2019届高三数学(文)精准培优专练:含导函数的抽象函数的构造 含解析
2019届高三好教育精准培优专练 数学(理)(学生版)
数学(理)培优点一函数的图象与性质01 培优点二函数零点06 培优点三含导函数的抽象函数的构造10培优点四恒成立问题14 培优点五导数的应用18 培优点六三角函数23 培优点七解三角形29 培优点八平面向量33 培优点九线性规划36 培优点十等差、等比数列40培优点十一数列求通项公式43 培优点十二数列求和47 培优点十三三视图与体积、表面积51 培优点十四外接球56 培优点十五平行垂直关系的证明59 培优点十六利用空间向量求夹角67 培优点十七圆锥曲线的几何性质76 培优点十八离心率81 培优点十九圆锥曲线综合86 培优点二十几何概型932019届高三好教育精准培优专练1.单调性的判断例1:(1)函数()212log (4)f x x -=的单调递增区间是( )A .(0,)+∞B .(0),-∞C .(2,)+∞D .(),2-∞-(2)223y xx +-+=的单调递增区间为________.2.利用单调性求最值 例2:函数y x =________.3.利用单调性比较大小、解抽象函数不等式例3:(1)已知函数()f x 的图象向左平移1个单位后关于y 轴对称,当211x x >>时,()()2121()0f x f x x x -⋅-⎡⎤⎣⎦<恒成立,设12a f ⎛⎫=- ⎪⎝⎭,()2b f =,()3c f =,则a ,b ,c 的大小关系为 ( ) A .c a b >>B .c b a >>C .a c b >>D .b a c >>(2)定义在R 上的奇函数()y f x =在(0,)+∞上递增,且102f ⎛⎫= ⎪⎝⎭,则满足19log 0f x ⎛⎫> ⎪⎝⎭的x 的集合为________________. 4.奇偶性例4:已知偶函数()f x 在区间[0,)+∞上单调递增,则满足1(21)3f x f ⎛⎫-< ⎪⎝⎭的x 的取值范围是( )A .12,33⎛⎫ ⎪⎝⎭ B .12,33⎡⎫⎪⎢⎣⎭C .12,23⎛⎫ ⎪⎝⎭ D .12,23⎡⎫⎪⎢⎣⎭ 5.轴对称例5:已知定义域为R 的函数()y f x =在[]0,7上只有1和3两个零点,且()2y f x =+与()7y f x =+ 都是偶函数,则函数()y f x =在[]0,2013上的零点个数为( ) A .404 B .804C .806D .402培优点一 函数的图象与性质6.中心对称例6:函数()f x 的定义域为R ,若()1f x +与()1f x -都是奇函数,则( ) A .()f x 是偶函数 B .()f x 是奇函数 C .()()2f x f x =+D .()3f x +是奇函数7.周期性的应用例7:已知()f x 是定义在R 上的偶函数,()g x 是定义在R 上的奇函数,且()()1g x f x =-, 则()()20172019f f +的值为( ) A .1- B .1C .0D .无法计算一、选择题1.若函数()2f x x a =+的单调递增区间是[)3,+∞,则a 的值为( ) A .2-B .2C .6-D .62.已知函数()2log 1y ax =-在()1,2上是增函数,则实数a 的取值范围是( ) A .(]0,1B .[]1,2C .[1,)+∞D .[2,)+∞3.设函数()()()ln 1ln 1f x x x =-+-,则()f x 是( ) A .奇函数,且在(0,1)内是增函数 B .奇函数,且在(0,1)内是减函数 C .偶函数,且在(0,1)内是增函数 D .偶函数,且在(0,1)内是减函数4.已知函数()y f x =的图象关于1x =对称,且在(1,)+∞上单调递增,设12a f ⎛⎫=- ⎪⎝⎭,()2b f =, ()3c f =,则a ,b ,c 的大小关系为( )A .c b a <<B .b a c <<C .b c a <<D .a b c <<5.已知()f x 是奇函数,()g x 是偶函数,且()2(11)f g -+=,())114(f g -=+,则()1g 等于( ) A .4B .3C .2D .1对点增分集训6.函数1()cos (0)f x x x x x x ⎛⎫=--π≤≤π≠ ⎪⎝⎭且的图象可能为( )7.奇函数()f x 的定义域为R ,若()1f x +为偶函数,且()12f =,则()()45f f +的值为( ) A .2B .1C .1-D .2-8.函数()f x 的图象向右平移1个单位,所得图象与曲线e x y =关于y 轴对称,则()f x 的解析式为( ) A .()1e x f x +=B .()1e x f x -=C .()1e x f x -+=D .()1e x f x --=9.使2)og (l 1x x <+-成立的x 的取值范围是( ) A .()1,0-B .[)1,0-C .()2,0-D .[)2,0-10.已知偶函数()f x 对于任意R x ∈都有()()1f x f x +=-,且()f x 在区间[]0,1上是单调递增的, 则()65f -.,1()f -,()0f 的大小关系是( ) A .()0 6.5()()1f f f <-<- B .()6.5()()01f f f -<<- C .()()(60)1.5f f f -<-<D .()10()( 6.5)f f f -<<-11.对任意的实数x 都有()()()221f x f x f -=+,若(1)y f x =-的图象关于1x =对称,且()02f =, 则()()20152016f f +=( ) A .0B .2C .3D .412.已知函数()e 1x f x =-,()243g x x x =-+-,若存在()()f a g b =,则实数b 的取值范围为( ) A .[0,3]B .(1,3)C .2⎡⎣D .(22-+二、填空题13.设函数()10010x x x f x >⎧⎪==⎨⎪-<⎩,()21()g x x f x -=,则函数()g x 的递减区间是_______. 14.若函数()R ()f x x ∈是周期为4的奇函数,且在[0,2]上的解析式为()()101sin 12x x x x x f x ⎧-≤≤⎪=⎨π<≤⎪⎩,则294146f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭________. 15.设函数()||f x x a =+,()1g x x =-,对于任意的R x ∈,不等式()()f x g x ≥恒成立,则实数a 的取 值范围是________.16.设定义在R 上的函数()f x 同时满足以下条件:①()0()f x f x +-=;②()()2f x f x =+;③当01x ≤≤时,()21x f x =-,则()1351(2)222f f f f f ⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭________.三、解答题17.已知函数()ln(2)af x x x=+-,其中a 是大于0的常数. (1)求函数()f x 的定义域;(2)当4()1,a ∈时,求函数()f x 在[2,)+∞上的最小值; (3)若对任意,[)2x ∈+∞恒有()0f x >,试确定a 的取值范围.18.设()f x 是定义域为R 的周期函数,最小正周期为2,且()1()1f x f x =+-,当10x -≤≤时,()f x x =-. (1)判定()f x 的奇偶性;(2)试求出函数()f x 在区间[]1,2-上的表达式.培优点二 函数零点1.零点的判断与证明例1:已知定义在()1,+∞上的函数()ln 2f x x x =--, 求证:()f x 存在唯一的零点,且零点属于()3,4.2.零点的个数问题例2:已知函数()f x 满足()()3f x f x =,当[)1,3x ∈,()ln f x x =,若在区间[)1,9内, 函数()()g x f x ax =-有三个不同零点,则实数a 的取值范围是( ) A .ln 31,3e ⎛⎫⎪⎝⎭B .ln 31,93e ⎛⎫⎪⎝⎭C .ln 31,92e ⎛⎫⎪⎝⎭D .ln 3ln 3,93⎛⎫⎪⎝⎭ 3.零点的性质例3:已知定义在R 上的函数()f x 满足:()[)[)2220,121,0x x f x xx ⎧+∈⎪=⎨-∈-⎪⎩,且()()2f x f x +=,()252x g x x +=+,则方程()()f x g x =在区间[]5,1-上的所有实根之和为( ) A .5-B .6-C .7-D .8-4.复合函数的零点例4:已知函数()243f x x x =-+,若方程()()20f x bf x c ++=⎡⎤⎣⎦恰有七个不相同的实根,则实数b 的取值范围是( ) A .()2,0- B .()2,1--C .()0,1D .()0,2一、选择题1.设()ln 2f x x x +-=,则函数()f x 的零点所在的区间为( ) A .()0,1B .()1,2C .()2,3D .()3,42.已知a 是函数()12log 2x x f x =-的零点,若00x a <<,则()0f x 的值满足( )A .()00f x =B .()00f x >C .()00f x <D .()0f x 的符号不确定3.函数2()2f x x a x=--的一个零点在区间()1,2内,则实数a 的取值范围是( ) A .()1,3B .()1,2C .()0,3D .()0,24.若a b c <<,则函数()()()()()()()f x x a x b x b x c x c x a -----+-=+的两个零点分别位于区间( ) A .(),a b 和(),b c 内B .(,)a -∞和(),a b 内C .(),b c 和(),c +∞内D .(,)a -∞和(),c +∞内5.设函数()f x 是定义在R 上的奇函数,当0x >时,()e 3x f x x =+-,则()f x 的零点个数为( ) A .1B .2C .3D .46.函数()2201ln 0x x x xx f x ⎧+-≤=⎨-+>⎩的零点个数为( )A .3B .2C .7D .07.已知函数()1010x x x f x ≤⎧⎪=⎨>⎪⎩,则使方程()x f x m +=有解的实数m 的取值范围是( )A .()1,2B .(],2-∞-C .()(),12,-∞+∞D .(][),12,-∞+∞8.若函数()312f x ax a +-=在区间()1,1-内存在一个零点,则a 的取值范围是( ) A .1,5⎛⎫+∞ ⎪⎝⎭B .()1,1,5⎛⎫-∞-+∞ ⎪⎝⎭C .11,5⎛⎫- ⎪⎝⎭D .(),1-∞-9.已知函数()00exx x f x ≤⎧=⎨>⎩,则使函数()()g x f x x m =+-有零点的实数m 的取值范围是( )对点增分集训A .[)0,1B .(1),-∞C .(](),12,-∞+∞D .(](),01,-∞+∞10.已知()f x 是奇函数且是R 上的单调函数,若函数221()()y f x f x λ++=-只有一个零点,则实数λ 的值是( ) A .14 B .18C .78-D .38-11.已知当[]0,1x ∈时,函数21()y mx =-的图象与y m 的图象有且只有一个交点,则正实数m 的取值范围是( ) A .(0,1][23,+)∞ B .(]0,13[),+∞C .[23,+)∞D .[3,+)∞12.已知函数()y f x =和()y g x =在[]2,2-的图像如下,给出下列四个命题: (1)方程()0f g x =⎡⎤⎣⎦有且只有6个根 (2)方程()0g f x =⎡⎤⎣⎦有且只有3个根 (3)方程()0f f x =⎡⎤⎣⎦有且只有5个根 (4)方程()0g g x =⎡⎤⎣⎦有且只有4个根则正确命题的个数是( ) A .1 B .2 C .3 D .4二、填空题13.函数()052log ||x f x x -=-.的零点个数为________.14.设函数31y x =与2212x y -⎛⎫= ⎪⎝⎭的图象的交点为00(,)x y ,若0,1()x n n ∈+,n ∈N ,则0x 所在的区间是______.15.函数()22026ln 0f x x x x x x ⎧-≤=⎨-+>⎩的零点个数是________.16.已知函数()23||f x x x =+,R x ∈,若方程()1|0|f x a x --=恰有4个互异的实数根,则实数a 的取值范围是________________.三、解答题17.关于x 的二次方程21()10x m x ++-=在区间[]0,2上有解,求实数m 的取值范围.18.设函数()1()10f x x x=->.(1)作出函数()f x 的图象; (2)当0a b <<且()()f a f b =时,求11a b+的值; (3)若方程()f x m =有两个不相等的正根,求m 的取值范围.1.对于()()'0f x a a >≠,可构造()()h x f x ax =-培优点三 含导函数的抽象函数的构造例1:函数()f x 的定义域为R ,()12f -=,对任意R x ∈,()2f x '>,则()24f x x >+的解集为( ) A .()1,1-B .()1-+∞,C .()1-∞-,D .()-∞+∞,2.对于()()'0xf x f x +>,构造()()h x xf x =;对于()()'0xf x f x ->,构造()()f x h x x=例2:已知函数()y f x =的图象关于y 轴对称,且当(),0x ∈-∞,()()0f x xf x '+<成立,()0.20.222a f =,()log 3log 3b f ππ=,()33log 9log 9c f =,则a ,b ,c 的大小关系是( )A .a b c >>B .a c b >>C .c b a >>D .b a c >>3.对于'()()0f x f x +>,构造()()e x h x f x =;对于'()()f x f x >或'()()0f x f x ->,构造()()ex f x h x = 例3:已知()f x 为R 上的可导函数,且R x ∀∈,均有()()f x f x '>,则有( ) A .2016e (2016)(0)f f -<,2016(2016)e (0)f f > B .2016e (2016)(0)f f -<,2016(2016)e (0)f f < C .2016e (2016)(0)f f ->,2016(2016)e (0)f f > D .2016e (2016)(0)f f ->,2016(2016)e (0)f f < 4.()f x 与sin x ,cos x 构造例4:已知函数()y f x =对任意的,22x ππ⎛⎫∈- ⎪⎝⎭满足()()cos sin 0f x x f x x '+>,则( )A .()04f π⎛⎫> ⎪⎝⎭B .()03f f π⎛⎫<2- ⎪⎝⎭C 34f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭D 34f ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭对点增分集训一、选择题1.若函数()y f x =在R 上可导且满足不等式()()0xf x f x '+>恒成立,对任意正数a 、b ,若a b <, 则必有( ) A .()()af b bf a <B .()()bf a af b <C .()()af a bf b <D .()()bf b af a <2.已知函数()()R f x x ∈满足()11f =,且()12f x '<,则()122x f x <+的解集为( ) A .}{11x x |-<<B .}{1x x |<-C .}{11x x x |<->或 D .}{1x x |>3.已知函数()f x 的定义域为R ,()f x '为()f x 的导函数,且()()()10f x x f x '+->,则( ) A .()10f =B .()0f x <C .()0f x >D .()()10x f x -<4.设函数()f x '是函数()()R f x x ∈的导函数,已知()()f x f x '<,且()()4f x f x ''=-,()40f =,()21f =则使得()2e 0x f x -<成立的x 的取值范围是( ) A .()2-+∞,B .()0+∞,C .()1+∞,D .()4+∞,5.已知函数()1y f x =-的图象关于点()1,0对称,函数()y f x =对于任意的()0,πx ∈满足()()sin cos f x x f x x >'(其中()f x '是函数()f x 的导函数),则下列不等式成立的是( )A .ππ36f ⎛⎫⎛⎫-> ⎪ ⎪⎝⎭⎝⎭B 3ππ42f⎛⎫⎛⎫<-- ⎪ ⎪⎝⎭⎝⎭C ππ223f⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭D 5π3π64f ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭6.定义在R 上的函数()f x 的导函数为()f x ',若对任意实数x ,有()()f x f x >',且()2018f x +为奇函数,则不等式()2018e 0x f x +<的解集为( ) A .(),0-∞B .()0,+∞C .1e ,⎛⎫-∞ ⎪⎝⎭D .1e ,⎛⎫+∞ ⎪⎝⎭7.已知函数()2f x +是偶函数,且当2x >时满足()()()2xf x f x f x ''>+,则( )A .()()214f f <B .()3232f f ⎛⎫> ⎪⎝⎭C .()5042f f ⎛⎫< ⎪⎝⎭D .()()13f f <8.已知定义域为R 的奇函数()y f x =的导函数为()y f x =',当0x ≠时,()()0f x f x x+'>,若1133a f ⎛⎫=⎪⎝⎭,()33b f =--,11lnln 33c f ⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系正确的是( ) A .a b c << B .b c a << C .a c b << D .c a b <<9.已知定义在R 上的函数()f x 的导函数为()f x ',()()222e x f x f x --=(e 为自然对数的底数), 且当1x ≠时,()()()10x f x f x -->⎡⎤⎣⎦',则( ) A .()()10f f <B .()()2e 0f f >C .()()33e 0f f >D .()()44e 0f f <10.定义在R 上的函数()f x 的导函数为()'f x ,()00f =若对任意R x ∈,都有()()'1f x f x >+,则使得()e 1f x x +<成立的x 的取值范围为( )A .(),1∞-B .(),0∞-C .()1,+∞-D .0,+∞()11.已知函数()f x 是定义在区间()0,+∞上的可导函数,满足()0f x >且()()'0f x f x +<(()'f x 为函数的导函数),若01a b <<<且1ab =,则下列不等式一定成立的是( ) A .()()()1f a a f b >+ B .()()()1f b a f a >- C .()()af a bf b >D .()()af b bf a >12.定义在R 上的奇函数()y f x =满足()30f =,且当0x >时,不等式()()'f x xf x >-恒成立,则函数()()lg 1g x xf x x =++的零点的个数为( )A .1B .2C .3D .4二、填空题13.设()f x 是R 上的可导函数,且'()()f x f x ≥-,(0)1f =,21(2)e f =.则(1)f 的值为________.14.已知,22x ⎛⎫∈- ⎪⎝π⎭π,()1y f x =-为奇函数,()()'tan 0f x f x x +>,则不等式()cos f x x >的解集为_________.15.已知定义在实数集R 的函数()f x 满足()27f =,且()f x 导函数()3f x '<,则不等式()ln 3ln 1f x x >+的解集为__________.16.已知函数()f x 是定义在()(),00,-∞+∞上的奇函数,且()10f =.若0x <时,()()'0xf x f x ->,则不等式()0f x >的解集为__________.1.参变分离法例1:已知函数()ln af x x x=-,若()2f x x <在()1,+∞上恒成立,则a 的取值范围是_________.培优点四 恒成立问题2.数形结合法例2:若不等式()log sin 20,1a x x a a >>≠对于任意的π0,4x ⎛⎤∈ ⎥⎝⎦都成立,则实数a 的取值范围是___________.3.最值分析法例3:已知函数()()ln 10f x a x a =+>,在区间()1,e 上,()f x x >恒成立,求a 的取值范围___________.一、选择题1.已知函数()()2ln 1,03,0x x f x x x x ⎧-+≤⎪=⎨+>⎪⎩,若()()20f x m x -+≥,则实数m 的取值范围是( )A .(],1-∞B .[]2,1-C .[]0,3D .[)3,+∞2.已知函数()3224f x x x x =--+,当[],3x ∈-时,()214f x m m ≥-恒成立,则实数m 的取值范围是( ) A .()3,11-B .()3,11C .[]3,11D .[]2,73.若函数()2ln 2f x x ax =+-在区间1,22⎛⎫⎪⎝⎭内单调递增,则实数a 的取值范围是( )A .(],2-∞-B .()2,-+∞C .12,8⎛⎫-- ⎪⎝⎭D .1,8⎡⎫-+∞⎪⎢⎣⎭4.已知对任意21,e e x ⎡⎤∈⎢⎥⎣⎦不等式2e xa x >恒成立(其中e 2.71828=,是自然对数的底数),则实数a 的取值范围是( )A .e 0,2⎛⎫⎪⎝⎭B .()0,eC .(),2e -∞-D .24,e ⎛⎫-∞ ⎪⎝⎭5.已知函数()2e x f x x =,当[]1,1x ∈-时,不等式()f x m <恒成立,则实数m 的取值范围是( ) A .1,e ⎡⎫+∞⎪⎢⎣⎭B .1,e ⎛⎫+∞ ⎪⎝⎭C .[)e,+∞D .()e,+∞对点增分集训6.当[]2,1x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是( )A .[]5,3--B .96,8⎡⎤--⎢⎥⎣⎦C .[]6,2--D .[]4,3--7.函数()2e 1xf x x =-+,若存在(]00,2x ∈使得()00m f x ->成立,则实数m 的范围是( )A .21e 5,⎛⎫-+∞ ⎪⎝⎭B .()1,-+∞C .()1,+∞D .1e,2⎛⎫-+∞ ⎪⎝⎭8.设函数()ln f x x ax =+,若存在()00,x ∈+∞,使()00f x >,则a 的取值范围是( ) A .1,1e ⎛⎫- ⎪⎝⎭B .1,e ⎛⎫-∞ ⎪⎝⎭C .()1,-+∞D .1,e ⎛⎫-+∞ ⎪⎝⎭9.若对于任意实数0x ≥,函数()e x f x ax =+恒大于零,则实数a 的取值范围是( ) A .(),e -∞B .(],e -∞-C .[)e,+∞D .()e,-+∞10.已知函数()()()3f x a x a x a =-++,()22x g x =-,若对任意x ∈R ,总有()0f x <或()0g x <成立,则实数a 的取值范围是( ) A .(),4-∞-B .()4,0-C .[)4,0-D .()4,-+∞11.已知函数()e xf x ax x=-,()0,x ∈+∞,当21x x >时,不等式()()12210f x f x x x -<恒成立,则实数a 的取值范围为( ) A .(],e -∞B .(),e -∞C .e ,2⎛⎫-∞ ⎪⎝⎭D .e ,2⎛⎤-∞ ⎥⎝⎦12.设函数()()e 31x f x x ax a =--+,其中1a <,若有且只有一个整数0x 使得()00f x ≤,则a 的取值范围是( )A .23,e 4⎛⎫⎪⎝⎭B .23,e 4⎡⎫⎪⎢⎣⎭C .2,1e ⎛⎫ ⎪⎝⎭D .2,1e ⎡⎫⎪⎢⎣⎭二、填空题13.设函数()f x x a =+,()1g x x =-,对于任意的x ∈R ,不等式()()f x g x ≥恒成立,则实数a 的取值范围是__________.14.函数()ln 1f x x x ax =-+,其中a ∈R ,若对任意正数x 都有()0f x ≥,则实数a 的取值范围为____________.15.已知函数()21ln 22f x x ax x =--,若函数()f x 在1,22⎡⎤⎢⎥⎣⎦上单调递增,则实数a 的取值范围是__________.16.已知关于x 的不等式21log 02m mx x ⎛⎫+> ⎪⎝⎭-在[]1,2上恒成立,则实数m 的取值范围为___________.三、解答题17.设函数()()()2ln 1f x x a x x =++-,其中a ∈R , (1)讨论函数()f x 极值点的个数,并说明理由; (2)若0x ∀>,()0f x ≥成立,求a 的取值范围.18.设函数()2e mx f x x mx =+-,(1)证明:()f x 在(),0-∞单调递减,在()0,+∞单调递增;(2)若对于任意1x ,[]21,1x ∈-,都有()()12e 1f x f x -≤-,求m 的取值范围.培优点五导数的应用1.利用导数判断单调性例1:求函数()()32333e x=+--的单调区间f x x x x-2.函数的极值例2:求函数()e x f x x -=的极值.3.利用导数判断函数的最值 例3:已知函数()()ln mf x x m x=-∈R 在区间[]1,e 上取得最小值4,则m =___________.一、单选题1.函数()ln f x x x =-的单调递减区间为( ) A .() 0,1B .() 0,+∞对点增分集训C .() 1,+∞D .()() ,01,-∞+∞2.若1x =是函数()ln f x ax x =+的极值点,则( ) A .()f x 有极大值1- B .()f x 有极小值1- C .()f x 有极大值0D .()f x 有极小值03.已知函数()3f x x ax =--在(],1-∞-上单调递减,且()2ag x x x=-在区间(]1,2上既有最大值,又有最小值,则实数a 的取值范围是( ) A .2a >-B .3a ≥-C .32a -≤<-D .32a -≤≤-4.函数321y x x mx =+++是R 上的单调函数....,则m 的范围是( ) A .1,3⎛⎫+∞ ⎪⎝⎭B .1,3⎛⎫-∞ ⎪⎝⎭C .1,3⎡⎫+∞⎪⎢⎣⎭D .1,3⎛⎤-∞ ⎥⎝⎦5.遇见你的那一刻,我的心电图就如函数1ln sin 1x y x x -⎛⎫=+ ⎪+⎝⎭的图象大致为( )A .B .C .D .6.函数()321213f x x ax x =+-+在()1,2x ∈内存在极值点,则( )A .1122a -<<B .1122a -≤≤C .12a <-或12a >D .12a ≤-或12a ≥7.已知()22f x ax x a =++,x ∈R ,若函数()()()322g x x a x f x =---在区间()1,3-上单调递减,则实数a 的取值范围是( ) A .1a <-或3a >B .1a ≤-或3a ≥C .9a <-或3a >D .9a ≤-或3a ≥8.函数()y f x =在定义域3,32⎡⎤-⎢⎥⎣⎦内可导,其图像如图所示.记()y f x =的导函数为()y f x =',则不等式()0f x '≤的解集为( )A .[]1,12,33⎡⎤-⎢⎥⎣⎦B .1481,,233⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦ C .[)31,1,222⎡⎤-⎢⎥⎣⎦D .31144,,,323233⎡⎤⎡⎤⎡⎤--⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦9.设函数()()1ln 03f x x x x =->,则()y f x =( )A .在区间1,1e ⎛⎫⎪⎝⎭,()1,e 内均有零点B .在区间1,1e ⎛⎫⎪⎝⎭,()1,e 内均无零点C .在区间1,1e ⎛⎫⎪⎝⎭内有零点,在区间()1,e 内无零点D .在区间1,1e ⎛⎫⎪⎝⎭内无零点,在区间()1,e 内有零点10.若函数()()323321f x x ax a x =++++既有极大值又有极小值,则实数a 的取值范围为( ) A .12a -<<B .12a -≤≤C .1a ≤-或2a ≥D .1a <-或2a >11.已知函数()3223f x x ax bx c =+++的两个极值点分别在()1,0-与()0,1内,则2a b -的取值范围是( )A .33,22⎛⎫- ⎪⎝⎭B .3,12⎛⎫- ⎪⎝⎭C .13,22⎛⎫- ⎪⎝⎭D .31,2⎛⎫ ⎪⎝⎭12.设函数()y f x =在区间(),a b 上的导函数为()f x ',()f x '在区间(),a b 上的导函数为()f x '',若在区间 (),a b 上()0f x ''>,则称函数()f x 在区间(),a b 上为“凹函数”,已知()5421122012f x x mx x =--在区间()1,3上为“凹函数”,则实数m 的取值范围为( )A .31,9⎛⎫-∞ ⎪⎝⎭B .31,59⎡⎤⎢⎥⎣⎦C .(],5-∞D .(],3-∞-二、填空题13.函数()3222f x x x =-在区间[]1,2-上的最大值是___________.14.若函数()32334f x x ax x a =-+-在(),1-∞-,()2,+∞上都是单调增函数,则实数a 的取值集合是______. 15.函数()()2ln 1f x x a x a =--∈R 在[]1,2内不存在极值点,则a 的取值范围是___________. 16.已知函数()e ln x f x a x =+, ①当1a =时,()f x 有最大值;②对于任意的0a >,函数()f x 是()0,+∞上的增函数; ③对于任意的0a <,函数()f x 一定存在最小值; ④对于任意的0a >,都有()0f x >.其中正确结论的序号是_________.(写出所有正确结论的序号)三、解答题17.已知函数()()ln f x x ax a =-∈R (1)讨论函数()f x 在()0,+∞上的单调性; (2)证明:2e e ln 0x x ->恒成立.18.已知函数()()2e ,x f x a x bx a b =+-∈R ,其导函数为()'y f x =.(1)当2b =时,若函数()'y f x =在R 上有且只有一个零点,求实数a 的取值范围;(2)设0a ≠,点()(),,P m n m n ∈R 是曲线()y f x =上的一个定点,是否存在实数()00x x m ≠使得()()000'2x m f x n f x m +⎛⎫-=- ⎪⎝⎭成立?并证明你的结论.1.求三角函数值 例1:已知π3π044βα<<<<,π3cos 45α⎛⎫-= ⎪⎝⎭,3π5sin 413β⎛⎫+= ⎪⎝⎭,求()sin αβ+的值.培优点六 三角函数2.三角函数的值域与最值例2:已知函数()πππcos 22sin sin 344f x x x x ⎛⎫⎛⎫⎛⎫=-+-+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, (1)求函数()f x 的最小正周期和图像的对称轴方程; (2)求函数()f x 在区间ππ,122⎡⎤-⎢⎥⎣⎦的值域.3.三角函数的性质例3:函数()2cos2f x x x +( )A .在ππ,36⎛⎫-- ⎪⎝⎭上单调递减B .在ππ,63⎛⎫⎪⎝⎭上单调递增C .在π,06⎛⎫- ⎪⎝⎭上单调递减D .在π0,6⎛⎫⎪⎝⎭上单调递增一、单选题1.若π1sin 63α⎛⎫-= ⎪⎝⎭,则2πcos 23α⎛⎫+⎪⎝⎭的值为( ) A .13-B .79-C .13D .792.函数()π2sin 26f x x ⎛⎫=-+ ⎪⎝⎭的一个单调递增区间是( )A .ππ,63⎡⎤-⎢⎥⎣⎦B .π5π,36⎡⎤⎢⎥⎣⎦C .ππ,36⎡⎤-⎢⎥⎣⎦D .π2π,63⎡⎤⎢⎥⎣⎦3.已知1tan 4tan θθ+=,则2πcos 4θ⎛⎫+= ⎪⎝⎭( )A .15B .14C .13D .124.关于函数()()π3sin 213f x x x ⎛⎫=-+∈ ⎪⎝⎭R ,下列命题正确的是( )A .由()()121f x f x ==可得12x x -是π的整数倍B .()y f x =的表达式可改写成()π3cos 216f x x ⎛⎫=++ ⎪⎝⎭C .()y f x =的图象关于点3π,14⎛⎫⎪⎝⎭对称D .()y f x =的图象关于直线π12x =-对称 5.函数()2πππcos 2sin sin 555f x x x ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭的最大值是( ) A .1 B .πsin5C .π2sin5D6.函数()()sin 0y x ωϕω=+>的部分图象如图所示,则ω,ϕ的值分别可以是( )对点增分集训A .1,π3B .1,2π3-C .2,2π3D .2,π3-7.已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+>≤ ⎪⎝⎭,π4x =-和π4x =分别是函数()f x 取得零点和最小值点横坐标,且()f x 在ππ,1224⎛⎫- ⎪⎝⎭单调,则ω的最大值是( )A .3B .5C .7D .98.已知函数()cos sin f x x x =⋅,给出下列四个说法:2014π3f ⎛⎫= ⎪⎝⎭①②函数()f x 的周期为π; ()f x ③在区间ππ,44⎡⎤-⎢⎥⎣⎦上单调递增;()f x ④的图象关于点π,02⎛⎫- ⎪⎝⎭中心对称其中正确说法的序号是( ) A .②③B .①③C .①④D .①③④9.已知0ω>,函数()πsin 4f x x ω⎛⎫=+ ⎪⎝⎭在π,π2⎛⎫ ⎪⎝⎭上单调递减,则ω的取值范围是( )A .10,2⎛⎤⎥⎝⎦B .(]0,2C .15,24⎡⎤⎢⎥⎣⎦D .13,24⎡⎤⎢⎥⎣⎦10.同时具有性质:①()f x 最小正周期是π;②()f x 图象关于直线π3x =对称;③()f x 在ππ,63⎡⎤-⎢⎥⎣⎦上是增函数的一个函数是( ) A .πsin 23x y ⎛⎫=+ ⎪⎝⎭B .πsin 26y x ⎛⎫=- ⎪⎝⎭C .πcos 23y x ⎛⎫=+⎪⎝⎭D .πsin 23y x ⎛⎫=+ ⎪⎝⎭11.关于函数()1π2sin 26f x x ⎛⎫=+ ⎪⎝⎭的图像或性质的说法中,正确的个数为( )①函数()f x 的图像关于直线8π3x =对称; ②将函数()f x 的图像向右平移π3个单位所得图像的函数为1π2sin 23y x ⎛⎫=+ ⎪⎝⎭;③函数()f x 在区间π5π,33⎛⎫- ⎪⎝⎭上单调递增;④若()f x a =,则1πcos 233a x ⎛⎫-= ⎪⎝⎭.A .1B .2C .3D .412.函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>≤ ⎪⎝⎭的图象关于直线π3x =对称,它的最小正周期为π,则函数()f x 图象的一个对称中心是( ) A .π,012⎛⎫- ⎪⎝⎭B .π,13⎛⎫ ⎪⎝⎭C .5π,012⎛⎫ ⎪⎝⎭D .π,012⎛⎫ ⎪⎝⎭二、填空题13.函数πcos 24y x ⎛⎫=+⎪⎝⎭的单调递减区间是_________. 14.已知()0,πα∈,且3cos 5α=,则πtan 4α⎛⎫-= ⎪⎝⎭_________________.15.函数()sin2f x x x =在π0,2x ⎛⎫∈ ⎪⎝⎭的值域为_________.16.关于()()π4sin 2,3f x x x ⎛⎫+∈ ⎪⎝⎭R =,有下列命题①由()()120f x f x ==可得12x x -是π的整数倍; ②()y f x =的表达式可改写成π4cos 26y x ⎛⎫=- ⎪⎝⎭;③()y f x =图象关于π,06⎛⎫- ⎪⎝⎭对称;④()y f x =图象关于π6x =-对称.其中正确命题的序号为________(将你认为正确的都填上).三、解答题17.已知()π2sin 2cos26f x x a x ⎛⎫=++ ⎪⎝⎭()a ∈R ,其图象在π3x =取得最大值. (1)求函数()f x 的解析式;(2)当π0,3α⎛⎫∈ ⎪⎝⎭,且()65f α=,求sin2α值.18.已知函数()()2πsin sin 02f x x x x ωωωω⎛⎫=++> ⎪⎝⎭的最小正周期为π. (1)求ω的值;(2)求函数()f x 在区间2π0,3⎡⎤⎢⎥⎣⎦上的取值范围.1.解三角形中的要素例1:ABC △的内角A ,B ,C 所对的边分别为a ,b ,c ,若c =b =,60B =o ,则C =_____. 2.恒等式背景培优点七 解三角形例2:已知a ,b ,c 分别为ABC △三个内角A ,B ,C 的对边,且有cos sin 0a C C b c --=. (1)求A ;(2)若2a =,且ABC △b ,c .一、单选题1.在ABC △中,1a =,6A π∠=,4B π∠=,则c =( ) ABCD2.在ABC △中,三边长7AB =,5BC =,6AC =,则AB BC ⋅u u u v u u u v等于( )A .19B .19-C .18D .18-3.在ABC △中,角A ,B ,C 所对应的边分别是a ,b ,c ,若2cos c a B =,则三角形一定是( ) A .等腰直角三角形B .直角三角形C .等腰三角形D .等边三角形4.ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,若3C π=,c =3b a =,则ABC △的面积为( ) 对点增分集训AB C D 5.在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,若22a b bc -=,sin C B =,则A =( ) A .30︒B .60︒C .120︒D .150︒6.设ABC △的三个内角A ,B ,C 所对的边分别为a ,b ,c ,如果()()3a b c b c a bc +++-=,且a =那么ABC △外接圆的半径为( ) A .1BC .2D .47.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,且222b c a bc +=+,若2sin sin sin B C A ⋅=, 则ABC △的形状是( ) A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形8.ABC △的内角A ,B ,C 的对边分别是a ,b ,c 且满足cos cos a B b A c -=,则ABC △是( ) A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形9.在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知ABC △的面积为2b c -=,1cos 4A =-,则a 的值为( ) A .8B .16C .32D .6410.在ABC △中,a ,b ,c 分别为角A ,B ,C 所对的边.若()sin cos 0b a C C +-=, 则A =( ) A .4π B .3π C .34π D .23π 11.在ABC △中,内角A ,B ,C 的对边分别是a ,b ,c ,若c o s c o s c o s a b cA B C==,则ABC △是( ) A .直角三角形B .钝角三角形C .等腰直角三角形D .等边三角形12.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =,c =,tan 21tan A cB b+=, 则C ∠=( ) A .6π B .4π C .4π或34π D .3π二、填空题13.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,c =,2216b a -=,则角C 的最大值为_____; 14.已知ABC △的三边a ,b ,c 成等比数列,a ,b ,c 所对的角分别为A ,B ,C ,则sin cos B B +的取值范围是_________.15.在ABC △中三个内角A ∠,B ∠,C ∠,所对的边分别是a ,b ,c ,若()2si n c o s 2s i n c o s b C A A C+=-,且a =ABC △面积的最大值是________16.在锐角ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,且A ,B ,C 成等差数列,b =,则ABC △面积的取值范围是__________.三、解答题17.己知a ,b ,c 分别为ABC △三个内角A ,B ,C cos 2sin A C+=. (1)求角A 的大小;(2)若5b c +=,且ABC △a 的值.18.如图,在ABC △中,点D 在BC 边上,60ADC ∠=︒,AB =,4BD =..(1)求ABD △的面积.(2)若120BAC ∠=o ,求AC 的长.1.代数法例1:已知向量a ,b 满足=3a ,b ()⊥+a a b ,则b 在a 方向上的投影为( )培优点八 平面向量A .3B .3- C. D2.几何法例2:设a ,b 是两个非零向量,且2==+=a b a b ,则=-a b _______. 3.建立直角坐标系例3:在边长为1的正三角形ABC 中,设2BC BD =uu u v uu u v ,3CA CE =uu v uu u v ,则AD BE ⋅=uuu v uu u v__________.一、单选题1.已知向量a ,b 满足1=a ,2=b ,且向量a ,b 的夹角为4π,若λ-a b 与b 垂直,则实数λ的值为( ) A .12-B .12C .2 D2.已知向量a ,b 满足1=a ,2=b,+a b ⋅=a b ( ) A .1BCD .23.如图,平行四边形ABCD 中,2AB =,1AD =,60A ∠=o ,点M 在AB 边上,且13AM AB =, 则DM DB ⋅=uuu u v uu u v( )A .1-B .1C. D4.如图,在ABC △中,BE 是边AC 的中线,O 是BE 边的中点,若AB =uu u v a ,AC =uuu v b ,则AO =uuu v( )对点增分集训A .1122+a bB .1124+a bC .1142+a bD .1144+a b5.在梯形ABCD 中,AB CD ∥,1CD =,2AB BC ==,120BCD ∠=o ,动点P 和Q 分别在线段BC 和CD 上,且BP BC λ=uu v uu u v ,18DQ DC λ=uuuv uuu v ,则AP BQ ⋅u u u v u u u v 的最大值为( ) A .2- B .32-C .34 D .986.已知ABC △中,2AB =,4AC =,60BAC ∠=︒,P 为线段AC 上任意一点,则PB PC ⋅uu v uu u v的范围是( )A .[]14,B .[]04,C .944⎡⎤-⎢⎥⎣⎦, D .[]24-,7.已知非零向量a ,b ,满足=a 且()()320+⋅-=a b a b ,则a 与b 的夹角为( ) A .4πB .2π C .34π D .π8.在Rt ABC △中斜边BC a =,以A 为中点的线段2PQ a =,则BP CQ ⋅u u v u u u v的最大值为( )A .2-B .0C .2D .9.设向量a ,b ,c ,满足1==a b ,12⋅=-a b ,6,0--=o a b c c ,则c 的最大值等于( )A .1B C D .210.已知a 与b 为单位向量,且⊥a b ,向量c 满足2--=c a b ,则c 的取值范围为( )A .1,1⎡⎣B .2⎡⎣C .D .3⎡-+⎣11.平行四边形ABCD 中,AC uuu v ,BD uuu v 在AB uu u v 上投影的数量分别为3,1-,则BD uuu v 在BC uu uv 上的投影的取值范围是( ) A .()1,-+∞B .()1,3-C .()0,+∞D .()0,312.如图,在等腰直角三角形ABC中,AB AC ==D ,E 是线段BC 上的点,且13DE BC =,则AD AE ⋅uuu v uu u v的取值范围是( )A .84,93⎡⎤⎢⎥⎣⎦B .48,33⎡⎤⎢⎥⎣⎦C .88,93⎡⎤⎢⎥⎣⎦D .4,3⎡⎫+∞⎪⎢⎣⎭二、填空题13.已知向量()1,2=a ,()2,2=-b ,()1,λ=c ,若()2+∥c a b ,则λ=________. 14.若向量a ,b 满足1=a ,2=b ()⊥+a a b ,则a 与b 的夹角为__________.15.已知正方形ABCD 的边长为2,E 是CD 上的一个动点,则求AE BD ⋅uu u v uu u v的最大值为________.16.在ABC △中,90C ∠=︒,30B ∠=︒,2AC =,P 为线段AB 上一点,则PB PC +uu v uu u v的取值范围为____.1.简单的线性规划问题应注意取点是否取得到培优点九 线性规划例1:已知实数x ,y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是( )A .4B .5C .6D .72.目标函数为二次式例2:若变量x ,y 满足120x x y x y ≤⎧⎪≥⎨⎪++≥⎩,则22z x y =+的最大值为( )AB .7C .9D .103.目标函数为分式例3:设变量x ,y 满足约束条件22022010x y x y x y --≤⎧⎪-+≥⎨⎪+-≥⎩,则11y s x +=+的取值范围是( )A .31,2⎡⎤⎢⎥⎣⎦B .1,12⎡⎤⎢⎥⎣⎦C .[]1,2D .1,22⎡⎤⎢⎥⎣⎦4.面积问题例4:若不等式组03434x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域被直线4y kx =+分成面积相等的两部分,则k 的值为( )A .73B .37C .173-D .317-一、单选题1.若实数x ,y 满足0010x y x y ≥⎧⎪≥⎨⎪+-≤⎩,则z x y =-的最大值为( )A .2B .1C .0D .1-对点增分集训2.已知实数x ,y 满足线性约束条件3023004x y x y x +-≤⎧⎪--≤⎨⎪≤≤⎩,则其表示的平面区域的面积为( ) A .94B .274C .9D .2723.已知实数x ,y 满足122022x y x y x y -≤⎧⎪-+≥⎨⎪+≥⎩,若z x a y =-只在点()43,处取得最大值,则a 的取值范围是( ) A .()1-∞-, B .()2-+∞, C .()1-∞,D .12⎛⎫+∞ ⎪⎝⎭,4.已知实数x ,y 满足约束条件222020x x y x y ≤⎧⎪-+≥⎨⎪++≥⎩,则5x z y -=的取值范围为( )A .2433⎡⎤-⎢⎥⎣⎦,B .4233⎡⎤-⎢⎥⎣⎦,C .3324⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭U ,,D .3342⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭U ,,5.若实数x ,y 满足约束条件22390x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则22z x y =+的最大值是( )AB .4C .9D .106.已知点()12A ,,若动点()P x y ,的坐标满足02x y x x y ≥⎧⎪≥⎨⎪+≤⎩,则AP 的最小值为( )AB .1CD7.x ,y 满足约束条件20220220x y x y x y +-≤⎧⎪--≤⎨⎪-+≥⎩,若z y ax =-取得最大值的最优解不唯一,则实数a 的值为( )A .12或1- B .2或12C .2或1D .2或1-8.若x ,y 满足不等式组40240 4x y x y x +-≥⎧⎪-+≥⎨⎪≤⎩,则215y x ≤+成立的概率为( )A .1556B .1116 C .58D .389.若x ,y 满足不等式组20510080x y x y x y -+≥⎧⎪-+≤⎨⎪+-≤⎩,则32z x y =-+的最小值为( )A .7B .6C .265D .410.已知平面直角坐标系xOy 上的区域D由不等式组02x y x ⎧≤≤⎪≤⎨⎪≤⎩给定.若()M x y ,为D 上动点,点A 的坐标为).则z OM OA =⋅u u u v u u v的最大值为( )A.B.C .4D .311.若不等式组20510080x y x y x y -+≥⎧⎪-+≤⎨⎪+-≤⎩所表示的平面区域内存在点()00x y ,,使0020x ay ++≤成立,则实数a 的取值范围是( ) A .[)1,-+∞B .(],1-∞-C .(],1-∞D .[)1,+∞12.已知圆()()22:1C x a y b -+-=,平面区域60:400x y x y y +-≤⎧⎪Ω-+≥⎨⎪≥⎩,若圆心C ∈Ω,且圆C 与x 轴相切,则圆心(),C a b 与点()2,8连线斜率的取值范围是( ) A .77,,35⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭UB .77,,35⎛⎤⎛⎫-∞-+∞ ⎪⎥⎝⎦⎝⎭UC .77,35⎛⎫- ⎪⎝⎭D .77,35⎡⎤-⎢⎥⎣⎦二、填空题13.设x ,y 满足10302x y x y x +-≥⎧⎪-+≥⎨⎪≤⎩,则21z x y =++的最大值为____________.14.若变量x ,y 满足约束条件210220x x y x y ≤⎧⎪-+≤⎨⎪+-≥⎩,则22z x y =+的最小值为_________.15.已知实数x ,y 满足110x y x y x -≤⎧⎪+≤⎨⎪≥⎩,则22x y x ++的最小值为______.16.某公司计划明年用不超过6千万元的资金投资于本地养鱼场和远洋捕捞队.经过对本地养鱼场年利润率的调研,其结果是:年利润亏损10%的概率为02.,年利润获利30%的概率为0.4,年利润获利50%的概率为0.4,对远洋捕捞队的调研结果是:年利润获利为60%的概率为0.7,持平的概率为0.2,年利润亏损20%的可能性为0.1.为确保本地的鲜鱼供应,市政府要求该公司对远洋捕捞队的投资不得高于本地养鱼场的投资的2倍.根据调研数据,该公司如何分配投资金额,明年两个项目的利润之和最大值为_________千万.1.等差数列的性质培优点十 等差、等比数列例1:已知数列{}n a ,{}n b 为等差数列,若117a b +=,3321a b +=,则55a b +=_______. 2.等比数列的性质例2:已知数列{}n a 为等比数列,若4610a a +=,则()713392a a a a a ++的值为( ) A .10B .20C .100D .2003.等差、等比综合例3:设{}n a 是等差数列,{}n b 为等比数列,其公比1q ≠,且()01,2,3,,i b i n >=L ,若11a b =,1111a b =, 则有( ) A .66a b = B .66a b >C .66a b <D .66a b >或66a b <一、单选题1.我国古代名著《九章算术》中有这样一段话:“今有金锤,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,中间三尺重几何.”意思是:“现有一根金锤,长5尺,头部1尺,重4斤,尾部1尺,重2斤,且从头到尾,每一尺的重量构成等差数列,问中间三尺共重多少斤.”( ) A .6斤B .7斤C .8斤D .9斤2.设n S 为等差数列{}n a 的前n 项和,若540S =,9126S =,则7S =( ) A .66B .68C .77D .843.已知等比数列{}n a 的前n 项和为n S ,且满足122n n S λ+=+,则λ的值为( ) A .4B .2C .2-D .4-4.已知等差数列{}n a 的前n 项和为n S ,5714a a +=,则11S =( ) A .140B .70C .154D .775.已知数列{}n a 是公比为q 的等比数列,且1a ,3a ,2a 成等差数列,则公比q 的值为( ) A .12-B .2-C .1或12-D .1-或12对点增分集训6.公比不为1的等比数列{}n a 的前n 项和为n S ,且12a -,212a -,3a 成等差数列,若11a =,则4S =( ) A .5-B .0C .5D .77.等比数列{}n a 的各项均为正数,且564718a a a a +=,则3132310log log log a a a +++=L ( ) A .12B .10C .8D .32log 5+8.设公差为2-的等差数列{}n a ,如果1479750a a a a +++=+L ,那么36999a a a a ++++L 等于( ) A .182-B .78-C .148-D .82-9.已知等差数列{}n a 的前n 项和为n S ,且133215S S -=,则数列{}n a 的第三项为( ) A .3B .4-C .5-D .610.等差数列{}n a 的前n 项和为n S ,若81026a a =+,则11S =( ) A .27B .36C .45D .6611.设{}n a 是各项为正数的等比数列,q 是其公比,n K 是其前n 项的积,且56K K <,678K K K =>,则下列结论错误..的是( ) A .01q << B .71a =C .95K K >D .6K 与7K 均为n K 的最大值12.定义函数()f x 如下表,数列{}n a 满足()1n n a f a +=,n *∈N ,若12a =,则1232018a a a a ++++=L ( )A .7042B .7058C .7063D .7262二、填空题13.已知等差数列{}n a ,若2376a a a ++=,则17a a +=________.14.已知等比数列{}n a 的前n 项和为n S ,若公比q 1231a a a ++=,则12S 的值是___________.。
2019届高三数学专题练习含导函数的抽象函数的构造
2019届高三数学专题练习含导函数的抽象函数的构造1.对于()()'0f x a a >≠,可构造()()h x f x ax =-例1:函数()f x 的定义域为R ,()12f -=,对任意R x ∈,()2f x '>,则()24f x x >+的解集为( )A .()1,1-B .()1-+∞,C .()1-∞-,D .()-∞+∞,2.对于()()'0xf x f x +>,构造()()h x xf x =;对于()()'0xf x f x ->,构造()()f x h x x=例2:已知函数()y f x =的图象关于y 轴对称,且当(),0x ∈-∞,()()0f x xf x '+<成立,()0.20.222a f =,()log 3log 3b f ππ=,()33log 9log 9c f =,则a ,b ,c 的大小关系是( )A .a b c >>B .a c b >>C .c b a >>D .b a c >>3.对于'()()0f x f x +>,构造()()e x h x f x =;对于'()()f x f x >或'()()0f x f x ->,构造()()e xf x h x = 例3:已知()f x 为R 上的可导函数,且R x ∀∈,均有()()f x f x '>,则有( )A .2016e (2016)(0)f f -<,2016(2016)e (0)f f >B .2016e (2016)(0)f f -<,2016(2016)e (0)f f <C .2016e (2016)(0)f f ->,2016(2016)e (0)f f >D .2016e (2016)(0)f f ->,2016(2016)e (0)f f <4.()f x 与sin x ,cos x 构造例4:已知函数()y f x =对任意的,22x ππ⎛⎫∈- ⎪⎝⎭满足()()cos sin 0f x x f x x '+>,则( )A .()04f π⎛⎫> ⎪⎝⎭B .()03f f π⎛⎫<2- ⎪⎝⎭C 34f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭D 34f ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭一、选择题1.若函数()y f x =在R 上可导且满足不等式()()0xf x f x '+>恒成立,对任意正数a 、b ,若a b <, 则必有( ) A .()()af b bf a <B .()()bf a af b <C .()()af a bf b <D .()()bf b af a <2.已知函数()()R f x x ∈满足()11f =,且()12f x '<,则()122x f x <+的解集为( ) A .}{11x x |-<<B .}{1x x |<-C .}{11x x x |<->或 D .}{1x x |>3.已知函数()f x 的定义域为R ,()f x '为()f x 的导函数,且()()()10f x x f x '+->,则( )A .()10f =B .()0f x <C .()0f x >D .()()10x f x -<4.设函数()f x '是函数()()R f x x ∈的导函数,已知()()f x f x '<,且()()4f x f x ''=-,()40f =,()21f =则使得()2e 0x f x -<成立的x 的取值范围是( ) A .()2-+∞,B .()0+∞,C .()1+∞,D .()4+∞,5.已知函数()1y f x =-的图象关于点()1,0对称,函数()y f x =对于任意的()0,πx ∈满足()()sin cos f x x f x x >'(其中()f x '是函数()f x 的导函数),则下列不等式成立的是( )A .ππ36f ⎛⎫⎛⎫-> ⎪ ⎪⎝⎭⎝⎭B 3ππ42f⎛⎫⎛⎫<-- ⎪ ⎪⎝⎭⎝⎭C ππ223f⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭ D 5π3π64f ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭6.定义在R 上的函数()f x 的导函数为()f x ',若对任意实数x ,有()()f x f x >',且()2018f x +为奇函数,则不等式()2018e 0x f x +<的解集为( )A .(),0-∞B .()0,+∞C .1e ,⎛⎫-∞ ⎪⎝⎭D .1e ,⎛⎫+∞ ⎪⎝⎭7.已知函数()2f x +是偶函数,且当2x >时满足()()()2xf x f x f x ''>+,则( )A .()()214f f <B .()3232f f ⎛⎫> ⎪⎝⎭C .()5042f f ⎛⎫< ⎪⎝⎭D .()()13f f <8.已知定义域为R 的奇函数()y f x =的导函数为()y f x =',当0x ≠时,()()0f x f x x+'>,若1133a f ⎛⎫=⎪⎝⎭,()33b f =--,11lnln 33c f ⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系正确的是( ) A .a b c << B .b c a << C .a c b << D .c a b <<9.已知定义在R 上的函数()f x 的导函数为()f x ',()()222e x f x f x --=(e 为自然对数的底数),且当1x ≠时,()()()10x f x f x -->⎡⎤⎣⎦',则( ) A .()()10f f <B .()()2e 0f f >C .()()33e 0f f >D .()()44e 0f f <10.定义在R 上的函数()f x 的导函数为()'f x ,()00f =若对任意R x ∈,都有()()'1f x f x >+,则使得()e 1f x x +<成立的x 的取值范围为( )A .(),1∞-B .(),0∞-C .()1,+∞-D .0,+∞()11.已知函数()f x 是定义在区间()0,+∞上的可导函数,满足()0f x >且()()'0f x f x +<(()'f x 为函数的导函数),若01a b <<<且1ab =,则下列不等式一定成立的是( ) A .()()()1f a a f b >+ B .()()()1f b a f a >- C .()()af a bf b >D .()()af b bf a >12.定义在R 上的奇函数()y f x =满足()30f =,且当0x >时,不等式()()'f x xf x >-恒成立,则函数()()lg 1g x xf x x =++的零点的个数为( )A .1B .2C .3D .4二、填空题13.设()f x 是R 上的可导函数,且'()()f x f x ≥-,(0)1f =,21(2)e f =.则(1)f 的值为________.14.已知,22x ⎛⎫∈- ⎪⎝π⎭π,()1y f x =-为奇函数,()()'tan 0f x f x x +>,则不等式()cos f x x >的解集为_________.15.已知定义在实数集R 的函数()f x 满足()27f =,且()f x 导函数()3f x '<,则不等式()ln 3ln 1f x x >+的解集为__________.16.已知函数()f x 是定义在()(),00,-∞+∞上的奇函数,且()10f =.若0x <时,()()'0xf x f x ->,则不等式()0f x >的解集为__________.1.对于()()'0f x a a >≠,可构造()()h x f x ax =-例1:函数()f x 的定义域为R ,()12f -=,对任意R x ∈,()2f x '>,则()24f x x >+的解集为( )A .()1,1-B .()1-+∞,C .()1-∞-,D .()-∞+∞,【答案】B【解析】构造函数()()24G x f x x =--,所以()()2G x f x ''=-,由于对任意R x ∈,()2f x '>, 所以()()20G x f x ''->=恒成立,所以()()24G x f x x =--是R 上的增函数, 又由于()()()112140G f -=----⨯=,所以()()240G x f x x -->=, 即()24f x x >+的解集为()1-+∞,.故选B .2.对于()()'0xf x f x +>,构造()()h x xf x =;对于()()'0xf x f x ->,构造()()f x h x x=例2:已知函数()y f x =的图象关于y 轴对称,且当(),0x ∈-∞,()()0f x xf x '+<成立,()0.20.222a f =,()log 3log 3b f ππ=,()33log 9log 9c f =,则a ,b ,c 的大小关系是( )A .a b c >>B .a c b >>C .c b a >>D .b a c >>【答案】D【解析】因为函数()y f x =关于y 轴对称,所以函数()y xf x =为奇函数.因为()()()xf x f x xf x ''=+⎡⎤⎣⎦,所以当(),0x ∈-∞时,()()()0xf x f x xf x ''=+<⎡⎤⎣⎦,函数()y xf x =单调递减,当()0,x ∈+∞时,函数()y xf x =单调递减.因为0.2122<<,0log 31π<<,3log 92=,所以0.230log 32log 9π<<<,所以b a c >>.故选D .3.对于'()()0f x f x +>,构造()()e x h x f x =;对于'()()f x f x >或'()()0f x f x ->,构造()()ex f x h x = 例3:已知()f x 为R 上的可导函数,且R x ∀∈,均有()()f x f x '>,则有( )A .2016e (2016)(0)f f -<,2016(2016)e (0)f f >B .2016e (2016)(0)f f -<,2016(2016)e (0)f f <C .2016e (2016)(0)f f ->,2016(2016)e (0)f f >D .2016e (2016)(0)f f ->,2016(2016)e (0)f f <【答案】D【解析】构造函数()()e xf xg x =,则()()()()()()()2e e ee x x xx f x f x f x f x g x ''-'-'==,因为R x ∀∈均有()()f x f x '>并且e 0x >,所以()0g x '<,故函数()()e xf xg x =在R 上单调递减,所以(2016)(0)g g ->,(2016)(0)g g <,即2016(2016)(0)e f f -->,2016(2016)(0)e f f <, 也就是2016e (2016)(0)f f ->,2016(2016)e (0)f f <.4.()f x 与sin x ,cos x 构造例4:已知函数()y f x =对任意的,22x ππ⎛⎫∈- ⎪⎝⎭满足()()cos sin 0f x x f x x '+>,则( )A .()04f π⎛⎫> ⎪⎝⎭B .()03f f π⎛⎫<2- ⎪⎝⎭C34f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭D34f ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭【答案】D【解析】提示:构造函数()()cos f x g x x=.一、选择题1.若函数()y f x =在R 上可导且满足不等式()()0xf x f x '+>恒成立,对任意正数a 、b ,若a b <,则必有( )A .()()af b bf a <B .()()bf a af b <C .()()af a bf b <D .()()bf b af a <【答案】C【解析】由已知()()0xf x f x '+>∴构造函数()()F x xf x =, 则()()()0F x xf x f x ''=+>,从而()F x 在R 上为增函数。
高考数学 抽象函数赋值与构造-含解析
专题1-5 抽象函数赋值与构造一、抽象函数的赋值法赋值法是求解抽象函数问题最基本的方法,复制规律一般有以下几种: 1、……-2,-1,0,1,2……等特殊值代入求解; 2、通过的变换判定单调性;3、令式子中出现及判定抽象函数的奇偶性;4、换为确定周期性. 二、判断抽象函数单调性的方法:(1)凑:凑定义或凑已知,利用定义或已知条件得出结论;(2)赋值:给变量赋值要根据条件与结论的关系.有时可能要进行多次尝试. ①若给出的是“和型”抽象函数,判断符号时要变形为:或;()()12−f x f x ()f x ()−f x x +x T () =+y x f ()()()()111212)(x f x x x f x f x f −+−=−()()()()221212)(x x x f x f x f x f +−−=−②若给出的是“积型”抽象函数,判断符号时要变形为:或. 三、常见的抽象函数模型1、可看做的抽象表达式;2、可看做的抽象表达式(且);3、可看做的抽象表达式(且);4、可看做的抽象表达式.2022新高考2卷T8 1.已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++−==,则221()k f k ==∑( )A .3−B .2−C .0D .12023新高考1卷T112.(多选)已知函数()f x 的定义域为R ,()()()22f xy y f x x f y =+,则( ).A .()00f =B .()10f =C .()f x 是偶函数D .0x =为()f x 的极小值点2023·山东青岛·统考三模() =xy f ()()()112112x f x x x f x f x f −⎪⎪⎭⎫ ⎝⎛⋅=−()()()⎪⎪⎭⎫⎝⎛⋅−=−212212x x x f x f x f x f ()()()+=+f x y f x f y ()=f x kx ()()()+=f x y f x f y ()=xf x a 0>a 1≠a ()()()=+f xy f x f y ()log =a f x x 0>a 1≠a ()()()=f xy f x f y ()=af x x 重点题型·归类精讲1.设()f x 为定义在整数集上的函数,()11f =,()20f =,()10f −<,对任意的整数,x y 均有()()()()()11f x y f x f y f x f y +=−+−.则()55f =______.2023·山东滨州·三模2.(多选)已知连续函数()f x 对任意实数x 恒有()()()f x y f x f y +=+,当0x >时,()0f x <,(1)2f =-,则以下说法中正确的是( ) A .f (0)=0B .f (x )是R 上的奇函数C .f (x )在[-3,3]上的最大值是6D .不等式()232()(3)4f x f x f x −<+的解集为213xx ⎧⎫<<⎨⎬⎩⎭安徽省皖江名校联盟2024届高三上学期10月第二次联考3.已知函数不是常数函数,且满足以下条件:①,其中;②,则( )A .0B .1C .2D .4.(多选)已知定义在R 上的函数()f x 满足()()()()()()()()2,02,01f xy f x f y f x f y f f f =−−+<≠,且()0f x >,则( ) A .()01f =B .()12f −=C .()()2f x f x −=D .()()f x f x −=5.已知函数及其导函数的定义域均为,对任意的,恒有,则下列说法正确的个数是( )①;②必为奇函数;③;④若,则.A .1B .2C .3D .42023·浙江嘉兴·统考模拟6.已知函数的定义域为,且,,则的值是( )A .9B .10C .11D .12(),y f x x =∈R ()()()()f a b f a b f a f b ++−=,a b ∈R ()10f =()2026f −=2−()f x ()f x 'R ,R x y ∈()()()()2f x y f x y f x f y ++−=()00f =()f x '()()00f x f +≥1(1)2f =202311()2n f n ==∑()f x R ()()()()31,00,f x x f x x ⎛⎫=∈−∞+∞ ⎪⎝⎭()()()2f x f y xy f x y ++=+()3f2023届江苏连云港校考7.已知函数,任意,满足,且,则的值为( )A .B .0C .2D .48.已知,都是定义在上的函数,对任意x ,y 满足,且,则下列说法正确的是( )A .B .函数的图象关于点对称C .D .若,则2023绍兴·高二期末9.已知函数的定义域为R ,且,为奇函数,,则( ) A . B . C .0 D .10.(多选)已知函数()f x 的定义域为R ,()()()f x y f x f y +=+,则( )A .()00f =B .()f x 是奇函数 C .0x =为()f x 的极小值点D .若()11f =,则()20232023f =11.(多选)设()f x 是定义在R 上的函数,对,x y ∀∈R ,有()()()()22f x y f x y f x f y +−−=++,且()00f ≠,则( )A .()()0f x f x −−=B .()()40f x f x +−=C .()()()()02420242f f f f ++++=−()f x x y R ∈,()()()()22f x y f x y f x f y +−=−()()1220f f ==,()()()1290f f f +++2−()f x ()g x R ()()()()()f x y f x g y g x f y −=−()()210f f −=≠()01f =()21g x +()1,0()()110g g +−=()11f =()202311n f n ==∑()f x ()()()28f x f x f ++=()21f x +1122f ⎛⎫= ⎪⎝⎭22112k kf k =⎛⎫−= ⎪⎝⎭∑11−12−212。
(word完整版)精选最新2019高考数学《导数及其应用》专题完整题(含答案),推荐文档
2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.设0a >且1a ≠,则“函数()xf x a =在R 上是减函数 ”,是“函数3()(2)g x a x =-在R 上是增函数”的(A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件2.若()ln f x x x x 2=-2-4,则'()f x >0的解集为A. (,)0+∞B. -+10⋃2∞(,)(,)C. (,)2+∞D. (,)-10二、填空题3.若函数()2xf x e x k =--在R 上有两个零点,则实数k 的取值范围为_____________4.若32)1(+=+x x g ,则)(x g 等于5.已知函数f(x),g(x)满足,f(5)=5,f ﹐(5)=3,g(5)=4,g ﹐(5)=1,则函数y=f(x)+2g(x)的图象在x=5处的切线方程为▲ . 6.1-⎰(x 2+2 x +1)dx =_________________.137.对正整数n ,设曲线)1(x x y n -=在x =2处的切线与y 轴交点的纵坐标为n a ,则数列}1{+n a n的前n 项和的公式是 .8.曲线xe y =在x=1处的切线的斜率为 ;9.函数f (x )=x 3–3bx +3b 在(0,1)内有极小值,则b 的取值范围是___________________0<b <110. 若函数f(x)= x3+ax-2在区间(-∞,+∞)上是增函数,则实数a的取值范围为__________11.(文)已知函数13)(23++-=ax ax x x f 在区间),(+∞-∞内既有极大值,又有极小值,则实数a 的取值范围是12.如图,已知矩形ABCD 的一边在x 轴上,另两个顶点C ,D 落在二次函数2()4f x x x =- 上.求这个矩形面积的最大值。
高考数学精准培优专练三 含导函数的抽象函数的构造(文) 学生版
由(2)知, g(x) 在 (0, ln 2) 上单调递减,在 (ln 2,) 上单调递增,
又 g(x) 3 e 0 , g(1) 0 , 0 ln 2 1,∴ g(ln 2) 0 ,
所以,存在 x0 (0,1) ,使得 g(x) 0 , 所以,当 x (0, x0 ) (1,) 时, g(x) 0 ;当 x (x0 ,1) 时, g(x) 0 , 故 g(x) 在 (0, x0 ) 上单调递增,在 (x0 ,1) 上单调递减,在 (1,) 上单调递增, 又 g(0) g(1) 0 ,∴ g(x) ex x2 (e 2)x 1 0 ,当且仅当 x 1时取等号,
(2)若 x [1, 3] ,求 f (x) 的最大值.
17.已知函数 f x ax3 bx2 cx d 在 R 上是奇函数,且在 x 1 处取得极小值 2 . (1)求 f x 的解析式; (2)求过点 A0,16 且与曲线 y f (x) 相切的切线方程.
18.设函数 f (x) 1 x2 ax 2 ln x(a R) 在 x 1 时取得极值. 2
对点增分集训
一、选择题
1.设函数 f (x) 在定义域内可导, y f (x) 的图像如图所示, 则导函数 y f (x) 的图像可能为( )
A.
B.
C.
D.
2.曲线 y x3 11 在点 P(1,12) 处的切线与 y 轴交点的纵坐标是( )
A. 9
B.15
C. 9
D. 3
3.已知函数 f (x) 的导函数为 f x ,且满足 f x 2xf (1) ln x ,则 f (2) ( )
3
3
14.曲线 y xex 2x 1在点 (0, 1) 处的切线方程为_______.
2021届高三数学精准培优专练 含导函数的抽象函数的构造(理) 学生版
B. f (b) (1 a) f (a)
C. af (a) bf (b)
D. af (b) bf (a)
4.已知函数 f (x) 是定义在区间 (0, ) 上的可导函数, f (x) 为其导函数,当 x 0 且 x 2 时,
(x 2) [2 f (x) xf (x)] 0 ,若曲线 y f (x) 在点 (2, f (2)) 处的切线的斜率为 4 ,则 f (2) 的值
B. a b D. a 、 b 的大小与 m 有关
3.已知函数 f (x) 是定义在区间 (0, ) 上的可导函数,满足 f (x) 0 且 f (x) f (x) 0
( f (x) 为函数 f (x) 的导函数),若 0 a 1 b 且 ab 1 ,则下列不等式一定成立的是( )
A. f (a) (a 1) f (b)
是
.
二、构造积函数
对于 f (x)g(x) g(x) f (x) 0 ,可构造 F( x) f ( x)g( x),则 F ( x) 单调递增.
(特例:对于 f '( x) f ( x) 0 ,可构造 F (x) ex f (x) ,则 F ( x) 单调递增.)
例 2:设函数 f (x) 是定义在 (, 0) 上的可导函数,其导函数为 f (x) ,且有 2 f (x) xf (x) x 2 ,
2021 届高三精准培优专练
培优点 含导函数的抽象函数的构造
一、构造和差函数
对于 f x a a 0 ,可构造 F x f x ax ,则 F (x) 单调递增.
例 1:已知 y f (x)(x R) 的导函数 f (x) 满足 f (x) 3 且 f (1) 3 ,则不等式 f (x) 3x 的解集
2019年高考真题+高考模拟题 专项版解析汇编 文数——专题03 导数及其应用(解析版)
专题03 导数及其应用1.【2019年高考全国Ⅱ卷文数】曲线y =2sin x +cos x 在点(π,-1)处的切线方程为A .10x y --π-=B .2210x y --π-=C .2210x y +-π+=D .10x y +-π+=【答案】C【解析】2cos sin ,y x x '=-Q π2cos πsin π2,x y =∴=-=-'则2sin cos y x x =+在点(,1)π-处的切线方程为(1)2()y x --=--π,即2210x y +-π+=. 故选C .【名师点睛】本题考查利用导数工具研究曲线的切线方程,渗透了直观想象、逻辑推理和数学运算素养.采取导数法,利用函数与方程思想解题.学生易在非切点处直接求导数而出错,首先证明已知点是否为切点,若是切点,可以直接利用导数求解;若不是切点,设出切点,再求导,然后列出切线方程. 2.【2019年高考全国Ⅲ卷文数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==,D .1e a -=,1b =-【答案】D【解析】∵e ln 1,xy a x '=++∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=, 将(1,1)代入2y x b =+,得21,1b b +==-. 故选D .【名师点睛】本题求解的关键是利用导数的几何意义和点在曲线上得到含有a ,b 的等式,从而求解,属于常考题型.3.【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则 A .a <–1,b <0 B .a <–1,b >0 C .a >–1,b <0 D .a >–1,b >0【答案】C【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x ,则y =f (x )﹣ax ﹣b 最多有一个零点; 当x ≥0时,y =f (x )﹣ax ﹣bx 3(a +1)x 2+ax ﹣ax ﹣bx 3(a +1)x 2﹣b ,2(1)y x a x =+-',当a +1≤0,即a ≤﹣1时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上单调递增, 则y =f (x )﹣ax ﹣b 最多有一个零点,不合题意;当a +1>0,即a >﹣1时,令y ′>0得x ∈(a +1,+∞),此时函数单调递增, 令y ′<0得x ∈[0,a +1),此时函数单调递减,则函数最多有2个零点.根据题意,函数y =f (x )﹣ax ﹣b 恰有3个零点⇔函数y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点, 如图:∴0且,解得b <0,1﹣a >0,b (a +1)3,则a >–1,b <0. 故选C .【名师点睛】本题考查函数与方程,导数的应用.当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b 最多有一个零点;当x ≥0时,y =f (x )﹣ax ﹣bx 3(a +1)x 2﹣b ,利用导数研究函数的单调性,根据单调性画出函数的草图,从而结合题意可列不等式组求解.4.【2019年高考全国Ⅰ卷文数】曲线23()e xy x x =+在点(0)0,处的切线方程为____________. 【答案】30x y -=【解析】223(21)e 3()e 3(31)e ,x x x y x x x x x '=+++=++ 所以切线的斜率0|3x k y ='==,则曲线23()e xy x x =+在点(0,0)处的切线方程为3y x =,即30x y -=.【名师点睛】准确求导数是进一步计算的基础,本题易因为导数的运算法则掌握不熟,而导致计算错误.求导要“慢”,计算要准,是解答此类问题的基本要求. 5.【2019年高考天津文数】曲线cos 2xy x =-在点(0,1)处的切线方程为__________. 【答案】220x y +-=【解析】∵1sin 2y x '=--, ∴01|sin 0212x y ='=---=,故所求的切线方程为112y x -=-,即220x y +-=.【名师点睛】曲线切线方程的求法:(1)以曲线上的点(x 0,f (x 0))为切点的切线方程的求解步骤: ①求出函数f (x )的导数f ′(x ); ②求切线的斜率f ′(x 0);③写出切线方程y -f (x 0)=f ′(x 0)(x -x 0),并化简.(2)如果已知点(x 1,y 1)不在曲线上,则设出切点(x 0,y 0),解方程组0010010()()y f x y y f x x x=⎧⎪-⎨'=⎪-⎩得切点(x 0,y 0),进而确定切线方程.6.【2019年高考江苏】在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线0x y +=的距离的最小值是 ▲ . 【答案】4 【解析】由4(0)y x x x =+>,得241y x'=-, 设斜率为1-的直线与曲线4(0)y x x x=+>切于0004(,)x x x +, 由20411x -=-得0x =0x =,∴曲线4(0)y x x x=+>上,点P 到直线0x y +=4=.故答案为4.【名师点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法,利用数形结合和转化与化归思想解题.7.【2019年高考江苏】在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 ▲ . 【答案】(e, 1)【解析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值,可得切点坐标. 设点()00,A x y ,则00ln y x =. 又1y x'=, 当0x x =时,01y x '=, 则曲线ln y x =在点A 处的切线为0001()y y x x x -=-, 即00ln 1xy x x -=-, 将点()e,1--代入,得00e1ln 1x x ---=-, 即00ln e x x =,考察函数()ln H x x x =,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >, 且()ln 1H x x '=+,当1x >时,()()0,H x H x '>单调递增, 注意到()e e H =,故00ln e x x =存在唯一的实数根0e x =,此时01y =, 故点A 的坐标为()e,1.【名师点睛】导数运算及切线的理解应注意的问题:一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.8.【2019年高考全国Ⅰ卷文数】已知函数f (x )=2sin x -x cos x -x ,f ′(x )为f (x )的导数.(1)证明:f ′(x )在区间(0,π)存在唯一零点; (2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围. 【答案】(1)见解析;(2)(],0a ∈-∞.【解析】(1)设()()g x f x '=,则()cos sin 1,()cos g x x x x g x x x '=+-=.当π(0,)2x ∈时,()0g x '>;当π,π2x ⎛⎫∈ ⎪⎝⎭时,()0g x '<,所以()g x 在π(0,)2单调递增,在π,π2⎛⎫⎪⎝⎭单调递减. 又π(0)0,0,(π)22g g g ⎛⎫=>=-⎪⎝⎭,故()g x 在(0,π)存在唯一零点. 所以()f x '在(0,π)存在唯一零点.(2)由题设知(π)π,(π)0f a f =…,可得a ≤0.由(1)知,()f x '在(0,π)只有一个零点,设为0x ,且当()00,x x ∈时,()0f x '>;当()0,πx x ∈时,()0f x '<,所以()f x 在()00,x 单调递增,在()0,πx 单调递减.又(0)0,(π)0f f ==,所以,当[0,π]x ∈时,()0f x …. 又当0,[0,π]a x ∈„时,ax ≤0,故()f x ax …. 因此,a 的取值范围是(,0]-∞.【名师点睛】本题考查利用导数讨论函数零点个数、根据恒成立的不等式求解参数范围的问题.对于此类端点值恰为恒成立不等式取等的值的问题,通常采用构造函数的方式,将问题转变成函数最值与零之间的比较,进而通过导函数的正负来确定所构造函数的单调性,从而得到最值.9.【2019年高考全国Ⅱ卷文数】已知函数()(1)ln 1f x x x x =---.证明:(1)()f x 存在唯一的极值点;(2)()=0f x 有且仅有两个实根,且两个实根互为倒数.【答案】(1)见解析;(2)见解析.【解析】(1)()f x 的定义域为(0,+∞).11()ln 1ln x f x x x x x-'=+-=-. 因为ln y x =单调递增,1y x=单调递减,所以()f x '单调递增,又(1)10f '=-<,1ln 41(2)ln 2022f -'=-=>,故存在唯一0(1,2)x ∈,使得()00f x '=.又当0x x <时,()0f x '<,()f x 单调递减;当0x x >时,()0f x '>,()f x 单调递增. 因此,()f x 存在唯一的极值点.(2)由(1)知()0(1)2f x f <=-,又()22e e 30f =->,所以()0f x =在()0,x +∞内存在唯一根x α=. 由01x α>>得011x α<<.又1111()1ln 10f f αααααα⎛⎫⎛⎫=---==⎪ ⎪⎝⎭⎝⎭,故1α是()0f x =在()00,x 的唯一根. 综上,()0f x =有且仅有两个实根,且两个实根互为倒数.【名师点睛】本题主要考查导数的应用,通常需要对函数求导,用导数的方法研究函数的单调性、极值,以及函数零点的问题,属于常考题型.10.【2019年高考天津文数】设函数()ln (1)e x f x x a x =--,其中a ∈R .(1)若a ≤0,讨论()f x 的单调性; (2)若10ea <<, (i )证明()f x 恰有两个零点;(ii )设0x 为()f x 的极值点,1x 为()f x 的零点,且10x x >,证明0132x x ->. 【答案】(1)()f x 在(0,)+∞内单调递增.;(2)(i )见解析;(ii )见解析. 【解析】(1)解:由已知,()f x 的定义域为(0,)+∞,且211e ()e (1)e x x xf ax x a a x x x-⎡⎤=-+-=⎣'⎦. 因此当a ≤0时,21e 0x ax ->,从而()0f x '>,所以()f x 在(0,)+∞内单调递增.(2)证明:(i )由(Ⅰ)知21e ()xax f x x-'=.令2()1e x g x ax =-,由10e a <<, 可知()g x 在(0,)+∞内单调递减,又(1)1e 0g a =->,且221111ln 1ln 1ln 0g a a a a a ⎛⎫⎛⎫⎛⎫=-=-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故()0g x =在(0,)+∞内有唯一解,从而()0f x '=在(0,)+∞内有唯一解,不妨设为0x ,则011lnx a <<.当()00,x x ∈时,()0()()0g x g x f x x x'=>=,所以()f x 在()00,x 内单调递增;当()0,x x ∈+∞时,()0()()0g x g x f x x x'=<=,所以()f x 在()0,x +∞内单调递减,因此0x 是()f x 的唯一极值点.令()ln 1h x x x =-+,则当1x >时,1()10h'x x=-<,故()h x 在(1,)+∞内单调递减,从而当1x >时,()(1)0h x h <=,所以ln 1x x <-.从而ln 1111111ln ln ln ln 1e ln ln ln 1ln 0a f a h a a a a a a ⎛⎫⎛⎫⎛⎫=--=-+=< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,又因为()0(1)0f x f >=,所以()f x 在0(,)x +∞内有唯一零点.又()f x 在()00,x 内有唯一零点1,从而,()f x 在(0,)+∞内恰有两个零点.(ii )由题意,()()010,0,f x f x '=⎧⎪⎨=⎪⎩即()012011e 1,ln e ,1x x ax x a x ⎧=⎪⎨=-⎪⎩从而1011201ln e x x x x x --=,即102011ln e 1x x x x x -=-.因为当1x >时,ln 1x x <-,又101x x >>,故()102012011e 1x x x x x x --<=-,两边取对数,得1020ln e ln x x x -<,于是()10002ln 21x x x x -<<-,整理得0132x x ->.【名师点睛】本小题主要考查导数的运算、不等式证明、运用导数研究函数的性质等基础知识和方法.考查函数思想、化归与转化思想.考查综合分析问题和解决问题的能力. 11.【2019年高考全国Ⅲ卷文数】已知函数32()22f x x ax =-+.(1)讨论()f x 的单调性;(2)当0<a <3时,记()f x 在区间[0,1]的最大值为M ,最小值为m ,求M m -的取值范围. 【答案】(1)见详解;(2)8[,2)27. 【解析】(1)2()622(3)f x x ax x x a '=-=-. 令()0f x '=,得x =0或3ax =. 若a >0,则当(,0),3a x ⎛⎫∈-∞+∞⎪⎝⎭U 时,()0f x '>;当0,3a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在(,0),,3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在0,3a ⎛⎫⎪⎝⎭单调递减;若a =0,()f x 在(,)-∞+∞单调递增;若a <0,则当,(0,)3a x ⎛⎫∈-∞+∞ ⎪⎝⎭U 时,()0f x '>;当,03a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在,,(0,)3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在,03a ⎛⎫⎪⎝⎭单调递减.(2)当03a <<时,由(1)知,()f x 在0,3a ⎛⎫ ⎪⎝⎭单调递减,在,13a ⎛⎫ ⎪⎝⎭单调递增,所以()f x 在[0,1]的最小值为32327a a f ⎛⎫=-+ ⎪⎝⎭,最大值为(0)=2f 或(1)=4f a -.于是 3227a m =-+,4,02,2,2 3.a a M a -<<⎧=⎨≤<⎩所以332,02,27,2 3.27a a a M m a a ⎧-+<<⎪⎪-=⎨⎪≤<⎪⎩当02a <<时,可知3227a a -+单调递减,所以M m -的取值范围是8,227⎛⎫⎪⎝⎭.当23a ≤<时,327a 单调递增,所以M m -的取值范围是8[,1)27.综上,M m -的取值范围是8[,2)27. 【名师点睛】这是一道常规的导数题目,难度比往年降低了不少.考查函数的单调性,最大值、最小值的计算.12.【2019年高考北京文数】已知函数321()4f x x x x =-+. (1)求曲线()y f x =的斜率为1的切线方程; (2)当[2,4]x ∈-时,求证:6()x f x x -≤≤;(3)设()|()()|()F x f x x a a =-+∈R ,记()F x 在区间[2,4]-上的最大值为M (a ),当M (a )最小时,求a 的值.【答案】(1)y x =与6427y x =-;(2)见解析;(3)3a =-. 【解析】(1)由321()4f x x x x =-+得23()214f x x x '=-+.令()1f x '=,即232114x x -+=,得0x =或83x =.又(0)0f =,88()327f =,所以曲线()y f x =的斜率为1的切线方程是y x =与88273y x -=-,即y x =与6427y x =-.(2)令()(),[2,4]g x f x x x =-∈-.由321()4g x x x =-得23()24g'x x x =-. 令()0g'x =得0x =或83x =.(),()g'x g x 的情况如下:所以()g x 的最小值为6-,最大值为0. 故6()0g x -≤≤,即6()x f x x -≤≤. (3)由(2)知,当3a <-时,()(0)|(0)|3M F g a a a ≥=-=->; 当3a >-时,()(2)|(2)|63M F a g a a ≥-=--=+>; 当3a =-时,()3M a =. 综上,当()M a 最小时,3a =-.【名师点睛】本题主要考查利用导函数研究函数的切线方程,利用导函数证明不等式的方法,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.13.【2019年高考浙江】已知实数0a ≠,设函数()=ln 0.f x a x x +>(1)当34a =-时,求函数()f x 的单调区间;(2)对任意21[,)ex ∈+∞均有()f x ≤ 求a 的取值范围. 注:e=2.71828…为自然对数的底数.【答案】(1)()f x 的单调递增区间是()3,+∞,单调递减区间是()0,3;(2)0,4⎛ ⎝⎦.【解析】(1)当34a =-时,3()ln 04f x x x =->.3()4f 'x x =-+=所以,函数()f x 的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由1(1)2f a≤,得04a <≤.当04a <≤时,()f x ≤2ln 0x -≥.令1t a=,则t ≥.设()22ln ,g t t x t =≥则2()2ln g t t x=.(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭≤()2ln g t g x ≥=.记1()ln ,7p x x x =≥,则1()p'x x ===.故所以,()(1)0p x p ≥=.因此,()2()0g t g p x ≥=≥.(ii )当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,()g t g =….令211()(1),,e 7q x x x x ⎡⎤=++∈⎢⎥⎣⎦,则()10q'x =+>, 故()q x 在211,e 7⎡⎤⎢⎥⎣⎦上单调递增,所以1()7q x q ⎛⎫ ⎪⎝⎭„.由(i )得,11(1)07777q p p ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭. 所以,()<0q x .因此()0g t g =>….由(i )(ii )知对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,),()0t g t ∈+∞…,即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()f x „.综上所述,所求a 的取值范围是⎛ ⎝⎦. 【名师点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.14.【2019年高考江苏】设函数()()()(),,,f x x a x b x c a b c =---∈R 、()f 'x 为f (x )的导函数.(1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和()f 'x 的零点均在集合{3,1,3}-中,求f (x )的极小值;(3)若0,01,1a b c =<=„,且f (x )的极大值为M ,求证:M ≤427. 【答案】(1)2a =;(2)见解析;(3)见解析.【解析】(1)因为a b c ==,所以3()()()()()f x x a x b x c x a =---=-. 因为(4)8f =,所以3(4)8a -=,解得2a =. (2)因为b c =,所以2322()()()(2)(2)f x x a x b x a b x b a b x ab =--=-+++-, 从而2()3()3a b f 'x x b x +⎛⎫=-- ⎪⎝⎭.令()0f 'x =,得x b =或23a bx +=. 因为2,,3a ba b +都在集合{3,1,3}-中,且a b ≠, 所以21,3,33a b a b +===-.此时2()(3)(3)f x x x =-+,()3(3)(1)f 'x x x =+-. 令()0f 'x =,得3x =-或1x =.列表如下:所以()f x 的极小值为2(1)(13)(13)32f =-+=-.(3)因为0,1a c ==,所以32()()(1)(1)f x x x b x x b x bx =--=-++,2()32(1)f 'x x b x b =-++.因为01b <≤,所以224(1)12(21)30b b b ∆=+-=-+>, 则()f 'x 有2个不同的零点,设为()1212,x x x x <.由()0f 'x =,得121133b b x x +-++==.列表如下:所以()f x 的极大值()1M f x =. 解法一:()321111(1)M f x x b x bx ==-++()221111211(1)[32(1)]3999b b x b b b x b x b x -+++⎛⎫=-++--+ ⎪⎝⎭ ()2321(1)(1)227927b b b b b --+++=++23(1)2(1)(1)2((1)1)272727b b b b b b +-+=-+-+(1)24272727b b +≤+≤.因此427M ≤. 解法二:因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-. 令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭. 令()0g'x =,得13x =.列表如下: x 1(0,)3131(,1)3()g'x +–()g xZ极大值]所以当13x =时,()g x 取得极大值,且是最大值,故max 14()327g x g ⎛⎫== ⎪⎝⎭.所以当(0,1)x ∈时,4()()27f x g x ≤≤,因此427M ≤. 【名师点睛】本题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.15.【河北省武邑中学2019届高三第二次调研考试数学】函数的单调减区间是A .B .C .,D .【答案】A 【解析】,令,解得:.故选A .【名师点睛】本题考查了函数的单调性,考查导数的应用,是一道基础题.16.【江西省新八校2019届高三第二次联考数学】若3()3()21f x f x x x +-=++对x ∈R 恒成立,则曲线()y f x =在点()()1,1f 处的切线方程为 A .5250x y +-= B .10450x y +-= C .540x y += D .204150x y --=【答案】B【解析】()()3321f x f x x x +-=++Q ……①,()()3321f x f x x x ∴-+=--+……②,联立①②,解得()31124f x x x =--+,则()2312f x x '=--, ()11511244f ∴=--+=-,()351122f '=--=-,∴切线方程为:()55142y x +=--,即10450x y +-=. 故选B.【名师点睛】本题考查利用导数的几何意义求解在某一点处的切线方程,关键是能够利用构造方程组的方式求得函数的解析式.17.【云南省玉溪市第一中学2019届高三第二次调研考试数学】函数2l ()n f x x x =的最小值为A .1e- B .1e C .12e-D .12e【答案】C【解析】由题得(0,)x ∈+∞,()2ln (2ln 1)f x x x x x x '=+=+, 令2ln 10x +=,解得12ex -=,则当12(0,e )x -∈时,()f x 为减函数,当12(e ,)x -∈+∞时,()f x 为增函数, 所以12e x -=处的函数值为最小值,且121(e )2ef -=-. 故选C.【名师点睛】本题考查用导数求函数最值,解此类题首先确定函数的定义域,其次判断函数的单调性,确定最值点,最后代回原函数求得最值.18.【四川省内江市2019届高三第三次模拟考试数学】若函数存在单调递增区间,则的取值范围是 A .1,1e ⎛⎫- ⎪⎝⎭B .1,e ⎛⎫-+∞ ⎪⎝⎭C .()1,-+∞D .1,e ⎛⎫-∞ ⎪⎝⎭【答案】B【解析】()ln f x ax x '=+, ∴()0f x '>在x ∈()0+∞,上成立, 即ax+ln x >0在x ∈()0+∞,上成立,即a ln xx->在x ∈()0+∞,上成立. 令g (x )ln x x =-,则g ′(x )21ln xx -=-,∴g (x )ln xx =-在(0,e )上单调递减,在(e ,+∞)上单调递增,∴g (x )ln x x =-的最小值为g (e )=1e -,∴a >1e-.故选B .【名师点睛】本题考查学生利用导数研究函数的单调性及转化化归思想的运用,属中档题. 19.【山西省太原市2019届高三模拟试题(一)数学】已知定义在上的函数满足,且,则的解集是 A .B .C .D .【答案】A 【解析】令=在上单调递减,且故等价为,即,故,即x <,则所求的解集为.故选A.【名师点睛】本题考查导数与单调性的应用,构造函数的思想,考查分析推理能力,是中档题. 20.【河南省焦作市2019届高三第四次模拟考试数学】已知,,,则的大小关系为 A . B . C .D .【答案】D【解析】依题意,得3ln3ln 33a ==,1lne e e b -==,3ln2ln888c ==.令,所以.所以函数在上单调递增,在上单调递减, 所以,且,即,所以. 故选D.【名师点睛】本题主要考查了利用导数判断函数的单调性,构造出函数()ln xf x x=是解题的关键,属于中档题.21.【安徽省毛坦厂中学2019届高三校区4月联考数学】已知,若关于的不等式恒成立,则实数的取值范围是A .1,e ⎛⎫-∞ ⎪⎝⎭B .(),0-∞C .1,e ⎡⎫+∞⎪⎢⎣⎭D .1,e ⎛⎫+∞ ⎪⎝⎭【答案】D【解析】由()0f x <恒成立得ln 1e xx a +>恒成立,设()ln 1e x x h x +=,则()1ln 1e xx x h x -='-. 设()1ln 1g x x x =--,则()2110g x x x'=--<恒成立,在上单调递减, 又,当时,,即;当时,,即, 在上单调递增,在上单调递减,,.故选D.【名师点睛】本题考查利用导数求函数的最值,不等式恒成立问题,分离参数是常见的方法,属于中档题.22.【辽宁省丹东市2019届高三总复习质量测试】若1x =是函数()3221()(1)33f x x a x a a x =++-+-的极值点,则a 的值为 A .-2 B .3 C .-2或3D .-3或2【答案】B 【解析】()()()()32222113(3)(132)f x x a x a a f x x x a x a a '=++-=++-+-⇒+-, 由题意可知(1)0f '=,即()212(1)303a a a a +-=+⇒-=+或2a =-,当3a =时,()222()2(1)389(9)(1)f x x a x a a x x x x +-'=++-=+-=+-,当1x >或9x <-时,()0f x '>,函数单调递增;当91x -<<时,()0f x '<,函数单调递减, 显然1x =是函数()f x 的极值点;当2a =-时,()2222()232(111))(0a a f x x a x x x x +-=-++=-=+-≥', 所以函数()f x 是R 上的单调递增函数,没有极值,不符合题意,舍去. 故3a =. 故选B .【名师点睛】本题考查了已知函数的极值,求参数的问题.本题易错的地方是求出a 的值,没有通过单调性来验证1x =是不是函数的极值点,也就是说使得导函数为零的自变量的值,不一定是极值点.23.【黑龙江省大庆市第一中学2019届高三下学期第四次模拟(最后一卷)考试】已知奇函数()f x 是定义在R 上的可导函数,其导函数为()f x ',当0x >时,有()()22f x xf x x '>+,则不等式()()()22018+2018420x f x f +-<+的解集为A .(),2016-∞-B .()2016,2012--C .(),2018-∞-D .()2016,0-【答案】A【解析】设()()2g x x f x =,因为()f x 为R 上的奇函数,所以()()()()22g x x f x x f x -=--=-, 即()g x 为R 上的奇函数对()g x 求导,得()()()2f g f x x x x x '=+'⎡⎤⎣⎦, 而当0x >时,有()()220f x xf x x '>+≥,故0x >时,()0g x '>,即()g x 单调递增, 所以()g x 在R 上单调递增,则不等式()()()22018+2018420x f x f +-<+即()()()22018+201842x f x f +<--, 即()()()22018+201842x f x f +<, 即()()20182g x g +<,所以20182x +<,解得2016x <-. 故选A.【名师点睛】本题考查构造函数解不等式,利用导数求函数的单调性,函数的奇偶性,题目较综合,有一定的技巧性,属于中档题.24.【重庆西南大学附属中学校2019届高三第十次月考数学】曲线21()ln 2f x x x x =+在点(1(1))f ,处的切线与直线10ax y --=垂直,则a =________. 【答案】12-【解析】因为21()ln 2f x x x x =+,所以()ln 1f x x x '=++, 因此,曲线21()ln 2f x x x x =+在点(1(1))f ,处的切线斜率为(1)112k f '==+=, 又该切线与直线10ax y --=垂直,所以12a =-. 故答案为12-. 【名师点睛】本题主要考查导数在某点处的切线斜率问题,熟记导数的几何意义即可求解,属于常考题型.25.【河南省新乡市2019届高三下学期第二次模拟考试数学】已知函数在上单调递增,则的取值范围是__________. 【答案】【解析】由题意知在上恒成立,则,令,()()1e xg x x +'=,知在上单调递增,则的最小值为,故.故答案为.【名师点睛】对于恒成立或者有解求参的问题,常用方法有:变量分离,参变分离,转化为函数最值问题;或者直接求函数最值,使得函数最值大于或者小于0;或者分离成两个函数,使得一个函数恒大于或小于另一个函数.26.【广东省深圳市高级中学2019届高三适应性考试(6月)数学】已知函数22,0,()e ,0,x x x f x x ⎧≤=⎨>⎩若方程2[()]f x a =恰有两个不同的实数根12,x x ,则12x x +的最大值是______.【答案】3ln 22-【解析】作出函数()f x 的图象如图所示,由()2f x a =⎡⎤⎣⎦,可得(),1f x a a =>, 即1a >,不妨设12x x < ,则2212e x x a =(1)a t t =>,则12,ln 2tx x t ==, 12ln 2t x x t ∴+=-令()ln 2t g t t =-42()t g t -'= ∴当18t <<时,()0g t '>,()g t 在()1,8上单调递增;当8t >时,()0g t '<,()g t 在()8,+∞上单调递减,∴当8t =时,()g t 取得最大值,为(8)ln823ln22g =-=-.故答案为3ln 22-.【名师点睛】本题主要考查方程的根与图象交点的关系,考查了利用导数判断函数的单调性以及求函数的极值与最值,属于难题.求函数()f x 的极值与最值的步骤:(1)确定函数的定义域;(2)求导数()f x ';(3)解方程()0,f x '=求出函数定义域内的所有根;(4)判断()f x '在()0f x '=的根0x 左右两侧值的符号,如果左正右负(左增右减),那么()f x 在0x 处取极大值,如果左负右正(左减右增),那么()f x 在0x 处取极小值.(5)如果只有一个极值点,则在该点处取得极值也是最值;(6)如果求闭区间上的最值还需要比较端点处的函数值与极值的大小.27.【山东省烟台市2019届高三3月诊断性测试(一模)数学】已知函数4211()42f x x ax =-,a ∈R . (1)当1a =时,求曲线()f x 在点(2,(2))f 处的切线方程;(2)设函数2()(22)e e ()xg x x x a f x =-+--,其中e 2.71828...=是自然对数的底数,讨论()g x 的单调性并判断有无极值,有极值时求出极值. 【答案】(1)6100x y --=;(2)当0a ≤时,()g x 在(,)-∞+∞上单调递增,无极值;当0a >时,()g x 在(,-∞和)+∞单调递增,在(单调递减,极大值为2e(2)e4g a =+,极小值为2e (4g a =-+. 【解析】(1)由题意3()f x x ax '=-,所以当1a =时,(2)2f =,(2)6f '=,因此曲线()y f x =在点(2,(2))f 处的切线方程是26(2)y x -=-, 即6100x y --=.(2)因为2()(22)e e ()xg x x x a f x =-+--, 所以2()(22)e (22)e e '()xxg x x x x a f x '=-+-+--232()e e()()(e e )x x x a x ax x a x =---=--,令()e e xh x x =-,则()e e xh x '=-,令()0h x '=得1x =,当(,1)x ∈-∞时,()0h x '<,()h x 单调递减, 当(1,)x ∈+∞时,()0h x '>,()h x 单调递增, 所以当1x =时,min ()(1)0h x h ==, 也就说,对于x ∀∈R 恒有()0h x ≥. 当0a ≤时,2()()()0g x x a h x '=-≥,()g x 在(,)-∞+∞上单调递增,无极值;当0a >时,令()0g x '=,可得x =当x <x >2()()()0g x x a h x '=-≥,()g x 单调递增,当x <<()0g x '<,()g x 单调递减,因此,当x =()g x 取得极大值2e(2)e4g a =+;当x a =时,()g x 取得极小值2e ()(22)e4ag a a a =-++. 综上所述:当0a ≤时,()g x 在(,)-∞+∞上单调递增,无极值;当0a >时,()g x 在(,)a -∞-和(,)a +∞上单调递增,在(,)a a -上单调递减, 函数既有极大值,又有极小值, 极大值为2e()(22)e 4ag a a a --=++, 极小值为2e ()(22)e4ag a a a =-++. 【名师点睛】本题考查了函数的单调性,极值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.28.【陕西省2019届高三第三次联考数学】已知函数,,.(1)求函数的极值点;(2)若恒成立,求的取值范围.【答案】(1)极大值点为,无极小值点.(2). 【解析】(1)()ln f x x ax =-的定义域为,, 当时,,所以在上单调递增,无极值点;当时,解得,解得,所以在上单调递增,在上单调递减,所以函数有极大值点,为,无极小值点.(2)由条件可得恒成立,则当时,恒成立,令,则,令,则当时,,所以在上为减函数.又,所以在上,;在上,.所以在上为增函数,在上为减函数,所以,所以.【名师点睛】对于函数恒成立或者有解求参的问题,常用方法有:变量分离,参变分离,转化为函数最值问题;或者直接求函数最值,使得函数最值大于或者小于0;或者分离成两个函数,使得一个函数恒大于或小于另一个函数.29.【山东省济宁市2019届高三二模数学】已知函数.(1)若函数在上单调递减,求实数的取值范围;(2)若,求的最大值.【答案】(1);(2).【解析】(1)由题意知,在上恒成立,所以在上恒成立.令,则,所以在上单调递增,所以,所以.(2)当时,.则,令,则,所以在上单调递减.由于,,所以存在满足,即.当时,,;当时,,.所以在上单调递增,在上单调递减.所以,因为,所以,所以,所以.【名师点睛】本题主要考查利用导数研究函数的单调性,最值,零点存在性定理及其应用,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力. 30.【福建省2019年三明市高三毕业班质量检查测试】已知函数有两个极值点,.(1)求的取值范围; (2)求证:. 【答案】(1);(2)见解析.【解析】(1)因为,所以,令,则, 当时,不成立; 当时,2ex xa =, 令()ex x g x =, 所以()1ex xg x ='-,当时,,当时,, 所以在上单调递增,在上单调递减,又因为()11eg =, 当时,,当时,,因此,当210ea <<时,有2个极值点,即的取值范围为.(2)由(1)不妨设,且12122e 2e x x ax ax ==⎧⎪⎨⎪⎩,所以,所以,要证明,只要证明,即证明2211122ln x x x x x x ⎛⎫<-⎪⎝⎭,设21(1)x t t x =>, 即要证明在上恒成立,记()12ln (1)h t t t t t=-+>,()()222221212110t t t h t t t t t ---+-='=--=<, 所以在区间上单调递减, 所以,即,即.【名师点睛】本题主要考查导数的应用,通常需要对函数求导,利用导数的方法研究函数的单调性、最值等即可,属于常考题型.31.【北京市西城区2019届高三4月统一测试(一模)数学】设函数,其中.(1)当为偶函数时,求函数的极值;(2)若函数在区间上有两个零点,求的取值范围. 【答案】(1)极小值,极大值;(2)或.【解析】(1)由函数是偶函数,得,即对于任意实数都成立,所以.此时,则.由,解得. 当x 变化时,与的变化情况如下表所示:↘极小值 ↗极大值↘所以在,上单调递减,在上单调递增. 所以有极小值,极大值.(2)由,得.所以“在区间上有两个零点”等价于“直线与曲线,有且只有两个公共点”.对函数求导,得.由,解得,.当x变化时,与的变化情况如下表所示:0 0所以在,上单调递减,在上单调递增.又因为,,,,所以当或时,直线与曲线,有且只有两个公共点. 即当或时,函数在区间上有两个零点.【名师点睛】利用函数零点的情况求参数值或取值范围的方法:(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象问题,从而构建不等式求解.。
2019高考数学专题三含导函数的抽象函数的构造精准培优专练文20181108138
培优点三含导函数的抽象函数的构造1.对于f'x a a0,可构造h x f x ax例1:函数f x的定义域为R ,f(1) 2 ,对任意x R ,f(x) 2 ,则f x2x 4 的解集为()A.(1,1) B.(1,) C.(,1) D.(,)【答案】B【解析】构造函数G x f x2x 4 ,所以G(x) f(x) 2 ,由于对任意x R ,f x,( ) 2所以G(x) f(x) 2 0 恒成立,所以G x f x2x 4 是R 上的增函数,又由于G(1) f(1) 2(1) 4 0 ,所以G x f x2x 4 0 ,即f x2x 4 的解集为(1,) .2.对于xf'x f x0 ,构造h x xf x;对于xf'x f x0 ,构造h x f xx例2:已知函数y f x的图象关于y轴对称,且当x,0,f x xf x0 成立,a f,b log 3 f log 3,2 2 c log 9 f log 9 ,则a,b,c的大小关系是0.2 0.23 3()A.a b c B.a c b C.c b a D.b a c【答案】D【解析】因为函数y f x关于y轴对称,所以函数y xf x为奇函数.因为xf x f x xf x,所以当x,0时,xf x fx xf x0 ,函数y xf x单调递减,当x0,时,函数y xf x单调递减.因为120.2 2 ,0 log 3 1,log 9 2 ,所以0 log 3 20.2 log 9 ,所以b a c.3 33.对于f'(x) f(x) 0 ,构造h x e x f x;对于f'(x) f(x) 或f'(x) f(x) 0 ,构造1h (x )f (x )e x 例 3:已知f x 为 R 上的可导函数,且x R ,均有 fx fx ,则有( )A . e 2016 f (2016) f (0) , f (2016) e 2016 f (0)B . e 2016 f (2016) f (0) , f (2016) e 2016 f (0)C . e 2016 f (2016) f (0) , f (2016) e 2016 f (0)D . e 2016 f (2016) f (0) , f (2016) e 2016 f (0)【答案】Df x eef xfxfxxxf x【解析】构造函数 gx,则,g xe x2xeex因为x R 均有 fx fx并且 e 0x,所以gx0 ,故函数g x 在 R 上单调递f x e x减,所以 g (2016) g (0) , g (2016) g (0) ,即f (2016) ,f (0)e2016f (2016) e2016f(0) ,也就是 e 2016 f (2016) f (0) , f (2016) e 2016 f (0) .4. f (x ) 与sin x , cos x 构造例 4:已知函数 yf x 对任意的 ,x2 2满足 f xcos x fx sin x0 ,则()A.0 24f fB.03f f C. 2 f f3 4D. 2 f f34【答案】D【解析】提示:构造函数g(x) f(x ).cos x2对点增分集训一、选择题 1.若函数 yfx 在 R 上可导且满足不等式 xf (x ) f (x ) 0恒成立,对任意正数 a 、b ,若a b ,则必有()A . af (b ) bf (a )B .bf (a ) af (b )C . af (a ) bf (b )D .bf (b ) af (a )【答案】C 【解析】由已知 xf (x ) f (x ) 0∴构造函数 Fx xf x ,则 F (x ) xf (x ) f (x ) 0 ,从而 F x 在 R 上为增函数。
专题6.1 导数中的构造函数-玩转压轴题,突破140分之高三数学选择题填空题高端精品
【方法综述】函数与方程思想、转化与化归思想是高中数学思想中比较重要的两大思想,而构造函数的解题思路恰好是这两种思想的良好体现,尤其是在导数题型中.在导数小题中构造函数的常见结论:出现()()nf x xf x '+形式,构造函数()()F nx x f x =;出现()()xf x nf x '-形式,构造函数()()F n f x x x =;出现()()f x nf x '+形式,构造函数()()F nxx e f x =;出现()()f x nf x '-形式,构造函数()()F nxf x x e =. 【解答策略】类型一、利用()f x 进行抽象函数构造 1.利用()f x 与x (n x )构造 常用构造形式有()xf x ,()f x x ;这类形式是对u v ⋅,uv型函数导数计算的推广及应用,我们对u v ⋅,u v 的导函数观察可得知,u v ⋅型导函数中体现的是“+”法,uv型导函数中体现的是“-”法,由此,我们可以猜测,当导函数形式出现的是“+”法形式时,优先考虑构造u v ⋅型,当导函数形式出现的是“-”法形式时,优先考虑构造uv. 例1.【2019届高三第二次全国大联考】设是定义在上的可导偶函数,若当时,,则函数的零点个数为 A .0 B .1 C .2D .0或2 【指点迷津】设,当时,,可得当时,,故函数在上单调递减,从而求出函数的零点的个数.【举一反三】【新疆乌鲁木齐2019届高三第二次质量检测】的定义域是,其导函数为,若,且(其中是自然对数的底数),则A .B .C .当时,取得极大值D .当时,2.利用()f x 与x e 构造()f x 与x e 构造,一方面是对u v ⋅,uv函数形式的考察,另外一方面是对()x x e e '=的考察.所以对于()()f x f x '±类型,我们可以等同()xf x ,()f x x的类型处理, “+”法优先考虑构造()()F xx f x e =⋅, “-”法优先考虑构造()()F xf x x e=. 例2、【湖南省长郡中学2019届高三下学期第六次月考】已知是函数的导函数,且对任意的实数都有是自然对数的底数),,若不等式的解集中恰有两个整数,则实数的取值范围是( )A .B .C .D .【指点迷津】令,可得,可设,,解得,,利用导数研究其单调性极值与最值并且画出图象即可得出.【举一反三】【安徽省黄山市2019届高三第二次检测】已知函数是定义在上的可导函数,对于任意的实数x ,都有,当时,若,则实数a 的取值范围是( )A .B .C .D .3.利用()f x 与sin x ,cos x 构造sin x ,cos x 因为导函数存在一定的特殊性,所以也是重点考察的范畴,我们一起看看常考的几种形式.()()F sin x f x x =,()()()F sin cos x f x x f x x ''=+;()()F sin f x x x =,()()()2sin cos F sin f x x f x xx x'-'=; ()()F cos x f x x =,()()()F cos sin x f x x f x x ''=-;()()F cos f x x x =,()()()2cos sin F cos f x x f x xx x'+'=.例3、已知函数()y f x =对于任意,22x ππ⎛⎫∈-⎪⎝⎭满足()()cos sin 0f x x f x x '+>(其中()f x '是函数()f x 的导函数),则下列不等式不成立的是( ) A .234f f ππ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭B .234f f ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭C .()024f f π⎛⎫<⎪⎝⎭ D .()023f f π⎛⎫< ⎪⎝⎭【指点迷津】满足“()()cos sin 0f x x f x x '+>”形式,优先构造()()F cos f x x x=,然后利用函数的单调性和数形结合求解即可.注意选项的转化. 类型二 构造具体函数关系式这类题型需要根据题意构造具体的函数关系式,通过具体的关系式去解决不等式及求值问题. 1.直接法:直接根据题设条件构造函数 例4、α,,22ππβ⎡⎤∈-⎢⎥⎣⎦,且sin sin 0ααββ->,则下列结论正确的是( ) A .αβ> B .22αβ> C .αβ< D .0αβ+> 【指点迷津】根据题目中不等式的构成,构造函数()sin f x x x =,然后利用函数的单调性和数形结合求解即可.【举一反三】【福建省2019届备考关键问题指导适应性练习(四)】已知函数,,若关于的方程在区间内有两个实数解,则实数的取值范围是( )A .B .C .D .【指点迷津】根据题目中方程的构成,构造函数,然后利用函数的单调性和数形结合求解即可.2. 参变分离,构造函数例5.【云南省玉溪市第一中学2019届高三下学期第五次调研】 设为函数的导函数,且满足,若恒成立,则实数的取值范围是()A.B.C.D.【指点迷津】根据,变形可得,通过构造函数,进一步确定的最大值,利用导数,结合的单调性,即可求解.【举一反三】【河北省唐山市2019届高三下学期第一次模拟】设函数,有且仅有一个零点,则实数的值为()A.B.C.D.【强化训练】一、选择题1.【山西省2019届高三百日冲刺】已知函数,若对任意的,恒成立,则的取值范围为()A.B.C.D.2.【海南省海口市2019届高三高考调研】已知函数的导函数满足对恒成立,则下列判断一定正确的是()A.B.C.D.3.【辽宁省抚顺市2019届高三一模】若函数有三个零点,则实数的取值范围是() A.B.C.D.4.【辽宁省师范大学附属中学2019届高三上学期期中】已知函数,若是函数的唯一极值点,则实数k的取值范围是()A.B.C.D.5.【2019届山西省太原市第五中学高三4月检测】已知函数,若函数在上无零点,则()A.B.C.D.6.【安徽省毛坦厂中学2019届高三校区4月联考】已知,若关于的不等式恒成立,则实数的取值范围是()A.B.C.D.7.【2019届湘赣十四校高三第二次联考】已知函数为上的偶函数,且当时函数满足,,则的解集是()A.B.C.D.8.【河南省八市重点高中联盟“领军考试”2019届高三第三次测评】若函数在区间上单调递增,则的最小值是()A.-3 B.-4 C.-5 D.9.【宁夏六盘山高级中学2019届高三二模】定义域为的奇函数,当时,恒成立,若,,则()A.B.C.D.10.【四川省教考联盟2019届高三第三次诊断】已知定义在上的函数关于轴对称,其导函数为,当时,不等式.若对,不等式恒成立,则正整数的最大值为()A.B.C.D.11.【2019届高三第二次全国大联考】已知定义在上的可导函数的导函数为,若当时,,则函数的零点个数为A.0 B.1 C.2 D.0或2二、填空题12.【江苏省海安高级中学2019届高三上学期第二次月考】若关于x的不等式对任意的实数及任意的实数恒成立,则实数a的取值范围是______.13.【山东省济南市山东师范大学附属中学2019届高三四模】定义在R上的奇函数的导函数满足,且,若,则不等式的解集为______.14.【广东省佛山市第一中学2019届高三上学期期中】已知定义在R上的奇函数满足f(1)=0,当x >0时,,则不等式的解集是______.15.【重庆市第一中学校2019届高三3月月考】设是定义在上的函数,其导函数为,若,,则不等式(其中为自然对数的底数)的解集为______. 16.【湖南师大附中2019届高三月考(七)】设为整数,若对任意的,不等式恒成立,则的最大值是__________.。
2019届高考数学专题三含导函数的抽象函数的构造精准培优专练理
培优点三含导函数的抽象函数的构造1.对于()()'0f x a a >≠,可构造()()h x f x ax=-例1:函数()f x 的定义域为R ,()12f -=,对任意R x ∈,()2f x '>,则()24f x x >+的解集为()A.()1,1-B.()1-+∞,C.()1-∞-,D.()-∞+∞,【答案】B【解析】构造函数()()24G x f x x =--,所以()()2G x f x ''=-,由于对任意R x ∈,()2f x '>,所以()()20G x f x ''->=恒成立,所以()()24G x f x x =--是R 上的增函数,又由于()()()112140G f -=----⨯=,所以()()240G x f x x -->=,即()24f x x >+的解集为()1-+∞,.故选B.2.对于()()'0xf x f x +>,构造()()h x xf x =;对于()()'0xf x f x ->,构造()()f x h x x=例2:已知函数()y f x =的图象关于y 轴对称,且当(),0x ∈-∞,()()0f x xf x '+<成立,()0.20.222a f =,()log 3log 3b f ππ=,()33log 9log 9c f =,则a ,b ,c 的大小关系是()A.a b c >>B.a c b >>C.c b a >>D.b a c>>【答案】D【解析】因为函数()y f x =关于y 轴对称,所以函数()y xf x =为奇函数.因为()()()xf x f x xf x ''=+⎡⎤⎣⎦,所以当(),0x ∈-∞时,()()()0xf x f x xf x ''=+<⎡⎤⎣⎦,函数()y xf x =单调递减,当()0,x ∈+∞时,函数()y xf x =单调递减.因为0.2122<<,0log 31π<<,3log 92=,所以0.230log 32log 9π<<<,所以b a c >>.故选D.3.对于'()()0f x f x +>,构造()()e x h x f x =;对于'()()f x f x >或'()()0f x f x ->,构造()()e xf x h x =例3:已知()f x 为R 上的可导函数,且R x ∀∈,均有()()f x f x '>,则有()A.2016e (2016)(0)f f -<,2016(2016)e (0)f f >B.2016e (2016)(0)f f -<,2016(2016)e (0)f f <C.2016e (2016)(0)f f ->,2016(2016)e (0)f f >D.2016e (2016)(0)f f ->,2016(2016)e (0)f f <【答案】D【解析】构造函数()()e xf xg x =,则()()()()()()()2e e e e x x xx f x f x f x f x g x ''-'-'==,因为R x ∀∈均有()()f x f x '>并且e 0x >,所以()0g x '<,故函数()()exf xg x =在R 上单调递减,所以(2016)(0)g g ->,(2016)(0)g g <,即2016(2016)(0)e f f -->,2016(2016)(0)e f f <,也就是2016e (2016)(0)f f ->,2016(2016)e (0)f f <.4.()f x 与sin x ,cos x 构造例4:已知函数()y f x =对任意的,22x ππ⎛⎫∈- ⎪⎝⎭满足()()cos sin 0f x x f x x '+>,则()A.()04f π⎛⎫> ⎪⎝⎭B.()03f f π⎛⎫<2- ⎪⎝⎭34f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭34f ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭【答案】D【解析】提示:构造函数()()cos f x g x x=.对点增分集训一、选择题1.若函数()y f x =在R 上可导且满足不等式()()0xf x f x '+>恒成立,对任意正数a 、b ,若a b <,则必有()A.()()af b bf a <B.()()bf a af b <C.()()af a bf b <D.()()bf b af a <【答案】C【解析】由已知()()0xf x f x '+>∴构造函数()()F x xf x =,则()()()0F x xf x f x ''=+>,从而()F x 在R 上为增函数。
2019届高考数学复习预测真题模拟专题三含导函数的抽象函数的构造精准培优专练理科数学附答案
第 1 页 共 10 页培优点三 含导函数的抽象函数的构造1.对于()()'0f x a a >≠,可构造()()h x f x ax =-例1:函数()f x 的定义域为R ,()12f -=,对任意R x ∈,()2f x '>,则()24f x x >+的解集为( ) A .()1,1- B .()1-+∞,C .()1-∞-,D .()-∞+∞,【答案】B【解析】构造函数()()24G x f x x =--,所以()()2G x f x ''=-,由于对任意R x ∈,()2f x '>, 所以()()20G x f x ''->=恒成立,所以()()24G x f x x =--是R 上的增函数, 又由于()()()112140G f -=----⨯=,所以()()240G x f x x -->=, 即()24f x x >+的解集为()1-+∞,.故选B .2.对于()()'0xf x f x +>,构造()()h x xf x =;对于()()'0xf x f x ->,构造()()f x h x x=例2:已知函数()y f x =的图象关于y 轴对称,且当(),0x ∈-∞,()()0f x xf x '+<成立,()0.20.222a f =,()log 3log 3b f ππ=,()33log 9log 9c f =,则a ,b ,c 的大小关系是( ) A .a b c >> B .a c b >> C .c b a >> D .b a c >>【答案】D【解析】因为函数()y f x =关于y 轴对称,所以函数()y xf x =为奇函数.因为()()()xf x f x xf x ''=+⎡⎤⎣⎦,所以当(),0x ∈-∞时,()()()0xf x f x xf x ''=+<⎡⎤⎣⎦,函数()y xf x =单调递减,当()0,x ∈+∞时,函数()y xf x =单调递减.因为0.2122<<,0log 31π<<,3log 92=,所以0.230log 32log 9π<<<,所以b a c >>.故选D .3.对于'()()0f x f x +>,构造()()e x h x f x =;对于'()()f x f x >或'()()0f x f x ->,构造第 2 页 共 10 页()()e xf x h x =例3:已知()f x 为R 上的可导函数,且R x ∀∈,均有()()f x f x '>,则有( ) A .2016e (2016)(0)f f -<,2016(2016)e (0)f f >B .2016e (2016)(0)f f -<,2016(2016)e (0)f f <C .2016e (2016)(0)f f ->,2016(2016)e (0)f f >D .2016e (2016)(0)f f ->,2016(2016)e (0)f f < 【答案】D【解析】构造函数()()e xf xg x =,则()()()()()()()2e e e e x x xx f x f x f x f x g x ''-'-'==,因为R x ∀∈均有()()f x f x '>并且e 0x >,所以()0g x '<,故函数()()e xf xg x =在R 上单调递减,所以(2016)(0)g g ->,(2016)(0)g g <,即2016(2016)(0)e f f -->,2016(2016)(0)e f f <, 也就是2016e (2016)(0)f f ->,2016(2016)e (0)f f <.4.()f x 与sin x ,cos x 构造例4:已知函数()y f x =对任意的,22x ππ⎛⎫∈- ⎪⎝⎭满足()()cos sin 0f x x f x x '+>,则( )A .()04f π⎛⎫> ⎪⎝⎭B .()03f f π⎛⎫<2- ⎪⎝⎭C34f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭D34f ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭【答案】D【解析】提示:构造函数()()cos f x g x x=.第 3 页 共 10 页一、选择题1.若函数()y f x =在R 上可导且满足不等式()()0xf x f x '+>恒成立,对任意正数a 、b ,若a b <, 则必有( )A .()()af b bf a <B .()()bf a af b <C .()()af a bf b <D .()()bf b af a <【答案】C【解析】由已知()()0xf x f x '+>∴构造函数()()F x xf x =, 则()()()0F x xf x f x ''=+>,从而()F x 在R 上为增函数。
2019高考数学专题三含导函数的抽象函数的构造精准培优专练文
哈哈哈哈哈哈哈哈你好培长处三含导函数的抽象函数的结构1.对于 f ' x a a 0 ,可结构 h x f x ax例 1:函数 f x 的定义域为 R ,f ( 1) 2 ,对随意 x R ,f ( x) 2 ,则 f x 2 x 4 的解集为()A. ( 1,1) B.( 1,) C. ( , 1) D. ( ,)【答案】 B【分析】结构函数 G x f x 2 x 4 ,所以G (x) f ( x) 2 ,因为对随意x R ,f (x) 2 ,所以 G (x) f ( x) 2 0 恒建立,所以G x f x 2x 4 是R上的增函数,又因为 G( 1) f ( 1) 2 ( 1) 4 0,所以 G x f x 2x 4 0 ,即 f x 2 x 4 的解集为( 1,) .2.对于 xf ' x f x 0 ,结构 h x xf x ;对于 xf ' x f x 0 ,结构 h x f x x例 2:已知函数 y f x 的图象对于 y 轴对称,且当x ,0 , f x xf x 0 建立,a 20.2 f 20.2 ,b log 3 f log 3 ,c log 3 9 f log 3 9 ,则 a , b , c 的大小关系是()A. a b c B. a c b C. c b a D. b a c【答案】 D【分析】因为函数 y f x 对于 y 轴对称,所以函数y xf x 为奇函数.因为 xf x f x xf x ,所以当 x ,0 时, xf x f x xf x 0 ,函数y xf x 单一递减,当x 0, 时,函数 y xf x 单一递减.因为 1 2 0.2 2 ,0 log 3 1 , log 3 9 2,所以 0 log 30.2a c .2 log3 9 ,所以 b3.对于 f '( x) f ( x) 0 ,结构 h x e x f x ;对于 f '( x) f (x) 或 f '(x) f ( x) 0,结构f(x)h ( x)e x例 3:已知 f x为R上的可导函数,且x R ,均有 f x f x ,则有()A. e2016 f ( 2016) f (0) , f (2016)e2016 f (0)B. e2016 f ( 2016) f (0) , f (2016) e2016 f (0) C. e2016 f ( 2016) f (0) , f (2016) e2016 f (0) D. e2016 f ( 2016) f (0) , f (2016) e2016 f (0) 【答案】 D【分析】结构函数 gf x f x e x e x f xf x f xxe x,则g x e x2e x ,因为 x R 均有 f x f x 而且 e x 0,所以g x 0,故函数g x f x在R上单一e x递减,所以 g ( 2016) g (0) , g (2016) g (0) ,即f ( 2016)ff (2016)f (0) ,e2016 (0) ,e2016也就是 e2016 f ( 2016) f (0) , f (2016) e2016 f (0) .4.f (x)与 sin x , cosx 结构例 4:已知函数y f x 对随意的x,知足f x cosx f x sin x 0 ,则()2 2A. f 0 2 f B. f 0 f4 3C. 2 f f D. 2 f f3 4 3 4【答案】 D【分析】提示:结构函数g (x) f ( x) .cos x对点增分集训1.若函数 y f x 在 R 上可导且知足不等式 xf ( x) f (x) 0 恒建立,对随意正数a 、b ,若 a b ,则必有()A . af (b) bf (a)B . bf (a) af (b)C . af (a) bf (b)D . bf (b) af ( a)【答案】 C【分析】 由已知 xf ( x) f ( x) 0 ∴结构函数 F x xf x ,则 F (x) xf (x)f (x) 0,进而 F x 在 R 上为增函数。
2020届高三学子培优专练三 :《导函数的抽象函数的构造》(理) 解析版
是
.
【答案】 (1, )
【解析】令 F (x) f (x) 3x ,则 F x f x 3 0 ,∴ F (x) 在 R 上为单调递增.
又∵ f (1) 3 ,∴ F (1) f (1) 3 0 ,则 f (x) 3x 可转化为 F (x) 0 F (1) ,
根据 F (x) 单调性可知不等式 f (x) 3x 的解集为 (1, ) .
令0
x
1,则
x
1 x
,由已知
F (x)
F(1) x
,可得
f
(x)
1x
ex
f
1 x
,
1x
下面证明 e x
1 x2
,即证明
1 x
x
2 ln
x
0
,
令
g(x)
1 x
x
2 ln
x ,则
g(x)
(x 1)2 x2
0 ,即
g(x) 在 (0,1) 上递减,
g(x)
g(1)
0,
1x
即ex
1 x2
,所以 xf
A. (2020, 0)
B. (2021, 0)
C. (, 2020)
D. (, 2021)
【答案】D
【解析】令 g(x) x2 f (x) , g(x) x2 f (x) 2xf (x) x(xf (x) 2 f (x)) ,
∵当 x 0 时, 2 f (x) xf (x) x 2 0 ,∴ x[xf (x) 2 f (x)] 0 ,
∴ g(x) x2 f (x) 在 (, 0) 上是减函数,
∴ (x 2019)2 f (x 2019) 4 f (2) 0 可化为 (x 2019)2 f (x 2019) 4 f (2) (2)2 f (2) , ∴ x 2019 2 0 ,故 x 2021.故选 D.
导函数的难题汇编——构造函数【解析版】
高中数学专题:导数难题【2019届高三第二次全国大联考(新课标Ⅲ卷)文科数学试题】设y=f(x)是定义在R上的可导偶函数,若当x>0时,,则函数的零点个数为()A.0 B.1 C.2D.0或2【答案】A【解析】设,因为函数为偶函数,所以也是上的偶函数,所以.由已知,时,,可得当时,,故函数在上单调递减,由偶函数的性质可得函数在上单调递增.所以,所以方程,即无解,所以函数没有零点.【新疆乌鲁木齐2019届高三第二次质量检测文科数学试题】f(x)的定义域是(0,+ ),其导函数为,若,且(其中e是自然对数的底数),则A.B.C.当x=e时,f(x)取得极大值D.当时,【答案】C【解析】设,则则又得即,所以即,由得,得,此时函数为增函数由得,得,此时函数为减函数则,即,则,故错误,即,则,故错误当时,取得极小值即当,,即,即,故错误当时,取得极小值此时,则取得极大值【黑龙江省龙东南七校2018-2019学年高二上学期期末联考数学(文)试题】定义在(0,+ )上的可导函数f(x)满足,且,则的解集为( )A.(3,+∞)B.(0,3)∪(3,+∞) C.(0,3)D.【答案】C【解析】令g(x),∵,∴<0.∴,∴g(x)在(0,+ )上单调递减,∵f(3)=0,即g(3)=0.∴g(x)0的解是0<x<3.【辽宁省庄河市高级中学2018-2019学年高二下学期开学考试数学(文)试题】已知定义域为R的奇函数y=f(x)的导函数为,当时,,若,,,则a,b,c,的大小关系正确的是()A.B.C.D.【答案】B【解析】设,则,因为当时,,所以当时,,即;当时,,即;所以在上单调递增,在上单调递减;又函数为奇函数,所以,因此,故函数为偶函数,所以,,,因为在上单调递减,所以,故.【云南省玉溪市第一中学2019届高三下学期第五次调研考试数学(理)试题】设为函数f(x)的导函数,且满足,若恒成立,则实数b的取值范围是()A.B.C.D.【答案】A【解析】,由,可得的对称轴为,所以,所以,所以,由可得,变形可得,即,设,,易得函数在区间上单调递增,在区间上单调递减,所以,故实数b的取值范围为.【安徽省黄山市2019届高三毕业班第二次质量检测数学(文)试题】已知函数f(x)是定义在R上的可导函数,对于任意的实数x,都有,当时f'(x)+f(x)>0,若,则实数a的取值范围是()A.B.C.D.【答案】B【解析】令,则当时,,又,所以为偶函数,从而等价于,因此【河南省洛阳市2018-2019学年第一学期期末考试高二数学试卷(文)】定义在R上的可导函数f(x)满足f'(x)+f(x)<0,则下列各式一定成立的是()A.B.C.D.【答案】A【解析】解:可导函数满足等价于故令所以在R上单调递减,所以即即【甘肃省武威第一中学2018-2019学年高二下学期第一次阶段测试数学(理)试题】已知函数的图象如图所示(其中是函数f(x)的导函数),下面四个图象中y=f(x)的图象大致是( )A. B.C.D.【答案】C【解析】由函数y=xf′(x)的图象可知:当x<﹣1时,xf′(x)<0,f′(x)>0,此时f(x)增当﹣1<x<0时,xf′(x)>0,f′(x)<0,此时f(x)减当0<x<1时,xf′(x)<0,f′(x)<0,此时f(x)减当x>1时,xf′(x)>0,f′(x)>0,此时f(x)增.【海南省海口市2019届高三高考调研测试数学(文科)试题】已知函数f(x)的导函数满足对恒成立,则下列判断一定正确的是()A.B.C.D.【答案】B【解析】由题意设,则,所以函数在上单调递增,所以,即.【内蒙古通辽实验中学2018-2019学年高二下学期第一次月考数学(理)试题】已知f(x)是定义在R上的可导函数,当x∈(1,+∞)时,(x−1)(x)−f(x)>0恒成立,若a=f(2),b=f(3),c=f(),则a,b,c的大小关系是( )A.c<a<b B.b<a<c C.a<b<c D.a<c<b【答案】C【解析】解:设g(x)=,当x>1时,g′(x)=,即此时函数单调递增.则a=f(2)=g(2),b=f(3)=g(3),c=()f()=g(),∵,∴g(2)<g(3)<g(),即,【甘肃省兰州第一中学2018-2019学年高二3月月考数学(理)试题】设f0(x)=sin x,f1(x)=f0′(x),f2(x)=f1′(x),…,f n+1(x)=f n′(x),n∈N,则f2019(x)=()A.sin x B.-sin x C.cos x D.-cos x【答案】D【解析】由题意可得:,,,,,据此可得的解析式周期为,注意到,故.【宁夏六盘山高级中学2019届高三下学期第二次模拟考试数学(理)试题】定义域为R的奇函数f(x),当时,恒成立,若,,则()A.B.C.D.【答案】D【解析】构造函数因为f(x)是奇函数,所以为偶函数当时,恒成立,即,所以在时为单调递减函数在时为单调递增函数根据偶函数的对称性可知,所以【黑龙江省大庆实验中学2018-2019学年高二下学期第二次月考数学(文)试题】已知f(x)的定义域为,为f(x)的导函数,且满足,则不等式的解集是()A.B.C.D.【答案】B【解析】解:构造函数则所以在上单调递减又因为所以所以解得或(舍)所以不等式的解集是【四川省教考联盟2019届高三第三次诊断性考试数学(理)试题】已知定义在R上的函数f(x)关于y轴对称,其导函数为,当时,不等式.若对,不等式恒成立,则正整数a的最大值为()A.B.C.D.【答案】B【解析】因为,所以,令,则,又因为f(x)是在R上的偶函数,所以F(x)是在R上的奇函数,所以是在上的单调递增函数,又因为,可化为,即,又因为是在上的单调递增函数,所以恒成立,令,则,因为,所以在单调递减,在上单调递增,所以,则,所以.所以正整数a的最大值为2.【2019届湘赣十四校高三联考第二次考试(文数)试题】已知函数为R上的偶函数,且当时函数f(x)满足,,则的解集是()A.B.C.D.【答案】A【解析】设,则,∴,化简可得.设,∴,∴时,,因此为减函数,∴时,,因此为增函数,∴,∴,∴在上为增函数.∵函数是偶函数,∴函数,∴函数关于对称,又∵,即,又在上为增函数,∴,由函数关于对称可得,,【河南省六市2019届高三第一次联考数学(理)试题】函数是定义在上的可导函数,为其导函数,若,且,则不等式的解集为A.B.C.D.【答案】C【解析】解:函数是定义在上的可导函数,为其导函数,令,则,可知当时,是单调减函数,并且,即,则,时,函数是单调增函数,,则,则不等式的解集就是的解集,即又x>1,所以,故不等式的解集为:.【北京师范大学附属实验中学2018-2019学年高二第二学期3月考数学试题】设函数f(x)在R 上可导,其导函数为,且函数的图象如图所示,则下列结论中一定成立的是()A.函数 f(x) 有极大值和极小值B.函数f(x)有极大值和极小值C.函数f(x) 有极大值和极小值D.函数f(x)有极大值和极小值【答案】D【解析】解:由函数的图象可知,f′(﹣2)=0,f′(2)=0,并且当x<﹣2时,f′(x)>0,当﹣2<x<1,f′(x)<0,函数f(x)有极大值f(﹣2).又当1<x<2时,f′(x)<0,当x>2时,f′(x)>0,故函数f(x)有极小值f(2).【新疆乌鲁木齐市第七十中学2018-2019学年高二下学期第一次月考数学(理)试题】函数的图象关于点(1,0)对称,当时,成立,若,则的大小关系是()A.B.C.D.【答案】C【解析】函数的图象关于点(1,0)对称,所以函数是奇函数。
导数中的构造函数(最全精编)Word版
导数小题中构造函数的技巧函数与方程思想,转化与化归思想是高中数学思想中比较重要的两大思想,而构造函数的解题思路恰好是这两种思想的良好体现,尤其是在导数题型中,下面我就导数小题中构造函数的技巧和大家进行分享和交流。
(一)利用()f x 进行抽象函数构造1、利用()f x 与x 构造; 常用构造形式有()xf x ,()f x x :这类形式是对.uu v v,型函数导数计算的推广及应用,我们对.u u v v ,的导函数观察可得知,.u v 型导函数中体现的是“+”法,uv型导函数中体现的是“一”法,由此,我们可以猜测。
当导函数形式出现的是“+”法形式时,优先考虑构造.u v 型,当导函数形式出现的是“一”法形式时,优先考虑构造uv;[例 1]()f x 是定义在R 上的偶函数,当x<0时,()()0f x xf x '+<,且()40f -=,则不等式()0xf x >的解集为____________.[例 2]()f x 是定义在R 上的偶函数,且() 10f =,当x<0时,()()0xf x f x ->'恒成立,则不等式()0f x >的解集为____________.()xf x ,()f x x是比较简单常见的()f x 与x 之间的函数关系式,如果碰见复杂的,不易想的我们该如何处理,由此我们可以思考形如此类函数的一般形式.()()()()()()()11,n n n n F x x f x F x nx f x x f x x nf x f x --'''==+=+⎡⎤⎣⎦()()()()()()()121,n n n n n f x f x x nx f x xf x nf x F x F x x x x -+''-+'===结论:出现()()nf x xf x '+形式,构造函数()()n F x x f x =; 出现()()xf x nf x '-形式,构造函数()()nf x F x x=; [例3]已知偶函数() 0()f x x ≠的导函数为()f x ',且满足()=10f -,当x>0时,()()2f x xf x '>,则使得()0f x >成立的x 的取值范围是___________.[变式提升]设函数()f x 满足()()3231ln =x f x x f x x '++,且()12fe e=,则x>0时,()f x ( ) A 、有极大值,无极小值 B 、有极小值,无极大值 C 、既有极大值又有极小值 D 、既无极大值也无极小值[例 4]设()f x 是定义在R 上的奇函数,在()0-∞,上有()()2220 xf x f x +<',且 ()20f -=,则不等式() 20xf x <的解集为___________.(2)利用()f x 与x e 构造;()f x 与x e 构造,一方面是对.uu v v,函数形式的考察,另外一方面是对()=x x e e 的考察,所以对于()()f x f x ±'类型,我们可以等同()xf x ,()f x x的类型处理,“+”法优先考虑构造()()x F x f x e =⋅,“-”法优先考虑构造()()xf x F x e=. [例 5]已知()f x 是定义在()-∞+∞,上的函数,导函数()f x '满足()()f x f x '<对于x R ∈恒成立,则( )A 、()()()()2201420,20140f e f f e f >>B 、()()()()2201420,20140f e f f e f <>C 、()()()()2201420,20140f e f f e f >< B 、()()()()2201420,20140f e f f e f <<同样()()x x f x e f x e,,是比较简单常见的()f x 与x e 之间的函数关系式,如果碰见复杂的,我们是否也能找出此类函数的一般形式呢?()()()()()()(),nx nx nx nx F x e f x F x n e f x e f x e f x nf x '''==⋅+=+⎡⎤⎣⎦()()()()()()()2,nx nx nx nx nxf x nf x f x f x e ne f x F x F x e e e '-⎡⎤'-⎣⎦'===结论:出现()()f x nf x '+形式,构造函数()()nx F x e f x =; 出现()()f x nf x '-形式,构造函数()()nxf x F x e=; [例6]若定义在R 上的函数()f x 满足()()20f x f x '->,()10=f ,则不等式()2x f x e >的解集为_____.[变式提升]若定义在R 上的函数()f x 满足()()240f x f x '-->,()01f =-,则不等式()2>2x f x e -的解集为_________.[例7]已知函数()f x 在R 上可导,其导函数为()f x ',若()f x 满足:()()()10x f x f x '-->⎡⎤⎣⎦,()()222x f x f x e --=,则下列判断一定正确的是( )A 、()()10f f <B 、()()220f e f >C 、()()330f e f >D 、()()440f e f <(3)利用()f x 与sin x ,cos x 构造.sin x ,cos x 因为导函数存在一定的特殊性,所以也是重点考察的范畴,我们一起看看常考的几种形式.()()()()()sin ,sin cos F x f x x F x f x x f x x ''==+;()()()()()2sin cos ,sin sin f x f x x f x xF x F x x x'-'==; ()()()()()cos ,cos sin F x f x x F x f x x f x x ''==-;()()()()()2cos sin ,cos cos f x f x x f x xF x F x x x'+'==;根据得出的关系式,我们来看一下例8[例8]已知函数()=y f x 对于任意的,22x ππ⎛⎫∈- ⎪⎝⎭满足()()cos sin 0f x x f x x '+>(其中()f x '是函数()f x 的导函数),则下列不等式不成立的是( )A 、234f f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭B 、234f f ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭C 、()024f f π⎛⎫< ⎪⎝⎭D 、()023f f π⎛⎫< ⎪⎝⎭[变式提升]定义在02π⎛⎫⎪⎝⎭,上的函数,函数()f x '是它的导函数,且恒有()()tan f x f x x '<成立,则()A 、3243f f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭B 、()12sin12f fπ⎛⎫< ⎪⎝⎭ C 、264f f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭ D 、363f f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭(二)构造具体函数关系式构造这类题型需要根据题意构造具体的函数关系式,通过具体的关系式去解决不等式及求值问题.[例9]22ππαβ⎡⎤∈-⎢⎥⎣⎦,,,且sin sin 0ααββ>-,则下列结论正确的是( )A 、αβ>B 、22αβ>C 、αβ<D 、0αβ+>[变式提升]定义在R 上的函数()f x 满足()11=f ,且对()1,2x R f x '∀∈<则不等式()22log 1log 2x f x +>的解集为_________.[例10]等比数列{}n a 中,1=2a ,8=4a ,函数()()()()128f x x x a x a x a =---,则()0=f '( )A 、62B 、92C 、122D 、152[例11]已知实数,,a b c 满足2111a a e cb d --==-,其中e 是自然对数的底数,那么22()()ac bd -+-的最小值为( )A 、8B 、10C 、12D 、18[变式提升]已知实数, a b 满足225ln 0a a b c R --=∈,,则()()22a cbc -+的最小值为_____________.[课后作业]设函数()f x 在R 上的导函数()f x ',在( 0,)+∞上()sin 2f x x <',且x R ∀∈,有()()22sin f x f x x -+=,则以下大小关系一定正确的是( )A 、5463f f ππ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭B 、()4f f ππ⎛⎫< ⎪⎝⎭C 、5463f f ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭D 、()4f f ππ⎛⎫->- ⎪⎝⎭构造函数,作为一种做题技巧的体现,考察了学生的思考能力和动手能力,是一种非常实用的做题技巧,希望我的总结分享能够给大家带来帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019届高三数学(文)精准培优专练
1.对于()()'0f x a a >≠,可构造()()h x f x ax =-
例1:函数()f x 的定义域为R ,()12f -=,对任意R x ∈,()2f x '>,则()24f x x >+的解集为( ) A .()1,1- B .()1-+∞,
C .()1-∞-,
D .()-∞+∞,
【答案】B
【解析】构造函数()()24G x f x x =--,所以()()2G x f x ''=-,由于对任意R x ∈,
()2f x '>,
所以()()20G x f x ''->=恒成立,所以()()24G x f x x =--是R 上的增函数, 又由于()()()112140G f -=----⨯=,所以()()240G x f x x -->=,
即()24f x x >+的解集为()1-+∞,
.
2.对于()()'0xf x f x +>,构造()()h x xf x =;对于()()'0xf x f x ->,构造()()f x h x x
=
例2:已知函数()y f x =的图象关于y 轴对称,且当(),0x ∈-∞,()()0f x xf x '+<成立,()0.20.222a f =,()log 3log 3b f ππ=,()33log 9log 9c f =,则a ,b ,c 的大小关系是( ) A .a b c >> B .a c b >> C .c b a >> D .b a c >>
【答案】D
【解析】因为函数()y f x =关于y 轴对称,所以函数()y xf x =为奇函数.
因为()()()xf x f x xf x ''=+⎡⎤⎣⎦,所以当(),0x ∈-∞时,()()()0xf x f x xf x ''=+<⎡⎤⎣⎦,函
数()y xf x =单调递减,当()0,x ∈+∞时,函数()y xf x =单调递减.
因为0.2122<<,0log 31π<<,3log 92=,所以0.230log 32log 9π<<<,所以b a c >>.
培优点三 含导函数的抽象函数的构造
3.对于'()()0f x f x +>,构造()()e x h x f x =;对于'()()f x f x >或'()()0f x f x ->,构造()
()e x
f x h x =
例3:已知()f x 为R 上的可导函数,且R x ∀∈,均有()()f x f x '>,则有( ) A .2016e (2016)(0)f f -<,2016(2016)e (0)f f >
B .2016e (2016)(0)f f -<,2016(2016)e (0)f f <
C .2016e (2016)(0)f f ->,2016(2016)e (0)f f >
D .2016e (2016)(0)f f ->,2016(2016)e (0)f f < 【答案】D
【解析】构造函数()()e x
f x
g x =
,则()()()()
()
()()
2
e e e e x x x
x f x f x f x f x g x ''-'-'=
=
, 因为R x ∀∈均有()()f x f x '>并且e 0x >,所以()0g x '<,故函数()()e x
f x
g x =在R 上
单调递减,
所以(2016)(0)g g ->,(2016)(0)g g <,即
2016
(2016)
(0)
e f f -->,2016(2016)(0)e f f <, 也就是2016e (2016)(0)f f ->,2016(2016)e (0)f f <.
4.()f x 与sin x ,cos x 构造
例4:已知函数()y f x =对任意的,22
x ππ
⎛⎫
∈- ⎪⎝
⎭
满足()()cos sin 0f x x f x x '+>,则( )
A .(
)04f π
⎛⎫
> ⎪⎝⎭
B .()03f f π⎛⎫
<2- ⎪⎝⎭
C
34f π
π⎛⎫
⎛⎫<
⎪ ⎪⎝⎭
⎝⎭ D
34f π
π⎛⎫
⎛⎫-<
- ⎪ ⎪⎝⎭
⎝⎭
【答案】D。