1.2.2组合学案(二)
1.2.2直角三角形全等的判定 教学案
A DCPB EOA DPBEO1.2.2 直角三角形全等的判定(二)班级 姓名 学号 学习目标1、运用直角三角形的全等判定定理和其它相关知识证明角平分线的性质和判定2、从简单的数学例子中了解反证法的含义3.、逐步学会分析的思考方法,发展演绎推理的能力 学习重点角平分线的性质和判定 学习难点角平分线的性质和判定的证明和运用 学习过程 一、知识回顾回忆并写出直角三角形全等的判定方法:二、典例分析1、证明:角平分线上的点到这个角两边的距离相等。
已知: 求证: 证明:2、证明:在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上。
已知: 求证: 证明:OED CA三、思考与交流1、“如果一个点到角的两边的距离不相等,那么这个点不在这个角的平分线上。
” 你认为这个结论正确吗?如果正确,你能证明吗?2、如图,△ABC 的角平分线AD 、BE 相交于点O ,点O 到△ABC 各边的距离相等吗?点O 在∠C 的平分线上吗?为什么?四、随堂练习1、如图,已知△ABC 的外角∠CBD 和∠BCE 的平分线相交于点F , 求证:点F 在∠DAE 的平分线上2、如图,在△ABC 中,∠C=90度,点D 在BC 上,DE 垂直平分AB ,且DE=DC 。
求∠B 的度数。
总结反思:EDCBACPP'BO A 1.2.2 直角三角形全等的判定(二) 作业班级 姓名 学号 等第 1、三角形中到三边距离相等的点是( )A 、三条边的垂直平分线的交点B 、三条高的交点C 、三条中线的交点D 、三条角平分线的交点2、如图,直线 表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( ) A 、1处 B 、2处 C 、3处 D 、4处3、如图,已知点C 是∠AOB 平分线上一点,点P 、P'分别在边OA 、OB 上。
如果要得到PO=OP' ,需要添加以下条件中的某一个即可,请你写出所有可能结果的序号 。
(新人教版)新版高中数学 第一章1.2 排列与组合 1.2.2 第2课时 组合的综合应用学案 新人教A版选修2-3【提
第2课时组合的综合应用学习目标 1.能应用组合知识解决有关组合的简单实际问题.2.能解决有限制条件的组合问题.知识点组合的特点(1)组合的特点是只取不排组合要求n个元素是不同的,被取出的m个元素也是不同的,即从n个不同的元素中进行m 次不放回地取出.(2)组合的特性元素的无序性,即取出的m个元素不讲究顺序,没有位置的要求.(3)相同的组合根据组合的定义,只要两个组合中的元素完全相同(不管顺序如何),就是相同的组合.类型一有限制条件的组合问题例1 课外活动小组共13人,其中男生8人,女生5人,并且男、女生各有一名队长,现从中选5人主持某项活动,依下列条件各有多少种选法?(1)至少有一名队长当选;(2)至多有两名女生当选;(3)既要有队长,又要有女生当选.考点组合的应用题点有限制条件的组合问题解(1)C513-C511=825(种)(2)至多有2名女生当选含有三类:有2名女生;只有1名女生;没有女生,所以共有C25C38+C15C48+C58=966(种)选法.(3)分两类:第一类女队长当选,有C412=495(种)选法,第二类女队长没当选,有C14C37+C24C27+C34C17+C44=295(种)选法,所以共有495+295=790(种)选法.反思与感悟有限制条件的抽(选)取问题,主要有两类:一是“含”与“不含”问题,其解法常用直接分步法,即“含”的先取出,“不含”的可把所指元素去掉再取,分步计数;二是“至多”“至少”问题,其解法常有两种解决思路:一是直接分类法,但要注意分类要不重不漏;二是间接法,注意找准对立面,确保不重不漏.跟踪训练1 某食堂每天中午准备4种不同的荤菜,7种不同的蔬菜,用餐者可以按下述方法之一搭配午餐:(1)任选两种荤菜、两种蔬菜和白米饭;(2)任选一种荤菜、两种蔬菜和蛋炒饭.则每天不同午餐的搭配方法共有( )A.210种 B.420种 C.56种 D.22种考点组合的应用题点有限制条件的组合问题答案 A解析由分类加法计数原理知,两类配餐的搭配方法之和即为所求,所以每天不同午餐的搭配方法共有C24C27+C14C27=210(种).类型二与几何有关的组合应用题例2 如图,在以AB为直径的半圆周上,有异于A,B的六个点C1,C2,…,C6,线段AB上有异于A,B的四个点D1,D2,D3,D4.(1)以这10个点中的3个点为顶点可作多少个三角形?其中含C1点的有多少个?(2)以图中的12个点(包括A,B)中的4个点为顶点,可作出多少个四边形?考点组合的应用题点与几何有关的组合问题解(1)方法一可作出三角形C36+C16·C24+C26·C14=116(个).方法二可作三角形C310-C34=116(个),其中以C1为顶点的三角形有C25+C15·C14+C24=36(个).(2)可作出四边形C46+C36·C16+C26·C26=360(个).反思与感悟(1)图形多少的问题通常是组合问题,要注意共点、共线、共面、异面等情形,防止多算.常用直接法,也可采用间接法.(2)在处理几何问题中的组合问题时,应将几何问题抽象成组合问题来解决.跟踪训练2 空间中有10个点,其中有5个点在同一个平面内,其余点无三点共线,无四点共面,则以这些点为顶点,共可构成四面体的个数为( )A.205 B.110 C.204 D.200考点 组合的应用题点 与几何有关的组合问题 答案 A解析 方法一 可以按从共面的5个点中取0个、1个、2个、3个进行分类,则得到所有的取法总数为C 05C 45+C 15C 35+C 25C 25+C 35C 15=205.方法二 从10个点中任取4个点的方法数中去掉4个点全部取自共面的5个点的情况,得到所有构成四面体的个数为C 410-C 45=205. 类型三 分组、分配问题命题角度1 不同元素分组、分配问题例3 6本不同的书,分为3组,在下列条件下各有多少种不同的分配方法? (1)每组2本(平均分组);(2)一组1本,一组2本,一组3本(不平均分组); (3)一组4本,另外两组各1本(局部平均分组). 考点 排列组合综合问题 题点 分组分配问题解 (1)每组2本,均分为3组的方法数为C 26C 24C 22A 33=15×6×16=15.(2)一组1本,一组2本,一组3本的分组种数为C 36C 23C 11=20×3=60. (3)一组4本,另外两组各1本的分组种数为C 46C 12C 11A 22=15×22=15.反思与感悟 一般地,n 个不同的元素分成p 组,各组内元素数目分别为m 1,m 2,…,m p ,其中k 组元素数目相等,那么分组方法数是C m 1n C m 2n -m 1C m 3n -m 1-m 2…C m p m pA kk. 跟踪训练3 6本不同的书,分给甲、乙、丙3人,在下列条件下各有多少种不同的分配方法? (1)甲2本,乙2本,丙2本; (2)甲1本,乙2本,丙3本; (3)甲4本,乙、丙每人1本; (4)每人2本;(5)一人1本,一人2本,一人3本; (6)一人4本,其余两人每人1本. 考点 排列组合综合问题 题点 分组分配问题解 (1)(2)(3)中,由于每人分的本数固定,属于定向分配问题,由分步乘法计数原理得: (1)共有C 26C 24C 22=90(种)不同的分配方法;(2)共有C16C25C33=60(种)不同的分配方法;(3)共有C46C12C11=30(种)不同的分配方法.(4)(5)(6)属于不定向分配问题,是该类题中比较困难的问题.分配给3人,同一本书给不同的人是不同的分法,属于排列问题.实际上可看作两个步骤:先分为3组,再把这3组分给甲、乙、丙3人的全排列数A33即可.因此,(4)共有C26C24C22÷A33×A33=90(种)不同的分配方法;(5)共有C16C25C33×A33=360(种)不同的分配方法;(6)共有C46C12C11÷A22×A33=90(种)不同的分配方法.命题角度2 相同元素分配问题例4 将6个相同的小球放入4个编号为1,2,3,4的盒子,求下列方法的种数.(1)每个盒子都不空;(2)恰有一个空盒子;(3)恰有两个空盒子.考点排列组合综合问题题点分组分配问题解(1)先把6个相同的小球排成一行,在首尾两球外侧放置一块隔板,然后在小球之间5个空隙中任选3个空隙各插一块隔板,有C35=10(种).(2)恰有一个空盒子,插板分两步进行.先在首尾两球外侧放置一块隔板,并在5个空隙中任选2个空隙各插一块隔板,如|0|000|00|,有C25种插法,然后将剩下的一块隔板与前面任意一块并放形成空盒,如|0|000||00|,有C14种插法,故共有C25·C14=40(种).(3)恰有两个空盒子,插板分两步进行.先在首尾两球外侧放置一块隔板,并在5个空隙中任选1个空隙各插一块隔板,有C15种插法,如|00|0000|,然后将剩下的两块隔板插入形成空盒.①这两块板与前面三块板形成不相邻的两个盒子,如||00||0000|,有C23种插法.②将两块板与前面三块板之一并放,如|00|||0000|,有C13种插法.故共有C15·(C23+C13)=30(种).反思与感悟相同元素分配问题的处理策略(1)隔板法:如果将放有小球的盒子紧挨着成一行放置,便可看作在排成一行的小球的空隙中插入了若干隔板,相邻两块隔板形成一个“盒”.每一种插入隔板的方法对应着小球放入盒子的一种方法,此法称之为隔板法.隔板法专门解决相同元素的分配问题.(2)将n个相同的元素分给m个不同的对象(n≥m),有C m-1n-1种方法.可描述为n-1个空中插入m-1块板.跟踪训练4 某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有( )A.4种B.10种C.18种D.20种考点排列组合综合问题题点分组分配问题答案 B解析由于只剩一本书,且这些画册、集邮册分别相同,可以从剩余的书的类别进行分析.又由于排列、组合针对的是不同的元素,应从4位朋友中进行选取.第一类:当剩余的一本是画册时,相当于把3本相同的集邮册和1本画册分给4位朋友,只有1位朋友得到画册.即把4位朋友分成人数为1,3的两队,有1个元素的那队分给画册,另一队分给集邮册,有C14种分法.第二类:当剩余的一本是集邮册时,相当于把2本相同的画册和2本相同的集邮册分给4位朋友,有2位朋友得到画册,即把4位朋友分成人数为2,2的两队,一队分给画册,另一队分给集邮册,有C24种分法.因此,满足题意的赠送方法共有C14+C24=4+6=10(种).1.某乒乓球队有9名队员,其中2名是种子选手,现在挑选5名选手参加比赛,种子选手必须在内,那么不同选法共有( )A.26种 B.84种 C.35种 D.21种考点组合的应用题点有限制条件的组合问题答案 C解析从7名队员中选出3人有C37=7×6×53×2×1=35(种)选法.2.身高各不相同的7名同学排成一排照相,要求正中间的同学最高,左右两边分别顺次一个比一个低,这样的排法种数是( )A.5 040 B.36 C.18 D.20考点组合的应用题点有限制条件的组合问题答案 D解析最高的同学站中间,从余下6人中选3人在一侧只有一种站法,另3人在另一侧也只有一种站法,所以排法有C36=20(种).3.直角坐标平面xOy上,平行直线x=n(n=0,1,2,…,5)与平行直线y=n(n=0,1,2,…,5)组成的图形中,矩形共有( )A.25个 B.36个 C.100个 D.225个考点组合的应用题点与几何有关的组合问题答案 D解析从垂直于x轴的6条直线中任取2条,从垂直于y轴的6条直线中任取2条,四条直线相交得出一个矩形,所以矩形总数为C26×C26=15×15=225.4.从7名志愿者中安排6人在周六、周日两天参加社区公益活动,若每天安排3人,则不同的安排方案共有________种.(用数字作答)考点排列组合综合问题题点分组分配问题答案140解析安排方案分为两步完成:从7名志愿者中选3人安排在周六参加社区公益活动,有C37种方法;再从剩下的4名志愿者中选3人安排在周日参加社区公益活动,有C34种方法.故不同的安排方案共有C37C34=7×6×53×2×1×4=140(种).5.正六边形顶点和中心共7个点,可组成________个三角形.考点组合的应用题点与几何有关的组合问题答案32解析不共线的三个点可组成一个三角形,7个点中共线的是:正六边形过中心的3条对角线,即共有3种情况,故组成三角形的个数为C37-3=32.1.无限制条件的组合应用题.其解题步骤为:(1)判断;(2)转化;(3)求值;(4)作答.2.有限制条件的组合应用题:(1)“含”与“不含”问题:这类问题的解题思路是将限制条件视为特殊元素和特殊位置,一般来讲,特殊要先满足,其余则“一视同仁”.若正面入手不易,则从反面入手,寻找问题的突破口,即采用排除法.解题时要注意分清“有且仅有”“至多”“至少”“全是”“都不是”“不都是”等词语的确切含义,准确把握分类标准.(2)几何中的计算问题:在处理几何问题中的组合应用问题时,应先明确几何中的点、线、面及构型,明确平面图形和立体图形中的点、线、面之间的关系,将几何问题抽象成组合问题来解决.(3)分组、分配问题:分组问题和分配问题是有区别的,前者组与组之间只要元素个数相同,是不可区分的,而后者即使两组元素个数相同,但因元素不同,仍然是可区分的.一、选择题1.若从1,2,3,…,9这9个整数中同时取3个不同的数,使其和为奇数,则不同的取法共有( )A.30种 B.33种 C.37种 D.40种考点组合的应用题点有限制条件的组合问题答案 D解析从1,2,3,…,9这9个数中取出3个不同的数,使其和为奇数的情况包括:(1)取出的3个数都是奇数,取法有C35=10(种);(2)取出的3个数中有2个偶数、1个奇数,取法有C24C15=30(种),根据分类加法计数原理,满足题意的取法共有10+30=40(种).2.某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为( )A.24种 B.14种 C.28种 D.48种考点组合的应用题点有限制条件的组合问题答案 B解析方法一分两类完成:第1类,选派1名女生、3名男生,有C12·C34种选派方案;第2类,选派2名女生、2名男生,有C22·C24种选派方案.故共有C12·C34+C22·C24=14(种)不同的选派方案.方法二6人中选派4人的组合数为C46,其中都选男生的组合数为C44,所以至少有1名女生的选派方案有C46-C44=14(种).3.直线a∥b,a上有5个点,b上有4个点,以这九个点为顶点的三角形个数为( ) A.C25C14+C15C24B.(C25+C14)(C15+C24)C.C39-9 D.C39-C35考点组合的应用题点 与几何有关的组合问题 答案 A解析 可以分为两类:a 上取两点,b 上取一点,则可构成三角形个数为C 25C 14;a 上取一点,b 上取两点,则可构成三角形个数为C 15C 24,利用分类加法计数原理可得以这九个点为顶点的三角形个数为C 25C 14+C 15C 24,故选A.4.从乒乓球运动员男5名、女6名中组织一场混合双打比赛,不同的组合方法有( ) A .C 25C 26种 B .C 25A 26种 C .C 25A 22C 26A 22种D .A 25A 26种考点 排列组合综合问题 题点 排列与组合的综合应用 答案 B解析 先从5名男选手中任意选取2名,有C 25种选法,再从6名女选手中任意选择两名与选出的男选手打比赛,有C 26A 22,即A 26种.所以共有C 25A 26种.5.将标号为A ,B ,C ,D ,E ,F 的6张卡片放入3个不同的信封中,若每个信封放2张卡片,其中标号为A ,B 的卡片放入同1个信封,则不同的放法共有( ) A .12种 B .18种 C .36种 D .54种 考点 排列组合综合问题 题点 分组分配问题 答案 B解析 由题意知,不同的放法共有C 13C 24=3×4×32=18(种).6.某地招募了20名志愿者,他们编号分别为1号,2号,…,19号,20号,如果要从中任意选取4人再按编号大小分成两组去做一些预备服务工作,其中两个编号较小的人在一组,两个编号较大的人在另一组,那么确保5号与14号入选并被分配到同一组的选取种数是( )A .16B .21C .24D .90 考点 排列组合综合问题 题点 分组分配问题 答案 B 解析 分2类:第1类,5号与14号为编号较大的一组,则另一组编号较小的有C 24=6(种)选取方法. 第2类,5号与14号为编号较小的一组,则编号较大的一组有C 26=15(种)选取方法. 由分类加法计数原理得,共有C 24+C 26=6+15=21(种)选取方法.7.北京《财富》全球论坛期间,某高校有14名志愿者参加接待工作,若每天早、中、晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为( ) A .C 1214C 412C 48 B .C 1214A 412A 48 C.C 1214C 412C 48A 33D .C 1214C 412C 48A 38考点 排列组合综合问题 题点 分组分配问题 答案 A解析 首先从14人中选出12人共C 1214种,然后将12人平均分为3组共C 412·C 48·C 44A 33种,然后这两步相乘,得C 1214·C 412·C 48A 33.将三组分配下去共C 1214·C 412·C 48种.故选A. 8.假如北京大学给中山市某三所重点中学7个自主招生的推荐名额,则每所中学至少分到一个名额的方法数为( ) A .30 B .21 C .10 D .15 考点 排列组合综合问题 题点 分组分配问题 答案 D解析 用“隔板法”.在7个名额中间的6个空位上选2个位置加2个隔板,有C 26=15(种)分配方法. 二、填空题9.在2017年的上海高考改革方案中,要求每位考生必须在物理、化学、生物、政治、历史、地理6门学科中选择3门学科参加等级考试.小明同学决定在生物、政治、历史三门中至多选择一门,那么小明同学的选择方案有________种. 考点 组合的应用题点 有限制条件的组合问题 答案 10解析 ①在生物、政治、历史三门中选择1门,则在物理、化学、地理中选2门,有C 13C 23=9(种)选法;②在生物、政治、历史三门中选择0门,则物理、化学、地理全选,有C 33=1(种)选法. 共有选法9+1=10(种).10.如图所示的几何体是由一个正三棱锥P -ABC 与正三棱柱ABC -A 1B 1C 1组合而成,现用3种不同颜色对这个几何体的表面涂色(底面A 1B 1C 1不涂色),要求相邻的面均不同色,则不同的涂色方案共有______种.考点涂色问题题点涂色问题答案12解析先涂三棱锥P-ABC的三个侧面,然后涂三棱柱的三个侧面,共有C13×C12×C11×C12=3×2×1×2=12(种)不同的涂法.11.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种.(用数字作答)考点排列组合综合问题题点排列与组合的综合应用答案60解析一、二、三等奖,三个人获得,有A34=24(种).一、二、三等奖,有一个人获得2张,一个人获得1张,共有C23A24=36(种),共有24+36=60(种)不同的获奖情况.三、解答题12.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,求不同取法的种数.考点组合的应用题点有限制条件的组合问题解若没有红色卡片,则需从黄、蓝、绿三色卡片中选3张,若都不同色,则有C14×C14×C14=64(种),若2张同色,则有C23×C12×C24×C14=144(种),若红色卡片有1张,剩余2张不同色,则有C14×C23×C14×C14=192(种),剩余2张同色,则有C14×C13×C24=72(种),所以共有64+144+192+72=472(种)不同的取法.13.现有8名青年,其中有5名能胜任英语翻译工作,有4名能胜任德语翻译工作(其中有1名青年两项工作都能胜任).现在要从中挑选5名青年承担一项任务,其中3名从事英语翻译工作,2名从事德语翻译工作,则有多少种不同的选法?考点排列组合综合问题题点分组分配问题解可以分三类.精品试卷第一类,让两项工作都能胜任的青年从事英语翻译工作,有C24C23种选法;第二类,让两项工作都能胜任的青年从事德语翻译工作,有C34C13种选法;第三类,让两项工作都能胜任的青年不从事任何工作,有C34C23种选法.根据分类加法计数原理,一共有C24C23+C34C13+C34C23=42(种)不同的选法.四、探究与拓展14.20个不加区别的小球放入编号为1,2,3的三个盒子中,要求每个盒内的球数不小于它的编号数,则不同的放法种数为________.考点排列组合综合问题题点分组分配问题答案120解析先在编号为2,3的盒内分别放入1,2个球,还剩17个小球,三个盒内分别至少再放入1个球,将17个球排成一排,有16个空隙,插入2块挡板分为三堆放入三个盒中即可,共C216=120(种)方法.15.已知10件不同产品中有4件是次品,现对它们进行一一测试,直至找出所有4件次品为止.(1)若恰在第5次测试,才测试到第一件次品,第10次才找到最后一件次品,则这样的不同测试方法数是多少?(2)若恰在第5次测试后,就找出了所有4件次品,则这样的不同测试方法数是多少?考点排列组合综合问题题点排列与组合的综合应用解(1)先排前4次测试,只能取正品,有A46种不同测试方法,再从4件次品中选2件排在第5和第10的位置上测试,有C24A22=A24(种)测法,再排余下4件的测试位置,有A44种测法.所以共有不同测试方法A46·A24·A44=103 680(种).(2)第5次测试恰为最后一件次品,另3件在前4次中出现,从而前4次有一件正品出现,所以共有不同测试方法C16C34A44=576(种).欢迎下载。
1.2.2组合学案(人教A版选修2-3)
1.2.3组合与组合数公式课前预习学案一、预习目标预习:(1)理解组合的定义,掌握组合数的计算公式(2)正确认识组合与排列的区别与联系(3)会解决一些简单的组合问题二、预习内容1.组合的定义:2.组合与排列的区别与联系(1)共同点。
(2)不同点。
3.组合数mA= = =n4.归纳提升(1)区分组合与排列(2)组合数计算问题三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中课内探究学案一、学习目标(1)理解组合的定义,掌握组合数的计算公式(2)正确认识组合与排列的区别与联系(3)会解决一些简单的组合问题学习重难点:组合与排列的区分二、学习过程问题探究情境问题一:从甲、乙、丙3名同学中选出2名去参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的选法?问题二:从甲、乙、丙3名同学中选出2名去参加某天一项活动,有多少种不同的选法?合作探究:探究1:组合的定义?一般地,从n 个不同元素中取出m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.探究2:排列与组合的概念有什么共同点与不同点? 不同点: 排列与元素的顺序有关, 而组合则与元素的顺序无关.共同点: 都要“从n 个不同元素中任取m 个元素” 问题三:判断下列问题是组合问题还是排列问题?(1)设集合A={a ,b ,c ,d ,e },则集合A 的含有3个元素的子集有多少个? (2)某铁路线上有5个车站,则这条铁路线上共需准备多少种车票? 组合是选择的结果,排列是选择后再排序的结果.探究3:写出从a,b,c,d 四个元素中任取三个元素的所有组合abc , abd , acd ,bcd 每一个组合又能对应几个排列?问题四:你能得出组合数的计算公式吗?mn C = = =规定: 典例分析例1判断下列问题是排列问题还是组合问题?(1)a 、b 、c 、d 四支足球队之间进行单循环比赛,共需要多少场比赛? (2)a 、b 、c 、d 四支足球队争夺冠亚军,有多少场不同的比赛? 变式训练1 已知ABCDE 五个元素,写出取出3个元素的所有组合 例2计算下列各式的值(1)97999699C C组合 排列abc abd acd bcdabc baccababd baddabacd caddacbcd cbddbc(2)nn n nC C 321383+-+ 变式训练2 (1)解方程247353---=x x x A C (2)已知m8765C 10711求m m mCCC=+三、反思总结1区分组合与排列 2组合数的计算公式的说明① ② ③ ④ 四、当堂检测1、计算=++293828C C C ( )A120 B240 C60 D480 2、已知2n C =10,则n=( )A10 B5 C3 D23、如果436m m C A =,则m=( )A6 B7 C8 D9答案:1、A 2、B 3、B课后练习与提高1、给出下面几个问题,其中是组合问题的有( )①由1,2,3,4构成的2个元素的集合 ②五个队进行单循环比赛的分组情况 ③由1,2,3组成两位数的不同方法数④由1,2,3组成无重复数字的两位数 A ①③ B ②④ C ①② D ①②④2、rr C C -++1710110的不同值有( )A1个 B2个 C3个 D4个3、已知集合A={1,2,3,4,5,6},B={1,2},若集合M 满足B ⊂M ⊂A ,则这样的集合M 共有 ( )A12个 B13个 C14个 D15个 4、已知的值为与则n m ,43211+-==m nmn m nC C C5、若x 满足112x 1x 3C 2-+-+<x x C ,则x=6、已知的值求n ,15)4(420231355+-++++=n n n n A C n C参考答案:1C 2B 3C 4 m=14,n=34 5 2,3,4,5, 6 n=21.2.4组合应用题课前预习学案一、预习目标预习:(1)理解组合的定义,掌握组合数的计算公式(2)会解决一些简单的组合问题(3)体会简单的排列组合综合问题二、预习内容1.组合的定义:2.组合数mA= = =n3. 课本几个组合应用题,并将24页的探究写在下面三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中课内探究学案一、学习目标(1)理解组合的定义,掌握组合数的计算公式(2)会解决一些简单的组合问题(3)体会简单的排列组合综合问题学习重难点:解决一些简单的组合典型问题二、学习过程问题探究情境问题一:高一(1)班有30名男生,20名女生,现要抽取6人参加一次有意义的活动,问一下条件下有多少种不同的抽法?⑴只在男生中抽取⑵男女生各一半⑶女生至少一人问题二:10个不同的小球,装入3个不同的盒子中,每盒至少一个,共有多少种装法?合作探究:完成问题一问题二的方法总结①②典例分析例1六人按下列要求站一横排,分别有多少种不同的站法?(1)甲不站两端;(2)甲、乙必须相邻;(3)甲、乙不相邻;(4)甲、乙之间间隔两人;(5)甲、乙站在两端;(6)甲不站左端,乙不站右端. 变式练习1.、7名学生站成一排,下列情况各有多少种不同的排法?(1)甲乙必须排在一起;(2)甲、乙、丙互不相邻;(3)甲乙相邻,但不和丙相邻.例2.平面上给定10个点,任意三点不共线,由这10个点确定的直线中,无三条直线交于同一点(除原10点外),无两条直线互相平行。
三亚市2018-2019学年高中数学人教A版选修2-3学案:1.2.2.2 组合的综合应用
第2课时组合的综合应用1.学会运用组合的概念分析简单的实际问题.(重点)2.能解决无限制条件的组合问题.3.掌握解决组合问题的常见的方法.(难点)[基础·初探]教材整理组合的实际应用阅读教材P23例6~P25,完成下列问题.1.组合与排列的异同点共同点:排列与组合都是从n个不同元素中取出m(m≤n)个元素.不同点:排列与元素的顺序有关,组合与元素的顺序无关.2.应用组合知识解决实际问题的四个步骤(1)判断:判断实际问题是否是组合问题.(2)方法:选择利用直接法还是间接法解题.(3)计算:利用组合数公式结合两个计数原理计算.(4)结论:根据计算结果写出方案个数.1.把三张游园票分给10个人中的3人,分法有________.【解析】把三张票分给10个人中的3人,不同分法有C310=10×9×8 3×2×1=120(种).【答案】1202.甲、乙、丙三位同学选修课程,从4门课程中,甲选修2 门,乙、丙各选修3门,则不同的选修方案共有______种.【解析】 甲选修2门,有C 24=6(种)不同方案.乙选修3门,有C 34=4(种)不同选修方案.丙选修3门,有C 34=4(种)不同选修方案.由分步乘法计数原理,不同的选修方案共有6×4×4=96(种).【答案】 963.从0,1, 2,π2, 3,2这六个数字中,任取两个数字作为直线y =x tan α+b 的倾斜角和截距,可组成______条平行于x 轴的直线.【解析】 要使得直线与x 轴平行,则倾斜角为0,截距在0以外的五个数字均可.故有C 15=5条满足条件.【答案】 54.将7名学生分配到甲、乙两个宿舍中,每个宿舍至少安排2名学生,那么互不相同的分配方案共有________种. 【导学号:97270018】【解析】 每个宿舍至少2名学生,故甲宿舍安排的人数可以为2人,3人,4人,5人,甲宿舍安排好后,乙宿舍随之确定,所以有C 27+C 37+C 47+C 57=112种分配方案.【答案】 112[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1: 解惑:疑问2: 解惑: 疑问3: 解惑:[小组合作型]无限制条件的组合问题在一次数学竞赛中,某学校有12人通过了初试,学校要从中选出5人参加市级培训.在下列条件下,有多少种不同的选法?(1)任意选5人;(2)甲、乙、丙三人必需参加;(3)甲、乙、丙三人不能参加;(4)甲、乙、丙三人只能有1人参加.【精彩点拨】本题属于组合问题中的最基本的问题,可根据题意分别对不同问题中的“含”与“不含”作出正确分析和判断,弄清每步从哪里选,选出多少等问题.【自主解答】(1)从中任取5人是组合问题,共有C512=792种不同的选法.(2)甲、乙、丙三人必需参加,则只需要从另外9人中选2人,是组合问题,共有C29=36种不同的选法.(3)甲、乙、丙三人不能参加,则只需从另外的9人中选5人,共有C59=126种不同的选法.(4)甲、乙、丙三人只能有1人参加,可分两步:先从甲、乙、丙中选1人,有C13=3种选法;再从另外9人中选4人,有C49种选法.共有C13C49=378种不同的选法.解答简单的组合问题的思考方法1.弄清要做的这件事是什么事.2.选出的元素是否与顺序有关,也就是看看是不是组合问题.3.结合两个计数原理,利用组合数公式求出结果.[再练一题]1.现有10名教师,其中男教师6名,女教师4名.(1)现要从中选2名去参加会议,有多少种不同的选法?(2)选出2名男教师或2名女教师去外地学习的选法有多少种?【解】(1)从10名教师中选2名去参加会议的选法种数,就是从10个不=45.同元素中取出2个元素的组合数,即C210=10×92×1(2)可把问题分两类:第1类,选出的2名是男教师有C26种方法;第2类,选出的2 名是女教师有C24种方法,即C26+C24=21(种).有限制条件的组合问题高二(1)班共有35名同学,其中男生20名,女生15名,今从中选出3名同学参加活动.(1)其中某一女生必须在内,不同的取法有多少种?(2)其中某一女生不能在内,不同的取法有多少种?(3)恰有2名女生在内,不同的取法有多少种?(4)至少有2名女生在内,不同的取法有多少种?(5)至多有2名女生在内,不同的取法有多少种?【精彩点拨】可从整体上分析,进行合理分类,弄清关键词“恰有”“至少”“至多”等字眼.使用两个计数原理解决.【自主解答】(1)从余下的34名学生中选取2名,有C234=561(种).∴不同的取法有561种.(2)从34名可选学生中选取3名,有C334种.或者C335-C234=C334=5 984种.∴不同的取法有5 984种.(3)从20名男生中选取1名,从15名女生中选取2名,有C120C215=2 100种.∴不同的取法有2 100种.(4)选取2名女生有C120C215种,选取3名女生有C315种,共有选取方式N=C120 C215+C315=2 100+455=2 555种.∴不同的取法有2 555种.(5)选取3名的总数有C335,因此选取方式共有N=C335-C315=6 545-455=6 090种.∴不同的取法有6 090种.常见的限制条件及解题方法1.特殊元素:若要选取的元素中有特殊元素,则要以有无特殊元素,特殊元素的多少作为分类依据.2.含有“至多”“至少”等限制语句:要分清限制语句中所包含的情况,可以此作为分类依据,或采用间接法求解.3.分类讨论思想:解题的过程中要善于利用分类讨论思想,将复杂问题分类表达,逐类求解.[再练一题]2.“抗震救灾,众志成城”,在我国“四川5·12”抗震救灾中,某医院从10名医疗专家中抽调6名奔赴赈灾前线,其中这10名医疗专家中有4名是外科专家.问:(1)抽调的6名专家中恰有2名是外科专家的抽调方法有多少种?(2)至少有2名外科专家的抽调方法有多少种?(3)至多有2名外科专家的抽调方法有多少种?【解】(1)分步:首先从4名外科专家中任选2名,有C24种选法,再从除外科专家的6人中选取4人,有C46种选法,所以共有C24·C46=90(种)抽调方法.(2)“至少”的含义是不低于,有两种解答方法.法一(直接法)按选取的外科专家的人数分类:①选2名外科专家,共有C24·C46种选法;②选3名外科专家,共有C34·C36种选法;③选4名外科专家,共有C44·C26种选法.根据分类加法计数原理,共有C24·C46+C34·C36+C44·C26=185(种)抽调方法.法二(间接法)不考虑是否有外科专家,共有C610种选法,考虑选取1名外科专家参加,有C14·C56种选法;没有外科专家参加,有C66种选法,所以共有:C610-C14·C56-C66=185(种)抽调方法.(3)“至多2名”包括“没有”“有1名”“有2名”三种情况,分类解答.①没有外科专家参加,有C66种选法;②有1名外科专家参加,有C14·C56种选法;③有2名外科专家参加,有C24·C46种选法.所以共有C66+C14·C56+C24·C46=115(种)抽调方法.组合在几何中的应用平面内有12个点,其中有4个点共线,此外再无任何3点共线.以这些点为顶点,可构成多少个不同的三角形?【精彩点拨】解答本题可以从共线的4个点中选取2个、1个、0个作为分类标准,也可以从反面考虑,任意三点的取法种数减去共线三点的取法种数.【自主解答】法一:以从共线的4个点中取点的多少作为分类标准.第1类:共线的4个点中有2个点为三角形的顶点,共有C24C18=48个不同的三角形;第2类:共线的4个点中有1个点为三角形的顶点,共有C14C28=112个不同的三角形;第3类:共线的4个点中没有点为三角形的顶点,共有C38=56个不同的三角形.由分类加法计数原理知,不同的三角形共有48+112+56=216(个).法二(间接法):从12个点中任意取3个点,有C312=220种取法,而在共线的4个点中任意取3个均不能构成三角形,即不能构成三角形的情况有C34=4种.故这12个点能构成三角形的个数为C312-C34=216个.1.解决几何图形中的组合问题,首先应注意运用处理组合问题的常规方法分析解决问题,其次要注意从不同类型的几何问题中抽象出组合问题,寻找一个组合的模型加以处理.2.图形多少的问题通常是组合问题,要注意共点、共线、共面、异面等情形,防止多算.常用直接法,也可采用排除法.[再练一题]3.四面体的一个顶点为A,从其他顶点和各棱中点中取3个点,使它们与点A在同一平面上,有多少种不同的取法?【解】如图所示,含顶点A的四面体的3个面上,除点A外每个面都有5个点,从中取出3点必与点A共面,共有3C35种取法,含顶点A的三条棱上各有三个点,它们与所对的棱的中点共面,共有3种取法.根据分类加法计数原理,不同的取法有3C35+3=33种.[探究共研型]排列、组合的综合应用探究1从集合{1,2,3,4}中任取两个不同元素相乘,有多少个不同的结果?完成的“这件事”指的是什么?【提示】共有C24=4×32=6(个)不同结果.完成的“这件事”是指:从集合{1,2,3,4}中任取两个不同元素并相乘.探究2从集合{1,2,3,4}中任取两个不同元素相除,有多少不同结果?这是排列问题,还是组合问题?完成的“这件事”指的是什么?【提示】共有A24-2=10(个)不同结果;这个问题属于排列问题;完成的“这件事”是指:从集合{1,2,3,4}中任取两个不同元素并相除.探究3完成“从集合{0,1,2,3,4}中任取三个不同元素组成一个是偶数的三位数”这件事需先分类,还是先分步?有多少个不同的结果?【提示】由于0不能排在百位,而个位必须是偶数.0是否排在个位影响百位与十位的排法,所以完成这件事需按0是否在个位分类进行.第一类:0在个位,则百位与十位共A24种排法;第二类:0不在个位且不在百位,则需先从2,4中任选一个排个位再从剩下非零数字中取一个排百位,最后从剩余数字中任取一个排十位,共C12C13C13=18(种)不同的结果,由分类加法原理,完成“这件事”共有A24+C12C13C13=30(种)不同的结果.有5个男生和3个女生,从中选出5人担任5门不同学科的课代表,求分别符合下列条件的选法数:(1)有女生但人数必须少于男生;(2)某女生一定担任语文课代表;(3)某男生必须包括在内,但不担任数学课代表;(4)某女生一定要担任语文课代表,某男生必须担任课代表,但不担任数学课代表.【精彩点拨】(1)按选中女生的人数多少分类选取.(2)采用先选后排的方法.(3)先安排该男生,再选出其他人担任4科课代表.(4)先安排语文课代表的女生,再安排“某男生”课代表,最后选其他人担任余下三科的课代表.【自主解答】(1)先选后排,先选可以是2女3男,也可以是1女4男,共有C35C23+C45C13种,后排有A55种,共(C35C23+C45C13)·A55=5 400种.(2)除去该女生后,先选后排,有C47·A44=840种.(3)先选后排,但先安排该男生,有C47·C14·A44=3 360种.(4)先从除去该男生、该女生的6人中选3人有C36种,再安排该男生有C13种,其余3人全排有A33种,共C36·C13·A33=360种.解决排列、组合综合问题要遵循两个原则1.按事情发生的过程进行分步.2.按元素的性质进行分类.解决时通常从以下三个途径考虑:(1)以元素为主考虑,即先满足特殊元素的要求,再考虑其他元素;(2)以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;(3)先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列或组合数.[再练一题]4.(1)某外商计划在四个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案共有()A.16种B.36种C.42种D.60种(2)某班班会准备从甲、乙等7名学生中选派4名学生发言,要求甲、乙两名同学至少有一人参加,且若甲、乙同时参加,则他们发言时不能相邻,那么不同的发言顺序的种数为()A.360 B.520 C.600 D.720【解析】(1)若选择了两个城市,则有C24C23A22=36种投资方案;若选择了三个城市,则有C34A33=24种投资方案,因此共有36+24=60种投资方案.(2)分两类:第一类,甲、乙中只有一人参加,则有C12C35A44=2×10×24=480种选法.第二类,甲、乙都参加时,则有C25(A44-A22A33)=10×(24-12)=120种选法.所以共有480+120=600种选法.【答案】(1)D(2)C[构建·体系]1.楼道里有12盏灯,为了节约用电,需关掉3盏不相邻的灯,则关灯方案有()A.72种B.84种C.120种D.168种【解析】需关掉3盏不相邻的灯,即将这3盏灯插入9盏亮着的灯的空中,所以关灯方案共有C310=120(种).故选C.【答案】 C2.编号为1,2,3,4,5,6,7的七盏路灯,晚上用时只亮三盏灯,且任意两盏亮灯不相邻,则不同的开灯方案有()A.60种B.20种C.10种D.8种【解析】四盏熄灭的灯产生的5个空档中放入三盏亮灯,即C35=10.【答案】 C3.将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案有________种(用数字作答). 【导学号:97270019】【解析】有C13·C24·A22=36种满足题意的分配方案.其中C13表示从3个乡镇中任选定1个乡镇,且其中某2名大学生去的方法数;C24表示从4名大学生中任选2名到上一步选定的乡镇的方法数;A22表示将剩下的2名大学生分配到另2个乡镇去的方法数.【答案】364.在直角坐标平面xOy上,平行直线x=n(n=0,1,2,…,5)与平行直线y =n(n=0,1,2,…,5)组成的图形中,矩形共有________个.【解析】在垂直于x轴的6条直线中任取2条,在垂直于y轴的6条直线中任取2条,四条直线相交得出一个矩形,所以矩形总数为C26×C26=15×15=225个.【答案】2255.车间有11名工人,其中5名是钳工,4名是车工,另外两名老师傅既能当车工又能当钳工,现在要在这11名工人里选派4名钳工,4名车工修理一台机床,问有多少种选派方法.【解】法一:设A,B代表两名老师傅.A,B都不在内的选派方法有:C45·C44=5(种);A,B都在内且当钳工的选派方法有:C22·C25·C44=10(种);A,B都在内且当车工的选派方法有:C22·C45·C24=30(种);A,B都在内,一人当钳工,一人当车工的选派方法有:C22·A22·C35·C34=80(种);A,B有一人在内且当钳工的选派方法有:C12·C35·C44=20(种);A,B有一人在内且当车工的选派方法有:C12·C45·C34=40(种).所以共有C45·C44+C22·C25·C44+C22·C45·C24+C22·A22·C35·C34+C12·C35·C44+C12·C45·C34=185(种)选派方法.法二:5名钳工有4名被选上的方法有:C45·C46=75(种);5名钳工有3名被选上的方法有:C35·C45·C12=100(种);5名钳工有2名被选上的方法有:C25·C22·C44=10(种).所以一共有75+100+10=185(种)选派方法.我还有这些不足:(1)(2)我的课下提升方案:(1)(2)学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.(2016·中山高二检测)圆上有10个点,过每三个点画一个圆内接三角形,则一共可以画的三角形个数为()A.720B.360C.240D.120【解析】确定三角形的个数为C310=120.【答案】 D2.某电视台连续播放5个广告,其中有3个不同的商业广告和2个不同的奥运广告.要求最后必须播放奥运广告,且2个奥运广告不能连续播放,则不同的播放方式有()A.120种B.48种C.36种D.18种【解析】最后必须播放奥运广告有C12种,2个奥运广告不能连续播放,倒数第2个广告有C13种,故共有C12C13A33=36种不同的播放方式.【答案】 C3.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有()A.60种B.63种C.65种D.66种【解析】均为奇数时,有C45=5种;均为偶数时,有C44=1种;两奇两偶时,有C24·C25=60种,共有66种.【答案】 D4.(2016·青岛高二检测)将标号为1,2,…,10的10个球放入标号为1,2,…,10的10个盒子里,每个盒内放一个球,恰好3个球的标号与其在盒子的标号不一致的放入方法种数为()A.120 B.240 C.360 D.720【解析】先选出3个球有C310=120种方法,不妨设为1,2,3号球,则1,2,3号盒中能放的球为2,3,1或3,1,2两种.这3个号码放入标号不一致的盒子中有2种不同的方法,故共有120×2=240种方法.【答案】 B5.从乒乓球运动员男5名、女6名中组织一场混合双打比赛,不同的组合方法种数为()A.C25C26B.C25A26C.C25A22C26A22D.A25A26【解析】分两步进行:第一步,选出两名男选手,有C25种方法;第二步,从6名女生中选出2名且与已选好的男生配对,有A26种.故有C25A26种.【答案】 B二、填空题6.某单位有15名成员,其中男性10人,女性5人,现需要从中选出6名成员组成考察团外出参观学习,如果按性别分层,并在各层按比例随机抽样,则此考察团的组成方法种数是________.【解析】按性别分层,并在各层按比例随机抽样,则需从10名男性中抽取4人,5名女性中抽取2人,共有C410C25=2 100种抽法.【答案】 2 1007.某球队有2名队长和10名队员,现选派6人上场参加比赛,如果场上最少有1名队长,那么共有________种不同的选法.【解析】若只有1名队长入选,则选法种数为C12·C510;若两名队长均入选,则选法种数为C410,故不同选法有C12·C510+C410=714(种).【答案】7148.现有6张风景区门票分配给6位游客,若其中A,B风景区门票各2张,C,D风景区门票各1张,则不同的分配方案共有________种.【解析】6位游客选2人去A风景区,有C26种,余下4位游客选2人去B 风景区,有C24种,余下2人去C,D风景区,有A22种,所以分配方案共有C26C24 A22=180(种).【答案】180三、解答题9.α,β是两个平行平面,在α内取四个点,在β内取五个点.(1)这些点最多能确定几条直线,几个平面?(2)以这些点为顶点最多能作多少个三棱锥?【解】(1)在9个点中,除了α内的四点共面和β内的五点共面外,其余任意四点不共面且任意三点不共线时,所确定直线才能达到最多,此时,最多能确定直线C29=36条.在此条件下,只有两直线平行时,所确定的平面才最多.又因为三个不共线的点确定一个平面,故最多可确定C24C15+C14C25+2=72个平面.(2)同理,在9个点中,除了α内的四点共面和β内的五点共面外,其余任意四点不共面且任意三点不共线时,所作三棱锥才能达到最多.此时最多能作C34C15+C24C25+C14C35=120个三棱锥.10.按照下列要求,分别求有多少种不同的方法?(1)6个不同的小球放入4个不同的盒子;(2)6个不同的小球放入4个不同的盒子,每个盒子至少一个小球;(3)6个相同的小球放入4个不同的盒子,每个盒子至少一个小球.【解】(1)每个小球都有4种方法,根据分步乘法计数原理,共有46=4 096种不同放法.(2)分两类:第1类,6个小球分3,1,1,1放入盒中;第2类,6个小球分2,2,1,1放入盒中,共有C36·C14·A33+C26·C24·A24=1 560(种)不同放法.(3)法一按3,1,1,1放入有C14种方法,按2,2,1,1,放入有C24种方法,共有C14+C24=10(种)不同放法.法二(挡板法)在6个球之间的5个空中插入三个挡板,将6个球分成四位,共有C35=10(种)不同放法.[能力提升]1.(2015·四川高考)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有()A.144个B.120个C.96个D.72个【解析】分两类进行分析:第一类是万位数字为4,个位数字分别为0,2;第二类是万位数字为5,个位数字分别为0,2,4.当万位数字为4时,个位数字从0,2中任选一个,共有2A34个偶数;当万位数字为5时,个位数字从0,2,4中任选一个,共有C13A34个偶数.故符合条件的偶数共有2A34+C13A34=120(个).【答案】 B2.如图1-2-1,A,B,C,D为海上的四个小岛,要建三座桥,将这四个小岛连接起来,则不同的建桥方案共有________种.图1-2-1【解析】四个小岛中每两岛建一座桥共建六座桥,其中建三座桥连接四个小岛符合要求的建桥方案是只要三座桥不围成封闭的三角形区域符合要求,如桥AC,BC,BD符合要求,而围成封闭三角形不符合要求,如桥AC,CD,DA,不符合要求,故共有C36-4=16种不同的建桥方案.【答案】163.(2016·孝感高级中学期中)正五边形ABCDE中,若把顶点A,B,C,D,E染上红、黄、绿、黑四种颜色中的一种,使得相邻顶点所染颜色不相同,则不同的染色方法共有________种. 【导学号:97270020】【解析】若用三种颜色,有C15A34种染法,若用四种颜色,有5·A44种染法,则不同的染色方法有C15A34+5·A44=240(种).【答案】2404.已知10件不同产品中有4件是次品,现对它们进行一一测试,直至找出所有4件次品为止.(1)若恰在第5次测试,才测试到第一件次品,第10次才找到最后一件次品,则这样的不同测试方法数是多少?(2)若恰在第5次测试后,就找出了所有4件次品,则这样的不同测试方法数是多少?【解】(1)先排前4次测试,只能取正品,有A46种不同测试方法,再从4件次品中选2件排在第5和第10的位置上测试,有C24A22=A24种测法,再排余下4件的测试位置,有A44种测法.所以共有不同测试方法A46·A24·A44=103 680种.(2)第5次测试恰为最后一件次品,另3件在前4次中出现,从而前4次有一件正品出现,所以共有不同测试方法C16·C34·A44=576种.。
1.2.2 同角三角函数的基本关系(二) 提高训练
1 2sin130o cos130o sin130o 1 sin 2 130o
2. sin tan 2sin cos
2
cos 2 tan
3.若 α 是第三象限角,化简
1+cos α + 1-cos α
1-cos α . 1+cos α
tan θ· sin θ 1+cos θ 4.求证: = . sin θ tan θ-sin θ
.
【三角函数式的化简】 已知 α 是第三象限角,化简: 1+sin α - 1-sin α 1-sin α . 1+sin α
小结 解答此类题目的关键在于公式的灵活运用, 切实分析好同角三角函数间的关系. 化 简过程中常用的方法有:(1)化切为弦,即把非正弦、非余弦的函数都化成正弦、余弦函 数,从而减少函数名称,达到化简的目的.(2)对于含有根号的,常把根号下化成完全平 方式,然后去根号,达到化简的目的. (3)对于化简含高次的三角函数式,往往借助于因式分解.
1
鸡西市第十九中学高一数学组
训练 1
sin α 化简 · 1-cos α
tan α-sin α (其中 α 为第二象限角). tan α+sin α
【三角恒等式的证明】证明三角恒等式
cos α 1+sin α = 1-sin α cos α
2sin xcos x-1 tan x-1 例 2 求证: = . cos2x-sin2x tan x+1
2
鸡西市第十九中学高一数学组
1.在进行三角函数式的化简或求值时,细心观察题目的特征,灵活、恰当的选用公式, 统一角、统一函数、降低次数是三角函数关系式变形的出发点.利用同角三角函数的 基本关系主要是统一函数,要掌握“切化弦”和“弦化切”的方法. 2.在化简或恒等式证明时,注意方法的灵活运用,常用的技巧有:①“1”的代换;② 减少三角函数的个数(化切为弦、化弦为切等);③多项式运算技巧的应用(如因式分解、 整体思想等); ④对条件或结论的重新整理、 变形, 以便于应用同角三角函数关系来求解. 【当堂训练】 1.
高中数学 第一章 数列 1.2 等差数列 1.2.2 第2课时 等差数列的综合问题学案(含解析)北师
第2课时等差数列的综合问题知识点一等差数列的性质[填一填](1)若{a n}为等差数列,则距首末距离相等的两项之和都相等,且等于首末两项之和,即a1+a n=a2+a n-1=a3+a n-2=….(2)若{a n}为等差数列,m,n,p,q∈N+,且m+n=p+q,则a m+a n=a p+a q.(3)若{a n}为等差数列,m,k,n成等差数列,则a m,a k,a n也成等差数列(m,k,n∈N+),即若m+n=2k,则a m+a n=2a k.[答一答]1.对于性质:若{a n}为等差数列,m,n,p,q∈N+,且m+n=p+q,则a m+a n=a p +a q,请给出证明.提示:证明:设{a n}的公差为d,则a m=a1+(m-1)d,a n=a1+(n-1)d,a p=a1+(p-1)d,a q=a1+(q-1)d,∴a m+a n=2a1+(m+n-2)d,a p+a q=2a1+(p+q-2)d,∵m+n=p+q,∴a m+a n=a p+a q.知识点二 等差数列前n 项和的性质[填一填](1)等差数列前n 项和公式S n =na 1+n (n -1)2d 可写成S n =d2n 2+⎝⎛⎭⎫a 1-d 2n ,即S n =An 2+Bn (A ,B 为常数)的形式,当A ≠0时(即d ≠0),S n 是关于n 的二次函数,其图像是抛物线y =Ax 2+Bx 上的一群孤立的点.(2)若{a n },{b n }都是等差数列,则{pa n +qb n }(p ,q 为常数)是等差数列.(3)若等差数列{a n }的公差为d ,前n 项和为S n ,则数列S k ,S 2k -S k ,S 3k -S 2k ,…(k ∈N +)也是等差数列,其公差等于k 2d .(4)若等差数列{a n }的项数为2n (n ∈N +),则S 2n =n (a n +a n +1)(a n ,a n +1为中间两项),且S偶-S 奇=nd ,S 偶S 奇=a n +1a n.(5)若等差数列{a n }的项数为2n -1(n ∈N +),则S 2n -1=(2n -1)a n (a n 为中间项),且S 奇-S偶=a n ,S 偶S 奇=n -1n .[答一答]2.等差数列前n 项和的“奇偶”性质:在等差数列{a n }中,公差为d ,①若数列共有2n 项,则S 2n =n (a n +a n +1),S 偶-S 奇=nd ,S 偶S 奇=a n +1a n ;②若数列共有2n +1项,则S 2n+1=(2n +1)a n +1,S 偶-S 奇=-a n +1,S 偶S 奇=n(n +1).请给出证明.提示:证明:①若数列共有2n 项,则S 2n =2n (a 1+a 2n )2=2n (a n +a n +1)2=n (a n +a n +1),S 偶=n (a 2+a 2n )2=2na n +12=na n +1,S 奇=n (a 1+a 2n -1)2=2na n2=na n ,S 偶-S 奇=na n +1-na n =n (a n +1-a n )=nd , S 偶S 奇=a n +1a n ;②若数列共有2n +1项,则S 2n +1=(2n +1)(a 1+a 2n +1)2=2(2n +1)a n +12=(2n +1)a n +1,S 偶=n (a 2+a 2n )2=2na n +12=na n +1,S 奇=(n +1)(a 1+a 2n +1)2=2(n +1)a n +12=(n +1)a n +1,S 偶-S 奇=-a n +1, S 偶S 奇=n(n +1).1.三数成等差数列的设法为:a -d ,a ,a +d ,其中d 为公差;四数成等差数列的设法为:a -3d ,a -d ,a +d ,a +3d ,其公差为2d .2.会用方程的思想处理等差数列的有关问题.等差数列的通项公式与前n 项和公式涉及五个量:a 1,d ,n ,a n ,S n ,知道其中任意三个就可以通过列方程组求出另外两个(俗称“知三求二”).解等差数列问题的基本方法是方程法,在遇到一些较复杂的方程组时,要注意整体代换,使运算更加迅速和准确.类型一 等差数列的性质的应用【例1】 在等差数列{a n }中,(1)若a 3+a 4+a 5+a 6+a 7=350,则a 2+a 8=________;(2)若a 2+a 3+a 4+a 5=34,a 2·a 5=52,且a 4<a 2,则a 5=________; (3)若a 3=6,则a 1+2a 4=________.【解析】 若设出a 1,d 从通项公式入手,运算过程较为繁琐,若能利用性质,可使问题简化.(1)∵a 3+a 7=a 4+a 6=2a 5=a 2+a 8,又由已知a 3+a 4+a 5+a 6+a 7=350,∴5a 5=350, ∴a 5=70,∴a 2+a 8=2a 5=140.(2)∵a 2+a 3+a 4+a 5=34,又由等差数列的性质知a 3+a 4=a 2+a 5,∴2(a 2+a 5)=34,∴a 2+a 5=17.又a 2·a 5=52,联立⎩⎪⎨⎪⎧a 2+a 5=17a 2·a 5=52,解之得⎩⎪⎨⎪⎧a 2=4a 5=13,或⎩⎪⎨⎪⎧a 2=13a 5=4,又∵a 4<a 2,∴a 4-a 2=2d <0, ∴d <0,∴a 2>a 5,∴a 5=4.(3)∵a 3=6,∴a 1+2a 4=a 1+a 3+a 5=a 3+(a 1+a 5)=a 3+2a 3=3a 3=18. 【答案】 (1)140 (2)4 (3)18规律方法 等差数列具有一些性质,例如当m +n =p +q (m ,n ,p ,q ∈N +)时,有a m +a n =a p +a q ,特别地,当m +n =2k (m ,n ,k ∈N +)时,有a m +a n =2a k ;a n =a m +(n -m )d 等等.灵活运用这些性质,可大大简化解题过程.【例2】 在等差数列{a n }中,已知a 2+a 5+a 8=9,a 3a 5a 7=-21,求数列的通项公式. 【思路探究】 要求通项公式,需要求出首项a 1及公差d ,由a 2+a 5+a 8=9和a 3a 5a 7=-21直接求解很困难,这就促使我们转换思路.如果考虑到等差数列的性质,注意到a 2+a 8=2a 5=a 3+a 7,问题就容易解决了.【解】 a 2+a 5+a 8=9,a 3a 5a 7=-21,又由等差数列的性质知a 2+a 8=a 3+a 7=2a 5,∴a 5=3, ∴a 2+a 8=a 3+a 7=6,① 又a 3a 5a 7=-21, ∴a 3a 7=-7,②由①②解得a 3=-1,a 7=7或a 3=7,a 7=-1. ∴a 3=-1,d =2或a 3=7,d =-2. 由通项公式的变形公式a n =a 3+(n -3)d , 得a n =2n -7或a n =-2n +13.规律方法 若m +n =p +q ,则a m +a n =a p +a q ,此性质要求等式两边必须是两项和的形式,否则不成立,如a 10≠a 2+a 8,只能是a 2+a 8=a 3+a 7,使用时应切记它的结构特征.在等差数列{a n }中,a 3+a 7=36,则a 2+a 4+a 5+a 6+a 8=90. 解析:a 3+a 7=a 2+a 8=a 4+a 6=2a 5=36, ∴a 2+a 4+a 5+a 6+a 8==36+36+18=90.类型二 等差数列前n 项和的性质【例3】 项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,求这个数列的中间项及项数.【思路探究】 根据等差数列中的奇数项依次仍成等差数列,偶数项依次仍成等差数列可求解.【解】 设等差数列{a n }共有(2n +1)项,则奇数项有(n +1)个,偶数项有n 个,中间项是第(n +1)项,即a n +1,所以S 奇S 偶=12(a 1+a 2n +1)·(n +1)12(a 2+a 2n )·n=(n +1)a n +1na n +1=n +1n =4433=43.解得n =3.又因为S 奇=(n +1)·a n +1=44,所以a n +1=11. 故这个数列的中间项为11,共有2n +1=7项.规律方法 在等差数列{a n }中,(1)若项数为2n +1(n ∈N +),则S 奇S 偶=n +1n ,其中S 奇=(n +1)a n +1,S 偶=na n +1;(2)若数列的项数为2n (n ∈N +),则S 偶-S 奇=nd .【例4】 已知等差数列{a n }的前10项和为30,它的前30项和为210,则前20项和为( )A .100B .120C .390D .540【解析】 方法一:设等差数列{a n }的前n 项和为S n =na 1+n (n -1)2d .由题意,得⎩⎪⎨⎪⎧10a 1+45d =30,30a 1+435d =210,解得⎩⎨⎧a 1=65,d =25.∴S n =65n +n (n -1)2·25=15(n 2+5n ).∴S 20=15×(202+5×20)=100.方法二:设S n =An 2+Bn ,由题意,得⎩⎪⎨⎪⎧100A +10B =30,900A +30B =210,解得⎩⎪⎨⎪⎧A =15,B =1.∴S n =15n 2+n .∴S 20=15×202+20=100.方法三:由题意,知S 10,S 20-S 10,S 30-S 20也是等差数列. ∴2(S 20-S 10)=S 10+S 30-S 20,即S 20=13(3S 10+S 30)=S 10+13S 30=100.【答案】 A规律方法 一个等差数列,从首项起,分成项数相等的若干段后,各段内诸项之和组成新的等差数列.若每段含有n 项,则新公差是原公差的n 2倍.(1)已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为3. (2)在等差数列{a n }中,a 1=-2 017,其前n 项和为S n ,若S 1010-S 88=2,则S 2 017的值等于-2_017.解析:(1)由等差数列前n 项和的性质,得S 偶-S 奇=102×d (d 为该数列的公差),即30-15=5d ,解得d =3.(2)方法一:设等差数列{a n }的公差为d ,由S 1010-S 88=2得-2 017×10+10×92d10--2 017×8+8×72d8=2,解得d =2,所以S 2 017=-2 017×2 017+2 017×2 0162×2=-2 017.方法二:由等差数列前n 项和的性质可知,数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列,设其公差为d ,则由S 1010-S 88=2可得2d =2,即d =1.又S 11=-2 017,所以S 2 0172 017=-2 017+(2 017-1)×1=-1,所以S 2 017=-2 017.类型三 等差数列的综合应用题【例5】 已知数列{a n }是等差数列. (1)若a m =n ,a n =m (m ≠n ),求a m +n ; (2)若S m =n ,S n =m (m >n ),求S m +n .【思路探究】 (1)由通项公式或前n 项和公式得a 1和d 的关系,通过解方程组求得a 1和d ,进而求得a m +n 和S m +n .(2)利用等差数列的性质可使问题简化.【解】 设首项为a 1,公差为d , (1)解法一:由a m =n ,a n =m ,得⎩⎪⎨⎪⎧a 1+(m -1)d =n ,a 1+(n -1)d =m ,解得a 1=m +n -1,d =-1.∴a m +n =a 1+(m +n -1)d =m +n -1-(m +n -1)=0. 解法二:由a m =n ,a n =m ,得d =n -mm -n =-1,∴a m +n =a m +(m +n -m )d =n +n ×(-1)=0. (2)解法一:由已知可得 ⎩⎪⎨⎪⎧m =na 1+n (n -1)2d ,n =ma 1+m (m -1)2d ,解得⎩⎪⎨⎪⎧a 1=n 2+m 2+mn -m -nmn ,d =-2(m +n )mn .∴S m +n =(m +n )a 1+(m +n )(m +n -1)2d =-(m +n ).解法二:∵{a n }是等差数列, ∴可设S n =An 2+Bn .则⎩⎪⎨⎪⎧Am 2+Bm =n ,①An 2+Bn =m .②①-②得A (m 2-n 2)+B (m -n )=n -m , ∵m ≠n ,∴A (m +n )+B =-1.∴S m +n =A (m +n )2+B (m +n )=-(m +n ).规律方法 (1)灵活运用性质求等差数列中的量,可以简化运算,提高解题速度及准确性;(2)在应用性质:若m +n =l +k ,则a m +a n =a l +a k 时,首先要找到项数和相等的条件,然后根据需要求解,解决此类问题要有整体代换的意识.数列{a n }满足a 1=1,a n +1=a n +2,且前n 项和为S n . (1)求数列{S nn }的前n 项和T n ;(2)求数列{1T n}的前n 项和.解:(1)由a n +1=a n +2,得数列{a n }是等差数列,且a 1=1,公差d =2, 从而a n =2n -1,∴S n =n (a 1+a n )2=n 2.∴S nn =n ,从而T n =n (n +1)2. (2)由(1)有1T n =2n (n +1)=2(1n -1n +1),其前n 项和为2[(11-12)+(12-13)+(13-14)+…+(1n -1n +1)]=2nn +1.——多维探究系列—— 特殊值法解等差数列问题特殊值法在解一些选择题和填空题中经常用到,就是通过取一些特殊值、特殊点、特殊函数、特殊数列、特殊图形等来求解或否定问题的目的.用特殊值法解题时要注意,所选取的特例一定要简单,且符合题设条件.【例6】 在等差数列{a n }中,a 1=1,前n 项和S n 满足条件S 2n S n =4n +2n +1,n =1,2,…,则a n =________.【思路分析】 因S n =na 1+n (n -1)2d =n +n (n -1)2d ,则S 2n =2na 1+2n (2n -1)2d =2n +n (2n -1)d ,故S 2n S n =2n +n (2n -1)d n +n (n -1)2d=2(2dn +2-d )dn +2-d =4n +2n +1, 解得d =1,则a n =n . 【规范解答】 n已知正数数列{a n }对任意p ,q ∈N +,都有a p +q =a p +a q ,若a 2=4,则a 9=( C ) A .6 B .9 C .18D .20解析:解法一:∵a 2=a 1+1=a 1+a 1=4,∴a 1=2,a 9=a 8+1=a 8+a 1=2a 4+a 1=4a 2+a 1=18.解法二:∵a 2=a 1+1=a 1+a 1=4,∴a 1=2,令p =n ,q =1,所以a n +1=a n +a 1,即a n +1-a n =2,∴{a n }是等差数列,且首项为2,公差为2,故a 9=2+(9-1)×2=18.一、选择题1.设S n 是等差数列{a n }的前n 项和,S 5=10,则a 3的值为( C ) A.65B .1C .2D .3 解析:∵S 5=5(a 1+a 5)2=5a 3,∴a 3=15S 5=15×10=2.2.等差数列{a n }的前n 项和为S n ,且S 3=6,a 1=4,则公差d 等于( C ) A .1 B.53C .-2D .3解析:由题意,得6=3×4+3×22d ,解得d =-2.3.已知等差数列{a n }满足a 2+a 4=4,a 3+a 5=10,则它的前10项和S 10等于( C ) A .138 B .135 C .95 D .23解析:设公差为d ,则⎩⎪⎨⎪⎧a 1+d +a 1+3d =4,a 1+2d +a 1+4d =10, 解得a 1=-4,d =3,所以S 10=10a 1+10×92d =95. 二、填空题4.在数列{a n }中,a n =5n -105,则当n =20或21时,S n 取最小值.5.已知{a n }是等差数列,S n 为其前n 项和,n ∈N +,若a 3=16,S 20=20,则S 10的值为110.解析:设等差数列{a n }的首项为a 1,公差为d . a 3=a 1+2d =16,S 20=20a 1+20×192d =20. ∴⎩⎪⎨⎪⎧ a 1+2d =16,2a 1+19d =2.解得⎩⎪⎨⎪⎧ a 1=20,d =-2.∴S 10=10a 1+10×92d =200-90=110. 三、解答题6.等差数列{a n }中,a 2+a 3=-38,a 12=0,求S n 的最小值以及相对应的n 值. 解:解法一:(单调性法)设等差数列{a n }的首项为a 1,公差为d ,则有⎩⎪⎨⎪⎧ (a 1+d )+(a 1+2d )=-38a 1+11d =0, 解得⎩⎪⎨⎪⎧ a 1=-22d =2.∴当⎩⎨⎧ a n ≤0a n +1≥0, 即⎩⎪⎨⎪⎧-22+2(n -1)≤0-22+2n ≥0时,S n 有最小值,解得11≤n ≤12, ∴当n =11或12时,S n 取得最小值,最小值为S 11=S 12=-132. 解法二:(配方法)由解法一得⎩⎪⎨⎪⎧a 1=-22d =2,∴S n =-22n +n (n -1)2×2=n 2-23n =⎝⎛⎭⎫n -2322-5294, ∴当n =11或12时,S n 取得最小值,最小值为S 11=S 12=-132. 解法三:(邻项比较法)由解法二得S n =n 2-23n ,又由⎩⎪⎨⎪⎧ S n ≤S n -1,S n ≤S n +1,得⎩⎪⎨⎪⎧n 2-23n ≤(n -1)2-23(n -1),n 2-23n ≤(n +1)2-23(n +1), 解得11≤n ≤12,故S 11=S 12, ∴当n =11或12时,S n 取得最小值,最小值为S 11=S 12=-132.。
高中数学选修2-3优质三段式学案1:1.2.2 组合(2)
高中数学选修2-3学案1.2.2组合(2)一、学习目标:1.掌握带有较复杂限制条件的组合问题的处理方法;2.掌握分组分配问题的处理方法.学习重点:带有较复杂限制条件的组合问题的处理方法;分组分配问题的处理方法.二、基本知识:1、组合的定义:2、组合数公式:3、组合与排列的区别:4、组合数的两个计算性质:三、典型例题例1、在一次数学竞赛中,某学校有12人通过了初试,学校要从中选出5人去参加市级培训,在下列条件下,有多少种不同的选法?(1)任意选5人;(2)甲、乙、丙三人必须参加;(3)甲、乙、丙三人不能参加;(4)甲、乙、丙三人只能有1人参加;(5)甲、乙、丙三人至少1人参加.例2、(1)平面内有10个点,以其中每2个点为端点的线段共有多少条?(2)平面内有10个点,以其中每2个点为端点的有向线段共有多少条?四、课堂练习1.从4名男生,2名女生中,选2人参加某项活动,至少有一名女生参加的选法有________种.2.从正方体ABCD-A′B′C′D′的8个顶点中选取4个作为四面体的顶点,可得到的不同的四面体的个数为________.3.(2013·课标全国卷)从n个正整数1,2,…,n中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n=________.学习笔记高中数学选修2-3学案学习笔记4.12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有________.5.“抗震救灾,众志成城”,在我国“四川5·12”抗震救灾中,某医院从10名医疗专家中抽调6名奔赴赈灾前线,其中这10名医疗专家中有4名是外科专家.问:(1)抽调的6名专家中恰有2名是外科专家的抽调方法有多少种?(2)至少有2名外科专家的抽调方法有多少种?(3)至多有2名外科专家的抽调方法有多少种?——★参考答案★——例1.解:(1)512C =792(种)不同的选法.(2)甲、乙、丙三人必须参加,只需从另外的9人中选2人,共有29C =36(种)不同的选法.(3)甲、乙、丙三人不能参加,只需从另外的9人中选5人,共有59C =126(种)不同的选法.(4)甲、乙、丙三人只能有1人参加,分两步,先从甲、乙、丙中选1人,有13C =3(种)选法,再从另外的9人中选4人有49C 种选法,共有1439C C =378(种)不同的选法. (5)方法一 (直接法)可分为三类:第一类:甲、乙、丙中有1人参加,共有1439C C 种; 第二类:甲、乙、丙中有2人参加,共有2339C C 种; 第三类:甲、乙、丙3人均参加,共有3239C C 种. 共有1439C C +2339C C +3239C C =666(种)不同的选法. 方法二 (间接法)12人中任意选5人共有512C 种,甲、乙、丙三人不能参加的有59C 种,所以,共有512C -59C =666(种)不同的选法.例2.解 (1)以平面内10个点中每2个点为端点的线段的条数,就是从10个不同的元素中取出2个元素的组合数,即线段共有C 210=10×91×2=45(条). (2)由于有向线段的两个端点中一个是起点、另一个是终点,以平面内10个点中每 2 个点为端点的有向线段的条数,就是从10个不同元素中取出2个元素的排列数,即有向线段共有A 210=10×9=90(条). 课堂练习1.[[解析]] 法一 分两类, ①一男一女,共有4×2=8种; ②两女,只有1种,共有8+1=9种.法二 间接法C 26-C 24=15-6=9种.[[答案]] 92.[[解析]] 从8个顶点中任取4个有C 48种方法,从中去掉6个面和6个对角面,所以有C 48-12=58个不同的四面体.[[答案]] 583.[[解析]] 由题意知n >4,取出的两数之和等于5的有两种情况:1,4和2,3,所以P =2C 2n =114,即n 2-n -56=0,解得n =-7(舍去)或n =8.[[答案]]84.[[解析]]先从12名同学选4个上第一个路口,再从剩下的8名同学选4个上第二个路口,那么剩下的4名同学上第三个路口,则不同的分配方案共有C412C48C44=34 650种.[[答案]]34 6505.解(1)分步:首先从4名外科专家中任选2名,有C24种选法,再从除外科专家的6人中选取4人,有C46种选法,所以共有C24·C46=90(种)抽调方法.(2)“至少”的含义是不低于,有两种解答方法.方法一(直接法)按选取的外科专家的人数分类:①选2名外科专家,共有C24·C46种选法;②选3名外科专家,共有C34·C36种选法;③选4名外科专家,共有C44·C26种选法;根据分类加法计数原理,共有C24·C46+C34·C36+C44·C26=185(种)抽调方法.方法二(间接法)不考虑是否有外科专家,共有C610种选法,考虑选取1名外科专家参加,有C14·C56种选法;没有外科专家参加,有C66种选法,所以共有:C610-C14·C56-C66=185(种)抽调方法.(3)“至多2名”包括“没有”、“有1名”、“有2名”三种情况,分类解答.①没有外科专家参加,有C66种选法;②有1名外科专家参加,有C14·C56种选法;③有2名外科专家参加,有C24·C46种选法.所以共有C66+C14·C56+C24·C46=115(种)抽调方法.。
高中数学 第一章1.2 排列与组合 1.2.2 第1课时 组合与组合数公式学案 新人教A版选修2-3 (2)
第1课时组合与组合数公式学习目标 1.理解组合的定义,正确认识组合与排列的区别与联系.2.理解排列数与组合数之间的联系,掌握组合数公式,能运用组合数公式进行计算.3.会解决一些简单的组合问题.知识点一组合的定义思考①从3,5,7,11中任取两个数相除;②从3,5,7,11中任取两个数相乘.以上两个问题中哪个是排列?①与②有何不同特点?答案①是排列,①中选取的两个数是有序的,②中选取的两个数无需排列.梳理一般地,从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合.知识点二组合数与组合数公式组合数及组合数公式组合数定义及表示从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n 个不同元素中取出m个元素的组合数,用符号C m n表示.组合数公式乘积形式C m n=n(n-1)(n-2)…(n-m+1)m!阶乘形式C m n=n!m!(n-m)!性质C m n=C n-mnC m n+1=C m n+C m-1n备注规定C0n=11.从a1,a2,a3三个不同元素中任取两个元素组成一个组合是C23.( ×) 2.从1,3,5,7中任取两个数相乘可得C24个积.( √)3.C 35=5×4×3=60.( × ) 4.C 2 0162 017=C 12 017=2 017.( √ )类型一 组合概念的理解 例1 给出下列问题:(1)a ,b ,c ,d 四支足球队之间进行单循环比赛,共需比赛多少场? (2)a ,b ,c ,d 四支足球队争夺冠、亚军,有多少种不同的结果?(3)从全班40人中选出3人分别担任班长、副班长、学习委员三个职务,有多少种不同的选法?(4)从全班40人中选出3人参加某项活动,有多少种不同的选法? 在上述问题中,哪些是组合问题,哪些是排列问题? 考点 组合的概念 题点 组合的判断解 (1)单循环比赛要求两支球队之间只打一场比赛,没有顺序,是组合问题. (2)冠、亚军是有顺序的,是排列问题.(3)3人分别担任三个不同职务,有顺序,是排列问题. (4)3人参加某项相同活动,没有顺序,是组合问题.反思与感悟 区分排列与组合的办法是首先弄清楚事件是什么,区分的标志是有无顺序,而区分有无顺序的方法是:把问题的一个选择结果写出来,然后交换这个结果中任意两个元素的位置,看是否产生新的变化,若有新变化,即说明有顺序,是排列问题;若无新变化,即说明无顺序,是组合问题.跟踪训练1 判断下列问题是排列问题还是组合问题,并求出相应的结果. (1)集合{0,1,2,3,4}的含三个元素的子集的个数是多少?(2)某小组有9位同学,从中选出正、副班长各一个,有多少种不同的选法?若从中选出2名代表参加一个会议,有多少种不同的选法? 考点 组合的概念 题点 组合的判断解 (1)由于集合中的元素是不讲次序的,一个含三个元素的集合就是一个从0,1,2,3,4中取出3个数组成的集合.这是一个组合问题,组合的个数是C 35=10.(2)选正、副班长时要考虑次序,所以是排列问题,排列数是A 29=9×8=72,所以选正、副班长共有72种选法;选代表参加会议是不用考虑次序的,所以是组合问题,所以不同的选法有C 29=36(种).类型二 组合数公式及性质的应用 命题角度1 有关组合数的计算与证明 例2 (1)计算C 410-C 37·A 33; 考点 组合数公式题点 利用组合数公式进行计算(1)解 原式=C 410-A 37=10×9×8×74×3×2×1-7×6×5=210-210=0.(2)求证:C mn =m +1n +1C m +1n +1. 考点 组合数公式 题点 组合数公式的应用 (2)证明 因为右边=m +1n +1C m +1n +1=m +1n +1·(n +1)!(m +1)!(n -m )!=n !m !(n -m )!=C mn , 左边=C mn ,所以左边=右边,所以原式成立.反思与感悟 (1)涉及具体数字的可以直接用公式C m n=A mn A m m =n (n -1)(n -2)…(n -m +1)m !计算.(2)涉及字母的可以用阶乘式C mn =n !m !(n -m )!计算.(3)计算时应注意利用组合数的两个性质: ①C m n =C n -m n ;②C m n +1=C m n +C m -1n .跟踪训练2 (1)计算C 34+C 35+C 36+…+C 32 017的值为( ) A .C 42 017 B .C 52 017 C .C 42 018-1D .C 52 017-1(2)计算C 98100+C 199200=________. 考点 组合数性质 题点 的性质计算与证明 答案 (1)C (2)5 150 解析 (1)C 34+C 35+C 36+…+C 32 017 =C 44+C 34+C 35+C 36+…+C 32 017-C 44 =C 45+C 35+…+C 32 017-1=… =C 42 017+C 32 017-1=C 42 018-1. (2)C 98100+C 199200=C 2100+C 1200=100×992+200=5 150.命题角度2 含组合数的方程或不等式 例3 (1)已知1C m 5-1C m 6=710C m 7,求C m 8+C 5-m8;(2)解不等式C 4n >C 6n . 考点 组合数性质题点 含有组合数的方程或不等式的问题 解 (1)∵1C m 5-1C m 6=710C m 7,∴m !(5-m )!5!-m !(6-m )!6!=7×(7-m )!m !10×7!,即m !(5-m )!5!-m !(6-m )(5-m )!6×5!=7×m !(7-m )(6-m )(5-m )!10×7×6×5!.∴1-6-m 6=(7-m )(6-m )60,即m 2-23m +42=0,解得m =2或21. ∵0≤m ≤5,∴m =2, ∴C m8+C 5-m8=C 28+C 38=C 39=84.(2)由C 4n >C 6n ,得⎩⎪⎨⎪⎧n !4!(n -4)!>n !6!(n -6)!,n ≥6即⎩⎪⎨⎪⎧n 2-9n -10<0,n ≥6,解得⎩⎪⎨⎪⎧-1<n <10,n ≥6,又n ∈N *,∴该不等式的解集为{6,7,8,9}.反思与感悟 (1)解题过程中应避免忽略根的检验而产生增根的错误,注意不要忽略n ∈N *. (2)与排列组合有关的方程或不等式问题要用到排列数、组合数公式,以及组合数的性质,求解时,要注意由C m n 中的m ∈N *,n ∈N *,且n ≥m 确定m ,n 的范围,因此求解后要验证所得结果是否适合题意.跟踪训练3 解方程3C x -7x -3=5A 2x -4. 考点 组合数性质题点 含有组合数的方程或不等式的问题 解 原式可变形为3C 4x -3=5A 2x -4, 即3(x -3)(x -4)(x -5)(x -6)4×3×2×1=5(x -4)(x -5),所以(x-3)(x-6)=5×4×2=8×5.所以x=11或x=-2(舍去).经检验符合题意,所以方程的解为x=11.类型三简单的组合问题例4 有10名教师,其中6名男教师,4名女教师.(1)现要从中选2名去参加会议,有________种不同的选法;(2)选出2名男教师或2名女教师参加会议,有________种不同的选法;(3)现要从中选出男、女教师各2名去参加会议,有________种不同的选法.考点组合的应用题点无限制条件的组合问题答案(1)45 (2)21 (3)90解析(1)从10名教师中选2名去参加会议的选法种数,就是从10个不同元素中取出2个元素的组合数,即C210=10×92×1=45(种).(2)可把问题分两类情况:第1类,选出的2名是男教师有C26种方法;第2类,选出的2名是女教师有C24种方法.根据分类加法计算原理,共有C26+C24=15+6=21(种)不同选法.(3)从6名男教师中选2名的选法有C26种,从4名女教师中选2名的选法有C24种,根据分步乘法计数原理,共有不同的选法C26×C24=6×52×1×4×32×1=90(种).反思与感悟(1)解简单的组合应用题时,首先要判断它是不是组合问题,组合问题与排列问题的根本区别在于排列问题与取出元素之间的顺序有关,而组合问题与取出元素的顺序无关.(2)要注意两个基本原理的运用,即分类与分步的灵活运用.在分类和分步时,一定注意有无重复或遗漏.跟踪训练4 一个口袋内装有大小相同的7个白球和1个黑球.(1)从口袋内取出的3个小球,共有多少种取法?(2)从口袋内取出3个球,使其中含有1个黑球,有多少种取法?(3)从口袋内取出3个球,使其中不含黑球,有多少种取法?考点组合的应用题点有限制条件的组合问题解(1)从口袋内的8个球中取出3个球,取法种数是C38=8×7×63×2×1=56.(2)从口袋内取出3个球有1个是黑球,于是还要从7个白球中再取出2个,取法种数是C27=7×62×1=21.(3)由于所取出的3个球中不含黑球,也就是要从7个白球中取出3个球,取法种数是C37=7×6×53×2×1=35.1.给出下列问题:①从甲、乙、丙3名同学中选出2名分别去参加2个乡镇的社会调查,有多少种不同的选法?②有4张电影票,要在7人中选出4人去观看,有多少种不同的选法?③某人射击8枪,击中4枪,且命中的4枪均为2枪连中,则不同的结果有多少种?其中组合问题的个数是( )A.3 B.2 C.1 D.0考点组合的概念题点组合的判断答案 B解析①与顺序有关,是排列问题,②③均与顺序无关,是组合问题,故选B.2.集合M={x|x=C n4,n≥0且n∈N},集合Q={1,2,3,4},则下列结论正确的是 ( ) A.M∪Q={0,1,2,3,4} B.Q⊆MC.M⊆Q D.M∩Q={1,4}考点组合数公式题点利用组合数公式进行计算答案 D解析由C n4知n=0,1,2,3,4,因为C04=1,C14=4,C24=4×32=6,C34=C14=4,C44=1,所以M={1,4,6}.故M∩Q={1,4}.3.若C n12=C2n-312,则n等于( )A.3 B.5 C.3或5 D.15考点组合数性质题点含有组合数的方程或不等式的问题答案 C解析由组合数的性质得n=2n-3或n+2n-3=12,解得n=3或n=5,故选C.4.某校开设A类选修课3门,B类选修课5门,一位同学要从中选3门,若要求两类课程中至少各选1门,则不同的选法共有( )A .15种B .30种C .45种D .90种 考点 组合的应用题点 有限制条件的组合问题 答案 C解析 分两类,A 类选修课选1门,B 类选修课选2门,或者A 类选修课选2门,B 类选修课选1门,因此,共有C 13·C 25+C 23·C 15=45(种)选法.5.五个点中任何三点都不共线,则这五个点可以连成________条线段;如果是有向线段,共有________条. 考点 组合的概念 题点 组合的判断 答案 10 20解析 从五个点中任取两个点恰好连成一条线段,这两个点没有顺序,所以是组合问题,连成的线段共有C 25=10(条) .再考虑有向线段的问题,这时两个点的先后排列次序不同则对应不同的有向线段,所以是排列问题,排列数是A 25=20.所以有向线段共有20条.1.排列与组合的联系与区别(1)联系:二者都是从n 个不同的元素中取m (m ≤n )个元素. (2)区别:排列问题中元素有序,组合问题中元素无序. 2.关于组合数的计算(1)涉及具体数字的可以直接用公式C m n=A mn A m m =n (n -1)(n -2)…(n -m +1)m !计算;(2)涉及字母的可以用阶乘式C mn =n !m !(n -m )!计算.(3)组合数的两个性质: 性质1:C mn =C n -mn ; 性质2:C mn +1=C mn +C m -1n .一、选择题1.以下四个问题,属于组合问题的是( ) A .从3个不同的小球中,取出2个排成一列 B .老师在排座次时将甲、乙两位同学安排为同桌C .在电视节目中,主持人从100位幸运观众中选出2名幸运之星D .从13位司机中任选出两位开同一辆车往返甲、乙两地考点 组合的概念 题点 组合的判断 答案 C解析 只有从100位幸运观众中选出2名幸运之星,与顺序无关,是组合问题. 2.A 3101C 2100+C 97100等于( ) A.16 B .101 C.1107D .6考点 组合数公式题点 利用组合数公式进行计算 答案 D解析 A 3101C 2100+C 97100=A 3101C 2100+C 3100=A 3101C 3101=A 33=6.3.下列等式不正确的是( ) A .C mn =n !m !(n -m )!B .C m n =C n -mn C .C m n +1=C mn +C m -1n D .C mn =C m +1n +1考点 组合数公式 题点 组合数公式的应用 答案 D解析 A 是组合数公式;B ,C 是组合数性质;C mn =n !m !(n -m )!,C m +1n +1=(n +1)!(m +1)!(n -m )!,两者不相等,故D 错误.4.若A 3n =6C 4n ,则n 的值为( ) A .6 B .7 C .8 D .9 考点 组合数性质题点 含有组合数的方程或不等式的问题 答案 B解析 由题意知n (n -1)(n -2)=6·n (n -1)(n -2)(n -3)4×3×2×1,化简得n -34=1,所以n =7.5.把三张游园票分给10个人中的3人,则分法有( ) A .A 310种B .C 310种C.C310A310种D.30种考点组合的应用题点无限制条件的组合问题答案 B解析三张票没区别,从10人中选3人即可,即C310.6.将2名女教师,4名男教师分成2个小组,分别安排到甲、乙两所学校轮岗支教,每个小组由1名女教师和2名男教师组成,则不同的安排方案共有( )A.24种B.10种C.12种D.9种考点组合的应用题点有限制条件的组合问题答案 C解析第一步,为甲地选1名女教师,有C12=2(种)选法;第二步,为甲地选2名男教师,有C24=6(种)选法;第三步,剩下的3名教师到乙地,故不同的安排方案共有2×6×1=12(种),故选C.7.现有6个白球,4个黑球,任取4个,则至少有两个黑球的取法种数是( )A.115 B.90 C.210 D.385考点组合的应用题点有限制条件的组合问题答案 A解析依题意根据取法可分为三类:两个黑球,有C24C26=90(种);三个黑球,有C34C16=24(种);四个黑球,有C44=1(种).根据分类加法计数原理可得,至少有两个黑球的取法种数是90+24+1=115,故选A.8.对于所有满足1≤m≤n≤5的自然数m,n,方程x2+C m n y2=1所表示的不同椭圆的个数为( )A.15 B.7 C.6 D.0考点组合数性质题点利用组合数的性质进行计算与证明答案 C解析因为1≤m≤n≤5,且方程表示椭圆,所以C m n可能为C12,C13,C23,C14,C24,C34,C15,C25, C35,C45,其中C13=C23,C14=C34,C15=C45,C25=C35,所以x2+C m n y2=1能表示的不同椭圆有6个.二、填空题9.从2,3,5,7四个数中任取两个不同的数相乘,有m个不同的积;任取两个不同的数相除,有n个不同的商,则m∶n=________.考点 组合的概念题点 组合的判断答案 1∶2解析 ∵m =C 24,n =A 24,∴m ∶n =1∶2.10.从进入决赛的6名选手中决出1名一等奖、2名二等奖、3名三等奖,则可能的决赛结果共有________种.考点 组合的应用题点 有限制条件的组合问题答案 60解析 根据题意,所有可能的决赛结果有C 16C 25C 33=6×5×42×1=60(种). 11.不等式C 2n -n <5的解集为________.考点 组合数性质题点 含有组合数的方程或不等式的问题答案 {2,3,4}解析 由C 2n -n <5,得n (n -1)2-n <5,即n 2-3n -10<0,解得-2<n <5.由题意知n ≥2,且n ∈N *,则n =2,3,4,故原不等式的解集为{2,3,4}.三、解答题12.已知C 4n ,C 5n ,C 6n 成等差数列,求C 12n 的值.考点 组合数公式题点 组合数公式的应用解 由已知得2C 5n =C 4n +C 6n , 所以2×n !5!(n -5)!=n !4!(n -4)!+n !6!(n -6)!, 整理得n 2-21n +98=0,解得n =7或n =14,要求C 12n 的值,故n ≥12,所以n =14,于是C 1214=C 214=14×132×1=91. 13.在一次数学竞赛中,某学校有12人通过了初试,学校要从中选出5人参加市级培训.在下列条件下,有多少种不同的选法?(1)任意选5人;(2)甲、乙、丙三人必须参加;(3)甲、乙、丙三人不能参加.考点 组合的应用题点 有限制条件的组合问题解 (1)从中任取5人是组合问题,共有C 512=792(种)不同的选法.(2)甲、乙、丙三人必须参加,则只需要从另外9人中选2人,是组合问题,共有C 29=36(种)不同的选法.(3)甲、乙、丙三人不能参加,则只需从另外的9人中选5人,共有C 59=126(种)不同的选法.四、探究与拓展14.以下三个式子:①C mn =A m n m !;②A m n =n A m -1n -1;③C m n ÷C m +1n =m +1n -m .其中正确的个数是____. 考点 组合数公式题点 组合数公式的应用答案 3解析 ①式显然成立;②式中A m n =n (n -1)(n -2)…(n -m +1),A m -1n -1=(n -1)(n -2)…(n -m +1),所以A m n =n A m -1n -1,故②式成立;对于③式C mn ÷C m +1n =C m n C m +1n =A mn ·(m +1)!m !·A m +1n =m +1n -m ,故③式成立. 15.某届世界杯举办期间,共32支球队参加比赛,它们先分成8个小组进行循环赛,决出16强(每队均与本组其他队赛1场,各组第一、二名晋级16强),这16支球队按确定的程序进行淘汰赛,即八分之一淘汰赛,四分之一淘汰赛,半决赛,决赛,最后决出冠、亚军,此外还要决出第三、四名,问这届世界杯总共将进行多少场比赛?考点 组合的应用题点 有限制条件的组合问题解 可分为如下几类比赛:(1)小组循环赛,每组有C 24=6(场),8个小组共有48场;(2)八分之一淘汰赛,8个小组的第一、二名组成16强,根据赛制规则,每2支球队一组,每组比赛1场,可以决出8强,共有8场;(3)四分之一淘汰赛,根据赛制规则,8强中每2支球队一组,每组比赛1场,可以决出4强,共有4场;(4)半决赛,根据赛制规则,4强每2支球队一组,每组比赛1场,可以决出2强,共有2场;(5)决赛,2强比赛1场确定冠、亚军,4强中的另2支球队比赛1场决出第三、四名,共有2场.综上,由分类加法计数原理知,总共将进行48+8+4+2+2=64(场)比赛.。
学案4:1.2.2自由组合定律的解题思路及其在实践中的应用
自由组合定律的解题思路及其在实践中的应用【学习导航】1.概述孟德尔自由组合定律的应用。
2.结合提供的示例,归纳有关自由组合现象的解题规律。
【重点点击】孟德尔自由组合定律的实际应用。
(一)基因自由组合定律的应用1.育种方面原理:通过基因重组,培育具有多个优良性状的新品种如:水稻:矮杆、不抗病×高杆、抗病矮杆抗病新品种(纯合体)2.医学实践方面原理:根据基因的自由组合定律来分析家系中两种遗传病同时发病的情况,并且推断出后代的基因型和表现型以及它们出现的概率,为遗传病的预测和诊断提供理论依据例1.人类多指基因(T)对正常(t)是显性,白化基因(a)对正常(A)是隐性,都在常染色体上,而且是独立遗传。
一个家庭中父亲多指,母亲正常,他们有一个白化病且手指正常的孩子,则下一个孩子只有一种病和有两种病的机率分别是()A.1/2,1/8B.3/4,1/4 C.1/4,1/4D.1/4,1/8(二)应用分离定律解决自由组合问题1.思路:将自由组合问题转化为若干个分离问题。
①某个体产生配子的类型数等于各对基因单独形成的配子种类数的乘积;②子代基因型或表现型种类数等于各对基因单独自交时产生的基因型或表现型种类数的乘积;③子代中个别基因型或表现型所占比例等于该个别基因型或表现型中各对基因型或表现型出现几率的乘积;2.题型(1)求配子种数--方法:数学排列组合应用法例2:某基因型为AaBbCCDd的生物体产生配子的种类:______(各对等位基因独立遗传)(2)求特定个体出现概率方法:自由组合定律的规律应用例3:按自由组合定律遗传的具有两对相对性状的纯合子杂交,F2中出现的性状重组类型的个体占总数的()A.3/8B.3/8或5/8C.5/8D.1/16(3)孟德尔豌豆两对相对性状杂交实验基因型种类分布规律和特点及比例,表现型类型分布特点及比例。
填写完整并思考:①F2中基因型种类。
②双显性个体的基因型,所占比例。
学案1:1.2.2 气体摩尔体积
第2课时气体摩尔体积二、气体摩尔体积1.影响物质体积的因素{粒子数目粒子的大小粒子间的平均距离(1)决定固体或液体体积的主要因素{粒子数目粒子的大小(2)决定气体体积的主要因素{粒子的数目粒子间的平均距离{温度压强2.气体摩尔体积(1)定义:单位物质的量的物质所占的体积(2)符号:V m单位:L·mol-1、m3·mol-1(3)影响因素:温度、压强(4)标准状况数值:22.4 L·mol-1(5)物质的量(n)、气体摩尔体积(V m)、气体体积(V)的关系:V=n·V m3.阿伏加德罗定律(1)内容:同温、同压、同体积的任何气体含有相同数目的分子。
(2)适用范围:任何气体或混合气体(3)推论①同温、同压V1V2=n1n2②同温、同压ρ1ρ2=M1M2③同温、同体积p1p2=n1n2知识点一气体摩尔体积1.下列说法正确的是( )A.标准状况下,6.02×1023个分子所占的体积约是22.4 L B.0.5 mol H2所占的体积是11.2 LC.标准状况下,1 mol H2O的体积为22.4 LD.标准状况下,28 g CO与N2的混合气体的体积约为22.4 L知识点二阿伏加德罗定律及推论2.在两个密闭容器中,分别充有质量相同的甲、乙两种气体,若两容器的温度和压强均相同,且甲的密度大于乙的密度,则下列说法正确的是( )A.甲的分子数比乙的分子数多B.甲的物质的量比乙的物质的量少C.甲的摩尔体积比乙的摩尔体积小D.甲的相对分子质量比乙的相对分子质量小知识点三有关气体摩尔体积的计算3.在标准状况下有:①6.72 L CH4②3.01×1023个氯化氢分子③13.6 g硫化氢④0.2 mol氨气下列对这四种气体相关量的比较不正确的是( )A.体积:②>③>①>④B.密度:②>③>④>①C.质量:②>③>①>④D.氢原子数:①>④>③>②4.在标准状况下,H2和CO的混合气体7 L,质量为2.25 g,求H2和CO的体积分数。
山东省泰安市2019年七年级生物上册1.2.2生物与环境组成生态系统学案(含试卷)
第二节生物与环境组成生态系统【学习目标】1、概述生态系统的组成。
2、列举不同的生态系统。
3、描述生态系统中的食物链和食物网。
4、举例说出某些有害物质会通过食物链不断积累。
5、阐明生态系统的自动调节能力是有限的。
【学习重、难点】重点:生态系统的组成及生态系统中的食物链和食物网。
难点:生态系统各成分之间的关系。
【学习过程】一、课前自主学习:(阅读教材P19—P24完成练习)1.在一定地域内,________与________所形成的统一的整体叫做________2.动物不能自己制造有机物,它们直接或间接地以______为食,因而叫做_______。
3.生产者、消费者和分解者之间是_______、的关系。
4.生产者与消费者之间的关系,主要是_______的关系,这样就形成了____________。
5.在一个生态系统中,往往有很多条,它们彼此,形成食物网。
6.生态系统中的_______和__________就是沿着食物链和食物网流动的。
二、课堂助学1、情景引入:我们见过的水库、树林、农田中既有生物也有非生物,在生物学上称作什么?2、交流讨论:学生展示交流自主学习成绩,讨论自主学习中提出的问题。
3、合作探究:学习任务一:概述生态系统的组成。
(1)自学教材P19,结合教材中的插图,认真分析P20的“资料分析”。
有人为了防止鸟儿吃草籽,把人工种草的试验区用网罩了起来。
过一段时间发现,草几乎被虫子吃光了,而未加罩网的天然草原,牧草却生长良好。
这是什么原因呢?这个实例说明了什么道理?(2)观察分析P20“资料分析”,并讨论其中的思考题:①树、昆虫幼虫和啄木鸟之间的关系是怎样的?②腐烂的树桩最终会消失吗?③在生态系统中,植物、动物、真菌分别扮演什么角色④思考:一片树林一条河流一座城市一块农田一片草原的所有生物一座森林属于生态系统的是不属于生态系统的是学习任务二:描述生态系统中的食物链和食物网。
(1)自学教材P22观察与思考,将插图中的生物用箭头连接起来,表示不同生物之间吃与被吃的关系,然后思考教材中的讨论题。
九年级化学上册《1.2.2探究人体吸入的空气和呼出的气体》学案
一、学习目标1.学会用排水法收集气体2.探究并知道人体吸入的空气和呼出的气体成分不同。
二、学习重难点探究人体吸入的空气和呼出的气体三、自主预习案1.完成下表对人体吸入的空气和呼出的气体的探究实验步骤对现象的观察和描述结论一、用排水法收集两瓶呼出的气体,另取两个空集气瓶,用玻璃片将瓶口盖好。
四瓶气体均为色。
二、分别向一瓶空气和一瓶呼出的气体中滴入澄清石灰水,并振荡。
盛有空气的集气瓶:_______盛有呼出气体的集气瓶:澄清的石灰水变________呼出气体中二氧化碳的含量比空气______三、将燃烧着的小木条分别插入空气和人呼出气体的集气瓶中插入空气集气瓶中的小木条比插入人呼出气体集气瓶中的小木条燃烧更______,且燃烧时间要_______人呼出的气体中氧气的含量比空气中氧气含量_______四、取两块干燥的玻璃片,对着其中的一个玻璃片呼气对着干燥的玻璃片呼气后,玻璃片上产生_________________人呼出的气体中水蒸气的含量比空气中水蒸气的含量______四、当堂训练(10分钟)1.人呼出的气体和吸入的空气相比较,下列说法中不正确的是( ) A.人呼出的气体比吸入的空气,二氧化碳含量高B.人呼出的气体比吸入的空气,水蒸气的含量高C.人呼出的气体比吸入的空气,氧气的含量高D.人呼出的气体比吸入的空气,氧气的含量低2.下列实验中(如右图),观察不到明显变化的是( )3.下列气体中,能使带火星的木条复燃的是()。
A.空气B.二氧化碳C.水蒸气D.氧气4.蜡烛在空气中燃烧生成了()。
A.水B.二氧化碳C.二氧化碳和水D.大量灰烬5.用于检验二氧化碳气体的物质是()。
A.水B.食盐水C.澄清石灰水D.糖水6.饼干拆封后长时间放置会变软,其原因是。
7.将燃着的火柴分别插入如右图所示的a、b两个集气瓶中,出现的现象是()。
A .a熄灭、b变旺 B. a更旺、b熄灭C. a、b都变旺D. a、b都熄灭2020年中考化学模拟试卷一、选择题1.下列实验不能达到目的的是()A.探究铁、铝、铜的活动性强弱B.探究CO2是否与水发生了反应C.探究影响反应速率的因素D.探究温度对物质溶解速率的影响A.A B.B C.C D.D2.向一定量的FeSO4和CuSO4的混合溶液中加入x g锌粉,充分反应后过滤,得滤液和滤渣,向滤渣中加入稀盐酸,有气泡产生。
配方法第二课时学案
1.2.2配方法学案第二课时 班级: 姓名:学习目标:1、理解用配方法解一元二次方程的基本步骤。
2、能熟练地运用配方法解一元二次方程。
学习过程:一、做一做:1、用配方法解方程:012=-+x x 。
2、用适当的数填空:⑴x 2-3x +( )2= (x - )2 ; ⑵+-x x 532( )2 =(x - )2; ⑶3x 2+2x -2=3(x + )2+( ).二、合作交流:你能用配方法解方程2x 2-4x -6=0 吗?1、议一议:这个方程的二次项系数不等于1,配方比较困难,怎样才能克服这个困难? 只要将方程的两边 ,二次项系数就等于 。
2、试一试:解方程2x 2-4x -6=0。
3、归纳:对于二次项系数不是1,或者不是一般形式的方程,在配方前先把原方程化成 ,再把二次项系数化为 ,然后 一次项系数的 ,再 ,使得含未知数的项在一个 式里;最后将配方后的一元二次方程用 或 来解。
三、用一用:1、用配方法解下列方程: ⑴041932=++x x ; ⑵0232=++x x ;⑶0181532=+-x x ; ⑷1322-=x x 。
2、不解方程,只通过配方判断下列方程解的情况。
⑴0412=++x x ;⑵0522=--x x ;⑶0522=-+-x x 。
四、拓展升华:1、用配方法将1322+-x x 化成k h x a ++2)(的形式。
2、试用配方法证明:代数式322+-x x 的值不小于823。
3、解方程0168124322=+--+y x y x 。
4、你能用配方法求解一般形式的一元二次方程)0(02≠=++a c bx ax 吗?。
1.2.2学案
第二章 组成细胞的分子第二节 生命活动的主要承担者 蛋白质一、学习目标1.蛋白质的基本单位——氨基酸,及其组成元素,结构特点2.蛋白质的组成方式、结构特点3.蛋白质功能特点二、自主学习1.氨基酸是蛋白质的 。
①氨基酸组成:一个 和一个 和一个和一个 (R 基)连在 上,各种氨基酸区别在于 不用。
构成氨基酸:构成蛋白质:③组成蛋白质的氨基酸有 种 有 种人体细胞不能合成的氨基酸叫有 种人体细胞可以合成的氨基酸叫2.氨基酸分子间结合方式:①一个氨基酸分子的 和另一个氨基酸分子的 连接,同时脱去 ,形成一个连接两个氨基酸的化学键叫 ,其化学通式是 。
③蛋白质分子质量= 。
肽键数=脱水个数= 。
④蛋白质多样性由于 ①氨基酸 、 、 不同。
②蛋白质的 千差万别。
氨基酸之间结合图解:3.蛋白质的功能:①许多蛋白质是构成 的重要物质;②一些具有 功能,如酶;③一些具有 功能,如血红蛋白;④一些具有 作用,如激素;⑤一些具有 作用,如抗体。
蛋白质是生命活动的 。
三、自我检测1.下列氨基酸中,不是..组成蛋白质的氨基酸是 ( )2.已知丙氨酸的R 基为—CH 3,则丙氨酸分子中所含碳原子和氮原子的个数分别是( )A.3和2B.3和1C.2和2D.2和13.组成蛋白质的20种氨基酸之间的主要区别在于( )A .含氨基的数量不同B .含羧基的数量不同C .含碳原子的数量不同D .R 基结构不同4.下列有的属于构成蛋白质的氨基酸,有的不是。
其中是构成蛋白质的氨基酸是( )①NH 2—CH 2—CH 2OH ②NH 2—CH 2—COOH5.下列哪项不是..构成蛋白质的氨基酸?( ) A . B .C .D .6.生物体内的蛋白质千差万别,其原因不可能是A .各种蛋白质分子的缩合方式不同B .组成蛋白质的氨基酸酸种类和数量不同C .氨基酸排列顺序不同D .蛋白质的空间结构不同7.一个由n条肽链组成的蛋白质分子共有m 个氨基酸,该蛋白质分子完全水解共需水分子A、(n-m)个B、(m+n) 个C、(m) 个D、 (m—n) 个8.由一条肽链构成的蛋白质,含有51个氨基酸,其失去水分子数及形成肽键数分别为()A.51和51 B.50和50 C.50和49 D.49和499.某亚种苏云金芽孢杆菌产生的伴胞晶体蛋白含2条肽链,共由126个氨基酸组成。
高中数学 第一章1.2 排列与组合 1.2.2 第1课时 组合与组合数公式学案 新人教A版选修2-3 (2)
第1课时组合与组合数公式学习目标 1.理解组合的定义,正确认识组合与排列的区别与联系.2.理解排列数与组合数之间的联系,掌握组合数公式,能运用组合数公式进行计算.3.会解决一些简单的组合问题.知识点一组合的定义思考①从3,5,7,11中任取两个数相除;②从3,5,7,11中任取两个数相乘.以上两个问题中哪个是排列?①与②有何不同特点?答案①是排列,①中选取的两个数是有序的,②中选取的两个数无需排列.梳理一般地,从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合.知识点二组合数与组合数公式组合数及组合数公式组合数定义及表示从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n 个不同元素中取出m个元素的组合数,用符号C m n表示.组合数公式乘积形式C m n=n(n-1)(n-2)…(n-m+1)m!阶乘形式C m n=n!m!(n-m)!性质C m n=C n-mnC m n+1=C m n+C m-1n备注规定C0n=11.从a1,a2,a3三个不同元素中任取两个元素组成一个组合是C23.( ×) 2.从1,3,5,7中任取两个数相乘可得C24个积.( √)3.C35=5×4×3=60.( ×)4.C2 0162 017=C12 017=2 017.( √)类型一组合概念的理解例1 给出下列问题:(1)a,b,c,d四支足球队之间进行单循环比赛,共需比赛多少场?(2)a,b,c,d四支足球队争夺冠、亚军,有多少种不同的结果?(3)从全班40人中选出3人分别担任班长、副班长、学习委员三个职务,有多少种不同的选法?(4)从全班40人中选出3人参加某项活动,有多少种不同的选法?在上述问题中,哪些是组合问题,哪些是排列问题?考点组合的概念题点组合的判断解(1)单循环比赛要求两支球队之间只打一场比赛,没有顺序,是组合问题.(2)冠、亚军是有顺序的,是排列问题.(3)3人分别担任三个不同职务,有顺序,是排列问题.(4)3人参加某项相同活动,没有顺序,是组合问题.反思与感悟区分排列与组合的办法是首先弄清楚事件是什么,区分的标志是有无顺序,而区分有无顺序的方法是:把问题的一个选择结果写出来,然后交换这个结果中任意两个元素的位置,看是否产生新的变化,若有新变化,即说明有顺序,是排列问题;若无新变化,即说明无顺序,是组合问题.跟踪训练1 判断下列问题是排列问题还是组合问题,并求出相应的结果.(1)集合{0,1,2,3,4}的含三个元素的子集的个数是多少?(2)某小组有9位同学,从中选出正、副班长各一个,有多少种不同的选法?若从中选出2名代表参加一个会议,有多少种不同的选法?考点组合的概念题点组合的判断解(1)由于集合中的元素是不讲次序的,一个含三个元素的集合就是一个从0,1,2,3,4中取出3个数组成的集合.这是一个组合问题,组合的个数是C35=10.(2)选正、副班长时要考虑次序,所以是排列问题,排列数是A29=9×8=72,所以选正、副班长共有72种选法;选代表参加会议是不用考虑次序的,所以是组合问题,所以不同的选法有C29=36(种).类型二组合数公式及性质的应用命题角度1 有关组合数的计算与证明例2 (1)计算C410-C37·A33;考点组合数公式题点利用组合数公式进行计算(1)解 原式=C 410-A 37=10×9×8×74×3×2×1-7×6×5=210-210=0.(2)求证:C mn =m +1n +1C m +1n +1. 考点 组合数公式 题点 组合数公式的应用 (2)证明 因为右边=m +1n +1C m +1n +1=m +1n +1·(n +1)!(m +1)!(n -m )!=n !m !(n -m )!=C mn , 左边=C mn ,所以左边=右边,所以原式成立.反思与感悟 (1)涉及具体数字的可以直接用公式C m n=A mn A m m =n (n -1)(n -2)…(n -m +1)m !计算.(2)涉及字母的可以用阶乘式C mn =n !m !(n -m )!计算.(3)计算时应注意利用组合数的两个性质: ①C m n =C n -m n ;②C m n +1=C m n +C m -1n .跟踪训练2 (1)计算C 34+C 35+C 36+…+C 32 017的值为( ) A .C 42 017 B .C 52 017 C .C 42 018-1D .C 52 017-1(2)计算C 98100+C 199200=________. 考点 组合数性质 题点 的性质计算与证明 答案 (1)C (2)5 150 解析 (1)C 34+C 35+C 36+…+C 32 017 =C 44+C 34+C 35+C 36+…+C 32 017-C 44 =C 45+C 35+…+C 32 017-1=… =C 42 017+C 32 017-1=C 42 018-1. (2)C 98100+C 199200=C 2100+C 1200 =100×992+200=5 150.命题角度2 含组合数的方程或不等式 例3 (1)已知1C m 5-1C m 6=710C m 7,求C m 8+C 5-m8;(2)解不等式C 4n >C 6n . 考点 组合数性质题点 含有组合数的方程或不等式的问题 解 (1)∵1C m 5-1C m 6=710C m 7,∴m !(5-m )!5!-m !(6-m )!6!=7×(7-m )!m !10×7!,即m !(5-m )!5!-m !(6-m )(5-m )!6×5!=7×m !(7-m )(6-m )(5-m )!10×7×6×5!.∴1-6-m 6=(7-m )(6-m )60,即m 2-23m +42=0,解得m =2或21. ∵0≤m ≤5,∴m =2, ∴C m8+C 5-m8=C 28+C 38=C 39=84.(2)由C 4n >C 6n ,得⎩⎪⎨⎪⎧n !4!(n -4)!>n !6!(n -6)!,n ≥6即⎩⎪⎨⎪⎧n 2-9n -10<0,n ≥6,解得⎩⎪⎨⎪⎧-1<n <10,n ≥6,又n ∈N *,∴该不等式的解集为{6,7,8,9}.反思与感悟 (1)解题过程中应避免忽略根的检验而产生增根的错误,注意不要忽略n ∈N *. (2)与排列组合有关的方程或不等式问题要用到排列数、组合数公式,以及组合数的性质,求解时,要注意由C m n 中的m ∈N *,n ∈N *,且n ≥m 确定m ,n 的范围,因此求解后要验证所得结果是否适合题意.跟踪训练3 解方程3C x -7x -3=5A 2x -4. 考点 组合数性质题点 含有组合数的方程或不等式的问题 解 原式可变形为3C 4x -3=5A 2x -4, 即3(x -3)(x -4)(x -5)(x -6)4×3×2×1=5(x -4)(x -5),所以(x-3)(x-6)=5×4×2=8×5.所以x=11或x=-2(舍去).经检验符合题意,所以方程的解为x=11.类型三简单的组合问题例4 有10名教师,其中6名男教师,4名女教师.(1)现要从中选2名去参加会议,有________种不同的选法;(2)选出2名男教师或2名女教师参加会议,有________种不同的选法;(3)现要从中选出男、女教师各2名去参加会议,有________种不同的选法.考点组合的应用题点无限制条件的组合问题答案(1)45 (2)21 (3)90解析(1)从10名教师中选2名去参加会议的选法种数,就是从10个不同元素中取出2个元素的组合数,即C210=10×92×1=45(种).(2)可把问题分两类情况:第1类,选出的2名是男教师有C26种方法;第2类,选出的2名是女教师有C24种方法.根据分类加法计算原理,共有C26+C24=15+6=21(种)不同选法.(3)从6名男教师中选2名的选法有C26种,从4名女教师中选2名的选法有C24种,根据分步乘法计数原理,共有不同的选法C26×C24=6×52×1×4×32×1=90(种).反思与感悟(1)解简单的组合应用题时,首先要判断它是不是组合问题,组合问题与排列问题的根本区别在于排列问题与取出元素之间的顺序有关,而组合问题与取出元素的顺序无关.(2)要注意两个基本原理的运用,即分类与分步的灵活运用.在分类和分步时,一定注意有无重复或遗漏.跟踪训练4 一个口袋内装有大小相同的7个白球和1个黑球.(1)从口袋内取出的3个小球,共有多少种取法?(2)从口袋内取出3个球,使其中含有1个黑球,有多少种取法?(3)从口袋内取出3个球,使其中不含黑球,有多少种取法?考点组合的应用题点有限制条件的组合问题解(1)从口袋内的8个球中取出3个球,取法种数是C38=8×7×63×2×1=56.(2)从口袋内取出3个球有1个是黑球,于是还要从7个白球中再取出2个,取法种数是C27=7×62×1=21.(3)由于所取出的3个球中不含黑球,也就是要从7个白球中取出3个球,取法种数是C37=7×6×53×2×1=35.1.给出下列问题:①从甲、乙、丙3名同学中选出2名分别去参加2个乡镇的社会调查,有多少种不同的选法?②有4张电影票,要在7人中选出4人去观看,有多少种不同的选法?③某人射击8枪,击中4枪,且命中的4枪均为2枪连中,则不同的结果有多少种?其中组合问题的个数是( )A.3 B.2 C.1 D.0考点组合的概念题点组合的判断答案 B解析①与顺序有关,是排列问题,②③均与顺序无关,是组合问题,故选B.2.集合M={x|x=C n4,n≥0且n∈N},集合Q={1,2,3,4},则下列结论正确的是 ( ) A.M∪Q={0,1,2,3,4} B.Q⊆MC.M⊆Q D.M∩Q={1,4}考点组合数公式题点利用组合数公式进行计算答案 D解析由C n4知n=0,1,2,3,4,因为C04=1,C14=4,C24=4×32=6,C34=C14=4,C44=1,所以M={1,4,6}.故M∩Q={1,4}.3.若C n12=C2n-312,则n等于( )A.3 B.5 C.3或5 D.15考点组合数性质题点含有组合数的方程或不等式的问题答案 C解析由组合数的性质得n=2n-3或n+2n-3=12,解得n=3或n=5,故选C.4.某校开设A类选修课3门,B类选修课5门,一位同学要从中选3门,若要求两类课程中至少各选1门,则不同的选法共有( )A .15种B .30种C .45种D .90种 考点 组合的应用题点 有限制条件的组合问题 答案 C解析 分两类,A 类选修课选1门,B 类选修课选2门,或者A 类选修课选2门,B 类选修课选1门,因此,共有C 13·C 25+C 23·C 15=45(种)选法.5.五个点中任何三点都不共线,则这五个点可以连成________条线段;如果是有向线段,共有________条. 考点 组合的概念 题点 组合的判断 答案 10 20解析 从五个点中任取两个点恰好连成一条线段,这两个点没有顺序,所以是组合问题,连成的线段共有C 25=10(条) .再考虑有向线段的问题,这时两个点的先后排列次序不同则对应不同的有向线段,所以是排列问题,排列数是A 25=20.所以有向线段共有20条.1.排列与组合的联系与区别(1)联系:二者都是从n 个不同的元素中取m (m ≤n )个元素. (2)区别:排列问题中元素有序,组合问题中元素无序. 2.关于组合数的计算(1)涉及具体数字的可以直接用公式C m n=A mn A m m =n (n -1)(n -2)…(n -m +1)m !计算;(2)涉及字母的可以用阶乘式C mn =n !m !(n -m )!计算.(3)组合数的两个性质: 性质1:C mn =C n -mn ; 性质2:C mn +1=C mn +C m -1n .一、选择题1.以下四个问题,属于组合问题的是( ) A .从3个不同的小球中,取出2个排成一列 B .老师在排座次时将甲、乙两位同学安排为同桌C .在电视节目中,主持人从100位幸运观众中选出2名幸运之星D .从13位司机中任选出两位开同一辆车往返甲、乙两地考点 组合的概念 题点 组合的判断 答案 C解析 只有从100位幸运观众中选出2名幸运之星,与顺序无关,是组合问题. 2.A 3101C 2100+C 97100等于( ) A.16 B .101 C.1107D .6考点 组合数公式题点 利用组合数公式进行计算 答案 D解析 A 3101C 2100+C 97100=A 3101C 2100+C 3100=A 3101C 3101=A 33=6.3.下列等式不正确的是( ) A .C mn =n !m !(n -m )!B .C m n =C n -mn C .C m n +1=C mn +C m -1n D .C mn =C m +1n +1考点 组合数公式 题点 组合数公式的应用 答案 D解析 A 是组合数公式;B ,C 是组合数性质;C mn =n !m !(n -m )!,C m +1n +1=(n +1)!(m +1)!(n -m )!,两者不相等,故D 错误.4.若A 3n =6C 4n ,则n 的值为( ) A .6 B .7 C .8 D .9 考点 组合数性质题点 含有组合数的方程或不等式的问题 答案 B解析 由题意知n (n -1)(n -2)=6·n (n -1)(n -2)(n -3)4×3×2×1,化简得n -34=1,所以n =7.5.把三张游园票分给10个人中的3人,则分法有( ) A .A 310种B .C 310种C.C310A310种D.30种考点组合的应用题点无限制条件的组合问题答案 B解析三张票没区别,从10人中选3人即可,即C310.6.将2名女教师,4名男教师分成2个小组,分别安排到甲、乙两所学校轮岗支教,每个小组由1名女教师和2名男教师组成,则不同的安排方案共有( )A.24种B.10种C.12种D.9种考点组合的应用题点有限制条件的组合问题答案 C解析第一步,为甲地选1名女教师,有C12=2(种)选法;第二步,为甲地选2名男教师,有C24=6(种)选法;第三步,剩下的3名教师到乙地,故不同的安排方案共有2×6×1=12(种),故选C.7.现有6个白球,4个黑球,任取4个,则至少有两个黑球的取法种数是( )A.115 B.90 C.210 D.385考点组合的应用题点有限制条件的组合问题答案 A解析依题意根据取法可分为三类:两个黑球,有C24C26=90(种);三个黑球,有C34C16=24(种);四个黑球,有C44=1(种).根据分类加法计数原理可得,至少有两个黑球的取法种数是90+24+1=115,故选A.8.对于所有满足1≤m≤n≤5的自然数m,n,方程x2+C m n y2=1所表示的不同椭圆的个数为( )A.15 B.7 C.6 D.0考点组合数性质题点利用组合数的性质进行计算与证明答案 C解析因为1≤m≤n≤5,且方程表示椭圆,所以C m n可能为C12,C13,C23,C14,C24,C34,C15,C25, C35,C45,其中C13=C23,C14=C34,C15=C45,C25=C35,所以x2+C m n y2=1能表示的不同椭圆有6个.二、填空题9.从2,3,5,7四个数中任取两个不同的数相乘,有m个不同的积;任取两个不同的数相除,有n个不同的商,则m∶n=________.考点 组合的概念 题点 组合的判断 答案 1∶2解析 ∵m =C 24,n =A 24,∴m ∶n =1∶2.10.从进入决赛的6名选手中决出1名一等奖、2名二等奖、3名三等奖,则可能的决赛结果共有________种. 考点 组合的应用题点 有限制条件的组合问题 答案 60解析 根据题意,所有可能的决赛结果有C 16C 25C 33=6×5×42×1=60(种).11.不等式C 2n -n <5的解集为________. 考点 组合数性质题点 含有组合数的方程或不等式的问题 答案 {2,3,4} 解析 由C 2n -n <5,得n (n -1)2-n <5,即n 2-3n -10<0, 解得-2<n <5.由题意知n ≥2,且n ∈N *,则n =2,3,4, 故原不等式的解集为{2,3,4}. 三、解答题12.已知C 4n ,C 5n ,C 6n 成等差数列,求C 12n 的值. 考点 组合数公式 题点 组合数公式的应用 解 由已知得2C 5n =C 4n +C 6n ,所以2×n !5!(n -5)!=n !4!(n -4)!+n !6!(n -6)!,整理得n 2-21n +98=0, 解得n =7或n =14, 要求C 12n 的值,故n ≥12, 所以n =14,于是C 1214=C 214=14×132×1=91. 13.在一次数学竞赛中,某学校有12人通过了初试,学校要从中选出5人参加市级培训.在下列条件下,有多少种不同的选法?(1)任意选5人;(2)甲、乙、丙三人必须参加;(3)甲、乙、丙三人不能参加.考点 组合的应用题点 有限制条件的组合问题解 (1)从中任取5人是组合问题,共有C 512=792(种)不同的选法.(2)甲、乙、丙三人必须参加,则只需要从另外9人中选2人,是组合问题,共有C 29=36(种)不同的选法.(3)甲、乙、丙三人不能参加,则只需从另外的9人中选5人,共有C 59=126(种)不同的选法.四、探究与拓展14.以下三个式子:①C mn =A m n m !;②A m n =n A m -1n -1;③C m n ÷C m +1n =m +1n -m .其中正确的个数是____. 考点 组合数公式题点 组合数公式的应用答案 3解析 ①式显然成立;②式中A m n =n (n -1)(n -2)…(n -m +1),A m -1n -1=(n -1)(n -2)…(n -m +1),所以A m n =n A m -1n -1,故②式成立;对于③式C mn ÷C m +1n =C m n C m +1n =A mn ·(m +1)!m !·A m +1n =m +1n -m ,故③式成立. 15.某届世界杯举办期间,共32支球队参加比赛,它们先分成8个小组进行循环赛,决出16强(每队均与本组其他队赛1场,各组第一、二名晋级16强),这16支球队按确定的程序进行淘汰赛,即八分之一淘汰赛,四分之一淘汰赛,半决赛,决赛,最后决出冠、亚军,此外还要决出第三、四名,问这届世界杯总共将进行多少场比赛?考点 组合的应用题点 有限制条件的组合问题解 可分为如下几类比赛:(1)小组循环赛,每组有C 24=6(场),8个小组共有48场;(2)八分之一淘汰赛,8个小组的第一、二名组成16强,根据赛制规则,每2支球队一组,每组比赛1场,可以决出8强,共有8场;(3)四分之一淘汰赛,根据赛制规则,8强中每2支球队一组,每组比赛1场,可以决出4强,共有4场;(4)半决赛,根据赛制规则,4强每2支球队一组,每组比赛1场,可以决出2强,共有2场;(5)决赛,2强比赛1场确定冠、亚军,4强中的另2支球队比赛1场决出第三、四名,共有2场.综上,由分类加法计数原理知,总共将进行48+8+4+2+2=64(场)比赛.。
学案7:1.2.2 假说—演绎法、自由组合定律的应用
假说—演绎法、自由组合定律的应用【情境导学】抬望眼——让梦想腾飞!美国舞蹈家邓肯女士向萧怕纳求婚,她说:“假如我们两人结了婚,将来生的子女象你一样聪明,象我一样漂亮,那该多完美啊!”萧伯纳不慌不忙地瞟了邓肯一眼说:“假如生个孩子,面貌象我,脑袋与你一样,那岂不更糟!”假设他们俩真的结合了,那么他们的孩子可能出现几种情况?原因是什么?欲知其中的原因我们就得继续学习孟德尔的豌豆杂交实验。
【重点和难点】重点:1.对自由组合现象的解释,阐明自由组合定律。
2.分析孟德尔遗传实验获得成功的原因。
难点:对自由组合现象的解释。
【课前预习】起步稳——夯实基础促发展!1.孟德尔用黄色圆粒豌豆和绿色皱粒豌豆做亲本进行两对相对性状的杂交实验,F1的性状表现是①,两对相对性状中显性性状依次是②。
F 2中四种性状组合的比是③,其中亲本类型④,重组类型是⑤。
2.纯种黄色圆粒豌豆和绿色皱粒豌豆的遗传因子组成分别是YYRR和yyrr,则F1的遗传因子组成是①,F1产生的雌配子和雄配子各有四种:②。
受精时雌雄配子的结合是随机的,F2的遗传因子的组合形式有③种,其中YYRR、YYRr、YyRR、YyRr性状表现为④,YYrr、Yyrr性状表现为⑤,⑥表现为绿色圆粒,⑦表现为绿色皱粒。
3.假说是否正确,孟德尔通过①实验进行了验证,即让②(YyRr)与③(yyrr)杂交,结果是后代的遗传因子的组合形式有④种,性状表现有⑤种,比是⑥。
4.自由组合定律是指控制不同性状的遗传因子的①是互不干扰的;在形成配子时,决定同一性状的成对的遗传因子②,决定不同性状的遗传因子③。
5.孟德尔获得成功的原因有:正确选用①;由单因素到②进行研究;利用③原理对实验结果进行分析;设计了科学合理的④。
6.表现型是指生物____________①_______________,与表现型有关的____②_____叫做基因型。
控制相对性状的基因,叫______③________。
1.2.2民主决策:作出最佳选择最新学案
1.2.2民主决策:作出最佳选择学习目标知识目标:识记民主决策的具体方式,理解公民参与民主决策的重大意义。
能力目标:提高公民参与民主决策的能力,提高理论联系实际、分析问题的能力。
情感、态度、价值观目标:体会民主决策的重要性,积极参与民主决策,增强政治责任感。
激情投入,享受学习的快乐。
重点难点重点:公民参与民主决策的渠道。
难点:社会听证制度。
预习案一、预习目标1、公民参与民主决策的多种方式。
2、公民直接参与民主决策的意义。
二、预习内容(一).公民参与民主决策的多种方式1、公民间接参与决策:2、公民直接参与决策(二)公民参与民主决策的重要意义1、公民通过各种渠道、采用多种方式参与决策过程,是推进决策的重要环节。
2、公民参与民主决策具有重大意义(1)从决策者的角度看:有助于;有助于。
(2)从公民的角度看:有利于;有利于。
提示: 民主决策与科学决策的关系(1)决策科学化,是指决策指导思想、决策体制、决策组织和决策程序必须科学化。
决策民主化的含义包括:首先,决策的主体是人民;其次,决策必须代表和体现人民的意愿和要求,代表人民的根本利益。
可见,民主决策与科学决策是有区别的。
(2)决策科学化和决策民主化是紧密相连、相互渗透的有机体。
一方面,决策民主化是决策科学化的前提条件和重要保证;另一方面,决策科学化是决策民主化需要达到的重要目标。
三、提出疑惑通过自主学习,你还有哪些疑惑,请把它填在下面的表格中探究案一、学始于疑1、公民间接参与民主决策的方式是什么?有何意义?2、公民直接参与民主决策的方式有哪些?各有何意义?3、公民参与民主决策有什么意义?二、质疑探究【探究点一】公民参与民主决策的方式1、阅读教材P19 两种不同的决策方式,回答(1)假如你是决策者,你会采取哪种决策方式?(2)你知道公民可以通过哪些渠道参与民主决策吗?2、材料一为进一步扩大社会参与,提高“十二五”规划编制的民主化和科学化水平,使规划编制成为汇集民智、凝聚民心的过程,国家发展和改革委员会与CCTV-1晚间新闻栏目、CNTV新闻台民声在线论坛联合开展“共绘蓝图—我为‘十二五’规划建言献策”主题征集活动。
分点突破式学案2 :1.2.2组合(一)
组合(1)一、学习目标1.理解组合与组合的概念2.会推导组合数公式,并会应用公式求值3.了解组合数的两个性质,并会求值,化简和证明二、重难点1.组合的概念及组合与组合数的区别2.组合数公式的推导3.组合数公式的应用三、课前探究学习1.组合概念:想一想:组合与排列有什么异同点?2.组合数与组合数公式组合数定义表示法乘积形式组合数公式阶乘形式性质试一试:试求的值四、课堂互动题型一 组合概念的理解【例1】判断下列各事件是排列问题,还是组合问题. (1)10个人相互各写一封信,共写了多少封信? (2)10个人规定相互通一次电话,共通了多少次电话?(3)10支球队以单循环进行比赛(每两队比赛一次),这次比赛需要进行多少场次? (4)10支球队以单循环进行比赛,这次比赛冠、亚军获得者有多少种可能? 【思路探索】【变式1】判断下列各事件是排列问题,还是组合问题.(1)从50个人中选3个人去参加同一种劳动,有多少种不同的选法? (2)从50个人中选3个人到三个学校参加毕业典礼,有多少种选法?(3)从1,2,3,…,9九个数字中任取3个,组成一个三位数,这样的三位数共有多少个? (4)从1,2,3,…,9九个数字中任取3个,然后把这三个数字相加得到一个和,这样的和共有多少个?【自我感悟】说出自己的疑惑:题型二 组合数公式的应用【例2】(1)计算:9798999999100C C C ++;(2)求值:591n n n n C C --++;(3)解方程:36421818n n C C +-=.:【变式2】1.求值:591n nn n C C --++;2.(1)计算:①310C 和710C ;②3276C C -与36C ;③451111C C +与512C .(2)由(1)中计算,你有没有发现一些规律,能不能总结并证明一下?【自我感悟】说出自己的疑惑:题型三 组合数简单的应用【例3】现有10名教师,其中男教师6名,女教师4名. (1)现要从中选出2名去参加会议,有多少种不同的选法?(2)现要从中选出男、女教师各2名去参加会议,有多少种不同的选法?【自我感悟】说出自己的疑惑:当堂检测:1.若n =C 26,则log n 225=( ) A .2 B .3 C.13D.122.若C 7n +1-C 7n =C 8n ,则n =( )A .12B .13C .14D .153.给出下面几个问题,其中是组合问题的有( ) ①某班选10名同学参加拔河比赛;②由1,2,3,4选出两个数,均成平面向量a 的坐标;③由1,2,3,4选出两个数分别作为实轴长和虚轴长,构成焦点在x 轴上的双曲线方程; ④从正方体8个顶点中任取两个点构成线段. A .①② B .①④ C .③④D .②③4.若C 4n >C 6n ,求n 的取值集合.5.(1)设集合A ={a 1,a 2,a 3,a 4,a 5},则集合A 中含有3个元素的子集有多少个? (2)10位同学聚会,见面后每两人之间要握手相互问候,共需握多少次手?答案例1. 【解析】 (1)是排列问题,因为发信人与收信人是有顺序区别的.(2)是组合问题,因为甲与乙通了一次电话,也就是乙与甲通了一次电话,没有顺序的区别. (3)是组合问题,因为每两个队比赛一次,并不需要考虑谁先谁后,没有顺序的区别. (4)是排列问题,因为甲队得冠军、乙队得亚军与甲队得亚军、乙队得冠军是不一样的,是有顺序区别的.变式1:【解析】 (1)(2)都是选出3人,但参加同一劳动没有顺序,而到三个学校参加毕业典礼却有顺序,故(1)是组合问题,(2)是排列问题.(3)当取出3个数字后,如果改变三个数字的顺序,会得到不同的三位数,此问题不但与取出元素有关,而且与元素的安排顺序有关,是排列问题.(4)取出3个数字之后,无论怎样改变这三个数字之间的顺序,其和均不变,此问题只与取出元素有关,而与元素的安排顺序无关,是组合问题.例2.(1) 9798999999100C C C ++=9899100100C C +=99101C =2101C =5050;(2)由组合数定义知:05091n nn n ≤-≤⎧⎨≤-≤+⎩∴4≤n ≤5,又∵n ∈N *,∴n =4或5.当n =4时,591n n n n C C --++=1145C C +=5;当n =5时,591n n n n C C --++=0456C C +=16.(3)由原方程及组合数性质可知3n +6=4n -2,或3n +6=18-(4n -2),∴n =2,或n =8,而当n =8时, 3n +6=30>18,不符合组合数定义,故舍去. 因此n =2. 变式2:1.【解析】由5,19,90,50,n n n n n n ≥-⎧⎪+≥-⎪⎨-≥⎪⎪-≥⎩ 得4≤n ≤5,又n ∈N *,∴n =4或5,当n =4时,原式=1545C C +=5;当n =5时,原式=0456C C +=1+15=16.2.(1)①120;120 ②20;20 ③792;792 (2)组合数具备以下两个性质:①m n m n n C C -=;②11m m m n n nC C C -+=+. 证明如下:①∵n mn C -=!!()!()!!()!n n n m n n m m n m =----,又mn C =!!()!n m n m -,∴m n mn n C C -=.②1m m n n C C -+=!!()!n m n m -+!(1)!(1)!n m n m --+=!(1)!(1)!n n m m m n m -++-+=1(1)!!(1)!mn n C m n m ++=-+,∴11m m m n n nC C C -+=+. 例3. 【解析】 (1)从10名教师中选2名去参加会议的选法数,就是从10个不同元素中取出2个元素的组合数,即C 210=10×92×1=45(种). (2)从6名男教师中选2名的选法有C 26种,从4名女教师中选2名的选法有C 24种,根据分步乘法计数原理,因此共有不同的选法C 26·C 24=6×52×1·4×32×1=90(种). 当堂检测:1.【解析】 n =C 26=15,log n 225=log 15152=2.【答案】 A2.【解析】 ∵C 7n +1-C 7n =C 8n , ∴C 7n +1=C 7n +C 8n =C 8n +1,∴n +1=7+8,∴n =14. 【答案】 C3.【解析】 由于①④中选出的元素与顺序无关;而③④选出的元素与顺序有关,由组合的定义可知:①④为组合.【答案】 B 4.【解析】∵C 4n >C 6n ,∴⎩⎪⎨⎪⎧C 4n >C 6n ,n ≥6.∴⎩⎪⎨⎪⎧n !4!n -4!>n !6!n -6!,n ≥6.∴⎩⎪⎨⎪⎧ n 2-9n -10<0,n ≥6,∴⎩⎪⎨⎪⎧-1<n <10,n ≥6.又∵n ∈N *,∴n 的取值集合为{6,7,8,9}.5.【解析】 (1)从5个元素中取出3个元素并成一组,就是集合A 的子集,元素无序,则共有C 35=10(个).(2)每两人握手一次就完成这一件事, 则共有握手次数为C 210=10×92×1=45(次).。
学案1:1.2.2 假说—演绎法、自由组合定律的应用
假说—演绎法、自由组合定律的应用【学习目标】自由组合定律相关基因型表现型的推测及几率的计算方法。
【学习重点】1、自由组合定律中亲子代基因型的推测方法;2、自由组合定律中有关概率的计算方法。
【学习新课】一、如何计算某个体产生的配子类型及概率?例1:基因型为AaBbCC的生物可产生几种类型的配子?种,分别是。
例2:基因型为AaBbCc的生物产生abc配子的概率为。
计算方法:。
二、如何计算子代的基因型、表现型种类数?例3:AaBbCc与AaBbCC杂交,子代的基因型有种,表现型有种。
三、如何计算子代的基因型、表现型的概率?例4:基因型为YyRr的黄色圆粒豌豆与基因型为Yyrr的黄色皱粒豌豆杂交,后代产生基因型为YYRr的概率为,后代中黄色圆粒出现的概率为。
四、如何由子代推亲代的基因型?例5:某哺乳动物直毛(B)对卷毛(b)为显性,黑色(C)对白色(c)为显性。
这两种基因相对独立。
基因型为BbCc的个体与个体X交配,子代表现型比例为:直毛黑色︰卷毛黑色︰直毛白色︰卷毛白色=3 ︰3 ︰ 1 ︰1。
请推断个体X的基因型:。
五、有关概率的计算例6:已知人类多指(D)与手指正常(d)是一对相对性状,听力语言正常(T)与先天性聋哑(t)是一对相对性状。
在一个家庭中,父亲患多指病,母亲表现型正常,婚后生了一个手指正常但患先天性聋哑的孩子。
请推断:1、父母双方的基因型是什么?父,母。
2、如果他们再生一个小孩,正常的概率为;同时患两种病的概率为;只患多指病的概率为;只患先天性聋哑的概率为。
【巩固训练】1、Dd能产生种配子;Yyrr能产生种配子;YyRr能产生种配子;AaBbCcDdEEFf 能产生种配子。
2、AaBbCcDDEe产生ABcDe配子的概率为,产生ABcde配子的概率为。
3、(1)Dd与Dd杂交,子代的基因型有种,表现型有种。
(2)YyRr与YyRr杂交,子代的基因型有种,表现型有种。
(3)YYrrDD与yyRRdd的豌豆杂交得F1,F1自交产生的F2的基因型有种,表现型有种。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1.2.2 组合的应用
组稿:韩新超审稿:李学新
学习目标
能运用组合数公式进行计算。
2、组合数:
3、组合数公式:
二、典例分析
例1:一位教练的足球队共有17名初级学员,他们中以前没有一人参加过比赛。
按照足球比赛规则,比赛时一个足球队的上场队员是11人。
问:
(1)这位教练从这17名学员中可以形成多少种学员上场方案?
(2)如果在选出11名上场队员时,还要确定其中的守门员,那么教练员有多少种方式做这件事情?
例2.(1)平面内有10个点,以其中每2个点为端点的线段共有多少条?
(2)平面内有10个点,以其中每2个点为端点的有向线段共有多少条?
例3.(1)凸五边形有多少条对角线?
(2)凸n( n>3)边形有多少条对角线?
例4:在100件产品中有98件合格品,2件次品。
产品检验时,从100件产品中任意抽出3件。
(1)一共有多少种不同的抽法?
(2)抽出的3件中恰好有1件是次品的抽法有多少种?
(3)抽出的3件中至少有1件是次品的抽法有多少种?
(4)抽出的3件中至多有一件是次品的抽法有多少种?
课堂练习
1、按下列条件,从12人中选出5人,有多少种不同选法?
(1)甲、乙、丙三人必须当选;
(2)甲、乙、丙三人不能当选;
(3)甲必须当选,乙、丙不能当选;
(4)甲、乙、丙三人只有一人当选;
(5)甲、乙、丙三人至多2人当选;
(6)甲、乙、丙三人至少1人当选;
2、《创导》P23 变1, P25 即时训练
3、《创导》P25 自主演练
作业:
《课时作业》。