苏科版八年级数学下册 第九章 中心对称图形-----平行四边形 练习(包含答案)

合集下载

2020-2021学年苏科 版八年级下册数学 第9章 中心对称图形——平行四边形 单元测试卷

2020-2021学年苏科 版八年级下册数学 第9章 中心对称图形——平行四边形 单元测试卷

2020-2021学年苏科新版八年级下册数学《第9章中心对称图形——平行四边形》单元测试卷一.选择题1.经过矩形对称中心的任意一条直线,把这个矩形分成两部分,设这两部分的面积分别为S1和S2,则S1与S2的大小关系是()A.S1>S2B.S1<S2C.S1=S2D.不能确定2.下列判断四边形是平行四边形的是()A.两组角相等的四边形B.对角线平分的四边形C.一组对边相等,一组对角相等的四边形D.两组对边分别相等的四边形3.四边相等的四边形一定是()A.矩形B.菱形C.正方形D.无法判定4.等腰三角形中有一条边长为4,其三条中位线的长度总和为8,则底边长是()A.4B.8C.4或6D.4或85.如图,8×8方格纸上的两条对称轴EF,MN相交于中心点O,对三角形ABC分别作下列变换:①先以点A为中心顺时针方向旋转90°,再向右平移4格、向上平移4格.②先以点O为中心作其中心对称图形,再以点A的对应点为中心逆时针方向旋转90°.③先以直线MN为轴作其轴对称图形,再向上平移4格,再以点A的对应点为中心顺时针方向旋转90°.其中变换后的图形为三角形PQR的是()A.①②B.①③C.②③D.①②③6.按图中所示的排列规律,在空格中应填()A.B.C.D.7.下列这些美丽的图案都是在“几何画板”软件中利用旋转的知识在一个图案的基础上加工而成的,每一个图案都可以看作是它的“基本图案”绕着它的旋转中心旋转得来的,旋转的角度为()A.30°B.60°C.120°D.180°8.观察下列图形,其中是旋转对称图形的有()A.1个B.2个C.3个D.4个9.如图所示的图案中,能够绕自身的某一点旋转180°后还能与自身重合的图形的个数是()A.1B.2C.3D.410.有两个内角分别为90°,60°,30°的完全一样的三角形拼成四边形,其形状不同的有()A.2个B.3个C.4个D.6个二.填空题11.如图,在△ABC中,AB=4,AC=2.4,BC=3.6,AD⊥BC于点D,E,F分别是AB,AC的中点,则EF=,DE=,DF=.12.根据两条对角线的关系判断一个四边形是矩形或菱形或正方形的必不可少的条件是.13.矩形的两邻边分别为8cm和6cm,则其对角线为cm,矩形面积为cm2.14.(1)若直角三角形斜边上的高和中线分别为10cm、12cm,则它的面积为cm2.(2)已知等腰三角形的一个外角为100°,则这个等腰三角形的顶角为.15.如图,在▱ABC D中,E是AB上一点,F是AB延长线上一点,则S△CDE S△CDF(在横线上填“<”或“>”或“=”).16.一般来说,反证法有如下三个步骤:(1),(2)(3).17.国旗上的五角星是旋转对称图形,它的最小旋转角是.18.如图,已知四边形ABCD是一个平行四边形,则只须补充条件,就可以判定它是一个菱形.19.如果▱ABCD和▱ABE F有公共边AB,那么四边形DCEF是.20.等边三角形、平行四边形、矩形、圆四个图形中,既是轴对称图形又是中心对称图形的是.三.解答题21.如图所示,已知DE,EF是△ABC的两条中位线.求证:四边形BFED是平行四边形.22.怎样将图中的甲图案变成乙图案.23.如图,说出这个图形的旋转中心,它绕旋转中心至少旋转多大角度才能与原来图形重合?24.如图,四边形ABCD为平行四边形,E为BC的中点,DF⊥AE于点F,H为DF的中点,证明:CH⊥DF.25.如图,在平面直角坐标系中,有一个平行四边形ABCD,其中点A,B在x轴上,点D 在y轴上,点C在第一象限.已知AD⊥BD,AD=4,∠ABD=30°,求A,B,C,D 各点的坐标.26.如图所示,已知正方形ABCD的边长是7,AE=BF=CG=DH=2(1)四边形EFGH的形状是;(2)求出四边形EFGH的面积;(3)求出四边形EFGH的周长(结果精确到十分位,参考数值:≈1.703,)27.有一组数排成方阵,如图所示,试计算这组数的和.小明想了想,方阵象正方形,正方形是轴对称图形,又是中心对称图形,能否利用轴对称和中心对称的思想来解决方阵的计算问题呢?小明试了试,竟得到了非常巧妙的方法,你能试试看吗?1234523456345674567856789参考答案与试题解析一.选择题1.解:矩形ABCD中,AD=BC,AO=BO=CO=DO,∴△AOD≌△BOC(SSS),∵∠ECO=∠FAO,OA=OC,∠EOC=∠FOA,∴△OEC≌△OFA,同理可证,△DEO≌△BFO,∴S1=S2.故选:C.2.解;根据平行四边形的判定可知,A、B、C不能判定为平行四边形.故选:D.3.解:根据菱形的判定:四边相等的四边形是菱形.故选:B.4.解:由题意得,周长=2×8=16,①当底边=4时,此时腰长=6,符合题意;②当腰长=4时,此时底边=8,4+4=8,不能构成三角形,不符合题意.综上可得,底边长为4.故选:A.5.解:①通过认真的画图可知,此方法可以将△ABC变换成△PQR,故此方法正确,②通过认真的画图可知,此方法可以将△ABC变换成△PQR,故此方法正确,③通过认真的画图可知,此方法可以将△ABC变换成△PQR,故此方法正确,故选:D.6.解:观察图形,发现:图形绕三角形的中心按顺时针方向转动90°.故选:A.7.解:第一个图案可以看作是它的“基本图案”绕着它的旋转中心旋转90°得到;第二个图案可以看作是它的“基本图案”绕着它的旋转中心旋转90°得到;第三个图案可以看作是它的“基本图案”绕着它的旋转中心旋转90°得到;第四个图案可以看作是它的“基本图案”绕着它的旋转中心旋转90°得到.上述选项中只有180°是90°的整数倍.故选:D.8.解:旋转对称图形是(1),(3),(4);不是旋转对称图形的是(2).故选:C.9.解:4个图形都符合条件.故选D.10.解:根据平行四边形的基本性质:平行四边形的两组对角分别相等,可知角分别为,(1)90°,90°,90°90°;(2)120°,60°,120°,60°;(3)150°,30°,150°,30°;不是平行四边形的四边形为(4)60°,90°,120°,90°.共4种,故选:C.二.填空题11.解:如图∵E,F分别是AB,AC的中点,∴EF为△ABC的中位线,∴EF=BC=1.8;∵AD⊥BC,E是AB的中点,∴DE=AB=2;同理可得DF=AC=1.2.12.解:∵矩形、菱形、正方形的对角线都具有平分的性质,则根据两条对角线的关系判断一个四边形是矩形或菱形或正方形的必不可少的条件是平分.故答案为平分.13.解:矩形的对角线为=10cm,面积S=6×8=48cm2故答案为10,48.14.解:(1)∵直角三角形斜边上的中线为12cm,∴斜边=2×2=24cm,∴它的面积=×24×10=120cm2;(2)∵等腰三角形的一个外角为100°,∴与这个外角相邻的内角是180°﹣100°=80°,若80°角是顶角,则顶角为80°,若80°角是底角,则顶角为180°﹣80°×2=20°,所以,这个等腰三角形的顶角为80°或20°.故答案为:(1)120;(2)80°或20°.15.解:∵四边形ABCD是平行四边形,∴AB∥DC,∴AB和CD之间的距离处处相等,即S△CDE =S△CDF,故答案为:=.16.解:反证法有如下三个步骤:(1)提出反证,(2)推出矛盾,(3)肯定结论.17.解:∵360°÷5=72°,∴该图形绕中心至少旋转72度后能和原来的图案互相重合.故答案为:72°.18.解:补充的条件是AB=BC,理由是:∵AB=BC,四边形ABCD是平行四边形,∴平行四边形ABCD是菱形,故答案为:AB=BC.19.解:由题意可得:AB平行且等于CD,AB平行且等于EF∴CD平行且等于EF,又∵两个平行四边形在同一平面∴四边形DCEF是平行四边形.故答案为:平行四边形.20.解:矩形、圆即是轴对称图形,又是中心对称图形.故答案为:矩形、圆.三.解答题21.证明:∵DE,EF是△ABC的两条中位线.∴DE∥BC,EF∥AB,∴四边形BFED是平行四边形.22.解:步骤:(1)将图甲绕O点逆时针旋转一定角度,使树干与地面垂直.(2)接着将图(1)向右平移至与图乙重合即可.23.解:这个图形的旋转中心为圆心;∵360°÷6=60°,∴该图形绕中心至少旋转60度后能和原来的图案互相重合.24.证明:延长AE、DC交于点P,如图所示:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABE=∠PCE,∵BE=CE,∠AEB=∠PEC,∴△ABE≌△PCE(ASA),∴PC=AB=CD,∵H为DF的中点,∴CH是△PDF的中位线,∴CH∥AE,∵DF⊥AE,∴CH⊥DF.25.解:∵在直角△ABD中,∠ABD=30°,∴AB=2AD=8,又∵直角△ABD中,OD⊥AB,∴∠ADO=∠ABD=30°,在直角△AOD中,AO=AD=2,OD=AD•cos30°=4×=2,则OB=AB﹣0A=8﹣2=6,则A的坐标是(﹣2,0),B的坐标是(6,0),C的坐标是(8,2),D的坐标是(0,2).26.解:(1)四边形EFGH是正方形,理由是:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD=7,∵AE=BF=CG=DH=2,∴AH=DG=CF=BE=5,∴△AEH≌△DHG≌△CGF≌△BFE(SAS),∴EH=EF=FG=HG,∠AHE=∠DGH,∵∠A=∠D=90°,∴∠DGH+∠DHG=90°,∴∠AHE+∠DHG=90°,∴∠EHG=180°﹣90°=90°,∴四边形EFGH是正方形,故答案为:正方形.(2)在Rt△AEH中,AE=2,AH=5,由勾股定理得:EH==,∵四边形EFGH是正方形,∴EF=FG=GH=EH=,∴四边形EFGH的面积是()2=29.(3)四边形EFGH的周长是×4=4≈4×5.39≈21.6.27.解:∵(1+9)+(2+8)+(3+7)+(4+6)+…+(8+2)+(3+7)+(4+6)+(5+5)+(6+4)+5=10×12+5=120+5=125∴这组数和为125.。

2020-2021学年苏科版数学八年级下册第九章 中心对称图形—平行四边形 综合题练习

2020-2021学年苏科版数学八年级下册第九章 中心对称图形—平行四边形 综合题练习

苏科版数学八年级下册第九章《中心对称图形—平行四边形》综合题练习1.如图,已知平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F 两点,垂足是点O.(1)求证:△AOE≌△COF;(2)问:四边形AFCE是什么特殊的四边形?(直接写出结论,不需要证明).2.如图,在正方形ABC1D1中,AB=1,连接AC1,以AC1为边作第二个正方形AC1C2D2,连接AC2,以AC2为边作第三个正方形AC2C3D3.(1)求第二个正方形AC1C2D2和第三个正方形AC2C3D3的边长;(2)请直接写出按此规律所作的第7个正方形的边长.3.如图所示,四边形ABCD是正方形,点E是边BC的中点且∠AEF=90°,EF交正方形外角平分线CF于点F,取边AB的中点G,连接EG.(1)求证:EG=CF;(2)将△ECF绕点E逆时针旋转90°,请在图中直接画出旋转后的图形,并指出旋转后CF与EG的位置关系.4.如图,△ABC中,AC的垂直平分线MN交AB于点D,交AC于点O,CE∥AB交MN 于E,连结AE、CD.(1)求证:AD=CE;(2)试判断四边形ADCE的形状,并说明理由.5.如图所示,在Rt△ABC中,∠ABC=90°,将Rt△ABC绕点C按顺时针方向旋转60°得到△DEC,点E在AC上,再将Rt△ABC沿着AB所在的直线翻转180°得到△ABF.且使C、B、F三点在一条直线上,连接AD.(1)求证:四边形AFCD是菱形;(2)连接BE并延长交AD于G,连接CG,请问:四边形ABCG是什么特殊平行四边形?为什么?6.如图,在四边形ABCD中,点E是线段AD上的任意一点(E与A、D不重合),G、F、H分别是BE、BC、CE的中点.(1)证明:四边形EGFH是平行四边形;(2)EF和BC满足什么关系时,平行四边形EGFH是正方形?7.如图,菱形ABCD(图1)与菱形EFGH(图2)的形状、大小完全相同.且点A、C、E、G在同一直线上,点M是线段AG的中点.那么菱形EFGH可由菱形ABCD经一次图形变换得到,这次图形变换可以是轴对称变换、平移变换和旋转变换.请你具体描述这三种变换.(轴对称变换已描述)轴对称变换:菱形ABCD以线段AG的垂直平分线为对称轴作轴对称变换得到菱形EFGH.平移变换:旋转变换:8.如图,平行四边形ABCD中,点E是AD的中点,连接BE并延长交CD的延长线于点F.(1)求证:△ABE≌△DFE;(2)连接CE,当CE平分∠BCD时,求证:CE⊥BF.9.如图,已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:△BED≌△CFD;(2)当∠A=90°时,试判断四边形DF AE是何特殊四边形?并说明理由.10.如图,在▱ABCD中,DE⊥AB于点E,BF⊥AD于点F,(1)说明:;(2)▱ABCD周长为12,AD:DE=3:2,求DE+BF的值.11.如图,E是正方形ABCD外的一点,连接AE、BE、DE,且∠EBA=∠ADE,点F在DE上,连接AF,BE=DF.(1)求证:△ADF≌△ABE;(2)小明还发现线段DE、BE、AE之间满足等量关系:DE﹣BE=AE.请你说明理由.12.如图,在▱ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过A点作AG∥BD交CB的延长线于点G.(1)求证:DE∥BF;(2)问∠G为多少度时,四边形DEBF是菱形.并证明你的结论.13.如图,平行四边形ABCD中,点E是AD的中点,连接BE并延长交CD的延长线于点F.(1)求证:△ABE≌△DFE;(2)连接CE,当CE平分∠BCD时,求证:ED=FD.14.如图,在矩形ABCD中,AD=2AB,点F是AD的中点,△AEF是等腰直角三角形,∠AEF=90°,连接BE,DE,AC.(1)求证:△EAB≌△EFD;(2)求的值.15.如图,P是边长为1的正方形ABCD对角线AC上一点(P与A、C不重合),点E在射线BC上,且PE=PB.(1)求证:PE=PD;(2)PE⊥PD.参考答案1.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC(平行四边形的对边相互平行).∴∠EAO=∠FCO,∠AEO=∠CFO(两直线平行,内错角相等);∵EF垂直平分AC,∴OA=OC.在△AOE和△COF中,∠EAO=∠FCO,∠AEO=∠CFO,OA=OC.∴△AOE≌△COF(AAS);(2)由(1)知,△AOE≌△COF,则OE=OF,∴AC垂直平分EF,又∵AC的垂直平分线是EF,∴四边形AFCE是菱形.2.解:(1)∵四边形ABC1D1是正方形,∴∠B=90°,BC1=AB=1,∴AC1==,即第二个正方形AC1C2D2的边长为,∵四边形AC1C2D2是正方形,∴∠AC1C2=90°,C1C2=AC1=,∴AC2==2,即第三个正方形AC2C3D3的边长是2;∁n D n的边长为()n﹣1,则第七个正方(2)由上述过程可得出,第n个正方形AC n﹣1形的边长为8.3.(1)证明:∵正方形ABCD,点G,E为边AB、BC中点,∴AG=EC,△BEG为等腰直角三角形,∴∠AGE=180°﹣45°=135°,又∵CF为正方形外角平分线,∴∠ECF=90°+45°=135°,∴∠AGE=∠ECF,∵∠AEF=90°,∴∠GAE=90°﹣∠AEB=∠CEF,∴△AGE≌△ECF,∴EG=CF;(2)解:画图如图所示,旋转后CF与EG平行.4.(1)证明:∵MN是AC的垂直平分线,∴OA=OC,∠AOD=∠EOC=90°.∵CE∥AB,∴∠DAO=∠ECO,在△ADO与△CEO中,,∴△ADO≌△CEO(ASA),∴AD=CE;(2)解:四边形ADCE是菱形.理由如下:由(1)得OA=OC,AD=CE,∴四边形ADCE是平行四边形,∵AC⊥DE,∴平行四边形ADCE是菱形.5.(1)由旋转60°得到AC=DC,∠ACB=∠ACD=60°,△ACD是等边三角形∴AD=DC=AC,又∵Rt△ABC沿着AB所在的直线翻转180°,易证△AFC是等边三角形,∴AD=DC=FC=AF∴四边形AFCD是菱形(2)四边形ABCG是矩形由(1)知△ACD是等边三角形,DE⊥AC于E∴AE=EC,易证△AEG≌△CEB∴AG=BC∴四边形ABCG是平行四边形,且∠ABC=90°∴平行四边形ABCG是矩形.6.证明:(1)∵G、F分别是BE、BC的中点,∴GF∥EC,同理FH∥BE.∴四边形EGFH是平行四边形;(2)EF和BC满足关系:且EF⊥BC时,平行四边形EGFH是正方形,证明:连接EF,GH.∵G、H分别是BE,CE的中点,∴GH∥BC.∵EF⊥BC,∴EF⊥GH.∵又∵四边形EGFH是平行四边形,∴四边形EGFH是菱形,∵EF=BC,GH=BC,∴EF=GH.∴平行四边形EGFH是正方形.7.解:平移变换:菱形ABCD沿AC方向(或从左往右)平移线段AE(或CG)的长得到菱形EFGH.旋转变换:菱形ABCD以点M为旋转中心顺时针(或逆时针)旋转180°得到菱形EFGH.8.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BAD=∠FDE.(1分)又∵点E是AD的中点,∴AE=DE.在△ABE与△DFE中,∵∠BAD=∠FDE,AE=DE,∠BEA=∠FED,∴△ABE≌△DFE.(4分)(2)证明:∵△ABE≌△DFE∴DF=AB又∵CD=AB∴CF=2CD(5分)∵CE平分∠BCD∴∠BCE=∠FCE.又∵AD∥BC∴∠BCE=∠DEC(6分)∴∠FCE=∠DEC∴DE=CD(7分)又∵AE=DE∴BC=2CD,∴CF=BC(8分)又∵CE平分∠BCD,∴CE⊥BF.(9分)9.(1)证明:∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°(1分)∵D是BC的中点,∴BD=CD(2分)∵AB=AC,∴∠B=∠C,∴∠EDB=∠FDC,∴△BED≌△CFD(3分)(2)解:∵∠BED=∠CFD=∠A=90°∴四边形DF AE为矩形.(4分)∵△BED≌△CFD,∴DE=DF,(5分)∴四边形DF AE为正方形.(6分)10.(1)证明:∵在▱ABCD中,DE⊥AB,BF⊥AD,∴S▱ABCD=AB•DE=AD•BF,∴=;(2)∵=,且=,∴==,又∵▱ABCD的周长为12,∴AD+AB=×12=6,∴=,∴DE+BF=4.11.证明:(1)∵四边形正ABCD是正方形,∴AB=AD,∵在△ADF和△ABE中,,∴△ADF≌△ABE;(2)理由如下:由(1)有△ADF≌△ABE,∴AF=AE,∠3=∠4,在正方形ABCD中,∠BAD=90°,∴∠BAF+∠3=90°,∴∠BAF+∠4=90°,∴∠EAF=90°,∴△EAF是等腰直角三角形,∴EF2=AE2+AF2,∴EF2=2AE2,∴EF=AE,即DE﹣DF=AE,∴DE﹣BE=AE.12.证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵点E、F分别是AB、CD的中点,∴BE=AB,DF=CD.∴BE=DF,BE∥DF,∴四边形DFBE是平行四边形,∴DE∥BF;(2)∵∠G=90°.理由:AG∥BD,AD∥BG,∴四边形AGBD是矩形,∴∠ADB=90°,在Rt△ADB中∵E为AB的中点,∴DE=BE(直角三角形斜边上的中线等于斜边的一半),∵四边形DFBE是平行四边形,∴四边形DEBF是菱形.13.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BAD=∠FDE,又∵点E是AD的中点,∴AE=DE.在△ABE与△DFE中,∵∠BAD=∠FDE,AE=DE,∠BEA=∠FED,∴△ABE≌△DFE.(2)证明:∵△ABE≌△DFE,∴DF=AB,又∵CD=AB,∴CF=2CD,∵CE平分∠BCD,∴∠BCE=∠FCE.又∵AD∥BC,∴∠BCE=∠DEC,∴∠FCE=∠DEC,∴DE=CD,∵CD=DF,∴DE=DF.14.(1)证明:∵△AEF是等腰直角三角形,∴∠EAF=∠EF A=45°,EA=EF,又∵∠BAD=90°,∠EFD+∠EF A=180°,∴∠EAB=∠EFD=135°,又∵AD=2AB,FD=AD,∴AB=FD,∴△EAB≌△EFD;(2)解:如图,连接BD.∵∠AEF=90°,∴△EFD可由△EAB绕点E逆时针旋转90°得到,∴EB=ED,且∠BED=90°.∴△BED也是等腰直角三角形.∴BD=,∵四边形ABCD是矩形,∴AC=BD.∴=.15.证明:(1)①过点P作GF∥AB,分别交AD、BC于G、F.如图所示.∵四边形ABCD是正方形,∴四边形ABFG和四边形GFCD都是矩形,△AGP和△PFC都是等腰直角三角形.∴GD=FC=FP,GP=AG=BF,∠PGD=∠PFE=90度.又∵PB=PE,∴BF=FE,∴GP=FE,∴△EFP≌△PGD(SAS).∴PE=PD;(2)∵△EFP≌△PGD,∴∠1=∠2.∴∠1+∠3=∠2+∠3=90度.∴∠DPE=90度.∴PE⊥PD.证法二证明:(1)∵四边形ABCD是正方形,AC为对角线,∴BC=DC,∠BCP=∠DCP=45°.∵PC=PC,∴△PBC≌△PDC(SAS).∴PB=PD,∠PBC=∠PDC.又∵PB=PE,∴PE=PD;(2)∵PB=PE,∴∠PBE=∠PEB,∴∠PEB=∠PDC,∴∠PEB+∠PEC=∠PDC+∠PEC=180°,∴∠DPE=360°﹣(∠BCD+∠PDC+∠PEC)=90°,∴PE⊥PD.。

苏科版八年级下册 第9章 中心对称图形~平行四边形 重难点题型训练【含答案】

苏科版八年级下册 第9章 中心对称图形~平行四边形 重难点题型训练【含答案】

苏科版八年级下册第9章中心对称图形~平行四边形重难点题型训练1.如图,在正方形ABCD中,AB=BC=CD=AD,∠BAD=∠B=∠C=∠D=90°,点E、F分别在正方形ABCD的边DC、BC上,AG⊥EF且AG=AB,垂足为G,则:(1)△ABF与△AGF全等吗?说明理由;(2)求∠EAF的度数;(3)若AG=7,△AEF的面积是21,求△CEF的面积.2.如图,在正方形ABCD中,AB=BC=CD=AD=10cm,∠A=∠B=∠C=∠D=90°,点E 在边AB上,且AE=4cm,如果点P在线段BC上以2cm/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.设运动时间为t秒.(1)若点Q与点P的运动速度相等,经过2秒后,△BPE与△CQP是否全等?请说明理由;(2)若点Q与点P的运动速度不相等,则当t为何值时,△BPE与△CQP全等?此时点Q的运动速度为多少?3.已知正方形ABCD的对角线AC与BD交于点O,点E、F分别是线段OB、OC上的动点(1)如果动点E、F满足BE=OF(如图),且AE⊥BF时,问点E在什么位置?并证明你的结论;(2)如果动点E、F满足BE=CF(如图),写出所有以点E或F为顶点的全等三角形(不得添加辅助线).4.如图,正方形ABCD,点F在BC上,试在图中画出一条线段,构出另一个三角形,使得这个三角形全等于△DFC.(1)你能在图中画出几种不同位置的线段得到这个三角形?试写出能够画出的种数共有 种.(2)画出其中的1种位置的线段,并证明你构出的三角形全等于△DFC.5.已知正方形ABCD中,AB=BC=CD=DA=16,∠A=∠B=∠C=∠D=90°.动点P以每秒1个单位速度从点B出发沿射线BC方向运动,设点P的运动时间为t.连接PA.(1)如图1,动点Q同时以每秒4个单位速度从A点出发沿正方形的边AD运动,求t 为何值时,以点Q及正方形的某两个顶点组成的三角形和△PAB全等;(2)如图2,在(1)的基础上,当点Q到达点D以后,立即以原速沿线段DC向点C运动,当Q到达点C时,两点同时停止运动,求t为何值时,以点Q及正方形的某两个顶点组成的三角形和△PAB全等.6.已知:如图,在四边形ABCD中,点G在边BC的延长线上,CE平分∠BCD,CF平分∠GCD,EF∥BC交CD于点O.(1)求证:OE=OF;(2)若点O为CD的中点,求证:四边形DECF是矩形.7.在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.8.如图,在菱形ABCD中,AB=4,E为BC中点,AE⊥BC于点E,AF⊥CD于点F,CG∥AE,CG交AF于点H,交AD于点G.(1)求菱形ABCD的面积;(2)求∠CHA的度数.9.如图1,在正方形ABCD中,点P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于点F,(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.10.如图,菱形ABCD的对角线AC,BD相交于点O,过点D作DE∥AC且DE=OC,连接CE,OE.(1)求证:OE=CD;(2)若菱形ABCD的边长为4,∠ABC=60°,求AE的长.11.如图(1),正方形ABCD的对角线AC,BD相交于点O,E是AC上一点,连结EB,过点A作AM⊥BE,垂足为M,AM与BD相交于点F.(1)求证:OE=OF;(2)如图(2)若点E在AC的延长线上,AM⊥BE于点M,AM交DB的延长线于点F,其他条件不变,结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.12.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于D,交AB于E,且CF=BE.(1)求证:四边形BECF是菱形;(2)当∠A的大小满足什么条件时,菱形BECF是正方形?回答并证明你的结论.13.如图,四边形ABCD中,AD∥BC,AD=DC=BC,过AD的中点E作AC的垂线,交CB的延长线于F.求证:(1)四边形ABCD是菱形.(2)BF=DE.14.如图,在Rt△ABC与Rt△ABD中,∠ABC=∠BAD=90°,AD=BC,AC,BD相交于点G,过点A作AE∥DB交CB的延长线于点E,过点B作BF∥CA交DA的延长线于点F,AE,BF相交于点H.(1)图中有若干对三角形是全等的,请你任选一对进行证明;(不添加任何辅助线)(2)证明:四边形AHBG是菱形;(3)若使四边形AHBG是正方形,还需在Rt△ABC的边长之间再添加一个什么条件?请你写出这个条件.(不必证明)15.如图:∠MON=90°,在∠MON的内部有一个正方形AOCD,点A、C分别在射线OM、ON 上,点B1是ON上的任意一点,在∠MON的内部作正方形AB1C1D1.(1)连续D1D,求证:∠D1DA=90°;(2)连接CC1,猜一猜,∠C1CN的度数是多少?并证明你的结论;(3)在ON上再任取一点B2,以AB2为边,在∠MON的内部作正方形AB2C2D2,观察图形,并结合(1)、(2)的结论,请你再做出一个合理的判断.参考答案1.解:(1)结论:△ABF≌△AGF.理由:在Rt△ABF与Rt△AGF中,,∴△ABF≌△AGF(HL)(2)∵△ABF≌△AGF∴∠BAF=∠GAF,同理易得:△AGE≌△ADE,有∠GAE=∠DAE;即∠EAF=∠EAD+∠FAG=∠BAD=45°,故∠EAF=45°.(3)∵S△AEF=×EF×AG,AG=4∴21=×EF×AG,∴EF=6,∵BF=FG,EG=DE,AG=AB=BC=CD=7,设FC=x,EC=y,则BF=7﹣x,DE=7﹣y,∵BF+DE=FG+EG=EF=6,∴7﹣x+7﹣y=6,∴x+y=8 ①在Rt△EFC中,∵EF2=EC2+FC2,∴x2+y2=62②①2﹣②得到,2xy=28,∴S△CEF=xy=7.方法二:易知S△ABF=S△AGF,S△AED=S△AEG,∴S△ABF+S△ADE=S△AEF=21,∴S△EFC=S正方形ABCD﹣S五边形ABFED=49﹣42=7.2.解:(1)全等.理由:由题意:BP=CQ=2t当t=2时,BP=CQ=4∵AB=BC=10,AE=4∴BE=CP=10﹣4=6∵BP=CQ,∠B=∠C=90°,BE=CP∴△BPE≌△CQP(SAS)(2)∵P、Q运动速度不相等∴BP≠CQ∵∠B=∠C=90°∴当BP=CP,CQ=BE时,△BPE≌△CPQ,∴BP=CP=BC=5,CQ=BE=6∴当t=5÷2=(秒)时,△BPE≌△CPQ,此时点Q的运动速度为6÷=(cm/s)3.解:(1)当AE⊥BF时,点E在BO中点.证明如下:延长AE交BF于点M,如图所示:∵∠BME=∠AOE,∠BEM=∠AEO,∴△BEM∽△AEO,∴,∵∠MBE=∠OBF,∠BME=∠BOF,∴△BEM∽△BFO,∴,∵AO=BO,∴EO=OF,∵BE=OF,∴BE=EO,故当AE⊥BF时,点E在BO中点.(2)∵四边形ABCD是正方形,∴AO=CO=BO=DO,AC⊥BD,AB=BC=AD=CD,∠ACB=∠ABD=∠ADE=∠BAC=45°∵BE=CF,∴OE=OF,AF=DE,∵BE=CF,∠ABD=∠ACB,AB=BC∴△ABE≌△BCF(SAS)同理可得△AOE≌△BOF,△ADE≌△BAF;∴以点E或F为顶点的全等三角形有△ABE≌△BCF,△AOE≌△BOF,△ADE≌△BAF;4.解:(1)如图,共可以构造出8个满足条件的三角形;故答案为:8.(2)如图1,作AE=CF,则△DFC≌△DAE,证明如下:∵四边形ABCD是正方形,∴AD=CD,∠A=∠C=90°,在△DFC和△DAE中,,∴△DFC≌△DAE(SAS).5.解:(1)由题意,得BP=t,AQ=4t,QD=16﹣4t,∵△ABP≌△CDQ∴BP=QD∴t=16﹣4t解得:t=,∴当t=时,以点Q及正方形的某两个顶点组成的三角形和△PAB全等;(2)如图2,依题意有△ADQ≌△ABP或△BCQ≌△ABP∴DQ=BP或CQ=BP∵DQ=4t﹣16,CQ=32﹣4t∴4t﹣16=t或32﹣4t=t解得:t=或t=,∴当t=或t=时,以点Q及正方形的某两个顶点组成的三角形和△PAB全等.6.证明:(1)∵CE平分∠BCD、CF平分∠GCD,∴∠BCE=∠DCE,∠DCF=∠GCF,∵EF∥BC,∴∠BCE=∠FEC,∠EFC=∠GCF,∴∠DCE=∠FEC,∠EFC=∠DCF,∴OE=OC,OF=OC,∴OE=OF;(2)∵点O为CD的中点,∴OD=OC,又OE=OF,∴四边形DECF是平行四边形,∵CE平分∠BCD、CF平分∠GCD,∴∠DCE=∠BCD,∠DCF=∠DCG∴∠DCE+∠DCF=(∠BCD+∠DCG)=90°,即∠ECF=90°,∴四边形DECF是矩形.7.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得BC==5,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DAB.8.解:(1)如图,连接AC,∵E为BC的中点,AE⊥BC,∴AB=AC,又∵菱形的边AB=BC,∴△ABC是等边三角形,∴AE=AB=×4=2,∴菱形ABCD的面积=BC•AE=4×2=8;(2)在等边三角形ABC中,∵AE⊥BC,∴∠CAE=∠BAC=×60°=30°,同理∠CAF=30°,∴∠EAF=∠CAE+∠CAF=30°+30°=60°,∵AE∥CG,∴∠CHA=180°﹣∠EAF=180°﹣60°=120°.9.(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;(2)解:由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPE=∠EDF=90°;(3)解:AP=CE;理由如下:在菱形ABCD中,AB=BC,∠ABP=∠CBP=60°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠BCP,∵PA=PE,∴PC=PE,∴∠DAP=∠DCP,∵PA=PC,∴∠DAP=∠AEP,∴∠DCP=∠AEP∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠AEP,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,∴AP=CE.10.(1)证明:在菱形ABCD中,OC=AC.∴DE=OC.∵DE∥AC,∴四边形OCED是平行四边形.∵AC⊥BD,∴平行四边形OCED是矩形.∴OE=CD.(2)解:在菱形ABCD中,∠ABC=60°,∴AC=AB=4,∴在矩形OCED中,CE=OD===2.在Rt△ACE中,AE==2.11.解:(1)∵四边形ABCD是正方形.∴∠BOE=∠AOF=90°,OB=OA.又∵AM⊥BE,∴∠MEA+∠MAE=90°=∠AFO+∠MAE,∴∠MEA=∠AFO.在△BOE和△AOF中,∵,∴△BOE≌△AOF.∴OE=OF.(2)OE=OF成立.∵四边形ABCD是正方形,∴∠BOE=∠AOF=90°,OB=OA.又∵AM⊥BE,∴∠F+∠MBF=90°,∠E+∠OBE=90°,又∵∠MBF=∠OBE,∴∠F=∠E.在△BOE和△AOF中,∵,∴△BOE≌△AOF.∴OE=OF.12.1)证法一:如图∵EF垂直平分BC,∴BE=EC,BF=CF,∵CF=BE,∴BE=EC=CF=BF,∴四边形BECF是菱形;证法二:如图∵EF垂直平分BC,∴BD=DC,EF⊥BC∵BE=CF,∴△BED≌△CFD,∴DE=DF∴四边形BECF是菱形;(2)解法一:当∠A=45°时,菱形BECF是正方形.∵∠A=45°,∠ACB=90°,∴∠EBC=45°∴∠EBF=2∠EBC=2×45°=90°∴菱形BECF是正方形.解法二:当∠A=45°时,菱形BECF是正方形.∵∠A=45°,∠ACB=90°,∴∠EBC=45°,∵BE=EC,∴∠ECB=∠EBC=45°∴∠BEC=90°,∴菱形BECF是正方形.13.证明:(1)∵AD∥BC,AD=BC(已知),∴四边形ABCD为平行四边形.又邻边AD=DC,∴四边形ABCD为菱形;(3分)(2)证法一:如图:记EF与AC交点为G,EF与AB的交点为M.由(1)证得四边形ABCD为菱形,所以对角线AC平分∠A,即∠BAC=∠DAC.又∵EF⊥AC,AG=AG,∴△AGM≌△AGE,∴AM=AE.(6分)又∵E为AD的中点,四边形ABCD为菱形,∴AM=BM.∠MAE=∠MBF.又∵∠BMF=∠AME,∴△BMF≌△AME.∴BF=AE.∴BF=DE.(8分)证法二:如图:连接BD∵四边形ABCD为菱形∴BD⊥AC∵EF⊥AC∴EF∥BD∵BF∥DE∴四边形BDEF是平行四边形∴BF=DE(8分)14.(1)解:△ABC≌△BAD.证明:∵AD=BC,∠ABC=∠BAD=90°,AB=BA,∴△ABC≌△BAD(SAS).(2)证明:∵AH∥GB,BH∥GA,∴四边形AHBG是平行四边形.∵△ABC≌△BAD,∴∠ABD=∠BAC.∴GA=GB.∴平行四边形AHBG是菱形.(3)解:需要添加的条件是AB=BC.15.(1)证明:∵∠D1AD+∠B1AD=90°,∠OAB1+∠B1AD=90°,∴∠B1AO=∠D1AD,∵AD1=AB1,AO=AD,∴△OAB1≌△DAD1,∴∠D1DA=∠O=90°;(D1,D,C在同一条直线上).(2)解:猜想∠C1CN=45°.证明:作C1H⊥ON于H.作C1G⊥CD1于G;则有C1G=CH.∵∠C1D1C+∠AD1D=90°,∠C1B1H+∠AB1O=90°∴∠C1D1C=∠C1B1H,∵C1D1=B1C1,∠D1C1E=∠C1HB1=90°,∴△C1GD1≌△C1B1H,∴C1G=C1H,又∵CH=C1G,∴直角三角形CHC1是个等腰直角三角形,∴∠C1CN=45°.(3)解:作图;得∠ADD2=90°(∠ADD2=90°、∠C2CN=45°均可).。

苏科版数学八年级下册第9章 中心对称图形——平行四边形综合素质评价(含答案)

苏科版数学八年级下册第9章 中心对称图形——平行四边形综合素质评价(含答案)

第9章中心对称图形——平行四边形综合素质评价一、选择题(每题2分,共16分)1.下列图形中,中心对称图形是()2.在▱ABCD中,添加以下哪个条件能判断其为菱形()A.AB⊥BC B.BC⊥CD C.CD⊥AC D.AC⊥BD 3.用两张边长为a的等边三角形纸片拼成的四边形是()A.等腰梯形B.菱形C.矩形D.正方形4.如图,四边形ABCD是菱形,点E,F分别在BC,DC边上,添加以下哪个条件仍不能判定△ABE≌△ADF?()A.BE=DFB.∠BAE=∠DAFC.AE=AFD.∠AEB=∠AFD5.如图所示,在矩形ABCD中,已知AE⊥BD于E,∠DBC=30°,BE=1 cm,则AE的长为()A.3 cmB.2 cmC.23cmD. 3 cm6.如图,已知在正方形ABCD中,对角线AC与BD相交于点O,AE,DF分别是∠OAD与∠ODC的平分线,AE的延长线与DF相交于点G,则下列结论:①AG⊥DF;②EF∥AB;③AB=AF;④OE∶OB=1∶2,其中正确的有() A.1个B.2个C.3个D.4个7.如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC.以DE为边作正方形DEFG,点G在边CD上,则DG的长为() A.3-1B.3- 5C.5+1D.5-18.如图,矩形ABCD的面积为20 cm2,对角线交于点O;以AB,AO为邻边作平行四边形AOC1B,对角线交于点O1;以AB,AO1为邻边作平行四边形AO1C2B,对角线交于点O2……依此类推,则平行四边形AO4C5B的面积为()A.54cm2B.58cm2C.516cm2D.532cm2二、填空题(每题2分,共20分)9.如图,在▱ABCD中,BD是对角线,E,F是对角线上的两点,要使四边形AFCE 是平行四边形,还需添加一个条件是________.10.如图,矩形ABCD中,AC的垂直平分线MN与AB交于点E,连接CE.若∠CAD=70°,则∠DCE=________°.11.如图,在矩形ABCD中,DE平分∠ADC交BC于点E,EF⊥AD于点F,连接AE,若EF=3,AE=5,则AD=________.12.如图,在菱形ABCD中,∠ABC=80°,E是线段BD上一动点(点E不与点B,D重合),当△ABE是等腰三角形时,∠DAE=________.13.如图,在菱形ABCD中,E是BC的中点,AE⊥BC,则∠AFD等于________.14.若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是_____________.15.如图,四边形ABCD中,∠A=90°,AB=33,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN 的中点,则EF长度的最大值为________.16.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF 的周长为________.17.如图,在矩形ABCD中,E,F分别为BC,DA的中点,以CD为斜边作Rt△GCD,GD=GC,连接GE,GF.若BC=2GC,则∠EGF=________.18.如图,E是正方形ABCD内一点,连接AE,BE,CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C=________.三、解答题(19~21题每题6分,22~24题每题8分,25题10分,26题12分,共64分)19.如图,在▱ABCD中,延长AD到点E,延长CB到点F,使得DE=BF,连接EF,分别交CD,AB于点G,H,连接AG,CH.求证:四边形AGCH是平行四边形.20.如图,在平行四边形ABCD中,AE⊥BC于点E,延长BC至点F,使CF=BE,连接AF,DE,DF.(1)求证:四边形AEFD为矩形;(2)若AB=3,DE=4,BF=5,求DF的长.21.如图,在四边形ABCD中,BD为一条对角线,AD∥BC,AD=2BC,∠ABD =90°,E为AD的中点,连接BE.(1)求证:四边形BCDE是菱形;(2)连接AC,若AC平分∠BAD,BC=4,求AC的长.22.如图,已知在菱形ABCD中,∠B=72°,请设计三种不同的方法,将菱形ABCD 分割成四个三角形,使每个三角形都是等腰三角形.(要求画出分割线段,标出所得的三角形内角的度数.注:只要有一条分割线段位置不同,就认为是两种不同的方法)23.如图,在▱ABCD中,对角线AC与BD相交于点O,过点O的直线EF与BA,DC的延长线分别交于点E,F.(1)求证:AE=CF;(2)如果EF⊥BD,求证:四边形BFDE是菱形.24.已知:如图,∠ABC=∠ADC=90°,M、N分别是AC、BD的中点,求证:MN⊥BD.25.如图,四边形ABCD为平行四边形,E为AD上的一点,连接EB并延长,使BF=BE,连接EC并延长,使CG=CE,连接FG,H为FG的中点,连接DH.(1)求证:四边形AFHD是平行四边形;(2)若CB=CE,∠EBC=75°,∠DCE=10°,求∠DAB的度数.26.已知,矩形ABCD中,AB=4 cm,BC=8 cm,AC的垂直平分线EF分别交AD,BC于点E,F,垂足为O.(1)如图1,连接AF,CE.①求证:四边形AFCE为菱形;②求AF的长.(2)如图2,动点P,Q分别从A,C两点同时出发,沿△AFB和△CDE各边匀速运动一周后停止.即点P沿A→F→B→A运动,点Q沿C→D→E→C运动.在运动过程中,①已知点P的速度为每秒5 cm,点Q的速度为每秒4 cm,运动时间为t s,当以A,C,P,Q四点为顶点的四边形是平行四边形时,求t的值.②若点P,Q的运动路程分别为a cm, b cm(ab≠0),已知以A,C,P,Q四点为顶点的四边形是平行四边形,直接写出a与b满足的数量关系式.答案一、1.C 2.D 3.B 4.C 5.D 6.C 7.D 8.B 二、9.BF =DE (答案不唯一) 10.40 11.7 12.30°或60° 13.60° 14.对角线互相垂直的四边形 15.3 点拨:连接DN ,DB .∵点E ,F 分别为DM ,MN 的中点,∴EF =12DN ,∴DN 的值最大时,EF 的值最大.易知N 与B 重合时,DN 的值最大, 此时DN =DB =AD 2+AB 2=6, ∴EF 的最大值为3. 16.16 17.45° 18.135°三、19.证明:∵四边形ABCD 是平行四边形,∴∠EAH =∠FCG ,AD ∥BC ,AD =BC , ∴∠E =∠F .∵AD =BC ,DE =BF , ∴AD +DE =BC +BF ,即AE =CF . 在△AEH 与△CFG 中,⎩⎨⎧∠E =∠F ,AE =CF ,∠EAH =∠FCG ,∴△AEH ≌△CFG (ASA), ∴AH =CG .∵AH ∥CG , ∴四边形AGCH 是平行四边形.20.(1)证明:∵BE =CF ,∴BE +CE =CF +CE ,即BC =EF .∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC ,∴AD =BC =EF . 又∵AD ∥EF ,∴四边形AEFD 为平行四边形. ∵AE ⊥BC ,∴∠AEF =90°,∴平行四边形AEFD 为矩形. (2)解:由(1)知四边形AEFD 为矩形,∴DF =AE ,AF =DE =4.∵AB =3,AF =4,BF =5,∴AB 2+AF 2=BF 2, ∴△BAF 为直角三角形,∠BAF =90°, ∴S △ABF =12AB ×AF =12BF ×AE ,即3×4=5AE ,∴AE =125,∴DF =AE =125. 21.(1)证明:∵AD =2BC ,E 为AD 的中点,∴DE =BC =AE .∵AD ∥BC , ∴四边形BCDE 是平行四边形. ∵∠ABD =90°,AE =DE ,∴BE =DE ,∴四边形BCDE 是菱形. (2)解:∵AD ∥BC ,AC 平分∠BAD , ∴∠BAC =∠DAC =∠BCA ,∴AB =BC =4. ∵AD =2BC =8,∴∠ADB =30°. ∵∠ABD =90°,AC 平分∠BAD ,∴∠DAC =30°.由(1)知四边形BCDE 是菱形, ∴∠ADC =60°,∴∠ACD =90°.在Rt △ACD 中,∵AD =8,∠DAC =30°, ∴CD =4,∴AC =48. 22.解:如图.(答案不唯一)23.证明:(1)∵四边形ABCD 是平行四边形,∴OA =OC ,BE ∥DF ,∴∠AEO =∠CFO .在△AOE 和△COF 中,⎩⎨⎧∠AEO =∠CFO ,∠AOE =∠COF ,OA =OC ,∴△AOE ≌△COF (AAS),∴AE =CF .(2)∵四边形ABCD 是平行四边形, ∴OB =OD .∵△AOE ≌△COF ,∴OE =OF ,∴四边形BFDE 是平行四边形, ∵EF ⊥BD ,∴四边形BFDE 是菱形. 24.证明:如图,连接MB ,MD .∵∠ABC =∠ADC =90°,M 为AC 的中点, ∴MB =MD =12AC .又∵N 为BD 的中点,∴MN ⊥BD . 25.(1)证明:∵BF =BE ,CG =CE ,∴BC 为△FEG 的中位线, ∴BC ∥FG ,BC =12FG .又∵H 是FG 的中点,∴FH =12FG ,∴BC =FH . 又∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∴AD ∥FH ,AD =FH , ∴四边形AFHD 是平行四边形. (2)解:∵四边形ABCD 是平行四边形, ∴∠DAB =∠DCB .∵CE =CB , ∴∠BEC =∠EBC =75°, ∴∠BCE =180°-75°-75°=30°,∴∠DCB =∠DCE +∠BCE =10°+30°=40°, ∴∠DAB =40°.26.(1)①证明:∵在矩形ABCD 中,AD ∥BC ,∴∠EAO =∠FCO .∵EF 垂直平分AC , ∴AO =CO .又∵∠AOE =∠COF , ∴△AOE ≌△COF (ASA),∴AE =CF .又∵AE ∥CF ,∴四边形AFCE 为平行四边形. 又∵EF ⊥AC ,∴平行四边形AFCE 为菱形. ②解:由①知AF =CF .设AF=x cm,则CF=x cm,BF=BC-CF=(8-x)cm,在Rt△ABF中,AB2+BF2=AF2,∴42+(8-x)2=x2,解得x=5.∴AF=5 cm.(2)解:①情况一:当P在AF上,Q在CD上时,四边形APCQ显然不可能为平行四边形.情况二:当P在BF上,Q在ED上时,则当BP=DQ时,四边形APCQ为平行四边形,易得8-5t=4t-4,解得t=4 3.情况三:当P在AB上,Q在ED上时,四边形APCQ显然不可能为平行四边形.情况四:当P在AB上,Q在EC上时,四边形APCQ显然不可能为平行四边形.∴当t=43时,四边形APCQ为平行四边形.②a+b=12(ab≠0).。

第9章《中心对称图形—平行四边形》(学生版)

第9章《中心对称图形—平行四边形》(学生版)

2023-2024学年苏科版数学八年级下册章节拔高检测卷(易错专练)第9章《中心对称图形—平行四边形》考试时间:100分钟试卷满分:100分难度系数:0.50一、选择题(本大题共10小题,每小题2分,共20分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在括号内)1.(2分)(2023秋•雷州市期末)如图,将△ABC绕点A逆时针旋转110°,得到△ADE,若点D落在线段BC的延长线上,则∠B大小为()A.30°B.35°C.40°D.45°2.(2分)(2023•攸县一模)已知△ABC中,AB=AC,求证:∠B<90°,下面写出运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.④③①②B.③④②①C.①②③④D.③④①②3.(2分)(2022秋•洛江区期末)用反证法证明命题“已知在△ABC中,AB=AC,则∠B<90°”时,首先应该假设()A.∠B≥90°B.∠B>90°C.AB≠AC D.AB≠AC且∠B≥90°4.(2分)(2023•蒙阴县三模)两个矩形的位置如图所示,若∠1=α,则∠2=()A.α﹣90°B.180°﹣αC.α﹣45°D.270°﹣α5.(2分)(2023春•汉阳区期末)下列说法正确的是()A.对角线互相垂直的平行四边形是正方形B.一组对边平行另一组对边相等的四边形是平行四边形C.一组对边平行且一组对角相等的四边形是平行四边形D.对角线互相垂直的四边形是菱形6.(2分)(2023秋•泗水县期中)如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n个图形中共有4005个三角形,则n的值是()A.1002 B.1001 C.1000 D.9997.(2分)(2023春•高邮市期中)如图,在四边形ABCD中,∠A=∠B=90°,AB=BC=4,AD=3,E是边AB上一点,且∠DCE=45°,则DE的长度是()A.3.2 B.3.4 C.3.6 D.48.(2分)(2023春•德州期中)如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB 于点E,PF⊥AC于点F,则EF的最小值为()A.5 B.4 C.D.39.(2分)(2023春•开江县校级期末)如图,在平行四边形ABCD中,分别以AB、AD为边向外作等边△ABE和等边△ADF,延长CB交AE于点G,点G在点A、E之间,连接CE、CF、EF,则以下四个结论,正确的是()①△CDF≌△EBC;②∠CDF=∠EAF;③CG⊥AE;④△CEF是等边三角形.A.③④B.①②④C.①②③D.①②③④10.(2分)(2023春•沭阳县月考)如图,BD为平行四边形ABCD的对角线,∠DBC=45°,DE⊥BC于点E,BF⊥CD于点F,DE、BF相交于点H,直线BF交线段AD的延长线于点G,下列结论:①CE=BE;②∠A =∠BHE;③AB=BH;④∠BHD=∠BDG;⑤BH2+BG2=AG2.其中正确的结论有()个.A.1 B.2 C.3 D.4二、填空题(本大题共10小题,每题2分,共20分.不需写出解答过程,请将正确答案填写在横线上)11.(2分)(2023秋•大埔县期中)如图,在△ABC中,∠ABC=90°,点D是边AC的中点,若BD=5,BC =6,则AB=.12.(2分)(2023春•启东市期末)如图,将△ABC绕点A按逆时针方向旋转70°,得到△AED,连接BE,若AD∥BE,则∠CAE的度数为.13.(2分)(2023春•朝阳区期中)如图,将平行四边形ABCO放置在平面直角坐标系xOy中,O为坐标原点,若点A的坐标是(8,0),点C的坐标是(2,6),则点B的坐标是.14.(2分)(2023春•吉林期末)如图,在平面直角坐标系中,Rt△AOC的斜边OA在第一象限,过点A作AB⊥x轴于点B,若AB=3,OB=4,点E为OA的中点,则CE=.15.(2分)(2023秋•郸城县期末)如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,AB=2cm,E、F分别是AB、AC的中点,动点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时动点Q从点B出发,沿BF方向匀速运动,速度为2cm/s,连接PQ,设运动时间为ts(0<t<1),则当t=时,△PQF为等腰三角形.16.(2分)(2023春•雅安期末)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,将△ABC绕点C逆时针旋转得到△A1B1C,点M是BC的中点,点N是A1B1的中点,连接MN,若AB=12,则线段MN的最大值是.17.(2分)(2023•徐州二模)如图,矩形ABCD中,AB=4,AD=3,点Q在对角线AC上,且AQ=AD,连接DQ并延长,与边BC交于点P,则线段AP=.18.(2分)(2023春•新罗区校级期中)如图,P为AB上任意一点,分别以AP、PB为边在AB同侧作正方形APCD、正方形PBEF,设∠CBE=25°,则∠AFP的度数为.19.(2分)(2023秋•伊金霍洛旗期末)如图,在正方形ABCD中,AB=3cm,延长BC到点E,使CE=1cm,连接DE,动点P从点A出发,以每秒1cm的速度沿AB→BC→CD→DA向终点A运动.设点P的运动时间为t秒,当△PBC和△DCE全等时,t的值为.20.(2分)(2022秋•乌鲁木齐期末)如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,把△ABC绕BC边的中点O旋转后得△DEF,若直角顶点E恰好落在AC边上,且DF边交AC边于点G,则△FCG的面积为.三、解答题(本大题共8小题,共60分.解答时应写出文字说明、证明过程或演算步骤)21.(6分)(2023秋•朔州期中)如图,在△ABC中,∠B=60°,AB=3,将△ABC绕点A按逆时针方向旋转得到△ADE,若点B的对应点D恰好落在边BC上,求BD的长.22.(6分)(2023春•开江县校级期末)如图,将△ABC绕点A逆时针旋转60°得到△AEF,点E落在BC边上,EF与AC交于点G.(1)求证:△ABE是等边三角形;(2)若∠ACB=28°,求∠FGC的度数.23.(8分)(2023春•渠县校级期末)如图,在平面直角坐标系内,已知△ABC的三个顶点坐标分别为A(1,3)、B(4,2)、C(3,4).(1)将△ABC沿水平方向向左平移4个单位得△A1B1C1,请画出△A1B1C1;(2)画出△ABC关于原点O成中心对称的△A2B2C2;(3)若△A1B1C1与△A2B2C2关于点P成中心对称,则点P的坐标是24.(8分)(2023春•滨海县期中)在矩形ABCD中,AB=6,BC=8,E、F是对角线AC上的两个动点,分别从A、C同时出发相向而行,速度均为每秒1个单位长度,运动时间为t秒,其中0≤t≤10.(1)若G,H分别是AD,BC中点,则四边形EGFH一定是怎样的四边形(E、F相遇时除外)?答:;(直接填空,不用说理)(2)在(1)条件下,若四边形EGFH为矩形,求t的值;(3)在(1)条件下,若G向D点运动,H向B点运动,且与点E,F以相同的速度同时出发,若四边形EGFH为菱形,求t的值.25.(8分)(2022秋•新泰市期末)如图,在△ABC中,点D,E分别是AC,AB的中点,点F是CB延长线上的一点,且CF=3BF,连接DB,EF.(1)求证:四边形DEFB是平行四边形:(2)若∠ACB=90°,AC=6cm,DE=2cm,求四边形DEFB的面积.26.(8分)(2023春•鼎城区期末)如图,点E在正方形ABCD的边AB上,点F在边BC的延长线上,且AE =CF.求证:(1)DE=DF;(2)∠EDF=90°.27.(8分)(2023春•河源期末)已知△ABC是边长为6的等边三角形,点D是射线BC上的动点,将线段AD绕点D顺时针方向旋转60°得到线段DE,连接CE.。

苏科版八年级数学下册第九章《中心对称图形——平行四边形》单元测试卷(解析版)

苏科版八年级数学下册第九章《中心对称图形——平行四边形》单元测试卷(解析版)

第9章《中心对称图形——平行四边形》单元测试卷一.选择题(共12小题)1.如图,△ABC中,CD⊥AB于D,且E是AC的中点.若AD=6,DE=5,则CD的长等于()A.5B.6C.7D.82.直角三角形中,两直角边分别是12和5,则斜边上的中线长是()A.34B.26C.8.5D.6.53.若三角形的三条中位线长分别为2cm,3cm,4cm,则原三角形的周长为()A.4.5cm B.18cm C.9cm D.36cm4.如图,平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则EC 等于()A.1B.2C.3D.45.在下列给出的条件中,不能判定四边形ABCD一定是平行四边形的是()A.AB=CD,AD=BC B.AB∥CD,AD=BCC.AB∥CD,AB=CD D.AB∥CD,AD∥BC6.如图,△ABC是等边三角形,P是形内一点,PD∥AB,PE∥BC,PF∥AC,若△ABC 的周长为18,则PD+PE+PF=()A.18B.9C.6D.条件不够,不能确定7.下面的图形中必须由“基本图形”既平移又旋转而形成的图形是()A.B.C.D.8.如图,将一个含30°角的直角三角板ABC绕点A旋转,得点B,A,C′,在同一条直线上,则旋转角∠BAB′的度数是()A.60°B.90°C.120°D.150°9.下列图形中,绕着它的中心点旋转60°后,可以和原图形重合的是()A.正三角形B.正方形C.正五边形D.正六边形10.如图所示,已知△ABC与△CDA关于点O对称,过O任作直线EF分别交AD、BC于点E、F,下面的结论:①点E和点F,点B和点D是关于中心O对称点;②直线BD必经过点O;③四边形DEOC与四边形BFOA的面积必相等;④△AOE与△COF成中心对称.其中正确的个数为()A.1B.2C.3D.411.观察如图的图形,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个12.将△AOB绕点O旋转180°得到△DOE,则下列作图正确的是()A.B.C.D.二.填空题(共8小题)13.若直角三角形的两条直角边的长分别是3和4,则斜边上的中线长为.14.如图,△ABC中,AC、BC上的中线交于点O,且BE⊥AD.若BD=10,BO=8,则AO的长为.15.如图,▱ABCD的对角线AC和BD交于点O,若AC=6,BD=10,AB=4,则▱ABCD 面积等于.16.如图,用9个全等的等边三角形,按图拼成一个几何图案,从该图案中可以找出个平行四边形.17.钟表的分针匀速旋转一周需要60min,经过20min,分针旋转了.18.如图,△ABC是边长为12的等边三角形,D是BC的中点,E是直线AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF.则在点E的运动过程中,DF的最小值是.19.正方形至少旋转度才能与自身重合.20.如图,点O是矩形纸片ABCD的对称中心,E是BC上一点,将纸片沿AE折叠后,点B恰好与点O重合.若BE=3,则折痕AE的长为.三.解答题(共8小题)21.证明:直角三角形斜边上的中线等于斜边的一半.(要求画图并写出已知、求证以及证明过程)22.如图,D、E、F分别是△ABC三边的中点.(1)求证:AD与EF互相平分.(2)若∠BAC=90°,试说明四边形AEDF的形状,并简要说明理由.23.如图,四边形ABCD是平行四边形,E,F是对角线BD上的点,∠1=∠2,求证:(1)BE=DF;(2)AF∥CE.24.如图,已知在四边形ABCD中,AE⊥BD于E,CF⊥BD于F,AE=CF,BF=DE,求证:四边形ABCD是平行四边形.25.将两块斜边长相等的等腰直角三角形按如图A摆放,斜边AB分别交CD、CE于M、N 点,(1)如果把图A中的△BCN绕点C逆时针旋转90°得到△ACF,连接FM,如图B,求证:△CMF≌△CMN:(2)将△CED绕点C旋转:①当点M、N在AB上(不与A、B重合)时,线段AM、MN、NB之间有一个不变的关系式,请你写出这个关系式,并说明理由;②当点M在AB上,点N在AB的延长线上(如图C)时,①中的关系式是否仍然成立?请说明理由.26.如图,正方形ABCD与正方形A1B1C1D1关于某点中心对称,已知A,D1,D三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标.(2)写出顶点B,C,B1,C1的坐标.27.如图,在△ABC中,点D是AB边上的中点,已知AC=4,BC=6,(1)画出△BCD关于点D的中心对称图形;(2)根据图形说明线段CD长的取值范围.28.如图,在平面直角坐标系xOy中,点A(3,3),点B(4,0),点C(0,﹣1).(1)以点C为中心,把△ABC逆时针旋转90°,画出旋转后的图形△A′B′C;(2)在(1)中的条件下,①点A经过的路径的长为(结果保留π);②写出点B′的坐标为.答案与解析一.选择题(共12小题)1.如图,△ABC中,CD⊥AB于D,且E是AC的中点.若AD=6,DE=5,则CD的长等于()A.5B.6C.7D.8【分析】先根据直角三角形的性质求出AC的长,再根据勾股定理即可得出结论.【解答】解:∵△ABC中,CD⊥AB于D,∴∠ADC=90°.∵E是AC的中点,DE=5,∴AC=2DE=10.∵AD=6,∴CD===8.故选:D.【点评】本题考查的是直角三角形斜边上的中线,熟知在直角三角形中,斜边上的中线等于斜边的一半是解答此题的关键.2.直角三角形中,两直角边分别是12和5,则斜边上的中线长是()A.34B.26C.8.5D.6.5【分析】利用勾股定理列式求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:由勾股定理得,斜边==13,所以,斜边上的中线长=×13=6.5.故选:D.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.3.若三角形的三条中位线长分别为2cm,3cm,4cm,则原三角形的周长为()A.4.5cm B.18cm C.9cm D.36cm【分析】根据三角形中位线定理可以求得三条边的长度,然后由三角形的周长公式可知原三角形的周长.【解答】解:∵三角形的三条中位线长分别为2cm,3cm,4cm,∴原三角形的三条边长分别为2cm×2=4cm,3cm×2=6cm,4cm×2=8cm,∴原三角形的周长为:4cm+6cm+8cm=18cm;故选:B.【点评】本题考查了三角形中位线定理,即三角形的中位线平行于第三边且等于第三边的一半.4.如图,平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则EC 等于()A.1B.2C.3D.4【分析】根据平行四边形的性质和角平分线的性质可以推导出等角,进而得到等腰三角形,推得AB=BE,根据AD、AB的值,求出EC的值.【解答】解:∵AD∥BC,∴∠DAE=∠BEA∵AE平分∠BAD∴∠BAE=∠DAE∴∠BAE=∠BEA∴BE=AB=3∵BC=AD=5∴EC=BC﹣BE=5﹣3=2故选:B.【点评】本题主要考查了平行四边形的性质,等腰三角形的判定;在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.5.在下列给出的条件中,不能判定四边形ABCD一定是平行四边形的是()A.AB=CD,AD=BC B.AB∥CD,AD=BCC.AB∥CD,AB=CD D.AB∥CD,AD∥BC【分析】根据平行四边形的判定定理:(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形进行分析即可.【解答】解:A、AB=CD,AD=BC能判定四边形ABCD为平行四边形,故此选项不符合题意;B、AD=CB,AB∥DC不能判定四边形ABCD为平行四边形,故此选项符合题意;C、AB=CD,AB∥CD能判定四边形ABCD为平行四边形,故此选项不符合题意;D、AB∥CD,AD∥BC能判定四边形ABCD为平行四边形,故此选项不符合题意;故选:B.【点评】此题主要考查了平行四边形的判定,关键是掌握平行四边形的判定定理.6.如图,△ABC是等边三角形,P是形内一点,PD∥AB,PE∥BC,PF∥AC,若△ABC 的周长为18,则PD+PE+PF=()A.18B.9C.6D.条件不够,不能确定【分析】因为要求证明PD+PE+PF的值,而PD、PE、PF并不在同一直线上,构造平行四边形,求出等于AB,根据三角形的周长求出AB即可.【解答】解:延长EP交AB于点G,延长DP交AC与点H,∵PD∥AB,PE∥BC,PF∥AC,∴四边形AFPH、四边形PDBG均为平行四边形,∴PD=BG,PH=AF.又∵△ABC为等边三角形,∴△FGP和△HPE也是等边三角形,∴PE=PH=AF,PF=GF,∴PE+PD+PF=AF+BG+FG=AB==6,故选:C.【点评】本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.7.下面的图形中必须由“基本图形”既平移又旋转而形成的图形是()A.B.C.D.【分析】根据平移和旋转的概念,结合选项中图形的性质进行分析,排除错误答案.【解答】解:A、只要平移即可得到,故错误;B、只能旋转就可得到,故错误;C、只有两个基本图形旋转得到,故错误;D、既要平移,又要旋转后才能得到,故正确.故选:D.【点评】解决本题要熟练运用平移和旋转的概念.①图形平移前后的形状和大小没有变化,只是位置发生变化;②旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变,两组对应点连线段的垂直平分线的交点是旋转中心.8.如图,将一个含30°角的直角三角板ABC绕点A旋转,得点B,A,C′,在同一条直线上,则旋转角∠BAB′的度数是()A.60°B.90°C.120°D.150°【分析】根据旋转角的定义,两对应边的夹角就是旋转角,即可求解.【解答】解:旋转角是∠BAB′=180°﹣30°=150°.故选:D.【点评】本题考查的是旋转的性质,掌握对应点与旋转中心所连线段的夹角等于旋转角是解题的关键.9.下列图形中,绕着它的中心点旋转60°后,可以和原图形重合的是()A.正三角形B.正方形C.正五边形D.正六边形【分析】求出各图的中心角,度数为60°的即为正确答案.【解答】解:选项中的几个图形都是旋转对称图形,A、正三角形的旋转最小角是=120°,故此选项错误;B、正方形的旋转最小角是=90°,故此选项错误;C、正五边形的旋转最小角是=72°,故此选项错误;D、正六边形旋转的最小角度是=60°,故此选项正确;故选:D.【点评】本题主要考查了旋转对称图形旋转的最小的度数的计算方法.考查图形的旋转与重合,理解旋转对称图形的定义是解决本题的关键.旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.10.如图所示,已知△ABC与△CDA关于点O对称,过O任作直线EF分别交AD、BC于点E、F,下面的结论:①点E和点F,点B和点D是关于中心O对称点;②直线BD必经过点O;③四边形DEOC与四边形BFOA的面积必相等;④△AOE与△COF成中心对称.其中正确的个数为()A.1B.2C.3D.4【分析】由于△ABC与△CDA关于点O对称,那么可得到AB=CD、AD=BC,即四边形ABCD是平行四边形,由于平行四边形是中心对称图形,且对称中心是对角线交点,据此对各结论进行判断.【解答】解:△ABC与△CDA关于点O对称,则AB=CD、AD=BC,所以四边形ABCD是平行四边形,即点O就是▱ABCD的对称中心,则有:(1)点E和点F,B和D是关于中心O的对称点,正确;(2)直线BD必经过点O,正确;(3)四边形DEOC与四边形BFOA的面积必相等,正确;(5)△AOE与△COF成中心对称,正确;其中正确的个数为4个,故选:D.【点评】本题主要考查了中心对称的性质以及平行四边形的性质的运用,熟练掌握平行四边形的性质及中心对称图形的性质是解决此题的关键.解题时注意:关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.11.观察如图的图形,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:第一个图形不是轴对称图形,是中心对称图形;第二个图形是轴对称图形,也是中心对称图形;第三个图形是轴对称图形,也是中心对称图形;第四个图形是轴对称图形,也是中心对称图形.则既是轴对称图形又是中心对称图形的有3个.故选:C.【点评】考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.12.将△AOB绕点O旋转180°得到△DOE,则下列作图正确的是()A.B.C.D.【分析】根据旋转的性质,△AOB绕点O旋转180°得到△DOE,点A与点D、B与E 关于点O成中心对称解答.【解答】解:∵△AOB绕点O旋转180°得到△DOE,∴作图正确是C选项图形.故选:C.【点评】本题考查了利用旋转变换作图,熟记旋转的性质,判断出对应点关于点O对称是解题的关键.二.填空题(共8小题)13.若直角三角形的两条直角边的长分别是3和4,则斜边上的中线长为 2.5.【分析】根据勾股定理求出AB,根据直角三角形斜边上中线求出CD=AB即可.【解答】解:∵∠ACB=90°,AC=3,BC=4,由勾股定理得:AB==5,∵CD是△ABC中线,∴CD=AB=×5=2.5,故答案为:2.5.【点评】本题主要考查对勾股定理,直角三角形斜边上的中线等知识点的理解和掌握,能推出CD=AB是解此题的关键.14.如图,△ABC中,AC、BC上的中线交于点O,且BE⊥AD.若BD=10,BO=8,则AO的长为12.【分析】先根据勾股定理得到OD的长,再根据重心的性质即可得到AO的长.【解答】解:∵BE⊥AD,BD=10,BO=8,∴OD==6,∵AC、BC上的中线交于点O,∴AO=2OD=12.故答案为:12.【点评】此题主要考查了勾股定理的应用以及重心的性质,根据已知得出各边之间的关系进而求出是解题关键.15.如图,▱ABCD的对角线AC和BD交于点O,若AC=6,BD=10,AB=4,则▱ABCD 面积等于24.【分析】由▱ABCD的对角线AC和BD交于点O,若AC=6,BD=10,AB=4,易求得OA与OB的长,又由勾股定理的逆定理,证得AC⊥AB,继而求得答案.【解答】解:∵四边形ABCD是平行四边形,且AC=6,BD=10,AB=4,∴OA=OC=AC=3,OB=OD=5,∴OA2+AB2=OB2,∴△OAB是直角三角形,且∠BAO=90°,即AC⊥AB,∴▱ABCD面积为:AB•AC=4×6=24.故答案为:24.【点评】此题考查了平行四边形的性质与勾股定理的逆定理.此题难度不大,注意掌握数形结合思想的应用.16.如图,用9个全等的等边三角形,按图拼成一个几何图案,从该图案中可以找出15个平行四边形.【分析】根据全等三角形的性质及平行四边形的判定,可找出现15个平行四边形.【解答】解:两个全等的等边三角形,以一边为对角线构成的四边形是平行四边形,这样的两个平行四边形又可组成较大的平行四边形,从该图案中可以找出15个平行四边形.故答案为:15.【点评】此题主要考查学生对平行四边形的判定的掌握情况和读图能力,注意找图过程中,要做到不重不漏.17.钟表的分针匀速旋转一周需要60min,经过20min,分针旋转了120°.【分析】钟表的分针匀速旋转一周需要60分,分针旋转了360°;求经过20分,分针的旋转度数,列出算式,解答出即可.【解答】解:根据题意得,×360°=120°.故答案为:120°.【点评】本题考查了生活中的旋转现象,明确分针旋转一周,分针旋转了360°是解答本题的关键.18.如图,△ABC是边长为12的等边三角形,D是BC的中点,E是直线AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF.则在点E的运动过程中,DF的最小值是3.【分析】取线段AC的中点G,连接EG,根据等边三角形的性质以及角的计算即可得出CD=CG以及∠FCD=∠ECG,由旋转的性质可得出EC=FC,由此即可利用全等三角形的判定定理SAS证出△FCD≌△ECG,进而即可得出DF=GE,再根据点G为AC的中点,即可得出EG的最小值,此题得解.【解答】解:取线段AC的中点G,连接EG,如图所示.∵△ABC为等边三角形,且AD为△ABC的对称轴,∴CD=CG=AB=6,∠ACD=60°,∵∠ECF=60°,∴∠FCD=∠ECG.在△FCD和△ECG中,,∴△FCD≌△ECG(SAS),∴DF=GE.当EG∥BC时,EG最小,∵点G为AC的中点,∴此时EG=DF=CD=BC=3.故答案为3.【点评】本题考查了等边三角形的性质以及全等三角形的判定与性质,解题的关键是通过全等三角形的性质找出DF=GE.本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键.19.正方形至少旋转90度才能与自身重合.【分析】正方形可以被其对角线平分成4个全等的部分,则旋转的角度即可确定.【解答】解:正方形可以被其对角线平分成4个全等的部分,则旋转至少360÷4=90度,能够与本身重合.故答案为:90.【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.注意基础概念的熟练掌握.20.如图,点O是矩形纸片ABCD的对称中心,E是BC上一点,将纸片沿AE折叠后,点B恰好与点O重合.若BE=3,则折痕AE的长为6.【分析】由折叠的性质及矩形的性质得到OE垂直平分AC,得到AE=EC,根据AB为AC的一半确定出∠ACE=30°,进而得到OE等于EC的一半,求出EC的长,即为AE 的长.【解答】解:由题意得:AB=AO=CO,即AC=2AB,且OE垂直平分AC,∴AE=CE,设AB=AO=OC=x,则有AC=2x,∠ACB=30°,在Rt△ABC中,根据勾股定理得:BC=x,在Rt△OEC中,∠OCE=30°,∴OE=EC,即BE=EC,∵BE=3,∴OE=3,EC=6,则AE=6,故答案为:6【点评】此题考查了中心对称,矩形的性质,以及翻折变换,熟练掌握各自的性质是解本题的关键.三.解答题(共8小题)21.证明:直角三角形斜边上的中线等于斜边的一半.(要求画图并写出已知、求证以及证明过程)【分析】作出图形,然后写出已知,求证,延长CD到E,使DE=CD,连接AE、BE,根据对角线互相平分的四边形是平行四边形判断出四边形AEBC是平行四边形,再根据有一个角是直角的平行四边形是矩形可得四边形AEBC是矩形,然后根据矩形的对角线互相平分且相等可得CD=AB.【解答】已知:如图,在△ABC中,∠ACB=90°,CD是斜边AB上的中线,求证:CD=AB;证明:如图,延长CD到E,使DE=CD,连接AE、BE,∵CD是斜边AB上的中线,∴AD=BD,∴四边形AEBC是平行四边形,∵∠ACB=90°,∴四边形AEBC是矩形,∴AD=BD=CD=DE,∴CD=AB.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质证明,作辅助线,构造出矩形是解题的关键.22.如图,D、E、F分别是△ABC三边的中点.(1)求证:AD与EF互相平分.(2)若∠BAC=90°,试说明四边形AEDF的形状,并简要说明理由.【分析】(1)如图,连接DE、DF.欲证明AD与EF互相平分,只需证得四边形AEDF 是平行四边形即可;(2)由“有一内角为直角的平行四边形是矩形”证得四边形ADEF为矩形.【解答】(1)证明:如图,连接DE、DF.∵D、F分别是BC,AC的中点,∴DF∥AB,同理,DE∥AC∴四边形AEDF是平行四边形.∴AD与EF互相平分;(2)由(1)得四边形AEDF为平行四边形.∵∠BAC=90°∴四边形ADEF为矩形.【点评】本题考查的知识比较全面,需要用到三角形中位线定理,平行四边形的判定与性质,以及矩形的判定等.23.如图,四边形ABCD是平行四边形,E,F是对角线BD上的点,∠1=∠2,求证:(1)BE=DF;(2)AF∥CE.【分析】(1)由平行四边形的性质可证得△ABE≌△CDF,则可证得BE=DF;(2)由(1)可求得AE=CF,则可证得四边形AECF为平行四边形,可证得AF∥CE.【解答】证明:(1)∵四边形ABCD为平行四边形,∴AB∥CD,且AB=CD,∴∠ABE=∠CDF,∵∠1=∠2,∴∠AEB=∠CFD,在△ABE和CDF中∴△ABE≌△CDF(AAS),∴BE=DF;(2)由(1)可知△ABE≌△CDF,∴AE=CF,∵∠1=∠2,∴AE∥CF,∴四边形AECF为平行四边形,∴AF∥CE.【点评】本题主要考查平行四边形的判定和性质,掌握平行四边形的对边平行且相等是解题的关键.24.如图,已知在四边形ABCD中,AE⊥BD于E,CF⊥BD于F,AE=CF,BF=DE,求证:四边形ABCD是平行四边形.【分析】由SAS证得△ADE≌△CBF,得出AD=BC,∠ADE=∠CBF,证得AD∥BC,利用一组对边平行且相等的四边形是平行四边形判定四边形ABCD是平行四边形.【解答】证明:∵AE⊥BD于E,CF⊥BD于F,∴∠AED=∠CFB=90°,在△ADE和△CBF中,∴△ADE≌△CBF(SAS),∴AD=BC,∠ADE=∠CBF,∴AD∥BC,∴四边形ABCD是平行四边形.【点评】本题考查了平行四边形的判定、全等三角形的判定与性质、平行线的判定;熟练掌握平行四边形的判定方法,证明三角形全等是解决问题的关键.25.将两块斜边长相等的等腰直角三角形按如图A摆放,斜边AB分别交CD、CE于M、N 点,(1)如果把图A中的△BCN绕点C逆时针旋转90°得到△ACF,连接FM,如图B,求证:△CMF≌△CMN:(2)将△CED绕点C旋转:①当点M、N在AB上(不与A、B重合)时,线段AM、MN、NB之间有一个不变的关系式,请你写出这个关系式,并说明理由;②当点M在AB上,点N在AB的延长线上(如图C)时,①中的关系式是否仍然成立?请说明理由.【分析】(1)根据旋转的性质可得CF=CN,∠ACF=∠BCN,再求出∠ACM+∠BCN =45°,从而求出∠MCF=45°,然后利用“边角边”证明△CMF和△CMN全等即可;(2)①根据全等三角形对应边相等可得FM=MN,再根据旋转的性质可得AF=BN,∠CAF=∠B=45°,从而求出∠BAF=90°,再利用勾股定理列式即可得解;②把△BCN绕点C逆时针旋转90°得到△ACF,根据旋转的性质可得AF=BN,CF=CN,∠BCN=∠ACF,再求出∠MCF=∠MCN,然后利用“边角边”证明△CMF和△CMN全等,根据全等三角形对应边相等可得MF=MN,然后利用勾股定理列式即可得解.【解答】解:(1)∵△BCN绕点C逆时针旋转90°得到△ACF,∴CF=CN,∠ACF=∠BCN,∵∠DCE=45°,∴∠ACM+∠BCN=45°,∴∠ACM+∠ACF=45°,即∠MCF=45°,∴∠MCF=∠MCN,在△CMF和△CMN中,,∴△CMF≌△CMN(SAS);(2)①∵△CMF≌△CMN,∴FM=MN,又∵∠CAF=∠B=45°,∴∠FAM=∠CAF+∠BAC=45°+45°=90°,∴AM2+AF2=FM2,∴AM2+BN2=MN2;②如图,把△BCN绕点C逆时针旋转90°得到△ACF,则AF=BN,CF=CN,∠BCN=∠ACF,∵∠MCF=∠ACB﹣∠MCB﹣∠ACF=90°﹣(45°﹣∠BCN)﹣∠ACF=45°+∠BCN ﹣∠ACF=45°,∴∠MCF=∠MCN,在△CMF和△CMN中,,∴△CMF≌△CMN(SAS),∴FM=MN,∵∠ABC=45°,∴∠CAF=∠CBN=135°,又∵∠BAC=45°,∴∠FAM=∠CAF﹣∠BAC=135°﹣45°=90°,∴AM2+AF2=FM2,∴AM2+BN2=MN2.【点评】本题考查了旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,此类题目根据相同的思路确定出全等的三角形,然后找出条件是解题的关键.26.如图,正方形ABCD与正方形A1B1C1D1关于某点中心对称,已知A,D1,D三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标.(2)写出顶点B,C,B1,C1的坐标.【分析】(1)根据对称中心的性质,可得对称中心的坐标是D1D的中点,据此解答即可.(2)首先根据A,D的坐标分别是(0,4),(0,2),求出正方形ABCD与正方形A1B1C1D1的边长是多少,然后根据A,D1,D三点的坐标分别是(0,4),(0,3),(0,2),判断出顶点B,C,B1,C1的坐标各是多少即可.【解答】解:(1)根据对称中心的性质,可得对称中心的坐标是D1D的中点,∵D1,D的坐标分别是(0,3),(0,2),∴对称中心的坐标是(0,2.5).(2)∵A,D的坐标分别是(0,4),(0,2),∴正方形ABCD与正方形A1B1C1D1的边长都是:4﹣2=2,∴B,C的坐标分别是(﹣2,4),(﹣2,2),∵A1D1=2,D1的坐标是(0,3),∴A1的坐标是(0,1),∴B1,C1的坐标分别是(2,1),(2,3),综上,可得顶点B,C,B1,C1的坐标分别是(﹣2,4),(﹣2,2),(2,1),(2,3).【点评】(1)此题主要考查了中心对称的性质和应用,要熟练掌握,解答此题的关键是要明确中心对称的性质:①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.(2)此题还考查了坐标与图形的性质的应用,要熟练掌握,解答此题的关键是要明确点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.27.如图,在△ABC中,点D是AB边上的中点,已知AC=4,BC=6,(1)画出△BCD关于点D的中心对称图形;(2)根据图形说明线段CD长的取值范围.【分析】(1)根据中心对称图形的性质找出各顶点的对应点,然后顺次连接即可;(2)根据三角形的三边关系求解即可.【解答】解:(1)所画图形如下所示:△ADE就是所作的图形.(2)由(1)知:△ADE≌△BDC,则CD=DE,AE=BC,∴AE﹣AC<2CD<AE+AC,即BC﹣AC<2CD<BC+AC,∴2<2CD<10,解得:1<CD<5.【点评】本题考查中心对称图形及三角形三边关系的知识,难度适中,解答第(2)问的关键是通过△ADE≌△BDC,将2CD放在△ACE中求解.28.如图,在平面直角坐标系xOy中,点A(3,3),点B(4,0),点C(0,﹣1).(1)以点C为中心,把△ABC逆时针旋转90°,画出旋转后的图形△A′B′C;(2)在(1)中的条件下,①点A经过的路径的长为(结果保留π);②写出点B′的坐标为(﹣1,3).【分析】(1)根据旋转的定义作出点A、B绕点C逆时针旋转90°得到的对应点,再顺次连接可得;(2)①根据弧长公式列式计算即可;②根据(1)中所作图形可得.【解答】解:(1)如图所示,△A′B′C即为所求;(2)①∵AC==5,∠ACA′=90°,∴点A经过的路径的长为=,故答案为:;②由图知点B′的坐标为(﹣1,3),故答案为:(﹣1,3).【点评】本题主要考查作图﹣旋转变换,解题的关键是根据旋转变换的定义作出对应点及弧长公式.。

苏科版八年级数学下册第9章 中心对称图形-平行四边形 单元测试卷(含答案)

苏科版八年级数学下册第9章  中心对称图形-平行四边形  单元测试卷(含答案)

苏科版八年级数学下册第9章 中心对称图形-平行四边形 单元测试卷一、单选题1.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .2.下列结论中,正确的是( )A .四边相等的四边形是正方形B .对角线相等的菱形是正方形C .正方形两条对角线相等,但不互相垂直平分D .矩形、菱形、正方形都具有“对角线相等”的性质3.如图,在四边形ABCD 中,P 是对角线BD 的中点,E 、F 分别是AB 、CD 的中点,AD BC =,136EPF ∠=︒,则EFP ∠的度数是( )A .68︒B .34︒C .22︒D .44︒4.如图,在矩形ABCD 中,AB =8,AD =6,过点D 作直线m∥AC ,点E 、F 是直线m 上两个动点,在运动过程中EF∥AC 且EF =AC ,四边形ACFE 的面积是( )A .48B .40C .24D .305.如图,四边形ABCD 中,90DAB CBA ∠=∠=︒,将CD 绕点D 逆时针旋转90︒至DE ,连接AE ,若6AD =,10BC =,则ADE ∆的面积是( )A .272B .12C .9D .86.菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边中点,菱形ABCD 的周长为28,则OH 的长等于( ) A .3.5 B .4 C .7 D .147.如图,在正方形ABCD 中,点M 、N 为边BC 和CD 上的动点(不含端点),45MAN ∠=︒.下列三个结论:∥当MN =时,则22.5BAM ∠=︒;∥290AMN MNC ∠-∠=︒;∥MNC ∆的周长不变,其中正确结论的个数是( )A .0B .1C .2D .38.如图,在∥ABC 中,AB=3,AC=4,BC=5,P 为边 BC 上一动点,PE∥AB 于 E ,PF∥AC 于 F ,M 为 EF 中点,则 AM 的最小值为( )A .1B .1.3C .1.2D .1.59.如图,在菱形ABCD 中,AC 与BD 相交于点O ,AB =4,BD =E 为AB 的中点,点P 为线段AC 上的动点,则EP+BP 的最小值为( )A .4B .C .D .810.如图,在∥ABC中,∥ACB=90o,∥B=30o,AC=1,AB=2,AC在直线l上,将∥ABC绕点A顺时针转到位置∥可得到点P1,此时AP1=2;将位置∥的三角形绕点P1顺时针旋转到位置∥,可得到点P2,此时AP2=2+∥的三角形绕点P2顺时针旋转到位置∥,可得到点P3,此时AP3,按此顺序继续旋转,得到点P2016,则AP2016=( )A.B.C.D.二、填空题11.如图,在∥ABC中,∥BAC=65°,将∥ABC绕点A逆时针旋转,得到∥AB'C',连接C'C.若C'C∥AB,则∥BAB'=_____°.12.如图,矩形ABCD的对角线AC和BD相交于点O,直线EF经过点O,交BC于点E,AD于点F,若AB=5cm,AC=13 cm,则阴影部分的面积为_________.13.在菱形ABCD中,对角线AC=2,BD=4,则菱形ABCD的周长是________.14.如图.将长方形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,则∥EBF的大小为_____ .15.如图,在∥ABC中,∥ACB=90°,AC=BC=4,O是BC的中点,P是射线AO上的一个动点,则当∥BPC=90°时,AP的长为______.16.已知,点(,1)A a 和点(3,)B b 关于原点O 对称,则+a b 的值为__________.17.如图,∥ABC 中,AB=AC ,BE∥AC ,D 为AB 中点,若DE=5,BE=8.则EC=______.18.如图,在∥ABC 中,CD∥AB 于点D ,BE∥AC 于点E ,F 为BC 的中点,DE =5,BC =8,则∥DEF 的周长是______.19.如图,在ABC V 中,3AB =,4AC =,5BC =,P 为边BC 上一动点,PE AB ⊥于E ,PF AC ⊥于F ,M 为EF 的中点,则AM 的最小值为________.20.如图,在一张矩形纸片ABCD 中,AB=4,BC=8,点E ,F 分别在AD ,BC 上,将纸片ABCD 沿直线EF 折叠,点C 落在AD 上的一点H 处,点D 落在点G 处,有以下四个结论:∥四边形CFHE是菱形;∥EC平分∥DCH;∥线段BF的取值范围为3≤BF≤4;∥当点H与点A重合时,以上结论中,你认为正确的有.(填序号)三、解答题21.已知如图,O为平行四边形ABCD的对角线AC的中点,EF经过点O,且与AB交于E,与CD 交于F.求证:四边形AECF是平行四边形.22.如图,菱形ABCD的对角线AC、BD相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是矩形.23.如图,在边长为1的正方形网格中,∥ABC 的顶点均在格点上.(1)画出∥ABC 绕点O 顺时针旋转90°后的∥A′B′C′.(2)求点B 绕点O 旋转到点B′的路径长(结果保留π).24.如图,在ABCD Y 中,对角线BD 平分ABC ∠,过点A 作AE BD P ,交CD 的延长线于点E ,过点E 作EF BC ⊥,交BC 延长线于点F .(1)求证:四边形ABCD 是菱形;(2)若452ABC BC ∠︒=,=,求EF 的长.25.如图,矩形ABCD 的对角线AC ,BD 交于点O ,且DE AC P ,CE BD P .求证:四边形OCED 是菱形.26.如图,在∥ABCD 中,E ,F 分别是AD ,BC 上的点,且DE=BF ,AC∥EF .求证:四边形AECF 是菱形.27.如图,在ABCD Y 中,AE BC ⊥于点E 点,延长BC 至F 点使=CF BE ,连接AF ,DE ,DF .(1)求证:四边形AEFD 是矩形;(2)若6AB =,8DE =,10BF =,求AE 的长.28.如图,正方形OABC的边OA,OC在坐标轴上,点B的坐标为(-4,4).点P从点A出发,以每秒1个单位长度的速度沿x轴向点O运动;点Q从点O同时出发,以相同的速度沿x轴的正方向运动,规定点P到达点O时,点Q也停止运动.连接BP,过P点作BP的垂线,与过点Q平行于y轴的直线l相交于点D.BD与y轴交于点E,连接PE.设点P运动的时间为t(s).(1)∥PBD的度数为,点D的坐标为(用t表示);(2)当t为何值时,∥PBE为等腰三角形?29.在∥ABCD中,∥BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图1中证明CE=CF;(2)若∥ABC=90°,G是EF的中点(如图2),直接写出∥BDG的度数;(3)若∥ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∥BDG的度数.30.如图,∥ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE∥AB于E,连接PQ交AB于D.(∥)若设AP=x,则PC=,QC=;(用含x的代数式表示)(∥)当∥BQD=30°时,求AP的长;(∥)在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.苏科版八年级数学下册第9章中心对称图形-平行四边形单元测试卷(含答案)一、填空题1.C 2.B 3.C 4.A 5.B6.A 7.D 8.C 9.C 10.B二、填空题11.50 12.15cm2 13.14.45° 15.±216.4-17.4 18.13 19.1.2 20.∥∥∥三、解答题21.证明见解析.【分析】求证四边形AECF是平行四边形,只要求证OE=OF,根据对角线互相平分的四边形是平行四边形即可求证,依据∥AOE∥∥COF即可证明OE=OF.【详解】证明:∥平行四边形ABCD中AB∥CD,∥∥OAE=∥OCF,又∥OA=OC,∥COF=∥AOE,∥∥AOE∥∥COF(ASA),∥OE=OF,又∥OA=OC∥四边形AECF是平行四边形.22.证明见解析.根据平行四边形的判定推出四边形OBEC 是平行四边形,根据菱形性质求出∥AOB=90°,根据矩形的判定推出即可.【详解】∥BE∥AC ,CE∥DB ,∥四边形OBEC 是平行四边形,又∥四边形ABCD 是菱形,且AC 、BD 是对角线,∥AC∥BD ,∥∥BOC =90°,∥平行四边形OBEC 是矩形.23.(1)画图见解析;(2)点B 绕点O 旋转到点B′. 【分析】(1)利用网格特点和旋转的性质画出点A 、B 、C 的对应点A′、B′、C′,从而得到∥A′B′C′;(2)先计算出OB 的长,然后根据弧长公式计算点B 绕点O 旋转到点B′的路径长.【详解】(1)如图,∥A′B′C′为所作;(2)OB =,点B 绕点O 旋转到点B′的路径长=90180π⨯⨯π.24.(1)见解析;(2)(1)证明ADB ABD ∠∠=,得出AB AD =,即可得出结论;(2)由菱形的性质得出2AB CD BC ===,证明四边形ABDE 是平行四边形,45ECF ABC ∠∠︒==,得出24AB DE CE CD DE +==,==,在Rt CEF △中,由等腰直角三角形的性质和勾股定理即可求出EF 的长.【详解】(1)证明:∥四边形ABCD 是平行四边形,AD BC AB CD AB CD ∴P P ,=,,ADB CBD ∴∠∠=,, ∥BD 平分ABC ∠,ABD CBD ∴∠∠=,, ADB ABD ∴∠∠=,, AB AD ∴=,, ABCD ∴Y 是菱形;(2)解:∥四边形ABCD 是菱形,2AB CD BC ∴===,AB CD AE BD Q P P ,,∥四边形ABDE 是平行四边形,45ECF ABC ∠∠︒==,2AB DE ∴==,4CE CD DE ∴+==,45EF BC ECF ⊥∠︒Q ,=,CEF ∴V 是等腰直角三角形,2EF CF ∴=== 25.见解析【分析】首先根据两对边互相平行的四边形是平行四边形证明四边形OCED 是平行四边形,再根据矩形的性质可得OC=OD ,即可利用一组邻边相等的平行四边形是菱形判定出结论.【详解】证明:∥DE AC P ,CE BD P ,∥四边形OCED 是平行四边形,∥四边形ABCD 是矩形,∥AC BD =,OA OC =,OB OD =,∥OC OD =,∥四边形OCED 是菱形.26.见解析.【分析】根据对角线互相垂直的平行四边形是菱形即可证明【详解】证明:Q 四边形ABCD 是平行四边形,AD BC ∴=,//AD BC ,DE BF =Q ,AE CF ∴=,//AE CF Q ,∴四边形AECF 是平行四边形,AC EF ⊥Q ,∴四边形AECF 是菱形.27.(1)见解析;(2)245【解析】试题分析:(1)先证明四边形AEFD 是平行四边形,再证明∥AEF=90°即可.(2)证明∥ABF 是直角三角形,由三角形的面积即可得出AE 的长.试题解析:(1)证明:∥CF=BE ,∥CF+EC=BE+EC .即 EF=BC .∥在∥ABCD 中,AD∥BC 且AD=BC ,∥AD∥EF 且AD=EF .∥四边形AEFD是平行四边形.∥AE∥BC,∥∥AEF=90°.∥四边形AEFD是矩形;(2)∥四边形AEFD是矩形,DE=8,∥AF=DE=8.∥AB=6,BF=10,∥AB2+AF2=62+82=100=BF2.∥∥BAF=90°.∥AE∥BF,∥∥ABF的面积=12AB•AF=12BF•AE.∥AE=•6824105 AB AFBF⨯==.28.(1)45°(t,t);(2)t=4秒或(-4)秒【分析】(1)易证∥BAP∥∥PQD,从而得到DQ=AP=t,从而可以求出∥PBD的度数和点D的坐标.(2)由于∥EBP=45°,故图1是以正方形为背景的一个基本图形,容易得到EP=AP+CE.由于∥PBE底边不定,故分三种情况讨论,借助于三角形全等及勾股定理进行求解,然后结合条件进行取舍,最终确定符合要求的t值.【详解】(1)如图1,由题可得:AP=OQ=1×t=t(秒)∥AO=PQ .∥四边形OABC 是正方形,∥AO=AB=BC=OC ,∥BAO=∥AOC=∥OCB=∥ABC=90°.∥DP∥BP ,∥∥BPD=90°.∥∥BPA=90°-∥DPQ=∥PDQ .∥AO=PQ ,AO=AB ,∥AB=PQ .在∥BAP 和∥PQD 中,BAP PQD BPA PDQ AB PQ ∠∠∠∠⎧⎪⎨⎪⎩===∥∥BAP∥∥PQD (AAS ).∥AP=QD ,BP=PD .∥∥BPD=90°,BP=PD ,∥∥PBD=∥PDB=45°.∥AP=t ,∥DQ=t .∥点D 坐标为(t ,t ).故答案为:45°,(t ,t ).(2)∥若PB=PE ,则t=0(舍去),∥若EB=EP ,则∥PBE=∥BPE=45°.∥∥BEP=90°.∥∥PEO=90°-∥BEC=∥EBC .在∥POE 和∥ECB 中,PEO EBC POE ECB EP BE ∠∠∠∠⎧⎪⎨⎪⎩===∥∥POE∥∥ECB (AAS ).∥OE=CB=OC .∥点E 与点C 重合(EC=0).∥点P 与点O 重合(PO=0).∥点B (-4,4),∥AO=CO=4.此时t=AP=AO=4.∥若BP=BE ,在Rt∥BAP 和Rt∥BCE 中,BA BC BP BE ⎧⎨⎩== ∥Rt∥BAP∥Rt∥BCE (HL ).∥AP=CE .∥AP=t ,∥CE=t .∥PO=EO=4-t .∥∥POE=90°,4-t ).延长OA 到点F ,使得AF=CE ,连接BF ,如图2所示.在∥FAB 和∥ECB 中,90AB CB BAF BCE AF CE ⎧⎪⎨⎪∠∠⎩︒====∥∥FAB∥∥ECB .∥FB=EB ,∥FBA=∥EBC .∥∥EBP=45°,∥ABC=90°,∥∥ABP+∥EBC=45°.∥∥FBP=∥FBA+∥ABP=∥EBC+∥ABP=45°.∥∥FBP=∥EBP .在∥FBP 和∥EBP 中,BF BE FBP EBP BP BP ⎪∠⎪⎩∠⎧⎨===∥∥FBP∥∥EBP (SAS ).∥FP=EP .∥EP=FP=FA+AP=CE+AP .∥EP=t+t=2t .(4-t )=2t .解得:-4∥当t 为4秒或(-4)秒时,∥PBE 为等腰三角形.29.(1)见解析;(2)45°;(3)见解析.【分析】(1)根据AF 平分∥BAD ,可得∥BAF=∥DAF ,利用四边形ABCD 是平行四边形,求证∥CEF=∥F 即可;(2)根据∥ABC=90°,G 是EF 的中点可直接求得;(3)分别连接GB 、GC ,求证四边形CEGF 是平行四边形,再求证∥ECG 是等边三角形,由AD∥BC 及AF 平分∥BAD 可得∥BAE=∥AEB ,求证∥BEG∥∥DCG ,然后即可求得答案.【详解】(1)证明:如图1,∥AF 平分∥BAD ,∥∥BAF=∥DAF ,∥四边形ABCD 是平行四边形,∥AD∥BC ,AB∥CD ,∥∥DAF=∥CEF ,∥BAF=∥F ,∥∥CEF=∥F .∥CE=CF .(2)解:连接GC 、BG ,∥四边形ABCD 为平行四边形,∥ABC=90°,∥四边形ABCD 为矩形,∥AF 平分∥BAD ,∥∥DAF=∥BAF=45°,∥∥DCB=90°,DF∥AB ,∥∥DFA=45°,∥ECF=90°∥∥ECF 为等腰直角三角形,∥G 为EF 中点,∥EG=CG=FG ,CG∥EF ,∥∥ABE 为等腰直角三角形,AB=DC ,∥BE=DC ,∥∥CEF=∥GCF=45°,∥∥BEG=∥DCG=135°在∥BEG 与∥DCG 中,∥EG CG BEG DCG BE DC =⎧⎪∠=∠⎨⎪=⎩,∥∥BEG∥∥DCG ,∥BG=DG ,∥CG∥EF ,∥∥DGC+∥DGA=90°,又∥∥DGC=∥BGA ,∥∥BGA+∥DGA=90°,∥∥DGB为等腰直角三角形,∥∥BDG=45°.(3)解:延长AB、FG交于H,连接HD.∥AD∥GF,AB∥DF,∥四边形AHFD为平行四边形∥∥ABC=120°,AF平分∥BAD∥∥DAF=30°,∥ADC=120°,∥DFA=30°∥∥DAF为等腰三角形∥AD=DF,∥CE=CF,∥平行四边形AHFD为菱形∥∥ADH,∥DHF为全等的等边三角形∥DH=DF,∥BHD=∥GFD=60°∥FG=CE,CE=CF,CF=BH,∥BH=GF在∥BHD与∥GFD中,∥DH DFBHD GFD BH GF=⎧⎪∠=∠⎨⎪=⎩,∥∥BHD∥∥GFD,∥∥BDH=∥GDF∥∥BDG=∥BDH+∥HDG=∥GDF+∥HDG=60°.30.(∥)6﹣x,6+x;(∥)2;(∥)线段DE的长度不会改变.DE=3【分析】(1)根据等边三角形的性质可知AB=BC=AC=6,然后根据题意解答即可;(2)在(1)的基础上,再利用直角三角形30°所对的边等于斜边的一半进行解答即可.(3) 作QF∥AB,交直线AB的延长线于点F,连接QE,PF;根据题意和等边三角形的性质证明∥APE∥∥BQF(AAS),进一步说明四边形PEQF是平行四边形,最后说明DE=AB,即可说明DE的长度不变.【详解】解:(∥)∥∥ABC是边长为6的等边三角形,∥AB =BC =AC =6,设AP =x ,则PC =6﹣x ,QB =x ,∥QC =QB +BC =6+x ,故答案为:6﹣x ,6+x ;(∥)∥在Rt∥QCP 中,∥BQD =30°,∥PC =12QC ,即6﹣x =12(6+x ),解得x =2, ∥AP =2;(∥)当点P 、Q 运动时,线段DE 的长度不会改变.理由如下:作QF ∥AB ,交直线AB 的延长线于点F ,连接QE ,PF , 又∥PE ∥AB 于E ,∥∥DFQ =∥AEP =90°,∥点P 、Q 速度相同,∥AP =BQ ,∥∥ABC 是等边三角形,∥∥A =∥ABC =∥FBQ =60°,在∥APE 和∥BQF 中,∥∥AEP =∥BFQ =90°,∥∥APE =∥BQF ,∥在∥APE 和∥BQF 中,AEP BFQ A FBQ AP BQ ∠=∠⎧⎪∠=∠⎨⎪=⎩,∥∥APE∥∥BQF(AAS),∥AE=BF,PE=QF且PE∥QF,∥四边形PEQF是平行四边形,∥DE=12 EF,∥EB+AE=BE+BF=AB,∥DE=12 AB,又∥等边∥ABC的边长为6,∥DE=3,∥当点P、Q运动时,线段DE的长度不会改变.。

苏科版八年级下册第9章《中心对称图形—平行四边形》易错培优习题(详细答案)

苏科版八年级下册第9章《中心对称图形—平行四边形》易错培优习题(详细答案)

苏科新版八下第9章《中心对称图形—平行四边形》易错培优习题一.选择题(共12小题)1.平行四边形一定具有的性质是()A.内角和为180°B.是中心对称图形C.邻边相等D.对角互补2.一辆模型赛车,先前进1m,然后沿原地逆时针方向旋转,旋转角为α(0<α<90°),被称为一次操作,若五次操作后,发现赛车回到出发点,则旋转角α为()A.108°B.120°C.72°D.36°3.如图,该图形绕点O按下列角度旋转后,不能与其自身重合的是()A.216°B.144°C.108°D.72°4.如图,已知平行四边形ABCD中,点A的坐标是(4,0),点C的坐标是(﹣4,0),点D的坐标是(﹣2,﹣2),则点B的坐标是()A.(4,2)B.(6,﹣2)C.(2,2)D.(﹣10,﹣2)5.下列平行四边形中,其图中阴影部分面积不一定等于平行四边形面积一半的是()A.B.C.D.6.如图,▱ABCD的周长为60cm,AC,BD相交于点O,EO⊥BD交AD于点E,则△ABE 的周长为()A.30 cm B.60cm C.40cm D.20 cm7.如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=2,则矩形的另一边AD的长是()A.2B.4C.2D.48.如图,在▱ABCD中,AB=3,AD=5,∠ABC的平分线交AD于E,交CD的延长线于点F,则DF=()A.1B.C.2D.39.如图,∠MON=90°,矩形ABCD在∠MON的内部,顶点A,B分别在射线OM,ON 上,AB=4,BC=2,则点D到点O的最大距离是()A.2﹣2B.2+2C.2﹣2D.10.如图,已知AB=8,P为线段AB上一个动点,分别以AP,PB为边在AB的同侧作菱形APCD和PBFE,点P,C,E在一条直线上,∠DAP=60°,M,N分别是对角线AC,BE的中点,当点P在线段AB上移动时,点M,N之间的距离最短为()A.B.C.4D.311.如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n个图形中共有4005个三角形,则n的值是()A.1002B.1001C.1000D.99912.将n个边长都为1cm的正方形按如图所示的方法摆放,点A1,A2,…,A n分别是正方形对角线的交点,则n个正方形重叠形成的重叠部分的面积和为()A.cm2B.cm2C.cm2D.()n cm2二.填空题(共8小题)13.在正方形、长方形、线段、等边三角形和平行四边形这五种图形中,是旋转对称图形不是中心对称图形的是.14.若D,E,F分别为△ABC各边的中点,且△DEF的周长为9,则△ABC的周长为.15.如图,△ODC是由△OAB绕点O顺时针旋转40°后得到的图形,若点D恰好落在AB 上,且∠AOC=105°,则∠C的度数是.16.在△ABC中,点E,F分别是边AB,AC的中点,点D在BC边上,连接DE,DF,EF,请你添加一个条件,使△BED与△FDE全等.17.在△ABC中,AB=AC,高AH与中线BD相交于点E,如果BC=2,BD=3,那么AE =.18.如图,在四边形ABCD中,∠ADC+∠BCD=220°,E、F分别是AC、BD的中点,P 是AB边上的中点,则∠EPF=°.19.在面积为30的平行四边形ABCD中,过点A作AE垂直直线BC于点E,作AF垂直直线CD于点F,若AB=10,BC=12,则CE+CF的值为.20.如图,正方形ABCD的各边分别平行于x轴或者y轴,蚂蚁甲和蚂蚁乙都由点(3,0)出发,同时沿正方形ABCD的边做环绕运动,蚂蚁甲按顺时针方向以3个单位长度秒的速度做匀速运动,蚂蚁乙按逆时针方向以1个单位长度秒的速度做匀速运动,则两只蚂蚁出发后第三次相遇点的坐标是.三.解答题(共6小题)21.(1)指出下列旋转对称图形的最小旋转角,并在图中标明它的旋转中心O.(2)在上述几个图形中有没有中心对称图形?具体指明是哪几个?解:图形A的最小旋转角是度,它中心对称图形.图形B的最小旋转角是度,它中心对称图形.图形C的最小旋转角是度,它中心对称图形.图形D的最小旋转角是度,它中心对称图形.图形E的最小旋转角是度,它中心对称图形.22.如图所示的两个图形成中心对称,请找出它的对称中点.23.如图,已知平行四边形ABCD中,∠ABC的平分线与边CD的延长线交于点E,与AD 交于点F,且AF=DF.①求证:AB=DE;②若AB=3,BF=5,求△BCE的周长.24.在正方形ABCD中,BD为正方形对角线,E,F是BD上两点,BE=3,EF=5,DF=4,求∠BAE+∠DCF的度数.25.已知,在等边△ABC中,点E在BA的延长线上,点D在BC上,且ED=EC (1)如图1,求证:AE=DB;(2)如图2,将△BCE绕点C顺时针旋转60°至△ACF(点B、E的对应点分别为点A、F),连接EF.在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对线段长度之差等于AB的长.26.已知△ABC中,AB=AC,点E、D、F分别是AB、BC、AC的中点.(1)如图①,若∠A=90°,请判断四边形AEDF的形状,并证明你的结论.(2)如图②,若∠A=120°,BC=4,求四边形AEDF的周长和面积.参考答案一.选择题(共12小题)1.平行四边形一定具有的性质是()A.内角和为180°B.是中心对称图形C.邻边相等D.对角互补【解答】解:A、平行四边形的内角和为360°,故此选项错误;B、平行四边形是中心对称图形,故此选项正确;C、平行四边形的对角相等,邻边不一定相等,故此选项错误;D、平行四边形的对角相等,但不一定互补,故此选项错误;故选:B.2.一辆模型赛车,先前进1m,然后沿原地逆时针方向旋转,旋转角为α(0<α<90°),被称为一次操作,若五次操作后,发现赛车回到出发点,则旋转角α为()A.108°B.120°C.72°D.36°【解答】解:由题意,得赛车所走路线为正五边形,正五边形外角之和为360°,所以五次旋转角之和为360°,所以α=360°÷5=72°.故选:C.3.如图,该图形绕点O按下列角度旋转后,不能与其自身重合的是()A.216°B.144°C.108°D.72°【解答】解:该图形被平分成五部分,旋转72度的整数倍,就可以与自身重合,因而A、B、D选项都正确,不能与其自身重合的是C选项.故选:C.4.如图,已知平行四边形ABCD中,点A的坐标是(4,0),点C的坐标是(﹣4,0),点D的坐标是(﹣2,﹣2),则点B的坐标是()A.(4,2)B.(6,﹣2)C.(2,2)D.(﹣10,﹣2)【解答】解:如图所示,平行四边形ABCD中,点A的坐标是(4,0),点C的坐标是(﹣4,0),∴O是AC的中点,∴点D与点B关于原点对称,又∵点D的坐标是(﹣2,﹣2),∴B(2,2),故选:C.5.下列平行四边形中,其图中阴影部分面积不一定等于平行四边形面积一半的是()A.B.C.D.【解答】解:A、因为高相等,三个底是平行四边形的底,根据三角形和平行四边形的面积可知,阴影部分的面积等于平行四边形的面积的一半,正确;B、因为两阴影部分的底与平行四边形的底相等,高之和正好等于平行四边形的高,所以阴影部分的面积等于平行四边形的面积的一半,正确;C、根据平行四边形的对称性,可知小阴影部分的面积等于小空白部分的面积,所以阴影部分的面积等于平行四边形的面积的一半,正确;D、无法判断阴影部分面积是否等于平行四边形面积一半,错误.故选:D.6.如图,▱ABCD的周长为60cm,AC,BD相交于点O,EO⊥BD交AD于点E,则△ABE 的周长为()A.30 cm B.60cm C.40cm D.20 cm【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OB=OD,又∵OE⊥BD,∴OE是线段BD的中垂线,∴BE=DE,∴AE+ED=AE+BE,∵▱ABCD的周长为60cm,∴AB+AD=30cm,∴△ABE的周长=AB+AE+BE=AB+AD=30cm,故选:A.7.如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=2,则矩形的另一边AD的长是()A.2B.4C.2D.4【解答】解:过O点作OH⊥AD,∵四边形ABCD是矩形,∠AOB=60度,∴△AOB是等边三角形,AO=BO=2,∠BAO=60°,∴∠DAO=30°.在Rt△AHO中,AO=2,∠HAO=30°,∴AH=.所以AD=2AH=2.故选:C.8.如图,在▱ABCD中,AB=3,AD=5,∠ABC的平分线交AD于E,交CD的延长线于点F,则DF=()A.1B.C.2D.3【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD=BC=5,AB=CD=3,∴∠ABE=∠CFE,∵∠ABC的平分线交AD于点E,∴∠ABE=∠CBF,∴∠CBF=∠CFB,∴CF=CB=5,∴DF=CF﹣CD=5﹣3=2,故选:C.9.如图,∠MON=90°,矩形ABCD在∠MON的内部,顶点A,B分别在射线OM,ON 上,AB=4,BC=2,则点D到点O的最大距离是()A.2﹣2B.2+2C.2﹣2D.【解答】解:取AB中点E,连接OE、DE、OD,∵∠MON=90°,∴OE=AB=2.在Rt△DAE中,利用勾股定理可得DE=2.在△ODE中,根据三角形三边关系可知DE+OE>OD,∴当O、E、D三点共线时,OD最大为OE+DE=2+2.故选:B.10.如图,已知AB=8,P为线段AB上一个动点,分别以AP,PB为边在AB的同侧作菱形APCD和PBFE,点P,C,E在一条直线上,∠DAP=60°,M,N分别是对角线AC,BE的中点,当点P在线段AB上移动时,点M,N之间的距离最短为()A.B.C.4D.3【解答】解:连接PM、PN.∵四边形APCD,四边形PBFE是菱形,∠DAP=60°,∴∠APC=120°,∠EPB=60°,∵M,N分别是对角线AC,BE的中点,∴∠CPM=∠APC=60°,∠EPN=∠EPB=30°,∴∠MPN=60°+30°=90°,设P A=2a,则PB=8﹣2a,PM=a,PN=(4﹣a),∴MN===,∴a=3时,MN有最小值,最小值为2,故选:A.11.如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n个图形中共有4005个三角形,则n的值是()A.1002B.1001C.1000D.999【解答】解:分别数出图①、图②、图③中的三角形的个数,图①中三角形的个数为1=4×1﹣3;图②中三角形的个数为5=4×2﹣3;图③中三角形的个数为9=4×3﹣3;…可以发现,第几个图形中三角形的个数就是4与几的乘积减去3.按照这个规律,第n个图形中共有三角形的个数为4n﹣3,即4n﹣3=4005,n=1002,故选:A.12.将n个边长都为1cm的正方形按如图所示的方法摆放,点A1,A2,…,A n分别是正方形对角线的交点,则n个正方形重叠形成的重叠部分的面积和为()A.cm2B.cm2C.cm2D.()n cm2【解答】解:由题意可得阴影部分面积等于正方形面积的,即是,5个这样的正方形重叠部分(阴影部分)的面积和为×4,n个这样的正方形重叠部分(阴影部分)的面积和为×(n﹣1)=.故选:B.二.填空题(共8小题)13.在正方形、长方形、线段、等边三角形和平行四边形这五种图形中,是旋转对称图形不是中心对称图形的是等边三角形.【解答】解:正方形、等腰梯形、线段、等边三角形和平行四边形这五种图形中正方形、线段和平行四边形都是中心对称图形,只有等边三角形是旋转对称图形但不是中心对称图形,故答案为:等边三角形.14.若D,E,F分别为△ABC各边的中点,且△DEF的周长为9,则△ABC的周长为18.【解答】解:∵D,E,F分别为△ABC各边的中点,∴DE、EF、DF是△ABC的中位线,∴DE=BC,EF=AB,DF=AC,∴△ABC的周长=2△DEF的周长=2×9=18.故答案为:18.15.如图,△ODC是由△OAB绕点O顺时针旋转40°后得到的图形,若点D恰好落在AB 上,且∠AOC=105°,则∠C的度数是45°.【解答】解:∵∠AOC的度数为105°,由旋转可得∠AOD=∠BOC=40°,∴∠AOB=105°﹣40°=65°,∵△AOD中,AO=DO,∴∠A=(180°﹣40°)=70°,∴△ABO中,∠B=180°﹣70°﹣65°=45°,由旋转可得,∠C=∠B=45°,故答案为:45°.16.在△ABC中,点E,F分别是边AB,AC的中点,点D在BC边上,连接DE,DF,EF,请你添加一个条件D是BC的中点,使△BED与△FDE全等.【解答】解:当D是BC的中点时,△BED≌△FDE,∵E,F分别是边AB,AC的中点,∴EF∥BC,当E,D分别是边AB,BC的中点时,ED∥AC,∴四边形BEFD是平行四边形,∴△BED≌△FDE,故答案为:D是BC的中点.17.在△ABC中,AB=AC,高AH与中线BD相交于点E,如果BC=2,BD=3,那么AE =.【解答】解:如图所示,连接DH,∵AB=AC,AH⊥BC,∴H为BC的中点,又∵D为AC的中点,∴DH为△ABC的中位线,∴DH∥AB,DH=AB,∴△DEH∽△BEA,∴===,又∵BD=3,∴BE=2,∴Rt△BEH中,EH==,∴AE=2EH=2,故答案为:2.18.如图,在四边形ABCD中,∠ADC+∠BCD=220°,E、F分别是AC、BD的中点,P 是AB边上的中点,则∠EPF=40°.【解答】解:∵四边形ABCD中,∠ADC+∠BCD=220°,∴∠BAD+∠ABC=360°﹣220°=140°,∵E、F分别是AC、BD的中点,P是AB边上的中点,∴PE是△ABC的中位线,PF是△ABD的中位线,∴PE∥BC,PF∥AD,∴∠BPF=∠BAD,∠APE=∠ABC,∴∠APE+∠BPF=∠BAD+∠ABC=140°,∴∠EPF=180°﹣140°=40°,故答案为:40.19.在面积为30的平行四边形ABCD中,过点A作AE垂直直线BC于点E,作AF垂直直线CD于点F,若AB=10,BC=12,则CE+CF的值为22+或2+.【解答】解:分两种情况:①如图1所示:当∠BAD为锐角时,∵平行四边形ABCD的面积=BC•AE=AB•AF=30,AB=10,BC=12,∴AE=2.5,AF=3,∵AE⊥直线BC于点E,作AF⊥直线CD于F,∴∠AEB=∠AFD=90°,∴BE===,DF===3,∴CE=CB+BE=12+,CF=CD+DF=10+3,∴CE+CF=22+;②如图2所示:当∠BAD为钝角时,同理可得:BE=,DF=3,∴CE=CB﹣BE=12﹣,CF=DF﹣CD=3﹣10,∴CE+CF=2+,综上所述,CE+CF的值为22+或2+.故答案是:22+或2+.20.如图,正方形ABCD的各边分别平行于x轴或者y轴,蚂蚁甲和蚂蚁乙都由点(3,0)出发,同时沿正方形ABCD的边做环绕运动,蚂蚁甲按顺时针方向以3个单位长度秒的速度做匀速运动,蚂蚁乙按逆时针方向以1个单位长度秒的速度做匀速运动,则两只蚂蚁出发后第三次相遇点的坐标是(0,﹣3).【解答】解:由已知,正方形周长为4×6=24,∵甲、乙速度分别为3单位/秒,1单位/秒,则两只蚂蚁每次相遇时间间隔为=6秒,则两只蚂蚁相遇点依次为(0,3)、(﹣3,0)、(0,﹣3),故答案为:(0,﹣3).三.解答题(共6小题)21.(1)指出下列旋转对称图形的最小旋转角,并在图中标明它的旋转中心O.(2)在上述几个图形中有没有中心对称图形?具体指明是哪几个?解:图形A的最小旋转角是60度,它是中心对称图形.图形B的最小旋转角是72度,它不是中心对称图形.图形C的最小旋转角是72度,它不是中心对称图形.图形D的最小旋转角是120度,它不是中心对称图形.图形E的最小旋转角是90度,它是中心对称图形.【解答】解:(1)如图所示,(2)图形A的最小旋转角是60度,它是中心对称图形.图形B的最小旋转角是72度,它不是中心对称图形.图形C的最小旋转角是72度,它不是中心对称图形.图形D的最小旋转角是120度,它不是中心对称图形.图形E的最小旋转角是90度,它是中心对称图形.故答案为:60,是;72,不是;72,不是;120,不是;90,是.22.如图所示的两个图形成中心对称,请找出它的对称中点.【解答】解:连接CC′,BB′,两条线段相交于当O,则点O即为对称中点.23.如图,已知平行四边形ABCD中,∠ABC的平分线与边CD的延长线交于点E,与AD 交于点F,且AF=DF.①求证:AB=DE;②若AB=3,BF=5,求△BCE的周长.【解答】解:①∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠A=∠FDE,∠ABF=∠E,∵AF=DF,∴△ABF≌△DEF,∴AB=DE;②∵BE平分∠ABC,∴∠ABF=∠CBF,∵AD∥BC,∴∠CBF=∠AFB,∴∠ABF=∠AFB,∴AF=AB=3,∴AD=2AF=6∵四边形ABCD是平行四边形,∴BC=AD=6,CD=AB=3,∵△ABF≌△DEF,∴DE=AB=3,EF=BF=5,∴CE=6,BE=EF+BF=10,∴△BCE的周长=BC+CE+BE=10+6+6=22.24.在正方形ABCD中,BD为正方形对角线,E,F是BD上两点,BE=3,EF=5,DF=4,求∠BAE+∠DCF的度数.【解答】解:将△ABE绕点A逆时针旋转90°得到△ADP,连接PF,AF,∵四边形ABCD是正方形,∴∠ABD=∠ADB=45°,AB=AD=CD,又∵△ABE≌△ADP,∴PD=BE=3,∠ADP=∠ABE=45°,∴∠PDF=∠ADP+∠ADB=90°,∴PF==5,∴PF=PE,又∵AE=AP,AF=AF,∴△AFE≌△AFP(SSS),∴∠F AP=∠F AE=∠EAP=45°,∴∠P AD+∠DAF=45°,根据正方形的对称性,可得∠DCF=∠DAF,又∵∠BAE=∠DAP,∴∠BAE+∠DCF=45°.25.已知,在等边△ABC中,点E在BA的延长线上,点D在BC上,且ED=EC (1)如图1,求证:AE=DB;(2)如图2,将△BCE绕点C顺时针旋转60°至△ACF(点B、E的对应点分别为点A、F),连接EF.在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对线段长度之差等于AB的长.【解答】解:(1)如图,作DK∥AC交AB于K,则△BDK是等边三角形,∵△ABC是等边三角形,∴∠EKD=∠EAC=120°,∠B=∠BKD=60°,∴DK=BD,∵ED=EC,∴∠EDC=∠ECD,∴∠B+∠KED=∠EDC,∵∠ECA+∠ACB=∠ECD,∴∠B+∠KED=∠ECA+∠ACB,∵∠B=∠ACB=60°,∴∠KED=∠ECA,在△DKE与△EAC中,,∴△DKE≌△EAC(AAS),∴AE=DK,∴BD=AE.(2)BE﹣AE=AB;BE﹣BD=AB;AF﹣AE=AB;AF﹣BD=AB.理由:由旋转可得,△BCE≌△ACF,∴BE=AF,又∵BD=AE,AB=BE﹣AE,∴BE﹣AE=AB;BE﹣BD=AB;AF﹣AE=AB;AF﹣BD=AB.26.已知△ABC中,AB=AC,点E、D、F分别是AB、BC、AC的中点.(1)如图①,若∠A=90°,请判断四边形AEDF的形状,并证明你的结论.(2)如图②,若∠A=120°,BC=4,求四边形AEDF的周长和面积.【解答】解:(1)四边形AEDF是正方形.证明:∵AB=AC,点E、D、F分别是AB、BC、AC的中点,∴AE=DE=DF=AF,∴四边形AEDF是菱形,∵∠A=90°,∴四边形AEDF是正方形.(2)如图,连接AD,EF,∵AB=AC,点D是BC的中点,∴AD⊥BC,又∵∠A=120°,BC=4,∴∠B=30°,BD=2,∴AD=tan30°×BD=2,∴AB=2AD=4,由题可得,DF是△ABC的中位线,∴2DF=AB,即DF=2,∴菱形AEDF周长为8.由题可得,EF是△ABC的中位线,∴BC=2EF,即EF=2,∴菱形AEDF的面积=0.5×2×2=2.。

苏科版八年级数学下册单元测试《第9章 中心对称图形》(解析版)

苏科版八年级数学下册单元测试《第9章 中心对称图形》(解析版)

《第9章中心对称图形》一、选择题1.顺次连接等腰梯形各边中点所围成的四边形是()A.平行四边形B.矩形C.菱形D.正方形2.顺次连接下列各四边形中点所得的四边形是矩形的是()A.等腰梯形B.矩形C.平行四边形D.菱形或对角线互相垂直的四边形3.如果四边形的对角线相等,那么顺次连接四边中点所得的四边形是()A.矩形B.菱形C.正方形D.以上都不对4.把图形绕点A按逆时针方向旋转70°后所得的图形与原图作比较,保持不变的是()A.位置与大小B.形状与大小C.位置与形状D.位置、形状及大小5.下面4个图案中,是中心对称图形的是()A.B.C.D.6.在平行四边形、矩形、菱形和等腰梯形中,既是轴对称图形,又是中心对称图形的有()A.1个 B.2个 C.3个 D.4个7.下列说法中,正确的是()A.一组对边平行的四边形是平行四边形B.有一个角是直角的四边形是矩形C.四条边相等的四边形是菱形D.对角线互相垂直平分的四边形是正方形8.如图,AD是△ABC的角平分线,E、F分别是边AB、AC的中点,连接DE、DF,在不再连接其他线段的前提下,要使四边形AEDF成为菱形,还需添加一个条件,这个条件不可能是()A.BD=DC B.AB=AC C.AD=BC D.AD⊥BC9.在梯形ABCD中,AB∥CD,DC:AB=1:2,E、F分别是两腰BC、AD的中点,则EF:AB等于()A.1:4 B.1:3 C.1:2 D.3:4二、填空题10.如图,在△ABC中,D,E分别是AB,AC的中点,若DE=5,则BC的长是.11.已知一个三角形的周长为10cm,则连接各边中点所得的三角形的周长为cm.12.已知以一个三角形各边中点为顶点的三角形的周长为8cm,则原三角形的周长为cm.13.如图,D、E、F分别是△ABC各边的中点.(1)如果EF=4cm,那么BC=cm;如果AB=10cm,那么DF=cm;(2)中线AD与中位线EF的关系是.14.要使一个平行四边形成为正方形,则需增加的条件是(填上一个正确的结论即可).15.已知:如图,把一张矩形纸片ABCD沿BD对折,使C点落在E处,BE与AD相交于点O,写出一组相等的线段(不包括AB=CD和AD=BC).16.已知菱形的两条对角线长为6cm和8cm,菱形的周长是cm,面积是cm2.17.如图,P是边长为4的正方形ABCD的边AD上的一点,且PE⊥AC,PF⊥BD,则PE+PF=.18.斜拉桥是利用一组钢索,把桥面重力传递到耸立在两侧的高塔上的桥梁,它不需建造桥墩,如图:、、…、是斜拉桥上五条相互平行的钢索,并且、、、、被均匀地固定在桥面上.已知最长的钢索=80m,最短的钢索=20m,那么钢索、的长分别为m和m.三、解答题19.如图,在△ABC中,D是AB上一点,且AD=AC,AE⊥CD,垂足是E,F是CB的中点.求证:BD=2EF.20.如图,E、F分别是AB、AC的中点,延长EF交∠ACD的平分线于点G.AG与CG有怎样的位置关系?说明你的理由.21.如图,在四边形ABCD中,AB=CD,M、N分别是AD、BC的中点,延长BA、NM,CD分别交于点E、F.求证:∠BEN=∠NFC.22.某居民小区搞绿化,小区的居民们把一块矩形垃圾场地清理干净后,准备建几个花坛,老张说:花坛应该有圆有方;老李说:花坛和整个矩形空地应该成中心对称图案,这样比较漂亮.你能设计一个让大家都满意的方案吗?试试看(将你设计的方案画在下面的矩形方框中).23.如图,在梯形ABCD中,点P从点A向点D运动,点Q从点C向点B运动.已知点P的运动速度为1cm/s,点Q的运动速度为2cm/s,AD=4cm,BC=8cm,运动时间为t.当t为何值时,四边形ABQP是平行四边形?《第9章 中心对称图形》参考答案与试题解析一、选择题1.顺次连接等腰梯形各边中点所围成的四边形是( )A .平行四边形B .矩形C .菱形D .正方形【考点】菱形的判定;三角形中位线定理;等腰梯形的性质.【分析】由E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,得出EF ,EH 是中位线,再得出四条边相等,根据“四条边都相等的四边形是菱形”进行证明.【解答】解:∵E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,∴EF ∥AC 且EF=AC ,EH ∥BD 且EH=BD ,∵AC=BD ,∴EF=EH ,同理可得GF=HG=EF=EH ,∴四边形EFGH 为菱形,故选:C .【点评】菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法: ①定义;②四边相等;③对角线互相垂直平分.2.顺次连接下列各四边形中点所得的四边形是矩形的是( )A .等腰梯形B.矩形C.平行四边形D.菱形或对角线互相垂直的四边形【考点】矩形的判定;三角形中位线定理.【分析】矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形.(2)有三个角是直角的四边形是矩形.(3)对角线互相平分且相等的四边形是矩形.据此判断.【解答】解:A、等腰梯形的对角线相等但不垂直,故连接等腰梯形各边中点所得的四边形为菱形.不正确.B、矩形的对角线相等且互相平分,但却不垂直.故连接矩形各边中点所得的四边形为菱形.不正确.C、平行四边形的对角线互相平分,但并不相等和互相垂直.故连接平行四边形各边中点所得的四边形为平行四边形.不正确.D、对角线互相垂直的四边形(菱形)连接各边中点所得的四边形为矩形.因为矩形是有一个角为直角的平行四边形.正确.故选D.【点评】本题主要考查的是矩形的判定定理.但需要注意的是本题的知识点是关于各个图形的性质以及判定.3.如果四边形的对角线相等,那么顺次连接四边中点所得的四边形是()A.矩形B.菱形C.正方形D.以上都不对【考点】中点四边形.【分析】作出图形,根据三角形的中位线平行于第三边并且等于第三边的一半可得EF=AC,GH=AC,HE=BD,FG=BD,再根据四边形的对角线相等可可知AC=BD,从而得到EF=FG=GH=HE,再根据四条边都相等的四边形是菱形即可得解.【解答】解:如图,E、F、G、H分别是四边形ABCD的边AB、BC、CD、DA的中点,根据三角形的中位线定理,EF=AC,GH=AC,HE=BD,FG=BD,连接AC、BD,∵四边形ABCD的对角线相等,∴AC=BD,所以,EF=FG=GH=HE,所以,四边形EFGH是菱形.故选B.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,四条边都相等的四边形是菱形,熟记定理与判定方法是解题的关键,作出图形更形象直观.4.把图形绕点A按逆时针方向旋转70°后所得的图形与原图作比较,保持不变的是()A.位置与大小B.形状与大小C.位置与形状D.位置、形状及大小【考点】旋转的性质.【分析】直接根据旋转的性质得到答案.【解答】解:∵旋转前后两图形全等,∴把图形绕点A按逆时针方向旋转70°后所得的图形与原图的形状与大小一样,但位置发生了变化.故选B.【点评】本题考查了旋转的性质:旋转前后两图形全等;对应点与旋转中心的连线段的夹角等于旋转角.5.下面4个图案中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心求解.【解答】解:A、是中心对称图形,故此选项正确;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、不是中心对称图形.故此选项错误.故选A.【点评】此题主要考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.在平行四边形、矩形、菱形和等腰梯形中,既是轴对称图形,又是中心对称图形的有()A.1个 B.2个 C.3个 D.4个【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:矩形、菱形是轴对称图形,也是中心对称图形.故选B.【点评】掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.下列说法中,正确的是()A.一组对边平行的四边形是平行四边形B.有一个角是直角的四边形是矩形C.四条边相等的四边形是菱形D.对角线互相垂直平分的四边形是正方形【考点】正方形的判定;平行四边形的判定;菱形的判定;矩形的判定.【分析】分别根据平行四边形以及矩形、菱形、正方形的判定分析得出即可.【解答】解:A、只有两组对边平行的四边形是平行四边形,故此选项错误;B、根据有一个角是直角的平行四边形是矩形,故此选项错误;C、四条边相等的四边形是菱形,此选项正确;D、根据对角线互相垂直平分且相等的四边形是正方形,故此选项错误;【点评】此题主要考查了平行四边形以及矩形、菱形、正方形的判定,正确区分它们的判定是解题关键.8.如图,AD是△ABC的角平分线,E、F分别是边AB、AC的中点,连接DE、DF,在不再连接其他线段的前提下,要使四边形AEDF成为菱形,还需添加一个条件,这个条件不可能是()A.BD=DC B.AB=AC C.AD=BC D.AD⊥BC【考点】菱形的判定.【分析】可以添加BD=CD或AB=AC或AD⊥BC,然后利用三角形中位线证明四边形ADEF 是平行四边形,再证明是菱形即可.【解答】解:添加BD=CD,∵E、F分别是边AB、AC的中点,∴DE,EF是三角形的中位线,∴DE∥AB,DF∥AC,∴四边形ADEF是平行四边形,∵AB=AC,点E,F分别是AB,AC的中点,∴AE=AF,∴平行四边形ADEF为菱形.添加AB=AC,则三角形是等腰三角形,由等腰三角形的性质知,顶角的平分线与底边上的中线重合,即点D是BC的中点再证明即可;添加AD⊥BC,再由AD是△ABC的角平分线可证明△ABD≌△ACD,进而得到BD=CD,再证明四边形ADEF为菱形即可,【点评】本题考查了菱形的判定.利用了三角形的中位线的性质和平行四边形的判定和性质、等腰三角形的性质.也可添加∠B=∠C或AE=AF.9.在梯形ABCD中,AB∥CD,DC:AB=1:2,E、F分别是两腰BC、AD的中点,则EF:AB等于()A.1:4 B.1:3 C.1:2 D.3:4【考点】梯形中位线定理.【分析】设DC=x,AB=2x,根据梯形的中位线等于两底和的一半表示出EF的长,然后求解即可.【解答】解:∵DC:AB=1:2,∴设DC=x,AB=2x,∵E、F分别是两腰BC、AD的中点,∴EF=(AB+CD)=(2x+x)=x,∴EF:AB=x:2x=3:4.故选D.【点评】本题考查了梯形的中位线定理,熟练掌握中位线定理是解题的关键,用x表示出DC、AB可以使运算更加简便.二、填空题10.如图,在△ABC中,D,E分别是AB,AC的中点,若DE=5,则BC的长是10.【考点】三角形中位线定理.【分析】由D、E分别是边AB、AC的中点可知,DE是△ABC的中位线,根据三角形的中位线定理求解即可.【解答】解:∵D,E分别是AB,AC的中点,∴DE为△ABC的中位线,∵DE=5,∴AB=2ED=10.故答案为:10.【点评】本题考查了三角形的中位线定理:三角形的中位线平行于第三边并等于三角形第三边的一半.11.已知一个三角形的周长为10cm,则连接各边中点所得的三角形的周长为5cm.【考点】三角形中位线定理.【分析】根据三角形中位线的性质,即三角形的中位线等于第三边的一半求解即可.【解答】解:∵D、E、F分别为AB、BC、AC的中点,∴DE=AC,EF=AB,DF=BC,∵AB+BC+AC=10,∴DE+EF+FD=(AB+BC+AC)=5cm,故答案为:5.【点评】此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.12.已知以一个三角形各边中点为顶点的三角形的周长为8cm,则原三角形的周长为16cm.【考点】三角形中位线定理.【分析】三角形的三条中位线把原三角形分成可重合的4个小三角形,因而每个小三角形的周长为原三角形周长的一半,已知中点三角形的周长,可以求出原三角形的周长.【解答】解:由中点和中位线定义可得原三角形的各边长分别为新三角形各边长的2倍,所以原三角形的周长为新三角形的周长的2倍为16.故答案为16.【点评】解决本题的关键是利用中点定义和中位线定理得到新三角形各边长与原三角形各边长的数量关系.13.如图,D、E、F分别是△ABC各边的中点.(1)如果EF=4cm,那么BC=8cm;如果AB=10cm,那么DF=5cm;(2)中线AD与中位线EF的关系是互相平分.【考点】三角形中位线定理.【分析】(1)根据三角形中位线定理易求BC=2EF,DF=AB;(2)根据三角形中位线定理推知四边形AEDF是平行四边形,则平行四边形的对角线互相平分.【解答】解:(1)如图,在△ABC中,∵E、F分别是AB、AC的中点,∴EF是△ABC的中位线,∴EF=BC,则BC=2EF=8cm.同理,DF是△ABC的中位线,∴DF=AB=5cm.故答案是:8;5;(2)如图,∵DF是△ABC的中位线,∴DF∥AB,则DF∥AE.同理,DE∥AF,∴四边形AEDF是平行四边形,∴对角线AD与EF互相平分.故答案是:互相平分.【点评】本题考查了三角形中位线定理.解(2)题时,根据“三角形中位线定理推知四边形AEDF是平行四边形”是解题的难点.14.要使一个平行四边形成为正方形,则需增加的条件是对角线相等且互相垂直(填上一个正确的结论即可).【考点】正方形的判定;平行四边形的性质.【专题】开放型.【分析】根据正方形的判定和定义进行填空.【解答】解:根据正方形的判定和定义知:有一组邻边相等且一个角是直角的平行四边形是正方形;对角线相等且相互垂直的平行四边形是正方形.故答案为:“一组邻边相等且一个角是直角”或“对角线相等且相互垂直”.【点评】本题主要考查正方形的判定和定义.15.已知:如图,把一张矩形纸片ABCD沿BD对折,使C点落在E处,BE与AD相交于点O,写出一组相等的线段OA=OE或OB=OD或AB=ED或CD=ED或BC=BE或AD=BE (不包括AB=CD和AD=BC).【考点】矩形的性质;全等三角形的判定与性质;翻折变换(折叠问题).【专题】压轴题;开放型.【分析】折叠前后的对应边相等,结合矩形的性质可得到多组线段相等.【解答】解:由折叠的性质知,ED=CD=AB,BE=BC=AD,∴△ABD≌△EDB,∠EBD=∠ADB,由等角对等边知,OB=OD.【点评】本题答案不唯一,本题利用了:1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、矩形的性质,全等三角形的判定和性质,等角对等边求解.16.已知菱形的两条对角线长为6cm和8cm,菱形的周长是20cm,面积是24cm2.【考点】菱形的性质;勾股定理.【分析】根据菱形的面积等于两对角线乘积的一半可得到其面积,根据菱形的性质可求得其边长,从而可得到其周长.【解答】解:如图,四边形ABCD是菱形,BD,AC分别是其对角线且BD=6,AC=8,求其面积和周长.∵四边形ABCD是菱形,BD,AC分别是其对角线,∴BD⊥AC,BO=OD=3cm,AO=CO=4cm,∴AB=5cm,∴菱形的周长=5×4=20cm;S菱形=×6×8=24cm2.故本题答案为:20cm;24cm2.【点评】此题主要考查学生对菱形的性质及勾股定理的理解及运用.17.如图,P是边长为4的正方形ABCD的边AD上的一点,且PE⊥AC,PF⊥BD,则PE+PF=.【考点】正方形的性质;勾股定理.【专题】计算题.【分析】根据条件可以得到四边形PEOF是矩形,因而PF=OE,同时易证△APE是等腰直角三角形,因而AE=PE,则PE+PF=OA.根据勾股定理即可求解.【解答】解:∵四边形ABCD是正方形,边长为4,∴AD=CD=4 AC⊥BD∠DAO=45°;∴AC2=AD2+CD2=42+42=32,则AC=4,∵PE⊥AC,PF⊥BD,∴∠PEC=∠PFB=90°;又∵AC⊥BD,∴四边形EPFO是矩形;∴PF=OE,又∵∠DAO=∠APE=45°,∴AE=PE;∵AE+OE=OA=AC=×4=2,∴PE+PF=2.故答案为2.【点评】此题较简单,根据正方形的性质及勾股定理解答即可.18.斜拉桥是利用一组钢索,把桥面重力传递到耸立在两侧的高塔上的桥梁,它不需建造桥墩,如图:、、…、是斜拉桥上五条相互平行的钢索,并且、、、、被均匀地固定在桥面上.已知最长的钢索=80m,最短的钢索=20m,那么钢索、的长分别为40m和60m.【考点】三角形中位线定理;梯形中位线定理.【专题】应用题.【分析】需要先求出B2、B3、B4是B1到高塔底端的四等分点,由题可知A1B1、A2B2、A3B3、A4B4是互相平行的.此题只需分别根据梯形的中位线定理进行求解.【解答】解:∵B2、B3、B4是B1到高塔底端的四等分点,A1B1、A2B2、A3B3、A4B4是斜拉桥上互相平行的钢索,∴A4B4是△AA3B3的中位线,∴A3B3=2A4B4=2×20=40m,∵同理,梯形A1B1B3A3的中位线是A2B2∴A2B2===60m.故答案是:40、60.【点评】本题只要是把实际问题抽象到三角形及梯形中,利用三角形及梯形的中位线定理列出方程,通过解方程求解,体现了方程的思想.三、解答题19.如图,在△ABC中,D是AB上一点,且AD=AC,AE⊥CD,垂足是E,F是CB的中点.求证:BD=2EF.【考点】三角形中位线定理.【专题】常规题型.【分析】根据三角形的中位线定理,在三角形中准确应用,并且求证E为CD的中点,再求证EF为△BCD的中位线.【解答】证明:在△ACD中,因为AD=AC 且AE⊥CD,所以根据等腰三角形中底边的垂线与底边的交点即中点,可以证明:E为CD的中点,又因为F是CB的中点,所以,EF∥BD,且EF为△BCD的中位线,因此EF=BD,即BD=2EF.【点评】此题主要是中位线定理在三角形中的应用,考查在三角形中位线为对应边长的的定理.20.如图,E、F分别是AB、AC的中点,延长EF交∠ACD的平分线于点G.AG与CG 有怎样的位置关系?说明你的理由.【考点】三角形中位线定理.【分析】利用三角形中位线定理推知EF∥BC.所以利用平行线的性质、三角形角平分线的性质以及等腰三角形的判定证得FG=FC.又由AF=CF,则FG是△ACG中AC边上的中线,且FG=AC,则△AGC是直角三角形.【解答】解:AG⊥CG,理由:∵E、F分别是AB、AC的中点,∴EF是△ABC的中位线,AF=CF,∴EF∥BC,∴∠FGC=∠GCD.∵CG平分∠ACD,∴∠FCG=∠GCD,∴∠FCG=∠FGC,∴FG=FC.又∵AF=CF,∴FG是△ACG中AC边上的中线,且FG=AC,∴△AGC是直角三角形,∴AG⊥CG.【点评】本题考查了三角形中位线定理、直角三角形斜边上的中线定理.一个三角形,如果一边上的中线等于这条边的一半,那么这个三角形是以这条边为斜边的直角三角形.该定理可以用来判定直角三角形.21.如图,在四边形ABCD中,AB=CD,M、N分别是AD、BC的中点,延长BA、NM,CD分别交于点E、F.求证:∠BEN=∠NFC.【考点】三角形中位线定理.【专题】证明题.【分析】取AC中点G,连接NG,MG,根据三角形中位线定理可得到NG∥AE,MG∥CF,NG=AB,MG=CD,由平行线的性质可得∠BEN=∠FNG,∠CFN=∠NMG,从而可推出△GMN为等腰三角形,从而不难证得结论.【解答】证明:取AC中点G,连接NG,MG,∵点M,G,N分别是边AD,AC,BC的中点,∴MG、NG分别是△ADC与△ABC的中位线,∴NG∥AB,MG∥CF,NG=AB,MG=CD,∴∠BEN=∠FNG,∠CFN=∠NMG,∵NG=AB,MG=CD,AB=CD,∴NG=MG,∴∠MNG=∠GMN,∵∠MNG=∠BEN,∠GMN=∠CFN,∴∠BEN=∠CFN.【点评】此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半,正确作出辅助线是关键.22.某居民小区搞绿化,小区的居民们把一块矩形垃圾场地清理干净后,准备建几个花坛,老张说:花坛应该有圆有方;老李说:花坛和整个矩形空地应该成中心对称图案,这样比较漂亮.你能设计一个让大家都满意的方案吗?试试看(将你设计的方案画在下面的矩形方框中).【考点】利用旋转设计图案.【分析】根据题目要求画出图形,注意花坛和整个矩形空地应该成中心对称图案.【解答】解:如图所示:【点评】此题主要考查了利用旋转设计图案以及中心对称图形定义,利用中心对称图形的性质设计是解题关键.23.如图,在梯形ABCD中,点P从点A向点D运动,点Q从点C向点B运动.已知点P的运动速度为1cm/s,点Q的运动速度为2cm/s,AD=4cm,BC=8cm,运动时间为t.当t为何值时,四边形ABQP是平行四边形?【考点】梯形;平行四边形的判定.【专题】动点型.【分析】首先根据题意得:AP=tcm,CQ=2tcm,又由AD∥BC,可得当AP=BQ时,四边形ABQP是平行四边形,即可得方程t=8﹣2t,解此方程即可求得答案.【解答】解:根据题意得:AP=tcm,CQ=2tcm,∵AD=4cm,BC=8cm,∴DP=AD﹣AP=4﹣t(cm),BQ=BC﹣CQ=8﹣2t(cm),∵AD∥BC,∴当AP=BQ时,四边形ABQP是平行四边形,即t=8﹣2t,解得:t=,∴当t=时,四边形ABQP是平行四边形.【点评】此题考查了梯形的性质以及平行四边形的性质.此题难度适中,注意掌握数形结合思想与方程思想的应用.。

苏科版八年级下册第9章 中心对称图形-平行四边形

苏科版八年级下册第9章 中心对称图形-平行四边形

苏科版八年级下册第9章中心对称图形-平行四边形一.选择题1.下列图标中,既是轴对称图形又是中心对称图形的是( )A.B.C.D.2.如图,在边长为6的正方形ABCD内作∠EAF=45°,AE交BC于点E,连接EF,将△ADF绕点A顺时针旋转到△ABG的位置,则BE的长为( )A.B.C.1D.23.在平行四边形ABCD中,∠A的角平分线把边BC分成长度为4和5的两条线段,则平行四边形ABCD的周长为( )A.13或14B.26或28C.13D.无法确定4.如图,将△ABC绕点A逆时针旋转100°得△AB′C′,若点B′在线段BC的延长线上( )A.80°B.70°C.60°D.100°5.如图,在菱形ABCD中,E,F分别是边CD,连接AE,EF,G,EF的中点,连接GH.若∠B=45°,则GH的最小值为( )A.B.C.D.6.如图,在△ABC中,AE平分∠BAC,AB=5,AC=3( )A.1B.C.2D.7.如图,三角形ABC经过旋转后到达三角形ADE的位置,下列说法正确的是( )A.点A不是旋转中心B.∠BAC是一个旋转角C.AB=AC D.∠BAD=∠CAE8.如图,已知平行四边形ABCD的对角线AC与BD相交于点O,下列结论中( )A.当AB⊥AD时,四边形ABCD是矩形B.当AC⊥BD时,四边形ABCD是菱形C.当OA=OB时,四边形ABCD是矩形D.当AB=AC时,四边形ABCD是菱形9.如图,四边形ABCD是菱形,O是两条对角线的交点,则阴影部分的面积为( )A.48B.24C.12D.610.如图,在△ABC中,AB=AC,将△ABM绕点A逆时针旋转得到△ACN,点M的对应点为点N,则下列结论一定正确的是( )A.AB=AN B.AB∥NC C.∠AMN=∠ACN D.MN⊥AC二.填空题11.如图,矩形ABCD的对角线AC的垂直平分线与边AD、BC分别交于点E、F.若AB=3,BC=4 .12.如图,在△ABC,∠C=90°,AC=8,将△ABC绕点B逆时针旋转90°得到△A'BC',则AA'的长为 .13.用反证法证明:在一个三角形中不能有两个角是钝角.应先假设: .14.如图,将△ABC绕点A顺时针旋转80°后得到△ADE,点B与点D是对应点,那么∠DAC= °.15.如图,在菱形ABCD中,AB=4,将菱形ABCD绕点A逆时针方向旋转,对应得到菱形AEFG,EF与CD交于点P,则DP的长是 .三.解答题16.如图,以平行四边形ABCD的边AB、CD为边,作等边△ABE和等边△CDF,BF.求证:四边形BFDE是平行四边形.17.如图,在平行四边形ABCD中,AD=2AB=4,点G、F分别是AD、CB的中点,过点A作AH∥BD交CD的延长线于点H.(1)求证:四边形DGBF是菱形;(2)请判断四边形ABDH的形状并加以证明.18.如图,平行四边形ABCD中AB∥CD,AD∥BC,AD=CD,CB=2AB (1)求证:DE=AE;(2)若∠DAF=70°,求∠BEA的度数.19.如图,△ABC的顶点都在方格线的交点(格点)上.(1)将△ABC绕C点按逆时针方向旋转90°得到△A′B′C,请在图中画出△A′B′C;(2)将△ABC向上平移1个单位,再向右平移4个单位得到△A″B″C″,请在图中画出△A″B″C″;(3)若将△ABC绕原点O旋转180°,A的对应点A1的坐标是 .20.如图,已知长方形ABCD的长AB=a米,宽BC=b米,a(b﹣4)2=0,一动点P从A出发以每秒1米的速度沿着A→D→C→B运动,另一动点Q从B出发以每秒2米的速度沿B→C→D→A运动,P,运动时间为t.(1)a= ,b= ;(2)当t=4.5时,求△APQ的面积;(3)当P,Q都在DC上,且PQ距离为1时。

苏科版数学八年级下册第九章《中心对称图形—平行四边形》易错题专练(五)(附答案)

苏科版数学八年级下册第九章《中心对称图形—平行四边形》易错题专练(五)(附答案)

八年级下册第九章《中心对称图形—平行四边形》易错题专练(五)1.已知O为直线AB上的一点,∠COE是直角,OF平分∠AOE.(1)如图1,若∠COF=34°,则∠BOE=;若∠COF=n°,则∠BOE =;∠BOE与∠COF的数量关系为.(2)当射线OE绕点O逆时针旋转到如图2的位置时,(1)中∠BOE与∠COF的数量关系是否仍然成立?如成立请写出关系式;如不成立请说明理由.(3)在图3中,若∠COF=65°,在∠BOE的内部是否存在一条射线OD,使得2∠BOD与∠AOF的和等于∠BOE与∠BOD的差的一半?若存在,请求出∠BOD的度数;若不存在,请说明理由.2.如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上.(1)当△ABC绕点A逆时针旋转α(0°<α<90°)时,如图2,求证:BD=CF;(2)当△ABC绕点A逆时针旋转45°时,如图3,延长DB交CF于点H.连接BF、DF,延长AB交DF与M,连接HM.找出所有与∠MHB和为45度的角.3.如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB 上,EF⊥AB,OG∥EF.(1)OE AE(填<、=、>);(2)求证:四边形OEFG是矩形;(3)若AD=10,EF=4,求OE和BG的长.4.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,AD交BE于点O.(1)求证:AD与BE互相平分;(2)若AB⊥AC,AC=BF,BE=8,FC=2,求AB的长.5.如图,矩形ABCD,过点B作BE∥AC交DC的延长线于点E.过点D作DH⊥BE 于H,G为AC中点,连接GH.(1)求证:BE=AC.(2)判断GH与BE的数量关系并证明.6.如图,在△ABC中,D是边BC的中点,点E在△ABC内,AE平分∠BAC,CE⊥AE,点F在边AB上,EF∥BC.求证:(1)四边形BDEF是平行四边形;(2)BF=(AB﹣AC).7.如图,已知四边形ABCD为正方形,AB=4,点E为对角线AC上一动点,连接DE、过点E作EF⊥DE.交BC点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.8.如图,方格纸中每个小正方形的边长都是1个单位长度,在方格纸中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上.(1)将△ABC向右平移6个单位长度得到△A1B1C1,请画出△A1B1C1;(2)画出△A1B1C1关于点O的中心对称图形△A2B2C2;(3)若将△ABC绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.9.如图,在正方形ABCD中,点F是BC延长线上一点,BE⊥DF,垂足为E,BE交CD于点G.(1)求证:BG=DF;(2)求证:EF+EG=CE.10.如图,已知四边形ABCD是正方形,点E、F分别在AD、DC上,BE与AF相交于点G,且BE=AF.(1)求证:△ABE≌△DAF;(2)求证:BE⊥AF;(3)如果正方形ABCD的边长为5,AE=2,点H为BF的中点,连接GH.求GH 的长.参考答案1.解:(1)∵∠COE是直角,∠COF=34°,∴∠EOF=90°﹣34°=56°,由∵OF平分∠AOE.∴∠AOE=2∠EOF=112°,∴∠BOE=180°﹣112°=68°;当∠COF=n°,∴∠EOF=90°﹣n°,∴∠AOE=2∠EOF=180°﹣2n°,∴∠BOE=180°﹣(180°﹣2n°)=2n°,所以有∠BOE=2∠COF.故答案为:68°,2n°,∠BOE=2∠COF;(2)∠BOE与∠COF的数量关系仍然成立.理由如下:设∠COF=n°,如图2,∵∠COE是直角,∴∠EOF=90°﹣n°,又∵OF平分∠AOE.∴∠AOE=2∠EOF=180°﹣2n°,∴∠BOE=180°﹣(180°﹣2n°)=2n°,即∠BOE=2∠COF;(3)存在.理由如下:如图3,∵∠COF=65°,∴∠BOE=2×65°=130°,∠EOF=∠AOF=90°﹣65°=25°,而2∠BOD与∠AOF的和等于∠BOE与∠BOD的差的一半,∴2∠BOD+25°=(130°﹣∠BOD),∴∠BOD=16°.2.(l)证明:如图2中,由旋转得:AC=AB,∠CAF=∠BAD=α;AF=AD,在△ABD和△ACF中,,∴△ABD≌△ACF(SAS),∴BD=CF.(2)解:如图3中,设AF交DH于J.∵△ABD≌△ACF,∴∠AFC=∠ADB,∵∠FJH=∠AJD,∴∠FHJ=∠DAJ=90°,∵∠BAD=∠BAF=45°,AF=AD,∴AM⊥DF,NF=MD,∴BF=BD,∴∠BFM=∠BDM,∴∠BMF=∠BHF=90°,∴B,M,F,H四点共圆,∴∠MHB=∠BFM,∵∠AFB+∠DFB=45°,∠ADB+∠BDF=45°,∴与∠MHB和为45度的角有∠AFB,∠ADB,∠AFC.3.(1)解:∵四边形ABCD是菱形,∴AC⊥BD,∵E是AD的中点,∴OE=AD=AE,故答案为:=;(2)证明:∵四边形ABCD是菱形,∴OB=OD,∵E是AD的中点,∴OE是△ABD的中位线,∴OE∥FG,∵OG∥EF,∴四边形OEFG是平行四边形,∵EF⊥AB,∴∠EFG=90°,∴平行四边形OEFG是矩形;(3)解:∵四边形ABCD是菱形,∴BD⊥AC,AB=AD=10,∴∠AOD=90°,∵E是AD的中点,∴OE=AE=AD=5;由(1)知,四边形OEFG是矩形,∴FG=OE=5,∵AE=5,EF=4,∴AF===3,∴BG=AB﹣AF﹣FG=10﹣3﹣5=2.4.(1)证明:如图,连接BD、AE,∵FB=CE,∴BC=EF,又∵AB∥ED,AC∥FD,∴∠ABC=∠DEF,∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE,又∵AB∥DE,∴四边形ABDE是平行四边形,∴AD与BE互相平分;(2)解:∵FB=CE,∴BE=2BF+FC,∴BF===3,∴AC=BF=3,BC=BF+FC=3+2=5,∵AB⊥AC,∴由勾股定理得:AB===4.5.(1)证明:∵四边形ABCD是矩形,∴AB∥CD,∵AC∥BE,∴四边形ABEC是平行四边形,∴BE=AC;(2)GH=BE,证明:连接BD,∵四边形ABCD是矩形,G为AC的中点,∴G为BD的中点,AC=BD,∵DH⊥BE,即∠DHB=90°,∴GH=BD,∵AC=BD,AC═BE,∴GH=BE.6.证明:(1)延长CE交AB于点G,如图所示:∵AE⊥CE,∴∠AEG=∠AEC=90°,在△AEG和△AEC中,,∴△AGE≌△ACE(ASA),∴GE=EC,∵D是边BC的中点,∴DE为△CGB的中位线,∴DE∥AB.∵EF∥BC,∴四边形BDEF是平行四边形.(2)由(1)可知,四边形BDEF是平行四边形,∴BF=DE.∵D、E分别是BC、GC的中点,∴BF=DE=BG.∵△AGE≌△ACE,∴AG=AC,∴BF=(AB﹣AG)=(AB﹣AC).7.解:(1)如图所示,过E作EM⊥BC于M点,过E作EN⊥CD于N点,∵正方形ABCD,∴∠BCD=90°,∠ECN=45°,∴∠EMC=∠ENC=∠BCD=90°,且NE=NC,∴四边形EMCN为正方形,∵四边形DEFG是矩形,∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,∴∠DEN=∠MEF,又∠DNE=∠FME=90°,在△DEN和△FEM中,,∴△DEN≌△FEM(ASA),∴ED=EF,∴矩形DEFG为正方形,(2)CE+CG的值为定值,理由如下:∵矩形DEFG为正方形,∴DE=DG,∠EDC+∠CDG=90°,∵四边形ABCD是正方形,∵AD=DC,∠ADE+∠EDC=90°,∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴AE=CG,∴AC=AE+CE=AB=×4=8,∴CE+CG=8是定值.8.解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;(3)根据图形可知:旋转中心的坐标为:(﹣3,0).9.解:(1)证明:∵四边形ABCD是正方形,∴∠BCG=∠DCB=∠DCF=90°,BC=DC,∵BE⊥DF,∴∠CBG+∠F=∠CDF+∠F,∴∠CBG=∠CDF,在△CBG和△CDF中,,∴△CBG≌△CDF(ASA),∴BG=DF;(2)如图,过点C作CM⊥CE交BE于点M,∵△CBG≌△CDF,∴CG=CF,∠F=∠CGB,∵∠MCG+∠DCE=∠ECF+∠DCE=90°,∴∠MCG=∠ECF,在△MCG和△ECF中,,∴△MCG≌△ECF(ASA),∴MG=EF,CM=CE,∴△CME是等腰直角三角形,∴ME=CE,又∵ME=MG+EG=EF+EG,∴EF+EG=CE.10.解:(1)证明:∵四边形ABCD为正方形,∴∠BAE=∠D=90°,AB=AD,在Rt△ABE和Rt△DAF中,,∴Rt△ABE≌Rt△DAF(HL);(2)证明:∵Rt△ABE≌Rt△DAF,∴∠ABE=∠DAF,∵∠ABE+∠BEA=90°,∴∠DAF+∠BEA=90°,∴∠AGE=∠BGF=90°,∴BE⊥AF;(3)∵BE⊥AF,∵点H为BF的中点,∴GH=BF,∵在Rt△BCF中,BC=5,CF=CD﹣DF=5﹣2=3,根据勾股定理,得∴BF==,∴GH=.。

苏科版八年级数学下册第9章中心对称图形中点问题常用思路练习(含参考解答)

苏科版八年级数学下册第9章中心对称图形中点问题常用思路练习(含参考解答)

中点问题常用思路在解答几何问题时会遇到不少中点问题,解答这类问题通常考虑运用以下四类方法解答:(1)根据等腰三角形“三线合一”解答;(2)根据线段垂直平分线的性质解答;(3)根据直角三角形斜边上中线的性质解答;(4)构造三角形中位线解答.►类型一与等腰三角形有关的中点问题1.如图3-ZT-1,在四边形ABCD中,∠BAD=∠BCD=90°,BC=12,CD=AC=16,M,N分别是对角线BD,AC的中点.(1)求证:MN⊥AC;(2)求MN的长.图3-ZT-1►类型二与垂直平分线有关的中点问题2.如图3-ZT-2,在△ABC中,∠BAC=120°,AB的垂直平分线交BC于点M,交AB于点E,AC 的垂直平分线交BC于点N,交AC于点F,如果AB=AC,求证:BM=MN=NC.图3-ZT-2►类型三与直角三角形斜边上的中线有关的中点问题3.如图3-ZT-3①,在锐角三角形ABC中,CD,BE分别是AB,AC边上的高,M,N分别是线段BC,DE的中点.(1)求证:MN⊥DE.(2)连接DM,ME,求证:∠DME=180°-2∠A.(3)若将锐角三角形ABC变为钝角三角形ABC,如图②,上述(1)(2)中的结论是否都成立?若结论成立,直接回答,不需证明;若结论不成立,直接写出正确的结论.图3-ZT-3►类型四与三角形中位线有关的中点问题4.如图3-ZT-4,在四边形ABCD中,AD∥BC,AD<BC,M,N分别是对角线BD,AC的中点,试探索MN与AD,BC的位置关系与数量关系,并说明理由.图3-ZT-45.2018·白银如图3-ZT-5,已知矩形ABCD中,E是AD边上的一个动点,F,G,H分别是BC,BE,CE的中点.(1)求证:△BGF≌△FHC;(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.图3-ZT-56.已知M 为△ABC 的边BC 的中点,AB =12,AC =18,BD ⊥AD 于点D ,连接DM. (1)如图3-ZT -6①,若AD 为∠BAC 的平分线,求MD 的长; (2)如图3-ZT -6②,若AD 为∠BAC 的外角平分线,求MD 的长.图3-ZT -67.如图3-ZT -7①,BD ,CE 分别是△ABC 的外角平分线,过点A 作AF ⊥BD ,AG ⊥CE ,垂足分别为F ,G ,连接FG ,延长AF ,AG ,与直线BC 分别相交于点M ,N.(1)试说明:FG =12(AB +BC +AC);(2)如图②,若BD ,CE 分别是△ABC 的内角平分线,则线段FG 与△ABC 的三边又有怎样的数量关系?请写出你的猜想,并说明理由;(3)如图③,若BD 为△ABC 的内角平分线,CE 为△ABC 的外角平分线,则线段FG 与△ABC 三边的数量关系是______________.图3-ZT -7中点问题常用思路参考答案1.解:(1)证明:如图,连接AM ,CM ,∵∠BAD =∠BCD =90°,M 是BD 的中点, ∴AM =CM =BM =DM =12BD.又∵N 是AC 的中点,∴MN ⊥AC.(2)∵∠BCD =90°,BC =12,CD =16, ∴BD =BC 2+CD 2=20,∴AM =12BD =12×20=10.∵AC =16,N 是AC 的中点,∴AN =12×16=8,∴MN =AM 2-AN 2=6.2.证明:如图,连接AM ,AN.∵AB 的垂直平分线交BC 于点M ,交AB 于点E ,AC 的垂直平分线交BC 于点N ,交AC 于点F , ∴BM =AM ,NC =AN ,∴∠MAB =∠B ,∠CAN =∠C. ∵∠BAC =120°,AB =AC , ∴∠B =∠C =30°,∴∠MAB +∠CAN =60°,∠AMN =∠ANM =60°, ∴△AMN 是等边三角形, ∴AM =AN =MN , ∴BM =MN =NC.3.解:(1)证明:如图①,连接DM ,ME.∵CD ,BE 分别是AB ,AC 边上的高,M 是BC 的中点,∴DM =12BC ,ME =12BC ,∴DM =ME.又∵N 为DE 的中点,∴MN ⊥DE.(2)证明:由(1)知DM =ME =BM =MC , ∴∠BMD +∠CME=(180°-2∠ABC)+(180°-2∠ACB) =360°-2(∠ABC +∠ACB) =360°-2(180°-∠A) =2∠A ,∴∠DME =180°-2∠A.(3)(1)中的结论成立;(2)中的结论不成立.理由如下:如图②,连接DM ,ME.在△ABC 中,∠ABC +∠ACB =180°-∠BAC. ∵DM =ME =BM =MC ,∴∠BME +∠CMD =2∠ACB +2∠ABC =2(180°-∠BAC) =360°-2∠BAC ,∴∠DME =180°-(360°-2∠BAC) =2∠BAC -180°.4.解:MN ∥AD ∥BC ,MN =12(BC -AD).理由如下:连接AM 并延长交BC 于点H ,如图所示.∵AD ∥BC ,∴∠ADB =∠HBD. 在△AMD 和△HMB 中, ⎩⎪⎨⎪⎧∠ADM =∠HBM ,DM =BM ,∠AMD =∠HMB ,∴△AMD ≌△HMB ,∴AM =MH ,AD =BH. ∵AM =MH ,AN =NC , ∴MN ∥HC ,MN =12HC ,∴MN ∥BC ∥AD ,MN =12(BC -AD).5.解:(1)证明:∵F ,G ,H 分别是BC ,BE ,CE 的中点,∴FH ∥BE ,FH =12BE =BG ,∴∠CFH =∠CBG.又∵BF =CF ,∴△BGF ≌△FHC.(2)连接EF ,GH.当四边形EGFH 是正方形时,可得EF ⊥GH 且EF =GH. ∵在△BEC 中,G ,H 分别是BE ,CE 的中点, ∴GH =12BC =12AD =12a ,且GH ∥BC ,∴EF ⊥BC.∵AD ∥BC ,AB ⊥BC , ∴AB =EF =GH =12a ,∴矩形ABCD 的面积=AB·AD=12a ·a =12a 2.6.解:(1)如图①,延长BD 交AC 于点E ,∵AD 为∠BAC 的平分线,BD ⊥AD , ∴BD =DE ,AE =AB =12, ∴CE =AC -AE =18-12=6. 又∵M 为△ABC 的边BC 的中点, ∴MD 是△BCE 的中位线, ∴MD =12CE =12×6=3.(2)如图②,延长BD 交CA 的延长线于点E , ∵AD 为∠BAE 的平分线,BD ⊥AD , ∴BD =DE ,AE =AB =12, ∴CE =AC +AE =18+12=30. 又∵M 为△ABC 的边BC 的中点, ∴MD 是△BCE 的中位线, ∴MD =12CE =12×30=15.7.解:(1)∵BD ⊥AF , ∴∠AFB =∠MFB =90°. 在△ABF 和△MBF 中, ⎩⎪⎨⎪⎧∠AFB =∠MFB ,BF =BF ,∠ABF =∠MBF , ∴△ABF ≌△MBF , ∴MB =AB ,AF =MF.同理:CN =AC ,AG =NG , ∴FG 是△AMN 的中位线,∴FG =12MN=12(MB +BC +CN) =12(AB +BC +AC).(2)FG =12(AB +AC -BC).理由:如图①,延长AF ,AG ,与直线BC 分别相交于点M ,N , ∵AF ⊥BD ,∴∠AFB =∠MFB =90°. 在△ABF 和△MBF 中, ⎩⎪⎨⎪⎧∠AFB =∠MFB ,BF =BF ,∠ABF =∠MBF , ∴△ABF ≌△MBF , ∴MB =AB ,AF =MF.同理:CN =AC ,AG =NG , ∴FG =12MN=12(MB +CN -BC) =12(AB +AC -BC).(3)FG =12(AC +BC -AB).理由:如图②,延长AF ,AG ,与直线BC 分别相交于点M ,N. ∵AF ⊥BD ,∴∠AFB =∠MFB =90°. 在△ABF 和△MBF 中, ⎩⎪⎨⎪⎧∠AFB =∠MFB ,BF =BF ,∠ABF =∠MBF , ∴△ABF ≌△MBF , ∴MB =AB ,AF =MF.同理:CN =AC ,AG =NG , ∴FG =12MN=12(CN+BC-MB)=12(AC+BC-AB).。

苏科版八年级数学下册《第9章中心对称图形—平行四边形》优生训练(附答案)

苏科版八年级数学下册《第9章中心对称图形—平行四边形》优生训练(附答案)

苏科版八年级数学下册《第9章中心对称图形—平行四边形》单元综合复习优生训练(附答案)1.如图,在四边形ABCD中,点P是对角线BD的中点,点E,F分别是AB,CD的中点,AD=BC,∠PEF=23°,则∠PFE的度数为()A.23°B.25°C.30°D.46°2.如图▱ABCD中,AE⊥BC于点E,AF⊥CD于点F,若∠EAF=60°,CF=1,CE=4,则▱ABCD的周长为()A.20B.24C.26D.283.在菱形ABCD中,∠ABC=60°,若AB=3,则菱形ABCD的面积是()A.B.8C.D.4.如图,在Rt△ABC中,∠BAC=90°且AB=3,AC=4,点D是斜边BC上的一个动点,过点D分别作DM⊥AB于点M,DN⊥AC于点N,连接MN,则线段MN的最小值为()A.B.C.3D.45.如图,AC,BD是菱形ABCD的对角线,BH⊥AD于点H,若AC=4,BD=3,则BH 的长为()A.2.4B.2.5C.4.8D.56.如图,点E为矩形ABCD的边BC长上的点,作DF⊥AE于点F,且满足DF=AB.下面结论:①DE平分∠AEC;②△ADE为等腰三角形;③AF=AB;④AE=BE+EF.其中正确的结论有多少个()A.1个B.2个C.3个D.4个7.如图,周长为24的平行四边形ABCD对角线AC、BD交于点O,AC⊥CD且BE=CE,若AC=6,则△AOE的周长为()A.6B.9C.12D.158.如图,G是边长为4的正方形ABCD边上一点,矩形DEFG的边EF经过点A,已知GD =5,则FG为()A.3B.3.2C.4D.4.89.如图,四边形ABCD是边长为8的正方形,点E在边CD上,DE=2;作EF∥BC.分别交AC、AB于点G、F,M、N分别是AG,BE的中点,则MN的长是()A.4B.5C.6D.710.如图,在正方形ABCD中,点E,F分别是边AD,CD上的点,且AE=DF,AF与BE 交于点G,取BF中点H,连接GH,则下列结论:①AF=BE;②BF=2GH;③△ABG 与四边形EGFD面积相等,正确结论的序号是()A.①②B.①③C.②③D.①②③11.如图,已知△ABC中,点M是BC边上的中点,AN平分∠BAC,BN⊥AN于点N,若AB=8,MN=2,则AC的长为.12.如图,正方形ABCD中,A(2,6),C(﹣1,﹣7),则点D的坐标是.13.如图,菱形ABCD的对角线交于点O,AB=5,AC=6,DE⊥BC于点E,则OE=.14.如图,正方形ABCD.延长BC到E,连接AE,若CE=BC,则∠AEB=.15.矩形ABCD中,E为AB边上一点,连接CE,在CE上取一点F,且∠F AC=∠ECB,∠DCA=∠DAF,若AE=3,CF=4,则AB长为.16.如图,点B、C、E三点在同一条直线上,矩形ABCD≌矩形FGCE,点M,N分别是BD、GE的中点,若AB=,BC=4,则MN的长为.17.如图,正方形ABCD中,点E、F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE=AF=1,则GF的长为.18.在平面直角坐标系xOy中,平行四边形的三个顶点O(0,0),A(3,0),B(3,2),则其第四个顶点C的坐标是.19.平行四边形ABCD中,∠B=45°,AB=4,E为直线BC上一点,且∠CDE=15°,则DE的长为.20.如图,正方形ABCD的边长为2,E为对角线AC上一点,且CE=CB,点P为线段BE 上一动点,且PF⊥CE于F,PG⊥BC于G,则PG+PF的值为.21.如图,在矩形ABCD中,AE平分∠BAD交BC于点E,∠CAE=15°.有下面的结论:①△ODC是等边三角形;②∠AOE=135°;③S△AOE=S△COE,其中,正确结论的个数为.22.直线l1∥l2∥l3∥l4,其中l1,l2之间距离和l3,l4之间距离均为1,l2,l3之间距离为2.正方形ABCD的四个顶点分别在l1,l2,l3,l4上,则S四边形ABCD=.23.如图,在菱形ABCD中,E为对角线BD上一点,且AE=DE,连接CE.(1)求证:DE=CE.(2)当EA⊥AB于点A,AE=ED=1时,求菱形的边长.24.如图,在▱ABCD中,EF是对角线AC的垂直平分线,分别与AD,BC交于点E,F.(1)求证:四边形AECF是菱形;(2)若AC=6,AE=5,求菱形AECF的面积.25.如图,在平行四边形ABCD中,对角线AC,BD交于点O.(1)若AO=BD,求证:四边形ABCD为矩形;(2)若AE⊥BD于点E,CF⊥BD于点F,求证:AE=CF.26.如图,在△ABC中,D是边BC的中点,点E在△ABC内,AE平分∠BAC,CE⊥AE,点F在边AB上,EF∥BC.求证:(1)四边形BDEF是平行四边形;(2)BF=(AB﹣AC).27.如图,在矩形ABCD中,E是BC边上的点,AE=BC,DF⊥AE,垂足为F,连接DE.(1)求证:AB=DF;(2)若CE=1,AF=3,求DF的长.28.在正方形ABCD中,点E为CD中点,连接AE并延长交BC延长线于点G,点F在BC上,∠F AE=∠DAE,连接FE并延长交AD延长线于H,连接HG.(1)求证:四边形AFGH为菱形:(2)若DH=1.求四边形AFGH的面积.29.如图,点M是正方形ABCD的边BC上一点,连接AM,点E是线段AM上一点,∠CDE的平分线交AM延长线于点F.(1)如图1,若点E为线段AM的中点,BM:CM=1:2,BE=,求AB的长;(2)如图2,若DA=DE,求证:BF+DF=AF.参考答案1.解:在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,∴FP,PE分别是△CDB与△DAB的中位线,∴PF=BC,PE=AD,∵AD=BC,∴PF=PE,故△EPF是等腰三角形.∵∠PEF=23°,∴∠PEF=∠PFE=23°.故选:A.2.解:∵AE⊥BC,AF⊥CD,∠EAF=60°,∴∠C=360°﹣90°﹣90°﹣60°=120°,∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠B=∠D=180°﹣∠C=60°,∴在Rt△BAE中,∠BAE=30°,∴AB=2BE,设BE=x,则AB=CD=2x,BC=BE+CE=x+4,AE=x,∴DF=CD﹣CF=2x﹣1,∵在Rt△ADF中,∠DAF=30°,∴AD=2DF=4x﹣2,∵BC=AD,∴4x﹣2=x+4,解得:x=2,∴AB=CD=4,BC=AD=6,∴平行四边形ABCD周长=2×(4+6)=20.故选:A.3.解:如图,过点A作AM⊥BC于点M,∵四边形ABCD是菱形,∴AB=BC=3,∵∠ABC=60°,AM⊥BC,∴∠BAM=30°,∴BM=AB=,AM=BM=,∴菱形ABCD的面积=BC×AM=3×=;故选:D.4.解:∵∠BAC=90°,且BA=3,AC=4,∴BC==5,∵DM⊥AB,DN⊥AC,∴∠DMA=∠DNA=∠BAC=90°,∴四边形DMAN是矩形,∴MN=AD,∴当AD⊥BC时,AD的值最小,此时,△ABC的面积=AB×AC=BC×AD,∴AD=,∴MN的最小值为;故选:A.5.解:设AC、BD交于点O,如图:∵在菱形ABCD中,AC=4,BD=3,∴AO=CO=AC=2,BO=DO=BD=,AC⊥BD,∴AD===,∵菱形ABCD的面积=AD×BH=AC×BD,∴BH==2.4,故选:A.6.解:∵四边形ABCD是矩形,∴∠C=∠ABE=90°,AD∥BC,AB=CD,∵DF=AB,∴DF=CD,∵DF⊥AE,∴∠DF A=∠DFE=90°,在Rt△DEF和Rt△DEC中,,∴Rt△DEF≌Rt△DEC(HL),∴∠FED=∠CED,∴DE平分∠AEC;故①正确;∵AD∥BC,∴∠AEB=∠DAF,在△ABE和△AFD中,,∴△ABE≌△AFD(AAS),∴AE=AD,∴△ADE为等腰三角形;故②正确;∵△ABE≌△DF A,∴不存在AF=AB,故③错误;∵△ABE≌△DF A,∴BE=F A,∴AE=AF+EF=BE+EF.故④正确.故正确的结论有①②④,三个.故选:C.7.解:∵平行四边形ABCD的周长为24,∴AB+BC=12,∵平行四边形ABCD对角线AC、BD交于点O,且BE=CE,∴AO=AC=3,OE=AB,∵AC⊥CD,且BE=CE,∴Rt△ABC中,AE=BC,∴△AOE的周长=AO+AE+OE=3+(BC+AB)=3+=9,故选:B.8.解:∵G是边长为4的正方形ABCD边上一点,矩形DEFG的边EF经过点A,GD=5,∴∠C=∠E=90°,∠EDG=∠ADC=90°,ED=FG,AD=CD=4,∴∠EDA=∠CDG,ED=3.2,∴FG=3.2,故选:B.9.解:∵四边形ABCD是正方形,∴∠ABC=∠BCD=90°∵EF∥BC,∴∠BFE+∠ABC=180°,∴∠BFE=90°,∴四边形BCEF为矩形,连接FM,FC,如图:∵N是BE的中点,四边形BCEF为矩形.∴点N为FC的中点,BE=FC.∵四边形ABCD是正方形,∴∠BAC=45°,又∵∠AFG=90°,∴△AFG为等腰直角三角形.∵M是AG的中点,∴AM=MG,∴FM⊥AG,∴△FMC为直角三角形,∵点N为FC的中点,∴MN=FC,∵四边形ABCD是边长为8的正方形,DE=2,∴BC=CD=8,CE=6,在Rt△BCE中,由勾股数可得BE=10,∴FC=10,∴MN=FC=5.故选:B.10.解:∵四边形ABCD是正方形,∴AB=DA,∠BAE=∠ADF,在△BAE和△ADF中,,∴△BAE≌△ADF(SAS),∴BE=AF,故①正确;∵△BAE≌△ADF,∴∠ABE=∠DAF,∵∠ABE+∠AEB=90°,∴∠DAF+∠AEB=90°,∴∠AGE=90°,∴∠BGF=90°,∵点H是BF的中点,∴BF=2GH,故②正确;∵△BAE≌△ADF,∴S△ABG+S△AGE=S△AGE+S四边形EGFD,∴△ABG与四边形EGFD面积相等,故③正确;故选:D.11.解:如图,延长BN交AC于D,在△ANB和△AND中,,∴△ANB≌△AND(ASA),∴AD=AB=8,BN=ND,又∵M是△ABC的边BC的中点,∴MN是△BCD的中位线,∴AC=AD+CD=8+4=12,故答案为:12.12.解:如图,连接AC,取AC的中点G,过点G分别作平行于y轴、x轴的直线a、b,连接DG,作AH⊥b于点H,DF⊥b于点F,∵∠AGD=∠AHG=∠GFD=90°∴∠GAH=90°﹣∠AGH=∠DAF,∵AG=DG,∴△AGH≌△GDF(AAS).∴AH=GF,GH=DF,∵A(2,6),C(﹣1,﹣7),且G是AC的中点,∴G(,).∴AH=GF=6+=,GH=DF=2=,∴x D=+=7,y D==﹣2,∴点D的坐标为(7,﹣2).故答案为:(7,﹣2).13.解:∵四边形ABCD是菱形,∴AD=AB=5,AC⊥BD,AO=AC=×6=3,OB=OD,在Rt△AOD中,由勾股定理得:OD===4,∵DE⊥BC,∴∠DEB=90°,∵OD=OB,∴OE=BD=×8=4,故答案为:4.14.解:如图,连接AC,∵四边形ABCD是正方形,∴AC=BC,∠ACB=45°,∵CE=BC,∴AC=CE,∴∠AEB=∠CAE,∵∠ACB=∠CAE+∠E=2∠AEB=45°,∴∠AEB=22.5°.故答案为22.5°.15.解:延长EB至G,使BG=BE,连接CG,如图所示:∵四边形ABCD是矩形,∴AB∥CD,AD∥BC,∴∠DCA=∠BAC,∵∠DCA=∠DAF,∴∠BAC=∠DAF,∴∠EAF=∠DAC,∵∠AFE=∠F AC+∠ACE,∠ACB=∠ECB+∠ACE,∠F AC=∠ECB,∴∠AFE=∠ACB,∵AD∥BC,∴∠ACB=∠DAC,∴∠EAF=∠EF A,∴AE=EF,∵AB⊥BC,BG=BE,∴CG=CE,∴∠ECB=∠GCB,∵∠ACG=∠ACB+∠BCG,∠ACB=∠CAD,∴∠ACG=∠DAF=∠BAC,∴AG=CG,又∵CE=CG,∴CE=AG,∴CF+EF=AE+2EB,∴CF=2EB=4,∴EB=2,∴AB=AE+EB=3+2=5;故答案为:5.16.解:连接AC、CF、AF,如图所示:∵矩形ABCD绕点C顺时针旋转90°得到矩形FGCE,∴∠ABC=90°,CE=CD=AB=,∴AC===3,AC=BD=GE=CF,AC与BD互相平分,GE与CF互相平分,∵点M、N分别是BD、GE的中点,∴M是AC的中点,N是CF的中点,∴MN是△ACF的中位线,∴MN=AF,∵矩形ABCD≌矩形FGCE,∴矩形FGCE是矩形ABCD绕点C顺时针旋转90°所得,∴∠ACF=90°,∴△ACF是等腰直角三角形,∴AF=AC=×3=6,∴MN=3.故答案为:3.17.解:∵四边形ABCD为正方形,BC=4,∴∠CDF=∠BCE=90°,AD=DC=BC=4,又∵DE=AF=1,∴CE=DF=3,∴在△CDF和△BCE中,,∴△CDF≌△BCE(SAS),∴∠DCF=∠CBE,∵∠DCF+∠BCF=90°,∴∠CBE+∠BCF=90°,∴∠BGC=90°,∵在Rt△BCE中,BC=4,CE=3,∴BE=5,∴BE•CG=BC•CE,∴CG===,∵△CDF≌△BCE(SAS),∴CF=BE=5,∴GF=CF﹣CG=5﹣=2.6.故答案为:2.6.18.解:∵O(0,0)、A(3,0),∴OA=3,∵四边形OABC是平行四边形,∴BC∥OA,BC=OA=3,∵B(3,2),∴点C的坐标为(3﹣3,2),即C(0,2);同理可得:C(6,2)或(0,﹣2);故答案为:(0,2)或(6,2)或(0,﹣2).19.解:如图1,∵四边形ABCD是平行四边形,∴AD∥BC,∠ADC=∠B=45°,过A作AH⊥BC于H,过EF⊥AD于F,则四边形AHEF是矩形,∠AHB=∠DFE=90°,∴AH=EF,∵∠B=45°,AB=4,∴AH=EF=AB=4,∵∠CDE=15°,∴∠EDF=30°,∴DE=2EF=8;如图2,∵四边形ABCD是平行四边形,∴AD∥BC,∠ADC=∠B=45°,过A作AH⊥BC于H,过EF⊥AD于F,则四边形AHEF是矩形,∠AHB=∠DFE=90°,∴AH=EF,∵∠B=45°,AB=4,∴AH=EF=AB=4,∵∠CDE=15°,∴∠EDF=60°,∵EF=4,∴DE=EF=;综上所述,DE的长为8或,故答案为:8或.20.解:连接CP,BD,交AC于M,∵四边形ABCD为正方形,BC=2,∴BD⊥AC,垂足为M,BM=MC=BC=,∵S△BCE=CE•BM,S△PCE=CE•PF,S△BCP=BC•PG,S△BCE=S△PCE+S△BCP,∴CE•BM=CE•PF+BC•PG,∵BC=CE,∴BM=PF+PG,∴PG+PF=.故答案为.21.解:∵四边形ABCD是矩形,∴∠BAD=∠ABC=90°,AD∥BC,AO=OC,BO=DO,AC=BD,∴AO=OC=OD=OB,∵AE平分∠BAD,∴∠DAE=∠BAE=BAD=45°,∵∠CAE=15°,∴∠OAB=∠CAE+∠BAE=60°,∵OA=OB,∴△AOB是等边三角形,∴AB=OB,∠ABO=∠AOB=60°,∵∠COD=∠AOB=60°,∵OD=OC,∴△COD是等边三角形,故①正确;∵AD∥BC,∴∠DAE=∠AEB,∵∠DAE=∠BAE,∴∠BAE=∠AEB,∴AB=BE,∵AB=BO,∴OB=BE,∵∠OBE=∠ABC﹣∠ABO=90°﹣60°=30°,∴∠BOE=∠BEO=(180°﹣∠OBE)=75°,∴∠AOE=∠AOB+∠BOE=60°+75°=135°,故②正确;∵AO=CO,∴S△AOE=S△COE(等底等高的三角形面积相等),故③正确;故答案为:3.22.解:过A作AE⊥l1于E,过C点作CF⊥l2于F,∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∴∠ABE=∠BCF=90°﹣∠CBF,在△ABE和△BCF中,,∴△ABE≌△BCF(AAS),∴AE=BF=1,EB=CF=3,∴AB2=AE2+EB2=12+32=10,∴S正方形ABCD=10,故答案为:10.23.(1)证明:∵四边形ABCD是菱形,∴∠ABE=∠CBE,AB=CB,在△ABE和△CBE中,,∴△ABE≌△CBE(SAS),∴AE=CE,又∵AE=DE,∴DE=CE.(2)解:如图,连接AC交BD于H,∵四边形ABCD是菱形,∴AB=AD,AC⊥BD,BH=DH,AH=CH,∴∠ABD=∠ADB,∵AE═ED=1,∴∠DAE=∠EDA,∴∠DAE=∠ADE=∠ABD,∵∠DAE+∠ADE+∠BAE+∠ABD=180°,∴∠DAE=∠ADE=∠ABD=30°,∴BE=2AE=2,∴BD=BE+DE=3,∴BH=DH=,∵∠ABD=30°,AH⊥BD,∴AB=2AH,BH=AH,∴AH=,AB=2AH=,即菱形的边长为.24.证明:(1)∵对角线AC的垂直平分线EF分别与AC、BC、AD交于点O、E、F,∴AF=CF,AE=CE,OA=OC,∴∠EAC=∠ECA,∠F AC=∠FCA,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAC=∠FCA,∴∠F AO=∠ECO,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴AF=CE,∵AF=CF,AE=CE,∴AE=EC=CF=AF,∴四边形AECF为菱形;(2)∵四边形AECF是菱形,∴AC⊥EF,OA=OC,OE=OF,∵AC=6,AE=5,∴OE=3,由勾股定理可得:OE=,∴EF=2OE=8,∴菱形AECF的面积=.25.证明:(1)∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=BD,∴OA=OC=OB=OD,∴AC=BD,∴平行四边形ABCD是矩形;(2)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABD=∠CDB,∵AE⊥BD于点E,CF⊥BD于点F,∴∠AEB=∠CFD=90°,在△ABE与△CDF中,,∴△ABE≌△CDF(AAS),∴AE=CF.26.证明:(1)延长CE交AB于点G,如图所示:∵AE⊥CE,∴∠AEG=∠AEC=90°,在△AEG和△AEC中,,∴△AGE≌△ACE(ASA),∴GE=EC,∵D是边BC的中点,∴DE为△CGB的中位线,∴DE∥AB.∵EF∥BC,∴四边形BDEF是平行四边形.(2)由(1)可知,四边形BDEF是平行四边形,∴BF=DE.∵D、E分别是BC、GC的中点,∴BF=DE=BG.∵△AGE≌△ACE,∴AG=AC,∴BF=(AB﹣AG)=(AB﹣AC).27.(1)证明:∵四边形ABCD是矩形,∴BC=AD,AD∥BC,∠B=∠C=90°,∴∠DAF=∠AEB,∵DF⊥AE,AE=BC,∴∠AFD=90°,AE=AD,∴△ABE≌△DF A(AAS),∴AB=DF;(2)解:由(1)△ABE≌△DF A,∴AF=BE=3,DF=AB=CD,∵∠DFE=∠DCE=90°,∴Rt△DFE≌Rt△DCE(HL),∴CE=EF=1,∴AE=4,在Rt△ABE中,根据勾股定理,得AB==,∴DF=AB=.28.(1)证明:∵四边形ABCD是正方形,∴AD∥BC,∴∠DAE=∠FGA,∵∠F AE=∠DAE,∴∠FGA=∠F AE,∴F A=FG,∵点E为CD中点,∴DE=CE,∵∠ADE=∠GCE=90°,在△ADE和△GCE中,,∴△ADE≌△GCE(AAS),∴AD=CG,同理:△DEH△CEF(AAS),∴DH=CF,∵AH=AD+DH,GF=CG+CF,∴AH∥FG,∵AH∥FG,∴四边形AFGH为平行四边形,∵F A=FG,∴四边形AFGH为菱形;(2)解:FC=DH=1,设AB=AD=x,由(1)知FC=DH=1,∴AF=AH=AD+DH=x+1,BF=BC﹣FC=x﹣1,在Rt△ABF中,根据勾股定理,得AF2=AB2+BF2,∴(x+1)2=x2+(x﹣1)2,解得x=4,x=0(舍去),∴AF=FG=x+1=5,∴菱形AFGH的面积为:FG•DC=5×4=20.29.解:(1)设BM=x,则CM=2x,BC=3x,∵BA=BC,∴BA=3x.在Rt△ABM中,E为斜边AM中点,∴AM=2BE=2.由勾股定理可得AM2=MB2+AB2,即40=x2+9x2,解得x=2.∴AB=3x=6.(2)延长FD交过点A作垂直于AF的直线于H点,过点D作DP⊥AF于P点.∵DF平分∠CDE,∴∠1=∠2.∵DE=DA,DP⊥AF∴∠3=∠4.∵∠1+∠2+∠3+∠4=90°,∴∠2+∠3=45°.∴∠DFP=90°﹣45°=45°.∴AH=AF.∵∠BAF+∠DAF=90°,∠HAD+∠DAF=90°,∴∠BAF=∠DAH.又AB=AD,∴△ABF≌△ADH(SAS).∴AF=AH,BF=DH.∵Rt△F AH是等腰直角三角形,∴HF=AF.∵HF=DH+DF=BF+DF,∴BF+DF=AF.。

苏科版八年级下册第9章--中心对称图形 平行四边形章末重难点提优练习(动点常考题型总结归纳)

苏科版八年级下册第9章--中心对称图形  平行四边形章末重难点提优练习(动点常考题型总结归纳)

专题1 中心对称图形—平行四边形章末重难点题型【苏科版】专题一平行四边形中的热点问题【类型一折叠问题】1.如图,将▱ABCD沿对角线AC折叠,使点B落在点B′处。

若∠1=∠2=44°,则∠B为( )A. 124°B. 114°C. 104°D. 66°2.如图,在平面直角坐标系中,矩形OABC,OA=3,OC=6,将△ABC沿对角线AC翻折,使点B落在点B′处,AB′与y轴交于点D,则点D的坐标为 .3.(2017·十堰张湾区模拟)如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在C′处,折痕为EF,若AB=1,BC=2,则△ABE和△BC′F的周长之和是___.4.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为60°的菱形,剪口与折痕所成的角a的度数应为___.5.如图,将边长为6cm的正方形纸片ABCD折叠,使点D落在AB边中点E处,点C落在点Q处,折痕为FH,则线段AF的长是___cm.6.(2017·西宁)如图,将▱ABCD沿EF对折,使点A落在点C处,若∠A=60°,AD=4,AB=8,则AE的长为___.7.如图,将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕l交CD边于点E,连接BE.(1)求证:四边形BCED′是平行四边形;(2)若BE平分∠ABC,求证:AB2=AE2+BE2.8.如图1,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.(1)求证:△BDF是等腰三角形;(2)如图2,过点D作DG∥BE,交BC于点G,连接FG交BD于点O.①判断四边形BFDG的形状,并说明理由;②若AB=6,AD=8,求FG的长为___.【类型二平移、旋转问题】1.(2017春·扬州邗江区期中)如图,将矩形ABCD绕点C顺时针旋转90°得到矩形FGCE,点M、N分别是BD、GE的中点,若BC=14,CE=2,则MN的长( )A. 7B. 8C. 9D. 102.(2017·苏州)如图,在菱形ABCD中,∠A=60°,AD=8,F是AB的中点。

苏科版八年级下册数学第9章《中心对称图形—平行四边形》单元综合练习(有答案)

苏科版八年级下册数学第9章《中心对称图形—平行四边形》单元综合练习(有答案)

八年级数学第9章《中心对称图形—平行四边形》单元综合练习一、选择题:1、如图,在□ABCD中,M是BC延长线上的一点,若∠A=135°,则∠MCD的度数是()A.45°B.55°C.65°D.75°2、如图,△ABC与△A′B′C′关于点O成中心对称,则下列结论中不成立的是( ) A.OC=OC′ B.OA=OA′C.BC=B′C′D.∠ABC=∠A′C′B′3、把图形绕点A按逆时针方向旋转70°后所得的图形与原图作比较,保持不变的是()A.位置与大小B.形状与大小C.位置与形状D.位置、形状及大小4、如图,D,E分别是△ABC的边AB,AC的中点.如果△ADE的周长是6,则△ABC的周长是( )A.6 B.12 C.18 D.245、已知平行四边形ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC6、平面直角坐标系中,已知□ABCD的三个顶点坐标分别是A(m,n),B(2,-1),C(-m,-n),则点D的坐标是( )A.(-2,1) B.(-2,-1) C.(-1,—2) D.(-1,2)7、如图,菱形ABCD的对角线AC、BD的长分别为6和8,则这个菱形的周长是()A.20 B.24 C.40 D.488、在梯形ABCD中,AB∥CD,DC:AB=1:2,E、F分别是两腰BC、AD的中点,则EF:AB等于()A.1:4 B.1:3 C.1:2 D.3:49、如图,将一个三角形纸片ABC沿过点B的直线折叠,使点C落在AB边上的点E处,折痕为BD,则下列结论一定正确的是()A.AD=BD B.AE=AC C.ED+EB=DB D.AE+CB=AB10、矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF 的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1 B.C.D.11、如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由△DAM平移得到.若过点E作EH⊥AC,H为垂足,则有以下结论:①点M位置变化,使得∠DHC=60°时,2BE=DM;②无论点M运动到何处,都有DM=HM;③无论点M运动到何处,∠CHM一定大于135°.其中正确结论的是()A.①②③B. ②③C. ①②D. ①③12、如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=3.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为()A.(﹣,)B.(﹣,)C.(﹣,)D.(﹣,)二、填空题:13、在平面直角坐标系中,点P(3,-2)关于原点O成中心对称的点的坐标是________.14、如图,△ABC中,D,E分别是BC,AC的中点,BF平分∠ABC,交DE于点F,若BC=6,则DF的长是.15、如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,则点C的坐标是.16、如图,在Rt△ABC中,∠B=90°,AB=4,BC>AB,点D在BC上,以AC为对角线的所有平行四边形ADCE中,DE的最小值是。

2020-2021学年苏科版八年级下册 第9章 中心对称图形——平行四边形 重难点题型训练(二)

2020-2021学年苏科版八年级下册 第9章  中心对称图形——平行四边形 重难点题型训练(二)

苏科版八年级下册 第9章 《中心对称图形——平行四边形》重难点题型训练(二)1.已知:如图,四边形ABCD 中,AC 与BD 相交于点O ,OB =OD ,∠BAO =∠DCO .(1)求证:四边形ABCD 是平行四边形;(2)把线段AC 绕O 点顺时针旋转,使AC ⊥BD ,这时四边形ABCD 是什么四边形?简要说明理由;(3)在(2)中,当AC ⊥BD 后,又分别延长OA 、OC 到点A 1,C 1,使OA 1=OC 1=OD ,这时四边形A 1BC 1D 是什么四边形?简要说明理由.2.如图,AC 是正方形ABCD 的对角线,AE 平分∠BAC ,EF ⊥AC 交AC 于点F .(1)图中与线段BE 相等的所有线段是 ;(2)选择图中与BE 相等的任意一条线段,并加以证明.3.已知等腰△ABC中,AB=AC,AD平分∠BAC交BC于D点,在线段AD上任取一点P(A点除外),过P点作EF∥AB,分别交AC,BC于E,F点,作PM∥AC,交AB于M点,连接ME.(1)求证:四边形AEPM为菱形;(2)当P点在何处时,菱形AEPM的面积为四边形EFBM面积的一半?4.已知,如图,▱ABCD中,BE,CF分别是∠ABC和∠BCD的一平分线,BE,CF相交于点O.(1)求证:BE⊥CF;(2)试判断AF与DE有何数量关系,并说明理由;(3)当△BOC为等腰直角三角形时,四边形ABCD是何特殊四边形?(直接写出答案)5.如图,在正方形ABCD中,点F在CD边上,射线AF交BD于点E,交BC的延长线于点G.(1)求证:△ADE≌△CDE;(2)过点C作CH⊥CE,交FG于点H,求证:FH=GH;(3)设AD=1,DF=x,试问是否存在x的值,使△ECG为等腰三角形?若存在,请求出x的值;若不存在,请说明理由.6.如图,已知正方形ABCD的边长是2,E是AB的中点,延长BC到点F使CF=AE.(1)若把△ADE绕点D旋转一定的角度时,能否与△CDF重合?请说明理由.(2)现把△DCF向左平移,使DC与AB重合,得△ABH,AH交ED于点G.求证:AH⊥ED,并求AG的长.7.如图,矩形ABCD中,O是AC与BD的交点,过O点的直线EF与AB,CD的延长线分别交于E,F.(1)求证:△BOE≌△DOF;(2)当EF与AC满足什么关系时,以A,E,C,F为顶点的四边形是菱形?证明你的结论.8.如图,已知:在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB 于点E,且CF=AE.(1)试探究,四边形BECF是什么特殊的四边形?(2)当∠A的大小满足什么条件时,四边形BECF是正方形?请回答并证明你的结论.(特别提醒:表示角最好用数字)9.已知,如图,正方形ABCD的边长为6,菱形EFGH的三个顶点E,G,H分别在正方形ABCD边AB,CD,DA上,AH=2,连接CF.(1)当DG=2时,求△FCG的面积;(2)设DG=x,用含x的代数式表示△FCG的面积;(3)判断△FCG的面积能否等于1,并说明理由.10.将两块全等的含30°角的三角尺如图1摆放在一起,设较短直角边为1,另一直角边的长为.(1)四边形ABCD是平行四边形吗?说出你的结论和理由:.(2)如图2,将Rt△BCD沿射线BD方向平移到Rt△B1C1D1的位置,四边形ABC1D1是平行四边形吗?说出你的结论和理由:.(3)在Rt△BCD沿射线BD方向平移的过程中,当点B的移动距离为时,四边形ABC1D1为矩形,其理由是;当点B的移动距离为时,四边形ABC1D1为菱形,其理由是.(图3、图4用于探究)11.如图,在矩形ABCD中,AE平分∠DAB交DC于点E,连接BE,过E作EF⊥BE交AD于F.(1)求证:∠DEF=∠CBE;(2)请找出图中与EB相等的线段(不另添加辅助线和字母),并说明理由.12.已知矩形ABCD和点P,当点P在BC上任一位置(如图(1)所示)时,易证得结论:PA2+PC2=PB2+PD2,请你探究:当点P分别在图(2)、图(3)中的位置时,PA2、PB2、PC2和PD2又有怎样的数量关系请你写出对上述两种情况的探究结论,并利用图(2)证明你的结论.答:对图(2)的探究结论为;对图(3)的探究结论为;证明:如图(2)13.如图,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D在边AC上,点E、F在边AB上,点G在边BC上.(1)求证:AE=BF;(2)若BC=cm,求正方形DEFG的边长.14.如图,在△ABC中,∠A,∠B的平分线交于点D,DE∥AC交BC于点E,DF∥BC交AC 于点F.(1)点D是△ABC的心;(2)求证:四边形DECF为菱形.15.如图△ABC与△CDE都是等边三角形,点E、F分别在AC、BC上,且EF∥AB (1)求证:四边形EFCD是菱形;(2)设CD=4,求D、F两点间的距离.参考答案1.(1)证明:∵AC与BD相交于点O,∴∠AOB=∠COD,(1分)在△AOB和△COD中,∴△AOB≌△COD,(2分)∴OA=OC,(3分)∵OA=OC,OB=OD,∴四边形ABCD为平行四边形(4分)(2)解:四边形ABCD是菱形.(5分)因为对角线互相垂直平分的四边形是菱形.(6分)(或对角线互相垂直的平行四边形是菱形)(3)解:四边形A1BC1D是正方形(7分)因为对角线互相垂直平分且相等的四边形是正方形.(8分)(或对角线相等的菱形是正方形)2.解:(1)EF和FC;∵AE平分∠BAC,EF⊥AC交AC于点F,BE⊥AB,∴BE=EF;又∵AC是正方形ABCD的对角线,∴∠ECF=45°,∴∠CEF=45°,∴EF=FC.(2)证明:∵四边形ABCD是正方形,∴∠B=90°,又∵EF⊥AC,∴∠AFE=∠B,∵AE 平分∠BAC ,∴∠BAE =∠FAE ,在△ABE 和△AFE 中,,∴△ABE ≌△AFE (AAS ),∴BE =EF .3.(1)证明:∵EF ∥AB ,PM ∥AC ,∴四边形AEPM 为平行四边形.∵AB =AC ,AD 平分∠CAB ,∴∠CAD =∠BAD ,∵∠BAD =∠EPA ,∴∠CAD =∠EPA ,∴EA =EP ,∴四边形AEPM 为菱形.(2)解:P 为EF 中点时,S 菱形AEPM =S 四边形EFBM ∵四边形AEPM 为菱形,∴AD ⊥EM ,∵AD ⊥BC ,∴EM ∥BC ,又∵EF ∥AB ,∴四边形EFBM 为平行四边形.作EN ⊥AB 于N ,则S 菱形AEPM =EP •EN =EF •EN =S 四边形EFBM .4.(1)证明:∵四边形ABCD 是平行四边形∴AB∥CD∴∠ABC+∠BCD=180°(1分)又∵BE,CF分别是∠ABC,∠BCD的平分线∴∠EBC+∠FCB=90°∴∠BOC=90°故BE⊥CF(3分)(2)解:AF=DE理由如下:∵AD∥BC∴∠AEB=∠CBE又∵BE是∠ABC的平分线,∴∠ABE=∠CBE∴∠AEB=∠ABE∴AB=AE同理CD=DF(5分)又∵四边形ABCD是平行四边形∴AB=CD∴AE=DF∴AF=DE(6分)(3)解:当△BOC为等腰直角三角形时四边形ABCD是矩形.(8分)5.(1)证明:∵四边形ABCD是正方形,∴DA=DC,∠1=∠2=45°,DE=DE,∴△ADE≌△CDE.(2)证明:∵△ADE≌△CDE,∴∠3=∠4,∵CH⊥CE,∴∠4+∠5=90°,又∵∠6+∠5=90°,∴∠4=∠6=∠3,∵AD∥BG,∴∠G=∠3,∴∠G=∠6,∴CH=GH,又∵∠4+∠5=∠G+∠7=90°,∴∠5=∠7,∴CH=FH,∴FH=GH.(3)解:存在符合条件的x值此时,∵∠ECG>90°,要使△ECG为等腰三角形,必须CE=CG,∴∠G=∠8,又∵∠G=∠4,∴∠8=∠4,∴∠9=2∠4=2∠3,∴∠9+∠3=2∠3+∠3=90°,∴∠3=30°,∴x=DF=1×tan30°=.6.解:(1)∵ABCD是正方形,∴AD=DC=2,AE=CF=1,∠BAD=∠DCF=90°,在△ADE与△CDF中,∵,∴△ADE≌△CDF,∴把△ADE绕点D逆时旋转90°时能与△CDF重合.(2)由(1)可知∠1=∠2,∵∠2+∠3=90°,∴∠1+∠3=90°,∴∠EDF=90°,∵AH∥DF,∴∠EGH=∠EDF=90°,∴AH⊥ED,∵AE=1,AD=2,∵ED=,∴AE•AD=ED•AG,即×1×2=××AG,∴AG=.7.(1)证明:∵四边形ABCD是矩形,∴OB=OD(矩形的对角线互相平分),AE∥CF(矩形的对边平行).∴∠E=∠F,∠OBE=∠ODF.∴△BOE≌△DOF(AAS).(2)解:当EF⊥AC时,四边形AECF是菱形.证明:∵四边形ABCD是矩形,∴OA=OC(矩形的对角线互相平分).又∵由(1)△BOE≌△DOF得,OE=OF,∴四边形AECF是平行四边形(对角线互相平分的四边形是平行四边形)又∵EF⊥AC,∴四边形AECF是菱形(对角线互相垂直的平行四边形是菱形).8.解:(1)四边形BECF是菱形.证明:∵BC的垂直平分线为EF,∴BF=FC,BE=EC,∴∠1=∠3,∵∠ACB=90°,∴∠1+∠2=90°,∠3+∠A=90°,∴∠2=∠A,∴EC=AE,又∵CF=AE,BE=EC∴BE=EC=CF=BF,∴四边形BECF是菱形.(2)当∠A=45°时,菱形BECF是正方形.证明:∵四边形BECF是菱形,∴∠EBF=2∠3,∵∠A=45°,∠ACB=90°,∴∠3=45°,∴∠EBF=2∠3=90°,∴菱形BECF是正方形.9.解:(1)∵正方形ABCD中,AH=2,∴DH=4,∵DG=2,∴HG=2,即菱形EFGH的边长为2.在△AHE和△DGH中,∵∠A=∠D=90°,AH=DG=2,EH=HG=2,∴△AHE≌△DGH(HL),∴∠AHE=∠DGH,∵∠DGH+∠DHG=90°,∴∠DHG+∠AHE=90°,∴∠GHE=90°,即菱形EFGH是正方形,同理可以证明△DGH≌△CFG,∴∠FCG=90°,即点F在BC边上,同时可得CF=2,=×4×2=4.(2分)从而S△FCG(2)作FM⊥DC,M为垂足,连接GE,∵AB∥CD,∴∠AEG=∠MGE,∵HE∥GF,∴∠HEG=∠FGE,∴∠AEH=∠MGF.在△AHE和△MFG中,∴△AHE≌△MFG(AAS),∴FM=HA=2,即无论菱形EFGH如何变化,点F到直线CD的距离始终为定值2.因此S=×2×(6﹣x)=6﹣x.(6分)△FCG(3)若S △FCG =1,由(2)知S △FCG =6﹣x ,得x =5,∴在△DGH 中,HG =, ∴在△AHE 中,AE =,即点E 已经不在边AB 上.∴不可能有S △FCG =1.(9分)另法:∵点G 在边DC 上,∴菱形的边长至少为DH =4,当菱形的边长为4时:∵点E 在AB 边上且满足AE =2,此时,当点E 逐渐向右运动至点B 时,HE 的长(即菱形的边长)将逐渐变大,∴最大值为HE =2. 此时,DG =2,故0≤x ≤2. ∵函数S △FCG =6﹣x 的值随着x 的增大而减小,∴当x =2时,S △FCG 取得最小值为6﹣2.又∵6﹣2=1, ∴△FCG 的面积不可能等于1.(9分)10.解:(1)四边形ABCD 是平行四边形,根据两组对边分别相等;(2)四边形ABC 1D 1是平行四边形,根据一组对边平行且相等;(3)当点B 的移动距离为时,四边形ABC 1D 1为矩形,根据有一直角的平行四边形是矩形;当点B 的移动距离为时,四边形ABC 1D 1为菱形,根据对角线互相垂直平分的四边形是菱形.11.(1)证明:∵EF ⊥BE ,∴∠DEF +∠CEB =90°.∵∠CBE +∠CEB =90°,∴∠DEF =∠CBE .(2)EB =EF .理由如下:∵AE 平分∠DAB ,∴∠DEA =∠EAB =∠DAE , DA =DE ,DA =BC ,∴DE =BC .∵EF ⊥BE ,∴∠DEF +∠CEB =∠EBC +∠CEB =90°,∴∠DEF =∠EBC ,∵∠C =∠D =90°,∴△FDE ≌△CEB (ASA ).∴EB =EF .12.解:结论均是PA 2+PC 2=PB 2+PD 2.(1)如图2,过点P 作MN ∥AB ,交AD 于点M ,交BC 于点N ,∴四边形ABNM和四边形NCDM均为矩形,根据(1)中的结论可得,在矩形ABNM中有PA2+PN2=PB2+PM2,在矩形NCDM中有PC2+PM2=PD2+PN2,两式相加得PA2+PN2+PC2+PM2=PB2+PM2+PD2+PN2,∴PA2+PC2=PB2+PD2.(2)如图3,过点P作MN∥AB,交AB的延长线于点M,交CD的延长线于点N,∴四边形BCNM和四边形ADNM均为矩形,同样根据(1)中的结论可得,在矩形BCNM中有PC2+PM2=PB2+PN2,在矩形ADNM中有PA2+PN2=PD2+PM2,两式相加得PA2+PN2+PC2+PM2=PD2+PM2+PB2+PN2,∴PA2+PC2=PB2+PD2.13.(1)证明:∵等腰Rt△ABC中,∠C=90°,∴∠A=∠B.∵四边形DEFG是正方形,∴DE=GF,∠DEA=∠GFB=90°.∴△ADE≌△BGF.∴AE=BF.(2)解:∵∠DEA=90°,∠A=45°,∴∠ADE=45°.∴AE=DE,同理BF=GF,又∵AB=BC,∴EF=AE=BF=AB===(cm).∴正方形DEFG的边长为cm.14.解:(1)点D是△ABC的内心.(2分)(2)证法一:连接CD,(3分)∵DE∥AC,DF∥BC,∴四边形DECF为平行四边形,(4分)又∵点D是△ABC的内心,∴CD平分∠ACB,即∠FCD=∠ECD,(5分)又∠FDC=∠ECD,∴∠FCD=∠FDC∴FC=FD,(6分)∴▱DECF为菱形.(7分)证法二:过D分别作DG⊥AB于G,DH⊥BC于H,DI⊥AC于I.(3分)∵AD,BD分别平分∠CAB,∠ABC,∴DI=DG,DG=DH.∴DH=DI.(4分)∵DE∥AC,DF∥BC,∴四边形DECF为平行四边形,(5分)∴S▱DECF=CE•DH=CF•DI,∴CE=CF.(6分)∴▱DECF为菱形.(7分)15.(1)证明:∵△ABC与△CDE都是等边三角形,∴ED=CD.∴∠A=∠DCE=∠BCA=∠DEC=60°.(1分)∴AB∥CD,DE∥CF.(2分)又∵EF∥AB,∴EF∥CD,(3分)∴四边形EFCD是菱形.(4分)(2)解:连接DF,与CE相交于点G,(5分)由CD=4,可知CG=2,(6分)∴,(7分)∴.(8分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章中心对称图形-----平行四边形一、单选题1.如图,把△ABC绕点C顺时针旋转某个角度θ得到△A′B′C,△A=30°,△1=70°,则旋转角θ可能等于()A.40°B.50°C.70°D.100°2.在如图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是()A.点A B.点B C.点C D.点D3.剪纸艺术是中国传统的民间工艺.下列剪纸的图案中,属于中心对称图形的是()A.B.C.D.4.如图,平行四边形ABCD中,AE平分△DAB,△B=100°,则△DEA等于()A .100°B .80°C .60°D .40°5.如图,在平行四边形ABCD 中,CE 平分BCD ∠与AB 交于点E ,DF 平分ADC ∠与AB 交于点F ,若8AD =,3EF =,则CD 长为( )A .8B .10C .13D .166.如图,在平面直角坐标系xOy 中,若菱形ABCD 的顶点A ,B 的坐标分别为(﹣3,0),(2,0),点D 在y 轴上,则点C 的坐标是( )A .(4,5)B .(5,4)C .(4,4)D .(5,3) 7.矩形ABCD 中AB=10,BC=8,E 为AD 边上一点,沿CE 将△CDE 对折,点D 正好落在AB 边上的F 点.则AE 的长是( )A .3B .4C .5D .68.下列说法正确的是( )A .三条边相等的四边形是菱形B .对角线相等的平行四边形是矩形C .对角线互相垂直且相等的四边形是正方形D .一组对边平行,另一组对边相等的四边形是平行四边形9.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:△AB=BC ,△△ABC=90°,△AC=BD ,△AC△BD 中选两个作为补充条件,使△ABCD 为正方形(如图),现有下列四种选法,你认为其中错误的是( )A .△△B .△△C .△△D .△△10.如图,在菱形ABCD 中,2AB =,120ABC ∠=︒,点P ,E ,F 分别是线段AC ,AB ,BC 上的任意一点,则PE PF +的最小值是( )A .1BC .2D .1+二、填空题11.已知点P 1(a ,3)与P 2(-4,b )关于原点对称,则ab =_____.12.如图,在平行四边形ABCD 中,AD BD =,BE AD ⊥于点E ,若20DBE ∠=︒,则ABC ∠的度数是__________.13.如图,平行四边形ABCD 的周长为20cm ,对角线交于点O ,点E 是边AB 的中点,已知6AB cm =,则OE =______cm .14.如图,菱形ABCD 和菱形BEFG 的边长分别是5和2,△A =60°,连结DF ,则DF 的长为_____.三、解答题15.如图,在ABC V 中,点E ,F 分别为边AB ,AC 的中点,延长EF 到点G 使FG EF =. 求证:四边形EGCB 是平行四边形.16.如图,矩形ABCD 中,点E 是BC 上一点,AE AD =, DF AE ⊥于F ,连接DE .(1)求证:DF DC =;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于线段AF 的长.17.如图,在菱形ABCD 中,AB=4cm ,△BAD=60°.动点E 、F 分别从点B 、D 同时出发,以1cm/s 的速度向点A 、C 运动,连接AF 、CE ,取AF 、CE 的中点G 、H ,连接GE 、FH .设运动的时间为ts (0<t <4).(1)求证:AF△CE ;(2)当t 为何值时,四边形EHFG 为菱形;(3)试探究:是否存在某个时刻t ,使四边形EHFG 为矩形,若存在,求出t 的值,若不存在,请说明理由.18.如图,点 O 是等边△ABC 内一点,△AOB =105°,△BOC 等于α,将△BOC 绕点 C 按顺时针方向旋转60°得△ADC,连接OD.(1)求证:△COD 是等边三角形.(2)求△OAD 的度数.(3)探究:当α为多少度时,△AOD 是等腰三角形?19.如图,已知点E,F,M,N分别是正方形ABCD四条边上的点,并且===.AE BF CM DN(1)求证:四边形EFMN是正方形;AB=,当点E在什么位置时,四边形EFMN的周长最小?并求四边形EFMN (2)若4周长的最小值.答案1.A2.B3.D4.D5.C6.B7.A8.B9.B10.B11.﹣1212.125°13.21415.解:△E,F分别为AB,AC的中点,△EF是△ABC的中位线,△12EF BC∥.△EF FG =,△EG BC =.△EG BC =∥△四边形EGCB 是平行四边形.16.(1)证明:△四边形ABCD 是矩形,BCD 90AD BC ∴∠=︒∥,,DC BC ADE DEC ∴⊥∠=∠,,AE AD =Q ,ADE AED ∴∠=∠,DEC AED ∴∠=∠,DF AE ⊥Q ,△△DFE=90°,在△DFE 和△DCE 中DFE=BCD DE=DE DEC AED ∠∠⎧⎪∠=∠⎨⎪⎩△△DFE△△DCE (AAS ),DF DC ∴=;(2)由题知,AE -EF=AF ,△AE=AD=BC ,△AD -EF=AF ,BC -EF=AF ,△△DFE△△DCE ,△EF=CE ,△AE -CE=AF ,综上,使每对中较长线段与较短线段长度的差等于线段AF 的长, 则AE 与EF ;AD 与EF ; BC 与EF ;AE 与CE ;(写出四对即可). 17.(1)证明:△动点E 、F 同时运动且速度相等,△DF=BE ,△四边形ABCD 是菱形,△△B=△D ,AD=BC ,AB△DC ,在△ADF 与△CBE 中,,DF BE B D AD BC =⎧⎪∠=∠⎨⎪=⎩△△ADF△△CBE ,△△DFA=△BEC ,△AB△DC ,△△DFA=△FAB ,△△FAB=△BEC ,△AF△CE ;(2)过D 作DM△AB 于M ,连接GH ,EF ,△DF=BE=t,△AF△CE,AB△CD,△四边形AECF是平行四边形,△G、H是AF、CE的中点,△GH△AB,△四边形EGFH是菱形,△GH△EF,△EF△AB,△FEM=90°,△DM△AB,△DM△EF,△四边形DMEF是矩形,△ME=DF=t,△AD=4,△DAB=60°,DM△AB,△122AM AD,==△BE=4﹣2﹣t=t,△t=1,(3)不存在,假设存在某个时刻t,使四边形EHFG为矩形,△四边形EHFG为矩形,△EF=GH ,△EF 2=GH 2,即()(()222224t t -+=-,解得t=0,0<t <4, △与原题设矛盾,△不存在某个时刻t ,使四边形EHFG 为矩形.18.(1)△△BOC 旋转 60°得到△ADC ,△△BCO △△ACD ,△OC =CD ,且△OCD =60°,则△OCD 是等边三角形;(2)△△ABC 为等边三角形,△△BAO +△OAC =60°,△ABO +△OBC =60°. △△AOB =105°,△△BAO +△ABO =75°,△△OAC +△OBC =120°﹣105°=45°. △△BOC 旋转 60°得到△ADC ,△△BCO △△ACD ,△△DAC =△OBC ,△△OAD =△OAC +△CAD =45°.(3)若△AOD 是等腰三角形 .△由(1)知△OCD 是等边三角形,△△COD =60°.由(2)知△OAD =45°, 分三种情况讨论:△当 OA =OD 时,△AOD =90°,△α=360°﹣105°﹣60°﹣90°=105°;△当 OA =AD 时,△AOD =67.5°,△α=360°﹣105°﹣60°﹣67.5°=127.5°; △当 AD =OD 时,△AOD =45°,△α=360°﹣105°﹣60°﹣45°=150°.综上所述:当α=105°,127.5°或 150°时,△AOD 是等腰三角形 .19.解:(1)证明:△四边形ABCD 是正方形,△AB BC CD DA ===,△AE BF CM DN ===,△BE CF DM NA ===,又90A B C D ∠=∠=∠=∠=︒,△BEF CFM DMN ANE ≌≌≌△△△△,△EF FM MN NE ===,△四边形EFMN 是菱形.△AEN BFE ∠=∠,且90BEF BFE ∠+∠=︒ △90BEF AEN ∠+∠=︒,△90FEN ∠=︒.△菱形EFMN 是正方形;(2)通过观察可知:当点E 是AD 边的中点时,四边形EFMN 的周长最小. △当点E 是AD 边的中点时,EFB △是等腰直角三角形,△114222BE BF AB ===⨯=,△由2228EF BE BF =+=,得:EF =EFMN 是正方形,△四边形EFMN 周长的最小值为4=。

相关文档
最新文档