2009-2010学年八年级(上)数学期中测试卷

合集下载

北师大版八年级上册数学期中测试卷及答案

北师大版八年级上册数学期中测试卷及答案

北师大版八年级上册数学期中测试卷及答案北师大版八年级上册数学期中测试卷及答案本试卷满分120分,考试时间120分钟)一、选择题(每小题3分,共36分)1、36的平方根是()A、±6B、36C、±6D、-6改写:求36的平方根,正确的答案是±6.2、下列语句:①-1是1的平方根。

②带根号的数都是无理数。

③-1的立方根是-1.④38的立方根是2.⑤(-2)2的算术平方根是2.⑥-125的立方根是±5.⑦有理数和数轴上的点一一对应。

其中正确的有()A、2个B、3个C、4个D、5个改写:以下语句中,正确的是:①-1是1的平方根;③-1的立方根是-1;⑤(-2)的算术平方根是2;⑥-125的立方根是±5;⑦有理数和数轴上的点一一对应。

共有4个正确的语句,选项C为正确答案。

3、下列计算正确的是()A、-327=3B、a2+a3=a5C、a2·a3=a6D、(-2x)3=-6x3改写:下列计算中正确的是:A、-3-27=3.因为-3-27=-30,不等于3;B、a^2+a^3=a^5,正确;C、a^2·a^3=a^5,不等于a^6;D、(-2x)^3=-8x^3,不等于-6x^3.因此,正确答案为B。

4、分解因式-2xy2+6x3y2-1xy时,合理地提取的公因式应为()A、-2xy2B、2xyC、-2xyD、2x2y改写:分解因式-2xy^2+6x^3y^2-xy时,合理地提取的公因式应为2xy。

因为-2xy^2、6x^3y^2和-xy都含有xy,而且2是它们的最大公因数。

因此,正确答案为B。

5、对下列多项式分解因式正确的是()A、a3b2-a2b3+a2b2=a2b2(a-b)B、4a2-4a+1=4a(a-1)+1C、a2+4b2=(a+2b)2D、1-9a2=(1+3a)(1-3a)改写:对下列多项式分解因式正确的是:A、a^3b^2-a^2b^3+a^2b^2=a^2b^2(a-b);B、4a^2-4a+1=(2a-1)^2;C、a^2+4b^2=(a+2b)(a-2b);D、1-9a^2=(1+3a)(1-3a)。

2012八年级上册数学期中测试卷1

2012八年级上册数学期中测试卷1

(13题图)①②③④16题图如意湖中学八年级2009-2010年度第一学期数学期中试卷姓名班级学号一、选择题(每题3分,共24分)1、4的算术平方根是()A、2B、±2C、2±D、22、和数轴上的点一一对应的是)A、整数B、无理数C、实数D、有理数3、在实数:.9.0, π-, -3,31, 16, 3.14, 39,3125.0-,0.1010010001…(相邻两个1之间依次增加一个0)中,无理数的个数是( )A、3个B、4个C、5个D、6个4、平行四边形ABCD中,∠A―∠B =120,则∠B的度数是()A、30B、60C、120D、1505、内角和等于外角和的多边形是…………………………………………………()边形A、三B、四C、五D、六6、矩形、菱形、正方形都具有的性质是()A、对角线互相垂直B、对角线互相平分C、对角线相等D、对角线平分一组对角7、已知菱形的两条对角线分别长为6㎝,8㎝,则此菱形的面积为()A、242cm B、402cm C、482cm D、962cm8、以下列各组数据中是勾股数的是……………………………………………()A、1,1,2B、12,16,20C、1,35,34D、1,2,3二、填空题(每空3分,共24分)9、2的相反数是,绝对值是倒数是。

10、比较大小:311、在平行四边形ABCD中,∠A=105,则∠B= 。

12、△'''CBA是由△ABC经过旋转得到的,其中AB=3㎝,∠A=80,∠B=70,则''BA=;∠'C=13、如图,在数轴上点A表示的数与2-的和是。

14、如图;在等腰梯形ABCD中,AD=2,BC=4,DC=5,高15、已知是O ABCD的对角线的交点,A C = 38mm,那么BOC∆的周长等于mm。

16、如图所示,图形①经过__ _____变化成图形②,图形②经过______变化成图形③, 图形③经过________变化成图形④.三、计算题(要有计算过程,否则不得分,每题6分,共36分,)17、21832-⨯ 18、3282-+19、327(3-) 20、3271-29+⨯41OFEDCBA 21、)32)(23(+- 22、288614821183752+--四、解答题(共36分)23、(8分)将△ABC 向右平移6个方格,再向上 平移4个方格,最后绕B 逆时针旋转90°.试作出最后..的图形。

人教版数学八年级上学期《期中测试卷》含答案解析

人教版数学八年级上学期《期中测试卷》含答案解析
【答案】D
【解析】
【分析】
要熟悉三角形中的概念及其分类方法和三角形的内角和定理及其推论.
【详解】A、正确,符合线段的定义;
B、正确,符合三角形内角和定理;
C、正确;三角形的分类;
D、三角形的一个外角大于任何一个和它不相邻的内角,错误.
故选D.
【点睛】考查了三角形的高、中线、角平分线的概念;三角形的内角和定理及其推论;三角形的分类方法.
B. AOB、 BOC、 COA都是等腰三角形
C. OAB+ OBC+ OCA=
D.点O到AB、BC、CA的距离相等
8.如图 中, ,且 为 上一点.今打算在 上找一点 ,在 上找一点 ,使得 与 全等,以下是甲、乙两人的作法:
(甲)连接 ,作 的中垂线分别交 、 于 点、 点,则 、 两点即为所求
(乙)过 作与 平行的直线交 于 点,过 作与 平行的直线交 于 点,则 、 两点即为所求
对于甲、乙两人的作法,下列判断何者正确?( )
A. 两人皆正确B. 两人皆错误
C. 甲正确,乙错误D. 甲错误,乙正确
9.如图,己知在 中, ,点 是 边的中点,分别以 , 为圆心,大于线段 长度一半的长为半径作弧,两弧在直线 上方的交点为 ,直线 交 于点 ,连接 ,则下列结论:① ;② ;③ 平分 .其中一定正确的是()
1.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性,下列美术字是轴对称图形的是()
A.诚B.信C.友D.善
【答案】D
【解析】
【分析】
根据轴对称图形的概念逐一进行分析即可得.
【详解】A.不是轴对称图形,故不符合题意;
B.不是轴对称图形,故不符合题意;
C.不是轴对称图形,故不符合题意;

八年级数学期中模拟卷【测试范围:第11章~第13章】(华东师大版)(全解全析)

八年级数学期中模拟卷【测试范围:第11章~第13章】(华东师大版)(全解全析)

2024-2025学年八年级数学上学期期中模拟试卷(华东师大版)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:华东师大版第11章数的开方~第13章全等三角形。

5.难度系数:0.68。

第一部分(选择题共30分)一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1)2.下列运算正确的是()A.a3+a2=a5B.C.a2_a3=a5D.(a2)4=a6【答案】C【解析】A.a3和a2不是同类项,不能合并,故选项错误,不符合题意;B.,故选项错误,不符合题意;C.a2_a3=a5,故选项正确,符合题意;D.(a2)4=a8,故选项错误,不符合题意;故选C.3.如图AB=DE,∠B=∠E,添加下列条件仍不能判定△ABC≌△DEF的是()A.∠A=∠D B.∠ACB=∠DFE C.D.AC=DF【答案】D【解析】A.AB=DE,∠B=∠E,∠A=∠D,可利用ASA证明△ABC≌△DEF,故该选项不符合题意;B.AB=DE,∠B=∠E,∠ACB=∠DFE,可利用AAS证明△ABC≌△DEF,故该选项不符合题意;C.由可得出∠ACF=∠DFE,再结合AB=DE,∠B=∠E,可利用AAS证明△ABC≌△DEF,故该选项不符合题意;D.用AB=DE,∠B=∠E,AC=DF,SSA无法证明△ABC≌△DEF.故该选项符合题意;故选D.4.设a=a在两个相邻整数之间,则这两个整数是()A.2和3B.3和4C.4和5D.5和65.下列因式分解正确的是()A.2a2―4a=2(a2+a)B.―a2+4=(a+2)(a―2)C.a2―10a+25=a(a―10)+25D.a2―2a+1=(―a+1)2【答案】D【解析】A、2a2―4a=2a(a―2),该选项分解错误,不合题意;B、―a2+4=―(a2―4)=―(a+2)(a―2),该选项分解错误,不合题意;C、a2―10a+25=(a―5)2,该选项分解错误,不合题意;D、a2―2a+1=(1―a)2=(―a+1)2,该选项分解正确,符合题意;故选D.6.如图,点A 在DE 上,AC =EC ,∠1=∠2=∠3,则DE 等于( )A .BCB .ABC .DCD .AE +AC 【答案】B 【解析】令AB 、CD 交于点O ,则∵∠1=∠2,∠AOD =∠BOC,∴∠B =∠D ,∵∠2=∠3,,即∠ACB =∠ECD ,在和中,B =?D ACB =?ECD :cAC =EC,,∴AB =ED .故选B .7.如图,边长为2m +3的正方形纸片剪出一个边长为m +3的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m ,则拼成长方形的面积是( )A .4m 2+12m +9B .3m +6C .3m 2+6mD .2m 2+6m +9【解析】根据题意,得:(2m+3)2―(m+3)2=[(2m+3)+(m+3)][(2m+3)―(m+3)]=(3m+6)m=3m2+6m故选C.8.观察下列各式:,…,根据你发现的规律,若式子=a、b为正整数)符合以上规律,则a+b的平方根是().A.B.4C.―4D.∵,的平方根是;9.设a=x―2022,b=x―2024,c=x―2023.若a2+b2=16,则c2的值是( ) A.5B.6C.7D.8【答案】C【解析】,b=x―2024,c=x―2023,,a―b=2,∵a2+b2=16,∴(a―b)2+2ab=16,∴ c 2=(a ―1)(b +1)=ab +a ―b ―1=6+2―1=7,故选C .10.如图,在中,AB =AC ,点D 、F 是射线BC 上两点,且,若AE =AD ,∠BAD =∠CAF =15°,则下列结论中①是等腰直角三角形;②;③;④BC ―12EF =2AD ―CF .正确的有( )A .1个B .2个C .3个D .4个【答案】D【解析】∵,∴,∵∠BAD =∠CAF ,∴,又∵AB =AC ,∴是等腰直角三角形,故结论①正确;∵AB =AC ,,∴∠B =∠ACB =45°,在和中,AB =AC BAD =?CAE ADa =AE,∴,∴,∴,即,故结论②正确;∵,∴,∴,故结论,,∴,∴,第二部分(非选择题共90分)二、填空题:本题共8小题,每小题3分,共24分。

八年级上册数学期中检测共5套及答案

八年级上册数学期中检测共5套及答案

八年级上册数学期中测试卷一、选择题(每题3分,共30分)1.下列图形中,不是轴对称图形的是( )2.如果等腰三角形的两边长分别为3和6,那么它的周长为( ) A.9 B.12 C.15 D.12或153.在平面直角坐标系中,点P(-2,3)关于x轴对称的点的坐标为( ) A.(-2,-3) B.(2,-3) C.(-3,-2) D.(3,-2) 4.已知一个正多边形的内角是140°,则这个正多边形的边数是( ) A.6 B.7 C.8 D.95.如图,在△ABC中,边AC的垂直平分线交边AB于点D,∠A=50°,则∠BDC=( )A.50°B.100°C.120°D.130°6.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E,若∠E=35°,则∠BAC的度数为( )A.40°B.45°C.60°D.70°7.如图,在△ABC中,∠C=90°,BC=35,∠BAC的平分线AD交BC于点D.若DC DB=25,则点D到AB的距离是( )A.10 B.15 C.25 D.208.如图,在△ABC中,AC=2,∠BAC=75°,∠ACB=60°,高BE与AD相交于点H,则DH的长为( )A.4 B.3 C.2 D.19.如图,等边三角形ABC的边长为4,AD是BC边上的中线,F 是AD上的动点,E是AC边上一点.若AE=2,则EF+CF取得最小值时,∠ECF的度数为( )A.15°B.22.5°C.30°D.45°10.已知:如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,C,D,E三点在同一条直线上,连接BD.以下四个结论:①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中正确的个数是( )A.1 B.2 C.3 D.4二、填空题(每题3分,共24分)11.一木工师傅有两根木条,木条的长分别为40 cm和30 cm,他要选择第三根木条,将它们钉成一个三角形木架.设第三根木条长为x cm,则x的取值范围是____________.12.如图,在△ABC中,点D在边BC上,∠BAD=80°,AB=AD=DC,则∠C=________.13.如图,在△ABC中,AB=AC=6,BC=4.5,分别以A,B为圆心,4为半径画弧交于两点,过这两点的直线交AC于点D,连接BD,则△BCD的周长是________.14.如图,已知PA⊥ON于A,PB⊥OM于B,且PA=PB,∠MON=50°,∠OPC=30°,则∠PCA=________.15.由于木制衣架没有柔性,在挂置衣服的时候不大方便操作,小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图①,衣架杆OA=OB=18 cm,若衣架收拢时,∠AOB=60°,如图②,则此时A,B两点之间的距离是________ cm.16.如图,在△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(点E在BC上,点F在AC上)折叠,点C与点O恰好重合,则∠OEC的度数为________.17.如图,在2×2的正方形网格中,有一个以格点为顶点的△ABC,请你找出网格中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有________个.18.在△ABC中,AB=AC=12 cm,BC=6 cm,D为BC的中点,动点P从点B出发,以1 cm/s的速度沿B→A→C的方向运动.设运动时间为t s,当t=____________时,过点D,P两点的直线将△ABC的周长分成两部分,使其中一部分是另一部分的2倍.三、解答题(19~21题每题6分,23,24题每题8分,26题12分,其余每题10分,共66分)19.如图,在五边形ABCDE中,∠A=∠C=90°.求证∠B=∠DEF+∠EDG.20.如图,在△ABC中,AB=AC,∠BAC=120°,P是BC上一点,且∠BAP=90°,CP=4 cm.求BP的长.21. 已知:如图,点O在∠BAC的平分线上,BO⊥AC,CO⊥AB,垂足分别为D,E.求证OB=OC.22.如图,在平面直角坐标系中,A(-3,2),B(-4,-3),C(-1,-1).(1)在图中作出△ABC关于y轴对称的△A1B1C1;(2)写出点A1,B1,C1的坐标:A1________,B1________,C1________;(3)求△A1B1C1的面积;(4)在y轴上画出点P,使PB+PC最小.23.如图,在等边三角形ABC中,AD⊥BC于点D,以AD为一边向右作等边三角形ADE,DE与AC交于点F.(1)试判断DF与EF的数量关系,并给出证明;(2)若CF的长为2 cm,试求等边三角形ABC的边长.24.如图,在等腰直角三角形ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B作BF∥AC,交DE的延长线于点F,连接CF,交AD于点G.(1)求证AD⊥CF;(2)连接AF,试判断△ACF的形状,并说明理由.25.如图,把三角形纸片A′BC沿DE折叠,点A′落在四边形BCDE内部点A处.(1)写出图中一对全等的三角形,并写出它们的所有对应角.(2)设∠AED的度数为x,∠ADE的度数为y,那么∠1,∠2的度数分别是多少(用含x或y的式子表示)?(3)∠A与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律,并说明理由.26.如图,已知在△ABC中,AB=AC=10 cm,BC=8 cm,D为AB的中点.(1)如果点P在线段BC上以3 cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.①若点Q的运动速度与点P的运动速度相等,1 s后,△BPD与△CQP是否全等?请说明理由.②若点Q的运动速度与点P的运动速度不相等,则点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以第(1)题②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,经过多少时间,点P与点Q第一次在△ABC的哪条边上相遇?答案一、1.C 2.C 3.A 4.D 5.B 6.A7.A 8.D 9.C 10.D二、11.10<x <70 12.25° 13.10.5 14.55° 15.18 16.108°17.5 18.7或17三、19.证明:在五边形ABCDE 中,∠A +∠B +∠C +∠EDC +∠AED =180°×(5-2)=540°. ∵∠A =∠C =90°,∴∠B +∠AED +∠EDC =360°.又∵∠AED +∠DEF =180°,∠EDC +∠EDG =180°, ∴∠AED +∠EDC +∠DEF +∠EDG =360°. ∴∠B =∠DEF +∠EDG .20.解:∵AB =AC ,∠BAC =120°,∴∠B =∠C =12(180°-∠BAC )=30°.∵∠PAC =∠BAC -∠BAP =120°-90°=30°,∴∠C =∠PAC . ∴AP =CP =4 cm.在Rt △ABP 中,∵∠B =30°, ∴BP =2AP =8 cm.21.证明:∵点O 在∠BAC 的平分线上,BO ⊥AC ,CO ⊥AB ,∴OE =OD ,∠BEO =∠CDO =90°. 在△BEO 与△CDO 中,⎩⎨⎧∠BEO =∠CDO ,OE =OD ,∠EOB =∠DOC ,∴△BEO ≌△CDO (ASA). ∴OB =OC .22.解:(1)△A 1B 1C 1如图所示.(2)(3,2);(4,-3);(1,-1)(3)△A1B1C1的面积=3×5-12×2×3-12×1×5-12×2×3=6.5.(4)如图,P点即为所求.23.解:(1)DF=EF.证明:∵△ABC是等边三角形,∴∠BAC=60°.又∵AD⊥BC,∴AD平分∠BAC.∴∠DAC=30°.∵△ADE是等边三角形,∴∠DAE=60°.∴∠DAF=∠EAF=30°.∴AF为△ADE的中线,即DF=EF.(2)∵AD⊥DC,∴∠ADC=90°.∵△ADE是等边三角形,∴∠ADE=60°.∴∠CDF=∠ADC-∠ADE=30°.∵∠DAF=∠EAF,AD=AE,∴AF⊥DE.∴∠CFD=90°.∴CD=2CF=4 cm.∵AD⊥BC,AB=AC,∴BD=CD,∴BC=2CD=8 cm.故等边三角形ABC 的边长为8 cm. 24.(1)证明:∵BF ∥AC ,∠ACB =90°,∴∠CBF =180°-90°=90°. ∵△ABC 是等腰直角三角形, ∠ACB =90°,∴∠ABC =45°. 又∵DE ⊥AB , ∴∠BDF =45°, ∴∠BFD =45°=∠BDF . ∴BD =BF .∵D 为BC 的中点, ∴CD =BD .∴BF =CD . 在△ACD 和△CBF 中,⎩⎨⎧AC =CB ,∠ACD =∠CBF =90°,CD =BF ,∴△ACD ≌△CBF (SAS). ∴∠CAD =∠BCF .∴∠CGD =∠CAD +∠ACF =∠BCF +∠ACF =∠ACB =90°. ∴AD ⊥CF .(2)解:△ACF 是等腰三角形.理由如下: 由(1)可知BD =BF . 又∵DE ⊥AB ,∴AB 是DF 的垂直平分线. ∴AD =AF .又由(1)可知△ACD ≌△CBF , ∴AD =CF ,∴AF =CF . ∴△ACF 是等腰三角形.25.解:(1)△EAD ≌△EA ′D ,其中∠EAD 与∠EA ′D ,∠AED 与∠A ′ED ,∠ADE与∠A ′DE 是对应角. (2)∵△EAD ≌△EA ′D ,∴∠A ′ED =∠AED =x ,∠A ′DE =∠ADE =y .∴∠AEA ′=2x ,∠ADA ′=2y . ∴∠1=180°-2x ,∠2=180°-2y . (3)规律为∠1+∠2=2∠A .理由:由(2)知∠1=180°-2x ,∠2=180°-2y , ∴∠1+∠2=180°-2x +180°-2y =360°-2(x +y ). ∵∠A +∠AED +∠ADE =180°, ∴∠A =180°-(x +y ). ∴2∠A =360°-2(x +y ). ∴∠1+∠2=2∠A .26.解:(1)①△BPD 与△CQP 全等.理由如下:运动1 s 时,BP =CQ =3×1=3(cm). ∵D 为AB 的中点,AB =10 cm , ∴BD =5 cm.∵CP =BC -BP =5 cm , ∴CP =BD .又∵AB =AC ,∴∠B =∠C . 在△BPD 和△CQP 中,⎩⎨⎧BD =CP ,∠B =∠C ,BP =CQ ,∴△BPD ≌△CQP (SAS).②∵点Q 的运动速度与点P 的运动速度不相等, ∴BP ≠CQ . 又∵∠B =∠C ,∴两个三角形全等需BP =CP =4 cm ,BD =CQ =5 cm. ∴点P ,Q 运动的时间为4÷3=43(s).∴点Q 的运动速度为5÷43=154(cm/s).(2)设x s 后点Q 第一次追上点P .根据题意,得⎝ ⎛⎭⎪⎫154-3x =10×2.解得x =803.∴点P 共运动了3×803=80(cm). ∵△ABC 的周长为10×2+8=28(cm), 80=28×2+24=28×2+8+10+6,∴点P 与点Q 第一次在△ABC 的AB 边上相遇.八年级(上)期中数学试卷一、精心选一选,慧眼识金!(本大题共14小题,每小题3分,共42分,在每小题给出的四个选项中只有一项是正确的) 1.下列图形中不是轴对称图形的是( ) A .B .C .D .2.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是( )A .1,2,1B .1,2,2C .1,2,3D .1,2,43.如图,工人师傅砌门时,常用木条EF 固定长方形门框ABCD ,使其不变形,这样做的根据是( )A .两点之间的线段最短B .长方形的四个角都是直角C .长方形是轴对称图形D .三角形有稳定性4.到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点 D.三条角平分线的交点5.等腰△ABC的两边长分别是2和5,则△ABC的周长是()A.9 B.9或12 C.12 D.7或126.从一个多边形的任何一个顶点出发都只有5条对角线,则它的边数是()A.6 B.7 C.8 D.97.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30°B.40°C.45°D.60°8.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°9.如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A=()A.50°B.40°C.70°D.35°10.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC 于点E,连接BE,则∠CBE的度数为()A.70°B.80°C.40°D.30°11.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB交BC于点D,E为AB上一点,连接DE,则下列说法错误的是()A.∠CAD=30° B.AD=BD C.BD=2CD D.CD=ED12.如果一个三角形有两个外角(不在同一顶点)的和等于270°,则此三角形一定是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等边三角形13.如图,点D是△ABC的边BC上任意一点,点E、F分别是线段AD、CE的中点,则△ABC的面积等于△BEF的面积的()A.2倍B.3倍C.4倍D.5倍14.在直角坐标系中,O为坐标原点,已知A(2,2),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P的个数共有()A.4个B.3个C.2个D.1个二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共18分)15.已知等腰三角形一个内角的度数为70°,则它的其余两个内角的度数分别是.16.如果一个n边形的内角和等于900°,那么n的值为.17.一个多边形的每一个外角都等于30°,则这个多边形的边数是.18.如图,已知△ABC中,AD是BC边上的高,点E在线段BD上,且AE平分∠BAC,若∠B=40°,∠C=78°,则∠EAD= °.19.如图,已知DE是AC的垂直平分线,AB=10cm,BC=11cm,则△ABD的周长为cm.20.如图,C岛在A岛的北偏东50°方向,C岛在B岛的北偏西40°方向,则从C岛看A,B两岛的视角∠ACB等于度.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.(10分)求图中x的值.22.(10分)已知:如图所示,(1)作出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标.(2)在x轴上画出点P,使PA+PC最小,写出作法.23.(10分)如图,在△ABC中;(1)作∠C的角平分线CE交AB于E(保留痕迹,不写作法),过点E分别作AC、BC的垂线EM、EN,垂足分别为M、N;(2)若EN=2,AC=4,求△ACE的面积.24.(8分)如图,在△ABC和△ABD中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA,求证:AC=BD.25.(10分)如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.(1)求证:AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.26.(12分)学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)八年级(上)期中数学试卷参考答案与试题解析一、精心选一选,慧眼识金!(本大题共14小题,每小题3分,共42分,在每小题给出的四个选项中只有一项是正确的)1.下列图形中不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:A.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1,2,1 B.1,2,2 C.1,2,3 D.1,2,4【考点】三角形三边关系.【分析】根据三角形的三边关系:三角形两边之和大于第三边,计算两个较小的边的和,看看是否大于第三边即可.【解答】解:A、1+1=2,不能组成三角形,故A选项错误;B、1+2>2,能组成三角形,故B选项正确;C、1+2=3,不能组成三角形,故C选项错误;D、1+2<4,不能组成三角形,故D选项错误;故选:B.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形的三边关系定理.3.如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是()A.两点之间的线段最短B.长方形的四个角都是直角C.长方形是轴对称图形D.三角形有稳定性【考点】三角形的稳定性.【分析】根据三角形具有稳定性解答.【解答】解:用木条EF固定长方形门框ABCD,使其不变形的根据是三角形具有稳定性.故选:D.【点评】本题考查了三角形具有稳定性在实际生活中的应用,是基础题.4.到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点 D.三条角平分线的交点【考点】角平分线的性质.【分析】因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点.【解答】解:∵角的平分线上的点到角的两边的距离相等,∴到三角形的三边的距离相等的点是三条角平分线的交点.故选:D.【点评】该题考查的是角平分线的性质,因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点,易错选项为C.5.等腰△ABC的两边长分别是2和5,则△ABC的周长是()A.9 B.9或12 C.12 D.7或12【考点】等腰三角形的性质;三角形三边关系.【分析】分为两种情况:①当腰是2时,②当腰是5时,看看三角形的三边是否符合三角形的三边关系定理,求出即可.【解答】解:分为两种情况:①当腰是2时,三边为2,2,5,∵2+2<5,∴不符合三角形三边关系定理,此种情况不可能;②当腰是5时,三边为2,5,5,此时符合三角形三边关系定理,三角形的周长是2+5+5=12;故选C.【点评】本题考查了等腰三角形的性质和三角形三边关系定理的应用,注意要进行分类讨论.6.从一个多边形的任何一个顶点出发都只有5条对角线,则它的边数是()A.6 B.7 C.8 D.9【考点】多边形的对角线.【分析】根据多边形的对角线的定义可知,从n边形的一个顶点出发,可以引(n ﹣3)条对角线,由此可得到答案.【解答】解:设这个多边形是n边形.依题意,得n﹣3=5,解得n=8.故这个多边形的边数是8.故选C.【点评】本题考查了多边形的对角线,如果一个多边形有n条边,那么经过多边形的一个顶点所有的对角线有(n﹣3)条,经过多边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形.7.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30°B.40°C.45°D.60°【考点】等腰三角形的性质.【分析】先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC 的度数,根据等腰三角形的性质即可得出结论.【解答】解:∵△ABD中,AB=AD,∠B=80°,∴∠B=∠ADB=80°,∴∠ADC=180°﹣∠ADB=100°,∵AD=CD,∴∠C===40°.故选:B.【点评】本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.8.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°【考点】翻折变换(折叠问题).【分析】由△ABC中,∠ACB=90°,∠A=22°,可求得∠B的度数,由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,由三角形外角的性质,可求得∠ADE的度数,继而求得答案.【解答】解:△ABC中,∠ACB=90°,∠A=22°,∴∠B=90°﹣∠A=68°,由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,∴∠ADE=∠CED﹣∠A=46°,∴∠BDC==67°.故选C.【点评】此题考查了折叠的性质、三角形内角和定理以及三角形外角的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.9.如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A=()A.50°B.40°C.70°D.35°【考点】三角形内角和定理;角平分线的定义.【分析】根据数据线的内角和定理以及角平分线的定义,可以证明.【解答】解:∵BE、CF都是△ABC的角平分线,∴∠A=180°﹣(∠ABC+∠ACB),=180°﹣2(∠DBC+∠BCD)∵∠BDC=180°﹣(∠DBC+∠BCD),∴∠A=180°﹣2(180°﹣∠BDC)∴∠BDC=90°+∠A,∴∠A=2(110°﹣90°)=40°.故选B.【点评】注意此题中的∠A和∠BDC之间的关系:∠BDC=90°+∠A.10.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为()A.70°B.80°C.40°D.30°【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】由等腰△ABC中,AB=AC,∠A=40°,即可求得∠ABC的度数,又由线段AB的垂直平分线交AB于D,交AC于E,可得AE=BE,继而求得∠ABE的度数,则可求得答案.【解答】解:∵等腰△ABC中,AB=AC,∠A=40°,∴∠ABC=∠C==70°,∵线段AB的垂直平分线交AB于D,交AC于E,∴AE=BE,∴∠ABE=∠A=40°,∴∠CBE=∠ABC﹣∠ABE=30°.故选:D.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.11.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB交BC于点D,E为AB上一点,连接DE,则下列说法错误的是()A.∠CAD=30° B.AD=BD C.BD=2CD D.CD=ED【考点】含30度角的直角三角形;角平分线的性质;等腰三角形的判定与性质.【分析】根据三角形内角和定理求出∠CAB,求出∠CAD=∠BAD=∠B,推出AD=BD,AD=2CD即可.【解答】解:∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°,∵AD平分∠CAB,∴∠CAD=∠BAD=30°,∴∠CAD=∠BAD=∠B,∴AD=BD,AD=2CD,∴BD=2CD,根据已知不能推出CD=DE,即只有D错误,选项A、B、C的答案都正确;故选:D.【点评】本题考查了三角形的内角和定理,等腰三角形的判定,含30度角的直角三角形的性质的应用,注意:在直角三角形中,如果有一个角等于30°,那么它所对的直角边等于斜边的一半.12.如果一个三角形有两个外角(不在同一顶点)的和等于270°,则此三角形一定是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等边三角形【考点】三角形的外角性质.【分析】根据三角形的外角和是360°,则第三个外角是90°,则与其相邻的内角是90°,即该三角形一定是直角三角形.【解答】解:∵一个三角形的两个外角的和是270°,∴第三个外角是90°,∴与90°的外角相邻的内角是90°,∴这个三角形一定是直角三角形.故选B.【点评】本题考查了三角形内角和定理的应用,能求出∠BAC+∠ACB的度数是解此题的关键,注意:三角形的内角和等于180°.13.如图,点D是△ABC的边BC上任意一点,点E、F分别是线段AD、CE的中点,则△ABC的面积等于△BEF的面积的()A.2倍B.3倍C.4倍D.5倍【考点】三角形的面积.【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答.【解答】解:∵点E是AD的中点,∴S△ABE=S△ABD,S△ACE=S△ADC,∴S△ABE +S△ACE=S△ABC,∴S△BCE =S△ABC,∵点F是CE的中点,∴S△BEF =S△BCE.∴△ABC的面积等于△BEF的面积的4倍.故选C.【点评】本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.14.在直角坐标系中,O为坐标原点,已知A(2,2),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P的个数共有()A.4个B.3个C.2个D.1个【考点】等腰三角形的判定;坐标与图形性质.【分析】分三种情形考虑∠O为顶角,∠P为顶角,∠A为顶角即可解决问题.【解答】解:如图,△AOP为等腰三角形,则符合条件的点P的个数共有4个.故选A.【点评】本题考查等腰三角形的判定和性质、坐标与图形性质等知识,解题的关键是考虑问题要全面,不能漏解,属于基础题,中考常考题型.二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共18分)15.已知等腰三角形一个内角的度数为70°,则它的其余两个内角的度数分别是55°,55°或70°,40°.【考点】等腰三角形的性质.【分析】已知给出了一个内角是70°,没有明确是顶角还是底角,所以要进行分类讨论,分类后还要用内角和定理去验证每种情况是不是都成立.【解答】解:已知等腰三角形的一个内角是70°,根据等腰三角形的性质,当70°的角为顶角时,三角形的内角和是180°,所以其余两个角的度数是(180﹣70)×=55;当70°的角为底角时,顶角为180﹣70×2=40°.故填55°,55°或70°,40°.【点评】本题主要考查等腰三角形的性质以及三角形的内角和为180度.分类讨论是正确解答本题的关键.16.如果一个n边形的内角和等于900°,那么n的值为7 .【考点】多边形内角与外角.【分析】根据n边形的内角和为(n﹣2)•180°得到(n﹣2)•180°=900°,然后解方程即可求解.【解答】解:设这个多边形的边数为n,则(n﹣2)•180°=900°,解得n=7.故答案为:7.【点评】本题考查了多边行的内角和定理:n边形的内角和为(n﹣2)•180°.17.一个多边形的每一个外角都等于30°,则这个多边形的边数是12 .【考点】多边形内角与外角.【分析】多边形的外角和为360°,而多边形的每一个外角都等于30°,由此做除法得出多边形的边数.【解答】解:∵360°÷30°=12,∴这个多边形为十二边形,故答案为:12.【点评】本题考查根据多边形的内角与外角.关键是明确多边形的外角和为360°.18.如图,已知△ABC中,AD是BC边上的高,点E在线段BD上,且AE平分∠BAC,若∠B=40°,∠C=78°,则∠EAD= 19 °.【考点】三角形内角和定理.【分析】由三角形的高得出∠ADC=90°,求出∠ADC,由三角形内角和定理求出∠BAC,由角平分线求出∠EAC,即可得出∠EAD的度数.【解答】解:∵△ABC中,AD是BC边上的高,∴∠ADC=90°,∴∠DAC=90°﹣∠C=90°﹣78°=12°,∵∠BAC=180°﹣∠B﹣∠C=180°﹣40°﹣78°=62°,∵AE平分∠BAC,∴∠EAC=∠BAC=×62°=31°,∴∠EAD=∠EAC﹣∠DAC=31°﹣12°=19°.故答案为:19.【点评】本题考查了三角形内角和定理、角平分线的定义、角的和差计算;熟练掌握三角形内角和定理,并能进行推理计算是解决问题的关键.19.如图,已知DE是AC的垂直平分线,AB=10cm,BC=11cm,则△ABD的周长为21 cm.【考点】线段垂直平分线的性质.【分析】要求周长,就要求出三角形的三边,利用垂直平分线的性质计算.【解答】解:因为DE⊥AC,AE=CE,则DA=DC,于是C=AB+BD+DA=AB+(BD+DC)=AB+BC=10+11=21.△ABD∴△ABD的周长为21.【点评】此题设计巧妙,解答时要根据垂直平分线的性质将三角形ABC的周长问题转化为三角形ABC的两边长问题.20.如图,C岛在A岛的北偏东50°方向,C岛在B岛的北偏西40°方向,则从C岛看A,B两岛的视角∠ACB等于90 度.【考点】方向角;平行线的性质;三角形内角和定理.【分析】根据方位角的概念和平行线的性质,结合三角形的内角和定理求解.【解答】解:∵C岛在A岛的北偏东50°方向,∴∠DAC=50°,∵C岛在B岛的北偏西40°方向,∴∠CBE=40°,∵DA∥EB,∴∠DAB+∠EBA=180°,∴∠CAB+∠CBA=90°,∴∠ACB=180°﹣(∠CAB+∠CBA)=90°.故答案为:90.【点评】解答此类题需要从运动的角度,结合平行线的性质和三角形的内角和定理求解.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.(10分)(2016秋•秦皇岛期中)求图中x的值.【考点】多边形内角与外角;三角形的外角性质.【分析】(1)根据三角形外角等于与它不相邻的两个内角的和,列出方程即可解决问题.(2)根据四边形内角和为360°,列出方程即可解决问题.【解答】(1)由三角形外角等于与它不相邻的两个内角的和,得x+70°=x+x+10°,解得x=60°,∴x=60°(2)由四边形内角和等于360°,得x+x+10°+60°+90°=360°解得:x=100°,∴x=100°.【点评】本题考查三角形的外角,多边形内角和等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.22.(10分)(2016秋•秦皇岛期中)已知:如图所示,(1)作出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标.(2)在x轴上画出点P,使PA+PC最小,写出作法.【考点】轴对称-最短路线问题;作图-轴对称变换.【分析】(1)根据网格结构找出点A、B、C关于y轴对称的点A′、B′、C′的位置,然后顺次连接即可,再根据平面直角坐标系写出各点的坐标;(2)根据网格结构找出点C关于x轴的对称点C″的位置,连接AC″与x轴相交于点P,根据轴对称确定最短路线问题,点P即为所求作的点.【解答】解:(1)△A′B′C′如图所示,A′(﹣1,2),B′(﹣3,1),C′(﹣4,3);(2)如图所示,点P即为使PA+PC最小的点.作法:①作出C点关于x轴对称的点C″(4,﹣3),②连接C″A交x轴于点P,点P点即为所求点.【点评】本题考查了利用轴对称确定最短路线问题,利用轴对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.23.(10分)(2014春•邵阳期末)如图,在△ABC中;(1)作∠C的角平分线CE交AB于E(保留痕迹,不写作法),过点E分别作AC、BC的垂线EM、EN,垂足分别为M、N;(2)若EN=2,AC=4,求△ACE的面积.【考点】作图—复杂作图.【分析】(1)利用角平分线的作法以及过一点作已知直线的作法得出即可;(2)利用角平分线的性质以及三角形面积求法求出即可.【解答】解:(1)如图所示:CE为∠ACB的角平线,(2)∵CE为∠ACB的角平线,∠EMC=∠ENC=90°,∴EM=EN=2,∴S=AC×EM=4.【点评】此题主要考查了复杂作图以及角平分线的性质,得出EM的长是解题关键.24.如图,在△ABC和△ABD中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA,求证:AC=BD.【考点】全等三角形的判定与性质.【分析】根据“SAS”可证明△ADB≌△BAC,由全等三角形的性质即可证明AC=BD.【解答】证明:在△ADB和△BAC中,,∴△ADB≌△BAC(SAS),∴AC=BD.【点评】本题考查了全等三角形的判定和性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.25.(10分)(2011•德州)如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD 相交于点O.(1)求证:AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.【考点】全等三角形的判定与性质.【分析】(1)根据全等三角形的判定方法,证明△ACD≌△ABE,即可得出AD=AE,(2)根据已知条件得出△ADO≌△AEO,得出∠DAO=∠EAO,即可判断出OA是∠BAC的平分线,即OA⊥BC.【解答】(1)证明:在△ACD与△ABE中,∵,∴△ACD≌△ABE,∴AD=AE.(2)答:直线OA垂直平分BC.理由如下:连接BC,AO并延长交BC于F,在Rt△ADO与Rt△AEO中,∴Rt△ADO≌Rt△AEO(HL),∴∠DAO=∠EAO,即OA是∠BAC的平分线,又∵AB=AC,∴OA⊥BC且平分BC.【点评】本题考查了全等三角形的判定方法,以及全等三角形的对应边相等,对应角相等的性质,难度适中.26.(12分)(2016秋•秦皇岛期中)学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据HL ,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)【考点】三角形综合题.【分析】(1)根据直角三角形全等的方法“HL”证明;(2)过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,根据等角的补角相等求出∠CBG=∠FEH,再利用“角角边”证明△CBG和△FEH 全等,根据全等三角形对应边相等可得CG=FH,再利用“HL”证明Rt△ACG和Rt △DFH全等,根据全等三角形对应角相等可得∠A=∠D,然后利用“角角边”证明△ABC和△DEF全等;(3)以点C为圆心,以AC长为半径画弧,与AB相交于点D,E与B重合,F与C重合,得到△DEF与△ABC不全等;【解答】(1)解:HL;故答案为:HL;(2)证明:如图,过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,∵∠ABC=∠DEF,且∠ABC、∠DEF都是钝角,∴180°﹣∠ABC=180°﹣∠DEF,即∠CBG=∠FEH,在△CBG和△FEH中,∴△CBG≌△FEH(AAS),。

华师版八年级数学上册期中培优测试卷含答案

华师版八年级数学上册期中培优测试卷含答案

华师版八年级数学上册期中培优测试卷一、选择题(每题3分,共30分) 1.计算4的结果是( )A .4B .-2C .2D .±22.计算(-a )3·(-a 2)的结果是( )A .a 5B .-a 5C .a 6D .-a 63.下列说法不正确的是( )A .1的平方根是1B .-2是-8的立方根C .4是64的立方根D .0的平方根是04.估计11-2的值在( )A .3和4之间B .2和3之间C .1和2之间D .0和1之间 5.计算-2a 3b 4÷3a 2b ·ab 3的结果是( )A .-23B .-23abC .-23a 6b 8D .-23a 2b 66.数学课上,老师讲了单项式乘多项式,放学回到家,李刚拿出课堂笔记复习,发现一道题:-4xy (3y -2x -3)=-12xy 2●+ 12xy ,●处被墨水弄污了,你认为●处是( ) A .+8x 2yB .-8x 2yC .+8xyD .-8xy 27.计算:52a ×1 0012-52a ×9992=( )A .5 000aB .1 999aC .10 001aD .10 000a8.在多项式16x 2+1中添加一个单项式,使新得到的多项式能运用完全平方公式分解因式,则下列表述正确的是( ) 嘉琪:添加±8x ,16x 2+1±8x =(4x ±1)2; 陌陌:添加64x 4,64x 4+16x 2+1=(8x 2+1)2; 嘟嘟:添加-1,16x 2+1-1=16x 2=(4x )2. A .嘉琪和陌陌的做法正确 B .嘉琪和嘟嘟的做法正确 C .陌陌和嘟嘟的做法正确D .三名同学的做法都正确9.已知10a =20, 100b =50,则2a +4b -3的值是( )A .9B .5C .3D .610.已知实数m,n满足m2+n2=2+mn,则(2m-3n)2+(m+2n)(m-2n)的最大值为()A.24 B.443 C.163D.-4二、填空题(每题3分,共15分)11.写出一个比3大且比4小的无理数:________.12.实数a,b在数轴上的对应点的位置如图所示,那么化简|a+b|+|-a|+3b3的结果为________.(第12题)13.计算:1 2342-1 235×1 233=________.14.若M=(x-2)(x-8),N=(x-3)(x-7),则M与N的大小关系为:M______N. 15.若一个整数能表示成a2+b2(a,b是整数)的形式,则称这个数为“完美数”.例如,因为5=22+12,所以5是一个“完美数”.已知M是一个“完美数”,且M =x2+4xy+5y2-12y+k(x,y是两个任意整数,k是常数),则k的值为________.三、解答题(20题9分,21题10分,22,23题每题12分,其余每题8分,共75分)16.计算:(1)9+3-27-(-2)2;(2)(-1)2 023-|3-2|+2+14-0.25.17.利用乘法公式计算:(1)(x-y)(x+y)-(x-y)2; (2)3.992-4.01×3.97.18.已知5x+2的立方根是3,3x+y-1的算术平方根是4.求:(1)x,y的值;(2)3x-2y-2的平方根.19.分解因式:(1)a3b-ab; (2)(x+y)2-(2x+2y-1).20.先化简,再求值:(2+a)(2-a)+a(a-5b)+3a5b3÷(-a2b)2,其中ab=-1 009.21.阅读下列材料:因为4<5<9,即2<5<3,所以5的整数部分为2,小数部分为5-2.请仿照上述方法,解答下列问题:(1)7的整数部分是________;(2)7的小数部分为m,11的整数部分为n,求m+n-7的值.22.如图,将一张长方形纸板按图中虚线裁剪成九块,其中有两块是边长都为m 的大正方形,两块是边长都为n的小正方形,五块是长为m、宽为n的小长方形.(1)观察图形可以发现,代数式2m2+5mn+2n2可以因式分解为______________.(2)若每块小长方形的面积为20,四块正方形的面积和为162.①试求图中所有裁剪线(虚线)长度之和;②求(m-n)2的值.(第22题)23.两个多项式相除,可以先把这两个多项式都按照同一字母降幂排列,然后再仿照两个多位数相除的计算方法,用竖式进行计算.例如(7x+2+6x2)÷(2x+1),仿照672÷21计算如图①所示.(第23题)因此(7x+2+6x2)÷(2x+1)=3x+2.(1)阅读上述材料后,试判断x3-x2-5x-3能否被x+1整除,并说明理由;(2)若多项式2x4-3x3+ax2+7x+b能被x2+x-2整除,求ab的值;(3)有一个长为x+2,宽为x-2的长方形A,若将它的长增加6,宽增加a就得到一个新长方形B,此时长方形B的周长是A周长的2倍(如图),另有一长方形C,它的一边长为x+10,且长方形B的面积比C的面积大76,求长方形C已知边长的邻边长.答案一、1.C 2.A 3.A 4.C 5.D 6.A7.D8.A9.C10.B二、11.15(答案不唯一)12.-2a13.114.<点拨:∵M=(x-2)(x-8)=x2-10x+16,N=(x-3)(x-7)=x2-10x+21,∴M-N=(x2-10x+16)-(x2-10x+21)=16-21=-5<0,即M<N. 15.36点拨:∵M=x2+4xy+5y2-12y+k=(x+2y)2+(y-6)2+k-36,且M是“完美数”,∴k-36=0,∴k=36.三、16.解:(1)原式=3-3-2=-2.(2)原式=-1+3-2+94-0.5=-3+3+32-12=-2+ 3.17.解:(1)原式=x2-y2-(x2-2xy+y2) =x2-y2-x2+2xy-y2=2xy-2y2.(2)原式=3.992-(3.99+0.02)×(3.99-0.02)=3.992-(3.992-0.022)=3.992-3.992+0.000 4=0.000 4.18.解:(1)由题意得,35x+2=3,3x+y-1=4,∴5x+2=27,3x+y-1=16.∴x=5,y=2.(2)由(1)得,x=5,y=2,∴3x-2y-2=15-4-2=9.∴3x-2y-2的平方根是±3.19.解:(1)a3b-ab=ab(a2-1)=ab(a+1)(a-1).(2)(x+y)2-(2x+2y-1)=(x+y)2-2(x+y)+1=(x+y-1)2.20.解:(2+a)(2-a)+a(a-5b)+3a5b3÷(-a2b)2=4-a2+a2-5ab+3a5b3÷a4b2=4-a2+a2-5ab+3ab=4-2ab,当ab=-1 009时,原式=4-2×(-1 009)=4+2 018=2 022.21.解:(1)2(2)m=7-2,因为9<11<16,即3<11<4,所以n=3,所以m+n-7=1.22.解:(1)(2m+n)(m+2n)(2)①由题意知mn=20,2m2+2n2=162,∴m2+n2=81,∴(m+n)2=m2+n2+2mn=121,∴m+n=11(负值已舍去),∴图中所有裁剪线(虚线)长度之和为2(2m+n)+2(m+2n)=6(m+n)=66.②(m-n)2=m2+n2-2mn=81-40=41.23.解:(1)x3-x2-5x-3能被x+1整除.理由如下:(2)若多项式2x4-3x3+ax2+7x+b能被x2+x-2整除,则有∴a+9=-3,b=6,∴a=-12,∴ab=-2.(3)长方形A的周长为2(x+2+x-2)=4x,长方形B的周长为2(x-2+a+x+2+6)=4x+2a+12. ∵长方形B的周长是A周长的2倍,∴4x+2a+12=8x.∴a=2x-6.∴长方形B的面积为(x+2+6)(x-2+2x-6)=(x+8)(3x-8)=3x2+16x-64. ∴长方形C的面积为3x2+16x-140.∴所求边长为(3x2+16x-140)÷(x+10)=3x-14.。

八年级上册数学期中考试试卷及答案

八年级上册数学期中考试试卷及答案

八年级上册数学期中考试试卷及答案读书之乐何处寻,数点梅花天地心。

书是我生活中的一大乐趣。

我坚信,只有让我们的灵魂融入书的海洋,让书的内容融入我们的生命,才能有一个比水海更为宽敞的心灵空间!下面给大家共享一些关于〔八年级〕上册数学期中考试试卷及答案,希望对大家有所关怀。

试卷:一、选择题(每题3分,共30分)1、在,-2ab2,,中,分式共有()A.2个B.3个C.4个D.5个2、以下各组中的三条线段能组成三角形的是()A.3,4,5B.5,6,11C.6,3,10D.4,4,83、以下各题中,所求的最简公分母,错误的选项是()A.与最简公分母是6x2B.与最简公分母是3a2b3cC.与的最简公分母是(m+n)(m-n)D.与的最简公分母是ab(x-y)(y-x)4、不转变的值,把它的分子和分母中的各项系数都化为整数,所得的结果为()A.B.C.D.5、若分式,则x的值是()A.3或-3B.-3C.3D.96、如图,将三角尺的直角顶点放在直线a上,a‖b,∠1=50°,∠2=60°,则∠3的度数为()A.50°B.60°C.70°D.80°7、以下式子:①(-2)-2=;②错误!未找到引用源。

;③3a-2=;④-7.02×10-4=-0.000702.新$课$标$第$一$网其中正确的式子有()A.1个B.2个C.3个D.4个8、如图,D是线段AB,BC垂直平分线的交点,若∠ABC=150°,则∠ADC的大小是()A.60°B.70°C.75°D.80°9、甲、乙两班学生参加植树造林.已知甲班每天比乙班少植2棵树,甲班植60棵树所用天数与乙班植70棵树所用天数相等.若设甲班每天植树x棵,则根据题意列出方程正确的选项是()A.=B.=C.=D.=10、以下命题中是假命题的()A、在同一平面内,垂直于同一条直线的两条直线平行。

八年级数学上册期中精选试卷测试卷附答案

八年级数学上册期中精选试卷测试卷附答案

八年级数学上册期中精选试卷测试卷附答案一、八年级数学全等三角形解答题压轴题(难)1.在平面直角坐标系中,直线AB分别交x轴,y轴于A(a,0),B(0,b),且满足a2+b2+4a﹣8b+20=0.(1)求a,b的值;(2)点P在直线AB的右侧;且∠APB=45°,①若点P在x轴上(图1),则点P的坐标为;②若△ABP为直角三角形,求P点的坐标.【答案】(1)a=﹣2,b=4;(2)①(4,0);②P点坐标为(4,2),(2,﹣2).【解析】【分析】(1)利用非负数的性质解决问题即可.(2)①根据等腰直角三角形的性质即可解决问题.②分两种情形:如图2中,若∠ABP=90°,过点P作PC⊥OB,垂足为C.如图3中,若∠BAP=90°,过点P作PD⊥OA,垂足为D.分别利用全等三角形的性质解决问题即可.【详解】(1)∵a2+4a+4+b2﹣8b+16=0∴(a+2)2+(b﹣4)2=0∴a=﹣2,b=4.(2)①如图1中,∵∠APB=45°,∠POB=90°,∴OP=OB=4,∴P(4,0).故答案为(4,0).②∵a=﹣2,b=4∴OA=2OB=4又∵△ABP为直角三角形,∠APB=45°∴只有两种情况,∠ABP=90°或∠BAP=90°①如图2中,若∠ABP=90°,过点P作PC⊥OB,垂足为C.∴∠PCB=∠BOA=90°,又∵∠APB=45°,∴∠BAP=∠APB=45°,∴BA=BP,又∵∠ABO+∠OBP=∠OBP+∠BPC=90°,∴∠ABO=∠BPC,∴△ABO≌△BPC(AAS),∴PC=OB=4,BC=OA=2,∴OC=OB﹣BC=4﹣2=2,∴P(4,2).②如图3中,若∠BAP=90°,过点P作PD⊥OA,垂足为D.∴∠PDA=∠AOB=90°,又∵∠APB=45°,∴∠ABP=∠APB=45°,∴AP=AB,又∵∠BAD+∠DAP=90°,∠DPA+∠DAP=90°,∴∠BAD=∠DPA,∴△BAO≌△APP(AAS),∴PD=OA=2,AD=OB=4,∴OD=AD﹣0A=4﹣2=2,∴P(2,﹣2).综上述,P点坐标为(4,2),(2,﹣2).【点睛】本题属于三角形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题.2.(1)如图1,在Rt△ABC 中,AB AC=,D、E是斜边BC上两动点,且∠DAE=45°,将△ABE绕点A逆时针旋转90后,得到△AFC,连接DF .(1)试说明:△AED≌△AFD;(2)当BE=3,CE=9时,求∠BCF的度数和DE的长;(3)如图2,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,D 是斜边BC所在直线上一点,BD=3,BC=8,求DE2的长.【答案】(1)略(2)∠BCF=90° DE=5 (3)34或130【解析】试题分析:()1由ABE AFC≌,得到AE AF=,BAE CAF∠=∠,45,EAD∠=45,BAE CAD∴∠+∠=45,CAF CAD∴∠+∠=即45.DAF∠=EAD DAF∠=∠,从而得到.AED AFD≌()2由△AED AFD≌得到ED FD=,再证明90DCF∠=︒,利用勾股定理即可得出结论.()3过点A 作AH BC⊥于H,根据等腰三角形三线合一得,14.2AH BH BC===1DH BH BD=-=或7,DH BH BD=+=求出AD的长,即可求得2DE.试题解析:()1ABE AFC≌,AE AF=,BAE CAF∠=∠,45,EAD∠=90,BAC∠=45,BAE CAD∴∠+∠=45,CAF CAD∴∠+∠=即45.DAF∠=在AED和AFD中,{AF AEEAF DAEAD AD,=∠=∠=.AED AFD∴≌()2AED AFD ≌,ED FD ∴=,,90.AB AC BAC =∠=︒45B ACB ∴∠=∠=︒, 45ACF ,∠=︒ 90.BCF ∴∠=︒设.DE x =,9.DF DE x CD x ===- 3.FC BE ==222,FC DC DF +=()22239.x x ∴+-=解得: 5.x = 故 5.DE =()3过点A 作AH BC ⊥于H ,根据等腰三角形三线合一得,14.2AH BH BC === 1DH BH BD =-=或7,DH BH BD =+= 22217AD AH DH =+=或65. 22234DE AD ==或130.点睛:D 是斜边BC 所在直线上一点,注意分类讨论.3.如图1,在ABC ∆中,ACB ∠是直角,60B ∠=︒,AD 、CE 分别是BAC ∠、BCA ∠的平分线,AD 、CE 相交于点F .(1)求出AFC ∠的度数;(2)判断FE 与FD 之间的数量关系并说明理由.(提示:在AC 上截取CG CD =,连接FG .)(3)如图2,在△ABC ∆中,如果ACB ∠不是直角,而(1)中的其它条件不变,试判断线段AE 、CD 与AC 之间的数量关系并说明理由.【答案】(1)∠AFC =120°;(2)FE 与FD 之间的数量关系为:DF =EF .理由见解析;(3)AC =AE+CD .理由见解析. 【解析】 【分析】(1)根据三角形的内角和性质只要求出∠FAC ,∠ACF 即可解决问题;(2)根据在图2的 AC 上截取CG=CD ,证得△CFG ≌△CFD (SAS),得出DF= GF ;再根据ASA 证明△AFG ≌△AFE ,得EF=FG ,故得出EF=FD ;(3)根据(2) 的证明方法,在图3的AC 上截取AG=AE ,证得△EAF ≌△GAF (SAS)得出∠EFA=∠GFA ;再根据ASA 证明△FDC ≌△FGC ,得CD=CG 即可解决问题. 【详解】(1)解:∵∠ACB =90°,∠B =60°, ∴∠BAC =90°﹣60°=30°,∵AD 、CE 分别是∠BAC 、∠BCA 的平分线, ∴∠FAC =15°,∠FCA =45°,∴∠AFC =180°﹣(∠FAC+∠ACF )=120° (2)解:FE 与FD 之间的数量关系为:DF =EF . 理由:如图2,在AC 上截取CG =CD ,∵CE 是∠BCA 的平分线, ∴∠DCF =∠GCF , 在△CFG 和△CFD 中,CG CDDCF GCFCF CF=⎧⎪∠=∠⎨⎪=⎩,∴△CFG≌△CFD(SAS),∴DF=GF.∠CFD=∠CFG由(1)∠AFC=120°得,∴∠CFD=∠CFG=∠AFE=60°,∴∠AFG=60°,又∵∠AFE=∠CFD=60°,∴∠AFE=∠AFG,在△AFG和△AFE中,AFE AFGAF AFEAF GAF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AFG≌△AFE(ASA),∴EF=GF,∴DF=EF;(3)结论:AC=AE+CD.理由:如图3,在AC上截取AG=AE,同(2)可得,△EAF≌△GAF(SAS),∴∠EFA=∠GFA,AG=AE∵∠BAC+∠BCA=180°-∠B=180°-60°=120°∴∠AFC=180°﹣(∠FAC+∠FCA)=180°-12(∠BAC+∠BCA)=180°-12×120°=120°,∴∠EFA=∠GFA=180°﹣120°=60°=∠DFC,∴∠CFG=∠CFD=60°,同(2)可得,△FDC≌△FGC(ASA),∴CD=CG,∴AC=AG+CG=AE+CD.【点睛】本题考查了全等三角形的判定和性质的运用,全等三角形的判定和性质是证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造全等三角形.4.如图①,在ABC中,90BAC∠=︒,AB AC=,AE是过A点的一条直线,且B、C在AE的异侧,BD AE⊥于D,CE AE⊥于E.(1)求证:BD DE CE=+.(2)若将直线AE绕点A旋转到图②的位置时(BD CE<),其余条件不变,问BD与DE、CE的关系如何?请予以证明.【答案】(1)见解析;(2)BD=DE-CE,理由见解析.【解析】【分析】(1)根据已知利用AAS判定△ABD≌△CAE从而得到BD=AE,AD=CE,因为AE=AD+DE,所以BD=DE+CE;(2)根据已知利用AAS判定△ABD≌△CAE从而得到BD=AE,AD=CE,因为AD+AE=BD+CE,所以BD=DE-CE.【详解】解:(1)∵∠BAC=90°,BD⊥AE,CE⊥AE,∴∠BDA=∠AEC=90°,∵∠ABD+∠BAE=90°,∠CAE+∠BAE=90°∴∠ABD=∠CAE,∵AB=AC,在△ABD和△CAE中,BDA AECABD CAEAB AC∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∵AE=AD+DE,∴BD=DE+CE;(2)BD与DE、CE的数量关系是BD=DE-CE,理由如下:∵∠BAC=90°,BD⊥AE,CE⊥AE,∴∠BDA=∠AEC=90°,∴∠ABD+∠DAB=∠DAB+∠CAE,∴∠ABD=∠CAE,∵AB=AC,在△ABD和△CAE中,BDA AECABD CAEAB AC∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∴AD+AE=BD+CE,∵DE=BD+CE,∴BD=DE-CE.【点睛】此题主要考查全等三角形的判定和性质,常用的判定方法有SSS,SAS,AAS,HL等.这种类型的题目经常考到,要注意掌握.5.如图,ABC∆是等腰直角三角形,090BAC∠=,点D是直线BC上的一个动点(点D与点B C、不重合),以AD为腰作等腰直角ADE∆,连接CE.(1)如图①,当点D在线段BC上时,直接写出,BC CE的位置关系,线段,BC CD,CE之间的数量关系;(2)如图②,当点D在线段BC的延长线上时,试判断线段BC,CE的位置关系,线段,,BC CD CE之间的数量关系,并说明理由;(3)如图③,当点D在线段CB的延长线上时,试判断线段,BC CE的位置关系,线段,,BC CD CE之间的数量关系,并说明理由.【答案】(1)见解析;(2)BC CE⊥,CE BC CD=+,理由见解析;(3),BC CE CD BC CE⊥=+,理由见解析【解析】【分析】(1)根据条件AB=AC,∠BAC=90°,AD=AE,∠DAE=90°,判定△ABD≌△ACE(SAS),利用两角的和即可得出BC CE⊥;利用线段的和差即可得出BC CE CD=+;(2)同(1)的方法根据SAS证明△ABD≌△ACE,得出BD=CE,∠ACE=∠ABD,从而得出结论;(3)先根据SAS证明△ABD≌△ACE,得出ADB AEC∠=∠,BD CE=,从而得出结论. 【详解】(1)∵△ABC 、△ADE 是等腰直角三角形, ∴AB=AC ,AE =AD , 在△△ABD 和△ACE 中90AB AC BAC DAE AD AE ⎧⎪∠∠=︒⎨⎪⎩=== , ∴△ABD ≌△ACE (SAS ), ∴∠B =∠ACE ,BD=CE, 又∵△ABC 是等腰直角三角形, ∴∠B+∠ACB=90︒,∴∠ACE +∠ACB=90︒,即BC CE ⊥, ∵BC=BD+CD, BD=CE , ∴BC CE CD =+;(2)BC CE ⊥,CE BC CD =+,理由如下: ∵ABC ∆、ADE ∆是等腰直角三角形, ∴0,,90AB AC AD AE BAC DAE ==∠=∠=, ∴BAC DAC DAE DAC ∠+∠=∠+∠ 即BAD CAE ∠=∠, 在ABD ∆和ACE ∆中AB AC BAD CAE AD AE ⎧⎪∠=∠⎨⎪⎩== ∴()ABD ACE SAS ∆≅∆ ∴BD CE = ∵BD BC CD =+ ∴CE BC CD =+, ∴ABD ACE ∠=∠, ∵090ABD ACE ∠+∠= ∴090ACE ACB ∠+∠= ∴BC CE ⊥.(3),BC CE CD BC CE ⊥=+,理由如下: ∵ABC ADE ∆∆、是等腰直角三角形,∴0,,90AB AC AD AE BAC DAE ==∠=∠=,∴BAC BAE DAE BAE ∠-∠=∠-∠,即BAD CAE ∠=∠, 在ABD ∆和ACE ∆中AB ACBAD CAEAD AE⎧⎪∠=∠⎨⎪⎩==∴()ABD ACE SAS∆≅∆,∴ADB AEC∠=∠,BD CE=,∵CD BD BC=+,∴CD CE BC=+,∵090ADE AED∠+∠=,即090ADB CDE AED∠+∠+∠=∴090AEC CDE AED∠+∠+∠=,∴090DCE∠=,即BC CE⊥.【点睛】考查了全等三角形的判定与性质以及等腰直角三角形的性质的运用,解题关键是根据利用两边及其夹角分别对应相等的两个三角形全等判定三角形全等.二、八年级数学轴对称解答题压轴题(难)6.如图,在平面直角坐标系中,点B 坐标为()6,0-,点A是y轴正半轴上一点,且10AB=,点P是x轴上位于点B 右侧的一个动点,设点P的坐标为()0m,.(1)点A的坐标为___________;(2)当ABP△是等腰三角形时,求P点的坐标;(3)如图2,过点P作PE AB⊥交线段AB于点E,连接OE,若点A关于直线OE的对称点为A',当点A'恰好落在直线PE上时,BE=_____________.(直接写出答案)【答案】(1)()0,8;(2)()4,0或()6,0或7,03⎛⎫⎪⎝⎭;(3)425【解析】【分析】(1)根据勾股定理可以求出AO的长,则可得出A的坐标;(2)分三种情况讨论等腰三角形的情况,得出点P的坐标;(3)根据PE AB⊥,点A'在直线PE上,得到EAG OPG,利用点A,A'关于直线OE对称点,根据对称性,可证'OPG EAO,可得'8OP OA,82AP,设BE x=,则有6AE x,根据勾股定理,有:22222BP BE EP AP AE解之即可.【详解】AB=,解:(1)∵点B坐标为6,0,点A是y轴正半轴上一点,且10∴ABO是直角三角形,根据勾股定理有:2222AO AB BO,1068∴点A的坐标为()0,8;(2)∵ABP△是等腰三角形,当BP AB时,如图一所示:OP BP BO,∴1064∴P点的坐标是()4,0;=时,如图二所示:当AP ABOP BO∴6∴P点的坐标是()6,0;=时,如图三所示:当AP BP设OP x =,则有6AP x∴根据勾股定理有:222OP AO AP += 即:22286x x解之得:73x = ∴P 点的坐标是7,03; (3)当ABP △是钝角三角形时,点A '不存在;当ABP △是锐角三角形时,如图四示:连接'OA ,∵PE AB ⊥,点A '在直线PE 上,∴AEG △和GOP 是直角三角形,EGA OGP ∴EAG OPG ,∵点A ,A '关于直线OE 对称点, 根据对称性,有'8OA OA ,'EAEA ∴'FAO FAO,'FAE FAE ∴'EAG EAO则有:'OPG EAO ∴'AOP 是等腰三角形,则有'8OP OA , ∴22228882AP AO OP ,设BE x ,则有6AEx ,根据勾股定理,有: 22222BP BE EP AP AE 即:2222688210x x 解之得:425BEx 【点睛】 本题考查了三角形的综合问题,涉及的知识点有:解方程,等腰三角形的判定与性质,对称等知识点,能分类讨论,熟练运用各性质定理,是解题的关键.7.如图1,在△ABC 中,∠ACB =90°,AC =12BC ,点D 为BC 的中点,AB =DE ,BE ∥AC . (1)求证:△ABC ≌△DEB ;(2)连结AD 、AE 、CE ,如图2.①求证:CE 是∠ACB 的角平分线;②请判断△ABE 是什么特殊形状的三角形,并说明理由.【答案】(1)详见解析;(2)①详见解析;②△ABE 是等腰三角形,理由详见解析.【解析】【分析】(1)由AC//BE ,∠ACB=90°可得∠DBE=90°,由AC=12BC ,D 是BC 中点可得AC=BD ,利用HL 即可证明△ABC ≌△DEB ;(2)①由(1)得BE=BC ,由等腰直角三角形的性质可得∠BCE=45°,进而可得∠ACE=45°,即可得答案;②根据SAS 可证明△ACE ≌△DCE ,可得AE=DE ,由AB=DE 可得AE=AB 即可证明△ABE 是等腰三角形.【详解】(1)∵∠ACB=90°,BE ∥AC∴∠CBE=90°∴△ABC 和△DEB 都是直角三角形∵AC=12BC,点D为BC的中点∴AC=BD又∵AB=DE∴△ABC≌△DEB(H.L.)(2)①由(1)得:△ABC≌△DEB∴BC=EB又∵∠CBE=90°∴∠BCE=45°∴∠ACE=90°-45°=45°∴∠BCE=∠ACE∴CE是∠ACB的角平分线②△ABE是等腰三角形,理由如下:在△ACE和△DCE中AC DCACE BCECE CE=⎧⎪∠=∠⎨⎪=⎩∴△ACE≌△DCE(SAS).∴AE=DE又∵AB=DE∴AE=AB∴△ABE是等腰三角形【点睛】本题考查全等三角形的判定与性质及等腰三角形的判断与性质,熟练掌握判定定理是解题关键.8.如图,在等边△ABC中,线段AM为BC边上的高,D是AM上的点,以CD为一边,在CD的下方作等边△CDE,连结BE.(1)填空:∠ACB=____;∠CAM=____;(2)求证:△AOC≌△BEC;(3)延长BE交射线AM于点F,请把图形补充完整,并求∠BFM的度数;(4)当动点D在射线AM上,且在BC下方时,设直线BE与直线AM的交点为F.∠BFM 的大小是否发生变化?若不变,请在备用图中面出图形,井直接写出∠BFM的度数;若变化,请写出变化规律.【答案】(1)60°,30°;(2)答案见解析;(3)60°;(4)∠BFM=60°.【解析】【分析】(1)根据等边三角形的性质即可进行解答;(2)根据等边三角形的性质就可以得出AC=AC,DC=EC,∠ACB=∠DCE=60°,由等式的性质就可以∠BCE=∠ACD,根据SAS就可以得出△ADC≌△BEC;(3)补全图形,由△ADC≌△BEC得∠CAM=∠CBE=30°,由三角形内角和定理即可求得∠BFM的度数;(4)画出相应图形,可知当点D在线段AM的延长线上且在BC下方时,如图,可以得出△ACD≌△BCE,进而得到∠CBE=∠CAD=30°,据此得出结论.【详解】(1)∵△ABC是等边三角形,∴∠ACB=60°;∴线段AM为BC边上的高,∴∠CAM=12∠BAC=30°,故答案为60,30°;(2)∵△ABC与△DEC都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACD+∠DCB=∠DCB+∠BCE,∴∠ACD=∠BCE.在△ADC和△BEC中,AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△BCE(SAS);(3)补全图形如下:由(1)(2)得∠CAM=30°,△ADC≌△BEC,∴∠CBE=∠CAM=30°,∵∠BMF=90°,∴∠BFM=60°;(4)当动点D在射线AM上,且在BC下方时,画出图形如下:∵△ABC与△DEC都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠DCB=∠DCB+∠DCE,∴∠ACD=∠BCE,在△ACD和△BCE中,AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△BCE(SAS),∴∠CBE=∠CAD=30°,又∵∠AMC=∠BMO,∴∠AOB=∠ACB=60°.即动点D在射线AM上时,∠AOB为定值60°.【点睛】本题考查了等边三角形的性质的运用,直角三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.解题时注意:全等三角形的对应角相等,等边三角形的三个内角都相等,等边三角形的三个内角相等,且都等于60°.9.如图1,在ABC 中,90BAC ∠=︒,点D 为AC 边上一点,连接BD ,点E 为BD 上一点,连接CE ,CED ABD ∠=∠,过点A 作AG CE ⊥,垂足为G ,交ED 于点F .(1)求证:2FAD ABD ∠=∠;(2)如图2,若AC CE =,点D 为AC 的中点,求证:AB AC =;(3)在(2)的条件下,如图3,若3EF =,求线段DF 的长.【答案】(1)详见解析;(2)详见解析;(3)6【解析】【分析】(1)根据直角三角形的性质可得90ADB ABD ∠=︒-∠,90EFG CED ∠=︒-∠,然后根据三角形的内角和和已知条件即可推出结论;(2)根据直角三角形的性质和已知条件可得AFD ADF ∠=∠,进而可得AF AD =,BFA CDE ∠=∠,然后即可根据AAS 证明ABF ∆≌CED ∆,可得AB CE =,进一步即可证得结论;(3)连接AE ,过点A 作AH AE ⊥交BD 延长线于点H ,连接CH ,如图4.先根据已知条件、三角形的内角和定理和三角形的外角性质推出45AED ∠=︒,进而可得AE AH =,然后即可根据SAS 证明△ABE ≌△ACH ,进一步即可推出90CHD ∠=︒,过点A 作AK ED ⊥于K ,易证△AKD ≌△CHD ,可得DK DH =,然后即可根据等腰三角形的性质推得DF =2EF ,问题即得解决.【详解】(1)证明:如图1,90BAC ∠=︒,90ADB ABD ∴∠=︒-∠,AG CE ⊥,90FGE ∴∠=︒,90EFG AFD CED ∴∠=∠=︒-∠,180FAD AFD ADF CED ABD ∴∠=︒-∠-∠=∠+∠,CED ABD ∠=∠,2FAD ABD ∴∠=∠;(2)证明:如图2,90AFD CED ∠=︒-∠,90ADB ABD ∠=︒-∠,CED ABD ∠=∠,AFD ADF ∴∠=∠,AF AD ∴=,BFA CDE ∠=∠,∵点D 为AC 的中点,∴AD=CD ,AF CD ∴=,ABF ∴∆≌CED ∆(AAS ),AB CE ∴=,CE AC =,AB AC ∴=;(3)解:连接AE ,过点A 作AH AE ⊥交BD 延长线于点H ,连接CH ,如图4. 90BAC ∠=︒,BAE CAH ∴∠=∠,设ABD CED α∠=∠=,则2,902FAD ACG αα∠=∠=︒-,CA CE =,45AEC EAC α∴∠=∠=︒+,45AED ∴∠=︒,45AHE ∴∠=︒,AE AH ∴=,AB AC =,∴△ABE ≌△ACH (SAS ),135AEB AHC ∴∠=∠=︒,90CHD ∴∠=︒,过点A 作AK ED ⊥于K ,90AKD CHD ∴∠=∠=︒,AD CD =,ADK CDH ∠=∠,∴△AKD ≌△CHD (AAS ),DK DH ∴=,∵,,AK DF AF AD AE AH ⊥==,,FK DK EK HK ∴==,3DH EF ∴==,6DF ∴=.【点睛】本题考查了直角三角形的性质、三角形的内角和定理、三角形的外角性质、等腰直角三角形的判定和性质、全等三角形的判定和性质以及等腰三角形的性质等知识,考查的知识点多、综合性强、难度较大,正确添加辅助线、构造等腰直角三角形和全等三角形的模型、灵活应用上述知识是解题的关键.10.如图,在等边ABC ∆中,线段AM 为BC 边上的中线.动点D 在直线AM 上时,以CD 为一边在CD 的下方作等边CDE ∆,连结BE .(1)求CAM ∠的度数;(2)若点D 在线段AM 上时,求证:ADC BEC ∆≅∆;(3)当动点D 在直线AM 上时,设直线BE 与直线AM 的交点为O ,试判断AOB ∠是否为定值?并说明理由.【答案】(1)30°;(2)证明见解析;(3)AOB ∠是定值,60AOB ∠=︒.【解析】【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出AC AC =,DC EC =,,60ACB DCE ∠=∠=︒,由等式的性质就可以BCE ACD ∠=∠,根据SAS 就可以得出ADC BEC ∆≅∆;(3)分情况讨论:当点D 在线段AM 上时,如图1,由(2)可知ACD BCE ≅∆∆,就可以求出结论;当点D 在线段AM 的延长线上时,如图2,可以得出ACD BCE ≅∆∆而有30CBE CAD ∠=∠=︒而得出结论;当点D 在线段MA 的延长线上时,如图3,通过得出ACD BCE ≅∆∆同样可以得出结论.【详解】(1)ABC ∆是等边三角形,60BAC ∴∠=︒.线段AM 为BC 边上的中线,12CAM BAC ∴∠=∠, 30CAM ∴∠=︒.(2)ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,ACD DCB DCB BCE ∴∠+∠=∠+∠,ACD BCE ∠∠∴=.在ADC ∆和BEC ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆;(3)AOB ∠是定值,60AOB ∠=︒,理由如下:①当点D 在线段AM 上时,如图1,由(2)可知ACD BCE ≅∆∆,则30CBE CAD ∠=∠=︒,又60ABC ∠=︒,603090CBE ABC ∴∠+∠=︒+︒=︒,ABC ∆是等边三角形,线段AM 为BC 边上的中线AM ∴平分BAC ∠,即11603022BAM BAC ∠=∠=⨯︒=︒ 903060BOA ∴∠=︒-︒=︒.②当点D 在线段AM 的延长线上时,如图2,ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,ACB DCB DCB DCE ∴∠+∠=∠+∠,ACD BCE ∠∠∴=,在ACD ∆和BCE ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆,30CBE CAD ∴∠=∠=︒,同理可得:30BAM ∠=︒,903060BOA ∴∠=︒-︒=︒.③当点D 在线段MA 的延长线上时,ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,60ACD ACE BCE ACE ∴∠+∠=∠+∠=︒,ACD BCE ∠∠∴=,在ACD ∆和BCE ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆,CBE CAD ∴∠=∠,同理可得:30CAM ∠=︒150CBE CAD ∴∠=∠=︒30CBO ∴∠=︒,∵30BAM ∠=︒,903060BOA ∴∠=︒-︒=︒.综上,当动点D 在直线AM 上时,AOB ∠是定值,60AOB ∠=︒.【点睛】此题考查等边三角形的性质,全等三角形的判定及性质,等边三角形三线合一的性质,解题中注意分类讨论的思想解题.三、八年级数学整式的乘法与因式分解解答题压轴题(难)11.(阅读材料)因式分解:()()221x y x y ++++.解:将“x y +”看成整体,令x y A +=,则原式()22211A A A =++=+.再将“A ”还原,原式()21x y =++.上述解题用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法.(问题解决)(1)因式分解:()()2154x y x y +-+-;(2)因式分解:()()44a b a b ++-+;(3)证明:若n 为正整数,则代数式()()()21231n n n n ++++的值一定是某个整数的平方.【答案】(1)()()144x y x y +-+-1.(2)()22a b +-;(3)见解析. 【解析】【分析】(1)把(x-y )看作一个整体,直接利用十字相乘法因式分解即可;(2)把a+b 看作一个整体,去括号后利用完全平方公式即可将原式因式分解;(3)将原式转化为()()223231n n n n ++++,进一步整理为(n 2+3n+1)2,根据n 为正整数得到n 2+3n+1也为正整数,从而说明原式是整数的平方.【详解】(1)()()[][]21541()14()(1)(144)x y x y x y x y x y x y +-+-=+-+-=+-+-; (2)()()2244()4()4(2)a b a b a b a b a b ++-+=+-++=+-; (3)原式()()223231n n n n =++++()()2223231n n n n =++++ ()2231n n =++. ∵n 为正整数,∴231n n ++为正整数.∴代数()()()21231n n n n ++++的值一定是某个整数的平方. 【点睛】本题考查因式分解的应用,解题的关键是仔细读题,理解题意,掌握整体思想解决问题的方法.12.阅读理解题:定义:如果一个数的平方等于﹣1,记为i 2=﹣1,这个数i 叫做虚数单位.那么形如a+bi (a ,b 为实数)的数就叫做复数,a 叫这个复数的实部,b 叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2+i )+(3﹣4i )=5﹣3i .(1)填空:i 3= ,2i 4= ;(2)计算:①(2+i )(2﹣i );②(2+i )2;(3)若两个复数相等,则它们的实部和虚部必须分别相等,完成下列问题:已知:(x+3y )+3i=(1﹣x )﹣yi ,(x ,y 为实数),求x ,y 的值.(4)试一试:请你参照i 2=﹣1这一知识点,将m 2+25(m 为实数)因式分解成两个复数的积.【答案】(1)i ;2(2)①5②3+4i (3)x=5,y=﹣3(4)m 2+25=(m+5i )(m ﹣5i )【解析】【分析】(1)根据同底数幂的乘法法则及2i 的概念直接运算;(2)利用平方差、完全平方公式把原式展开,根据21i =-计算即可;(3)根据虚数定义得出方程组,解方程组即可;(4)根据21i =- 将25转化为2(-5)i ,再利用平方差公式进行因式分解即可。

人教版八年级数学上册《期中考试综合测试卷》测试题及参考答案

人教版八年级数学上册《期中考试综合测试卷》测试题及参考答案

人教版八年级数学上册期中考试综合测试卷(时间:120 分钟,满分:120 分)一、选择题(本大题共10 小题,每小题3 分,共30 分.每小题给出的四个选项中,只有一项符合题目要求)1.某同学手里拿着长为3 和2 的两根木棍,想要找一根长为整数的木棍,用它们围成一个三角形,则他所找的这根木棍的长可以是( ).A.1,3,5B.1,2,3C.2,3,4D.3,4,52.下列四个图形:其中是轴对称图形,且对称轴的条数为2 的图形的个数是( ).A.1B.2C.3D.43.如图,在△ABC 中,点D 在AB 上,点E 在AC 上,DE∥BC.若∠A=62°,∠AED=54°,则∠B 的大小为( ).A.54°B.62°C.64°D.74°4.在四边形ABCD 中,∠A=∠B=∠C,点E 在边AB 上,∠AED=60°,则一定有( ).A.∠ADE=20°B.∠ADE=30°C.∠ADE=1 ADCD.∠ADE=1ADC∠∠2 35.如图,AC 是线段BD 的垂直平分线,则图中全等三角形的对数是( ).A.1B.2C.3D.46.在平面直角坐标系中,点P(-20,a)与点Q(b,13)关于y 轴对称,则a+b 的值为( ).A.33B.-33C.-7D.77.如图,在△ABC 中,∠BAC=90°,∠C=30°,AD⊥BC 于点D,BE 是∠ABC 的平分线,且交AD 于点P, 交AC 于点E.如果AP=2,那么AC 的长为( ).A.8B.6C.4D.28.如图,已知AE=CF,∠AFD=∠CEB,添加下列一个条件后,仍无法判定△ADF≌△CBE 的是( ).A.∠A=∠CB.AD=CBC.BE=DFD.AD∥BC9.如图,A,B,C 三点在同一条直线上,∠A=52°,BD 是AE 的垂直平分线,垂足为点D,则∠EBC 的度数为( ).A.52°B.76°C.104°D.128°10.如图,过边长为1 的等边三角形ABC 的边AB 上的一点P 作PE⊥AC 于点E,Q 为BC 的延长线上一点.当PA=CQ 时,连接PQ 交AC 边于点D,则DE 的长为( ).A.13 B.12C.23D.不能确定二、填空题(本大题共6 小题,每小题4 分,共24 分)11.如图,在△ABC 中,AB=AC,∠A=36°,BD,CE 分别为∠ABC,∠ACB 的平分线,且相交于点O,则图中等腰三角形共有个.12.边长相等的正五边形与正六边形按如图所示拼接在一起,则∠ABC= 度.13.如图,在Rt△ABC 中,∠BAC=90°,∠B=30°,BC=8,AD⊥BC 于点D,则DC= .14.如图,在4×4 的正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7= .15.已知等腰三角形的两边长a,b 满足|a-b-2|+ 2�-3�-1=0,则此等腰三角形的周长为.16.如图,在△ABC 中,∠B=90°,AC=DC,∠D=15°,AB=18 cm,则CD 的长为cm.三、解答题(本大题共8 小题,共66 分)17.(6 分)如图,已知△ABC.(1)画出BC 边上的高AD 和中线AE;(2)若∠B=30°,∠ACB=130°,求∠BAD 和∠CAD 的度数.18.(6 分)△ABC 在平面直角坐标系中如图所示,其中点A,B,C 的坐标分别为(-2,1),(-4,5),(-5,2).(1)作△ABC 关于直线l:x=-1 对称的△A1B1C1,其中点A,B,C 的对应点分别为A1,B1,C1;(2)写出点A1,B1,C1 的坐标.19.(6 分)如图,点C,F,E,B 在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE.写出CD 与AB 之间的关系, 并证明你的结论.20.(8 分)两个大小不同的等腰直角三角尺按如图①所示放置,图②是由它抽象出的几何图形,点B,C,E 在同一条直线上,连接DC.(1)请找出图②中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)求证:DC⊥BE.21.(8 分)如图,在△ABC 中,AB=AC,点D,E 分别在AC,AB 上,BD=BC,AD=DE=BE,求∠A 的度数.22.(8 分)如图,已知D,E,F 分别是△ABC 三边上的点,BF=CE,且△DBF 和△DCE 的面积相等.求证:AD 平分∠BAC.23.(12 分)如图①,②,③,点E,D 分别是等边三角形ABC,正方形ABCM,正五边形ABCMN 中以点C 为顶点的相邻两边上的点,且BE=CD,DB 交AE 于点P.(1)图①中,∠APD 的度数为;(2)图②中,∠APD 的度数为,图③中,∠APD 的度数为;(3)根据前面的探索,你能否将本题推广到一般的正n 边形的情况?若能,写出推广问题和结论;若不能, 请说明理由.24.(12 分)如图,已知△DCE 的顶点C 在∠AOB 的平分线OP 上,CD 交OA 于点F,CE 交OB 于点G.(1)如图①,若CD⊥OA,CE⊥OB,则图中有哪些相等的线段?请直接写出你的结论: .(2)如图②,若∠AOB=120°,∠DCE=∠AOC,试判断线段CF 与线段CG 的数量关系,并加以证明.答案与解析一、选择题1.C 设他所找的这根木棍的长为x,由题意得3-2<x<3+2,∴1<x<5.∵x 为整数,∴x=2,3,4,故选C.2.C3.C4.D 如图,在△AED 中,∵∠AED=60°,∴∠A=180°-∠AED-∠ADE=120°-∠ADE.在四边形 DEBC 中,∵∠DEB=180°-∠AED=180°-60°=120°,∴∠B=∠C=(360°-∠DEB-∠EDC )÷2=120 -1EDC. ° ∠2∵∠A=∠B=∠C ,∴120°-∠ADE=120 -1 EDC. ° 2∠∴∠ADE=1 EDC. ∠2 ∵∠ADC=∠ADE+∠EDC=1 EDC+∠EDC=3EDC ,∴∠ADE=1 ∠ ∠ 2 2ADC.故选D .∠ 35.C 全等三角形有 3 对,分别为 Rt △ABO ≌Rt △ADO ,Rt △CDO ≌Rt △CBO ,△ADC ≌△ABC.6.A 点(x ,y )关于 y 轴对称的点是(-x ,y ),故 b=20,a=13,则 a+b=33,故选A .7.B8.B ∵AE=CF ,∴AE+EF=CF+EF ,即 AF=CE.∠� = ∠�,选项A,在△ADF 和△CBE 中, A = C ,∠A � = ∠C �,∴△ADF ≌△CBE (ASA);选项B,根据 AD=CB ,AF=CE ,∠AFD=∠CEB 不能推出△ADF ≌△CBE;A = C,选项C,在△ADF 和△CBE 中, ∠A�= ∠C�,A = C,∴△ADF≌△CBE(SAS);选项D,∵AD∥BC,∴∠A=∠C,易知△ADF≌△CBE(ASA).故选B.9.C ∵BD 是AE 的垂直平分线,∴AB=BE.∴∠E=∠A=52°,∴∠EBC=∠E+∠A=104°.故选C.10.B 如图,过点P 作PM∥BC,交AC 于点M.易知△APM 是等边三角形.∵PE⊥AM,∴AE=EM.∵PM∥CQ,∴∠PMD=∠QCD,∠MPD=∠Q.又PM=PA=CQ,∴△PMD≌△QCD.∴CD=DM,∴DE=ME+DM=1(AM+MC)=1AC=1,故选B.2 2 2二、填空题11.8 设CE 与BD 的交点为点O.∵AB=AC,∠A=36°,∴∠ABC=∠ACB=180°-36°=72°.2∵BD 是∠ABC 的平分线,∴∠ABD=∠DBC=1 ABC=36°=∠A,∠2∴AD=BD.同理,∠A=∠ACE=∠BCE=36°,AE=CE.∴∠DBC=∠BCE=36°,∴OB=OC.∵∠DBC=36°,∠ACB=72°,∴∠BDC=180°-72°-36°=72°,∴BD=BC,同理CE=BC.∵∠BOC=180°-36°-36°=108°,∴∠ODC=∠DOC=∠OEB=∠EOB=72°.∴CD=CO,BO=BE.∴△ABC,△ADB,△AEC,△BEO,△COD,△BCE,△BDC,△BOC 都是等腰三角形,共8 个.12.24 13.214.315°由题图可知∠4=1×90°=45°,∠1 和∠7 所在的三角形全等,2∴∠1+∠7=90°.同理,∠2+∠6=90°,∠3+∠5=90°,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=3×90°+45°=315°.15.11 或13 由题意可得a-b-2=0,2a-3b-1=0,解得a=5,b=3,即三角形的三边长为5,5,3 或3,3,5. 所以此等腰三角形的周长为11 或13.16.36 在△ACD 中,∵AC=DC,∠D=15°,∴∠D=∠DAC=15°.∵∠ACB 是△ACD 的一个外角,∴∠ACB=∠D+∠DAC=15°+15°=30°.在Rt△ABC 中,∠ACB=30°,∴AC=2AB=2×18=36(cm),即CD=36 cm.三、解答题17.解(1)如图.(2)∠BAD=90°-30°=60°(直角三角形的两个锐角互余),∠ACD=180°-130°=50°(邻补角的定义),∠CAD=90°-50°=40°(直角三角形的两个锐角互余).18.解(1)如图.(2)A1(0,1),B1(2,5),C1(3,2).19.证明CD 与AB 之间的关系为CD=AB,且CD∥AB.∵CE=BF,∴CF=BE.A = C,在△CDF 和△BAE 中, ∠A�= ∠C�,A = C,∴△CDF≌△BAE.∴CD=AB,∠C=∠B,∴CD∥AB.20.(1)解题图②中△ABE≌△ACD.证明如下:∵△ABC 与△AED 均为等腰直角三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=90°.∴∠BAC+∠CAE=∠EAD+∠CAE,即∠BAE=∠CAD.∴△ABE≌△ACD.(2)证明由(1)知△ABE≌△ACD,∠ACD=∠ABE=45°.又∠ACB=45°,∴∠BCD=∠ACB+∠ACD=90°.∴DC⊥BE.21.解∵AD=DE,∴∠A=∠2.∵DE=BE,∴∠3=∠4.又∠2=∠3+∠4,∴∠4=1 2=1 A.∠∠2 2∵BD=BC,∴∠1=∠C.又∠1=∠4+∠A=1 A+∠A=3 A,∠∠2 2∴∠C=3 A.∠2∵AB=AC,∴∠ABC=∠C=3 A.∠2在△ABC 中,∵∠A+∠ABC+∠C=180°,∴∠A+3 A+3 A=180°,即4∠A=180°,∠∠2 2∴∠A=45°.22.证明如图,作DM⊥AB 于点M,DN⊥AC 于点N.∵△DBF 和△DCE 的面积相等,1BF ·DM=1CE ·DN. 2 2 ∵BF=CE ,∴DM=DN.又 DM ⊥AB ,DN ⊥AC ,∴AD 平分∠BAC.23.解 (1)60° (2)90° 108°(3) 能.如图,点 E ,D 分别是正 n 边形 ABCM …中以点 C 为顶点的相邻两边上的点,且 BE=CD ,BD与 AE 交于点 P ,则∠APD的度数为(�-2)×180°.� 24.解 (1)CF=CG ,OF=OG.(2)CF=CG.证明如下:如图,过点 C 作 CM ⊥OA 于点 M ,CN ⊥OB 于点 N ,则∠CMF=∠CNG=90°.①又 OC 平分∠AOB ,∴CM=CN ,②∠AOC=∠BOC.又∠AOB=120°,∴∠AOC=∠BOC=60°,∴∠MCN=360°-∠AOB-∠CMF-∠CNO=60°. ∴∠DCE=∠AOC=60°.∴∠MCN=∠FCG.∴∠MCN-∠FCN=∠FCG-∠FCN,即∠1=∠2.③由①②③得△CMF≌△CNG,∴CF=CG.。

初中八年级数学上学期期中考前测试卷(人教版)含答案解析

初中八年级数学上学期期中考前测试卷(人教版)含答案解析

2022-2023学年八年级上学期期中考前必刷卷数学(考试时间:90分钟试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:八年级上册第11-13章5.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题:本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的.1.(2021·重庆市璧山中学校八年级期中)在一些美术字中,有的汉字是轴对称图形.下列4个汉字中,可以看作“沿某一条直线折叠后,直线两旁的部分能够互相重合”的是()A.B.C.D.2.(2021·四川·东坡区实验中学八年级期中)如图,△ABC≌△DEF,若∠A=132°,∠FED=15°,则∠C等于()A.13°B.23°C.33°D.43°3.(2022·江西赣州·八年级期中)若a、b、c为△ABC的三边长,且满足|a﹣,则c的值可以为()A.6B.7C.8D.94.(2021·山东烟台·七年级期中)如图,要使ABC ABD△≌△,下面给出的四组条件,错误的一组是()A.C D∠=∠,BAC BAD∠=∠B.BC BD=,AC AD=C.BAC BAD∠=∠,ABC ABD∠=∠D.BD BC=,BAC BAD∠=∠5.(2021·浙江·平阳苏步青学校八年级阶段练习)已知△ABC(AC<BC),用尺规作图的方法在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是()A.B.C.D.6.(2021·湖北·襄阳市樊城区青泥湾中学八年级阶段练习)如图,∠O=∠1,∠2=∠3,∠4=∠5,∠6=∠7,∠8=90°则∠O的度数为()A.10°B.15°C.18°D.20°7.(2021·黑龙江·同江市第三中学八年级期中)如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A.16B.18C.26D.288.(2022·辽宁·丹东第九中学八年级期末)如图,ABC的三边AB,BC,CA的长分别为15,20,25,………………○………………内………………○………………装………………○………………订………………○………………线………………○…此卷只装订不密封………………○………………外………………○………………装………………○………………订………………○………………线………………○…点O是ABC三条角平分线的交点,则ABOS:BCOS△:CAOS△等于()A.1:1:1B.1:2:3C.2:3:4D.3:4:59.(2022·宁夏·中宁县第三中学八年级期末)如图,在ABC中,4AB AC==,15B∠=︒,CD是腰AB上的高,则CD的长()A.4B.2C.1D.1210.(2022·北京一七一中八年级阶段练习)如图所示,ABC的两条角平分线相交于点D,过点D作EF∥BC,交AB于点E,交AC于点F,若AEF的周长为30cm,则AB AC+=()cm.A.10B.20C.30D.4011.(2022·全国·八年级专题练习)如图,△ABC中,AB的垂直平分线交BC边于点E,AC的垂直平分线交BC边于点N,若∠BAC=70︒,则∠EAN的度数为()A.35︒B.40︒C.50︒D.55︒12.(2022·广东·揭西县宝塔实验学校八年级期中)如图,在△ABC中,∠C=90°∠B=30°,以A为圆心,任意长为半径画弧交AB于M、AC于N,再分别以M、N为圆心,大于12MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于D,下列四个结论:①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④1:3ACD ACBS S=:.其中正确的有()A.只有①②③B.只有①②④C.只有①③④D.①②③④13.(2021·重庆市璧山中学校八年级期中)如图,过边长为1的等边三角形ABC的边AB上一点P,作PE AC⊥于点E,Q为BC延长线上一点,当AP CQ=时,PQ交AC于点D,则DE的长为()A.13B.12C.23D.不能确定14.(2022·陕西·西安爱知初级中学七年级期末)如图,在ABC中,90BAC∠=︒,2AB AC=,点D是线段AB的中点,将一块锐角为45︒的直角三角板按如图()ADE放置,使直角三角板斜边的两个端点分别与A、D重合,连接BE、CE,CE与AB交于点.F下列判断正确的有()①ACE≌DBE;②BE CE⊥;③DE DF=;④DEF ACFS S=A.①②B.①②③C.①②④D.①②③④第Ⅱ卷二、填空题:本题共4个小题;每个小题3分,共12分,把正确答案填在横线上.15.(2020·福建省福州延安中学八年级期中)已知点Р(a,3)和点Q(4,b)关于x轴对称,则()2021a b+=________.16.(2022·福建省龙岩市永定区第二初级中学九年级期中)如图,将一个正六边形与一个正五边形如图放置,顶点A、B、C、D四点共线,E为公共顶点.则∠BEC=_____.○………………内………………○………………装………………○………………订………………○………………线………………○…………○………………外………………○………………装………………○………………订………………○………………线………………○…………学校:______________姓名:_____________班级:_______________考号:______________________17.(2021·福建·福州教院二附中八年级期末)如图,将等边△ABC 的三条边向外延长一倍,得到第一个新的111A B C △,第二次将等边111A B C △的三边向外延长一倍,得到第二个新的222A B C △,依此规律继续延长下去,若△ABC 的面积01S =,则第2022个新的三角形的面积2022S 为________18.(2021·江苏南京·八年级阶段练习)如图,已知△ABC ,AB =AC =10cm ,∠B =∠C ,BC =8cm ,点D 为AB 的中点.如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段AC 上由C 点向A 点运动.若点Q 的运动速度为v cm/s ,则当△BPD 与△CQP 全等时,v 的值为_______cm/s .三、解答题:本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分.19.(2021·重庆·巴川初级中学校八年级期中)如图,已知点B ,E ,C ,F 在一条直线上,BE =CF ,AC DE ∥,A D ∠=∠.(1)求证:△ABC ≌△DFE ;(2)若BF =12,EC =4,求BC 的长.20.(2019·北京市八一中学八年级期中)在直角坐标系中,ABC 的三个顶点的位置如图所示.(1)请画出ABC 关于y 轴对称的A B C '''V (其中A ',B ',C '分别是A ,B ,C 的对应点,不写画法);(2)直接写出A ',B ',C '三点的坐标:A '(),B '(),C '()(3)在x 轴上找出点P ,使得点P 到点A 、点B 的距离之和最短(保留作图痕迹)(4)点Q 在坐标轴上,且满足BCQ △是等腰三角形,则所有符合条件的Q 点有__________个.21.(2022·黑龙江大庆·八年级期末)如图△ABC 为等边三角形,直线a ∥AB ,D 为直线BC 上任一动点,将一60°角的顶点置于点D 处,它的一边始终经过点A ,另一边与直线a 交于点E .(1)若D 恰好在BC 的中点上(如图1)①求证CD =CE ;②求证:△ADE 是等边三角形;(2)若D 为直线BC 上任一点(如图2)其他条件不变,“△ADE 是等边三角形”的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.22.(2022·江苏·宜兴外国语学校八年级阶段练习)(1)如图,在7×6的方格中,△ABC 的顶点均在格点上.试只用不带刻度的直尺,按要求画出线段EF (E ,F 均为格点),各画出一条即可.(2)如图,△ABC 的顶点均在正方形网格格点上.只用不带刻度的直尺,作出△ABC 的角平分线BD (不写………………○………………内………………○………………装………………○………………订………………○………………线………………○…此卷只装订不密封………………○………………外………………○………………装………………○………………订………………○………………线………………○…23.(2022·河南信阳·八年级期中)我们通过“三角形全等的判定”的学习,可以知道“两边和它们的夹角分别相等的两个三角形全等”是一个基本事实,用它可以判定两个三角形全等;而满足条件“两边和其中一边所对的角分别相等”的两个三角形却不一定全等.下面请你来探究“两边和其中一边所对的角分别相等的两个三角形不一定全等”.探究:已知△ABC,求作一个△DEF,使EF=BC,∠F=∠C,DE=AB(即两边和其中一边所对的角分别相等).(1)动手画图:请依据下面的步骤,用尺规完成作图过程(保留作图痕迹):①画EF=BC;②在线段EF的上方画∠F=∠C;③画DE=AB;④顺次连接相应顶点得所求三角形.(2)观察:观察你画的图形,你会发现满足条件的三角形有____个;其中三角形____(填三角形的名称)与△ABC明显不全等;(3)小结:经历以上探究过程,可得结论:______.24.(2021·重庆·巴川初级中学校八年级期中)如图,△ABC中,点D在边BC延长线上,100ACB∠=︒,∠ABC的平分线交AD于点E,过点E作EH⊥BD,垂足为H,且50CEH∠=︒.(1)求∠ACE的度数;(2)求证:AE平分∠CAF;25.(2022·全国·八年级专题练习)(1)如图①,把△ABC纸片沿DE折叠,当点A落在四边形BCED内部点A'的位置时,∠A、∠1、∠2之间有怎样的数量关系?并说明理由.(2)如图②,把△ABC纸片沿DE折叠,当点A落在四边形BCED外部点A'的位置时,∠A、∠1、∠2之间有怎样的数量关系?并说明理由.(3)如图③,把四边形ABCD沿EF折叠,当点A、D分别落在四边形BCFE内部点A'、D¢的位置时,你能求出∠A'、∠D¢、∠1与∠2之间的数量关系吗?并说明理由.26.(2021·辽宁葫芦岛·八年级期中)如图,在三角形ABC中,∠ABC=90°,AB=BC,点A,B分别在坐标轴上.(1)如图①,若点C的横坐标为﹣3,点B的坐标为;(2)如图②,若x轴恰好平分∠BAC,BC交x轴于点M,过点C作CD垂直x轴于D点,试猜想线段CD与AM的数量关系,并说明理由;(3)如图③,OB=BF,∠OBF=90°,连接CF交y轴于P点,点B在y轴的正半轴上运动时,△BPC与△AOB的面积比是否变化?若不变,直接写出其值,若变化,直接写出取值范围.2022-2023学年八年级上学期期中考前必刷卷(人教版2022)数学·全解全析1234567891011121314 C C A D D C B D B C B D B C 1.C【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:选项A、B、D不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项C能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.C【分析】根据△ABC≌△DEF,∠FED=15°,得∠CBA=15°,再根据三角形内角和即可得答案.【详解】解:∵△ABC≌△DEF,∠FED=15°,∴∠CBA=∠FED=15°,∵∠A=132°,∴∠C=180°-132°=15°=33°,故选:C.【点睛】本题考查了全等三角形的性质,三角形的内角和,解题的关键是掌握三角形全等的性质.3.A【分析】先根据非负数的性质,求出a、b的值,进一步根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,从而确定c的可能值.【详解】解:∵|a﹣,∴a﹣5=0,a=5;b﹣2=0,b=2;则5﹣2<c<5+2,6符合条件;故选:A .【点睛】本题考查非负数的性质和三角形三条边的关系,准确求出a 、b 的值是解题的关键.4.D【分析】根据全等三角形的判定定理逐项判定即可.【详解】解:A 、∵C D ∠=∠,BAC BAD ∠=∠,AB =AB ,∴ABC ABD △≌△(AAS ),正确,故此选项不符合题意;B 、∵BC BD =,AC AD =,AB =AB ,∴ABC ABD △≌△(SSS ),正确,故此选项不符合题意;C 、∵BAC BAD ∠=∠,ABC ABD ∠=∠,AB =AB ,∴ABC ABD △≌△(ASA ),正确,故此选项不符合题意;D 、BD BC =,BAC BAD ∠=∠,AB =AB ,两边以及一边对角对应相等,不能判定ABC ABD △≌△,故此选项符合题意;故选:D .【点睛】本题考查全靠等三角形的判定,熟练掌握全靠三角形判定定理:SSS ,SAS ,ASA ,AAS ,HL 是解题的关键.5.D【分析】若使PA +PC =BC ,则PA =PB ,P 在线段AB 的垂直平分线上,需要做线段AB 的垂直平分线.【详解】解:A.由作图可知BA =BP ,∴BC =BP +PC =BA +PC ,故A 不符合题意;B.由作图可知PA =PC ,∴BC =BP +PC =BP +PA ,故B 不符合题意;C.由作图可知AC =PC ,∴BC =BP +PC =BP +AC ,故C 不符合题意;D.由作图可知PA =PB ,∴BC =BP +PC =PA +PC ,故D 符合题意;故选:D.【点睛】本题考查了垂直平分线的性质及作图,熟练掌握垂直平分线的作图方法是解题关键.6.C【分析】设∠O=x ,进而根据三角形外角的性质表示出∠2,即可表示出∠3,同理表示出∠4,可得∠5,再表示出∠6,即可∠7,最后根据∠8=∠O +∠7得出答案即可.【详解】设∠O=x ,∵∠2是△ABO 的外角,且∠O =∠1,∴∠2=∠O +∠1=2x ,∵∠4是△BCO 的外角,∴∠4=∠O +∠3=3x ,∴∠5=∠4=3x .∵∠6是△CDO 的外角,∴∠6=∠O +∠5=4x ,∴∠7=∠6=4x .∵∠8是△DEO 的外角,∴∠8=∠O +∠7=5x ,即5x =90°,解得x =18°.故选:C .【点睛】本题主要考查了三角形的外角的性质,根据三角形外角的性质得出待求角之间的等量关系是解题的关键.7.B【分析】根据垂直平分线的性质可得EC =AE ,据此即可作答.【详解】∵ED 是边AC 的垂直平分线,∴AE =EC ,∵AB =10厘米,BC =8厘米,∴BC +CE +EB =BC +AE +EB =BC +AB =18厘米,即△BEC 的周长为18厘米,故选:B .【点睛】本题主要考查了垂直平分线的性质,根据垂直平分线的性质可得EC =AE ,是解答本题的关键.8.D【分析】过O 点作⊥OD AB 于D ,OE BC ⊥于E ,OF CA ⊥于F ,如图,利用角平分线的性质得到OD OE OF ==,然后根据三角形面积公式得到ABO S :BCO S △:CAO S AB = :BC :AC .【详解】过O 点作⊥OD AB 于D ,OE BC ⊥于E ,OF CA ⊥于F ,如图,点O 是ABC 三条角平分线的交点,OD OE OF ∴==,ABO S ∴ :BCO S △:12CAO S AB OD ⎛⎫=⋅ ⎪⎝⎭ :12OE BC ⎛⎫⋅ ⎪⎝⎭:12OF AC AB ⎛⎫⋅= ⎪⎝⎭:BC :15AC =:20:253=:4:5.故选:D .【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了三角形的面积公式.9.B【分析】根据三角形外角的性质得30DAC ∠=︒,再利用含30°角的直角三角形的性质可得CD 的长.【详解】解:AB AC = ,15B ∠=︒,15ACB B ∴∠=∠=︒,30DAC ∴∠=︒,CD 是腰AB 上的高,CD AB ∴⊥,122CD AC ∴==,故选:B【点睛】本题主要考查了等腰三角形的性质,含30°角的直角三角形的性质等知识,求出30DAC ∠=︒是解题的关键.10.C【分析】利用平行线的性质和角平分线的定义得到∠EBD =∠EDB ,证出ED =EB ,同理DF =FC ,则△AEF 的周长即为AB +AC ,可得出答案.【详解】解:∵EF ∥BC ,∴∠EDB =∠DBC ,∵BD 平分∠ABC ,∴∠ABD =∠DBC ,∴∠EBD =∠EDB ,同理:FD =FC ,∴AE +AF +EF =AE +EB +AF +FC =AB +AC =30cm ,即AB +AC =30cm ,故选:C .【点睛】本题考查了等腰三角形的判定和性质、平行线的性质等知识,证出ED =EB ,FD =FC 是解题的关键.11.B【分析】根据三角形内角和定理可求∠B +∠C ,根据垂直平分线性质,EA =EB ,NA =NC ,则∠EAB =∠B ,∠NAC =∠C ,从而可得∠BAC =∠BAE +∠NAC -∠EAN =∠B +∠C -∠EAN ,即可得到∠EAN =∠B +∠C -∠BAC ,即可得解.【详解】解:∵∠BAC =70︒,∴∠B +∠C =18070110︒︒︒﹣=,∵AB 的垂直平分线交BC 边于点E ,AC 的垂直平分线交BC 边于点N ,∴EA =EB ,NA =NC ,∴∠EAB =∠B ,∠NAC =∠C ,∴∠BAC =∠BAE +∠NAC -∠EAN =∠B +∠C -∠EAN ,∴∠EAN =∠B +∠C -∠BAC ,=11070︒︒﹣=40︒.故选:B .【点睛】本题主要考查了三角形的内角和,线段垂直平分线的性质,角的和差关系,能得到求∠EAN 的关系式是关键.12.D【分析】①根据作图的过程可以判定AD 是∠BAC 的角平分线;②利用角平分线的定义可以推知∠CAD =30°,则由直角三角形的性质来求∠ADC 的度数;③利用等角对等边可以证得△ADB 的等腰三角形,由等腰三角形的“三线合一”的性质可以证明点D 在AB 的中垂线上;④利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.【详解】解:①根据作图的过程可知,AD 是∠BAC 的平分线.故①正确;∵在△ABC 中,∠C =90°,∠B =30°,∴∠CAB =60°.又∵AD 是∠BAC 的平分线,∴∠1=∠2=12∠CAB =30°,∴∠3=90°-∠2=60°,即∠ADC =60°.故②正确;③∵∠1=∠B =30°,∴AD =BD ,∴点D 在AB 的中垂线上.故③正确;④∵如图,在直角△ACD 中,∠2=30°,∴CD =12AD ,∴BC =CD +BD =12AD +AD =32AD ,DAC S =12AC •CD =14AC •AD .∴ABC S =12AC •BC =12AC •32AD =34AC •AD .∴DAC S :ABC S =14AC •AD :34AC •AD =1:3.故④正确.综上所述,正确的结论是:①②③④,故选D .【点睛】本题考查了角平分线的判定、线段垂直平分线的判定和性质、含30度角的直角三角形的性质以及作图-基本作图.解题时,需要熟悉线段垂直平分线的判定和性质.13.B【分析】根据题意先过点Q 作AD 的延长线的垂线QF ,证明 AEP ≅ CFQ ,再证明 DEP ≅ DFQ 得到DE =DF ,最后可以得到DE =12AC ,求出最终结果.【详解】如图,过点Q 作AD 的延长线的垂线于点F ,∵△ABC 是等边三角形,∴∠A =∠ACB =60°,∵∠ACB =∠QCF ,∴∠QCF =60°,又∵PE ⊥AC ,QF ⊥AC ,∴∠AEP =∠CFQ =90°,又AP =CQ ,∴△AEP ≅△CFQ (AAS ),∴AE =CF ,PE =QF ,同理可证,△DEP ≅△DFQ ,∴DE =DF ,∴AC =AE +DE +CD =DE +CD +CF =DE +DF =2DE ,∴DE =12AC =12.故选B .【点睛】本题属于全等三角形的综合问题,考查作辅助线、全等三角形的判定和等边三角形的性质,熟练掌握和运用全等三角形的判定定理是关键.14.C【分析】利用ADE 为等腰直角三角形得到45EAD EDA ∠∠==︒,EA ED =,则135EAC EDB ∠∠==︒,则可根据“SAS ”判断ACE ≌DBE SAS (),从而对①进行判断;再利用AEC DEB ∠∠=证明90BEC DEA ∠∠==︒,则可对②进行判断;由于9090DEF BED AEC ∠∠∠=︒-=︒-,90DFE AFC ACE ∠∠∠==︒-,而AC AD AE =>得到AEC ACE ∠∠>,所以DEF DFE ∠∠<,于是可对③进行判断;由ACE ≌DBE 得到ACE DBE S S = ,由BD AD =得到DAE DBE S S = ,所以ACE DAE S S = ,从而可对④进行判断.【详解】解:2AB AC = ,点D 是线段AB 的中点,BD AD AC ∴==,ADE 为等腰直角三角形,45EAD EDA ∠∠∴==︒,EA ED =,4590135EAC EAD BAC ∠∠∠=+=︒+︒=︒ ,180********EDB EDA ∠∠=︒-=︒-︒=︒,EAC EDB ∠∠∴=,在ACE 和DBE 中,EA ED EAC EDB AC DB =⎧⎪∠=∠⎨⎪=⎩,ACE ∴ ≌SAS DBE (),所以①正确;AEC DEB ∠∠∴=,90BEC BED DEC AEC DEC DEA ∠∠∠∠∠∠∴=+=+==︒,BE EC ∴⊥,所以②正确;90DEF BED ∠∠=︒- .而AEC DEB ∠∠=,90DEF AEC ∠∠∴=︒-,90DFE AFC ACE ∠∠∠==︒- ,而AC AD AE =>,AEC ACE ∠∠∴>,DEF DFE ∠∠∴<,DE DF ∴>,所以③错误;ACE Q V ≌DBE ,ACE DBE S S ∴= ,BD AD = ,DAE DBE S S ∴= ,ACE DAE S S ∴= ,DEF ACF S S ∴= ,所以④正确.故选:C .【点睛】本题考查全等三角形的判定:熟练掌握全等三角形的5种判定方法是解决问题的关键.15.1【分析】直接利用关于x 轴对称点的性质(横坐标不变,纵坐标互为相反数)得出a ,b 的值,进而得出答案.【详解】解:∵点P (a ,3)和点Q (4,b )关于x 轴对称,∴a =4,b =-3,则20212021()(43)1a b +=-=.故答案为:1.【点睛】此题主要考查了关于x 轴对称点的性质,正确得出a ,b 的值是解题关键.16.48°##48度【分析】根据多边形的内角和,分别得出∠ABE =120°,∠DCE =108°,再根据平角的定义和三角形的内角和算出∠BEC .【详解】解:由多边形的内角和可得,∠ABE =()621806-⨯︒=120°,∴∠EBC =180°﹣∠ABE =180°﹣=60°,∵∠DCE =()521805-⨯︒=108°,∴∠BCE =180°﹣108°=72°,由三角形的内角和得:∠BEC =180°﹣∠EBC ﹣∠BCE =180°﹣60°﹣72°=48°.故答案为:48°.【点睛】本题考查了多边形的内角和定理,掌握定理是解题的关键.17.20227【分析】连接1CB ,根据等底同高可得1111112,2,2B BC A CC A AB S S S === ,从而可得17S =,同样的方法可得227S =,再归纳类推出一般规律即可得.【详解】解:如图,连接1CB ,1AB BB = ,ABC 的面积01S =,101BCB ABC S S S ∴=== ,又1BC CC = ,1111B CC BCB S S ∴== ,112B BC S ∴= ,同理可得:11112,2A CC A AB S S == ,111122217A B C S S ∴==+++= ,同理可得:2221112277A B C A B C S S S === ,归纳类推得:7n n n A B n C n S S == ,其中n 为非负整数,202220227S ∴=,故答案为:20227.【点睛】本题考查了图形类规律探索、三角形中线与面积,正确归纳类推出一般规律是解题关键.18.3或154【分析】分情况讨论BPD △,CQP V 全等:①设运动了t 秒,BPD CQP ≅△△,得BP CQ =,3t vt =,算出v ;②设运动了t 秒,BDP QCP ≅V V ,得BD CQ =,PB PC =;得34t =,5vt =,解出v ,即可.10AB AC ==,8BC =【详解】①设运动了t 秒,BP CQ =,BPD CQP ≅△△,∵点D 是AB 的中点∴152BD AB ==∵BD PC=∴()853BP cm =-=∴B 点向C 点运动了33t =,1t =秒∵BPD CQP≅△△∴BP CQ=∴31v =⨯∴3/sv cm =②设运动了t 秒,当BD CQ =时,BDP QCP≅V V ∵5BD =,142PB PC BC ===∴34t =解得43t =秒∵BD CQ =∴453v =⨯∴15/s 4v cm =故答案为:3或154.【点睛】本题考查全等三角形、动点问题,解题的关键是以静制动,利用全等三角形的性质进行解答.19.(1)证明见解析(2)8【分析】(1)先根据平行线的性质可得ACB DEF ∠=∠,再根据线段和差可得BC FE =,然后根据AAS 定理即可得证;(2)先根据线段和差可得8BE CF +=,从而可得4BE =,再根据BC BE EC =+即可得.(1)证明:AC DE ∥,ACB DEF ∠=∠∴,BE CF = ,BE CE CF CE ∴+=+,即BC FE =,在ABC 和DFE △中,A D ACB DEF BC FE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS ABC DFE ∴≅ .(2)解:12,4BF EC == ,8BE CF BF EC ∴+=-=,BE CF = ,4BE ∴=,448BC BE EC ∴=+=+=.【点睛】本题考查了平行线的性质、三角形全等的判定,线段和差,熟练掌握三角形全等的判定方法是解题关键.20.(1)见解析;(2)4,1;2,3;−1,−2;(3)见解析;(4)10.【分析】(1)由点的对称性,作出图形即可;(2)关于y 轴对称的点的坐标特点:横坐标变为相反数,纵坐标不变,即可求解;(3)作A 点关于x 轴的对称点A '',连接A B ''交x 轴于点P ,P 点即为所求;(4)利用两圆一线确定等腰三角形,作出图形即可求解.(1)如图1:(2)由图可知A (−4,1),B (−2,3),C (1,−2),∴A 点关于y 轴对称的点为(4,1),B 点关于y 轴对称的点为(2,3),C 点关于y 轴对称的点为(−1,−2),∴A′(4,1),B′(2,3),C′(−1,−2),故答案为:4,1;2,3;−1,−2;(3)如图2:作A 点关于x 轴的对称点A ',连接A B ''交x 轴于点P ,∴AP BP A P BP A B ''''+=+=,此时PA +PB 值最小;(4)如图:以B为圆心,BC长为半径做圆,此圆与坐标轴有4个交点,以C为圆心,BC长为半径做圆,此圆与坐标轴有4个交点,作线段BC的垂直平分线,此线与坐标轴有2个交点,∴△BCQ是等腰三角形时,Q点坐标有10个,故答案为:10.【点睛】本题考查轴对称作图,图形与坐标,熟练掌握轴对称的性质,垂直平分线的性质,等腰三角形的性质,两圆一线确定等腰三角形的方法是解题的关键.21.(1)①见解析;②见解析(2)成立,理由见解析【分析】(1)①利用等边三角形的性质得到BD=CD,AD⊥BC,进一步求出∠EDC=30°,然后根据三角形内角和定理推出∠DOC=90°,再根据三角形的外角性质可求出∠DEC=30°,从而得出∠EDC=∠DEC,再根据“等角对等边”即可证明结论;②由SAS证明△ABD≌△ACE得出AD=AE,然后根据“有一个角是60°的等腰三角形是等边三角形”可判断出△ADE是等边三角形的结论;(1)在AC上取点F,使CF=CD,连结DF,先证得△ADF≌△EDC得出AD=ED,再运用已证的结论“∠ADE=60°”和根据“有一个角是60°的等腰三角形是等边三角形”可证明出△ADE是等边三角形的结论.(1)①证明:∵a∥AB,且△ABC为等边三角形,∴∠ACE=∠BAC=∠ABD=60°,AB=AC,∵D是BC中点,即BD=CD,∴AD⊥BC,∴∠ADC=90°,∵∠ADE=60°,∴∠EDC=∠ADC-∠ADE=90°-60°=30°,∴∠DOC=180°-∠EDC-∠ACB=90°,∴∠DEC=∠DOC-∠ACE=90°-60°=30°,∴∠EDC=∠DEC,∴CD=CE;②∵BD=CD,CD=CE,∴BD=CE,在△ABD和△ACE中,∵AB AC ABD ACEBD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△ACE(SAS),∴AD=AE,又∵∠ADE=60°,∴△ADE是等边三角形;(2)解:“△ADE是等边三角形”的结论仍然成立.证明如下:在AC上取点F,使CF=CD,连结DF,如图2所示:,∵∠ACB=60°,∴△DCF是等边三角形,∴DF=CD,∵∠ADF+∠FDE=∠EDC+∠FDE=60°,∴∠ADF=∠EDC,∵∠DAF+∠ADE=∠DEC+∠ACE,∠ACE=∠ADE=60°,∴∠DAF=∠DEC,∴△ADF≌△EDC(AAS),∴AD=ED,又∵∠ADE=60°,∴△ADE是等边三角形.【点睛】本题考查的是等边三角形的判定与性质、全等三角形的判定与性质、等腰三角形的判定与性质、三角形内角和定理、三角形的外角性质、平行线的性质.解题关键是注意熟练掌握及熟练等边三角形的判定定理与性质定理、全等三角形的判定与性质.22.(1)见解析;(2)见解析【分析】(1)根据题目要求,利用数形结合的思想画出线段EF即可;(2)取格点Q,连接AQ,取AQ的中点J,作射线BJ交AC于点D,线段BD即为所求.【详解】解:(1)如图,线段EF即为所求:(2)如图,线段BD即为所求.【点睛】本题考查作图-应用与设计作图,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.23.(1)见解析(2)2,D EF ';(3)两边和其中一边所对的角分别相等的两个三角形不一定全等【分析】(1)根据尺规作线段,作一个角等于已知角的步骤作图即可;(2)根据所画图形填空即可;(3)根据探究过程结合全等三角形的判定可得出结论.(1)解:如图所示:(2)2个;其中三角形D EF '(填三角形的名称)与△ABC 明显不全等,故答案为:2,D EF ';(3)经历以上探究过程,可得结论:两边和其中一边所对的角分别相等的两个三角形不一定全等,故答案为:两边和其中一边所对的角分别相等的两个三角形不一定全等.【点睛】本题考查了尺规作图,全等三角形的判定,熟练掌握尺规作图的方法和全等三角形的判定定理是解题的关键.24.(1)40︒(2)证明见解析(3)514【分析】(1)先求出80ACD ∠=︒,再根据直角三角形的两个锐角互余可得40DCE ∠=︒,然后根据ACE ACD DCE ∠=∠-∠即可得;(2)过点E 作EM BF ⊥于点M ,作EN AC ⊥于点N ,先根据角平分线的性质可得,EM EH EN EH ==,从而可得EM EN =,再根据角平分线的判定即可得证;(3)过点E 作EM BF ⊥于点M ,作EN AC ⊥于点N ,则EM EH EN ==,设EM EH EN x ===,再根据21ACE DCE ACD S S S +== 和三角形的面积公式可得x 的值,从而可得EM 的值,然后利用三角形的面积公式即可得.(1)解:100ACB ∠=︒ ,18080ACD ACB ∴∠=︒-∠=︒,,50EH BD CEH ⊥∠=︒ ,9040DCE CEH ∴∠=︒-∠=︒,40ACE ACD DCE ∴∠=∠-∠=︒.(2)证明:如图,过点E 作EM BF ⊥于点M ,作EN AC ⊥于点N ,BE 平分ABC ∠,,EM BF EH BD ⊥⊥,EM EH ∴=,由(1)可知,40ACE DCE ∠=∠=︒,即CE 平分ACD ∠,EN EH ∴=,EM EN ∴=,又 点E 在CAF ∠的内部,AE ∴平分CAF ∠.(3)解:如图,过点E 作EM BF ⊥于点M ,作EN AC ⊥于点N ,由(2)已得:EM EH EN ==,设EM EH EN x ===,21ACD S = ,21ACE DCE S S +∴= ,112221AC EN CD EH ∴⋅+⋅=,即()1221x AC CD +=,又14AC CD += ,211223142x AC CD ⨯=∴⨯==+,3EM ∴=,8.5AB = ,ABE ∴ 的面积为11518.53224AB EM ⋅=⨯⨯=.【点睛】本题主要考查了角平分线的判定与性质,解题的关键是熟练掌握角平分线的性质定理:角的平分线上的点到角的两边的距离相等.25.(1)2∠A =∠1+∠2;见解析;(2)2∠A =∠1﹣∠2;见解析;(3)2(∠A +∠D )=∠1+∠2+360°,见解析【分析】(1)根据翻折的性质表示出∠3、∠4,再根据三角形的内角和定理列式整理即可得解;(2)先根据翻折的性质以及平角的定义表示出∠3、∠4,再根据三角形的内角和定理列式整理即可得解;(3)先根据翻折的性质表示出∠3、∠4,再根据四边形的内角和定理列式整理即可得解.【详解】解:(1)如图,根据翻折的性质,∠3=EDA '∠=12(180-∠1),∠4=DEA '∠=12(180-∠2),∵∠A +∠3+∠4=180°,∴∠A +12(180-∠1)+12(180-∠2)=180°,整理得,2∠A=∠1+∠2;(2)如图,同理,根据翻折的性质,∠3=12(180-∠1),∠4=12(180+∠2),∵∠A+∠3+∠4=180°,∴∠A+12(180-∠1)+12(180+∠2)=180°,整理得,2∠A=∠1-∠2;(3)如图,同理,根据翻折的性质,∠3=12(180-∠1),∠4=12(180-∠2),∵∠A+∠D+∠3+∠4=360°,∴∠A+∠D+12(180-∠1)+12(180-∠2)=360°,整理得,2(∠A+∠D)=∠1+∠2+360°.【点睛】本题主要考查了三角形的内角和定理,多边形的内角与外角,翻折的性质,整体思想的利用是解题的关键.26.(1)(0,3);(2)AM =2CD ,理由见解析;(3)不变,12【分析】(1)过点C 作CH ⊥y 轴于H ,由全等三角形的判定定理可得ABO BCH ≌,可得3CH BO ==,即可求解;(2)延长AB ,CD 交于点N ,由全等三角形的判定定理可得ADN ADC ≌,得出CD DN =,再依据全等三角形判定定理证明ABM CBN ≌,可得AM CN =,即可得结论;(3)如图③,作CG ⊥y 轴于G ,由全等三角形判定定理可得BAO CBG ≌,得出BG AO =,CG OB =,再依据全等三角形的判定可证CGP FBP ≌,得出PB PG =,可得1122PB BG AO ==,由三角形面积公式可求解.【详解】解:(1)如图①,过点CH ⊥y 轴于H ,∴90BHC ABC ∠=︒=∠,∴90BCH CBH ABH CBH ∠+∠=∠+∠=︒,∴BCH ABH ∠=∠,∵点C 的横坐标为﹣3,∴3CH =,在ABO 和BCH 中,BCH ABHBHC AOB BC AB∠=∠⎧⎪∠∠⎨⎪=⎩=,∴ABO BCH ≌,∴3CH BO ==,∴点B (0,3);故答案为:(0,3);(2)2AM CD =,如图②,延长AB ,CD 交于点N,∵AD 平分BAC ∠,∴BAD CAD ∠=∠,在ADN 和ADC 中,90BAD CADAD AD ADN ADC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴ADN ADC ≌,∴CD DN =,∴2CN CD =,∵90BAD ∠+∠=︒N ,90BCN ∠+∠=︒N ,∴BAD BCN ∠=∠,在ABM 和CBN 中,BAM BCNBA BC ABM CBN∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ABM CBN ≌,∴AM CN =,∴2AM CD =;(3)△BPC 与△AOB 的面积比不会变化,理由:如图③,作CG ⊥y 轴于G,∵90BAO OBA ∠+∠︒=,90OBA CBG ∠+∠︒=,∴BAO CBG ∠∠=,在BAO 和CBG 中,90AOB BGC BAO CBG AB BC∠=∠=︒⎧⎪∠∠⎨⎪=⎩=,∴BAO CBG ≌,∴BG AO =,CG OB =,∵OB BF =,∴BF GC =,在CGP 和FBP 中,90CPG FPBCGP FBP CG BF∠=∠⎧⎪∠∠=︒⎨⎪=⎩=,∴CGP FBP ≌,∴PB PG=,∴1122PB BG AO==,∵12AOBS OB OA∆=⨯⨯,111222PBCS PB GC OB OA∆=⨯⨯=⨯⨯⨯,∴12PBC AOBS S∆∆=:.【点睛】题目主要考查全等三角形的判定定理和性质,理解题意,作出相应辅助线,充分运用全等三角形的判定是解题关键.。

人教版数学八年级上册《期中检测试卷》含答案

人教版数学八年级上册《期中检测试卷》含答案
(1)如图1,若∠C=90°,∠DBE=135°.
①求证:∠EDB=∠CAD;
②求证:DA=DE;
(2)如图2,若∠C=40°,DA=DE,求∠DBE的度数;
(3)如图3,请直接写出∠DBE与∠C之间满足什么数量关系时,总有DA=DE成立.
24.如图,直线AB交x轴于点A(a,0),交y轴于点B(0,b),且a、b满足 .
A.(-3,-1)B.(3,1)C.(-3,1)D.(3,-1)
【答案】A
【解析】
【分析】
横坐标不变,纵坐标为原来纵坐标的相反数即可得到关于x轴对称的点的坐标.
【详解】解:∵两点关于x轴对称,
∴所求点的横坐标为-3,纵坐标为-1,即坐标为(-3,-1),
故选:A.
【点睛】本题考查关于x轴对称的点的特点;用到的知识点为:两点关于x轴对称,横坐标不变,纵坐标互为相反数.
【详解】解:∵AD平分∠CAB,DE⊥AB,∠C=90°,
∴DE=CD,
又∵AC=BC,AC=AE,
∴AC=BC=AE,
∴△DBE的周长=DE+BD+EB=CD+BD+EB=BC+EB=AE+EB=AB,
∵AB= ,
∴△DBE的周长= .
故选:A.
【点睛】本题考查了角平分线上 点到角的两边的距离相等的性质,等腰直角三角形的性质,熟记性质求出△DBE的周长=AB是解题的关键.
3.△ABC中BC边上的高作法正确的是( )
A.
B.
C
D.
4.平面直角坐标系中点(-3,1)关于x轴对称的点的坐标为()
A.(-3,-1)B.(3,1)C.(-3,1)D.(3,-1)
5. 若一个多边形的内角和为1080°,则这个多边形的边数为【 】

八年级数学期中模拟卷(考试版A4)【测试范围:北师大版八年级上册第1章-第4章】(河南专用)

八年级数学期中模拟卷(考试版A4)【测试范围:北师大版八年级上册第1章-第4章】(河南专用)

2024-2025学年八年级数学上学期期中模拟卷(河南专用)(考试时间:100分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:北师版八年级上册第1章-第4章。

5.难度系数:0.75。

第I 卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的四个选项 中,只有是一项符合题目求的1.使代数式有意义的x 的取值范围是( )A .x≥0B .﹣5≤x <5C .x≥5D .x≥﹣52.下列各数中,是无理数的是( )A .0B .227C D .3 )A .2B .C .-D .±4.若点(,)P a b 在第二象限内,则(,)P a b -在( )A .第一象限B .第二象限C .第三象限D .第四象限5.下列计算正确的是( )A B .C D6.已知点()12y -,,()23y ,都在直线y x b =-+上,则1y 与2y 的大小关系是( )A .12y y <B .12y y =C .12y y >D .无法确定71+最接近的整数是( )A.5B.4C.3D.28.一个直角三角形有两条边分别是3cm,4cm,则第三条边的长度是()A.5cm B cm C.5cm cm D.以上都不对9.毕达哥拉斯树也叫“勾股树”,是由毕达哥拉斯根据勾股定理所画出来的一个可以无限重复的树状图形,其中所有的四边形都是正方形,所有的三角形都是直角三角形.如图,若正方形A,B,C,D的边长分别是2,3,1,2,则正方形G的边长是()A.8B.C.D.510.大年三十晚上,小六驾车从家出发到烟花燃放指定点去燃放烟花炮竹,小六驾车匀速行驶一段时间后,途中遇到堵车原地等待一会儿,然后小六加快速度继续匀速行驶,零点之前到达指定燃放地点,燃放结束后,小六驾车匀速返回.其中,x表示小六从家出发后所用时间,y表示小六离家的距离.下面能反映y与x的函数关系的大致图象是( )A.B.C.D.第II卷二、填空题:本题共5小题,每题3分,共15分。

个旧十中2009-2010学年上学期八年级数学期中试卷

个旧十中2009-2010学年上学期八年级数学期中试卷

个旧十中2009-2010学年上学期八年级数学期中考试卷学校班级姓名分数(时间:120分钟满分120分)一、选择题(每小题3分,共30分)。

1、如图所示的标志中,是轴对称图形的有()。

A、1个B、2个C、3个D、4个2、下列图形中对称轴条数最多的是()A、正方形B、正五角星C、等边三角形D、圆3、下列英文字母属于轴对称图形的是 ( )。

A、NB、HC、SD、F4、9的平方根是()A、3B、-3C、81D、±35、下列各数中,不是无理数的是()。

A、7B、0.5C、2πD、0.151151115…)个之间依次多两个115(6、和数轴上的点一一对应的是()。

A、整数B、有理数C、无理数D、实数7、等腰三角形的一个外角是80°,则其底角是()。

A、100°B、100°或40°C、40°D、80°8、如图1,已知OC平分∠AOB,CD∥OB,若OD=3cm,则CD等于()。

A、3cmB、4cmC、1.5cmD、2cm 9、如图2,△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC交AB于点D,交AC于点E,那么下列结论:①△BDF和△CEF都是等腰三角形;②DE=BD+CE;•③△ADE的周长等于AB与AC的和;④BF=CF.其中正确的有()。

A、①②③B、①②③④C、①②D、①10、如图3,Rt△ABC中,CD是斜边AB上的高,角平分线AE交CD于H,EF⊥AB于F,则下列结论中不正确的是()。

A、∠ACD=∠BB、CH=CE=EFC、CH=HDD、AC=AFD CABEDABFEDCA BHF二、填空题(每小题3分,共30分)。

11、9的算术平方根是;3的平方根是; 0的平方根是。

12、–1的立方根是;271的立方根是;9的立方根是。

13、2的相反数是;倒数是;-36的绝对值是。

14、点M(-2,1)关于x轴对称的点N的坐标是________,直线MN与x•轴的位置关系是___________ 。

【北师大版】数学八年级上册《期中测试卷》附答案解析

【北师大版】数学八年级上册《期中测试卷》附答案解析
故选A.
【点睛】此题主要考查了一次函数y=kx+b图象所过象限与系数的关系:
①k>0,b>0⇔y=kx+b的图象在一、二、三象限;
②k>0,b<0⇔y=kx+b的图象在一、三、四象限;
③k<0,b>0⇔y=kx+b的图象在一、二、四象限;
④k<0,b<0⇔y=kx+b的图象在二、三、四象限.
12.如图所示,有一个高 ,底面周长为 的圆柱形玻璃容器,在外侧距下底 的点 处有一只蚂蚁,与蚂蚁相对的圆柱形容器的上口内侧距开口处 的点 处有一滴凝固的蜂蜜,则蚂蚁到凝固蜂蜜所走的最短路径的长度是()
A. B.
C. D.
【答案】B
【解析】
【分析】
从点S处竖直向上剪开,此圆柱体的侧面展开图如图,其中SC为圆柱体的底面周长的一半,再由勾股定理进行解答即可.
【详解】如图:
过F点作容器上沿的对称点B,过S作SC⊥BC于C,
连接SB,则SB即为最短距离,
由题意得:SC为圆柱体的底面周长的一半, (cm),
B、12+( )2=4=22,符合勾股定理的逆定理,是直角三角形,故此选项错误;
C、32+42=25=52,符合勾股定理的逆定理,是直角三角形,故此选项错误;
D、22+22=8≠32,不符合勾股定理的逆定理,不是直角三角形,故此选项正确;
故选D.
【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
【答案】A
【解析】
【分析】
根据点的纵坐标的绝对值是点到x轴的距离,可得答案.
【详解】在平面直角坐标系中,点P(4,-3)到x轴的距离为: =3

人教版数学八年级(上)期中考试测试卷(1)

人教版数学八年级(上)期中考试测试卷(1)

人教版数学八年级(上)期中考试测试卷(1)一.选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列长度的三条线段能组成三角形的是()A.6,2,3B.3,3,3C.4,3,8D.4,3,72.(3分)一个多边形的内角和是它的外角和的2倍,则这个多边形是()A.五边形B.六边形C.七边形D.八边形3.(3分)如图,△ABC中,∠ACB=90°,D为BC上一点,DE⊥AB于点E,下列说法中,错误的是()A.△ABC中,AC是BC上的高B.△ABD中,DE是AB上的高C.△ABD中,AC是BD上的高D.△ADE中,AE是AD上的高4.(3分)两根木棒的长分别为5cm和7cm,要选择第三根木棒,将它们钉成一个三角形.如果第三根木棒长为偶数,则满足条件的三角形的个数为()A.3个B.4个C.5个D.6个5.(3分)若△ABC≌△DEF,且∠A=60°,∠E=70°,则∠C的度数为()A.50°B.60°C.70°D.50°或80°6.(3分)如图,点A,E,C在同一直线上,△ABC≌△DEC,BC=5,CD=8,则AE的长为()A.2B.3C.4D.57.(3分)如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.BD=CD B.AB=AC C.∠B=∠C D.∠BDA=∠CDA 8.(3分)如图,点B在CD上,△ABO≌△CDO,当AO∥CD,∠BOD=30°时,∠A的度数为()A.20°B.30°C.40°D.35°9.(3分)把一个多边形纸片沿一条直线截下一个三角形后,变成一个四边形,则原多边形纸片的边数不可能是()A.3B.4C.5D.610.(3分)如图,射线OC平分∠AOB,点D、Q分别在射线OC、OB上,若OQ=4,△ODQ的面积为10,过点D作DP⊥OA于点P,则DP的长为()A.10B.5C.4D.311.(3分)到三角形各顶点距离相等的点是()A.三条边垂直平分线交点B.三个内角平分线交点C.三条中线交点D.三条高交点12.(3分)如图,在Rt△ABC中,∠ABC=90°,以AC为边,作△ACD,满足AD=AC,E为BC上一点,连接AE,2∠BAE=∠CAD,连接DE,下列结论中正确的有()①AC⊥DE;②∠ADE=∠ACB;③若CD∥AB,则AE⊥AD;④DE=CE+2BE.A.①②③B.②③④C.②③D.①②④二.填空题(本大题共4小题,每小题3分,共12分)13.(3分)在直角三角形中,有一个锐角是另外一个锐角的5倍,则这个锐角的度数为度.14.(3分)已知AD是△ABC的中线,若△ABD与△ACD的周长分别是17和15,△ABC 的周长是22,则AD的长为.15.(3分)如图,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E,若BC=8,BD=5,则DE的长为.16.(3分)如图,AB=7cm,AC=5cm,∠CAB=∠DBA=60°,点P在线段AB上以2cm/s 的速度由点A向点B运动,同时,点Q在射线BD上运动速度为xcm/s,它们运动的时间为t(s)(当点P运动结束时,点Q运动随之结束),当点P,Q运动到某处时,有△ACP与△BPQ全等,此时t=.三.解答题(本大题共8小题,共72分)17.(8分)已知a,b,c是△ABC的三边长.(1)若a,b,c满足|a﹣b|+|b﹣c|=0,试判断△ABC的形状;(2)化简:|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a﹣b|.18.(8分)(1)根据图中的相关数据,求出x的值.(2)一个多边形的内角和是1260°,求这个多边形的边数.19.(8分)在△ABC中,BC=8,AB=1.(1)若AC是整数,求AC的长;(2)已知BD是△ABC的中线,若△ABD的周长为17,求△BCD的周长.20.(8分)在△ABC中,CD平分∠ACB交AB于点D,AH是△ABC边BC上的高,且∠ACB=70°,∠ADC=80°,求∠BAH的度数.21.(8分)已知一个正多边形的边数为n.(1)若这个多边形的内角和为其外角和的4倍,求n的值;(2)若这个正多边形的一个内角为135°,求n的值.22.(10分)如图,AB=CD,AH=CG,DG⊥AC于G,BH⊥AC于H,BD交AC于点M.(1)求证:Rt△ABH≌Rt△CDG;(2)求证:MB=MD.23.(10分)如图,点D,E分别在AB,AC上,∠ADC=∠AEB=90°,BE,CD相交于点O,OB=OC.求证:∠1=∠2.小虎同学的证明过程如下:证明:∵∠ADC=∠AEB=90°,∴∠DOB+∠B=∠EOC+∠C=90°.∵∠DOB=∠EOC,∴∠B=∠C.……第一步又OA=OA,OB=OC,∴△ABO≌△ACO.……第二步∴∠1=∠2.……第三步(1)小虎同学的证明过程中,第步出现错误;(2)请写出正确的证明过程.24.(12分)(1)如图1,∠MAN=90°,射线AE在这个角的内部,点B、C分别在∠MAN 的边AM、AN上,且AB=AC,CF⊥AE于点F,BD⊥AE于点D.求证:△ABD≌△CAF;(2)如图2,点B、C分别在∠MAN的边AM、AN上,点E、F都在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,且∠1=∠2=∠BAC.求证:△ABE≌△CAF;(3)如图3,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F 在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为15,求△ACF与△BDE的面积之和.。

八年级上学期数学期中测试题

八年级上学期数学期中测试题

2011-2012学年度上学期期中测试卷八年级数学一、选择题(本大题共12题,每小题3分,共36分)1、下列计算结果是8a 的是( )A 、42a a ⋅ B 、44a a + C 、24)(a D 、42a2、解方程3x +8=0得( )A 、x =8B 、x =-2C 、x =2±D 、x =4±3、多项式192+x 加上一个单项式后,使它成为一个整式的完全平方,那么加上的单项式可以是( )A 、±6xB 、-1或4481xC 、-29xD 、±6x 或-1或-29x 或4481x 4、把代数式x xy 92-分解因式,结果正确的是( )A 、)9(2-y x B 、2)3(+y x C 、)3)(3(-+y y x D 、)9)(9(-+y y x5、如图所示,在数轴上点A 和B 之间表示整数的点有( ) A 、1个 B 、2个 C 、3个 D 、4个7-26、数轴上所有的点表示的数是( )A 、有理数B 、无理数C 、正数与负数D 、实数 7、一个数的算术平方根是a ,则比这个数大5的数是( ) A 、 a+3 B 、a -5 C 、52+a D 、52-a 8、将直角三角形三条边的长度都扩大同样的倍数后得到的三角形是( ) A 、仍是直角三角形 B 、可能是锐角三角形 C 、可能是钝角三角形 D 、不可能是直角三角形 9、下列说法正确的有 ( )①如果∠A+∠B=∠C,那么∆ABC 是直角三角形; ②如果∠A: ∠B: ∠C=1:2:3,则三角形是直角三角形; ③如果三角形的三边长分别为4、4、6,那么这个三角形不是直角三角形 ④有一个角是直角的三角形是直角三角形。

A 、1个 B 、2个 C 、3个 D 、4个 10、已知a 3=5,b 9=10,则b a 23+=(___) A 、50 B 、-5 C 、2 D 、2511、 已知直角三角形两边长分别为6和8,则另一条边长为( ) A 、10 B 、28 C 、72 D 、10或72 12、如图,正方形网格中 ,每小格正方形边长为1,则网格上的三角形ABC 中,边长为无理数的边数有( )A 、0条B 、1条C 、2条D 、3条二、填空题(本大题共6小题,每小题3分,共18分) 13、9的平方根是_____,算术平方根是_____:-3是____的立方根。

人教版数学八年级上册期中测试卷

人教版数学八年级上册期中测试卷

人教版数学八年级上册期中考试数学试卷一、选择题(每小题3分,共36分)1.(3分)如图,下列图案是我国几家银行的标志,其中轴对称图形有()A.4个B.3个C.2个D.1个2.(3分)一个三角形的两边长分别为3cm和7cm,则此三角形第三边长可能是()A.3cm B.4 cm C.7 cm D.11cm3.(3分)在平面直角坐标系中,点P(3,﹣2)关于y轴的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限4.(3分)如图,△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2=()A.360°B.250°C.180°D.140°5.(3分)等腰三角形一边等于5,另一边等于8,则其周长是()A.18 B.21 C.18或21 D.不能确定6.(3分)如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①和②去7.(3分)如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AC=3cm,那么AE+DE等于()A.2cm B.3cm C.4cm D.5cm8.(3分)把一个正方形三次对折后沿虚线剪下,如图所示,则所得的图形是()A.B.C. D.9.(3分)如图,DE是△ABC中边AC的垂直平分线,若BC=18cm,AB=10cm,则△ABD的周长为()A.16 cm B.28 cm C.26 cm D.18 cm10.(3分)如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°11.(3分)如图,∠AOB内一点P,P1,P2分别是P关于OA、OB的对称点,P1P2交OA于点M,交OB于点N.若△PMN的周长是5cm,则P1P2的长为()A.3cm B.4cm C.5cm D.6cm12.(3分)若等腰三角形的底边长为6cm,一腰上的中线把它的周长分成差为2cm的两部分,则腰长为()A.4cm B.8cm C.4cm或8cm D.以上都不对二、填空题(每小题3分,共18分)13.(3分)角是轴对称图形,是它的对称轴.14.(3分)在直角三角形中,最小的角是30度,最短边长是5厘米,则斜边长为.15.(3分)每个内角都为144°的多边形为边形.16.(3分)如图,已知AC=BD,∠A=∠D,请你添一个直接条件,,使△AFC ≌△DEB.17.(3分)如图,是从镜中看到的一串数字,这串数字应为.18.(3分)如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分成三个三角形,则S△ABO :S△BCO:S△CAO等于.三、作图题(共18分)19.(5分)“西气东输”是造福子孙后代的创世工程,现有两条高速公路L1、L2和两个城镇A,B,准备建一个燃气控制中心站P,使中心站到两条公路距离相等,并且到两个城镇等距离,请你画出中心站的位置.(保留画图痕迹,不写画法)20.(5分)如图,某住宅小区拟在休闲场地的三条道路m,n,l上修建三个凉亭A、B、C且凉亭与长廊两两连通.如果凉亭A、B的位置己经选定,那么凉亭C建在道路l上的什么位置,才能使工程造价最低?请用尺规作出图形(不写作法,但保留作图痕迹)21.(8分)如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3)(1)请画出△ABC关于y轴对称的图形;(2)写出点A,点B,点C分别关于y轴对称点的坐标;(3)计算△ABC的面积.四、解答题(共28分)22.(6分)一个多边形的外角和是内角和的,求这个多边形的边数.23.(6分)如图,△ABC中,AB=AC,∠A=50°,P为△ABC内一点,∠PBC=∠PCA,求∠BPC的值.24.(8分)如图,AB=AC,AD=AE,∠1=∠2,试说明△ABD与△ACE全等.25.(8分)已知,如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD 于点P,求证:BP=2PQ.参考答案与试题解析一、选择题(每小题3分,共36分)1.(3分)(2015•冠县校级模拟)如图,下列图案是我国几家银行的标志,其中轴对称图形有()A.4个B.3个C.2个D.1个【分析】根据轴对称图形的概念对各图形分析判断后即可得解.【解答】解:(1)是轴对称图形;(2)不是轴对称图形;(3)是轴对称图形;(4)是轴对称图形;所以,是轴对称图形的共3个.故选:B.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,本题仔细观察图形是解题的关键.2.(3分)(2016秋•静宁县校级期中)一个三角形的两边长分别为3cm和7cm,则此三角形第三边长可能是()A.3cm B.4 cm C.7 cm D.11cm【分析】首先设第三边长为xcm,根据三角形的三边关系可得7﹣3<x<7+3,再解不等式即可.【解答】解:设第三边长为xcm,根据三角形的三边关系可得:7﹣3<x<7+3,解得:4<x<10,故选:C【点评】此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.3.(3分)(2002•淮安)在平面直角坐标系中,点P(3,﹣2)关于y轴的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数求出对称点的坐标,再根据各象限内点的坐标特点解答.【解答】解:∵点P(3,﹣2)关于y轴的对称点是(﹣3,﹣2),∴点P(3,﹣2)关于y轴的对称点在第三象限.故选C.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4.(3分)(2012•南通)如图,△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2=()A.360°B.250°C.180°D.140°【分析】先利用三角形内角与外角的关系,得出∠1+∠2=∠C+(∠C+∠3+∠4),再根据三角形内角和定理即可得出结果.【解答】解:∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=∠C+(∠C+∠3+∠4)=70°+180°=250°.故选B.【点评】此题主要考查了三角形内角和定理及外角的性质,三角形内角和是180°;三角形的任一外角等于和它不相邻的两个内角之和.5.(3分)(2016秋•独山县校级期中)等腰三角形一边等于5,另一边等于8,则其周长是()A.18 B.21 C.18或21 D.不能确定【分析】因为等腰三角形的两边分别为5和8,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.【解答】解:当5为底时,其它两边都为8,5、8、8可以构成三角形,周长为21;当5为腰时,其它两边为5和8,5、5、8可以构成三角形,周长为18,所以周长是18或21.故选C.【点评】本题考查了等腰三角形的性质及三角形三边关系,对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.6.(3分)(2005•广元)如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①和②去【分析】此题可以采用全等三角形的判定方法以及排除法进行分析,从而确定最后的答案.【解答】解:A、带①去,仅保留了原三角形的一个角和部分边,不能得到与原来一样的三角形,故A选项错误;B、带②去,仅保留了原三角形的一部分边,也是不能得到与原来一样的三角形,故B选项错误;C、带③去,不但保留了原三角形的两个角还保留了其中一个边,符合ASA判定,故C选项正确;D、带①和②去,仅保留了原三角形的一个角和部分边,同样不能得到与原来一样的三角形,故D选项错误.故选:C.【点评】主要考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练掌握.7.(3分)(2016秋•独山县校级期中)如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AC=3cm,那么AE+DE等于()A.2cm B.3cm C.4cm D.5cm【分析】由角平分线的性质可得DE=EC,则AE+DE=AC,可求得答案.【解答】解:∵∠ACB=90°,BE平分∠ABC,DE⊥AB,∴DE=EC,∴AE+DE=AE+EC=AC=3cm,故选B.【点评】本题主要考查角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.8.(3分)(2008•张家界)把一个正方形三次对折后沿虚线剪下,如图所示,则所得的图形是()A.B.C. D.【分析】把一个正方形的纸片向上对折,向右对折,向右下方对折,从上部剪去一个等腰直角三角形,展开,看得到的图形为选项中的哪个即可.【解答】解:从折叠的图形中剪去8个等腰直角三角形,易得将从正方形纸片中剪去4个小正方形,故选C.【点评】考查学生的动手操作能力,也可从剪去的图形入手思考.9.(3分)(2016秋•独山县校级期中)如图,DE是△ABC中边AC的垂直平分线,若BC=18cm,AB=10cm,则△ABD的周长为()A.16 cm B.28 cm C.26 cm D.18 cm【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AD=CD,然后求出△ABD的周长=AB+BC,代入数据进行计算即可得解.【解答】解:∵DE是AC的垂直平分线,∴AD=CD,∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC,∵BC=18cm,AB=10cm,∴△ABD的周长=18+10=28cm.故选B.【点评】本题主要考查了线段垂直平分线上的点到线段两端点的距离相等的性质,把△ABD的周长转化为AB、BC的和是解题的关键.10.(3分)(2009•荆门)如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°【分析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠A′DB=∠CA'D﹣∠B,又折叠前后图形的形状和大小不变,∠CA'D=∠A=50°,易求∠B=90°﹣∠A=40°,从而求出∠A′DB的度数.【解答】解:∵Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=90°﹣50°=40°,∵将其折叠,使点A落在边CB上A′处,折痕为CD,则∠CA'D=∠A,∵∠CA'D是△A'BD的外角,∴∠A′DB=∠CA'D﹣∠B=50°﹣40°=10°.故选:D.【点评】本题考查图形的折叠变化及三角形的外角性质.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.解答此题的关键是要明白图形折叠后与折叠前所对应的角相等.11.(3分)(2016春•灵石县期末)如图,∠AOB内一点P,P1,P2分别是P关于OA、OB的对称点,P1P2交OA于点M,交OB于点N.若△PMN的周长是5cm,则P1P2的长为()A.3cm B.4cm C.5cm D.6cm【分析】根据轴对称的性质可得PM=P1M,PN=P2N,然后求出△PMN的周长=P1P2.【解答】解:∵P点关于OA、OB的对称点P1、P2,∴PM=P1M,PN=P2N,∴△PMN的周长=PM+MN+PN=P1M+MN+P2N=P1P2,∵△PMN的周长是5cm,∴P1P2=5cm.故选:C.【点评】本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.12.(3分)(2016秋•独山县校级期中)若等腰三角形的底边长为6cm,一腰上的中线把它的周长分成差为2cm的两部分,则腰长为()A.4cm B.8cm C.4cm或8cm D.以上都不对【分析】首先根据题意画出图形,由题意可得:(AB+AD)﹣(BC+CD)=2cm或(BC+CD)﹣(AB+AD)=2cm,即可得AB﹣BC=2cm或BC﹣AB=2cm,又由等腰三角形的底边长为6cm,即可求得答案.【解答】解:如图,AB=AC,BD是中点,根据题意得:(AB+AD)﹣(BC+CD)=2cm或(BC+CD)﹣(AB+AD)=2cm,则AB﹣BC=2cm或BC﹣AB=2cm,∵BC=6cm,∴AB=8cm或4cm.∴腰长为:4cm或8cm.故选C.【点评】此题考查了等腰三角形的性质.注意根据题意得到AB﹣BC=2cm或BC﹣AB=2cm是关键.二、填空题(每小题3分,共18分)13.(3分)(2016春•灵石县期末)角是轴对称图形,角平分线所在的直线是它的对称轴.【分析】根据角的对称性解答.【解答】解:角的对称轴是“角平分线所在的直线”.故答案为:角平分线所在的直线.【点评】本题考查了角的对称轴,需要注意轴对称图形的对称轴是直线,此题容易说成是“角平分线”而导致出错.14.(3分)(2016秋•静宁县校级期中)在直角三角形中,最小的角是30度,最短边长是5厘米,则斜边长为10cm .【分析】根据直角三角形30°角所对的直角边等于斜边的一半解答.【解答】解:∵直角三角形中30°角所对的直角边长是5cm,∴斜边的长=2×5=10cm.故答案为:10cm.【点评】本题考查了直角三角形30°角所对的直角边等于斜边的一半的性质,熟记性质是解题的关键.15.(3分)(2016秋•独山县校级期中)每个内角都为144°的多边形为十边形.【分析】根据n边形的内角和等于(n﹣2)×180°解答.【解答】解:设这个多边形的边数是n,由题意得,=144°,解得,n=10,故答案为:十.【点评】本题考查的是多边形的内角与外角的计算,掌握n边形的内角和等于(n ﹣2)×180°是解题的关键.16.(3分)(2014秋•花垣县期末)如图,已知AC=BD,∠A=∠D,请你添一个直接条件,∠ACF=∠DBE ,使△AFC≌△DEB.【分析】证明△AFC≌△DEB,已知AC=BD,∠A=∠D,一边一角对应相等,故添加一组角∠ACF=∠DBE可利用ASA证明全等.【解答】解:在△AFC和△DEB中,,∴△AFC≌△DEB(ASA).故答案为:∠ACF=∠DBE.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.17.(3分)(2013秋•栾城县期末)如图,是从镜中看到的一串数字,这串数字应为810076 .【分析】关于镜子的像,实际数字与原来的数字关于竖直的线对称,根据相应数字的对称性可得实际数字.【解答】解:∵是从镜子中看,∴对称轴为竖直方向的直线,∵镜子中数字的顺序与实际数字顺序相反,∴这串数字应为 810076,故答案为:810076.【点评】考查镜面对称,得到相应的对称轴是解决本题的关键;若是竖直方向的对称轴,数的顺序正好相反.18.(3分)(2016秋•独山县校级期中)如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分成三个三角形,则S△ABO :S△BCO:S△CAO等于2:3:4 .【分析】由角平分线的性质可得,点O到三角形三边的距离相等,即三个三角形的AB、BC、CA的高相等,利用面积公式即可求解.【解答】解:过点O作OD⊥AC于D,OE⊥AB于E,OF⊥BC于F,∵O是三角形三条角平分线的交点,∴OD=OE=OF,∵AB=20,BC=30,AC=40,∴S△ABO :S△BCO:S△CAO=2:3:4.故答案为:2:3:4.【点评】此题主要考查角平分线的性质和三角形面积的求法,难度不大,作辅助线很关键.三、作图题(共18分)19.(5分)(2016秋•独山县校级期中)“西气东输”是造福子孙后代的创世工程,现有两条高速公路L1、L2和两个城镇A,B,准备建一个燃气控制中心站P,使中心站到两条公路距离相等,并且到两个城镇等距离,请你画出中心站的位置.(保留画图痕迹,不写画法)【分析】连接AB,作出∠EOF的平分线OH及线段AB的垂直平分线ED,两线的交点即为所求.【解答】解:①连接AB,②先作∠EOF的平分线OH,再作线段AB的垂直平分线ED,ED与OH相交于点D,则D点即为所求点.【点评】本题考查的是作图﹣应用与设计作图,涉及到最短路线问题、线段垂直平分线及角平分线的性质,具有一定的综合性.20.(5分)(2016秋•独山县校级期中)如图,某住宅小区拟在休闲场地的三条道路m,n,l上修建三个凉亭A、B、C且凉亭与长廊两两连通.如果凉亭A、B 的位置己经选定,那么凉亭C建在道路l上的什么位置,才能使工程造价最低?请用尺规作出图形(不写作法,但保留作图痕迹)【分析】工程造价最低,那么三个凉亭间的距离最短,又在直线l上,那么应作出点A关于直线l的对称点A′,连接A′B交直线l于点C,点C就是所求的点.【解答】解:三个凉亭间的距离实际相当于A'B的距离,两点之间,线段最短,所以符合题意.【点评】本题考查的是作图﹣应用与设计作图,涉及到在同一条直线的一旁的两点与这条直线上的一点的最短路线问题,一般属于点关于直线对称问题.21.(8分)(2016秋•静宁县校级期中)如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3)(1)请画出△ABC关于y轴对称的图形;(2)写出点A,点B,点C分别关于y轴对称点的坐标;(3)计算△ABC的面积.【分析】(1)作出各点关于y轴的对称点,再顺次连接即可;(2)根据各点在坐标系中的位置写出各点坐标即可;(3)根据三角形的面积公式进行计算即可.【解答】解:(1)如图,△A′B′C′即为所求;(2)由图可知,A′(1,5),B′(1,0),C′(4,5);(3)S=×5×3=.△ABC【点评】本题考查的是作图﹣轴对称变换,熟知关于y轴对称的点的坐标特点是解答此题的关键.四、解答题(共28分)22.(6分)(2013春•翠屏区期末)一个多边形的外角和是内角和的,求这个多边形的边数.【分析】一个多边形的外角和是内角和的,任何多边形的外角和是360°,因而多边形的内角和是1260°.n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:设这个多边形的边数为n,依题意得:(n﹣2)180°=360°,解得n=9.答:这个多边形的边数为9.【点评】根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.23.(6分)(2016秋•独山县校级期中)如图,△ABC中,AB=AC,∠A=50°,P 为△ABC内一点,∠PBC=∠PCA,求∠BPC的值.【分析】根据等腰三角形的两个底角相等,即可求得∠ACB=∠ABC,则∠PBC+∠PCB即可求得,根据三角形的内角和定理即可求解.【解答】解:∵在△ABC中,AB=AC,∠A=50°,∴∠ACB=∠ABC=65°.又∵∠PBC=∠PCA,∴∠PBC+∠PCB=65°,∴∠BPC=115°.【点评】本题考查了等腰三角形的性质:等腰三角形的两个内角相等,以及三角形的内角和定理.24.(8分)(2009春•福鼎市校级期末)如图,AB=AC,AD=AE,∠1=∠2,试说明△ABD与△ACE全等.【分析】由∠1=∠2,可得∠CAE=∠BAD,进而利用两边夹一角,证明全等.【解答】证明:∵∠1=∠2,∴∠CAE=∠BAD,∵AB=AC,AD=AE,∴△ABD≌△ACE.【点评】本题考查了全等三角形的判定;能够熟练掌握三角形的判定方法来证明三角形的全等问题,由∠1=∠2得∠CAE=∠BAD是解决本题的关键.25.(8分)(2016秋•独山县校级期中)已知,如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于点P,求证:BP=2PQ.【分析】根据等边三角形的性质可得AB=AC,∠BAE=∠C=60°,再利用“边角边”证明△ABE和△CAD全等,根据全等三角形对应角相等可得∠1=∠2,然后求出∠BPQ=60°,再根据直角三角形两锐角互余求出∠PBQ=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半证明即可.【解答】证明:∵△ABC是等边三角形,∴AB=AC,∠BAE=∠C=60°,在△ABE和△CAD中,,∴△ABE≌△CAD(SAS),∴∠1=∠2,∴∠BPQ=∠2+∠3=∠1+∠3=∠BAC=60°,∵BQ⊥AD,∴∠PBQ=90°﹣∠BPQ=90°﹣60°=30°,∴BP=2PQ.【点评】本题考查了全等三角形的判定与性质,等边三角形的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记各性质并准确识图求出△BPQ 是含30°角的直角三角形是解题的关键.考试前——放松自己,别给自己太大压力我们都知道,在任何大考中,一个人的心态都十分重要。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009-2010学年八年级(上)数学期中测试卷
一、选择题(共8小题,每小题4分,满分32分)
1.(4分)已知变量y与x的函数图象如图所示,则函数关系式为()
y=
2.(4分)全班50名学生,投票选举优秀干部,其中得票最多的三名同学是:阿广22票,阿伟12票,阿欣5票,阿广的得票百分率为
﹣)
阿伟的得票百分率为
阿欣的得票百分率为
4.(4分)某厂生产的一种牌子的圆珠笔心,自5月份以来,在库存为m(m>0)的情况下,日产量与日销量持平.自9月份开学以后,需求量猛增,在生产能力不变的情况下,市场一度脱销.表示5月份至脱销期间,时间t与存量y
.C D.
6.(4分)若一次函数y=(1﹣3m)x+1的图象经过点A(x1,y1)和点B(x2,y2),当x1<x2时,y1<y2,则m
7.(4分)如图所示,△ABC≌△EDF,DF=BC,AB=ED,AE=20,FC=10,则AF的长是()
8.(4分)“高高兴兴上学来,开开心心回家去”.小明某天放学后,17时从学校出发,回家途中离家的路程s(km)与所走的时间t(min)之间的函数关系如图所示,那么这天小明到家的时间为()
二、填空题(共10小题,每小题2分,满分20分)
9.(2分)已知函数y=(2m﹣3)x+(3n+1)的图象经过第一,二,三象限,则m与n的取值范围分别是_________,_________.
10.(2分)下图表示的是人们常去的购衣场所的调查结果,可以看出,大家最常去的购衣场所是_________,表示它的那个扇形的圆心角度数为_________度.
11.(2分)如图,∠A=∠D,再添加条件_________,就可以判定△ABC≌△DCB.
12.(2分)若函数y=ax+b的图象如图所示,则不等式ax+b≥0的解集为_________.
13.(2分)如图所示,在Rt△ABC中,AC=3,AB=5,∠C=90°,现将△ABC沿直线AD折叠,使AC与AB重合,则CD=_________.
14.(2分)直线y=kx+b与直线y=﹣2x+1平行,且过点(﹣2,4),则直线的解析式是_________.
15.(2分)小雪掷一枚硬币30次,有20次正面朝下,则正面朝下的频数是_________,正面朝下的频率是
_________.
16.(2分)在△ABC中,∠A=90°,CD是∠C的平分线,交AB于D,DA=8,则点D到BC的距离是_________.
17.(2分)已知一出租车油箱内剩余油48L,一般行驶一小时耗油8L,则该车油箱内剩余油量y(L)和行驶时间x(时)之间的函数关系式是_________(不写自变量取值范围).
18.(2分)在如图所示的频数分布直方图中,共测量了_________个学生的身高,人数最多的身高段占全体被测者的比例是_________.
三、解答题(共6小题,满分48分)
19.(7分)已知一次函数的图象如图,求这个一次函数的解析式.
20.(7分)如图,已知CE⊥AB,DF⊥AB,AC=BD,CE=DF,求证:AC∥BD.
21.(7分)(2004•郫县)下面的图象记录了某地1月份某天的温度随时间变化的情况,请你仔细观察图象后回答下面的问题.
(1)20时的温度是_________℃,温度是0℃的时刻是_________时,最暖和的时刻是_________时,温度在﹣3℃以下的持续时间为_________h.
(2)你从图象中还能获取哪些信息(写出1~2条即可).
22.(9分)如图,在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:①AD=CB,②AE=CF,③∠B=∠D,④AD∥BC.请用其中三个作为已知条件,余下一个作为求证结论,编一道数学问题,并写出解答过程:
已知条件:_________,_________,_________;
求证结论:_________.
证明:
23.(9分)(2002•黄冈)在对某班的一次数学测验成绩进行统计分析中,各分数段的人数如图所示(分数取正整数,满分100分),请观察图形,并回答下列问题:
(1)该班有_________名学生;
(2)69.5~79.5这一组的频数是_________,频率是_________;
(3)请估算该班这次测验的平均成绩.
24.(9分)某影碟店开设两种租碟方式:一种是零星租碟,每张收费1元;另一种是会员卡租碟,办卡费每月12元,租碟费每张0.4元,小彬经常来该店租碟.若每月租碟数量为x张,零星租碟应付y1元,会员卡租碟应付y2元.
(1)分别写出y1,y2与x的函数关系式;
(2)小彬选取哪种方式合算?
2009-2010学年八年级(上)数学期中测试卷
参考答案与试题解析
一、选择题(共8小题,每小题4分,满分32分)
1.(4分)已知变量y与x的函数图象如图所示,则函数关系式为()
y=


y=x
2.(4分)全班50名学生,投票选举优秀干部,其中得票最多的三名同学是:阿广22票,阿伟12票,阿欣5票,阿广的得票百分率为
﹣)
阿伟的得票百分率为
阿欣的得票百分率为
=
4.(4分)某厂生产的一种牌子的圆珠笔心,自5月份以来,在库存为m(m>0)的情况下,日产量与日销量持平.自9月份开学以后,需求量猛增,在生产能力不变的情况下,市场一度脱销.表示5月份至脱销期间,时间t与存量y
.C D.
6.(4分)若一次函数y=(1﹣3m)x+1的图象经过点A(x1,y1)和点B(x2,y2),当x1<x2时,y1<y2,则m 的取值范围是()

7.(4分)如图所示,△ABC≌△EDF,DF=BC,AB=ED,AE=20,FC=10,则AF的长是()
8.(4分)“高高兴兴上学来,开开心心回家去”.小明某天放学后,17时从学校出发,回家途中离家的路程s(km)与所走的时间t(min)之间的函数关系如图所示,那么这天小明到家的时间为()
二、填空题(共10小题,每小题2分,满分20分)
9.(2分)已知函数y=(2m﹣3)x+(3n+1)的图象经过第一,二,三象限,则m与n的取值范围分别是m>,n>﹣.

,>﹣
10.(2分)下图表示的是人们常去的购衣场所的调查结果,可以看出,大家最常去的购衣场所是大型商场,表示它的那个扇形的圆心角度数为172.8度.
11.(2分)如图,∠A=∠D,再添加条件∠ABC=∠DCB或∠ACB=∠DBC,就可以判定△ABC≌△DCB.
12.(2分)若函数y=ax+b的图象如图所示,则不等式ax+b≥0的解集为x≤2.
13.(2分)如图所示,在Rt△ABC中,AC=3,AB=5,∠C=90°,现将△ABC沿直线AD折叠,使AC与AB重合,
则CD=.
CD=
14.(2分)直线y=kx+b与直线y=﹣2x+1平行,且过点(﹣2,4),则直线的解析式是y=﹣2x.
15.(2分)小雪掷一枚硬币30次,有20次正面朝下,则正面朝下的频数是20,正面朝下的频率是.
,频率是=,.

16.(2分)在△ABC中,∠A=90°,CD是∠C的平分线,交AB于D,DA=8,则点D到BC的距离是8.
17.(2分)已知一出租车油箱内剩余油48L,一般行驶一小时耗油8L,则该车油箱内剩余油量y(L)和行驶时间x(时)之间的函数关系式是y=48﹣8x(不写自变量取值范围).
18.(2分)在如图所示的频数分布直方图中,共测量了50个学生的身高,人数最多的身高段占全体被测者的比
例是.
人,其频率为=;
三、解答题(共6小题,满分48分)
19.(7分)已知一次函数的图象如图,求这个一次函数的解析式.


20.(7分)如图,已知CE⊥AB,DF⊥AB,AC=BD,CE=DF,求证:AC∥BD.
21.(7分)(2004•郫县)下面的图象记录了某地1月份某天的温度随时间变化的情况,请你仔细观察图象后回答下面的问题.
(1)20时的温度是﹣1℃,温度是0℃的时刻是12时和18时,最暖和的时刻是14时,温度在﹣3℃以下的持续时间为8h.
(2)你从图象中还能获取哪些信息(写出1~2条即可).
22.(9分)如图,在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:①AD=CB,②AE=CF,③∠B=∠D,④AD∥BC.请用其中三个作为已知条件,余下一个作为求证结论,编一道数学问题,并写出解答过程:
已知条件:AD∥BC,AE=CF,AD=BC;
求证结论:∠B=∠D.
证明:
23.(9分)(2002•黄冈)在对某班的一次数学测验成绩进行统计分析中,各分数段的人数如图所示(分数取正整数,满分100分),请观察图形,并回答下列问题:
(1)该班有60名学生;
(2)69.5~79.5这一组的频数是18,频率是0.3;
(3)请估算该班这次测验的平均成绩.
24.(9分)某影碟店开设两种租碟方式:一种是零星租碟,每张收费1元;另一种是会员卡租碟,办卡费每月12元,租碟费每张0.4元,小彬经常来该店租碟.若每月租碟数量为x张,零星租碟应付y1元,会员卡租碟应付y2元.
(1)分别写出y1,y2与x的函数关系式;
(2)小彬选取哪种方式合算?
参与本试卷答题和审题的老师有:haoyujun;zhehe;117173;ln_86;心若在;自由人;HLing;zhjh;张长洪;csiya;lanchong;wenming;MMCH;开心;zhxl;HJJ;wdxwzk;zxw;lanyan;蓝月梦;王岑;hnaylzhyk;lf2-9(排名不分先后)
菁优网
2012年9月1日。

相关文档
最新文档