分式方程的增根与无解 (教师版)
分式方程的增根与无解详解(最新整理)
x-2 (x-3)=m
整理得:
x=6-m
∵原方程有解,故 6-m 不是增根。
∴6-m≠3 即 m≠3
∵x>0
∴m<6
由此可得答案为 m 的取值范围是 m<6 且 m≠3。 一、分式方程有增根,求参数值
2
x2 4xa 例 7 a 为何值时,关于 x 的方程 x 3 =0 有增根?
解:原方程两边同乘以(x-3)去分母整理,得 x2-4x+a=0(※) 因为分式方程有增根,增根为 x=3,把 x=3 代入(※)得,9-12+a=0 a=3
整理得(a-1)x=-10
②
1
若原方程无解,则有两种情形: (1)当 a-1=0(即 a=1)时,方程②为 0x=-10,此方程无解,所以原方程无解。 (2)如果方程②的解恰好是原分式方程的增根,那么原分式方程无解.原方程若有增根,增根为 x=2 或-2,把 x=2 或-2 代入方程②中,求出 a=-4 或 6. 综上所述,a=1 或 a=一4或 a=6 时,原分式方程无解. 例 5:(2005 扬州中考题)
入(※)得 m=-2
3 所以 m=- 2 或-2 时,原分式方程有增根
k
2
点评:分式方程有增根,不一定分式方程无解(无实根),如方程 x 1 +1= ( x 1)( x 2) 有增根,可求得 k=-
2
8
3 ,但分式方程这时有一实根 x= 3 。
二、分式方程是无实数解,求参数值
x2 m 例 9 若关于 x 的方程 x 5 = x 5 +2 无实数,求 m 的值。
整理得:
m(x+1)=7-x2
当 x= -1 时,此时 m 无解;
当 x=1 时,解得 m=3。
分式方程的增根和无解教学设计
分式方程的增根和无解教学设计教学目标:1.理解分式方程的概念和含义;2.掌握分式方程的解法;3.了解分式方程的增根和无解的概念及判断方法;4.能够运用所学知识解决相关问题。
教学准备:教师:黑板、粉笔、教学课件、练习册;学生:教科书、练习册。
教学过程:一、导入(10分钟)1.教师通过提问导入分式方程的概念和含义,引起学生的兴趣。
2.教师通过实际生活中的例子,让学生了解分式方程的应用,如加法、减法运算中的分式方程。
3.教师通过让学生思考,引导学生思考什么是分式方程的解。
二、整体呈现(20分钟)1.教师使用教学课件,通过具体的例子向学生展示分式方程的解法。
2.教师向学生讲解分式方程解的概念和判断方法,并引导学生掌握其基本思路和解题步骤。
三、小组合作探究(20分钟)1.学生分为小组,交流并讨论分式方程的解法。
2.学生通过小组合作解决一些练习题,巩固所学知识。
四、归纳总结(15分钟)1.学生提出问题和疑惑,教师进行解答和总结。
2.教师通过提问,引导学生总结分式方程的解决过程及判断方法。
五、拓展延伸(15分钟)1.教师出示一些扩展题或案例,让学生在小组内进行讨论和解答,拓展学生的思维能力。
2.教师通过讨论和解答,引导学生将所学知识运用到实际问题中,增强学生的综合应用能力。
六、巩固练习(20分钟)1.学生独立完成一些练习题,巩固所学知识。
2.学生可以相互交流解题方法,提高解题效率。
七、反思总结(10分钟)1.学生回答教师提出的问题,回顾所学内容。
2.学生提出自己的感想和反思,教师进行总结和点评。
教学反思:通过本堂课的教学设计,学生可以了解到分式方程的概念和含义,掌握分式方程的解法,并能够判断分式方程的解的情况,即增根和无解。
通过小组合作和讨论,学生的互动性和合作性得到了提高,可以培养学生的思维能力和解题能力。
通过拓展延伸和巩固练习,可以加深学生对所学知识的理解和掌握程度。
最后,通过反思总结,学生对本堂课的内容和自己的学习进行反思和总结,可以提高学生的学习效果和学习能力。
分式方程的增根与无解的区别及联系
分式方程的增根与无解的区别及联系分式方程的增根与无解是分式方程中常见的两个概念,同学们在学习分式方程后,常常会对这两个概念混淆不清,认为分式方程无解和分式方程有增根是同一回事,事实上并非如此.分式方程有增根,指的是解分式方程时,在把分式方程转化为整式方程的变形过程中,方程的两边都乘了一个可能使分母为零的整式,从而扩大了未知数的取值范围而产生的未知数的值;而分式方程无解则是指不论未知数取何值,都不能使方程两边的值相等.它包含两种情形:(一)原方程化去分母后的整式方程无解;(二)原方程化去分母后的整式方程有解,但这个解却使原方程的分母为0,它是原方程的增根,从而原方程无解.现举例说明如下:解:方程两边都乘以(x+2)(x-2),得2(x+2)-4x=3(x-2).②解这个方程,得x=2.经检验:当x=2时,原方程无意义,所以x=2是原方程的增根.所以原方程无解.【说明】显然,方程①中未知数x的取值范围是x≠2且x≠-2.而在去分母化为方程②后,此时未知数x的取值范围扩大为全体实数.所以当求得的x值恰好使最简公分母为零时,x的值就是增根.本题中方程②的解是x=2,恰好使公分母为零,所以x=2是原方程的增根,原方程无解.解:去分母后化为x-1=3-x+2(2+x).整理得0x=8.因为此方程无解,所以原分式方程无解.【说明】此方程化为整式方程后,本身就无解,当然原分式方程肯定就无解了.由此可见,分式方程无解不一定就是产生增根.方程两边都乘以x-2,得x-3=-m.解这个方程,得x=3-m.因为原方程无解,所以这个解应是原方程的增根.即x=2,所以2=3-m,解得m=1.故当m=1时,原方程无解.【说明】因为同学们目前所学的是能化为一元一次方程的分式方程,而一元一次方程只有一个根,所以如果这个根是原方程的增根,那么原方程无解.但是同学们并不能因此认为有增根的分式方程一定无解,随着以后所学知识的加深,同学们便会明白其中的道理,此处不再举例.解:方程两边都乘以(x+2)(x-2),得2(x+2)+ax=3(x-2)整理得(a-1)x=-10 ②若原分式方程有增根,则x=2或-2是方程②的根.把x=2或-2代入方程②中,解得,a=-4或6.【说明】做此类题首先将分式方程转化为整式方程,然后找出使公分母为零的未知数的值即为增根,最后将增根代入转化得到的整式方程中,求出原方程中所含字母的值.此时还要考虑转化后的整式方程(a-1)x=-10本身无解的情况,解法如下:解:方程两边都乘以(x+2)(x-2),得2(x+2)+ax=3(x-2)整理得(a-1)x=-10 ②若原方程无解,则有两种情形:(1)当a-1=0(即a=1)时,方程②为0x=-10,此方程无解,所以原方程无解。
分式方程增根、无解(教师版)
分式方程增根、无解
1.若解关于x的方程1时产生增根,那么常数m的值为()A.4B.3C.-4D.-1【答案】D
2.若关于x的分式方程1有增根,则a的值为()A.2B.-2C.4D.-4【答案】C
3.已知关于x的方程的解是正数,那么m的取值范围为()A.m>-6且m≠3B.m<6
C.m>-6且m≠-3D.m<6且m≠-2
【答案】C
4.若关于x的分式方程的解为非负数,则m的取值范围是()A.m>1B.m≥2且m≠1
C.m≥2D.m≥-1且m≠1
【答案】C
5.若关于x的方程有增根,则增根为()
A.x=6B.x=5C.x=4D.x=3【答案】B
6.已知关于x的方程的增根是x=1,则字母a的值为()A.-1B.1C.-2D.2
【答案】D
7.若关于x的分式方程有增根,则m的值为()A.1B.-1C.3D.-3【答案】D
8.关于x的分式方程无解,则m的值为.
【答案】7
9.若关于x的分式方程无解,则m的值为.
【答案】3
10.若关于x的分式方程有正整数解,则整数m的值是.
【答案】3或4
11.关于x的分式方程2的解为非负数,则a的取值范围为.【答案】a<2且a≠1.
12.若关于x的分式方程的解为正数,则m的取值范围为.【答案】m>-8且m≠-6.
13.若关于x的分式方程有增根,则m的值是.
【答案】7。
【doc】怎样区别分式方程的增根与无解
怎样区别分式方程的增根与无解责旧.蝙辑:王二喜刘顿学习了解分式方程以后,不少同学把增根与无解混为一谈.为了掌握这两个概念,现举例说明这两个概念的区别和联系.一.岔将分式方程变形为整式方程时,方程两边同乘以一个含有未知数的整式,并约去分母,可能产生不适合原分式方程的解或根,这种根称为增根.如,若方程—+3=有增根,则这个增根一定是=2.一二_徭绣罗解分式方程的关键是去分母将分式方程转化为整式方程.对原分式方程的解来说,各分式的分母不能为零,而对去分母后得到的整式方程来说,没有这个限制.因此,解分式方程时,必须检验.2O09.3的增根与无解怎样区剔分式方程课程_IiI赍源_…i庭裔锄辑分式方程无解有两种情形:一种是将原分式方程两边都乘以最简公分母,去分母并整理得到的整式方程为ax=b,若a=O,而b≠0,则此整式方程无解,即原分式方程无解;另一种是化分式方程为整式方程,整式方程的解是原分式方程的增根,此时分式方程无鳃.,ll如,若关于的方程一1=0无解,试求n的值.将原方程去分母转化为(o一1)x+2=O,即(n一1)一2.当n一1=0时,~Ja=l,此时整式方程无解.所以当n=1时,原方程无解.对于方程(.~1)x+2=O,当=1时,原方程无解.所以当(n一1)×1+2=0时,即o=一1,原方程无解.所以a为1或一1.在解本题时,考虑问题要全面,不要只考虑原分式方程有增根的情形,而忽略了整式方程无解,则原分式方程无解的情况.一分薅方癌警车麟按哮暴分式方程有增根,则增根是原分式方程变形后所得整式方程的根,但不是原分式方程的根,即这个根使最简公分母为0.如,解分式方程=3一刍,可得x=2,把=2代人(2一),得2一x=O,即=2使分式方程的分母2一为0.所以x=2不是原方程的解,x=2 是原方程的增根,此方程无解.在本题中,分式方程有增根,方程无解.请思考下面两道题:1.若关于的方程:m无解,求m的值.2.m为何值时,关于的方程+x2-4=会产生增根.目I2OO9.3。
分式方程的增根与无解详解
分 式 方 程 的 增 根 与 无 解 讲 解例1解方程—24x 3•①x 2 x 4 x 2解:方程两边都乘以(x+2) (x-2 ),得2 (x+2) -4x=3 (x-2 ).②解这个方程,得x=2.经检验:当x=2时,原方程无意义,所以x=2是原方程的增根.所以原方程无解.例2解方程x 13 x2 .x 22 x解:去分母后化为x — 1 = 3— x + 2 (2+ x ).整理得0x = 8.因为此方程无解,所以原分式方程无解.例3 (2007湖北荆门)若方程 王卫二―丄无解,则m= ------------ .x 22 x解:原方程可化为x 3二—m.x 2 x 2方程两边都乘以x — 2,得x — 3=— m解这个方程,得x=3— m因为原方程无解,所以这个解应是原方程的增根.即 x=2,所以2=3— m 解得m=1.故当m=1时,原方程无解.ax例4当a为何值时,关于x的方程齐厂齐①会产生增根?解:方程两边都乘以(x+2) (x-2 ),得 2 (x + 2)+ ax= 3 (x —2)整理得(a—1) x = —10若原分式方程有增根,则x= 2或-2是方程②的根.把x = 2或一2代入方程②中,解得,a = —4或6.若将此题“会产生增根”改为“无解”,即:2 ax 3当a为何值时,关于x的方程厂2 厂门①无解?此时还要考虑转化后的整式方程(a—1)x二—10本身无解的情况,解法如下:解:方程两边都乘以(x+2) (x-2 ),得 2 (x + 2)+ ax= 3 (x —2)整理得(a—1) x = —10若原方程无解,则有两种情形:(1)当a—1 = 0 (即a= 1)时,方程②为0x =一10,此方程无解,所以原方程无解。
(2)如果方程②的解恰好是原分式方程的增根,那么原分式方程无解•原方程若有增根,增根为x = 2或一2,把x = 2或一2代入方程②中,求出a= —4或6.综上所述,a= 1或a = —4或a=6时,原分式方程无解.例5: (2005扬州中考题)6A 、0B 、1C 、-1D 、1 或-1分析:使方程的最简公分母(x+1)(x-1)=0 则x=-1或x=1,但不能忽略增根除满足最简公 分母为零,还必须是所化整式方程的根。
15.3分式方程-增根(教案)-人教版八年级数学上册
举例:在去分母时,要注意将等式两边的每一项都乘以分母的最小公倍数,避免漏乘或乘错。
(3)解整式方程后的检验:学生在解整式方程后,容易忽视对解的检验。教师应强调检验的重要性,并教授具体的检验方法。
举例:求解分式方程$\frac{1}{x-2} = \frac{2}{x+1}$,解得$x=5$,需将$x=5$代入原方程检验是否成立。
1.教学重点
(1)理解增根的定义:增根是指使分式方程分母为零的根。这是本节课的核心概念,教师需通过实例讲解,使学生深刻理解增根的含义。
举例:分式方程$\frac{1}{x-a}= \frac{2}{a}$,当$x=a$时,分母为零,此时$x=a$为增根。
(2)掌握求解含增根分式方程的方法:包括识别增根、去分母、求解整式方程、检验解等步骤。教师需详细讲解并举例说明每个步骤的操作方法。
2.教学难点
(1)增根的识别:对于初学者来说,判断何时会产生增根是一大难点。教师可通过列举不同类型的分式方程,帮助学生识别增根。
举例:分式方程$\frac{1}{x-a} + \frac{1}{x-b} = \frac{2}{x-c}$,增根可能为$x=a$、$x=b$或$x=c$。
(2)去分母过程中易出现的错误:在求解含增根分式方程时,去分母是关键步骤,但学生容易在此过程中出现错误。教师应详细讲解并强调注意事项。
五、教学反思
在本次教学过程中,我发现学生们对增根的概念和求解含增根分式方程的方法掌握程度有所不同。有些学生能够迅速理解并运用到实际题目中,但也有一些学生在识别增根和处理分母为零的情况时遇到困难。这让我意识到,在教学过程中,我们需要针对不同水平的学生进行有针对性的指导。
中考复习——分式方程的增根与无解问题(解析版)
中考复习——分式方程的增根与无解问题一、选择题1、关于x的分式方程71x-+3=1mx-有增根,则增根为().A. x=1B. x=-1C. x=3D. x=-3答案:A解答:方程两边都乘(x-1),得7+3(x-1)=m,∵原方程有增根,∴最简公分母x-1=0,解得x=1,当x=1时,m=7,这是可能的,符合题意.2、若关于x的分式方程23x-+3x mx+-=1有增根,则m的值为().A. 3B. 0C. -1D. -3答案:C解答:方程两边都乘(x-3),得2-(x+m)=x-3,∵原方程有增根,∴最简公分母x-3=0,解得x=3,当x=3时,m=-1,选C.3、关于x的分式方程322mx x---=1有增根,则m的值().A. m=2B. m=1C. m=3D. m=-3答案:D解答:去分母得:m+3=x-2,由分式方程有增根,得到x-2=0,即x=2,把x=2代入整式方程得:m+3=0,解得:m=-3.选D.4、若关于x 的分式方程24x m x +-+2xx -=1有增根,则m 的值是( ). A. m =2或m =6 B. m =2C. m =6D. m =-2或m =-6答案:A解答:∵关于x 的分式方程24x m x +-+2xx -=1有增根, ∴x =±2是方程x +m -x (x +2)=4-x 2的根, 当x =2时,2+m -2(2+2)=4-4, 解得:m =6,当x =-2时,-2+m =4-4, 解得:m =2. 选A.5、关于x 的分式方程71x x -+5=211m x --有增根,则m 的值为( ).A. 1B. 3C. 4D. 5答案:C解答:方程两边都乘(x -1), 得7x +5(x -1)=2m -1, ∵原方程有增根, ∴最简公分母x -1=0, 解得x =1,当x =1时,7=2m -1, 解得m =4, 所以m 的值为4. 6、若关于x 的方程31x -=1-1k x-无解,则k 的值为( ).A. 3B. 1C. 0D. -1答案:A解答:方程两边都乘x -1, 得:3=x -1+k , ∵原方程有增根,∴最简公分母x-1=0,解得x=1,当x=1时,k=3.故k的值为3.选A.7、关于x的方程321xx-+=2+1mx+无解,则m的值为().A. -5B. -8C. -2D. 5答案:A解答:去分母得:3x-2=2x+2+m,由分式方程无解,得到x+1=0,即x=-1,代入整式方程得:-5=-2+2+m,解得:m=-5,选A.8、关于x的方程12xx--=2mx-+2无解,则m的值是().A. -1B. 0C. 1D. 2答案:C解答:去分母得x-1=m+2(x-2),解得x=3-m,当x=2时分母为0,方程无解,即3-m=2,m=1时方程无解.选C.9、若关于x的方程32233x mxx x-----=-1无解,则m的值为().A. 1B. 3C. 1或53D.53答案:C解答:两边同时乘x-3,得3-2x+mx-2=-x+3,∴(m-1)x=2.①当m=1时,0=2矛盾,∴无解.②当m ≠1时,x =21m -, ∴方程无解. ∴方程有增根, ∴x =3,即21m -=3, ∴m =53.综上所述m =1或53. 选C. 10、若分式232x a x x --+12x -=2x无解,则实数a 的取值为( ).A. 0或2B. 4C. 8D. 4或8答案:D 解答:解方程:232x a x x --+12x -=2x,去分母,得3x -a +x =2(x -2), 去括号,得3x -a +x =2x -4, 移项,得3x +x -2x =-4+a , 合并同类项,得2x =-4+a , 系数化为1,得x =42a -, 又∵原分式方程无解, ∴42a -=0或2, ∴a =4或8. 选D.11、若关于x 的方程12x =3k x +无解,则k 的值为( ).A. 0或12B. -1C. -2D. -3答案:A解答:去分母得:x +3=2kx , ∴(2k -1)x =3,当k =12时,(2k -1)x =3无解,即原方程无解. 由分式方程无解,得到2x (x +3)=0, 解得:x =0或x =-3.把x =0代入整式方程得:3=0,无解. 把x =-3代入整式方程得:-6k =0,解得k =0. 综上所述,k 的值为0或12. 选A. 二、填空题 12、若关于x 的方程32x x --=2mx-有增根,则m =______. 答案:1解答:方程两边都乘(x -2),得x -3=-m , ∵方程有增根,∴最简公分母x -2=0,即增根是x =2, 把x =2代入整式方程,得m =1. 故答案为:1. 13、关于x 的方程23x x m--=0有增根.则m =______. 答案:9 解答:要使方程23x x m--=0有增根,则x =3使x 2-m =0, 得m =9. 14、分式方程233m x x---=1有增根,则m =______. 答案:-2解答:去分母得:m +2=x -3,由分式方程有增根,得到x -3=0,即x =3, 把x =3代入整式方程得:m +2=0, 解得m =-2. 故答案为:-2.15、若关于x 的分式方程31x a x x---=1无解,则a =______. 答案:1或-2解答:去分母得x 2-ax -3x +3=x 2-x ,(a +2)x =3, ①去分母后的整式方程无解,∴a +2=0,a =-2; ②解为增根,舍去,∴x =1,a =1, x =0,不符合题意. 16、若关于x 的分式方程3x x --2=3mx -有增根,则m 的值为______. 答案:3解答:方程两边都乘x -3, 得x -2(x -3)=m . ∵原方程有增根, ∴最简公分母x -3=0, 解得x =3, 当x =3时,m =3. 故m 的值是3. 17、若关于x 的方程22x -+2x m x+-=2有增根,则m 的值是______. 答案:0解答:方程两边都乘以(x -2), 得2-x -m =2(x -2), ∵分式方程有增根, ∴x -2=0, 解得x =2, ∴2-2-m =2(2-2), 解得m =0.18、已知关于x 的分式方程21x ax +-=1无解,则a 的值为______. 答案:-2 解答:21x ax +-=1 方程两边同乘以x -1,得移项及合并同类项,得 x =-1-a ,∵关于x 的分式方程21x ax +-=1无解, ∴x -1=0,得x =1, ∴-1-a =1,得a =-2. 故答案为:-2. 19、关于x 的分式方程2m x -+2xx-=2无解,则实数m 的值为______. 答案:2解答:去分母得:m -x =2x -2, 把x =2,代入得:m -2=22-2, 解得:m =2.20、如果关于x 的分式方程25x x --=5mx-无解,m 的值为______. 答案:-3解答:将原分式方程整理为整式方程:x =2-m , ∵分式方程无解,∴分式方程有增根x =5, ∴m =-3.21、关于x 的分式方程2142m x x --+=0无解,则m =______. 答案:0或-4解答:方程去分母得:m -(x -2)=0,解得:x =2+m ,∴当x =2时分母为0,方程无解,即2+m =2,∴m =0时方程无解.当x =-2时分母为0,方程无解,即2+m =-2,∴m =-4时方程无解.综上所述,m 的值是0或-4. 22、若分式方程2111x mx x x +-+-=11x x +-无解,则m 的值是______. 答案:-3或-5或-1解答:方程去分母得:x (x -1)-(mx +1)=(x +1)(x +1), 解得:x (3+m )+2=0,当x =0时整式方程无解,即m =-3, ∴当x =1时分母为0,方程无解,∴当x =-1时分母为0,方程无解, 即m =-1.故答案为:-3或-5或-1. 23、若关于x 的分式方程52a x -+=2xx++3无解,那么a 的值为______. 答案:7 解答:52a x -+=2xx++3, 去分母得:5-a =x +3(x +2), 将x =-2代入上式得:5-a =-2, 所以a =7. 故答案为:7.24、若关于x 的分式方程32xx --1=32m x +-有增根,则m 的值为______.答案:3解答:方程两边都乘(x -2),得3x -x +2=m +3, ∵原方程有增根,∴最简公分母x -2=0,解得x =2,把x =2代入3x -x +2=m +3,得3×2-2+2=m +3,解得m =3. 25、关于x 的方程3mx x -=33x -无解,则m 的值是______. 答案:1或0解答:去分母得mx =3,∵x =3时,最简公分母x -3=0,此时整式方程的解是原方程的增根, ∴当x =3时,原方程无解,此时3m =3,解得m =1, 当m =0时,整式方程无解. ∴m 的值为1或0时,方程无解. 故答案为:1或0. 三、解答题26、若关于x 的分式方程31x a x x---=1无解,求a 的值. 答案:a =1或a =-2.解答:去分母得:x(x-a)-3(x-1)=x(x-1),去括号得:x2-ax-3x+3=x2-x,移项合并得:(a+2)x=3,(1)把x=0代入(a+2)x=3,∴a无解,当x=1代入(a+2)x=3,解得a=1,(2)(a+2)x=3,当a+2=0时,0×x=3,x无解,即a=-2时,整式方程无解,综上所述,当a=1或a=-2时,原方程无解,故答案为:a=1或a=-2.27、当a为何值时,关于x的方程ax=()21xx x+-无解?答案:1或-2解答:方程两边同乘x(x-1)得:a(x-1)=x+2,整理得:(a-1)x=2+a(i)当a-1=0,即a=1时,原方程无解;(ii)当a-1≠0,原方程有增根x=0或1,当x=0时,2+a=0,即a=-2;当x=1时,a-1=2+a,无解,即当a=1或-2时原方程无解.28、已知关于x的分式方程21x-+()()12mxx x-+=12x+.(1)已知m=4,求方程的解.(2)若该分式方程无解,试求m的值.答案:(1)x=-1.(2)m的值可能为-1、1.5或-6.解答:(1)方程两边同时乘以(x+2)(x-1),去分母并整理得5x=-5,解得x=-1,经检验,x =-1是原方程的解.(2)方程两边同时乘以(x +2)(x -1), 去分母并整理得(m +1)x =-5, ∵原分式方程无解,∴m +1=0或(x +2)(x -1)=0, 当m +1=0时,m =-1; 当(x +2)(x -1)=0时, 解得:x =-2或x =1, 当x =-2时,m =1.5; 当x =1时,m =-6;所以m 的值可能为-1、1.5或-6. 29、已知关于x 的分式方程1xx --1=()()12m x x -+ (1)m 为何值时,这个方程的解为x =2? (2)m 为何值时,这个方程有增根? 答案:(1)m =4.(2)m =3.解答:(1)分式方程去分母得:x (x +2)-(x -1)(x -2)=m , 将x =2代入得:8-4=m ,即m =4.(2)分式方程去分母得:x (x +2)-(x -1)(x -2)=m , 将x =1代入得:m =3;将x =-2代入得:m =0(舍去). 则m =3.30、已知关于x 的方程111m xx x ----=0无解,方程x 2+kx +6=0的一个根是m . (1)求m 和k 的值.(2)求方程x 2+kx +6=0的另一个根.答案:(1)m =2,k =-5.(2)方程的另一个根为3. 解答:(1)∵关于x 的方程111m xx x ----=0无解, ∴x -1=0, 解得x =1,方程去分母得:m -1-x =0,把x=1代入m-1-x=0得:m=2.把m=2代入方程x2+kx+6=0得:4+2k+6=0,解得:k=-5.(2)方程x2-5x+6=0,(x-2)(x-3)=0,∴x1=2,x2=3,∴方程的另一个根为3.。
分式方程的增根与无解问题专题练习(解析版)
分式方程的增根与无解问题专题练习一、分式方程的增根问题 1、关于x 的分式方程522x mx x -=++有增根,则m 的值为( ).A. 0B. -5C. -2D. -7答案:D解答:原分式方程去分母得:x -5=m , ∵方程有增根, ∴x +2=0即x =-2, ∴m =-2-5=-7. 选D.2、关于x 的方程1xx --1=()()21a x x +-有增根,那么a =( ).A. -2B. 0C. 1D. 3答案:D解答:去分母得:x (x +2)-(x +2)(x -1)=a , 由分式方程有增根,得到x +2=0或x -1=0, 解得:x =-2或x =1,把x =-2代入整式方程得:a =0,经检验不合题意,舍去; 把x =1代入整式方程得:a =3, 选D3、已知关于x 的方程22x mx +-=3有增根,则m 的值为______. 答案:-4 解答:∵22x mx +-=3, ∴2x +m =3x -6, ∴x =m +6. 又∵有增根, ∴m +6=2, ∴m =-4.4、若分式方程2111x m x x ----=1有增根,则m 的值是______. 答案:3 解答:2111x m x x ----=1, 同乘以x -1得: 2x -(m -1)=x -1, 2x -x =-1+m -1, x =m -2.∵该分式方程存在增根,即x -1=0,x =1, ∴m -2=1, ∴m =3.5、已知关于x 的分式方程1x mx +-=2有增根,则m 的值为______. 答案:-1解答:原方式可化为2(x -1)=m +x . 当原分式方程有增根时,x =1. 将x =1代入得m +1=0. 解得m =-1. 6、已知关于x 的方程311x kx x ----=2有增根,则增根为______,k 的值为______. 答案:1;-2解答:原方程去分母,整理,得k =-x -1. ∵原方程有增根,而原方程的最简公分母为x -1. ∴由x -1=0可知原方程的增根为x =1. 当x =1时,k =-1-1=-2.因此,原方程的增根为1,k 的值为-2. 故答案为:1;-2. 7、若关于x 的分式方程12x x ++=2mx -有增根,则增根为______. 答案:2或-2解答:∵原方程有增根, ∴最简公分母(x +2)(x -2)=0,解得x=-2或2.故答案为2或-2.8、已知方程21 4x-+2=2kx-有增根,则k=______.答案:1 4解答:原方程去分母,得1+2(x2-4)=k(x+2)①,∵原方程有增根,∴x+2=0或x-2=0,∴x=-2或2.把x=-2代入①,得,方程无解.把x=2代入①,得,1+2×(22-4)=k(2+2),解得k=14.故答案为14.9、若关于x的方程21x x -+25kx x-+=211kx--有增根,则k的值为______.答案:3,6或9解答:去分母,得:x+1+(k-5)(x-1)=(k-1)x ①若x=1为增根,则:1+1+0=k-1,k=3,②若x=-1为增根,则:-1+1-2(k-5)=-(k-1),得:k=9,③若x=0为增根,则:0+1-(k-5)=0,k=6,综上,k的值为3,6或9.10、若关于x 的分式方程2611mx x ---=1有增根,则增根是______. 答案:x =1解答:去分母,得:6-m (x +1)=x 2-1, 移项,得:7-m (x +1)=x 2, 当x =-1时,原方程无解, 则x =1为原方程的增根. 11、关于x 的分式方程12mx x +-=-1有增根,求m 的值. 答案:-12. 解答:方程两边都乘(x -2),得mx +1=-(x -2), ∵原方程有增根, ∴最简公分母x -2=0, 解得x =2,当x =2时,2m +1=-(2-2),解得m =-12. 12、若关于x 的方程33x -+29ax x -=43x +有增根,求a 的值.答案:a =-6或a =8.解答:化为整式方程得:3(x +3)+ax =4(x -3), 整理得ax =x -21,再将x =3,x =-3分别代入ax =x -21中,得a =-6或a =8. 二、分式方程的无解问题 13、关于x 的方程321x x -+=2+1mx +无解,则m 的值为( ).A. -5B. -8C. -2D. 5答案:A解答:去分母得:3x -2=2x +2+m , 由分式方程无解,得到x +1=0, 即x =-1,代入整式方程得:-5=-2+2+m , 解得:m =-5, 选A.14、若分式方程31xx+=1mx++2无解,则m=().A. -3B. -2C. -1D. 0答案:A解答:31xx+=1mx++2,3x=m+2x+2,x=m+2,∵x=-1是原方程的增根,原方程无解,∴m+2=-1,∴m=-3.选A.15、关于x的分式方程23m xx+--1=2x无解,则m的值为().A. -1.5B. 1C. -1.5或2D. -0.5或-1.5答案:D解答:23m xx+--1=2x,方程两边都乘以x(x-3),得:x(x+2m)-x(x-3)=2(x-3),整理,得:(2m+1)x=-6,x=-621 m+,∵原分式方程无解,∴2m+1=0或-621m+=3或-621m+=0.解得:x=-0.5或x=-1.5,选D.16、关于x的方程12xx--=1mx-+1无解,则m的值是().A. 0B. 0或1C. 1D. 2答案:B解答:解分式方程12xx--=1mx-+1,整理得(x-1})2}=m(x-2)+(x-1)(x-2),(1-m )x =1-2m ,当m =1时,整式方程无解; 当m ≠1时,x =121mm--. ∵当x =1或x =2时,x 为原方程的増根, 当x =1时,解得m =0; 当x =2时,方程121mm--=2无解. ∴当m =0或1时,原方程无解, 选B.17、若关于x 的方程323x x --+23mxx+-=-1无解,则m 的值为( ).A. 3B. -3C. -53或-1 D. 0答案:C解答:去分母得:3-2x -2-mx =-x +3整理为:( )(1+m )x =-2 该整式方程无解时,原分式方程无解,此时m =-1该整式方程有解,此解恰好是原分式方程的增根,此时m =-53. 18、若分式方程31a x --=2无解,则a =______. 答案:3 解答:31a x --=2, 解得:a =2x +1, ∵x =1时,方程无解, ∴a =2×1+1=3. 19、若方程52m x --+1=12x -无解,则m =______. 答案:4 解答:52m x --=12x --1. 52m x --=()122x x ---.52m x --=32x x --.5-m =3-x . x =-2+m .当x =2时,方程无解. ∴-2+m =2. ∴m =4.20、若关于x 的方程3m x -+2=43xx --无解,则m 的值为______. 答案:1 解答:3m x -+2=43xx -- m +2(x -3)=4-x m +2x -6=4-x 3x =10-m∵方程无解,可知x =3. ∴9=10-m , ∴m =1.21、若关于x 的分式方程1x k x +-=4x+1无解,则k 的值是______. 答案:3或-1解答:化整式方程得:x 2+kx =4x -4+x 2-x , 化简得:(k -3)x =-4.当k -3=0时,整式方程无解,即k =3时,分式方程无解. 当k -3≠0时,整式方程的解x =43k-为分式方程增根1时, 即k =-1时分式方程无解, ∴k =3或-1.22、若关于x 的分式方程23kx x -+532x-=4无解,则k 的值为______. 答案:8或103解答:去分母,得:kx -5=4(2x -3), kx -5=8x -12, kx -8x =-7,当k =8时,原方程无解,当k ≠8时,x =78k --, ∵无解, ∴2x -3=0,∴x =32, ∴78k --=32, ∴k =103,综上,k 的值为8或103. 23、关于x 的方程2ax x -=42x -+1无解,求a 的值.答案:a =1或2.解答:方程去分母得:ax =4+x -2, 解得:(a -1)x =2,∴当a -1=0即a =1时,整式方程无解,分式方程无解, 当a ≠1时,x =21a -, x =2时分母为0,方程无解, 即21a -=2,a =2时方程无解, 综上,当a =1或2时,原分式方程无解. 24、已知关于x 的分式方程2211a a x x x x---++=0无解,求a 的值. 答案:a =12,0,-1时,原方程无解. 解答:方程两边同时乘x (x +1),得: ax -(2a -x -1)=0, 整理得(a +1)x =2a -1,当a =-1时,整式方程无解,原分式方程无解; 当整式方程的解是原分式方程的增根时, 将x =0或x =-1代入整式方程,解得a =12或a =0. 综上所述,a =-1,12或0.。
分式方程的增根和无解(含答案)
分式方程的增根和无解一、单项选择题(共10道,每道10分)1.关于x的分式方程有增根,则m的值为( )A. B.C. D.答案:D解题思路:分析:解分式方程首先需要化成整式方程,分式方程有增根,即整式方程有解,并且使得分式方程的最简公分母为零.解:方程两边同时乘以最简公分母x-1,得:,解得.∵分式方程有增根,∴,m=7.应选D.试题难度:三颗星知识点:分式方程增根无解问题2.分式方程的解为增根,则增根可能是( )A.x=2B.x=0C.x=-1D.x=0或x=-1答案:C解题思路:分析:解分式方程首先需要化成整式方程,分式方程有增根,即整式方程有解,并且使得分式方程的最简公分母为零.解:方程两边同时乘以最简公分母,得:,即,∵分式方程有增根,∴∴或,当时,不能求解m的值,当时,可得:,所以,此时.应选C.试题难度:三颗星知识点:分式方程增根无解问题3.关于x的分式方程产生增根,则m及增根x的值分别为( )A.,B.,C.,D.,答案:A解题思路:解:方程两边同时乘以最简公分母,得:,即,∵分式方程有增根,∴,解得,此时x=-3.应选A.试题难度:三颗星知识点:分式方程增根无解问题4.已知关于x的分式方程有增根,则m的值是( )A.1B.-1C.3D.5答案:B解题思路:解:方程两边同时乘以,得:,即,∵分式方程有增根,∴,即,解得,应选B.试题难度:三颗星知识点:分式方程增根无解问题5.若解关于x的分式方程有增根x=-1,则a的值为( )A.3B.-3C.3或1D.-3或-1答案:B解题思路:解:方程两边同时乘以,得,即,∵分式方程有增根x=-1,∴,应选B.试题难度:三颗星知识点:分式方程增根无解问题6.若关于x的分式方程无解,则m的值为( )A. B.1C.或2D.或答案:D解题思路:分析:解分式方程首先需要化成整式方程,分式方程无解,有两种情况,①整式方程本身无解;②整式方程有解,但使得分式方程的最简公分母为零(即为增根).解:方程两边同时乘以,得,整理得,∵原分式方程无解,①整式方程无解,即,不成立,无解,此时,,②整式方程有解,但使得分式方程的最简公分母为零(即为增根).此时,,得,方程有增根,解得,.综上,当或时,原分式方程无解.应选D.试题难度:三颗星知识点:分式方程增根无解问题7.若分式方程无解,则m的值为( )A.8B.C. D.12答案:C解题思路:解:方程两边同时乘以,得,整理得,∵原分式方程无解,而整式方程始终有解,所以使得分式方程的最简公分母为零.方程有增根,解得,.综上,当时,原分式方程无解.应选C.试题难度:三颗星知识点:分式方程增根无解问题8.若关于x的分式方程无解,则a的值为( )A. B.C.或或D.答案:D解题思路:解:方程两边同时乘以,得,整理得,原分式方程无解,应包含两种情况:①整式方程无解,即,不成立,无解,此时,②整式方程有解,但使得分式方程的最简公分母为零.此时,,得,方程有增根,解得,.综上,当或时,原分式方程无解.故选D.试题难度:三颗星知识点:分式方程增根无解问题9.已知关于x的分式方程的解是非正数,则a的取值范围是( )A. B.C. D.答案:B解题思路:解:分式方程化为整式方程得,解得.∵解为非正数,∴,∴,又∵方程有解,∴,即,即,故选B.试题难度:三颗星知识点:解分式方程10.若关于x的分式方程的解为正数,则m的取值范围是( )A.m>-5B.m<-5C.m≥-5D.m>-5且m≠-2答案:D解题思路:解:分式方程化为整式方程得,解得.∵解为正数,∴,∴,又∵方程有解,∴,即,即,故选D.试题难度:三颗星知识点:解分式方程。
(完整版)分式方程的增根与无解
分式方程的增根与无解甲:增根是什么?乙:增根是解分式方程时,把分式方程转化为整式方程这一变形中,由于去分母扩大了未知数的取值范围而产生的未知数的值.比如例1、解方程:。
①为了去分母,方程两边乘以,得②由②解得。
甲:原方程的解是.乙:可是当时,原方程两边的值相等吗?甲:这我可没注意,检验一下不就知道了。
哟!当时,原方程有的项的分母为0,没有意义,是不是方程变形过程中搞错啦?乙:求解过程完全正确,没有任何的差错。
甲:那为什么会出现这种情况呢?乙:因为原来方程①中未知数x的取值范围是且,而去分母化为整式方程②后,未知数x的取值范围扩大为全体实数。
这样,从方程②解出的未知数的值就有可能不是方程①的解。
甲:如此说来,从方程①变形为方程②,这种变形并不能保证两个方程的解相同,那么,如何知道从整式方程②解出的未知数的值是或不是原方程①的解呢?乙:很简单,两个字:检验。
可以把方程②解出的未知数的值一一代入去分母时方程两边所乘的那个公分母,看是否使公分母等于0,如果公分母为0,则说明这个值是增根,否则就是原方程的解。
甲:那么,这个题中就是增根了,可原方程的解又是什么呢?乙:原方程无解。
甲:啊?!为什么会无解呢?乙:无解时,方程本身就是个矛盾等式,不论未知数取何值,都不能使方程两边的值相等,如上题中,不论x取何值,都不能使方程①两边的值相等,因此原方程无解,又如对于方程,不论x取何值也不能使它成立,因此,这个方程也无解.甲:是不是有增根的分式方程就是无解的,而无解的分式方程就一定有增根呢?乙:不是!有增根的分式方程不一定无解,无解的分式方程也不一定有增根,你看:例2、解方程,去分母后化为,解得或,此时,是增根,但原方程并不是无解,而是有一个解,而方程,去分母后化为,原方程虽然无解,但原方程也没有增根。
乙:增根不是原分式方程的解,但它是去分母后所得的整式方程的解,利用这种关系可以解决分式方程的有关问题,你看:例3、已知关于x的方程有增根,求k的值.首先把原方程去分母,化为。
八年级数学上册《分式方程的增根》优秀教学案例
本案例注重小组合作学习,让学生在小组内共同探讨问题、分享解题思路。这种合作学习方式有助于提高学生的沟通能力、团队协作能力和解决问题的能力。
4.注重反思与评价,提升学生自我认知
在教学过程中,我鼓励学生进行自我反思和同伴评价,使他们在反思中总结经验、发现不足,从而不断提升自己的认知水平和学习能力。
八年级数学上册《分式方程的增根》优秀教学案例
一、案例背景
《分式方程的增根》是八年级数学上册的一个重要教学内容,它既是对前面所学整式方程解法的巩固,也是对分式方程解法的拓展。在学生掌握了基本的分式方程解法后,本章节通过探究“增根”现象,旨在培养学生的逻辑思维能力和解决问题的策略。在教学过程中,我将以学生为主体,采用问题驱动法和合作学习法,让学生在自主探究和合作交流中,深刻理解增根的概念及其在分式方程中的应用,从而提高他们解决实际问题的能力。这个案例将结合教材内容,以生活实例引入分式方程的增根问题,引发学生的思考,使他们在实践中感受数学的魅力。
2.为每个小组分配不同的任务,要求他们通过合作解决问题,培养学生的团队协作精神。
3.引导学生在小组内分享解题思路和方法,提高他们的沟通能力。
4.对小组合作成果进行评价,鼓励优秀团队,激发学生的学习积极性。
(四)反思与评价
在教学过程中,我将关注学生的反思与评价:
1.鼓励学生在课后进行自我反思,总结学习过程中的优点和不足,形成持续改进的学习习惯。
在本章节的教学过程中,我将始终关注学生的全面发展,努力实现知识与技能、过程与方法、情感态度与价值观的有机结合,为学生的成长奠定坚实的基础。
三、教学策略
(一)情景创设
为了让学生更好地理解分式方程的增根,我将创设以下教学情景:
分式方程无解
分式方程无解各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢分式方程的增根与无解例谈分式方程的增根与无解分式方程的增根与无解是分式方程中常见的两个概念,同学们在学习分式方程后,常常会对这两个概念混淆不清,认为分式方程无解和分式方程有增根是同一回事,事实上并非如此.分式方程有增根,指的是解分式方程时,在把分式方程转化为整式方程的变形过程中,方程的两边都乘了一个可能使分母为零的整式,从而扩大了未知数的取值范围而产生的未知数的值;而分式方程无解则是指不论未知数取何值,都不能使方程两边的值相等.它包含两种情形:原方程化去分母后的整式方程无解;原方程化去分母后的整式方程有解,但这个解却使原方程的分母为0,它是原方程的增根,从而原方程无解.现举例说明如下:例 1 解方程.①解:方程两边都乘以,得2-4x=3.②解这个方程,得x=2.经检验:当x=2时,原方程无意义,所以x=2是原方程的增根.所以原方程无解.【说明】显然,方程①中未知数x 的取值范围是x≠2且x≠-2.而在去分母化为方程②后,此时未知数x的取值范围扩大为全体实数.所以当求得的x值恰好使最简公分母为零时,x的值就是增根.本题中方程②的解是x=2,恰好使公分母为零,所以x=2是原方程的增根,原方程无解.例 2 解方程.解:去分母后化为x-1=3-x+2.整理得0x=8.因为此方程无解,所以原分式方程无解.【说明】此方程化为整式方程后,本身就无解,当然原分式方程肯定就无解了.由此可见,分式方程无解不一定就是产生增根.例3若方程无解,则m=——————.解:原方程可化为-.方程两边都乘以x-2,得x-3=-m.解这个方程,得x=3-m.因为原方程无解,所以这个解应是原方程的增根.即x=2,所以2=3-m,解得m=1.故当m=1时,原方程无解.【说明】因为同学们目前所学的是能化为一元一次方程的分式方程,而一元一次方程只有一个根,所以如果这个根是原方程的增根,那么原方程无解.但是同学们并不能因此认为有增根的分式方程一定无解,随着以后所学知识的加深,同学们便会明白其中的道理,此处不再举例.例4当a为何值时,关于x 的方程①会产生增根?解:方程两边都乘以,得2+ax=3整理得x=-10②若原分式方程有增根,则x=2或-2是方程②的根.把x=2或-2代入方程②中,解得,a=-4或6.【说明】做此类题首先将分式方程转化为整式方程,然后找出使公分母为零的未知数的值即为增根,最后将增根代入转化得到的整式方程中,求出原方程中所含字母的值.若将此题“会产生增根”改为“无解”,即:当a为何值时,关于x的方程①无解?此时还要考虑转化后的整式方程x =-10本身无解的情况,解法如下:解:方程两边都乘以,得2+ax=3整理得x=-10②若原方程无解,则有两种情形:当a-1=0时,方程②为0x=-10,此方程无解,所以原方程无解。
分式方程的增根与无解的区别及联系
分式方程的增根与无解的差别分式方程的增根与无解是分式方程中罕有的两个概念,同窗们在进修分式方程后,经常会对这两个概念混杂不清,以为分式方程无解和分式方程有增根是统一回事,事实上并不是如斯.分式方程有增根,指的是解分式方程时,在把分式方程转化为整式方程的变形进程中,方程的双方都乘了一个可能使分母为零的整式,从而扩展了未知数的取值规模而产生的未知数的值;而分式方程无解则是指不管未知数取何值,都不克不及使方程双方的值相等.它包含两种情况:(一)原方程化去分母后的整式方程无解;(二)原方程化去分母后的整式方程有解,但这个解却使原方程的分母为0,它是原方程的增根,从而原方程无解.现举例解释如下:例1 解方程2344222+=---x x x x .①解:方程双方都乘以(x+2)(x-2),得2(x+2)-4x=3(x-2).②解这个方程,得x=2.经磨练:当x=2时,原方程无意义,所以x=2是原方程的增根.所以原方程无解.【解释】显然,方程①中未知数x的取值规模是x≠2且x≠-2.而在去分母化为方程②后,此时未知数x的取值规模扩展为全部实数.所以当求得的x值正好使最简公分母为零时,x的值就是增根.本题中方程②的解是x=2,正好使公分母为零,所以x=2是原方程的增根,原方程无解.例2 解方程22321++-=+-xxxx.解:去分母后化为x-1=3-x+2(2+x).整顿得0x=8.因为此方程无解,所以原分式方程无解.【解释】此方程化为整式方程后,本身就无解,当然原分式方程确定就无解了.由此可见,分式方程无解不必定就是产生增根.例3(2007湖北荆门)若方程32xx--=2mx-无解,则m=——————.解:原方程可化为32xx--=-2mx-.方程双方都乘以x-2,得x-3=-m.解这个方程,得x=3-m.因为原方程无解,所以这个解应是原方程的增根.即x=2,所以2=3-m,解得m=1.故当m=1时,原方程无解.【解释】因为同窗们今朝所学的是能化为一元一次方程的分式方程,而一元一次方程只有一个根,所以假如这个根是原方程的增根,那么原方程无解.但是同窗们其实不克不及是以以为有增根的分式方程必定无解,跟着今后所学常识的加深,同窗们便会明确个中的道理,此处不再举例.例4当a 为何值时,关于x 的方程223242ax x x x +=--+①会产生增根?解:方程双方都乘以(x+2)(x-2),得2(x +2)+ax =3(x -2)整顿得(a -1)x =-10 ②若原分式方程有增根,则x =2或-2是方程②的根. 把x =2或-2代入方程②中,解得,a =-4或6.【解释】做此类题起首将分式方程转化为整式方程,然后找出使公分母为零的未知数的值即为增根,最后将增根代入转化得到的整式方程中,求出原方程中所含字母的值.若将此题“会产生增根”改为“无解”,即:当a 为何值时,关于x 的方程223242ax x x x +=--+①无解?此时还要斟酌转化后的整式方程(a -1)x =-10本身无解的情况,解法如下:解:方程双方都乘以(x+2)(x-2),得2(x +2)+ax =3(x -2)整顿得(a -1)x =-10 ②若原方程无解,则有两种情况:(1)当a -1=0(即a =1)时,方程②为0x =-10,此方程无解,所以原方程无解.(2)假如方程②的解正好是原分式方程的增根,那么原分式方程无解.原方程如有增根,增根为x =2或-2,把x =2或-2代入方程②中,求出a =-4或6.综上所述,a =1或a =一4或a =6时,原分式方程无解. 结论:弄清分式方程的增根与无解的差别和接洽,能帮忙我们进步解分式方程的准确性,对断定方程解的情况有必定的指点意义.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式方程的增根与无解分式方程的增根与无解是分式方程中常见的两个概念,同学们在学习分式方程后,常常会对这两个概念混淆不清,认为分式方程无解和分式方程有增根是同一回事,事实上并非如此.分式方程有增根,指的是解分式方程时,在把分式方程转化为整式方程的变形过程中,方程的两边都乘了一个可能使分母为零的整式,从而扩大了未知数的取值范围而产生的未知数的值;而分式方程无解则是指不论未知数取何值,都不能使方程两边的值相等.它包含两种情形:(一)原方程化去分母后的整式方程无解;(二)原方程化去分母后的整式方程有解,但这个解却使原方程的分母为0,它是原方程的增根,从而原方程无解.现举例说明如下:例1 解方程2344222+=---x x x x . ① 解:方程两边都乘以(x+2)(x-2),得2(x+2)-4x=3(x-2).②解这个方程,得x=2.经检验:当x=2时,原方程无意义,所以x=2是原方程的增根.所以原方程无解.【说明】显然,方程①中未知数x 的取值范围是x ≠2且x ≠-2.而在去分母化为方程②后,此时未知数x 的取值范围扩大为全体实数.所以当求得的x 值恰好使最简公分母为零时,x 的值就是增根.本题中方程②的解是x =2,恰好使公分母为零,所以x =2是原方程的增根,原方程无解.例2 解方程22321++-=+-xx x x . 解:去分母后化为x -1=3-x +2(2+x ).整理得0x =8.因为此方程无解,所以原分式方程无解.【说明】此方程化为整式方程后,本身就无解,当然原分式方程肯定就无解了.由此可见,分式方程无解不一定就是产生增根.例3(2007湖北荆门)若方程32x x --=2m x-无解,则m=——————. 解:原方程可化为32x x --=-2m x -. 方程两边都乘以x -2,得x -3=-m .解这个方程,得x=3-m .因为原方程无解,所以这个解应是原方程的增根.即x=2,所以2=3-m ,解得m=1.故当m=1时,原方程无解.【说明】因为同学们目前所学的是能化为一元一次方程的分式方程,而一元一次方程只有一个根,所以如果这个根是原方程的增根,那么原方程无解.但是同学们并不能因此认为有增根的分式方程一定无解,随着以后所学知识的加深,同学们便会明白其中的道理,此处不再举例.例4当a 为何值时,关于x 的方程223242ax x x x +=--+①会产生增根? 解:方程两边都乘以(x+2)(x-2),得2(x +2)+ax =3(x -2)整理得(a -1)x =-10 ②若原分式方程有增根,则x =2或-2是方程②的根.把x =2或-2代入方程②中,解得,a =-4或6.【说明】做此类题首先将分式方程转化为整式方程,然后找出使公分母为零的未知数的值即为增根,最后将增根代入转化得到的整式方程中,求出原方程中所含字母的值.若将此题“会产生增根”改为“无解”,即:当a 为何值时,关于x 的方程223242ax x x x +=--+①无解? 此时还要考虑转化后的整式方程(a -1)x =-10本身无解的情况,解法如下:解:方程两边都乘以(x+2)(x-2),得2(x +2)+ax =3(x -2)整理得(a -1)x =-10 ②若原方程无解,则有两种情形:(1)当a -1=0(即a =1)时,方程②为0x =-10,此方程无解,所以原方程无解。
(2)如果方程②的解恰好是原分式方程的增根,那么原分式方程无解.原方程若有增根,增根为x =2或-2,把x =2或-2代入方程②中,求出a =-4或6.综上所述,a =1或a =一4或a =6时,原分式方程无解.结论:弄清分式方程的增根与无解的区别和联系,能帮助我们提高解分式方程的正确性,对判断方程解的情况有一定的指导意义.与分式方程根有关的问题分类举例与分式方程的根有关的问题,在近年的中考试题中时有出现,现结合近年的中考题分类举例,介绍给读者,供学习、复习有关内容时参考。
1. 已知分式方程有增根,求字母系数的值解答此类问题必须明确增根的意义:(1)增根是使所给分式方程分母为零的未知数的值。
(2)增根是将所给分式方程去分母后所得整式方程的根。
利用(1)可以确定出分式方程的增根,利用(2)可以求出分式方程有增根时的字母系数的值。
例1. (2000年潜江市)使关于x 的方程a x x a x 2224222-+-=-产生增根的a 的值是( ) A. 2 B. -2C. ±2D. 与a 无关 解:去分母并整理,得:()a x 22401--=<>因为原方程的增根为x =2,把x =2代入<1>,得a 2=4所以a =±2故应选C 。
例2. (1997年山东省) 若解分式方程21112x x m x x x x+-++=+产生增根,则m 的值是( ) A. -1或-2 B. -1或2C. 1或2D. 1或-2解:去分母并整理,得:x x m 22201---=<>又原方程的增根是x =0或x =-1,把x =0或x =-1分别代入<1>式,得: m =2或m =1故应选C 。
例3. (2001年重庆市)若关于x 的方程a x x +--=1110有增根,则a 的值为__________。
解:原方程可化为:()ax -+=<>1201又原方程的增根是x =1,把x =1代入<1>,得:a =-1故应填“-1”。
例4. (2001年鄂州市)关于x 的方程x x k x -=+-323会产生增根,求k 的值。
解:原方程可化为:()x x k =-+<>231 又原方程的增根为x =3,把x =3代入<1>,得:k=3例5. 当k 为何值时,解关于x 的方程:()()()1151112x x k x x k x x -+-+=--只有增根x =1。
解:原方程可化为: ()()()()x k x k x ++--=-<>151112 把x =1代入<1>,得k=3所以当k=3时,解已知方程只有增根x =1。
评注:由以上几例可知,解答此类问题的基本思路是:(1)将所给方程化为整式方程;(2)由所给方程确定增根(使分母为零的未知数的值或题目给出);(3)将增根代入变形后的整式方程,求出字母系数的值。
2. 已知分式方程根的情况,求字母系数的值或取值范围例6. (2002年荆门市)当k 的值为_________(填出一个值即可)时,方程x x k x x x-=--122只有一个实数根。
解:原方程可化为:x xk 2201+-=<>要原方程只有一个实数根,有下面两种情况:(1)当方程<1>有两个相等的实数根,且不为原方程的增根,所以由∆=+=440k 得k=-1。
当k=-1时,方程<1>的根为x x 121==-,符合题意。
(2)方程<1>有两个不相等的实数根且其中有一个是原方程的增根,所以由∆=+>440k ,得k>-1。
又原方程的增根为x =0或x =1,把x =0或x =1分别代入<1>得k=0,或k=3,均符合题意。
综上所述:可填“-1、0、3”中的任何一个即可。
例7. (2002年孝感市)当m 为何值时,关于x 的方程21112x x m x xx ---=+-无实根? 解:原方程可化为:x x m 2201-+-=<>要原方程无实根,有下面两种情况:(1)方程<1>无实数根,由()()∆=---<14202m ,得m <74; (2)方程<1>的实数解均为原方程的增根时,原方程无实根,而原方程的增根为x =0或x =1,把x =0或x =1分别代入<1>得m =2。
综上所述:当m <74或当m=2时,所给方程无实数解。
例8. (2003年南昌市) 已知关于x 的方程11x m x m --=有实数根,求m 的取值范围。
解:原方程化为:m x x 2101-+=<>要原方程有实数根,只要方程<1>有实数根且至少有一个根不是原方程的增根即可。
(1)当m =0时,有x =1,显然x =1是原方程的增根,所以m =0应舍去。
(2)当m ≠0时,由∆=-≥140m ,得m ≤14。
又原方程的增根为x =0或x =1,当x =0时,方程<1>不成立;当x m ==10,。
综上所述:当m ≤14且m ≠0时,所给方程有实数根。
评注:由以上三例可知,由分式方程根的情况,求字母系数的值或取值范围的基本思路是:(1)将所给方程化为整式方程;(2)根据根的情况,由整式方程利用根的判别式求出字母系数的值或取值范围,注意排除使原方程有增根的字母系数的值。
3. 已知分式方程无增根,求字母系数的取值范围 例9. 当a 取何值时,解关于x 的方程:()()x x x x x ax x x ---++=+-+12212212无增根? 解:原方程可化为:23012x ax +-=<>又原方程的增根为x =2或x =-1,把x =2或x =-1分别代入<1>得: a =-52或a =-1 又由∆=+>a 2240知,a 可以取任何实数。
所以,当a ≠-52且a ≠-1时,解所给方程无增根。
评注:解答此类问题的基本思路是:(1)将已知方程化为整式方程;(2)由所得整式方程求出有增根的字母系数的值和使整式方程有实数根的字母系数的取值范围;(3)从有实数根的范围里排除有增根的值,即得无增根的取值范围。
4. 已知分式方程根的符号,求字母系数的取值范围例9. 已知关于x 的方程x a x +-=-21的根大于0,求a 的取值范围。
解:原方程可化为:22x a=- 所以x a =-12 由题意,得:120->a 且122-≠a 所以a <2且a ≠-2例10. 已知关于x 的方程x k x +-=22的根小于0,求k 的取值范围。
解:原方程可化为:xk x +=-24所以x k =+4由题意,得:k +<40所以k <-4。