2cos 222-+=4.余弦定理可以解决的问题(1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两个角5.三角形的知识在测量、航海、几何、物理学等方面都有非常广泛的应用,如果我们抽去每个应用题中与生产生活实际所联系的外壳,就暴露出解三角形问题的本质,这就要提高分析问题和解决问题的能力及化实际问题为抽象的数学问题的能力,要求大家掌握利用正、余弦定理解斜三角形的方法,明确解斜三角形知识在实际中的广泛应用,熟练掌握由实际问题向解斜三角形类型问题的转化,逐步提高数学知识的应用能力。
高中数学教材——三角函数篇
第四章 三角函数、解三角形第一节 任意角和弧度制及任意角的三角函数一、基础知识1.角的概念的推广(1)定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)分类⎩⎪⎨⎪⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+2k π,k ∈Z }.终边相同的角不一定相等,但相等的角其终边一定相同.2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. (2)公式:有关角度与弧度的两个注意点(1)角度与弧度的换算的关键是π=180°,在同一个式子中,采用的度量制度必须一致,不可混用.(2)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度. 3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=yx (x ≠0).(2)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线、余弦线和正切线.二、常用结论汇总——规律多一点(1)一个口诀三角函数值在各象限的符号:一全正、二正弦、三正切、四余弦. (2)三角函数定义的推广设点P (x ,y )是角α终边上任意一点且不与原点重合,r =|OP |,则sin α=y r ,cos α=xr ,tan α=yx(x ≠0).(3)象限角(4)轴线角考点一 象限角及终边相同的角[典例] (1)若角α是第二象限角,则α2是( )A .第一象限角B .第二象限角C .第一或第三象限角D .第二或第四象限角(2)终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为________. [解析] (1)∵α是第二象限角, ∴π2+2k π<α<π+2k π,k ∈Z , ∴π4+k π<α2<π2+k π,k ∈Z. 当k 为偶数时,α2是第一象限角;当k 为奇数时,α2是第三象限角.故选C.(2)如图,在坐标系中画出直线y =3x ,可以发现它与x 轴的夹角是π3,在[0,2π)内,终边在直线y =3x 上的角有两个:π3,4π3;在[-2π,0)内满足条件的角有两个:-2π3,-5π3,故满足条件的角α构成的集合为⎩⎨⎧⎭⎬⎫-5π3,-2π3,π3,4π3.[答案] (1)C (2)⎩⎨⎧⎭⎬⎫-5π3,-2π3,π3,4π3[题组训练]1.集合⎩⎨⎧⎭⎬⎫α⎪⎪k π≤α≤k π+π4,k ∈Z 中的角所表示的范围(阴影部分)是( )解析:选B 当k =2n (n ∈Z )时,2n π≤α≤2n π+π4(n ∈Z ),此时α的终边和0≤α≤π4的终边一样,当k =2n +1(n ∈Z )时,2n π+π≤α≤2n π+π+π4(n ∈Z ),此时α的终边和π≤α≤π+π4的终边一样. 2.在-720°~0°范围内所有与45°终边相同的角为________. 解析:所有与45°终边相同的角可表示为: β=45°+k ×360°(k ∈Z ),则令-720°≤45°+k ×360°<0°(k ∈Z ), 得-765°≤k ×360°<-45°(k ∈Z ), 解得-765360≤k <-45360(k ∈Z ),从而k =-2或k =-1, 代入得β=-675°或β=-315°. 答案:-675°或-315°考点二 三角函数的定义[典例] 已知角α的终边经过点P (-x ,-6),且cos α=-513,则1sin α+1tan α=________.[解析] ∵角α的终边经过点P (-x ,-6),且cos α=-513,∴cos α=-xx 2+36=-513,解得x =52或x =-52(舍去),∴P ⎝⎛⎭⎫-52,-6,∴sin α=-1213, ∴tan α=sin αcos α=125,则1sin α+1tan α=-1312+512=-23.[答案] -23[解题技法]用定义法求三角函数值的2种类型及解题方法(1)已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后用三角函数的定义求解.(2)已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后用三角函数的定义来求解.[题组训练]1.已知角α的终边经过点(3,-4),则sin α+1cos α=( )A .-15B.3715C.3720D.1315解析:选D ∵角α的终边经过点(3,-4),∴sin α=-45,cos α=35,∴sin α+1cos α=-45+53=1315. 2.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=( )A .-45B .-35C .35D .45解析:选B 设P (t,2t )(t ≠0)为角θ终边上任意一点,则cos θ=t5|t |.当t >0时,cos θ=55;当t <0时,cos θ=-55.因此cos 2θ=2cos 2θ-1=25-1=-35. 考点三 三角函数值符号的判定[典例] 若sin αtan α<0,且cos αtan α<0,则角α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角[解析] 由sin αtan α<0可知sin α,tan α异号, 则α为第二象限角或第三象限角. 由cos αtan α<0可知cos α,tan α异号, 则α为第三象限角或第四象限角. 综上可知,α为第三象限角. [答案] C[解题技法] 三角函数值符号及角所在象限的判断三角函数在各个象限的符号与角的终边上的点的坐标密切相关.sin θ在一、二象限为正,cos θ在一、四象限为正,tan θ在一、三象限为正.学习时首先把取正值的象限记清楚,其余的象限就是负的,如sin θ在一、二象限为正,那么在三、四象限就是负的.值得一提的是:三角函数的正负有时还要考虑坐标轴上的角,如sin π2=1>0,cos π=-1<0.[题组训练]1.下列各选项中正确的是( ) A .sin 300°>0 B .cos(-305°)<0 C .tan ⎝⎛⎭⎫-22π3>0 D .sin 10<0解析:选D 300°=360°-60°,则300°是第四象限角,故sin 300°<0;-305°=-360°+55°,则-305°是第一象限角,故cos(-305°)>0;-22π3=-8π+2π3,则-22π3是第二象限角,故tan ⎝⎛⎭⎫-22π3<0;3π<10<7π2,则10是第三象限角,故sin 10<0,故选D. 2.已知点P (cos α,tan α)在第三象限,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选B 由题意得⎩⎪⎨⎪⎧cos α<0,tan α<0⇒⎩⎪⎨⎪⎧cos α<0,sin α>0,所以角α的终边在第二象限. [课时跟踪检测]A 级1.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( ) A .2 B .4 C .6D .8解析:选C 设扇形的半径为r (r >0),弧长为l ,则由扇形面积公式可得2=12lr =12|α|r 2=12×4×r 2,解得r =1,l =|α|r =4,所以所求扇形的周长为2r +l =6. 2.(2019·石家庄模拟)已知角α(0°≤α<360°)终边上一点的坐标为(sin 150°,cos 150°),则α=( )A .150°B .135°C .300°D .60°解析:选C 由sin 150°=12>0,cos 150°=-32<0,可知角α终边上一点的坐标为⎝⎛⎭⎫12,-32,故该点在第四象限,由三角函数的定义得sin α=-32,因为0°≤α<360°,所以角α为300°.3.(2018·长春检测)若角α的顶点为坐标原点,始边在x 轴的非负半轴上,终边在直线y =-3x 上,则角α的取值集合是( )A.⎩⎨⎧⎭⎬⎫α⎪⎪α=2k π-π3,k ∈Z B.⎩⎨⎧⎭⎬⎫α⎪⎪α=2k π+2π3,k ∈Z C.⎩⎨⎧⎭⎬⎫α⎪⎪ α=k π-2π3,k ∈Z D.⎩⎨⎧⎭⎬⎫α⎪⎪α=k π-π3,k ∈Z 解析:选D 当α的终边在射线y =-3x (x ≤0)上时,对应的角为2π3+2k π,k ∈Z ,当α的终边在射线y =-3x (x ≥0)上时,对应的角为-π3+2k π,k ∈Z ,所以角α的取值集合是⎩⎨⎧⎭⎬⎫α⎪⎪α=k π-π3,k ∈Z .4.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3]解析:选A 由cos α≤0,sin α>0可知,角α的终边落在第二象限或y 轴的正半轴上,所以有⎩⎪⎨⎪⎧3a -9≤0,a +2>0,解得-2<a ≤3.5.在平面直角坐标系xOy 中,α为第二象限角,P (-3,y )为其终边上一点,且sin α=2y4,则y 的值为( ) A. 3 B .- 5 C. 5 D.3或5解析:选C 由题意知|OP |=3+y 2,则sin α=y 3+y 2=2y4,解得y =0(舍去)或y =±5,因为α为第二象限角,所以y >0,则y = 5.6.已知角α=2k π-π5(k ∈Z ),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( )A .1B .-1C .3D .-3解析:选B 由α=2k π-π5(k ∈Z )及终边相同的概念知,角α的终边在第四象限,因为角θ与角α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0.所以y =-1+1-1=-1.7.已知一个扇形的圆心角为3π4,面积为3π2,则此扇形的半径为________.解析:设此扇形的半径为r (r >0),由3π2=12×3π4×r 2,得r =2.答案:28.(2019·江苏高邮模拟)在平面直角坐标系xOy 中,60°角终边上一点P 的坐标为(1,m ),则实数m 的值为________.解析:∵60°角终边上一点P 的坐标为(1,m ),∴tan 60°=m1,∵tan 60°=3,∴m = 3.答案: 39.若α=1 560°,角θ与α终边相同,且-360°<θ<360°,则θ=________. 解析:因为α=1 560°=4×360°+120°, 所以与α终边相同的角为360°×k +120°,k ∈Z , 令k =-1或k =0,可得θ=-240°或θ=120°. 答案:120°或-240°10.在直角坐标系xOy 中,O 为坐标原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________.解析:依题意知OA =OB =2,∠AOx =30°,∠BOx =120°, 设点B 坐标为(x ,y ),则x =2cos 120°=-1,y =2sin 120°=3,即B (-1,3). 答案:(-1,3)11.已知1|sin α|=-1sin α,且lg(cos α)有意义.(1)试判断角α所在的象限;(2)若角α的终边上一点M ⎝⎛⎭⎫35,m ,且|OM |=1(O 为坐标原点),求m 的值及sin α的值. 解:(1)由1|sin α|=-1sin α,得sin α<0,由lg(cos α)有意义,可知cos α>0, 所以α是第四象限角.(2)因为|OM |=1,所以⎝⎛⎭⎫352+m 2=1,解得m =±45. 又因为α是第四象限角,所以m <0, 从而m =-45,sin α=y r =m |OM |=-451=-45.12.已知α为第三象限角. (1)求角α2终边所在的象限;(2)试判断 tan α2sin α2cos α2的符号.解:(1)由2k π+π<α<2k π+3π2,k ∈Z ,得k π+π2<α2<k π+3π4,k ∈Z ,当k 为偶数时,角α2终边在第二象限;当k 为奇数时,角α2终边在第四象限.故角α2终边在第二或第四象限.(2)当角α2在第二象限时,tan α2<0,sin α2>0, cos α2<0,所以tan α2sin α2cos α2取正号;当角α2在第四象限时,tan α2<0,sin α2<0, cos α2>0, 所以 tan α2sin α2cos α2也取正号.因此tan α2sin α2cos α2取正号.B 级1.若-3π4<α<-π2,从单位圆中的三角函数线观察sin α,cos α,tan α的大小是( )A .sin α<tan α<cos αB .cos α<sin α<tan αC .sin α<cos α<tan αD .tan α<sin α<cos α解析:选C 如图所示,作出角α的正弦线MP ,余弦线OM ,正切线AT ,因为-3π4<α<-π2,所以α终边位置在图中的阴影部分,观察可得AT >OM >MP ,故有sin α<cos α<tan α. 2.已知点P (sin α-cos α,tan α)在第一象限,且α∈[0,2π],则角α的取值范围是( ) A.⎝⎛⎭⎫π2,3π4∪⎝⎛⎭⎫π,5π4 B.⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫π,5π4 C.⎝⎛⎭⎫π2,3π4∪⎝⎛⎭⎫5π4,3π2D.⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫3π4,π解析:选B 因为点P 在第一象限,所以⎩⎪⎨⎪⎧sin α-cos α>0,tan α>0,即⎩⎪⎨⎪⎧sin α>cos α,tan α>0.由tan α>0可知角α为第一或第三象限角,画出单位圆如图.又sin α>cos α,用正弦线、余弦线得满足条件的角α的终边在如图所示的阴影部分(不包括边界),即角α的取值范围是⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫π,5π4.3.已知角θ的终边过点P (-4a,3a )(a ≠0).(1)求sin θ+cos θ的值;(2)试判断cos(sin θ)·sin(cos θ)的符号.解:(1)因为角θ的终边过点P (-4a,3a )(a ≠0), 所以x =-4a ,y =3a ,r =5|a |,当a >0时,r =5a ,sin θ+cos θ=35-45=-15;当a <0时,r =-5a ,sin θ+cos θ=-35+45=15.(2)当a >0时,sin θ=35∈⎝⎛⎭⎫0,π2, cos θ=-45∈⎝⎛⎭⎫-π2,0, 则cos(sin θ)·sin(cos θ)=cos 35·sin ⎝⎛⎭⎫-45<0; 当a <0时,sin θ=-35∈⎝⎛⎭⎫-π2,0, cos θ=45∈⎝⎛⎭⎫0,π2, 则cos(sin θ)·sin(cos θ)=cos ⎝⎛⎭⎫-35·sin 45>0. 综上,当a >0时,cos(sin θ)·sin(cos θ)的符号为负; 当a <0时,cos(sin θ)·sin(cos θ)的符号为正.第二节 同角三角函数的基本关系与诱导公式一、基础知识1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1; (2)商数关系:tan α=sin αcos α. 平方关系对任意角都成立,而商数关系中α≠k π+π2(k ∈Z).2.诱导公式诱导公式可简记为:奇变偶不变,符号看象限.“奇”“偶”指的是“k ·π2+α(k ∈Z )”中的k 是奇数还是偶数.“变”与“不变”是指函数的名称的变化,若k 是奇数,则正、余弦互变;若k 为偶数,则函数名称不变.“符号看象限”指的是在“k ·π2+α(k ∈Z )”中,将α看成锐角时,“k ·π2+α(k ∈Z )”的终边所在的象限.二、常用结论同角三角函数的基本关系式的几种变形 (1)sin 2α=1-cos 2α=(1+cos α)(1-cos α); cos 2α=1-sin 2α=(1+sin α)(1-sin α); (sin α±cos α)2=1±2sin αcos α. (2)sin α=tan αcos α⎝⎛⎭⎫α≠π2+k π,k ∈Z .考点一 三角函数的诱导公式[典例] (1)已知f (α)=cos ⎝⎛⎭⎫π2+αsin ⎝⎛⎭⎫3π2-αcos (-π-α)tan (π-α),则f ⎝⎛⎭⎫-25π3的值为________. (2)已知cos ⎝⎛⎭⎫π6-α=23,则sin ⎝⎛⎭⎫α-2π3=________. [解析] (1)因为f (α)=cos ⎝⎛⎭⎫π2+αsin ⎝⎛⎭⎫3π2-αcos (-π-α)tan (π-α) =-sin α(-cos α)(-cos α)⎝⎛⎭⎫-sin αcos α=cos α,所以f ⎝⎛⎭⎫-25π3=cos ⎝⎛⎭⎫-25π3=cos π3=12. (2)sin ⎝⎛⎭⎫α-2π3=-sin ⎝⎛⎭⎫2π3-α=-sin ⎣⎡⎦⎤π-⎝⎛⎭⎫π3+α=-sin ⎝⎛⎭⎫π3+α=-sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫π6-α=-cos ⎝⎛⎭⎫π6-α=-23. [答案] (1)12 (2)-23[题组训练]1.已知tan α=12,且α∈⎝⎛⎭⎫π,3π2,则cos ⎝⎛⎭⎫α-π2=________. 解析:法一:cos ⎝⎛⎭⎫α-π2=sin α,由α∈⎝⎛⎭⎫π,3π2知α为第三象限角, 联立⎩⎪⎨⎪⎧tan α=sin αcos α=12,sin 2α+cos 2α=1,解得5sin 2α=1,故sin α=-55.法二:cos ⎝⎛⎭⎫α-π2=sin α,由α∈⎝⎛⎭⎫π,3π2知α为第三象限角,由tan α=12,可知点(-2,-1)为α终边上一点,由任意角的三角函数公式可得sin α=-55. 答案:-552. sin(-1 200°)·cos 1 290°+cos(-1 020°)·sin(-1 050°)+tan 945°=________.解析:原式=sin(-3×360°-120°)cos(3×360°+180°+30°)+cos(-3×360°+60°) sin(-3×360°+30°)+tan(2×360°+180°+45°)=sin 120°cos 30°+cos 60°sin 30°+tan 45°=34+14+1=2. 答案:23.已知tan ⎝⎛⎭⎫π6-α=33,则tan ⎝⎛⎭⎫5π6+α=________. 解析:tan ⎝⎛⎭⎫5π6+α=tan ⎝⎛⎭⎫π-π6+α=tan ⎣⎡⎦⎤π-⎝⎛⎭⎫π6-α=-tan ⎝⎛⎭⎫π6-α=-33. 答案:-33考点二 同角三角函数的基本关系及应用[典例] (1)若tan α=2,则sin α+cos αsin α-cos α+cos 2α=( )A.165B .-165C.85D .-85(2)已知sin αcos α=38,且π4<α<π2,则cos α-sin α的值为( )A.12 B .±12C .-14D .-12[解析] (1)sin α+cos αsin α-cos α+cos 2α=sin α+cos αsin α-cos α+cos 2αsin 2α+cos 2α =tan α+1tan α-1+1tan 2α+1, 将tan α=2代入上式,则原式=165.(2)因为sin αcos α=38,所以(cos α-sin α)2=cos 2α-2sin αcos α+sin 2α=1-2sin αcos α=1-2×38=14,因为π4<α<π2,所以cos α<sin α,即cos α-sin α<0,所以cos α-sin α=-12.[答案] (1)A (2)D[题组训练]1.(2018·甘肃诊断)已知tan φ=43,且角φ的终边落在第三象限,则cos φ=( )A.45 B .-45C.35D .-35解析:选D 因为角φ的终边落在第三象限,所以cos φ<0,因为tan φ=43,所以⎩⎪⎨⎪⎧sin 2φ+cos 2φ=1,sin φcos φ=43,cos φ<0,解得cos φ=-35.2.已知tan θ=3,则sin 2θ+sin θcos θ=________.解析:sin 2θ+sin θcos θ=sin 2θ+sin θcos θsin 2θ+cos 2θ=tan 2θ+tan θtan 2θ+1=32+332+1=65.答案:653.已知sin α+3cos α3cos α-sin α=5,则sin 2α-sin αcos α=________.解析:由已知可得sin α+3cos α=5(3cos α-sin α), 即sin α=2cos α,所以tan α=sin αcos α=2,从而sin 2α-sin αcos α=sin 2α-sin αcos αsin 2α+cos 2α=tan 2α-tan αtan 2α+1=22-222+1=25.答案:254.已知-π<α<0,sin(π+α)-cos α=-15,则cos α-sin α的值为________.解析:由已知,得sin α+cos α=15,sin 2α+2sin αcos α+cos 2α=125, 整理得2sin αcos α=-2425. 因为(cos α-sin α)2=1-2sin αcos α=4925,且-π<α<0,所以sin α<0,cos α>0, 所以cos α-sin α>0,故cos α-sin α=75.答案:75[课时跟踪检测]A 级1.已知x ∈⎝⎛⎭⎫-π2,0,cos x =45,则tan x 的值为( ) A.34 B .-34C.43D .-43解析:选B 因为x ∈⎝⎛⎭⎫-π2,0,所以sin x =-1-cos 2x =-35,所以tan x =sin x cos x =-34. 2.(2019·淮南十校联考)已知sin ⎝⎛⎭⎫α-π3=13,则cos ⎝⎛⎭⎫α+π6的值为( ) A .-13B.13C.223D .-223解析:选A ∵sin ⎝⎛⎭⎫α-π3=13,∴cos ⎝⎛⎭⎫α+π6=cos ⎣⎡⎦⎤π2+⎝⎛⎭⎫α-π3=-sin ⎝⎛⎭⎫α-π3=-13. 3.计算:sin 11π6+cos 10π3的值为( ) A .-1 B .1 C .0D.12-32解析:选A 原式=sin ⎝⎛⎭⎫2π-π6+cos ⎝⎛⎭⎫3π+π3 =-sin π6-cos π3=-12-12=-1.4.若sin (π-θ)+cos (θ-2π)sin θ+cos (π+θ)=12,则tan θ的值为( )A .1B .-1C .3D .-3解析:选D 因为sin (π-θ)+cos (θ-2π)sin θ+cos (π+θ)=sin θ+cos θsin θ-cos θ=12,所以2(sin θ+cos θ)=sin θ-cos θ, 所以sin θ=-3cos θ,所以tan θ=-3.5.(2018·大庆四地六校调研)若α是三角形的一个内角,且sin ⎝⎛⎭⎫π2+α+cos ⎝⎛⎭⎫3π2+α=15,则tan α的值为( )A .-43B .-34C .-43或-34D .不存在解析:选A 由sin ⎝⎛⎭⎫π2+α+cos ⎝⎛⎭⎫3π2+α=15, 得cos α+sin α=15,∴2sin αcos α=-2425<0.∵α∈(0,π),∴sin α>0,cos α<0, ∴sin α-cos α=1-2sin αcos α=75,∴sin α=45,cos α=-35,∴tan α=-43.6.在△ABC 中,3sin ⎝⎛⎭⎫π2-A =3sin (π-A ),且cos A =-3cos(π-B ),则△ABC 为( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形D .等边三角形解析:选B 将3sin ⎝⎛⎭⎫π2-A =3sin(π-A )化为3cos A =3sin A ,则tan A =33,则A =π6,将cos A =-3co s(π-B )化为 cos π6=3cos B ,则cos B =12,则B =π3,故△ABC 为直角三角形.7.化简:1-cos 22θcos 2θtan 2θ=________.解析:1-cos 22θcos 2θtan 2θ=sin 22θcos 2θ·sin 2θcos 2θ=sin 2θ. 答案:sin 2θ8.化简:cos ⎝⎛⎭⎫α-π2sin ⎝⎛⎭⎫5π2+α·sin(α-π)·cos(2π-α)=________.解析:原式=cos ⎝⎛⎭⎫π2-αsin ⎝⎛⎭⎫2π+π2+α·(-sin α)·cos α=sin αsin ⎝⎛⎭⎫π2+α·(-sin α)·cos α=sin αcos α·(-sin α)·cos α=-sin 2α. 答案:-sin 2α 9.sin4π3·cos 5π6·tan ⎝⎛⎭⎫-4π3的值为________. 解析:原式=sin ⎝⎛⎭⎫π+π3·cos ⎝⎛⎭⎫π-π6·tan ⎝⎛⎭⎫-π-π3 =⎝⎛⎭⎫-sin π3·⎝⎛⎭⎫-cos π6·⎝⎛⎭⎫-tan π3 =⎝⎛⎭⎫-32×⎝⎛⎭⎫-32×(-3)=-334.答案:-33410.(2019·武昌调研)若tan α=cos α,则1sin α+cos 4α=________.解析:tan α=cos α⇒sin αcos α=cos α⇒sin α=cos 2α,故1sin α+cos 4α=sin 2α+cos 2αsin α+cos 4α=sin α+cos 2αsin α+cos 4α=sin α+sin αsin α+sin 2α=sin 2α+sin α+1=sin 2α+cos 2α+1=1+1=2.答案:211.已知α为第三象限角,f (α)=sin ⎝⎛⎭⎫α-π2·cos ⎝⎛⎭⎫3π2+α·tan (π-α)tan (-α-π)·sin (-α-π).(1)化简f (α);(2)若cos ⎝⎛⎭⎫α-3π2=15,求f (α)的值. 解:(1)f (α)=sin ⎝⎛⎭⎫α-π2·cos ⎝⎛⎭⎫3π2+α·tan (π-α)tan (-α-π)·sin (-α-π)=(-cos α)·sin α·(-tan α)(-tan α)·sin α=-cos α.(2)∵cos ⎝⎛⎭⎫α-3π2=15, ∴-sin α=15,从而sin α=-15.又∵α为第三象限角,∴cos α=-1-sin 2α=-265,∴f (α)=-cos α=265.12.已知sin α=255,求tan(α+π)+sin ⎝⎛⎭⎫5π2+αcos ⎝⎛⎭⎫5π2-α的值.解:因为sin α=255>0,所以α为第一或第二象限角.tan(α+π)+sin ⎝⎛⎭⎫5π2+αcos ⎝⎛⎭⎫5π2-α=tan α+cos αsin α=sin αcos α+cos αsin α=1sin αcos α. ①当α为第一象限角时,cos α=1-sin 2α=55, 原式=1sin αcos α=52.②当α为第二象限角时,cos α=-1-sin 2α=-55, 原式=1sin αcos α=-52.综合①②知,原式=52或-52.B 级1.已知sin α+cos α=12,α∈(0,π),则1-tan α1+tan α=( )A .-7 B.7 C. 3D .- 3解析:选A 因为sin α+cos α=12,所以(sin α+cos α)2=1+2sin αcos α=14,所以sin αcos α=-38,又因为α∈(0,π),所以sin α>0,cos α<0,所以cos α-sin α<0,因为(cos α-sin α)2=1-2sin αcos α=1-2×⎝⎛⎭⎫-38=74,所以cos α-sin α=-72, 所以1-tan α1+tan α=1-sin αcos α1+sin αcos α=cos α-sin αcos α+sin α=-7212=-7.2.已知θ是第一象限角,若sin θ-2cos θ=-25,则sin θ+cos θ=________.解析:∵sin θ-2cos θ=-25,∴sin θ=2cos θ-25,∴⎝⎛⎭⎫2cos θ-252+cos 2θ=1, ∴5cos 2θ-85cos θ-2125=0,即⎝⎛⎭⎫cos θ-35⎝⎛⎭⎫5cos θ+75=0. 又∵θ为第一象限角,∴cos θ=35,∴sin θ=45,∴sin θ+cos θ=75.答案:753.已知关于x 的方程2x 2-(3+1)x +m =0的两根分别是sin θ和cos θ,θ∈(0,2π),求: (1)sin 2θsin θ-cos θ+cos θ1-tan θ的值; (2)m 的值;(3)方程的两根及此时θ的值. 解:(1)原式=sin 2θsin θ-cos θ+cos θ1-sin θcos θ=sin 2θsin θ-cos θ+cos 2θcos θ-sin θ =sin 2θ-cos 2θsin θ-cos θ=sin θ+cos θ. 由条件知sin θ+cos θ=3+12, 故sin 2θsin θ-cos θ+cos θ1-tan θ=3+12.(2)由已知,得sin θ+cos θ=3+12,sin θcos θ=m2,因为1+2sin θcos θ=(sin θ+cos θ)2, 所以1+2×m 2=⎝ ⎛⎭⎪⎫3+122,解得m =32. (3)由⎩⎪⎨⎪⎧sin θ+cos θ=3+12,sin θcos θ=34,得⎩⎨⎧sin θ=32,cos θ=12或⎩⎨⎧sin θ=12,cos θ=32.又θ∈(0,2π),故θ=π3或θ=π6.故当sin θ=32,cos θ=12时,θ=π3; 当sin θ=12,cos θ=32时,θ=π6.第三节 三角函数的图象与性质一、基础知识1.用五点法作正弦函数和余弦函数的简图 (1)“五点法”作图原理:在正弦函数y =sin x ,x ∈[0,2π]的图象上,五个关键点是:(0,0),⎝⎛⎭⎫π2,1,(π,0),⎝⎛⎭⎫3π2,-1,(2π,0).在余弦函数y =cos x ,x ∈[0,2π]的图象上,五个关键点是:(0,1),⎝⎛⎭⎫π2,0,(π,-1),⎝⎛⎭⎫3π2,0,(2π,1).函数y =sin x ,x ∈[0,2π],y =cos x ,x ∈[0,2π]的五个关键点的横坐标是零点和极值点(最值点).(2)五点法作图的三步骤:列表、描点、连线(注意光滑). 2.正弦、余弦、正切函数的图象与性质R ,且x ≠k π+π2三角函数性质的注意点(1)正、余弦函数一个完整的单调区间的长度是半个周期;y =tan x 无单调递减区间;y =tan x 在整个定义域内不单调.(2)要注意求函数y =A sin(ωx +φ)的单调区间时A 和ω的符号,尽量化成ω>0的形式,避免出现增减区间的混淆.二、常用结论1.对称与周期的关系正弦曲线、余弦曲线相邻的两个对称中心、相邻的两条对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是四分之一个周期;正切曲线相邻两个对称中心之间的距离是半个周期.2.与三角函数的奇偶性相关的结论(1)若y =A sin(ωx +φ)为偶函数,则有φ=k π+π2(k ∈Z );若为奇函数,则有φ=k π (k∈Z ).(2)若y =A cos(ωx +φ)为偶函数,则有φ=k π(k ∈Z );若为奇函数,则有φ=k π+π2 (k∈Z ).(3)若y =A tan(ωx +φ)为奇函数,则有φ=k π(k ∈Z ).第一课时 三角函数的单调性 考点一 求三角函数的单调区间[典例] (2017·浙江高考)已知函数f (x )=sin 2x -cos 2x -23sin x cos x (x ∈R ). (1)求f ⎝⎛⎭⎫2π3的值;(2)求f (x )的最小正周期及单调递增区间. [解] (1)由题意,f (x )=-cos 2x -3sin 2x =-2⎝⎛⎭⎫32sin 2x +12cos 2x =-2sin ⎝⎛⎭⎫2x +π6,故f ⎝⎛⎭⎫2π3=-2sin ⎝⎛⎭⎫4π3+π6=-2sin 3π2=2. (2)由(1)知f (x )=-2sin ⎝⎛⎭⎫2x +π6. 则f (x )的最小正周期是π. 由正弦函数的性质,令π2+2k π≤2x +π6≤3π2+2k π(k ∈Z), 解得π6+k π≤x ≤2π3+k π(k ∈Z),所以f (x )的单调递增区间是⎣⎡⎦⎤π6+k π,2π3+k π(k ∈Z).[题组训练]1.函数y =|tan x |在⎝⎛⎭⎫-π2,3π2上的单调递减区间为________. 解析:作出y =|tan x |的示意图如图,观察图象可知,y =|tan x |在⎝⎛⎭⎫-π2,3π2上的单调递减区间为⎝⎛⎦⎤-π2,0和⎝⎛⎦⎤π2,π. 答案:⎝⎛⎦⎤-π2,0,⎝⎛⎦⎤π2,π 2.函数g (x )=-cos ⎝⎛⎭⎫-2x +π3⎝⎛⎭⎫x ∈⎣⎡⎦⎤-π2,π2的单调递增区间为________. 解析:g (x )=-cos ⎝⎛⎭⎫-2x +π3=-cos ⎝⎛⎭⎫2x -π3, 欲求函数g (x )的单调递增区间,只需求函数y =cos ⎝⎛⎭⎫2x -π3的单调递减区间.由2k π≤2x -π3≤2k π+π(k ∈Z),得k π+π6≤x ≤k π+2π3(k ∈Z).故函数g (x )的单调递增区间为⎣⎡⎦⎤k π+π6,k π+2π3(k ∈Z). 因为x ∈⎣⎡⎦⎤-π2,π2, 所以函数g (x )的单调递增区间为⎣⎡⎦⎤-π2,-π3,⎣⎡⎦⎤π6,π2. 答案:⎣⎡⎦⎤-π2,-π3,⎣⎡⎦⎤π6,π2 3.(2019·金华适应性考试)已知函数f (x )=3cos 2x -2sin 2(x -α),其中0<α<π2,且f ⎝⎛⎭⎫π2=-3-1.(1)求α的值;(2)求f (x )的最小正周期和单调递减区间.解:(1)由已知得f ⎝⎛⎭⎫π2=-3-2sin 2⎝⎛⎭⎫π2-α=-3-2cos 2α=-3-1,整理得cos 2α=12. 因为0<α<π2,所以cos α=22,α=π4.(2)由(1)知,f (x )=3cos 2x -2sin 2⎝⎛⎭⎫x -π4 =3cos 2x -1+cos ⎝⎛⎭⎫2x -π2 =3cos 2x +sin 2x -1 =2sin ⎝⎛⎭⎫2x +π3-1. 易知函数f (x )的最小正周期T =π. 令t =2x +π3,则函数f (x )可转化为y =2sin t -1.显然函数y =2sin t -1与y =sin t 的单调性相同, 当函数y =sin t 单调递减时, 2k π+π2≤t ≤2k π+3π2(k ∈Z),即2k π+π2≤2x +π3≤2k π+3π2(k ∈Z),解得k π+π12≤x ≤k π+7π12(k ∈Z).所以函数f (x )的单调递减区间为⎣⎡⎦⎤k π+π12,k π+7π12(k ∈Z).考点二 求三角函数的值域(最值)[典例] (1)函数f (x )=3sin ⎝⎛⎭⎫2x -π6在区间⎣⎡⎦⎤0,π2上的值域为( ) A.⎣⎡⎦⎤-32,32 B.⎣⎡⎦⎤-32,3 C.⎣⎡⎦⎤-332,332D.⎣⎡⎦⎤-332,3(2)(2017·全国卷Ⅱ)函数f (x )=sin 2x +3cos x -34⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π2的最大值是________. [解析] (1)当x ∈⎣⎡⎦⎤0,π2时, 2x -π6∈⎣⎡⎦⎤-π6,5π6,sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-12,1, 故3sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-32,3, 所以函数f (x )的值域为⎣⎡⎦⎤-32,3. (2)依题意,f (x )=sin 2x +3cos x -34=-cos 2x +3cos x +14=-⎝⎛⎭⎫cos x -322+1,因为x ∈⎣⎡⎦⎤0,π2,所以cos x ∈[0,1], 因此当cos x =32时,f (x )max =1. [答案] (1)B (2)1[变透练清]1.(变条件)若本例(1)中函数f (x )的解析式变为:f (x )=3cos ⎝⎛⎭⎫2x -π6,则f (x )在区间⎣⎡⎦⎤0,π2上的值域为________.解析:当x ∈⎣⎡⎦⎤0,π2时,2x -π6∈⎣⎡⎦⎤-π6,5π6, cos ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-32,1, 故f (x )=3cos ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-332,3.答案:⎣⎡⎦⎤-332,3 2.(变条件)若本例(2)中函数f (x )的解析式变为:函数f (x )=sin x +cos x +sin x cos x ,则f (x )的最大值为________.解析:设t =sin x +cos x (-2≤t ≤2), 则sin x cos x =t 2-12,y =t +12t 2-12=12(t +1)2-1,当t =2时,y =t +12t 2-12取最大值为2+12.故f (x )的最大值为22+12.答案:22+123.已知函数f (x )=sin ⎝⎛⎭⎫x +π6,其中x ∈⎣⎡⎦⎤-π3,a ,若f (x )的值域是⎣⎡⎦⎤-12,1,则实数a 的取值范围是________.解析:由x ∈⎣⎡⎦⎤-π3,a ,知x +π6∈⎣⎡⎦⎤-π6,a +π6. ∵x +π6∈⎣⎡⎦⎤-π6,π2时,f (x )的值域是⎣⎡⎦⎤-12,1, ∴由函数的图象知π2≤a +π6≤7π6,∴π3≤a ≤π. 答案:⎣⎡⎦⎤π3,π考点三 根据三角函数单调性确定参数[典例] (1)(2018·全国卷Ⅱ)若f (x )=cos x -sin x 在[-a ,a ]是减函数,则a 的最大值是( )A.π4 B.π2C.3π4D .π(2)若f (x )=2sin ωx (ω>0)在区间⎣⎡⎦⎤-π2,2π3上是增函数,则ω的取值范围是________.[解析] (1)f (x )=cos x -sin x =-2sin ⎝⎛⎭⎫x -π4, 当x ∈⎣⎡⎦⎤-π4,3π4,即x -π4∈⎣⎡⎦⎤-π2,π2时, y =sin ⎝⎛⎭⎫x -π4单调递增, 则f (x )=-2sin ⎝⎛⎭⎫x -π4单调递减. ∵函数f (x )在[-a ,a ]是减函数, ∴[-a ,a ]⊆⎣⎡⎦⎤-π4,3π4,∴0<a ≤π4, ∴a 的最大值是π4.(2)法一:因为x ∈⎣⎡⎦⎤-π2,2π3(ω>0), 所以ωx ∈⎣⎡⎦⎤-πω2,2πω3,因为f (x )=2sin ωx 在⎣⎡⎦⎤-π2,2π3上是增函数, 所以⎩⎪⎨⎪⎧-πω2≥-π2,2πω3≤π2,ω>0,故0<ω≤34.法二:画出函数f (x )=2sin ωx (ω>0)的图象如图所示.要使f (x )在⎣⎡⎦⎤-π2,2π3上是增函数, 需⎩⎨⎧-π2ω≤-π2,2π3≤π2ω,ω>0,即0<ω≤34.[答案] (1)A (2)⎝⎛⎦⎤0,34[解题技法]已知三角函数的单调区间求参数范围的3种方法(1)求出原函数的相应单调区间,由所给区间是所求某区间的子集,列不等式(组)求解. (2)由所给区间求出整体角的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解.(3)由所给区间的两个端点到其相应对称中心的距离不超过14周期列不等式(组)求解.[题组训练]1.若函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,且|φ|<π2在区间⎣⎡⎦⎤π6,2π3上是单调递减函数,且函数值从1减少到-1,则f ⎝⎛⎭⎫π4=________.解析:由题意知T 2=2π3-π6=π2,故T =π,所以ω=2πT=2,又因为f ⎝⎛⎭⎫π6=1,所以sin ⎝⎛⎭⎫π3+φ=1. 因为|φ|<π2,所以φ=π6,即f (x )=sin ⎝⎛⎭⎫2x +π6. 故f ⎝⎛⎭⎫π4=sin ⎝⎛⎭⎫π2+π6=cos π6=32. 答案:322.(2019·贵阳检测)已知函数f (x )=sin ⎝⎛⎭⎫ωx +π4(ω>0)在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是________.解析:由π2<x <π,得π2ω+π4<ωx +π4<πω+π4,由题意知⎝⎛⎭⎫π2ω+π4,πω+π4⊆⎣⎡⎦⎤π2,3π2, 所以⎩⎨⎧π2ω+π4≥π2,πω+π4≤3π2,解得12≤ω≤54.答案:⎣⎡⎦⎤12,54[课时跟踪检测]A 级1.函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间是( ) A.⎣⎡⎦⎤k π2-π12,k π2+5π12(k ∈Z ) B.⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z ) C.⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z ) D.⎝⎛⎭⎫k π+π6,k π+2π3(k ∈Z ) 解析:选B 由k π-π2<2x -π3<k π+π2(k ∈Z),得k π2-π12<x <k π2+5π12(k ∈Z),所以函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间是⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z). 2.y =|cos x |的一个单调递增区间是( ) A.⎣⎡⎦⎤-π2,π2 B .[0,π] C.⎣⎡⎦⎤π,3π2 D.⎣⎡⎦⎤3π2,2π解析:选D 将y =cos x 的图象位于x 轴下方的部分关于x 轴对称向上翻折,x 轴上方(或x 轴上)的部分不变,即得y =|cos x |的图象(如图).故选D.3.已知函数y =2cos x 的定义域为⎣⎡⎦⎤π3,π,值域为[a ,b ],则b -a 的值是( ) A .2 B .3 C.3+2D .2- 3解析:选B 因为x ∈⎣⎡⎦⎤π3,π,所以cos x ∈⎣⎡⎦⎤-1,12,故y =2cos x 的值域为[-2,1],所以b -a =3.4.(2019·西安八校联考)已知函数f (x )=cos(x +θ)(0<θ<π)在x =π3时取得最小值,则f (x )在[0,π]上的单调递增区间是( )A.⎣⎡⎦⎤π3,πB.⎣⎡⎦⎤π3,2π3 C.⎣⎡⎦⎤0,2π3 D.⎣⎡⎦⎤2π3,π解析:选A 因为0<θ<π,所以π3<π3+θ<4π3,又因为f (x )=cos(x +θ)在x =π3时取得最小值,所以π3+θ=π,θ=2π3,所以f (x )=cos ⎝⎛⎭⎫x +2π3.由0≤x ≤π,得2π3≤x +2π3≤5π3.由π≤x +2π3≤5π3,得π3≤x ≤π,所以f (x )在[0,π]上的单调递增区间是⎣⎡⎦⎤π3,π. 5.(2018·北京东城质检)函数f (x )=sin 2x +3sin x cos x 在区间⎣⎡⎦⎤π4,π2上的最小值为( ) A .1 B.1-32C.32D .1- 3解析:选A 函数f (x )=sin 2x +3sin x cos x =12-12cos 2x +32sin 2x =sin ⎝⎛⎭⎫2x -π6+12. ∵x ∈⎣⎡⎦⎤π4,π2,∴2x -π6∈⎣⎡⎦⎤π3,5π6. 当2x -π6=5π6时,函数f (x )取得最小值为1.6.(2019·广西五市联考)若函数f (x )=2sin ωx (0<ω<1)在区间⎣⎡⎦⎤0,π3上的最大值为1,则ω=( )A.14 B.13C.12D.32解析:选C 因为0<ω<1,0≤x ≤π3,所以0≤ωx <π3,所以f (x )在区间⎣⎡⎦⎤0,π3上单调递增,则f (x )max =f ⎝⎛⎭⎫π3=2sin ωπ3=1,即sin ωπ3=12.又因为0≤ωx <π3,所以ωπ3=π6,解得ω=12. 7.函数y =sin x -cos x 的定义域为________.解析:要使函数有意义,需sin x -cos x ≥0,即sin x ≥cos x , 由函数的图象得2k π+π4≤x ≤2k π+5π4(k ∈Z),故原函数的定义域为⎣⎡⎦⎤2k π+π4,2k π+5π4(k ∈Z). 答案:⎣⎡⎦⎤2k π+π4,2k π+5π4(k ∈Z ) 8.函数f (x )=cos 2x +6cos ⎝⎛⎭⎫π2-x 的最大值为________.解析:因为f (x )=cos 2x +6cos ⎝⎛⎭⎫π2-x =1-2sin 2x +6sin x =-2⎝⎛⎭⎫sin x -322+112,而sin x∈[-1,1],所以当sin x =1时,f (x )取最大值5.答案:59.函数f (x )=2sin ⎝⎛⎭⎫π6x -π3(0≤x ≤9)的最大值与最小值之和为________. 解析:因为0≤x ≤9,所以0≤π6x ≤3π2,即-π3≤π6x -π3≤7π6,所以-32≤sin ⎝⎛⎭⎫π6x -π3≤1, 故f (x )的最大值为2,最小值为-3,它们之和为2- 3. 答案:2- 310.若函数f (x )=sin ωx (ω>0)在区间⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则ω=________.解析:法一:由于函数f (x )=sin ωx (ω>0)的图象经过坐标原点,由已知并结合正弦函数 的图象可知,π3为函数f (x )的14周期,故2πω=4π3,解得ω=32.法二:由题意,得f (x )max =f ⎝⎛⎭⎫π3=sin π3ω=1. 由已知并结合正弦函数图象可知,π3ω=π2,解得ω=32.答案:3211.已知函数f (x )=2sin ⎝⎛⎭⎫2x +π4. (1)求函数f (x )的单调递增区间;(2)当x ∈⎣⎡⎦⎤π4,3π4时,求函数f (x )的最大值和最小值. 解:(1)令2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,则k π-3π8≤x ≤k π+π8,k ∈Z.故函数f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z. (2)因为当x ∈⎣⎡⎦⎤π4,3π4时,3π4≤2x +π4≤7π4, 所以-1≤sin ⎝⎛⎭⎫2x +π4≤22,所以-2≤f (x )≤1, 所以当x ∈⎣⎡⎦⎤π4,3π4时,函数f (x )的最大值为1,最小值为- 2.12.已知函数f (x )=12sin 2x -32cos 2x -32.(1)求函数f (x )的最小正周期和最大值; (2)讨论函数f (x )在⎣⎡⎦⎤π6,2π3上的单调性.解:(1)因为函数f (x )=12sin 2x -32cos 2x -32=sin ⎝⎛⎭⎫2x -π3-32, 所以函数f (x )的最小正周期为π,最大值为2-32.(2)当x ∈⎣⎡⎦⎤π6,2π3时,0≤2x -π3≤π, 从而当0≤2x -π3≤π2,即π6≤x ≤5π12时,f (x )单调递增;当π2≤2x -π3≤π,即5π12≤x ≤2π3时,f (x )单调递减. 综上可知,f (x )在⎣⎡⎦⎤π6,5π12上单调递增,在⎣⎡⎦⎤5π12,2π3上单调递减.B 级1.已知函数f (x )=2sin ⎝⎛⎭⎫x +7π3,设a =f ⎝⎛⎭⎫π7,b =f ⎝⎛⎭⎫π6,c =f ⎝⎛⎭⎫π3,则a ,b ,c 的大小关系是________(用“<”表示).解析:函数f (x )=2sin ⎝⎛⎭⎫x +π3+2π=2sin ⎝⎛⎭⎫x +π3, a =f ⎝⎛⎭⎫π7=2sin 10π21, b =f ⎝⎛⎭⎫π6=2sin π2, c =f ⎝⎛⎭⎫π3=2sin 2π3=2sin π3, 因为y =sin x 在⎣⎡⎦⎤0,π2上单调递增,且π3<10π21<π2, 所以sin π3<sin 10π21<sin π2,即c <a <b . 答案:c <a <b2.(2018·四川双流中学模拟)已知函数f (x )=sin ⎝⎛⎭⎫ωx +π4(ω>0),f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π3,且f (x )在⎝⎛⎭⎫π2,π上单调递减,则ω=________.解析:由f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π3,可知函数f (x ) 的图象关于直线x =π4对称, ∴π4ω+π4=π2+k π,k ∈Z , ∴ω=1+4k ,k ∈Z ,又∵f (x )在⎝⎛⎭⎫π2,π上单调递减, ∴T 2≥π-π2=π2,T ≥π, ∴2πω≥π,∴ω≤2, 又∵ω=1+4k ,k ∈Z ,∴当k =0时,ω=1. 答案:13.已知函数f (x )=2a sin ⎝⎛⎭⎫x +π4+a +b . (1)若a =-1,求函数f (x )的单调递增区间;(2)若x ∈[0,π],函数f (x )的值域是[5,8],求a ,b 的值. 解:(1)当a =-1时,f (x )=-2sin ⎝⎛⎭⎫x +π4+b -1, 由2k π+π2≤x +π4≤2k π+3π2(k ∈Z),得2k π+π4≤x ≤2k π+5π4(k ∈Z),所以f (x )的单调递增区间为⎣⎡⎦⎤2k π+π4,2k π+5π4(k ∈Z). (2)因为0≤x ≤π,所以π4≤x +π4≤5π4,所以-22≤sin ⎝⎛⎭⎫x +π4≤1,依题意知a ≠0. ①当a >0时,有{ 2a +a +b =8,b =5,所以a =32-3,b =5. ②当a <0时,有{ b =8,2a +a +b =5,所以a =3-32,b =8.综上所述,a =32-3,b =5或a =3-32,b =8.第二课时 三角函数的周期性、奇偶性及对称性考点一 三角函数的周期性[典例] (1)(2018·全国卷Ⅲ)函数f (x )=tan x1+tan 2x 的最小正周期为( )A.π4 B.π2C .πD .2π(2)若函数f (x )=2tan ⎝⎛⎭⎫kx +π3的最小正周期T 满足1<T <2,则正整数k 的值为________. [解析] (1)由已知得f (x )=tan x 1+tan 2x =sin x cos x 1+⎝⎛⎭⎫sin x cos x 2=sin xcos x cos 2x +sin 2x cos 2x =sin x cos x =12sin 2x ,所以f (x )的最小正周期为T =2π2=π.(2)由题意知1<πk <2,即π2<k <π.又因为k ∈N *,所以k =2或k =3. [答案] (1)C (2)2或3[解题技法]1.三角函数最小正周期的求解方法 (1)定义法;(2)公式法:函数y =A sin(ωx +φ)(y =A cos(ωx +φ))的最小正周期T =2π|ω|,函数y =A tan(ωx+φ)的最小正周期T =π|ω|;(3)图象法:求含有绝对值符号的三角函数的周期时可画出函数的图象,通过观察图象得出周期.2.有关周期的2个结论(1)函数y =|A sin(ωx +φ)|,y =|A cos(ωx +φ)|,y =|A tan(ωx +φ)|的周期均为T =π|ω|.(2)函数y =|A sin(ωx +φ)+b |(b ≠0),y =|A cos(ωx +φ)+b |(b ≠0)的周期均为T =2π|ω|.[题组训练]1.在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③解析:选A 因为y =cos|2x |=cos 2x , 所以该函数的周期为2π2=π;由函数y =|cos x |的图象易知其周期为π; 函数y =cos ⎝⎛⎭⎫2x +π6的周期为2π2=π; 函数y =tan ⎝⎛⎭⎫2x -π4的周期为π2,故最小正周期为π的函数是①②③. 2.若x =π8是函数f (x )=2sin ⎝⎛⎭⎫ωx -π4,x ∈R 的一个零点,且0<ω<10,则函数f (x )的最小正周期为________.解析:依题意知,f ⎝⎛⎭⎫π8=2sin ⎝⎛⎭⎫ωπ8-π4=0, 即ωπ8-π4=k π,k ∈Z ,整理得ω=8k +2,k ∈Z. 又因为0<ω<10,所以0<8k +2<10,得-14<k <1,而k ∈Z ,所以k =0,ω=2,所以f (x )=2sin ⎝⎛⎭⎫2x -π4,f (x )的最小正周期为π. 答案:π考点二 三角函数的奇偶性[典例] 函数f (x )=3sin ⎝⎛⎭⎫2x -π3+φ,φ∈(0,π)满足f (|x |)=f (x ),则φ的值为( ) A.π6 B.π3C.5π6D.2π3[解析] 因为f (|x |)=f (x ),所以函数f (x )=3sin ⎝⎛⎭⎫2x -π3+φ是偶函数, 所以-π3+φ=k π+π2,k ∈Z ,所以φ=k π+5π6,k ∈Z ,又因为φ∈(0,π),所以φ=5π6.[答案] C[解题技法] 判断三角函数奇偶性的方法三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx 的形式,而偶函数一般可化为y =A cos ωx +b 的形式.[题组训练]1.(2018·日照一中模拟)下列函数中,周期为π,且在⎣⎡⎦⎤π4,π2上单调递增的奇函数是( ) A .y =sin ⎝⎛⎭⎫2x +3π2 B .y =cos ⎝⎛⎭⎫2x -π2 C .y =cos ⎝⎛⎭⎫2x +π2 D .y =sin ⎝⎛⎭⎫π2-x解析:选C y =sin ⎝⎛⎭⎫2x +3π2=-cos 2x 为偶函数,排除A ;y =cos ⎝⎛⎭⎫2x -π2=sin 2x 在⎣⎡⎦⎤π4,π2上为减函数,排除B ;y =cos ⎝⎛⎭⎫2x +π2=-sin 2x 为奇函数,在⎣⎡⎦⎤π4,π2上单调递增,且周期为π,符合题意;y =sin ⎝⎛⎭⎫π2-x =cos x 为偶函数,排除D.故选C.2.若函数f (x )=3cos(3x -θ)-sin(3x -θ)是奇函数,则tan θ等于________. 解析:f (x )=3cos(3x -θ)-sin(3x -θ) =2sin ⎝⎛⎭⎫π3-3x +θ =-2sin ⎝⎛⎭⎫3x -π3-θ, 因为函数f (x )为奇函数, 所以-π3-θ=k π,k ∈Z ,即θ=-k π-π3,k ∈Z ,故tan θ=tan ⎝⎛⎭⎫-k π-π3=- 3. 答案:- 3。
高中数学:三角函数全章课件
内容分析
1.弧度制和角的概念的推广是三角函数的基 础,弧度制的引入,也简化了弧长公式、面 积公式等. 2.三角函数同二次函数、幂函数、指数函数 、对数函数一样,其图象、性质和应用是考 查的重点,其中y=Asin(ωx+φ)的图象是研 究函数图象变换的代表. 3.三角恒等式的化简、求值和证明,是培养 学生分析问题、解决问题能力和提升学生思 维品质的良好载体.公式的逆用和变形都需 要较强的应变能力. 4.解三角形进一步体现了数学的应用性,正 弦定理和余弦定理的推导和应用,有利于培 养学生的建模、解模能力. 5.本章概念多、公式多(如同角三角函数关 系式、诱导公式、两角和与差的正余弦、正 切、正余弦定理等)、符号变化多,这几多决 定了学习本章要加强记忆.本章与其他章节 联系也很密切,是综合应用所学知识的一章.
第三章 三角函数、解三角形
高考目标定位
目标了然于胸,让讲台见证您的高瞻远瞩
命题热点
近几年的高考中,对本章内容的考查多以选 择题和填空题的形式出现,解答题独立命题 的情形也有,主要是三角与其他知识的综合 渗透,如与数列、不等式综合;独立命题, 考查三角函数性质及图象变换.从高考试题 分析,高考对本章考查侧重于: 1.三角函数的性质、图象及其变换,主要是 y=Asin(ωx+φ)的性质、图象及变换. 2.已知三角函数值求角. 3.灵活运用公式,通过简单的三角恒等变换 解决三角函数的化简、求值或证明问题,借 助三角变换解与三角形有关的问题. 根据高考的最新动态,我们预测今后有关三 角函数高考命题的趋势是:①试题的题型、 题量及难度将基本保持稳定.②三角函数是 重要的基本初等函数,是研究其他知识的重 要工具,高考将注重基础知识、基本技能、 基本思想和方法的考查.③考查的重点仍是 三角函数的定义、图象和性质.④新教材更 加突出了应用问题的地位,这也是今后的命 题方向.
三角函数的概念课件
x
x
三角函数的概念
设α是一个任意角,α∈R,它的终边与单位圆相交于点P(x,y),
那么 y sin,x cos,y tan (x 0).
x
可以看出,当 k ,k Z 时,α的终边始终在y轴上,这时P点的横
坐标x等于0,所以
y
2
tan无意义.除此之外,正切tanα与实数α是一一对应
么z1与y1相等吗?对于余弦、正切也有相同的结论吗?
y
利用锐角三角函数概念可得:
P(x,y)
sin MP y y; cos OM x x; tan MP y
OP 1
OP 1
OM x
α
O M 1x
与按本节三角函数定义求得的结论是相同的.
三角函数的概念
【例1】求 5 的正弦、余弦和正切值.
三角函数的概念
锐角α的正弦、余弦和正切叫做角α的锐角三角函数,分别记作sinα, cosα,tanα.
sin
对边 BC
斜边 AB
B
cos
邻边 斜边
=
AC AB
α
tan
对边 BC 邻边 AC
A
C
02
新知探索
New Knowledge explore
三角函数的概念
角的概念推广后,在弧度制下,角的集合与实数集R之间建立了一一 对应的关系,下面借助这些知识研究上一节开头提出的问题,即研究单位 圆上点的运动.
所有与角α终边相同的角,连同角α在内,可构成一个集合
S { | k 360 o, k Z}
象限角与轴线角:
把角的顶点固定在原点,角的终边始终与x轴的非负半轴重合.那么,角α的终边在第
几象限,就说这个角是第几象限的角. 如果角的终边落在坐标轴上,这个角称轴线角.
数学必修四目录
数学必修四目录
第一章三角函数
第一节任意角与弧度制
任意角的概念与表示弧度制的引入与意义角度制与弧度制的换算终边相同的角的集合
第二节任意角三角函数
三角函数的定义三角函数在各象限的符号三角函数线及其性质三角函数的基本关系式
第三节诱导公式与图象
诱导公式的推导与应用三角函数的图象及其性质利用图象求解三角不等式
第四节三角函数的性质
三角函数的周期性三角函数的奇偶性三角函数的单调性三角函数的最值与零点
第五节函数模型应用
三角函数在实际问题中的应用三角函数模型的建立与求解
第二章平面向量
第一节平面向量概念
向量的定义与表示向量的模与方向共线向量与共面向量
第二节向量的线性运算
向量的加法与减法向量的数乘向量共线的充要条件
第三节向量的基本定理
平面向量基本定理的表述平面向量基本定理的应用
第四节平面向量数量积
向量数量积的定义与性质向量数量积的运算律向量夹角与垂直的判定
第五节平面向量应用
向量在几何问题中的应用向量在物理问题中的应用
第三章三角恒等变换
第一节两角和差公式
两角和差公式的推导两角和差公式的应用
第二节恒等变换应用
利用恒等变换化简三角式利用恒等变换证明三角恒等式恒等变换在解决实际问题中的应用
本目录涵盖了数学必修四的主要内容,包括三角函数、平面向量以及三角恒等变换等知识点。
通过学习这些内容,同学们可以进一步加深对三角函数和平面向量的理解,提高解决实际问题的能力。
在学习过程中,应注重理解概念和性质,掌握运算技巧和方法,并通过大量的练习来巩固和提高学习效果。
三角函数的定义与性质
有界性
三角函数的有 界性是指它们 在一定范围内 取值有限
有界性的证明 通常需要利用 三角函数的定 义和性质,如 周期性、对称 性等
有界性是三角函 数在解决实际问 题中非常重要的 性质之一,例如 在信号处理、控 制系统等领域
有界性还可以 帮助我们理解 三角函数的其 他性质,如单 调性、周期性 等
图像与性质
PART 05
三角函数的和差 化积公式
和差化积公式的基本形式
正弦和差化积公式: sin(A+B) = sinAcosB + cosAsinB
余弦和差化积公式: cos(A+B) = cosAcosB - sinAsinB
正切和差化积公式 :tan(A+B) = (tanA+tanB)/(1tanAtanB)
性质:余弦函数是一个周期函数,其周期为2π。
图像:余弦函数的图像是一个正弦曲线,其最大值为1,最小值为-1。
正切函数
定义:正切函数是三角函数之一,表示单位圆上某点与x轴正方向的夹角。 公式:tan(θ) = sin(θ) / cos(θ) 性质:正切函数在定义域内是连续的,但在某些点处不可导。 应用:正切函数在解析几何、微积分等领域有着广泛的应用。
THANK YOU
汇报人:
数学竞赛:诱 导公式是数学 竞赛中常见的 题型,掌握诱 导公式有助于 提高解题能力
特殊角度的三角函数值
0 °: s i n ( 0 °) = 0 , co s ( 0 °) = 1 , ta n ( 0 °) = 0
4 5 °: s i n ( 4 5 °) = √ 2 / 2 , co s ( 4 5 °) = √ 2 / 2 , ta n ( 4 5 °) = 1
高中数学知识点总结(第四章-三角函数、解三角形-第一节-任意角和弧度制及任意角的三角函数)
第四章 三角函数、解三角形第一节 任意角和弧度制及任意角的三角函数一、基础知识1.角的概念的推广(1)定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)分类⎩⎪⎨⎪⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角. (3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+2k π,k ∈Z}.终边相同的角不一定相等,但相等的角其终边一定相同.2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad.(2)公式:有关角度与弧度的两个注意点(1)角度与弧度的换算的关键是π=180°,在同一个式子中,采用的度量制度必须一致,不可混用.(2)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=y x (x ≠0).(2)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线、余弦线和正切线.二、常用结论汇总——规律多一点(1)一个口诀三角函数值在各象限的符号:一全正、二正弦、三正切、四余弦.(2)三角函数定义的推广设点P (x ,y )是角α终边上任意一点且不与原点重合,r =|OP |,则sin α=y r ,cos α=x r,tan α=y x(x ≠0). (3)象限角(4)轴线角[解题技法]用定义法求三角函数值的2种类型及解题方法(1)已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后用三角函数的定义求解.(2)已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后用三角函数的定义来求解.[解题技法]三角函数值符号及角所在象限的判断三角函数在各个象限的符号与角的终边上的点的坐标密切相关.sin θ在一、二象限为正,cos θ在一、四象限为正,tan θ在一、三象限为正.学习时首先把取正值的象限记清楚,其余的象限就是负的,如sin θ在一、二象限为正,那么在三、四象限就是负的.值得一提的是:三角函数的正负有时还要考虑坐标轴上的角,如sin π2=1>0,cos π=-1<0.。
三角函数基本概念
三角函数基本知识点一:任意角的概念1.角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.正角:按逆时针方向旋转所形成的角.负角:按顺时针方向旋转所形成的角.零角:如果一条射线没有做任何旋转,我们称它形成了一个零角.要点诠释:角的概念是通过角的终边的运动来推广的,既有旋转方向,又有旋转大小,同时没有旋转也是一个角,从而得到正角、负角和零角的定义.2.终边相同的角、象限角终边相同的角为角的顶点与原点重合,角的始边与轴的非负半轴重合.那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角.要点诠释:(1)终边相同的前提是:原点,始边均相同;(2)终边相同的角不一定相等,但相等的角终边一定相同;(3)终边相同的角有无数多个,它们相差的整数倍.知识点二:弧度制弧度制(1)长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1,或1弧度,或1(单位可以省略不写).(2)弧度与角度互换公式:1rad=≈57.30°=57°18′,1°=≈0.01745(rad)(3)弧长公式:(是圆心角的弧度数),扇形面积公式:.知识点三:任意角的三角函数1.三角函数定义设是一个任意角,它的终边与单位圆交于点,那么:(1)叫做的正弦,记做,即;(2)叫做的余弦,记做,即;(3)叫做的正切,记做,即.三角函数值是比值,是一个实数,这个实数的大小和点在终边上的位置无关,只是在单位圆上时,这个比值恰好为的横坐标或纵坐标.2.三角函数线圆心在原点,半径等于1的圆为单位圆.设角的顶点在圆心O,始边与轴正半轴重合,终边交单位圆于P,过P作PM垂直轴于M,作PN垂直轴于点N.以A为原点建立轴与轴同向,与的终边(或其反向延长线)相交于点(或),则有向线段0M、0N、AT(或)分别叫作的余弦线、正弦线、正切线,统称为三角函数线.有向线段:既有大小又有方向的线段.要点诠释:三条有向线段的位置:正弦线为的终边与单位圆的交点到轴的垂直线段;余弦线在轴上;正切线在过单位圆与轴的正方向的交点的切线上;三条有向线段中两条在单位圆内,一条在单位圆外.三、规律方法指导1.象限角问题角的终边所在位置角的集合x轴正半轴y轴正半轴x轴负半轴y轴负半轴x轴y轴坐标轴是第一象限角,所以是第二象限角,所以是第三象限角,所以是第四象限角,所以2.角度制与弧度制(1)可利用比例关系进行角度制与弧度制的互化;(2)弧长公式:(是圆心角的弧度数),扇形面积公式:3.三角函数定义及其应用(1)三角函数的值与点在终边上的位置无关,仅与角的大小有关.、我们只需计算点到原点的距离,那么,,(2)三角函数在各象限的符号:(一全二正弦,三切四余弦)类型一:象限角1.已知角;(1)在区间内找出所有与角有相同终边的角;(2)集合,,那么两集合的关系是什么?解析:(1)所有与角有相同终边的角可表示为:,则令得解得,从而或代回或.(2)因为表示的是终边落在四个象限的平分线上的角的集合;而集合表示终边落在坐标轴或四个象限平分线上的角的合,从而:.总结升华:(1)从终边相同的角的表示入手分析问题,先表示出所有与角有相同终边的角,然后列出一个关于的不等式,找出相应的整数,代回求出所求解;(2)可对整数的奇、偶数情况展开讨论.2.已知“是第三象限角,则是第几象限角?]思路点拨:已知角的范围或所在的象限,求所在的象限是常考题之一,一般解法有直接法和几何法,其中几何法具体操作如下:把各象限均分n等份,再从x轴的正向的上方起,依次将各区域标上I、Ⅱ、Ⅲ、Ⅳ,并循环一周,则原来是第几象限的符号所表示的区域即为(n∈N*)的终边所在的区域.解法一:因为是第三象限角,所以,∴,∴当k=3m(m∈Z)时,为第一象限角,当k=3m+1(m∈Z)时,为第三象限角,当k=3m+2(m∈Z)时,为第四象限角,故为第一、三、四象限角.解法二:把各象限均分3等份,再从x轴的正向的上方起依次将各区域标上I、Ⅱ、Ⅲ、Ⅳ,并依次循环一周,则原来是第Ⅲ象限的符号所表示的区域即为的终边所在的区域.由图可知,是第一、三、四象限角.【变式1】集合,,则( )A、B、C、D、【答案】C思路点拨:( 法一) 取特殊值-1,-3,-2,-1,0,1,2,3,4(法二)在平面直角坐标系中,数形结合(法三)集合M变形,集合N变形,是的奇数倍,是的整数倍,因此.【变式2】设为第三象限角,试判断的符号.解析:为第三象限角,当时,此时在第二象限.当时,此时在第四象限.综上可知:类型二:扇形的弧长、面积与圆心角问题3.已知一半径为r的扇形,它的周长等于所在圆的周长的一半,那么扇形的中心角是多少弧度?合多少度?扇形的面积是多少?解:设扇形的圆心角是,因为扇形的弧长是,所以扇形的周长是依题意,得≈≈【变式1】一个扇形的周长为,当扇形的圆心角等于多少弧度时,这个扇形的面积最大?并求出这个扇形的最大面积.思路点拨:运用扇形的面积公式和弧长公式建立函数关系,运用函数的性质来解决最值问题.解:设扇形的半径为,则弧长为,于是扇形的面积当时,(弧度),取到最大值,此时最大值为.故当扇形的圆心角等于2弧度时,这个扇形的面积最大,最大面积是.类型三:利用三角函数的定义解题4.已知角的终边过点,求的三个三角函数值.解析:因为过点,所以,.当;,.当,;.总结升华:(1)当角的终边上点的坐标以参数形式给出时,要根据问题的实际及解题的需要对参数进行分类讨论;(2)若角已经给定,不论点选在的终边上的什么位置,角的三角函数值都是确定的;另一方面,如果角终边上点坐标已经确定,那么根据三角函数定义,角的三角函数值也是确定的.【变式1】已知角的终边上一点,且,求的值.解析:由题设知,,所以,得,从而,解得或.当时,,;当时,,;当时,,.基础达标:1.若是第二象限角,则是第_____象限角,2的范围是__________,是第_____象限角.2.已知角的终边经过点P(5,-12),则的值为__________.3.在半径为R的圆中,的中心角所对的弧长为_____,面积为的扇形的中心角等于_____弧度.4.与角的终边相同,且绝对值最小的角的度数是_________,合_________弧度.5.已知一半径为R的扇形,它的周长等于所在圆的周长,那么扇形的中心角是多少弧度?合多少度?扇形的面积是多少?能力提升:1.设角属于第二象限,且,则角属于( )A.第一象限B.第二象限C.第三象限D.第四象限2.给出下列各函数值:①;②;③;④.其中符号为负的有( )A.①B.②C.③D.④3.等于( )A. B. C. D.4.是第四象限的角,则是( )A.第一象限的角B.第二象限的角C.第三象限的角D.第四象限的角5.的值( )A.小于B.大于C.等于D.不存在6.设分别是第二、三、四象限角,则点分别在第___、___、___象限.7.设和分别是角的正弦线和余弦线,则给出的以下不等式:①;②;③;④,其中正确的是_____________________________.8.若角与角的终边关于轴对称,则与的关系是___________.9.设扇形的周长为,面积为,则扇形的圆心角的弧度数是____________.10.已知角的顶点在原点,始边与轴的非负半轴重合,终边为射线.(1)求的值;(2)若角的终边在直线上,求的值.综合探究:1.若角的终边上有一点,则的值是( )A. B. C. D.2.函数的值域是( )A. B. C. D.3.若为第二象限角,那么,,,中,其值必为正的有( )A.个B.个C.个D.个4.已知,,那么( ).A. B. C. D.5.若角的终边落在直线上,则的值等于( ).A. B. C.或 D.6.若,且的终边过点,则是第_____象限角,=_____.7.设,则分别是第____________象限的角.8.已知求的范围.基础达标:1.第一或第三;;第四【思路分析】把各象限均分2等份,再从x轴的正向的上方起依次将各区域标上I、Ⅱ、Ⅲ、Ⅳ,并依次循环一周,则原来是第Ⅱ象限的符号所表示的区域即为的终边所在的区域.2.【思路分析】利用公式先求出点到原点的距离,再代入,3.;4【思路分析】先将角度制转化为弧度制,再代入弧长公式:(是圆心角的弧度数)4.;-5.弧度;度;能力提升:1.C 【思路分析】考察象限角解:当时,在第一象限;当时,在第三象限;而,在第三象限;2.C【思路分析】考察终边相同角,以及象限角的符号解:;;3.B.【思路分析】4.C【思路分析】,若是第四象限的角,则是第一象限的角,再逆时针旋转5.A【思路分析】6.四、三、二【思路分析】当是第二象限角时,;当是第三象限角时,;当是第四象限角时,;7.②【思路分析】8.【思路分析】与关于轴对称9.【思路分析】10.(1);(2)【思路分析】终边为射线,可设任一点,再利用定义计算点到原点的距离,代入,,1.B 【思路分析】2.C 【思路分析】当是第一象限角时,;当是第二象限角时,;当是第三象限角时,;当是第四象限角时,3.A 【思路分析】在第三、或四象限,,可正可负;在第一、或三象限,可正可负4.B 【思路分析】5.D 【思路分析】,当是第二象限角时,;当是第四象限角时,6. 二,【思路分析】,则是第二、或三象限角,而得是第二象限角,则7.一、二得是第一象限角;得是第二象限角8.解:,.。
《三角函数——三角函数的概念》数学教学PPT课件(5篇)
一
二
三
提示:sin α=y,cos α=x,tan α= .这一结论可以推广到α是任意角.
一
二
三
2.填空如图,α是任意角,以α的顶点O为坐标原点,以α的始边为x轴的正半轴,建立平面直角坐标系.设P(x,y)是α的终边与单位圆的交点.(1)把点P的纵坐标y叫做α的正弦函数,记作sin α,即y=sin α;(2)把点P的横坐标x叫做α的余弦函数,记作cos α,即x=cos α;(3)把点P的纵坐标与横坐标的比值 叫做α的正切,记作tan α,即 =tan α(x≠0).正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数.3.填空
探究一
探究二
探究三
思维辨析
随堂演练
判断三角函数值的符号A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角(2)判断下列各式的符号:分析:(1)由已知条件确定出sin α,cos α的符号即可确定角α的象限;(2)先判断每个因式的符号,再确定积的符号.
探究一
探究二
探究三
思维辨析
随堂演练
(1)解析:由sin αtan α<0可知sin α,tan α异号,从而α为第二、第三象限角.由 可知cos α,tan α异号,从而α为第三、第四象限角.综上可知,α为第三象限角,故选C.答案:C(2)解:①∵105°,230°分别为第二、第三象限角,∴sin 105°>0,cos 230°<0.于是sin 105°·cos 230°<0.
探究一
探究二
探究三
思维辨析
随堂演练
反思感悟 三角函数符号的判定:对三角函数符号的判定,首先要判断角是第几象限角,然后根据规律:“一全正、二正弦、三正切、四余弦”,即可确定三角函数的符号.
三角函数--2023高考真题分类汇编完整版
三角函数--高考真题汇编第一节三角函数概念、同角三角函数关系式和诱导公式1.(2023全国甲卷理科7)“22sin sin 1αβ+=”是“sin cos 0αβ+=”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据充分条件、必要条件概念及同角三角函数的基本关系得解.【解析】当2απ=,0β=时,有22sin sin 1αβ+=,但sin cos 0αβ+≠,即22sin sin 1αβ+=推不出sin cos 0αβ+=;当sin cos 0αβ+=时,()2222sin sin cos sin 1αβββ+=-+=,即sin cos 0αβ+=能推出22sin sin 1αβ+=.综上可知,22sin sin 1αβ+=是sin cos 0αβ+=成立的必要不充分条件.故选B.2.(2023北京卷13)已知命题:p 若,αβ为第一象限角,且αβ>,则tan tan αβ>.能说明p 为假命题的一组,αβ的值为α=;β=.【分析】根据正切函数单调性以及任意角的定义分析求解.【解析】因为()tan f x x =在π0,2⎛⎫⎪⎝⎭上单调递增,若00π02αβ<<<,则00tan tan αβ<,取1020122π,2π,,k k k k ααββ=+=+∈Z ,则()()100200tan tan 2πtan ,tan tan 2πtan k k αααβββ=+==+=,即tan tan αβ<,令12k k >,则()()()()102012002π2π2πk k k k αβαβαβ-=+-+=-+-,因为()1200π2π2π,02k k αβ-≥-<-<,则()()12003π2π02k k αβαβ-=-+->>,即12k k >,则αβ>.不妨取1200ππ1,0,,43k k αβ====,即9ππ,43αβ==满足题意.故答案为:9ππ;43.第二节三角恒等变换1.(2023新高考I 卷6)过点()0,2-与圆22410x y x +--=相切的两条直线的夹角为α,则sin α=()A.1B.154C.104D.64【解析】()222241025x y x x y +--=⇒-+=,所以圆心为()2,0B ,记()0,2A -,设切点为,M N ,如图所示.因为AB =,BM =,故AM =cos cos2AM MAB AB α=∠==,sin 2α=,15sin 2sincos 2224ααα==⨯.故选B.2.(2023新高考I 卷8)已知()1sin 3αβ-=,1cos sin 6αβ=,则()cos 22αβ+=()A.79B.19 C.19-D.79-【解析】()1sin sin cos cos sin 3αβαβαβ-=-=,1cos sin 6αβ=,所以1sin cos 2αβ=,所以()112sin sin cos cos sin 263αβαβαβ+=+=+=,()()()2221cos 22cos 212sin 1239αβαβαβ⎛⎫+=+=-+=-⨯= ⎪⎝⎭.故选B.3.(2023新高考II 卷7)已知α为锐角,1cos 4α+=,则sin 2α=()A.38- B.18-+ C.34- D.14-+【解析】21cos 12sin 24αα+=-=,所以2231sin 284α⎫-==⎪⎪⎝⎭,则1sin24α-=或1sin 24α=.因为α为锐角,所以sin02α>,15sin24α-=舍去,得51sin 24α-=.故选D.第三节三角函数的图像与性质1.(2023新高考II 卷16)已知函数()()sin f x x ωϕ=+,如图所示,A ,B 是直线12y =与曲线()y f x =的两个交点,若π=6AB ,则()πf =_______.【解析】sin y x =的图象与直线12y =两个相邻交点的最近距离为2π3,占周期2π的13,所以12ππ36ω⋅=,解得4ω=,所以()()sin 4f x x ϕ=+.再将2π,03⎛⎫⎪⎝⎭代入()()sin 4f x x ϕ=+得ϕ的一个值为2π3-,即()2πsin 43f x x ⎛⎫=- ⎪⎝⎭.所以()2π3πsin 4π32f ⎛⎫=-=- ⎪⎝⎭.2.(2023全国甲卷理科10,文科12)已知()f x 为函数cos 26y x π⎛⎫=+ ⎪⎝⎭向左平移6π个单位所得函数,则()y f x =与1122y x =-交点个数为()A.1B.2C.3D.4【解析】因为函数πcos 26y x ⎛⎫=+ ⎪⎝⎭向左平移π6个单位可得()sin 2.f x x =-而1122y x =-过10,2⎛⎫- ⎪⎝⎭与()1,0两点,分别作出()f x 与1122y x =-的图像如图所示,考虑3π3π7π2,2,2222x x x =-==,即3π3π7π,,444x x x =-==处()f x 与1122y x =-的大小关系,结合图像可知有3个交点.故选C.3.(2023全国乙卷理科6,文科10)已知函数()()sin f x x ωϕ=+在区间2,63ππ⎛⎫⎪⎝⎭单调递增,直线6x π=和23x π=为函数()y f x =的图像的两条对称轴,则512f π⎛⎫-= ⎪⎝⎭()A. B.12-C.12【解析】2222362T T ωωππππ=-=⇒=π=⇒=,所以()()sin 2.f x x ϕ=+又222,32k k ϕππ⋅+=+π∈Z ,则52,6k k ϕπ=-+π∈Z .所以5555sin 22sin 121263f k π⎡ππ⎤π⎛⎫⎛⎫⎛⎫-=⋅--+π=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦故选D.【评注】本题考查了三角函数图像与性质,当然此题也可以通过画图快速来做,读者可以自行体会.4.(2023全国乙卷理科10)已知等差数列{}n a 的公差为23π,集合{}*cos n S a n =∈N ,若{},S a b =,则ab =()A.1- B.12-C.0D.12【解析】解法一(利用三角函数图像与性质)因为公差为23π,所以只考虑123,,a a a ,即一个周期内的情形即可.依题意,{}{}cos ,n S a a b ==,即S 中只有2个元素,则123cos ,cos ,cos a a a 中必有且仅有2个相等.如图所示,设横坐标为123,,a a a 的点对应图像中123,,A A A 点.①当12cos cos a a =时,且2123a a π-=,所以图像上点的位置必为如图1所示,12,A A 关于x =π对称,且1223A A π=,则1233a ππ=π-=,2433a ππ=π+=,32a =π.所以11122ab ⎛⎫=-⨯=- ⎪⎝⎭.②当13cos cos a a =时,3143a a π-=,所以图像上点的位置必为如图2所示,13,A A 关于x =π对称,且1343A A π=,则133a 2ππ=π-=,3533a 2ππ=π+=,2a =π.所以()11122ab =⨯-=-.综上所述,12ab =-.故选B.解法二(代数法)()()11113n a a n d a n 2π=+-=+-,21cos cos 3a a 2π⎛⎫=+ ⎪⎝⎭,31cos cos 3a a 4π⎛⎫=+ ⎪⎝⎭,由于{}{}*cos ,n S a n a b =∈=N ,故123cos ,cos ,cos a a a 中必有2个相等.①若121111cos cos cos cos 322a a a a a 2π⎛⎫==+=-- ⎪⎝⎭,即113cos 22a a =-,解得11cos 2a =或11cos 2a =-.若11cos 2a =,则1sin a =,3111113cos cos cos 132244a a a a 4π⎛⎫=+=-+=--=- ⎪⎝⎭,若11cos 2a =-,则1sin a =,3111113cos cos cos 13244a a a a 4π⎛⎫=+=-=+= ⎪⎝⎭,故131cos cos 2a a ab ==-.②若131111cos cos cos cos sin 322a a a a a 4π⎛⎫==+=-+ ⎪⎝⎭,得113cos 2a a =,解得11cos 2a =或11cos 2a =-.当11cos 2a =时,1sin a =,21111313cos cos cos 132244a a a a 2π⎛⎫=+=--=--=- ⎪⎝⎭,当11cos 2a =-时,1sin a =213cos 144a =+=,故121cos cos 2a a ab ==-.③若23cos cos a a =,与①类似有121cos cos 2a a ab ==-.综上,故选B.5.(2023北京卷17)已知函数()sin cos cos sin ,0,2f x x x ωϕωϕωϕπ=+><.(1)若()0f =,求ϕ的值;(2)若()f x 在区间2,33ππ⎡⎤-⎢⎥⎣⎦上单调递增,且213f π⎛⎫= ⎪⎝⎭,再从条件①、条件②、条件③这三个条件中选择一个作为已知,使函数()f x 存在,求,ωϕ的值.条件①:3f π⎛⎫= ⎪⎝⎭;条件②:13f π⎛⎫-=- ⎪⎝⎭;条件③:()f x 在,23ππ⎡⎤--⎢⎥⎣⎦上单调递减.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.【分析】(1)把0x =代入()f x 的解析式求出sin ϕ,再由π||2ϕ<即可求出ϕ的值;(2)若选条件①不合题意;若选条件②,先把()f x 的解析式化简,根据() f x 在π2π,33⎡⎤⎢⎥⎣⎦-上的单调性及函数的最值可求出T ,从而求出ω的值;把ω的值代入()f x 的解析式,由π13f ⎛⎫-=- ⎪⎝⎭和π||2ϕ<即可求出ϕ的值;若选条件③:由() f x 的单调性可知() f x 在π3x =-处取得最小值1-,则与条件②所给的条件一样,解法与条件②相同.【解析】(1)因为π()sin cos cos sin ,0,||2f x x x ωϕωϕωϕ=+><所以()()3(0)sin 0cos cos 0sin sin 2f ωϕωϕϕ=⋅+⋅==-,因为π||2ϕ<,所以π3ϕ=-.(2)因为π()sin cos cos sin ,0,||2f x x x ωϕωϕωϕ=+><,所以()π()sin ,0,||2f x x ωϕωϕ=+><,所以() f x 的最大值为1,最小值为1-.若选条件①:因为()()sin f x x ωϕ=+的最大值为1,最小值为1-,所以π3f ⎛⎫= ⎪⎝⎭无解,故条件①不能使函数()f x 存在;若选条件②:因为() f x 在π2π,33⎡⎤⎢⎥⎣⎦-上单调递增,且2π13f ⎛⎫= ⎪⎝⎭,π13f ⎛⎫-=- ⎪⎝⎭,所以2πππ233T ⎛⎫=--= ⎪⎝⎭,所以2πT =,2π1Tω==,所以()()sin f x x ϕ=+,又因为π13f ⎛⎫-=- ⎪⎝⎭,所以πsin 13ϕ⎛⎫-+=- ⎪⎝⎭,所以ππ2π,32k k ϕ-+=-+∈Z ,所以π2π,6k k ϕ=-+∈Z ,因为||2ϕπ<,所以π6ϕ=-.所以1ω=,π6ϕ=-;若选条件③:因为() f x 在π2π,33⎡⎤⎢⎥⎣⎦-上单调递增,在ππ,23⎡⎤--⎢⎥⎣⎦上单调递减,所以() f x 在π3x =-处取得最小值1-,即π13f ⎛⎫-=- ⎪⎝⎭.以下与条件②相同.第四节解三角形1.(2023全国甲卷理科16)在ABC △中,2AB =,60BAC ∠=︒,BC =D 为BC 上一点,AD 平分BAC ∠,则AD =.【解析】如图所示,记,,,AB c AC b BC a ===由余弦定理可得22222cos606b b +-⨯⨯⨯︒=,解得1b =(负值舍去).由ABC ABD ACD S S S =+△△△可得,1112sin602sin30sin30222b AD AD b ⨯⨯⨯︒=⨯⨯⨯︒+⨯⨯⨯︒,解得1212bAD b +===+.2.(2023全国甲卷文科17)记ABC △的内角,,A B C 的对边分别为,,a b c ,已知2222cos b c a A+-=.(1)求bc .(2)若cos cos 1cos cos a B b A ba Bb A c--=,求ABC △面积.3.(2023全国乙卷理科18)在ABC △中,120BAC ∠=︒,2AB =,1AC =.(1)求sin ABC ∠;(2)若D 为BC 上一点,且90BAD ∠=︒,求ADC △的面积.【解析】(1)利用余弦定理可得2222cos 14212cos120527BC AC AB AC AB BAC =+-⋅∠=+-⨯⨯⨯︒=+=.故BC =.又由正弦定理可知sin sin BC ACBAC ABC=∠∠.故sin sin14AC BAC ABC BC ⋅∠∠====.(2)由(1)可知tan ABC ∠=在Rt BAD △中,tan 2AD AB ABC =⋅∠=⨯=故1122255ABD S AB AD =⨯⨯=⨯⨯=△,又11sin 21sin120222ABC S AB AC BAC =⨯⨯⨯∠=⨯⨯⨯︒=△,所以2510ADC ABC ABD S S S =-=-=△△△.5.(2023新高考I 卷17)已知在ABC △中,3A B C +=,()2sin sin A C B -=.(1)求sin A ;(2)设=5AB ,求AB 边上的高.【解析】(1)解法一因为3A B C +=,所以4A B C C ++==π,所以4C π=,2sin()sin()A C A C -=+2sin cos 2cos sin sin cos cos sin A C A C A C A C⇒-=+sin cos 3cos sin A C A C ⇒=tan 3tan 3sin A C A ⇒==⇒=解法二因为3A B C +=,所以4A B C C ++==π,所以4C π=,所以4A B 3π+=,所以4B A 3π=-,故2sin()sin()4AC A 3π-=-,即2sin cos 2cos sin sin cos cos sin 4444A A A A ππ3π3π-=-,得sin 3cos A A =.又22sin cos 1A A +=,()0,A ∈π,得310sin 10A =.(2)若||5AB =.如图所示,设AC 边上的高为BG ,AB 边上的高为CH ,||CH h =,由(1)可得10cos 10A =,||||cos ||102AG AB A AB =⋅==,||||2BG CG ===,所以||AC =,||||2||6||5AC BG CH AB ===.6.(2023新高考II 卷17)记ABC △的内角,,A B C 的对边分别为,,a b c ,已知ABC △的面,D 为BC 的中点,且1AD =.(1)若π3ADC ∠=,求tan B ;(2)若228b c +=,求,b c .【解析】(1)依题意,122ADC ABC S S ==△△,133sin 242ADC S AD DC ADC =⋅⋅∠==△,解得2DC =,2BD =.如图所示,过点A 作AE BC ⊥于点E .因为60ADC ∠= ,所以12DE =,32AE =,则15222BE =+=,所以3tan 5AE B BE ==.(2)设AB = c ,AC = b ,由极化恒等式得2214AB AC AD BC ⋅- =,即2114⋅--b c =b c ,化简得()22244⋅-+=-b c =b c ,即cos cos 2BAC bc BAC ⋅⋅∠=∠=-b c =b c ①,又1sin 2ABC S bc BAC =∠=△,即sin bc BAC ∠=.②①得tan BAC ∠=0πBAC <∠<得2π3BAC ∠=,代入①得4bc =,与228b c +=联立可得2b c ==.7.(2023北京卷7)在ABC △中,()()()sin sin sin sin a c A C b A B +-=-,则C ∠=()A.6π B.3π C.32π D.65π【分析】利用正弦定理的边角变换与余弦定理即可得解.【解析】因为()(sin sin )(sin sin )a c A C b A B +-=-,所以由正弦定理得()()()a c a c b a b +-=-,即222a c ab b -=-,则222a b c ab +-=,故2221cos 222a b c ab C ab ab +-===,又0πC <<,所以π3C =.故选B.。
高一数学第一节知识点总结
高一数学第一节知识点总结在高一数学的第一节课中,我们学习了一些重要的数学知识点。
以下是对这些知识点的总结:一、集合论基础知识1. 集合的定义:集合是由确定的、互不相同的元素组成的整体。
2. 集合的表示方法:列举法、描述法、等价法。
3. 集合间的关系:包含关系、相等关系、交集、并集、差集等。
二、函数的定义与性质1. 函数的定义:函数是一种特殊的关系,每一个自变量对应唯一的因变量。
2. 函数的表示方法:函数图像、函数表达式、函数关系式等。
3. 函数的性质:奇偶性、周期性、单调性、最值、定义域等。
三、二次函数与一元二次方程1. 二次函数的定义:形式为y = ax^2 + bx + c(其中a≠0)的函数。
2. 二次函数的性质:顶点、对称轴、开口方向、零点等。
3. 一元二次方程的解法:配方法、因式分解、公式法等。
四、不等式与数轴1. 不等式的基本性质:加法性、乘法性。
2. 不等式的解法:图像法、代数法、数轴法等。
3. 数轴的表示方法与应用:绝对值、区间表示等。
五、平面向量基本概念与运算1. 向量的定义:具有大小和方向的量。
2. 向量的表示方法:坐标表示、模长和方向表示。
3. 向量的运算:加法、减法、数量乘法等。
六、三角函数初步1. 三角函数的基本概念:正弦、余弦、正切等;2. 三角函数的性质:周期性、奇偶性、幅值等;3. 三角函数的图像与应用:单位圆、图像变换等。
七、平面几何初步1. 平面几何基本概念:点、线、面等;2. 基本图形的性质与判定:平行、垂直、全等、相似等;3. 平面几何的应用:距离计算、角度计算等。
以上是高一数学第一节课所学习的知识点总结。
通过对这些知识点的学习与理解,我们可以更好地掌握数学的基础知识,为接下来的学习奠定坚实的基础。
希望同学们能够认真学习,并在实践中不断巩固与应用所学知识,提高自己的数学能力。
加油!。
第四章 第一节三角函数的基本概念
同步检测训练一、选择题1.(2009·海淀4月)若sin2α>0,且cos α<0,则角α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角答案:C解析:sin2α>0即2sin αcos α>0,且cos α<0, 则角α是第三象限角,故选C.2.(2009·河南实验中学3月)已知向量a =(3,4),b =(sin α,cos α),则a ∥b ,则sin αcos α=( )A.1225 B .-1225C .-925 D.925答案:A解析:向量a =(3,4),b =(sin α,cos α),由a ∥b 得3cos α-4sin α=0,即tan α=34,则sin αcos α=sin αcos αsin2α+cos2α=tan αtan2α+1=1225.故选A. 3.(2009·广西柳州三模)已知α、β∈[-π2,π2]且α+β<0,若sin α=1-m ,sin β=1-m 2,则实数m 的取值范围是( )A .(-∞,-2)∪(1,+∞)B .(-2,1)C .(1,2]D .(1,2]答案:C解析:α、β∈[-π2,π2]且α+β<0即α<-β,则⎩⎪⎨⎪⎧ -1≤sin α≤1,-1≤sin β≤1,sin α<-sin β,又sin α=1-m ,sin β=1-m 2,则⎩⎪⎨⎪⎧ -1≤1-m ≤1,-1≤1-m 2≤1,1-m <-(1-m 2),实数m 的取值范围是(1,2],故选C.4.(2008·江西)在复平面内,复数z =sin2+(cos2)i 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案:D解析:∵π2<2<π,∴sin2>0,cos2<0, ∴复数z 对应的点(sin2,cos2)位于第四象限.故选D. 5.(2008·四川·理)设0≤α<2π,若sin α>3cos α,则α的取值范围是( ) A .(π3,π2) B .(π3,π) C .(π3,4π3) D .(π3,3π2) 答案:C解析:由sin α>3cos α且0≤α<2π,当cos α>0时,tan α>3,∴π3<α<π2; 当cos α<0时,tan α<3,∴π2<α<4π3;当cos α=0时,sin α=1满足条件,此时α=π2.故选C. 6.设0≤x <2π,且1-sin2x =sin x -cos x ,则( )A .0≤x ≤π B.π4≤x ≤7π4C.π4≤x ≤5π4D.π2≤x ≤3π2答案:C 解析:∵1-sin2x =(sin x -cos x )2=|sin x -cos x |,又1-sin2x =sin x -cos x ,∴|sin x -cos x |=sin x -cos x .∴sin x -cos x ≥0,∴sin x ≥cos x .又0≤x <2π,∴π4≤x ≤5π4.故选C. 7.若sin θcos θ=12,则tan θ+cos θsin θ的值是( ) A .-2 B .2C .±2 D.12答案:B解析:tan θ+cos θsin θ=sin θcos θ+cos θsin θ=1sin θcos θ=2.故选B. 8.若sin α+cos α=tan α(0<α<π2),则α的取值范围是( ) A .(0,π6) B .(π6,π4) C .(π4,π3) D .(π3,π2) 答案:C解法一:排除法.在(0,π4)上,sin α+cos α>1,而tan α在(0,π4)上小于1, 故排除答案A 、B ;因为sin α+cos α≤2,而在(π3,π2)上tan α>3,sin α+cos α与tan α不可能相等,故排除D.故选C.解法二:由sin α+cos α=tan α,0<α<π2, ∴tan2α=1+2sin αcos α=1+sin2α,∵0<α<π2,∴0<2α<π, ∴0<sin2α≤1,∴1<tan2α≤2,∵0<α<π2,∴tan α>0, ∴1<tan α≤2,而2<3,∴π4<α<π3.故选C. 二、填空题9.如果cos α=15,且α是第四象限的角,那么cos(α+π2)=________. 答案:265解析:α是第四象限的角且cos α=15,∴sin α=-1-cos2α=-265, 于是cos(α+π2)=-sin α=265. 10.化简:sin2(α+π)·cos(π+α)·cos(-α-2π)tan(π+α)·sin3(π2+α)·sin(-α-2π)= ________.答案:1解析:sin2(α+π)·cos(π+α)·cos(-α-2π)tan(π+α)·sin3(π2+α)·sin(-α-2π) =(-sin α)2·(-cos α)·cos(-α)tan α·cos3α·sin(-α)=-sin2α·cos α·cos αsin αcos α·cos3α·(-sin α)=sin2αcos2αsin2αcos2α=1. 11.(2009·河南安阳)已知不等式m 2+(sin2θ-4)m +3cos2θ≥0恒成立,则实数m 的取值范围是________.答案:m ≤0或m ≥3解析:不等式m 2+(sin2θ-4)m +3cos2θ≥0即(m -3)sin2θ+m 2-4m +3≥0,则⎩⎪⎨⎪⎧(m -3)·0+m 2-4m +3≥0,(m -3)·1+m 2-4m +3≥0解得实数m 的取值范围是m ≤0或m ≥3,故填m ≤0或m ≥3.三、解答题12.(2009·广东重点中学)已知△ABC 的面积S 满足3≤S ≤33且AB →·BC →=6,AB →与BC →的夹角为α.(1)求α的取值范围;(2)求f (α)=sin2α+2sin αcos α+3cos2α的最小值.解:(1)由题意知AB →·BC →=|AB →|·|BC →|cos α=6. ∴|AB →|·|BC →|=6cos α, S =12|AB →|·|BC →|sin(π-α)=12|AB →|·|BC →|sin α=12×6cos α×sin α=3tan α. ∵3≤S ≤33,∴3≤3tan α≤33即1≤tan α≤ 3.∵α是AB →与BC →的夹角,∴α∈[0,π],∴α∈[π4,π3]. (2)f (α)=sin2α+2sin αcos α+3cos2α=1+sin2α+2cos2α=2+sin2α+cos2α=2+2sin(2α+π4). ∵α∈[π4,π3],2α+π4∈[3π4,11π12], ∴当2α+π4=11π12,即当α=π3时,f (α)有最小值. f (α)的最小值是3+32. 13.已知tan α1-tan α=1,求1csc2α+1sec αcsc α+1sec2α的值.分析:先由条件求得tan α的值,然后根据同角关系式化简所求式,并尽可能将其转化为关于tan α的函数式,最后代值运算.解法一:由条件得tan α=12,所以cos α≠0,于是有 1csc2α+1sec αcsc α+1sec2α=sin2α+sin αcos α+cos2α=cos2α·sin2α+sin αcos α+cos2αcos2α=1sec2α(tan2α+tan α+1) =tan2α+tan α+11+tan2α=75 解法二:由条件得tan α=12,于是 sec2α=1+tan2α=1+(12)2=54,所以cos2α=45, 故原式=1+tan α·cos2α=7514.已知△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,b <a <c 且20cos2A 2=3⎝⎛⎭⎫cot A 4-tan A 4.求sin2A 的值.解:由20cos2A 2=3⎝⎛⎭⎫cot A 4-tan A 4 有20cos2A 2=3⎝ ⎛⎭⎪⎫cos A 4sin A 4-sin A 4cos A 4, 即20cos2A 2=3⎝⎛⎭⎫cos2A 4-sin2A 4sin A 4cos A 4. ∴20cos2A 2=6cos A 2sin A 2,即20sin A 2cos2A 2-6cos A 2=0. ∴2cos A 2⎝⎛⎭⎫10sin A 2cos A 2-3=0. ∵A 、B 、C 是三角形的内角,∴cos A 2≠0, ∴5sin A =3,sin A =35.又∵b <a <c ,∴A 为锐角. ∴cos A =1-sin2A =45. ∴sin2A =2sin A cos A =2425. 15.已知sin(π-α)-cos(π+α)=23(π2<α<π).求下列各式的值: (1)sin α-cos α; (2)sin3(π2-α)+cos3(π2+α). 分析:利用诱导公式先化简条件.解:由sin(π-α)-cos(π+α)=23, 得sin α+cos α=23.① 将①式两边平方,得1+2sin α·cos α=29, 故2sin α·cos α=-79, 又π2<α<π,∴sin α>0,cos α<0.∴sin α-cos α>0. (1)(sin α-cos α)2=1-2sin α·cos α=1-(-79)=169, ∴sin α-cos α=43. (2)sin3(π2-α)+cos3(π2+α)=cos3α-sin3α =(cos α-sin α)(cos2α+cos α·sin α+sin2α)=(-43)×(1-718)=-2227.。
三角函数的概念与定义
三角函数的概念与定义三角函数是研究三角形中角和边之间的关系的一种数学函数。
它主要包括正弦函数、余弦函数、正切函数、余切函数、正割函数和余割函数。
在解决几何问题以及电子学、声学、天文学和物理学等领域中的波动问题时,三角函数被广泛运用。
正弦函数(sin)是指一个角的对边与斜边的比值,即sinθ = opposite/hypotenuse。
其中θ为角度,opposite为该角的对边长度,hypotenuse为斜边长度。
正弦函数在数轴上的图像为周期性波动的曲线,其取值范围在-1到1之间。
余弦函数(cos)是指一个角的邻边与斜边的比值,即cosθ = adjacent/hypotenuse。
其中θ为角度,adjacent为该角的邻边长度,hypotenuse为斜边长度。
余弦函数同样为周期性波动的曲线,取值范围也在-1到1之间。
正切函数(tan)是指一个角的对边与邻边的比值,即tanθ = opposite/adjacent。
其中θ为角度,opposite为该角的对边长度,adjacent为邻边长度。
正切函数在图像上表现为射线,其取值范围从负无穷到正无穷。
余切函数(cot)是指一个角的邻边与对边的比值,即cotθ = adjacent/opposite。
其中θ为角度,adjacent为该角的邻边长度,opposite为对边长度。
余切函数同样为射线状图像,其取值范围也从负无穷到正无穷。
正割函数(sec)是指一个角的斜边与邻边的比值的倒数,即secθ = hypotenuse/adjacent。
其中θ为角度,hypotenuse为斜边长度,adjacent为邻边长度。
正割函数的图像是周期性的波动曲线,其取值范围不包括-1到1之间的部分。
余割函数(csc)是指一个角的斜边与对边的比值的倒数,即cscθ = hypotenuse/opposite。
其中θ为角度,hypotenuse为斜边长度,opposite为对边长度。
高三数学一轮复习 第四章 三角函数、解三角形第一节 三角函数的概念、同角三角函数的关系式和诱导公式课
4.能利用单位圆中的三角函数线推导出π2±α,π±α 的正弦、 余弦、正切的诱导公式.
h
3
•关 注 热 点
•1.三角函数的定义及应用是本节考查重点,注 意三角函数值符号的确定.
•2.同角三角函数关系式常用来化简、求值,是 高考热点.
•3.利用诱导公式求值或化简三角函数式是考查 重点.
•4.主要以选择题、填空题的形式考查.
-α)=
-.tanα
•(5)公式五
cosα,tan( -c,osαtan(π
sin(π2-α)= cosα ,cos(2π-α)= sinα .
h
11
(6)公式六 sin(π2+α)= cosα ,cos(2π+α)= -sinα .
即 α+k·2π(k∈Z),-α,π±α 的三角函数值,等于 α 的 同名 函 数值,前面加上一个把 α 看成 锐角 时原函数值的符号;π2±α 的 正弦(余弦)函数值,分别等于 α 的 余弦(正弦) 函数值,前面 加上一个把 α 看成锐角时原函数值的符号.
∴-sinα=-2cosα.
∴sinα=2cosα,即 tanα=2.
(1)原式=5ttaannαα-+42=5×2-2+4 2=-16.
h
32
(2)原式=sin2α+2sinαcosα=sins2iαn+2α+2sicnoαsc2αosα =tanta2αn+2α+2ta1nα=85.
h
33
化简ssiinn[kkπ+-1απc+osα[]kc-os1kππ- +αα](k∈Z).
终边在 y 轴上的角的集合为{α|α=kπ+π2,k∈Z};
终边在坐标轴上的角的集合为{α|α=k2π,k∈Z}.
h
14
三角函数的基本性质
三角函数的基本性质三角函数是数学中一个重要的概念,在数学、物理、工程等多个领域都有着广泛的应用。
要深入理解三角函数,掌握其基本性质是关键。
首先,让我们来了解一下什么是三角函数。
常见的三角函数包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)等。
它们都是以角度或者弧度为自变量的函数。
正弦函数 sin(x) 的定义是:在直角三角形中,锐角 x 的正弦值等于对边与斜边的比值。
其定义域为整个实数集,值域为-1, 1。
这意味着无论输入的角度是多少,正弦函数的输出值都在-1 到 1 之间。
正弦函数是一个周期函数,其最小正周期为2π。
也就是说,sin(x +2π) = sin(x) 对于任何 x 都成立。
余弦函数 cos(x) 则是邻边与斜边的比值。
它的定义域也是整个实数集,值域同样为-1, 1,并且也是周期为2π 的周期函数。
正切函数 tan(x) 定义为正弦函数与余弦函数的比值,即 tan(x) =sin(x) / cos(x) 。
需要注意的是,余弦函数不能为 0,所以正切函数的定义域为{x |x ≠ (π/2) +kπ, k∈Z},其值域为整个实数集。
正切函数的周期为π。
三角函数的奇偶性也是其重要性质之一。
正弦函数是奇函数,这意味着 sin(x) = sin(x) 。
而余弦函数是偶函数,即 cos(x) = cos(x) 。
三角函数的单调性也是需要关注的。
在一个周期内,正弦函数在π/2, π/2上单调递增,在π/2, 3π/2上单调递减。
余弦函数在0, π上单调递减,在π, 2π上单调递增。
三角函数之间还存在着一些重要的关系式,比如平方和关系:sin²(x) + cos²(x) = 1 。
在实际应用中,三角函数的这些性质有着广泛的用途。
例如,在物理学中,简谐振动可以用正弦函数或余弦函数来描述;在工程学中,交流电的电压和电流变化也常常涉及三角函数。
再比如,在解决几何问题时,如果知道一个三角形的某些角度和边长,就可以利用三角函数求出其他未知的边长和角度。
第一节 三角函数
第三章三角函数【知识导读】【方法点拨】三角函数是一种重要的初等函数,它与数学的其它部分如解析几何、立体几何及向量等有着广泛的联系,同时它也提供了一种解决数学问题的重要方法——“三角法”.这一部分的内容,具有以下几个特点:1.公式多.公式虽多,但公式间的联系非常密切,规律性强.弄清公式间的相互联系和推导体系,是记住这些公式的关键.2.思想方法丰富.化归、数形结合、分类讨论和函数与方程的思想贯穿于本单元的始终,类比的思维方法在本单元中也得到充分的应用.如将任意角的三角函数值的问题化归为锐角的三角函数的问题,将不同名的三角函数问题化成同名的三角函数的问题,将不同角的三角函数问题化成同角的三角函数问题等.3.变换灵活.有角的变换、公式的变换、三角函数名称的变换、三角函数次数的变换、三角函数表达形式的变换及一些常量的变换等,并且有的变换技巧性较强.4.应用广泛.三角函数与数学中的其它知识的结合点非常多,它是解决立体几何、解析几何及向量问题的重要工具,并且这部分知识在今后的学习和研究中起着十分重要的作用,比如在物理学、天文学、测量学及其它各门科学技术都有广泛的应用.第1课 三角函数的概念【考点导读】1. 理解任意角和弧度的概念,能正确进行弧度与角度的换算.角的概念推广后,有正角、负角和零角;与α终边相同的角连同角α本身,可构成一个集合{}Z k k S ∈⋅+==,360αββ;把长度等于半径的圆弧所对的圆心角定义为1弧度的角,熟练掌握角度与弧度的互换,能运用弧长公式r l α=及扇形的面积公式S =lr 21(l 为弧长)解决问题.2. 理解任意角的正弦、余弦、正切的定义.角的概念推广以后,以角的顶点为坐标原点,角的始边为x 轴的正半轴,建立直角坐标系,在角的终边上任取一点(,)P x y (不同于坐标原点),设OP r =(0r =>),则α的三个三角函数值定义为:sin ,cos ,tan y x y rrxααα===.从定义中不难得出六个三角函数的定义域:正弦函数、余弦函数的定义域为R ;正切函数的定义域为{|,,}2R k k Z παααπ∈≠+∈.3. 掌握判断三角函数值的符号的规律,熟记特殊角的三角函数值.由三角函数的定义不难得出三个三角函数值的符号,可以简记为:一正(第一象限内全为正值),二正弦(第二象限内只有正弦值为正),三切(第三象限只有正切值为正),四余弦(第四象限内只有余弦值为正).另外,熟记0、6π、4π、3π、2π的三角函数值,对快速、准确地运算很有好处.4. 掌握正弦线、余弦线、正切线的概念.在平面直角坐标系中,正确地画出一个角的正弦线、余弦线和正切线,并能运用正弦线、余弦线和正切线理解三角函数的性质、解决三角不等式等问题. 【基础练习】1. 885-化成2(02,)k k Z πααπ+≤≤∈的形式是 .2.已知α为第三象限角,则2α所在的象限是 .3.已知角α的终边过点(5,12)P -,则cos α= , tan α= . 4.tan(3)sin 5cos 8-的符号为 .5.已知角θ的终边上一点(,1)P a -(0≠a ),且a -=θtan ,求θsin ,θcos 的值.解:由三角函数定义知,1a =±,当1a =时,sin 2θ=-,cos 2θ=;13612ππ-+第二或第四象限 513-125- 正当1a =-时,sin 2θ=-,cos 2θ=-.【范例解析】例1.如图,α,β分别是终边落在OM ,ON 位置上的两个角, 且30α=︒,300β=︒.(1)求终边落在阴影部分(含边界)时所有角的集合; (2)终边落在阴影部分,且在区间[0,360]︒︒时所有角的集合; (3)求始边在OM 位置上,终边在ON 位置上所有角的集合. 解:(1){6036030360,}k k k Z θθ-︒+⋅︒≤≤︒+⋅︒∈; (2){030}{300360}θθθθ︒≤≤︒⋃︒≤≤︒;(3)270βα-=︒ ,{270360,}k k Z θθ∴=︒+⋅︒∈.点评:三角函数中应注意文字语言与符号语言的转化;第(3)问要注意角的方向. 例2.(1)已知角α的终边经过一点(4,3)(0)P a a a -≠,求2sin cos αα+的值;(2)已知角α的终边在一条直线y =上,求sin α,tan α的值.分析:利用三角函数定义求解.解:(1)由已知4x a =,5r a =.当0a >时,5r a =,3sin 5α=-,4cos 5α=,则22s i n c o s 5αα+=-;当0a <时,5r a =-,3sin 5α=,4cos 5α=-,则22sin cos 5αα+=.(2)设点()(0)P a a ≠是角α的终边y =上一点,则tan α=当0a >时,角α是第一象限角,则sin 2α=;当0a <时,角α是第三象限角,则sin 2α=-.点评:要注意对参数进行分类讨论.例3.(1)若sin cos 0θθ⋅>,则θ在第_____________象限. (2)若角α是第二象限角,则sin 2α,cos 2α,sin2α,cos2α,tan2α中能确定是正值的有____个.解:(1)由sin cos 0θθ⋅>,得sin θ,cos θ同号,故θ在第一,三象限.(2)由角α是第二象限角,即222k k ππαππ+<<+,得422k k παπππ+<<+,4224k k ππαππ+<<+,故仅有tan2α为正值.点评:准确表示角的范围,由此确定三角函数的符号.例4. 一扇形的周长为20cm ,当扇形的圆心角α等于多少时,这个扇形的面积最大?最大面积是多少? 分析:选取变量,建立目标函数求最值.解:设扇形的半径为x ㎝,则弧长为(202)l x =-㎝,故面积为21(202)(5)252y x x x =-=--+,当5x =时,面积最大,此时5x =,10l =,2l xα==,所以当2α=弧度时,扇形面积最大252cm .点评:由于弧度制引入,三角函数就可以看成是以实数为自变量的函数. 【反馈演练】1.若sin cos θθ>且sin cos 0θθ⋅<则θ在第_______象限. 2.已知6α=,则点(sin ,tan )A αα在第________象限. 3.已知角θ是第二象限,且(,P m为其终边上一点,若cos 4θ=,则m 的值为. 4.将时钟的分针拨快30min ,则时针转过的弧度为 .5.若46παπ<<,且α与23π-终边相同,则α= . 6.已知1弧度的圆心角所对的弦长2,则这个圆心角所对的弧长是_______,这个圆心角所在的扇形的面积是___________. 7.已知sin 20θ<,θθcos cos -=,则点1(tan ,)cos P θθ在第 象限.8.已知6πα=,角β的终边与α的终边关于直线y x =对称,则角β的集合为____________________.9.设θ是第二象限角,且满足|sin|sin22θθ=-,则2θ是第_______象限的角. 10.(1)已知扇形AOB 的周长是6cm ,该扇形中心角是1弧度,求该扇形面积.(2)若扇形的面积为82cm ,当扇形的中心角α(0)α>为多少弧度时,该扇形周长最小. 简解:(1)该扇形面积22cm ;二 三 12π-163 11sin211co s 1-三 5{2,}6k k Z ββππ=+∈三(2)2182r l yrl +=⎧⎪⎨=⎪⎩,得162y r r =+≥r =l =,2l r α==. 11.已知角α的顶点在原点,始边为x 轴的非负半轴,终边在直线x y 3=上,求1sin cos tan tan αααα⋅+-的值.解:当角α在第一象限时,tan 3α=,sin 10α=,cos 10α=,则189sin cos tan tan 30αααα⋅+-=;当角α在第三象限时,tan 3α=,sin 10α=-,cos 10α=-,则189sin cos tan tan 30αααα⋅+-=.12.已知cos cos θθ=-,且tan 0θ<,判断sin(cos )cos(sin )θθ的符号.解:由已知θ是第二象限,则1cos 0θ-<<,0sin 1θ<<,cos(sin )0θ∴>,sin(cos )0θ<,故s i n (c o s )0c o s (s i n )θθ<.。
第四章 第一节 三角函数的基本概念
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
综合高中高三数学学案第一节 三角函数的基本概念初稿 卢福明 审定 知识点解析 1.角的概念的推广(1)按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,未作任何旋转所形成的角叫零角.(2)终边相同的角:如果α是一个任意的角,与它终边相同的所有角可表示为k ²360°+α,k ∈Z ,终边相同的角的集合{β|=k ²360°+α,k ∈Z}, (3)象限角以及轴线角(终边在坐标轴上的角) ①象限角:第一象限的角表示为{α|k ²360°<α<k ²360°+90°,k ∈Z}; 第二象限的角表示为{α|k ²360°+90°<α<k ²360°+180°,k ∈Z}; 第三象限的角表示为{α|k ²360°+180°<α<k ²360°+270°,k ∈Z}; 第四象限的角表示为{α|k ²360°+270°<α<k ²360°+360°,k ∈Z}; 或{α|k ²360°-90°<α<k ²360°,k ∈Z}. ②轴线角:终边在x 轴正半轴上的角的集合:{α|α=k ²360°,k ∈Z}; 终边在x 轴负半轴上的角的集合:{α|α=k ²360°+180°,k ∈Z}; 终边在x 轴上的角的集合:{α|α=k ²180°,k ∈Z};终边在y 轴正半轴上的角的集合:{α|α=k ²360°+90°,k ∈Z}; 终边在y 轴负半轴上的角的集合:{α|α=k ²360°+270°,k ∈Z}; 终边在y 轴上的角的集合;{α|α=k ²180°+90°,k ∈Z}; 终边在坐标轴上的角的集合:{α|α=k ²90°,k ∈Z}. (4)区间角:锐角:(0°,90°),钝角:(90°,180°),注意区间(α,β)与(k ²360°+α,k ²360°+β)的区别.【说明】(1)角的集合的表示形式不是唯一的,如终边在y 轴的负半轴上的角的集合可用如下两种形式来表示: {x |x=2k π-2π,k ∈Z},{x |x=2k π+23π,k ∈Z}(2)终边相同的角不一定相等,但相等的角终边一定相同. (3)在讨论角的范围时,不要遗漏坐标轴上的角0°,角2α终边所在的位置与α终边的位置及k 的取值有关,要对k 的取值结合α的情况进行讨论.2.角的度量 (1)角度制:周角的3601叫做1度角,用度、分、秒作量角单位的制度叫角度制.(2)弧度制:等于半径长的圆弧所对的圆心角叫1弧度的角,用弧度作量角单位的制度叫弧度制.(3)角度制与弧度制间的换算关系180°=π(弧度),1弧度=(π180)°≈57°18′.(4)弧长l 、半径r 与其所对的圆心角的弧度数α之间的关系为:|α|=rl. 扇形面积S=21lr. 3.任意角的三角函数(1)定义:设P 的坐标为(x ,y ),它到原点的距离为r(r >0),那么α的六个三角函数定义为: 正弦函数sin α=r y ,余弦函数cos α=r x ,正切函数tan α=xy,余切函数cot α=y x ,正割函数sec α=xr,余割函数csc α=y r .(2)正弦、余弦、正切、余切函数的定义域和值域.(3(4)三角函数线三角函数线是表示三角函数值的有向线段,线段的方向表示了三角函数值的正负,线段的长度表示了三角函数值的绝对值.1.半角所在的象限如果角α为第一象限的角,则α/2为图中1和它的对顶部分,即第一或第三象限的角;如果角α为第二象限的角,则α/2为图中2和它的对顶部分,即第一或第三象限的角;如果角α为第三象限的角,则α/2为图中3和它的对顶部分,即第二或第四象限的角;如果角α为第四象限的角,则α/2为图中4和它的对顶部分,即第二或第四象限的角. 2.若x 为锐角,则sinx <x <tanx 题型一:有关角的概念问题 [例1]:(1)已知集合: A={α|α=2πn ,n ∈Z} B={β|β=32πn ,n ∈Z},求集合A 与B 的交集?(2)若角α的终边和函数y=|x|的图象重合,求α练习:已知α角的终边与π3的终边相同,在[0,2π)内哪些角的终边与α3角的终边相同?[例2]:已知α是第二象限的角 (Ⅰ)指出2α所在的象限,并用图形表示其变化范围(Ⅱ)若α同时满足条件|α+2|≤4,求α的取值区间.练习:若θ为第一象限角,则能确定为正值的是() A.sin2θ B.cos 2θ C.tan 2θD.cos2θ 题型二:任意角的三角函数的定义[例3]:α是第二象限角,P (x ,5)为其终边上一点,且cos α=24x ,则sin α的值为 A.104B.64C.24D .-104练习:1、(2011全国新课标)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=(A )45-(B )35-(C ) 35 (D )452、角α的终边上的点P 和点A (a ,b )关于x 轴对称(ab ≠0),角β的终边上的点Q 与A 关于直线y=x 对称,求sin α²sec β+tan α²cot β+sec α²csc β之值. 题型三:三角函数的符号问题[例4]:(1)若sin2α>0且cos α<0,试确定α所在的象限. (2)已知θ为第三象限角,判定sin(cos θ)²cos(sin θ)的值的符号.练习:函数y=|sin |sin x x +|cos |cos x x +|tan |tan x x +|cot |cot x x的值域是()A.{-2,4}B.{-2,0,4}C.{-2,0,2,4}D.{-4,0,-2,4}题型四:有关弧度制问题[例5]:已知扇形的中心角为α,所在圆的半径为R 。
(1)若︒=60α,R=10,求扇形的弧长;(2)若扇形的周长为定值c )0(>c ,当α为多少弧度时,扇形有最大面积练习:已知扇形的周长为10cm ,面积为4cm 2,求扇形的中心角.综合高中高三数学课时练第一节 三角函数的基本概念初稿 卢福明 审定1.给出下列四个命题: (1)如果α≠β,那么sin α≠sin β,(2)如果sin α≠sin β,那么α≠β, (3)如果sin α>0,那么α是第一或第二象限角,(4)如果α是第一或第二象限角,那么sin α>0 这四个命题中,错误的命题有() A.1 B.2 C.3 D.42.(石家庄市2010质检一)点)300tan ,2(︒M 位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限3.设α是第二象限的角,则-α,π-α,π+α所在的象限分别是() A.三、一、四 B.一、二、四 C.三、四、一 D.三、二、一4.在(0,2π)内,使sinx >cosx 成立的x 的取值范围为() A.(4π,2π)∪(π,45π) B.(4π,π)C.(4π,45π)D.(4π,π)∪(45π,23π)5.设θ是第二象限角,则必有() A.tan2θ>cot 2θ B.tan 2θ<cot 2θ C.sin 2θ>cos 2θ D.sin 2θ<cos 2θ 6.(2010·河南新乡市模拟)设角α终边上一点P (-4a ,3a )(a <0),则sin α的值为A.35B .-35 C.45D .-457.若角α的终边与直线y=3x 重合且sin α<0,又P (m ,n )是α终边上一点,且|OP|=10,则m-n 等于…()A.2B.-2C.4D.-48.集合A={α|α=2πn ,n ∈Z}∪{α|α=2n π±32π,n ∈Z},集合B={β|β=32πn ,n ∈Z}∪{β|β=n π+2π,n ∈Z},则集合A 与集合B 之间的关系为()A.A ⊂BB. B ⊂AC.A=BD.A ∩B=φ9.已知角α终边上一点)32cos ,32(sin ππP ,则角α的最小正值为 ( )A .π65B .π611C .π32 D .π3510.圆的一段弧长等于该圆外切正三角形的边长,则这段弧所对圆心角的弧度数为 .11.已知)tan(sin )tan(cos θθ>0,则θ是第 象限的角.12.函数y=x sin +x cos -的定义域是 .答案:1—5 6—9 10 11 12 13.已知α的始边为x 轴正半轴,终边在直线y=kx 上,若sin α=52,且cos α<0,求实数k.14.求下列函数的定义域: (1)y=xx sin 1tan +; (2)y=x π2tan +lg(-x 2-x).15.设|sin |sin x x +|cos |cos x x +|tan |tan x x +|cot |cot x x =0,确定sin(cos x )²tan(sin 2x)的符号.。