专题一 第三讲 基本初等函数、函数与方程及函数的应用
函数的概念与基本初等函数函数模型及其应用课件文ppt
xx年xx月xx日
目录
• 函数的概念与基本初等函数 • 函数模型的选择与建立 • 函数模型的应用领域 • 建立函数模型的实例分析 • 函数模型的进阶应用与挑战 • 总结与展望
01
函数的概念与基本初等函数
函数定义与性质
函数定义
设x和y是两个变量,D是一个数集,如果对于D中的每个x值,都有唯一确定的y值与之对应,那么称y 是x的函数,记作y=f(x)。
06
总结与展望
函数模型的重要性和应用前景
函数模型在各个领域 的应用广泛
无论是自然科学、社会科学还是工程 技术,函数模型都扮演着重要的角色 。
函数模型在数据处理 和分析中的重要性
通过函数模型可以对数据进行拟合、 预测和推断,进而为决策提供科学依 据。
函数模型在算法设计 和优化中的关键作用
函数模型可以描述算法的性能、复杂 度和精度,为算法优化提供基础。
在工程设计中,利用已知的设计 参数,建立函数模型,优化设计 方案。
03
函数模型的应用领域
函数模型在物理中的应用
力学
利用函数模型描述物体的运动轨迹、受力情况等。
电磁学
函数模型可以描述电路、电磁波的传播等。
光学
用函数模型研究光的传播、折射、反射等。
函数模型在化学中的应用
物质结构
函数模型可以描述分子、原子等微观粒子的结构和 运动。
图解法
通过绘制变量之间的关系图,建立函数模型。
最小二乘法
通过最小化预测值与实际值之间的平方误差 ,建立函数模型。
函数模型的应用实例
01
02
03
经济预测
科学计算
工程设计
基本初等函数、函数与方程及函数的应用
f(x)在 R 上有两个零点,则实数
a 的取值范围是( A.(0,1] C.(0,1)
) B.[1,+∞) D.(-∞,1]
栏目 导引
专题一
函数与导数
【解析】
(1)令
x≤0, f(x)+3x=0,则 2 或 x - 2 x + 3 x = 0
2
=-ln( 1+a2-a)+1=-3+1=-2.
【答案】 (1)A (2)-2
栏目 导引
专题一
函数与导数
研究指数、对数函数的图象及性质应注意的问题 (1)指数函数、对数函数的图象和性质受底数 a 的影响,解决与 指数、 对数函数特别是与单调性有关的问题时, 首先要看底数 a 的范围. (2)研究对数函数的性质,应注意真数与底数的限制条件.如求 f(x)=ln(x2-3x+2)的单调区间,只考虑 t=x2-3x+2 与函数 y =ln t 的单调性,易忽视 t>0 的限制条件.
栏目 导引
专题一
函数与导数
[典型例题] (1)(2018· 福建市第一学期高三期末考试)已知函数 f(x)= x2-2x,x≤0, 则函数 y=f(x)+3x 的零点个数是( 1 1+x,x>0, A.0 C.2 B.1 D.3 )
栏目 导引
专题一
函数与导数
(2)(2018· 郑州市第一次质量测试)已知函数 f(x)=
栏目 导引
专题一
函数与导数
【解析】
(1)因为 y=(log1a)x 在 R 上为增函数,
2
1 所以,log1a>1,解得 0<a< .故选 A. 2 2 (2)由 f(a)=ln( 1+a2-a)+1=4,得 ln( 1+a2-a)=3, 1 所以 f(-a)=ln( 1+a +a)+1=-ln +1 2 1+a +a
2024年新高考版数学专题1_3.5 函数与方程及函数的综合应用(分层集训)
B.3
答案 B
C.4
D.5
)
3.(2022南京师范大学附中期中,7)用二分法研究函数f(x)=x3+2x-1的零点
时,第一次计算,得f(0)<0,f(0.5)>0,第二次应计算f(x1),则x1等于 (
A.1
B.-1
答案 C
C.0.25
D.0.75
)
4.(多选)(2022湖南师大附中三模,11)已知函数f(x)的定义域为R,且f(x)=f(x
1.(2023届长春六中月考,7)若函数f(x)=ln x+x2+a-1在区间(1,e)内有零点,则
实数a的取值范围是 (
A.(-e2,0)
C.(1,e)
答案 A
B.(-e2,1)
D.(1,e2)
)
2.(2017课标Ⅲ,文12,理11,5分)已知函数f(x)=x2-2x+a(ex-1+e-x+1)有唯一零点,
A型
0.4
3
B型
0.3
4
C型
0.5
3
D型
0.4
4
则保温效果最好的双层玻璃的型号是 (
A.A型
答案 D
B.B型
C.C型
D.D型
)
3.(2020课标Ⅲ理,4,5分)Logistic模型是常用数学模型之一,可应用于流行
病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数
I(t)(t的单位:天)的Logistic模型:I(t)=
1 e
K
0.23( t 53)
,其中K为最大确诊病例数.
当I(t*)=0.95K时,标志着已初步遏制疫情,则t*约为(ln 19≈3) (
数学三维设计答案及解析
第一部分 专题复习 培植新的增分点专题一 集合与常用逻辑用语、函数与导数、不等式第一讲 集合与常用逻辑用语基础·单纯考点[例1] 解析:(1)∵A ={x >2或x <0},B ={x |-5<x <5}, ∴A ∩B ={x |-5<x <0或2<x <5}, A ∪B =R .(2)依题意,P ∩Q =Q ,Q ⊆P ,于是⎩⎪⎨⎪⎧2a +1<3a -5,2a +1>3,3a -5≤22,解得6<a ≤9,即实数a 的取值范围为(6,9].答案:(1)B (2)D[预测押题1] (1)选A 本题逆向运用元素与集合的关系求参数的取值范围,抓住1∉A作为解题的突破口,1∉A 即1不满足集合A 中不等式,所以12-2×1+a ≤0⇒a ≤1.(2)选B 对于2x (x -2)<1,等价于x (x -2)<0,解得0<x <2,所以A ={x |0<x <2};集合B 表示函数y =ln(1-x )的定义域,由1-x >0,得x <1,故B ={x |x <1},∁R B ={x |x ≥1},则阴影部分表示A ∩(∁R B )={x|1≤x<2}.[例2] 解析:(1)命题p 是全称命题:∀x ∈A ,2x ∈B , 则┐p 是特称命题:∃x ∈A ,2x ∉B .(2)①中不等式可表示为(x -1)2+2>0,恒成立;②中不等式可变为log 2x +1log 2x≥2,得x >1;③中由a >b >0,得1a <1b,而c <0,所以原命题是真命题,则它的逆否命题也为真;④由p 且q 为假只能得出p ,q 中至少有一为假,④不正确.答案:(1)D (2)A[预测押题2] (1)选A 因为x 2-3x +6=⎝ ⎛⎭⎪⎫x -322+154>0,所以①为假命题;若ab =0,则a 、b 中至少一个为零即可,②为假命题;x =k π+π4(k ∈R )是tan x =1的充要条件,③为假命题.(2)解析:“∃x ∈R ,2x 2-3ax +9<0”为假命题,则“∀x ∈R ,2x 2-3ax +9≥0”为真命题,因此Δ=9a 2-4×2×9≤0,故-22≤a ≤2 2.答案:[-22,22][例3] 解析:(1)当x =2且y =-1时,满足方程x +y -1=0,即点P (2,-1)在直线l 上.点P ′(0,1)在直线l 上,但不满足x =2且y =-1,∴“x =2且y =-1”是“点P (x ,y )在直线l 上”的充分而不必要条件.(2)因为y =-m n x +1n 经过第一、三、四象限,所以-m n >0,1n<0,即m >0,n <0,但此为充要条件,因此,其必要不充分条件为mn <0.答案:(1)A (2)B[预测押题3] (1)选B 由10a >10b 得a >b ,由lg a >lg b 得a >b >0,所以“10a >10b”是“lg a >lg b ”的必要不充分条件.(2)解析:由|x -m |<2,得-2<x -m <2,即m -2<x <m +2.依题意有集合{x |2≤x ≤3}是{x |m-2<x <m +2}的真子集,于是有⎩⎪⎨⎪⎧m -2<2,m +2>3,由此解得1<m <4,即实数m 的取值范围是(1,4).答案:(1,4)交汇·创新考点 [例1] 选A 在同一坐标系下画出椭圆x 2+y 24=1及函数y =2x的图象,结合图形不难得知它们的图像有两个公共点,因此A ∩B 中的元素有2个,其子集共有22=4个.[预测押题1] 选B A ={x |x 2+2x -3>0}={x |x >1或x <-3},函数y =f (x )=x 2-2ax -1的对称轴为x =a >0,f (-3)=6a +8>0,根据对称性可知,要使A ∩B 中恰含有一个整数,则这个整数解为2,所以有f (2)≤0且f (3)>0,即⎩⎪⎨⎪⎧4-4a -1≤09-6a -1>0,所以⎩⎪⎨⎪⎧a ≥34,a <43,即34≤a <43,选B.[例2] 解析:对①:取f (x )=x -1,x ∈N *,所以B =N *,A =N 是“保序同构”;对②:取f (x )=92x -72(-1≤x ≤3),所以A ={x |-1≤x ≤3},B ={x |-8≤x ≤10}是“保序同构”;对③:取f (x )=tan ⎝⎛⎭⎪⎫πx -π2(0<x <1),所以A ={x |0<x <1},B =R 是“保序同构”,故应填①②③.答案:①②③[预测押题2] 解析:∵A ⊆M ,且集合M 的子集有24=16个,其中“累计值”为奇数的子集为{1},{3},{1,3},共3个,故“累积值”为奇数的集合有3个.答案:3[例3] 解析:对于①,命题p 为真命题,命题q 为真命题,所以p ∧綈q 为假命题,故①正确;对于②当b =a =0时,l 1⊥l 2,故②不正确,易知③正确.所以正确结论的序号为①③.答案:①③[预测押题3] 选D 由y =tan x 的对称中心为⎝ ⎛⎭⎪⎫k π2,0(k ∈Z ),知A 正确;由回归直线方程知B 正确;在△ABC 中,若sin A =sin B ,则A =B ,C 正确.第二讲 函数的图像与性质基础·单纯考点[例1] 解析:(1)由题意,自变量x应满足{x +3>0,1-2x≥0,解得⎩⎪⎨⎪⎧x ≤0,x >-3,∴-3<x ≤0.(2)设t =1+sin x ,易知t ∈[0,2],所求问题等价于求g (t )在区间[0,2]上的值域.由g (t )=13t 3-52t 2+4t ,得g ′(t )=t 2-5t +4=(t -1)(t -4).由g ′(t )=0,可得t=1或t =4.又因为t ∈[0,2],所以t =1是g (t )的极大值点.由g (0)=0,g (1)=13-52+4=116,g (2)=13×23-52×22+4×2=23,得当t ∈[0,2]时,g (t )∈⎣⎢⎡⎦⎥⎤0,116,即g (1+sin x )的值域是⎣⎢⎡⎦⎥⎤0,116.答案:(1)A (2)⎣⎢⎡⎦⎥⎤0,116[预测押题1] (1)解析:∵f (π4)=-tan π4=-1,∴f (f (π4))=f (-1)=2×(-1)3=-2.答案:-2(2)由题意知:a ≠0,f (x )=(x +a )(bx +2a )=bx 2+(2a +ab )x +2a 2是偶函数,则其图像关于y 轴对称,所以2a +ab =0,b =-2.所以f (x )=-2x 2+2a 2,因为它的的值域为(-∞,2],所以2a 2=2.所以f (x )=-2x 2+2.答案:-2x 2+2[例2] 解析:(1)曲线y =e x 关于y 轴对称的曲线为y =e -x ,将y =e -x向左平移1个单位长度得到y =e -(x +1),即f (x )=e -x -1.(2)由题图可知直线OA 的方程是y =2x ;而k AB =0-23-1=-1,所以直线AB 的方程为y =-(x -3)=-x +3.由题意,知f (x )=⎩⎪⎨⎪⎧2x ,0≤x ≤1,-x +3,1<x ≤3,所以g (x )=xf (x )=⎩⎪⎨⎪⎧2x 2,0≤x ≤1,-x 2+3x ,1<x ≤3.当0≤x ≤1时,故g (x )=2x 2∈[0,2];当1<x ≤3时,g (x )=-x 2+3=-⎝ ⎛⎭⎪⎫x -32+94,显然,当x =32时,取得最大值94;当x =3时,取得最小值0. 综上所述,g (x )的值域为⎣⎢⎡⎦⎥⎤0,94. 答案:(1)D (2)B[预测押题2] (1)选C 因为函数的定义域是非零实数集,所以A 错;当x <0时,y >0,所以B 错;当x →+∞时,y →0,所以D 错.(2)选B 因为f (x )=f (-x ),所以函数f (x )是偶函数.因为f (x +2)=f (x ),所以函数f (x )的周期是2,再结合选项中的图像得出正确选项为B.[例3] 解析:(1)函数y =-3|x |为偶函数,在(-∞,0)上为增函数.选项A ,D 是奇函数,不符合;选项B 是偶函数但单调性不符合;只有选项C 符合要求.(2)∵f (x )=ax 3+b sin x +4, ①∴f (-x )=a (-x )3+b sin(-x )+4,即f (-x )=-ax 3-b sin x +4, ② ①+②得f (x )+f (-x )=8. ③又∵lg(log 210)=lg ⎝ ⎛⎭⎪⎫1lg 2=lg(lg 2)-1=-lg(lg 2),∴f (lg(lg 210))=f (-lg(lg 2))=5.又由③式知f (-lg(lg 2))+f (lg(lg 2))=8, ∴5+f (lg(lg 2))=8, ∴f (lg(lg 2))=3. 答案:(1)C (2)C[预测押题3] (1)选A 依题意得,函数f (x )在[0,+∞)上是增函数,且f (x )=f (|x |),不等式f (1-2x )<f (3)⇔f (|1-2x |)<f (3)⇔|1-2x |<3⇔-3<1-2x <3⇔-1<x <2.(2)解析:∵f (x )=-f ⎝ ⎛⎭⎪⎫x +32, ∴f ⎝ ⎛⎭⎪⎫x +32=-f (x +3)=-f (x ), ∴f (x )=f (x +3),∴f (x )是以3为周期的周期函数. 则f (2014)=f (671×3+1)=f (1)=3. 答案:3(3)解析:因为函数f (x )的图像关于y 轴对称,所以该函数是偶函数,又f (1)=0,所以f (-1)=0.又已知f (x )在(0,+∞)上为减函数,所以f (x )在(-∞,0)上为增函数.f (-x )+f (x )x<0,可化为xf (x )<0,所以当x >0时,解集为{x |x >1};当x <0时,解集为{x |-1<x <0}.综上可知,不等式的解集为(-1,0)∪(1,+∞). 答案:(-1,0)∪(1,+∞)交汇·创新考点[例1] 解析:设x <0,则-x >0.∵当x ≥0时,f (x )=x 2-4x ,∴f (-x )=(-x )2-4(-x ).∵f (x )是定义在R 上的偶函数,∴f (-x )=f (x ),∴f (x )=x 2+4x (x <0),∴f (x )=⎩⎪⎨⎪⎧x 2-4x ,x ≥0,x 2+4x ,x <0.由f (x )=5得⎩⎪⎨⎪⎧x 2-4x =5,x ≥0,或⎩⎪⎨⎪⎧x 2+4x =5,x <0,∴x =5或x =-5.观察图像可知由f (x )<5,得-5<x <5.∴由f (x +2)<5,得-5<x +2<5,∴-7<x <3.∴不等式f (x +2)<5的解集是{x |-7<x <3}.答案:{x |-7<x <3}[预测押题1] 解析:根据已知条件画出f (x )图像如图所示.因为对称轴为x =-1,所以(0,1)关于x =-1的对称点为(-2,1).因f (m )<1,所以应有-2<m <0,m +2>0.因f (x )在(-1,+∞)上递增,所以f (m +2)>f (0)=1.答案:>[例2] 解析:因为A ,B 是R 的两个非空真子集,且A ∩B =∅,画出韦恩图如图所示,则实数x 与集合A ,B 的关系可分为x ∈A ,x ∈B ,x ∉A 且x ∉B 三种.(1)当x ∈A 时,根据定义,得f A (x )=1.因为A ∩B =∅,所以x ∉B ,故f B (x )=0.又因为A ⊆(A ∪B ),则必有x ∈A ∪B ,所以f A ∪B (x )=1.所以F (x )=f A ∪B (x )+1f A (x )+f B (x )+1=1+11+0+1=1.(2)当x ∈B 时,根据定义,得f B (x )=1.因为A ∩B =∅,所以x ∉A ,故f A (x )=0.又因为B ⊆(A ∪B ),则必有x ∈A ∪B ,所以f A ∪B (x )=1.所以F (x )=f A ∪B (x )+1f A (x )+f B (x )+1=1+11+0+1=1.(3)当x ∉A 且x ∉B ,根据定义,得f A (x )=0,f B (x )=0.由图可知,显然x ∉(A ∪B ),故f A ∪B (x )=0,所以F (x )=f A ∪B (x )+1f A (x )+f B (x )+1=0+10+0+1=1.综上,函数的值域中只有一个元素1,即函数的值域为{1}. 答案:{1}[预测押题2] 解:当x ∈A ∩B 时,因为(A ∩B )⊆(A ∪B ),所以必有x ∈A ∪B .由定义,可知f A (x )=1,f B (x )=1,f A ∪B (x )=1,所以F (x )=f A ∪B (x )+1f A (x )+f B (x )+1=1+11+1+1=23. 故函数F (x )的值域为{23}.第三讲 基本初等函数、函数与方程及函数的应用基础·单纯考点[例1] 解析:(1)当x =-1,y =1a -1a =0,所以函数y =a x-1a的图像必过定点(-1,0),结合选项可知选D.(2)a =log 36=log 33+log 32=1+log 32,b =log 510=log 55+log 52=1+log 52,c =log 714=log 77+log 72=1+log 72,∵log 32>log 52>log 72,∴a >b >c .答案:(1)D (2)D[预测押题1] (1)选A 函数y =x -x 13为奇函数.当x >0时,由x -x 13>0,即x 3>x ,可得x 2>1,故x >1,结合选项,选A.(2)选B 依题意的a =ln x ∈(-1,0),b =⎝ ⎛⎭⎪⎫12ln x ∈(1,2),c =e ln x ∈(e -1,1),因此b >c >a .[例2] 解析:(1)由f (-1)=12-3<0,f (0)=1>0及零点定理,知f (x )的零点在区间(-1,0)上.(2)当f (x )=0时,x =-1或x =1,故f [f (x )+1]=0时,f (x )+1=-1或1.当f (x )+1=-1,即f (x )=-2时,解得x =-3或x =14;当f (x )+1=1即f (x )=0时,解得x =-1或x =1.故函数y =f [f (x )+1]有四个不同的零点.答案:(1)B (2)C[预测押题2] 解析:当x >0时,由f (x )=ln x =0,得x =1.因为函数f (x )有两个不同的零点,则当x ≤0时,函数f (x )=2x -a 有一个零点,令f (x )=0得a =2x ,因为0<2x ≤20=1,所以0<a ≤1,所以实数a 的取值范围是0<a ≤1.答案:(0,1][例3] 解:(1)由年销售量为x 件,按利润的计算公式,有生产A ,B 两产品的年利润y 1,y 2分别为y 1=10x -(20+mx )=(10-m )x -20(x ∈n ,0≤x ≤200),y =18x -(8x +40)-0.05x 2=-0.05x 2+10x -40(x ∈n ,0≤x ≤120).(2)因为6≤m ≤8,所以10-m >0,函数y 1=(10-m )x -20在[0,200]上是增函数,所以当x =200时,生产A 产品有最大利润,且y 1max =(10-m )×200-20=1980-200m (万美元).又y 2=-0.05(x -100)2+460(x ∈N ,0≤x ≤120),所以当x =100时,生产B 产品有最大利润,且y 2max =460(万美元).因为y 1max -y 2max =1980-200m -460=1520-200m ⎩⎪⎨⎪⎧>0,6≤m <7.6,=0,m =7.6,<0,7.6<m ≤8.所以当6≤m <7.6时,可投资生产A 产品200件;当m =7.6时,生产A 产品或生产B 产品均可(投资生产A 产品200件或生产B 产品100件);当7.6<m ≤8时,可投资生产B 产品100件.[预测押题3] 解:(1)设投入广告费t (百万元)后由此增加的收益为f (t )(百万元),则f (t )=(-t 2+5t )-t =-t 2+4t =-(t -2)2+4(0≤t ≤3).所以当t =2时,f (t )max =4,即当集团投入两百万广告费时,才能使集团由广告费而产生的收益最大.(2)设用于技术改造的资金为x (百万元),则用于广告费的费用为(3-x )(百万元),则由此两项所增加的收益为g (x )=⎝ ⎛⎭⎪⎫-13x 3+x 2+3x +[-(3-x )2+5(3-x )]-3=-13x 3+4x +3(0≤x ≤3).对g (x )求导,得g ′(x )=-x 2+4,令g ′(x )=-x 2+4=0,得x =2或x =-2(舍去).当0≤x <2时,g ′(x )>0,即g (x )在[0,2)上单调递增;当2<x ≤3时,g ′(x )<0,即g (x )在(2,3]上单调递减.∴当x =2时,g (x )max =g (2)=253.故在三百万资金中,两百万元用于技术改造,一百万元用于广告促销,这样集团由此所增加的受益最大,最大收益为253百万元.交汇·创新考点[例1] 选B ∵⎝⎛⎭⎪⎫x -π2f ′(x )>0,x ∈(0,π)且x ≠π2,∴当0<x <π2时,f ′(x )<0,f (x )在(0,π2)上单调递减.当π2<x <π时,f ′(x )>0,f (x )在⎝ ⎛⎭⎪⎫π2,π上单调递增. ∵当x ∈[0,π]时,0<f (x )<1.∴当x ∈[π,2π],则0≤2π-x ≤π.又f (x )是以2π为最小正周期的偶函数,知f (2π-x )=f (x ).∴x ∈[π,2π]时,仍有0<f (x )<1.依题意及y =f (x )与y =sin x 的性质,在同一坐标系内作y =f (x )与y =sin x 的简图.则y =f (x )与y =sin x 在x ∈[-2π,2π]有4个交点. 故函数y =f (x )-sin x 在[-2π,2π]上有4个零点.[预测押题] 选D 根据f ⎝ ⎛⎭⎪⎫x +54=-f ⎝ ⎛⎭⎪⎫x -54,可得f ⎝ ⎛⎭⎪⎫x +52=-f (x ),进而得f (x +5)=f (x ),即函数y =f (x )是以5为周期的周期函数.当x ∈[-1,4]时,f (x )=x 2-2x,在[-1,0]内有一个零点,在(0,4]内有x 1=2,x 2=4两个零点,故在一个周期内函数有三个零点.又因为2012=402×5+2,故函数在区间[0,2010]内有402×3=1206个零点,在区间(2010,2012]内的零点个数与在区间(0,2]内零点的个数相同,即只有一个零点,所以函数f (x )在[0,2012]上零点的个数为1207.第四讲 不等式基础·单纯考点[例1] 解析:(1)原不等式等价于(x -1)(2x +1)<0或x -1=0,即-12<x <1或x =1,所以原不等式的解集为⎝ ⎛⎦⎥⎤-12,1. (2)由题意知,一元二次不等式f (x )>0的解集为⎩⎨⎧⎭⎬⎫x |-1<x <12.而f (10x )>0,∴-1<10x <12,解得x <lg 12,即x <-lg 2.答案:(1)A (2)D[预测押题1] (1)选B 当x >0时,f (x )=-2x +1x2>-1,∴-2x +1>-x 2,即x 2-2x+1>0,解得x >0且x ≠1.当x <0时,f (x )=1x>-1,即-x >1,解得x <-1.故x ∈(-∞,-1)∪(0,1)∪(1,+∞).(2)解析:∵f (x )=x 2+ax +b 的值域为[0,+∞),∴Δ=0,∴b -a 24=0,∴f (x )=x2+ax +14a 2=⎝ ⎛⎭⎪⎫x +12a 2.又∵f (x )<c 的解集为(m ,m +6),∴m ,m +6是方程x 2+ax +a 24-c =0的两根.由一元二次方程根与系数的关系得⎩⎪⎨⎪⎧2m +6=-a ,m (m +6)=a 24-c ,解得c =9. 答案:9[例2] 解析:(1)曲线y =|x |与y =2所围成的封闭区域如图阴影部分所示,当直线l :y =2x 向左平移时,(2x -y )的值在逐渐变小,当l 通过点A (-2,2)时,(2x -y )min =-6.(2)设租用A 型车x 辆,B 型车y 辆,目标函数为z =1600x +2400y ,则约束条件为⎩⎪⎨⎪⎧36x +60y ≥900,x +y ≤21,y -x ≤7,x ,y ∈n ,作出可行域,如图中阴影部分所示,可知目标函数过点(5,12)时,有最小值z min =36800(元).答案:(1)A (2)C[预测押题2] (1)选C 题中的不等式组表示的平面区域如图阴影部分所示,平移直线x -y =0,当平移经过该平面区域内的点(0,1)时,相应直线在x 轴上的截距达到最小,此时x -y 取得最小值,最小值是x -y =0-1=-1;当平移到经过该平面内区域内的点(2,0)时,相应直线在x 轴上的截距达到最大,此时x -y 取得最大值,最大值是x -y =2-0=2.因此x -y 的取值范围是[-1,2].(2)解析:作出可行域,如图中阴影部分所示,区域面积S =12×⎝ ⎛⎭⎪⎫2a +2×2=3,解得a=2.答案:2[例3] 解析:(1)因-6≤a ≤3,所以3-a ≥0,a +6≥0,∴(3-a )(a +6)≤3-a +a +62=92,当且仅当a =-32时等号成立.(2)f (x )=4x +a x≥24x ·ax =4a (x >0,a >0),当且仅当4x =a x,即x =a2时等号成立,此时f (x )取得最小值4a .又由已知x =3时,f (x )min =4a ,∴a2=3,即a =36.答案:(1)B (2)36[预测押题3] (1)选D 依题意,点A (-2,-1),则-2m -n +1=0,即2m +n =1(m >0,n >0),∴1m +2n =⎝ ⎛⎭⎪⎫1m +2n (2m +n )=4+⎝ ⎛⎭⎪⎫n m +4m n ≥4+2n m ×4m n =8,当且仅当n m =4m n,即n =2m=12时取等号,即1m +2n的最小值是8. (2)选A 由已知得a +2b =2.又∵a >0,b >0,∴2=a +2b ≥22ab ,∴ab ≤12,当且仅当a =2b =1时取等号.交汇·创新考点[例1] 选C 作出可行域,如图中阴影部分所示,三个顶点到圆心(0,1)的距离分别是1,1,2,由A ⊆B 得三角形所有点都在圆的内部,故m ≥2,解得:m ≥2.[预测押题1] 选C 如图,若使以(4,1)为圆心的圆与阴影部分区域至少有两个交点,结合图形,当圆与直线x -y -2=0相切时,恰有一个公共点,此时a =⎝ ⎛⎭⎪⎫122=12,当圆的半径增大到恰好过点A (2,2)时,圆与阴影部分至少有两个公共点,此时a =5,故a 的取值范围是12<a ≤5,故选C.[例2] 选 C z =x 2-3xy +4y 2(x ,y ,z ∈R +),∴z xy =x 2-3xy +4y 2xy =x y +4yx-3≥2x y ·4y x -3=1.当且仅当x y =4y x ,即x =2y 时“=”成立,此时z =x 2-3xy +4y 2=4y2-6y 2+4y 2=2y 2,∴x +2y -z =2y +2y -2y 2=-2y 2+4y =-2(y -1)2+2.∴当y =1时,x +2y -z 取得最大值2.[预测押题2] 解析:4x 2+y 2+xy =1,∴(2x +y )2=3xy +1=32×2xy +1≤32×⎝ ⎛⎭⎪⎫2x +y 22+1,∴(2x +y )2≤85,∴(2x +y )max =2105.答案:2105第五讲 导数及其应用基础·单纯考点[例1] 解析:(1)∵点(1,1)在曲线y =x 2x -1上,y ′=-1(2x -1)2,∴在点(1,1)处的切线斜率为y ′|x =1=-1(2-1)2=-1,所求切线方程为y -1=-(x -1),即x +y -2=0.(2)因为y ′=2ax -1x,所以y ′|x =1=2a -1.因为曲线在点(1,a )处的切线平行于x 轴,故其斜率为0,故2a -1=0,a =12.答案:(1)x +y -2=0 (2)12[预测押题1] 选D 由f (x +2)=f (x -2),得f (x +4)=f (x ),可知函数为周期函数,且周期为4.又函数f (x )为偶函数,所以f (x +2)=f (x -2)=f (2-x ),即函数的对称轴是x =2,所以f ′(-5)=f ′(3)=-f ′(1),所以函数在x =-5处的切线的斜率k =f ′(-5)=-f ′(1)=-1.[例2] 解:(1)f ′(x )=e x(ax +a +b )-2x -4.由已知得f (0)=4,f ′(0)=4.故b =4,a +b =8.从而a =4,b =4.(2)由(1)知,f (x )=4e x (x +1)-x 2-4x ,f ′(x )=4e x(x +2)-2x -4=4(x +2)⎝⎛⎭⎪⎫e x -12.令f ′(x )=0,得x =-ln2或x =-2.从而当x ∈(-∞,-2)∪(-ln2,+∞)时,f ′(x )>0;当x ∈(-2,-ln2)时,f ′(x )<0.故f (x )在(-∞,-2),(-ln2,+∞)上单调递增,在(-2,-ln2)上单调递减.[预测押题2] 解:(1)当m =1时,f (x )=13x 3+x 2-3x +1,又f ′(x )=x 2+2x -3,所以f ′(2)=5.又f (2)=53,所以所求切线方程为y -53=5(x -2),即15x -3y -25=0.所以曲线y =f (x )在点(2,f (2))处的切线方程为15x -3y -25=0.(2)因为f ′(x )=x 2+2mx -3m 2,令f ′(x )=0,得x =-3m 或x =m .当m =0时,f ′(x )=x 2≥0恒成立,不符合题意;当m >0时,f (x )的单调递减区间是(-3m ,m ),若f (x )在区间(-2,3)上是减函数,则⎩⎪⎨⎪⎧-3m ≤-2,m ≥3,解得m ≥3;当m <0时,f (x )的单调递减区间是(m ,-3m ),若f (x )在区间(-2,3)上是减函数,则⎩⎪⎨⎪⎧m ≤-2,-3m ≥3,解得m ≤-2.综上所述,实数m 的取值范围是(-∞,-2]∪[3,+∞).[例3] 解:(1)f ′(x )=1-aex ,①当a ≤0时,f ′(x )>0,f (x )为(-∞,+∞)上的增函数,所以函数f (x )无极值.②当a >0时,令f ′(x )=0,得e x=a ,即x =ln a . 当x ∈(-∞,ln a )时,f ′(x )<0; 当x ∈(ln a ,+∞)时,f ′(x )>0,所以f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增,故f (x )在x =ln a 处取得最小值,且极小值为f (ln a )=ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =ln a 处取得极小值ln a ,无极大值.(2)当a =1时,f (x )=x -1+1e x .直线l :y =kx -1与曲线y =f (x )没有公共点,等价于关于x 的方程kx -1=x -1+1e x 在R 上没有实数解,即关于x 的方程:(k -1)x =1ex (*)在R 上没有实数解.①当k =1时,方程(*)可化为1e x =0,在R 上没有实数解.②当k ≠1时,方程(*)可化为1k -1=x e x.令g (x )=x e x ,则有g ′(x )=(1+x )e x.令g ′(x当x =-1时,g (x )min =-e,同时当x 趋于+∞时,g (x )趋于+∞,从而g (x )的取值范围为⎣⎢⎡⎭⎪⎫-1e ,+∞.所以当1k +1∈⎝ ⎛⎭⎪⎫-∞,-1e 时,方程(*)无实数解,解得k 的取值范围是(1-e ,1).综合①②,得k 的最大值为1.[预测押题3] 解:(1)f ′(x )=a +2x 2-3x ,由题意可知f ′(23)=1,解得a =1.故f (x )=x -2x -3ln x ,∴f ′(x )=(x -1)(x -2)x2,由f ′(x )=0,得x =2.∴f min (2)f ′(x )=a +2x -3x =ax 2-3x +2x(x >0),由题意可得方程ax 2-3x +2=0有两个不等的正实根,不妨设这两个根为x 1,x 2,并令h (x )=ax 2-3x +2,则⎩⎪⎨⎪⎧Δ=9-8a >0,x 1+x 2=3a >0,x 1x 2=2a >0.也可以为⎩⎪⎨⎪⎧Δ=9-8a >0,--32a >0,h (0)>0.解得0<a <98.交汇·创新考点[例1] 解:(1)证明:设φ(x )=f (x )-1-a ⎝⎛⎭⎪⎫1-1x =a ln x -a ⎝ ⎛⎭⎪⎫1-1x (x >0),则φ′(x )=a x -ax2.令φ′(x )=0,则x =1,易知φ(x )在x =1处取到最小值,故φ(x )≥φ(1)=0,即f (x )-1≥a ⎝ ⎛⎭⎪⎫1-1x .(2)由f (x )>x 得a ln x +1>x ,即a >x -1ln x .令g (x )=x -1ln x (1<x <e),则g ′(x )=ln x -x -1x (ln x )2.令h (x )=ln x -x -1x (1<x <e),则h ′(x )=1x -1x2>0,故h (x )在定义域上单调递增,所以h (x )>h (1)=0.因为h (x )>0,所以g ′(x )>0,即g (x )在定义域上单调递增,则g (x )<g (e)=e -1,即x -1ln x<e -1,所以a 的取值范围为[e -1,+∞).[预测押题1] 解:(1)由f (x )=e x (x 2+ax -a )可得,f ′(x )=e x [x 2+(a +2)x ].当a =1时,f (1)=e ,f ′(1)=4e.所以曲线y =f (x )在点(1,f (1))处的切线方程为y -e =4e(x -1),即y =4e x -3e.(2)令f ′(x )=e x [x 2+(a +2)x ]=0,解得x =-(a +2)或x =0.当-(a +2)≤0,即a ≥-2时,在区间[0,+∞)上,f ′(x )≥0,所以f (x )在[0,+∞)上是增函数,所以方程f (x )=k 在[0,+∞)上不可能有两个不相等的实数根.当-(a +2)>0,即a <-2时,f ′(x ),f (x )随由上表可知函数f (x )在[0,+∞)上的最小值为f (-(a +2))=ea +2.因为函数f (x )在(0,-(a +2))上是减函数,在(-(a +2),+∞)上是增函数,且当x ≥-a 时,有f (x )≥f (-a )=e -a(-a )>-a ,又f (0)=-a ,所以要使方程f (x )=k 在[0,+∞)上有两个不相等的实数根,k 的取值范围是⎝ ⎛⎦⎥⎤a +4e a +2,-a .[例2] 选C 法一:曲线y =x 与直线x =1及x 轴所围成的曲边图形的面积S =⎠⎛01xd x =⎪⎪⎪23x 3210=23,又∵S △AOB =12,∴阴影部分的面积为S ′=23-12=16,由几何概型可知,点P 取自阴影部分的概率为P =16.法二:S 阴影=⎠⎛01(x -x )d x =16,S 正方形OABC =1,∴点P 取自阴影部分的概率为P =16.[预测押题2] 解析:画出草图,可知所求概率P =S 阴影S △AOB =⎠⎛04x d x18=⎪⎪⎪23x 324018=16318=827.答案:827[例3] 解:(1)因为方程ax -(1+a 2)x 2=0(a >0)有两个实根x 1=0,x 2=a1+a 2,故f (x )>0的解集为{x |x 1<x <x 2}.因此区间I =⎝ ⎛⎭⎪⎫0,a 1+a 2,故I 的长度为a1+a 2.(2)设d (a )=a 1+a 2,则d ′(a )=1-a2(1+a 2)2(a >0).令d ′(a )=0,得a =1.由于0<k <1,故当1-k ≤a <1时,d ′(a )>0,d (a )单调递增;当1<a ≤1+k 时,d ′(a )<0,d (a )单调递减.所以当1-k ≤a ≤1+k 时,d (a )的最小值必定在a =1-k 或a =1+k 处取得.而d (1-k )d (1+k )=1-k1+(1-k )21+k 1+(1+k )2=2-k 2-k 32-k 2+k3<1,故d (1-k )<d (1+k ).因此当a =1-k 时,d (a )在区间[1-k ,1+k ]上取得最小值1-k2-2k +k2.[预测押题3] 解:(1)f (x )的定义域为(-∞,-1)∪(-1,+∞),f ′(x )=a (x +1)-(ax +b )(x +1)2=a -b(x +1)2.当a >b 时,f ′(x )>0,函数f (x )在(-∞,-1),(-1,+∞)上单调递增;当a <b 时,f ′(x )<0,函数f (x )在(-∞,-1),(-1,+∞)上单调递减.(2)① 计算得f (1)=a +b 2>0,f (b a )=2ab a +b >0,f (b a )=ab >0.因为f (1)f (ba)=a +b2·2ab a +b =ab =⎣⎢⎡⎦⎥⎤f (b a )2,即f (1)f (b a )=⎣⎢⎡⎦⎥⎤f (b a )2. (*)所以f (1),f (b a),f (b a )成等比数列.因为a +b 2≥ab ,所以f (1)≥f (b a ).由(*)得f (b a )≤f (b a). ②由①知f (b a )=H ,f (b a )=G .故由H ≤f (x )≤G ,得f (b a )≤f (x )≤f (ba ). (**)当a =b 时,(b a )=f (x )=f (b a )=a .这时,x 的取值范围为(0,+∞);当a >b 时,0<ba<1,从而b a <b a ,由f (x )在(0,+∞)上单调递增(**)式,得b a ≤x ≤b a,即x 的取值范围为⎣⎢⎡⎦⎥⎤ba ,b a ;当a <b 时,b a >1,从而b a >b a ,由f (x )在(0,+∞)上单调递减与(**)式,得b a≤x ≤b a ,即x 的取值范围为⎣⎢⎡⎦⎥⎤b a ,b a .综上,当a =b 时,x 的取值范围为(0,+∞);当a >b时,x 的取值范围为⎣⎢⎡⎦⎥⎤b a ,b a ;当a <b 时,x 的取值范围为⎣⎢⎡⎦⎥⎤b a ,b a .专题二 三角函数、解三角形、平面向量第一讲 三角函数的图像与性质基础·单纯考点 [例1] 解析:(1)1-2sin (π+θ)sin ⎝⎛⎭⎪⎫3π2-θ=1-2sin θcos θ=|sin θ-cos θ|,又θ∈⎝ ⎛⎭⎪⎫π2,π,∴sin θ-cos θ>0,故原式=sin θ-cos θ.(2)由已知得|OP |=2,由三角函数定义可知sin α=12,cos α=32,即α=2k π+π6(k ∈Z ).所以2sin2α-3tan α=2sin ⎝ ⎛⎭⎪⎫4k π+π3-3tan ⎝ ⎛⎭⎪⎫2k π+π6=2sin π3-3tan π6=2×32-3×33=0. 答案:(1)A (2)D[预测押题1] (1)选C 由已知可得-2tan α+3sin β+5=0,tan α-6sin β=1,解得tan α=3,故sin α=31010.(2)解析:由A 点的纵坐标为35及点A 在第二象限,得点A 的横坐标为-45,所以sin α=35,cos α=-45,tan α=-34.故tan2α=2tan α1-tan 2α=-247. 答案:35 -247[例2] 解析:(1)∵34T =512π-⎝ ⎛⎭⎪⎫-π3=34π,∴T =π,∴2πω=π(ω>0),∴ω=2.由图像知当x =512π时,2×512π+φ=2k π+π2(k ∈Z ),即φ=2k π-π3(k∈Z ).∵-π2<φ<π2,∴φ=-π3.(2)y =cos(2x +φ)的图像向右平移π2个单位后得到y =cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π2+φ的图像,整理得y =cos(2x -π+φ).∵其图像与y =sin ⎝⎛⎭⎪⎫2x +π3的图像重合,∴φ-π=π3-π2+2k π,∴φ=π3+π-π2+2k π,即φ=5π6+2k π.又∵-π≤φ<π∴φ=5π6.答案:(1)A (2)5π6[预测押题2] (1)选C 将y =sin ⎝⎛⎭⎪⎫2x +π4的图像向左平移π4个单位,再向上平移2个单位得y =sin ⎝⎛⎭⎪⎫2x +3π4+2的图像,其对称中心的横坐标满足2x +3π4=k π,即x =k π2-3π8,k ∈Z ,取k =1,得x =π8. (2)选C 根据已知可得,f (x )=2sin π4x ,若f (x )在[m ,n ]上单调,则n -m 取最小值.又当x =2时,y =2;当x =-1时,y =-2,故(n -m )min =2-(-1)=3.[例3] 解:(1)f (x )4cos ωx ·sin ⎝ ⎛⎭⎪⎫ωx +π4=22sin ωx ·cos ωx +22cos 2ωx =2(sin2ωx ·cos2ωx )+2=2sin ⎝⎛⎭⎪⎫2ωx +π4+ 2.因为f (x )的最小正周期为π,且ω>0,从而由2π2ω=π,故ω=1.(2)由(1)知,f (x )=2sin ⎝⎛⎭⎪⎫2x +π4+ 2.若0≤x ≤π2,则π4≤2x +π4≤5π4.当π4≤2x +π4≤π2,即0≤x ≤π8时,f (x )单调递增;当π2≤2x +π4≤5π5,即π8≤x ≤π2时,f (x )单调递减;综上可知,f (x )在区间[0,π8]上单调递增,在区间[π8,π2]上单调递减.[预测押题3] 解:(1)因为f (x )=32sin 2x +1+cos 2x 2+a =sin(2x +π6)+a +12,所以T =π.由π2+2k π≤2x +π6≤3π2+2k π,k ∈Z ,得π6+k π≤x≤2π3+k π,k∈Z .故函数f (x )的单调递减区间是⎣⎢⎡⎦⎥⎤π6+k π,2π3+k π(k ∈Z ). (2)因为-π6≤x ≤π3,所以-π6≤2x +π6≤5π6,-12≤sin ⎝⎛⎭⎪⎫2x +π6≤1.因为函数f (x )在⎣⎢⎡⎦⎥⎤-π6,π3上的最大值与最小值的和为⎝⎛⎭⎪⎫1+a +12+⎝ ⎛⎭⎪⎫-12+a +12=32,所以a =0.交汇·创新考点[例1] 解:(1)f (x )=1+cos (2ωx -π3)2-1-cos2ωx 2=12⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫2ωx -π3+cos2ωx =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12cos2ωx +32sin2ωx +cos2ωx =12⎝ ⎛⎭⎪⎫32sin2ωx +32cos2ωx =32⎝ ⎛⎭⎪⎫12sin2ωx +32cos2ωx =32sin ⎝ ⎛⎭⎪⎫2ωx +π3.由题意可知,f (x )的最小正周期T =π,∴2π|2ω|=π.又∵ω>0,∴ω=1,∴f (π12)=32sin ⎝ ⎛⎭⎪⎫2×π12+π3=32sin π2=32.(2)|f (x )-m |≤1,即f (x )-1≤m ≤f (x )+1.∵对∀x ∈⎣⎢⎡⎦⎥⎤-7π12,0,都有|f (x )-m |≤1,∴m ≥f (x )max -1且m ≤f (x )min +1.∵-7π12≤x ≤0,∴-5π6≤2x +π3≤π3,∴-1≤sin ⎝ ⎛⎭⎪⎫2x +π3≤32,∴-32≤32sin ⎝ ⎛⎭⎪⎫2x +π3≤34,即f (x )max =34,f (x )min =-32,∴-14≤m ≤1-32.故m 的取值范围为⎣⎢⎡⎦⎥⎤-14,1-32.[预测押题1] 解:(1)f (2π3)=cos 2π3·cos π3=-cos π3·cos π3=-⎝ ⎛⎭⎪⎫122=-14.(2)f (x )=cos x ·cos ⎝ ⎛⎭⎪⎫x -π3=cos x ·⎝ ⎛⎭⎪⎫12cos x + 32sin x =12cos 2x +32sin x cos x =14(1+cos2x )+34sin2x =12cos ⎝ ⎛⎭⎪⎫2x -π3+14.f (x )<14等价于12cos ⎝ ⎛⎭⎪⎫2x -π3+14<14,即cos ⎝⎛⎭⎪⎫2x -π3<0.于是2k π+π2<2x -π3<2k π+3π2,k ∈Z .解得k π+5π12<x <k π+11π12,k ∈Z .故使f (x )<14成立的x 的取值集合为⎩⎨⎧⎭⎬⎫x |k π+5π12<x <k π+11π12,k ∈Z .[例2] 解析:因为圆心由(0,1)平移到了(2,1,),所以在此过程中P 点所经过的弧长为2,其所对圆心角为2.如图所示,过P 点作x 轴的垂线,垂足为A ,圆心为C ,与x 轴相切与点B ,过C 作PA 的垂线,垂足为D ,则∠PCD =2-π2,|PD |=sin ⎝⎛⎭⎪⎫2-π2=-cos2,|CD |=cos ⎝⎛⎭⎪⎫2-π2=sin2,所以P 点坐标为(2-sin2,1-cos2),即OP →的坐标为(2-sin2,1-cos2).答案:(2-sin2,1-cos2)[预测押题2] 选A 画出草图,可知点Q 点落在第三象限,则可排除B 、D ;代入A ,cos∠QOP =6×(-72)+8×(-2)62+82=-502100=-22,所以∠QOP =3π4.代入C ,cos ∠QOP =6×(-46)+8×(-2)62+82=-246-16100≠-22.第二讲 三角恒等变换与解三角形基础·单纯考点[例1] 解:(1)因为f (x )=2cos ⎝ ⎛⎭⎪⎫x -π12,所以f (-π6)=2cos ⎝ ⎛⎭⎪⎫-π6-π12=2cos ⎝ ⎛⎭⎪⎫-π4=2cos π4=2×22=1. (2)因为θ∈⎝ ⎛⎭⎪⎫3π2,2π,cos θ=35,所以sin θ=1-cos 2θ=-1-⎝ ⎛⎭⎪⎫352=-45,cos2θ=2cos 2θ-1=2×(35)2-1=-275,sin 2θ=2sin θcos θ =2×35×⎝ ⎛⎭⎪⎫-45=-2425.所以f (2θ+π3)=2cos ⎝ ⎛⎭⎪⎫2θ+π3-π12=2cos ⎝ ⎛⎭⎪⎫2θ+π4=2×⎝ ⎛⎭⎪⎫22cos2θ-22sin2θ=cos2θ-sin2θ=-725-⎝ ⎛⎭⎪⎫-2425=1725.[预测押题1] 解:(1)由已知可得f (x )=3cos ωx +3sin ωx =23sin ⎝ ⎛⎭⎪⎫ωx +π3.所以函数f (x )的值域为[-23,23].又由于正三角形ABC 的高为23,则BC =4,所以函数f (x )的周期T =4×2=8,即2πω=8,解得ω=π4.(2)因为f (x 0)=835,由(1)得f (x 0)=23sin ⎝ ⎛⎭⎪⎫πx 04+π3=835,即sin ⎝⎛⎭⎪⎫πx 04+π3=45.由x 0∈⎝ ⎛⎭⎪⎫-103,23得πx 04+π3∈⎝ ⎛⎭⎪⎫-π2,π2.所以cos ⎝ ⎛⎭⎪⎫πx 04+π3=1-⎝ ⎛⎭⎪⎫452=35,故f (x 0+1)=23sin ⎝ ⎛⎭⎪⎫πx 04+π4+π3=23sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫πx 04+π3+π4 =23⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫πx 04+π3cos π4+cos ⎝ ⎛⎭⎪⎫πx 04+π3sin π4=23⎝ ⎛⎭⎪⎫45×22+35×22=765.[例2] 解:(1)由已知得,∠PBC =60°,所以∠PBA =30°.在△PBA 中,由余弦定理得PA 2=3+14-2×3×12cos30°=74.故PA =72. (2)设∠PBA =α,由已知得PB =sin α.在△PBA 中,由正弦定理得3sin150°=sin αsin (30°-α),化简得3sin α=4sin α.则tan α=34,即tan ∠PBA =34.[预测押题2] 解:(1)由正弦定理得2sin B cos C =2sin A -sin C .∵在△ABC 中,sin A =sin(B +C )=sin B cos C +sin C cos B ,∴sin C (2cos B -1)=0.又0<C <π,sin C >0,∴cos B =12,注意到0<B <π,∴B =π3.(2)∵S △ABC =12ac sin B =3,∴ac =4,由余弦定理得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac ≥ac =4,当且仅当a =c =2时,等号成立,∴b 的取值范围为[2,+∞).交汇·创新考点[例1] 解:(1)∵f (x )=cos ⎝ ⎛⎭⎪⎫2x -4π3+2cos 2x =cos ⎝⎛⎭⎪⎫2x +π3+1,∴f (x )的最大值为2.f (x )取最大值时,cos ⎝⎛⎭⎪⎫2x +π3=1,2x +π3=2k π(k ∈Z ),故x 的集合为{x |x =k π-π6,k ∈Z }.(2)由f (B +C )=cos ⎣⎢⎡⎦⎥⎤2(B +C )+π3+1=32,可得cos ⎝⎛⎭⎪⎫2A -π3=12,由A ∈(0,π),可得A =π3.在△ABC 中,由余弦定理,得a 2=b 2+c 2-2bc cos π3=(b +c )2-3bc ,由b +c =2,知bc ≤⎝ ⎛⎭⎪⎫b +c 22=1,当b =c =1时,bc 取最大值,此时a 取最小值1.[预测押题1] 解:(1)由已知得AB →·AC →=bc cos θ=8,b 2+c 2-2bc cos θ=42,故b 2+c 2=32.又b 2+c 2≥2bc ,所以bc ≤16,(当且仅当b =c =4时等号成立),即bc 的最大值为16.即8cos θ≤16,所以cos θ≥12.又0<θ<π,所以0<θ≤π3,即θ的取值范围是(0,π3].(2)f (θ)=3sin2θ+cos2θ+1=2sin ⎝⎛⎭⎪⎫2θ+π6+1.因为0<θ≤π3,所以π6<2θ+π6≤5π6,12≤sin ⎝⎛⎭⎪⎫2θ+π6≤1.当2θ+π6=5π6,即θ=π3时,f (θ)min =2×12+1=2;当2θ+π6=π2,即θ=π3时,f (θ)max =2×1+1=3.[例2] 解:(1)在△ABC 中,因为cos A =1213,cos C =35,所以sin A =513,sin C =45.从而sin B =sin[π-(A +C )]=sin(A +C )=sin A cos C +cos A sin C =513×35+1213×45=6365.由正弦定理AB sin C =AC sin B ,得AB =ACsin B ×sin C =12606365×45=1040(m).所以索道AB 的长为1040m. (2)假设乙出发t 分钟后,甲、乙两游客距离为d ,此时,甲行走了(100+50t )m ,乙距离A 处130t m ,所以由余弦定理得d 2=(100+5t )2+(130t )2-2×130t ×(100+50t )×1213=200(37t 2-70t +50),因0≤t ≤1040130,即0≤t ≤8,故当t =3537(min)时,甲、乙两游客距离最短.(3)由正弦定理BC sin A =AC sin B ,得BC =AC sin B ×sin A =12606365×513=500(m).乙从B 出发时,甲已经走了50×(2+8+1)=550(m),还需要走710m 才能到达C .设乙步行的速度为v m/min ,由题意得-3≤500v -71050≤3,解得125043≤v ≤62514,所以使两位游客在C 处互相等待的时间不超过3min ,乙步行的速度控制在⎣⎢⎡⎦⎥⎤125043,62514(单位:m/min)范围内.[预测押题2] 解:(1)因为点C 的坐标为⎝ ⎛⎭⎪⎫35,45,根据三角函数的定义,得sin ∠COA =45,cos ∠COA =35.因为△AOB 为正三角形,所以∠AOB =60°.所以cos ∠BOC =cos (∠COA +60°)=cos ∠COA cos60°-sin ∠COA sin60°=35×12-45×32=3-4310.(2)因为∠AOC =θ⎝⎛⎭⎪⎫0<θ<π2,所以∠BOC =π3+θ.在△BOC 中,|OB |=|OC |=1,由余弦定理,可得f (θ)=|BC |2=|OC |2+|OB |2-2|OC |·|OB |·cos ∠COB =12+12-2×1×1×cos ⎝ ⎛⎭⎪⎫θ+π3=2-2cos ⎝⎛⎭⎪⎫θ+π3.因为0<θ<π2,所以π3<θ+π3<5π6.所以-32<cos ⎝ ⎛⎭⎪⎫θ+π3<12.所以1<2-2cos ⎝ ⎛⎭⎪⎫θ+π3<2+ 3.所以函数f (θ)的值域为(1,2+3).第三讲 平面向量基础·单纯考点[例1] 解析:以向量:a 的终点为原点,过该点的水平和竖直的网格线所在直线为x 轴、y 轴建立平面直角坐标系,设一个小正方形网格的边长为1,则a =(-1,1),b =(6,2),c =(-1,-3).由c =λa +μb ,即(-1,-3)=λ(-1,1)+μ(6,2),得-λ+6μ=-1,λ+2μ=-3,故λ=-2,μ=-12,则λμ=4.答案:4[预测押题1] (1)选A 由已知,得AB →=(3,-4),所以|AB →|=5,因此与AB →同方向的单位向量是15AB →=⎝ ⎛⎭⎪⎫35,-45.(2)选C 如图,连接BP ,则AP →=AC →+CP →=b +PR →,① AP →=AB →+BP →=a +RP →-RB →,②①+②,得2AP →=a +b -RB →.③ 又RB →=12QB →=12(AB →-AQ →)=12⎝ ⎛⎭⎪⎫a -12AP →,④将④代入③,得2AP →=a +b -12⎝⎛⎭⎪⎫a -12AP →,解得AP →=27a +47b .[例2] 解析:(1)由已知得AB →=(2,1),CD →=(5,5),因此AB →在CD →方向上的投影为AB →·CD →|CD →|=1552=322.(2)设AB 的长为a (a >0),又因为AC →=AB →+AD →,BE →=BC →+CE →=AD →-12AB →,于是AC →·BE →=(AB→+AD →)·(AD →-12AB →)=12AB →·AD →-12AB →2+AD →2=-12a 2+14a +1,由已知可得-12a 2+14a +1=1.又a >0,∴a =12,即AB 的长为12.答案:(1)A (2)12[预测押题2] (1)选D a ⊥(a +b)⇒a ·(a +b )=a 2+a·b =|a |2+|a ||b |cos<a ,b >=0,故cos<a ,b >=-963=-32,故所求夹角为5π6.(2)选C 设BC 的中点为M ,则AG →=23AM →.又M 为BC 中点,∴AM →=12(AB →+AC →),∴AG →=23AM →=13(AB →+AC →),∴|AG →|=13AB →2+AC →2+2AB →·AC →=13AB →2+AC →2-4.又∵AB →·AC →=-2,∠A =120°,∴|AB →||AC →|=4.∵|AG →|=13AB →2+AC →2-4≥132|AB →||AC →|-4=23,当且仅当|AB →|=|AC→|时取等号,∴|AG →|的最小值为23.交汇·创新考点[例1] 解析:设P (x ,y ),则AP →=(x -1,y +1).由题意知AB →=(2,1),AC →=(1,2).由AP →=λAB →+μAC →知(x -1,y +1)=λ(2,1)+μ(1,2),即⎩⎪⎨⎪⎧2λ+μ=x -1,λ+2μ=y +1.∴⎩⎪⎨⎪⎧λ=2x -y -33,μ=2y -x +33,∵1≤λ≤2,0≤μ≤1,∴⎩⎪⎨⎪⎧3≤2x -y -3≤6,0≤2y -x +3≤3.作出不等式组表示的平面区域(如图阴影部分),由图可知平面区域D 为平行四边形,可求出M (4,2),N (6,3),故|MN |= 5.又x -2y =0,x -2y -3=0之间的距离d =35,故平面区域D 的面积为S =5×25=3.答案:3[预测押题1] 选D 如图作可行域,z =OA →·OP →=x +2y ,显然在B (0,1)处z max =2.故选D.[例2] 解:(1)∵g (x )=sin(π2+x )+2cos(π2-x )=2sin x +cos x ,∴OM →=(2,1),∴|OM →|=22+12= 5.(2)由已知可得h (x )=sin x +3cos x =2sin(x +π3),∵0≤x ≤π2,∴π3≤x +π3≤5π6,∴h (x )∈[1,2].∵当x +π3∈[π3,π2]时,即x ∈[0,π6]时,函数h (x )单调递增,且h (x )∈[3,2];当x +π3∈(π2,5π6]时,即x ∈(π6,π2]时,函数h (x )单调递减,且h (x )∈[1,2).∴使得关于x 的方程h (x )-t =0在[0,π2]内恒有两个不相等实数解的实数t 的取值范围为[3,2).[预测押题2] 解:(1)由题设,可得(a +b )·(a -b )=0,即|a |2-|b |2=0.代入a ,b的坐标,可得cos 2α+(λ-1)2sin 2α-cos 2β-sin 2β=0,所以(λ-1)2sin 2α-sin 2α=0.因为0<α<π2,故sin 2α≠0,所以(λ-1)2-1=0,解得λ=2或λ=0(舍去,因为λ>0).故λ=2.(2)由(1)及题设条件,知a·b =cos αcos β+sin αsin β=cos(α-β)=45.因为0<α<β<π2,所以-π2<α<β<0.所以sin(α-β)=-35,tan(α-β)=-34.所以tan α=tan[(α-β)+β]=tan (α-β)+tan β1-tan (α-β)tan β=-34+431-(-34)×43=724.所以tan α=724.[例3] 选D a ∘b =a·b b 2=|a||b||b|2cos θ=|a||b|cos θ,b ∘a =|a||b|cos θ,因为|a |>0,|b |>0,0<cos θ<22,且a ∘b 、b ∘a ∈⎩⎨⎧⎭⎬⎫n 2|n ∈Z ,所以|a||b|cos θ=n 2,|a||b|cos θ=m 2,其中m ,n ∈N *,两式相乘,得m ·n 2=cos 2θ.因为0<cos θ<22,所以0<cos 2θ<12,得0<m ·n <2,故m=n =1,即a ∘b =12.[预测押题3] 选D 依题意,MF 1→=(-1-x ,-y )=(-1-x )e 1-y e 2,MF 2→=(1-x ,-y )=(1-x )e 1-y e 2,由|MF 1→|=|MF 2→|,得MF 1→2=MF 2→2,∴[(-1-x )e 1-y e 2]2=[(1-x )e 1-y e 2]2,∴4x +4y e 1·e 2=0.∵∠xOy =45°,∴e 1·e 2=22,故2x +2y =0,即2x +y =0.专题三 数列第一讲 等差数列、等比数列基础·单纯考点[例1] 解析:(1)∵{a n }是等差数列,S m -1=-2,S m =0,∴a m =S m -S m -1=2.∵S m +1=3,∴a m +1=S m +1-S m =3,∴d =a m +1-a m =1.又S m =m (a 1+a m )2=m (a 1+2)2=0,∴a 1=-2,∴a m=-2+(m -1)·1=2,∴m =5.(2)设等比数列{a n }的首项为a 1,公比为q ,则:由a 2+a 4=20得a 1q (1+q 2)=20,①,由a 3+a 5=40得a 1q 2(1+q 2)=40.②由①②解得q =2,a 1=2.故S n =a 1(1-q n )1-q =2(1-2n )1-2=2n +1-2.答案:(1)C (2)2 2n +1-2[预测押题1] 解:(1)设等差数列的公差为d ,d >0.由题意得,(2+d )2=2+3d +8,d 2+d -6=(d +3)(d -2)=0,得d =2.故a n =a 1+(n -1)·d =2+(n -1)·2=2n ,故a n =2n .(2)b n =a n +2a n =2n +22n .S n =b 1+b 2+…+b n =(2+22)+(4+24)+…+(2n +22n)=(2+4+6+...+2n )+(22+24+ (22))=(2+2n )·n 2+4·(1-4n )1-4=n 2+n +4n +1-43.[例2] 解:(1)设数列{a n }的公比为q (q ≠0,q ≠1),由a 5,a 3,a 4成等差数列,得2a 3=a 5+a 4,即2a 1q 2=a 1q 4+a 1q 3.由a 1≠0,q ≠0得q 2+q -2=0,解得q 1=-2,q 2=1(舍去),。
第二部分 专题一 第三讲 基本初等函数、函数与方程及函数的应用
因此当 0<x1<x0 时,有 f(x1)>f(x0),又 x0 是函数 f(x)的零点, 因此 f(x0)=0,所以 f(x1)>0,即此时 f(x1)的值恒为正值.
返回
3.选 C
log 1 -x,-x>0 log 1 -x,x<0, 2 f(-x)= = 2 log2x,-x<0 log2x,x>0.
返回
取得最大值100元. 返回
创新预测 1.选 D
10.3 分别结合指数函数与对数函数的图像可得,a=2 ∈
(0,1),b=(0.3)-2∈(1,+∞),c=log 1 2=-1,故 b>a>c.
2
2.选 A 注意到函数
1x f(x)=5 -log3x
在(0,+∞)上是减函数,
(2)依题意得,当 x-1>0,即 x>1 时,f(x)=1-ln x,令 f(x)=0 得 x=e>1; 当 x-1=0,即 x=1 时,f(x)=0-ln 1=0;当 x-1<0,即 x<1 时,f(x)= 1 -1-ln x,令 f(x)=0 得 x=e <1.因此,函数 f(x)的零点个数为 3.
答案:9
返回
[热点透析高考]
例1:解析:(1)由于π>1,则y=πx递增,因此a=π0.3>π0=1,
又由于π>3,因此b=logπ3<logππ=1,而c=30=1,所以a>c>b.
(2)依题意得f(x+2)=f[-(2-x)]=f(x-2),即 f(x+4)=f(x),则函数f(x)是以4为周期的函数, 结合题意画出函数f(x)在x∈(-2,6)上的图像与 函数y=loga(x+2)的图像,结合图像分析可知, 要使f(x)与y=loga(x+2)的图像有4个不同的交点,则有
函数的概念与基本初等函数函数与方程课件文ppt
xx年xx月xx日
目 录
• 函数的概念 • 基本初等函数 • 函数的应用 • 方程的概念与解法 • 基本初等函数与方程的关系
01
函数的概念
函数定义与性质
函数定义
函数是一种从输入到输出的映射关系,输入被称为自变量,输出被称为因变 量。函数通常被表示为一个数学表达式或表格。
含有多个未知数的方程,如 x + y z = 0。
方程的解法与技巧
代数法
通过化简、变形、替换等代数技巧求解方 程。
公式法
对于一些特殊类型的方程,可以使用公式 直接求解。
图解法
对于一些一元二次方程,可以通过画图的 方式求解。
迭代法
通过不断迭代逼近方程的解。
方程的应用与实例
1 2
工程问题
在工程设计中,经常需要使用方程来描述和解 决实际问题,如力学、流体力学等。
函数性质
函数具有唯一性、可逆性、有界性、连续性等性质。
函数的定义域与值域
定义域
函数中自变量的取值范围被称为定义域。
值域
函数中因变量的取值范围被称为值域。
函数的类别与关系
类别
根据函数的定义和性质,函数可以分为线性函数、二次函数 、指数函数、对数函数等类别。
关系
函数之间存在一些基本的关系,如加法、减法、乘法、除法 等运算,以及一些特定的函数关系,如正比、反比、对数等 关系。
在极值点处,函数的值会发生变化,这个变 化的值即为极值。
最值点
最值
在定义域内,函数可以取到的最大或最小值 点。
在最值点处,函数的值达到定义域内的最大 或最小值。
函数的优化与改进
函数的优化
基本初等函数
基本初等函数在数学中,基本初等函数是指一组常见且重要的函数,它们在解决实际问题和数学建模中起着关键作用。
这些函数包括常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数。
本文将介绍这些基本初等函数的定义、性质和应用。
1. 常数函数常数函数是最简单的函数之一,它的定义域中的每个数对应着同一个数值。
常数函数可以用以下形式表示:f(x) = c其中c为常数。
常数函数在数学建模中常用于表示恒定的数值,例如表示物体的质量、温度等。
2. 幂函数幂函数是形如f(x) = x^n的函数,其中n为整数或有理数。
当n为正整数时,幂函数表示将x连乘n次。
当n为负整数时,幂函数表示将x连除|n|次。
幂函数还可以表示开方运算,当n为1/2时表示平方根,n 为1/3时表示立方根等。
幂函数在物理学和工程学中广泛应用,如描述电路的功率特性、物体的速度随时间的变化等。
3. 指数函数指数函数是形如f(x) = a^x的函数,其中a为常数且a>0且a≠1。
指数函数的图像通常呈现出曲线的形状,随着自变量x的增大或减小,函数值急剧增加或减少。
指数函数在财务学、生物学、经济学等领域中有广泛的应用,如描述投资的复利增长、细菌的繁殖规律等。
4. 对数函数对数函数是指形如f(x) = log_a(x)的函数,其中a为常数且a>0且a≠1。
对数函数是指数函数的反函数,它描述了一个数以某个底数为底的幂的指数是多少。
对数函数在计算复杂度、音乐领域、数据压缩领域等有广泛的应用。
5. 三角函数三角函数包括正弦函数、余弦函数和正切函数等。
它们是单位圆上的点对应的y坐标、x坐标和y/x之间的关系函数。
三角函数在物理学、工程学、地理学等领域中广泛应用,如描述波动的特性、建筑物的结构设计等。
6. 反三角函数反三角函数是三角函数的反函数,包括反正弦函数、反余弦函数和反正切函数等。
它们可以用来解决三角方程,求解角度或与角度有关的问题。
反三角函数在几何学、物理学、导航系统等领域有广泛的应用。
基本初等函数、函数与方程及函数的应用(题型归纳)
基本初等函数、函数与方程及函数的应用【考情分析】1.考查特点:基本初等函数作为高考的命题热点,多考查指数式与对数式的运算、利用函数的性质比较大小,难度中等;函数的应用问题多体现在函数零点与方程根的综合问题上,题目有时较难,而与实际应用问题结合考查的指数、对数函数模型也是近几年考查的热点,难度中等.2.关键能力:逻辑思维能力、运算求解能力、数学建模能力、创新能力.3.学科素养:数学抽象、逻辑推理、数学建模、数学运算.【题型一】基本初等函数的图象与性质【典例分析】【例1】(2021•焦作一模)若函数||(0,1)x y a a a =>≠的值域为{|1}y y ,则函数log ||a y x =的图象大致是()A .B .C .D .【答案】B【解析】若函数||(0,1)x y a a a =>≠的值域为{|1}y y ,则1a >,故函数log ||a y x =的图象大致是:故选:B .【例2】(2021·陕西西安市·西安中学高三模拟)若1(,1)x e -∈,ln a x =,ln 1()2xb =,ln 2xc =,则a ,b ,c 的大小关系为()A .c b a >>B .b a c >>C .a b c >>D .b c a>>【答案】D【解析】因1(,1)x e -∈,且函数ln y x =是增函数,于是10a -<<;函数2x y =是增函数,1ln 0ln 1x x -<<<-<,而ln ln 1()22xx -=,则ln 11()22x <<,ln 1212x<<,即1122c b <<<<,综上得:b c a >>故选:D【例3】(2021·湖南长沙长郡中学高三模拟)若函数()()4log 1,13,1x x x f x m x ⎧->=⎨--≤⎩存在2个零点,则实数m 的取值范围为()A .[)3,0-B .[)1,0-C .[)0,1D .[)3,-+∞【答案】A【解析】因函数f (x )在(1,+∞)上单调递增,且f (2)=0,即f (x )在(1,+∞)上有一个零点,函数()()4log 1,13,1x x x f x m x ⎧->=⎨--≤⎩存在2个零点,当且仅当f (x )在(-∞,1]有一个零点,x≤1时,()03x f x m =⇔=-,即函数3x y =-在(-∞,1]上的图象与直线y =m 有一个公共点,在同一坐标系内作出直线y =m 和函数3(1)x y x =-≤的图象,如图:而3x y =-在(-∞,1]上单调递减,且有330x -≤-<,则直线y =m 和函数3(1)x y x =-≤的图象有一个公共点,30m -≤<.故选:A【提分秘籍】1.指数函数、对数函数的图象和性质受底数a 的影响,解决与指数、对数函数特别是与单调性有关的问题时,首先要看底数a 的范围.2.研究对数函数的性质,应注意真数与底数的限制条件.如求f(x)=ln(x 2-3x+2)的单调区间,易只考虑t=x 2-3x+2与函数y=ln t 的单调性,而忽视t>0的限制条件.3.指数、对数、幂函数值的大小比较问题的解题策略:(1)底数相同,指数不同的幂用指数函数的单调性进行比较.(2)底数相同,真数不同的对数值用对数函数的单调性进行比较.(3)底数不同、指数也不同,或底数不同、真数也不同的两个数,常引入中间量或结合图象比较大小.【变式演练】1.【多选】(2021·山东省实验中学高三模拟)已知函数()2121x x f x -=+,则下列说法正确的是()A .()f x 为奇函数B .()f x 为减函数C .()f x 有且只有一个零点D .()f x 的值域为[)1,1-【答案】AC【解析】()2121x x f x -=+ ,x ∈R ,2121x=-+2112()()2112x xx xf x f x ----∴-===-++,故()f x 为奇函数,又()21212121x x xf x -==-++ ,()f x ∴在R 上单调递增,20x> ,211x ∴+>,20221x∴<<+,22021x∴-<-<+,1()1f x ∴-<<,即函数值域为()1,1-令()21021x x f x -==+,即21x =,解得0x =,故函数有且只有一个零点0.综上可知,AC 正确,BD 错误.故选:AC2.(2021·山东潍坊市·高二一模(理))设函数()322xxf x x -=-+,则使得不等式()()2130f x f -+<成立的实数x 的取值范围是【答案】(),1-∞-【解析】函数的定义域为R ,()()322xx f x x f x --=--=-,所以函数是奇函数,并由解析式可知函数是增函数原不等式可化为()()213f x f -<-,∴213x -<-,解得1x <-,∴x 的取值范围是(),1-∞-.【题型二】函数与方程【典例分析】【例4】(2021·宁夏中卫市·高三其他模拟)函数3()9x f x e x =+-的零点所在的区间为()A .()0,1B .()1,2C .()2,3D .()3,4【答案】B【解析】由x e 为增函数,3x 为增函数,故3()9x f x e x =+-为增函数,由(1)80f e =-<,2(2)10f e =->,根据零点存在性定理可得0(1,2)x ∃∈使得0()0f x =,故选:B.【例5】(2021·北京高三一模)已知函数22,,()ln ,x x x t f x x x t⎧+=⎨>⎩(0)t >有2个零点,且过点(,1)e ,则常数t 的一个取值为______.【答案】2(不唯一).【解析】由220x x +=可得0x =或2x =-由ln 0x =可得1x =因为函数22,,()ln ,x x x t f x x x t⎧+=⎨>⎩(0)t >有2个零点,且过点(,1)e ,所以1e t >≥,故答案为:2(不唯一)【提分秘籍】1.判断函数零点个数的方法直接法直接求零点,令f(x)=0,则方程解的个数即为函数零点的个数定理法利用零点存在性定理,利用该定理只能确定函数的某些零点是否存在,必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点数形结合法对于给定的函数不能直接求解或画出图象的,常分解转化为两个能画出图象的函数的交点问题2.利用函数零点的情况求参数值或取值范围的方法(1)利用零点存在性定理构建不等式求解.(2)分离参数后转化为求函数的值域(最值)问题求解.(3)转化为两个熟悉的函数图象的位置关系问题,从而构建不等式求解.【变式演练】1.(2021·湖北十堰市高三模拟)函数()()()23log 111f x x x x =+->-的零点所在的大致区间是()A .()1,2B .()2,3C .()3,4D .()4,5【答案】B【解析】易知()f x 在()1,+∞上是连续增函数,因为()22log 330f =-<,()33202f =->,所以()f x 的零点所在的大致区间是()2,3.故选:B2.(2021·天津高三二模)设函数2,1()4()(2),1x a x f x x a x a x ⎧-<=⎨--≥⎩,若1a =,则()f x 的最小值为______;若()f x 恰有2个零点,则实数a 的取值范围是__________.【答案】1-112a ≤<或2a ≥【解析】当1a =时,()()211()4(1)(2)1x x f x x x x ⎧-<⎪=⎨--≥⎪⎩,1x <,()211xf x =-<,1≥x ,()()()234124112f x x x x ⎛⎫=--=--≥- ⎪⎝⎭所以()f x 的最小值为1-.设()f x 的零点为1x 、2x ,若()1,1x ∈-∞,[)21x ∈+∞,,则20012a a a a->⎧⎪>⎨⎪<≤⎩,得112a ≤<若[)12,1,x x ∈+∞,则0201a a a >⎧⎪-≤⎨⎪≥⎩,得2a ≥,综上:112a ≤<或2a ≥.故答案为:1-;112a ≤<或2a ≥.【题型三】函数的实际应用【典例分析】1.(2021·北京高三二模)20世纪30年代,里克特制定了一种表明地震能量大小的尺度,就是使用地震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大,这就是我们常说的里氏震级M ,其计算公式为0lg lg M A A =-,其中A 是被测地震的最大振幅,0A 是标准地震的振幅,2008年5月12日,我国四川汶川发生了地震,速报震级为里氏7.8级,修订后的震级为里氏8.0级,则修订后的震级与速报震级的最大振幅之比为()A .0.210-B .0.210C .40lg39D .4039【答案】B【解析】由0lg lg M A A =-,可得01AM gA =,即10M A A =,010M A A =⋅,当8M =时,地震的最大振幅为81010A A =⋅,当7.8M =时,地震的最大振幅为7.82010A A =⋅,所以,修订后的震级与速报震级的最大振幅之比是887.80.2017.82010101010A A A A -⋅===⋅.故选:B.2.为加强环境保护,治理空气污染,某环保部门对辖区内一工厂产生的废气进行了监测,发现该厂产生的废气经过过滤后排放,过滤过程中废气的污染物数量(mg /L)P 与时间(h)t 的关系为0ktP P e -=.如果在前5个小时消除了10%的污染物,那么污染物减少19%需要花的时间为()A .7小时B .10小时C .15小时D .18小时【答案】B【解析】因为前5个小时消除了10%的污染物,所以()50010.1kP P P e -=-=,解得ln 0.95k =-,所以ln 0.950tP P e =,设污染物减少19%所用的时间为t ,则()0010.190.81P P -=()()ln 0.92ln 0.955500000.90.9t t t P P e P eP ====,所以25t=,解得10t =,故选:B 3.(2021·山东滕州一中高三模拟)为了预防某种病毒,某商场需要通过喷洒药物对内部空间进行全面消毒,出于对顾客身体健康的考虑,相关部门规定空气中这种药物的浓度不超过0.25毫克/立方米时,顾客方可进入商场.已知从喷洒药物开始,商场内部的药物浓度y (毫克/立方米)与时间t (分钟)之间的函数关系为100.1,0101,102ta t t y t -≤≤⎧⎪=⎨⎛⎫>⎪ ⎪⎝⎭⎩(a 为常数),函数图象如图所示.如果商场规定10:00顾客可以进入商场,那么开始喷洒药物的时间最迟是A .9:40B .9:30C .9:20D .9:10【答案】9:30【解析】根据函数的图象,可得函数的图象过点(10,1),代入函数的解析式,可得1121a-⎛⎫⎪⎝⎭=,解得1a =,所以1100.1,0101,102t t t y t -≤≤⎧⎪=⎨⎛⎫>⎪ ⎪⎝⎭⎩,令0.25y ≤,可得0.10.25t ≤或11020.251t -⎛⎝≤⎫⎪⎭,解得0 2.5t <≤或30t ≥,所以如果商场规定10:00顾客可以进入商场,那么开始喷洒药物的时间最迟是9:30.故选:B.【提分秘籍】1.构建函数模型解决实际问题的失分点:(1)不能选择相应变量得到函数模型;(2)构建的函数模型有误;(3)忽视函数模型中变量的实际意义.2.解决新概念信息题的关键:(1)依据新概念进行分析;(2)有意识地运用转化思想,将新问题转化为我们所熟知的问题.【变式演练】(2020·湖北黄冈市·黄冈中学高三模拟)“百日冲刺”是各个学校针对高三学生进行的高考前的激情教育,它能在短时间内最大限度激发一个人的潜能,使成绩在原来的基础上有不同程度的提高,以便在高考中取得令人满意的成绩,特别对于成绩在中等偏下的学生来讲,其增加分数的空间尤其大.现有某班主任老师根据历年成绩在中等偏下的学生经历“百日冲刺”之后的成绩变化,构造了一个经过时间()30100t t ≤≤(单位:天),增加总分数()f t (单位:分)的函数模型:()()1lg 1kPf t t =++,k 为增分转化系数,P 为“百日冲刺”前的最后一次模考总分,且()1606f P =.现有某学生在高考前100天的最后一次模考总分为400分,依据此模型估计此学生在高考中可能取得的总分约为()(lg 61 1.79≈)A .440分B .460分C .480分D .500分【答案】B【解析】由题意得:()1601lg 61 2.796kP kP f P ===+, 2.790.4656k ∴≈=;∴()0.465400186186100621lg1011lg100lg1.013f ⨯==≈=+++,∴该学生在高考中可能取得的总分约为40062462460+=≈分.故选:B.1.(2021·江苏金陵中学高三模拟)函数()2ln 1xf x x =+-的零点所在的区间为().A .31,2⎛⎫⎪⎝⎭B .3,22⎛⎫⎪⎝⎭C .10,2⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭【答案】D【解析】函数()2ln 1xf x x =+-为()0,∞+上的增函数,由()110f =>,1311112ln 21ln 21ln 2ln 0222222f e ⎛⎫=-<--=-<-=⎪⎝⎭,可得函数()f x 的零点所在的区间为1,12⎛⎫⎪⎝⎭.故选:D.2.(2021·山东潍坊一中高三模拟)若函数()1af x x x =+-在(0,2)上有两个不同的零点,则a 的取值范围是()A .1[2,]4-B .1(2,)4-C .1[0,]4D .1(0,)4【答案】D【解析】函数()1a f x x x=+-在(0,2)上有两个不同的零点等价于方程10ax x +-=在(0,2)上有两个不同的解,即2a x x =-+在(0,2)上有两个不同的解.此问题等价于y a =与2(02)y x x x =-+<<有两个不同的交点.由下图可得104a <<.故选:D.3.(2021·长沙市·湖南师大附中高三三模)已知函数()()()ln 2ln 4f x x x =-+-,则().A .()f x 的图象关于直线3x =对称B .()f x 的图象关于点()3,0对称C .()f x 在()2,4上单调递增D .()f x 在()2,4上单调递减【答案】A【解析】()f x 的定义域为()2,4x ∈,A :因为()()()()3ln 1ln 13f x x x f x +=++-=-,所以函数()f x 的图象关于3x =对称,因此本选项正确;B :由A 知()()33f x f x +≠--,所以()f x 的图象不关于点()3,0对称,因此本选项不正确;C :()()()2ln 2ln 4ln(68)x x x f x x =-+-=-+-函数2268(3)1y x x x =-+-=--+在()2,3x ∈时,单调递增,在()3,4x ∈时,单调递减,因此函数()f x 在()2,3x ∈时单调递增,在()3,4x ∈时单调递减,故本选项不正确;D :由C 的分析可知本选项不正确,故选:A4.(2021·辽宁本溪高级中学高三模拟高三模拟)设函数2ln(1)ln(1)()1x x f x x +--=-,则函数的图象可能是()A .B .C .D .【答案】D【解析】2ln(1)ln(1)()1x x f x x +--=-,定义域为()1,1-,且()()f x f x -=-,故函数为奇函数,图象关于原点对称,故排除A,B,C ,故选:D.5.(2021·新安县第一高级中学高三模拟)被誉为信息论之父的香农提出了一个著名的公式:2log 1S C W N ⎛⎫=+ ⎪⎝⎭,其中C 为最大数据传输速率,单位为bit /s :W 为信道带宽,单位为Hz :SN为信噪比.香农公式在5G 技术中发挥着举足轻重的作用.当99SN=,2000Hz W =时,最大数据传输速率记为1C ;在信道带宽不变的情况下,若要使最大数据传输速率翻一番,则信噪比变为原来的多少倍()A .2B .99C .101D .9999【答案】C【解析】当99S N =,2000Hz W =时,()1222log 12000log 1994000log 10S C W N ⎛⎫=+=+= ⎪⎝⎭,由228000log 102000log 1S N ⎛⎫=+⎪⎝⎭,得224log 10log 1S N ⎛⎫=+ ⎪⎝⎭,所以9999S N =,所以999910199=,即信噪比变为原来的101倍.故选:C .6.(2021·浙江温州市·瑞安中学高三模拟)已知函数()f x 是定义在R 上的奇函数,满足()()2f x f x +=-,且当[]0,1x ∈时,()()2log 1f x x =+,则函数()3y f x x =-的零点个数是()A .2B .3C .4D .5【答案】B【解析】由()()2f x f x +=-可得()f x 关于1x =对称,由函数()f x 是定义在R 上的奇函数,所以()()[]2()(2)(2)f x f x f x f x f x +=-=-=---=-,所以()f x 的周期为4,把函数()3y f x x =-的零点问题即()30y f x x =-=的解,即函数()y f x =和3y x =的图像交点问题,根据()f x 的性质可得如图所得图形,结合3y x =的图像,由图像可得共有3个交点,故共有3个零点,故选:B.7.(2021·珠海市第二中学高三模拟)设21()log (1)f x x a=++是奇函数,若函数()g x 图象与函数()f x 图象关于直线y x =对称,则()g x 的值域为()A .11(,)(,)22-∞-+∞ B .11(,22-C .(,2)(2,)-∞-+∞D .(2,2)-【答案】A【解析】因为21()log (1)f x x a=++,所以1110x a x a x a+++=>++可得1x a <--或x a >-,所以()f x 的定义域为{|1x x a <--或}x a >-,因为()f x 是奇函数,定义域关于原点对称,所以1a a --=,解得12a =-,所以()f x 的定义域为11(,)(,)22-∞-+∞ ,因为函数()g x 图象与函数()f x 图象关于直线y x =对称,所以()g x 与()f x 互为反函数,故()g x 的值域即为()f x 的定义域11(,)(,)22-∞-+∞ .故选:A .8.(2021·浙江杭州高级中学高三模拟)已知函数22log ,0,()44,0.x x f x x x x ⎧>=⎨--+<⎩若函数()()g x f x m =-有四个不同的零点1234,,,x x x x ,则1234x x x x 的取值范围是()A .(0,4)B .(4,8)C .(0,8)D .(0,)+∞【答案】A【解析】函数()g x 有四个不同的零点等价于函数()f x 的图象与直线y m =有四个不同的交点.画出()f x 的大致图象,如图所示.由图可知(4,8)m ∈.不妨设1234x x x x <<<,则12420x x -<<-<<,且124x x +=-.所以214x x =--,所以()()212111424(0,4)x x x x x =--=-++∈,则3401x x <<<,因为2324log log x x =,所以2324log log x x -=,所以12324log log x x -=,所以341x x ⋅=,所以123412(0,4)x x x x x x ⋅⋅⋅=∈⋅.故选:A9.(2021·天津南开中学高三模拟)若函数()1x f x e =-与()g x ax =的图象恰有一个公共点,则实数a 可能取值为()A .2B .1C .0D .1-【答案】BCD【解析】函数()1x f x e =-的导数为()x f x e '=;所以过原点的切线的斜率为1k =;则过原点的切线的方程为:y x =;所以当1a 时,函数()1x f x e =-与()g x ax =的图象恰有一个公共点;故选BCD10.(2021·广东佛山市·高三模拟)函数()()()ln 1ln 1xxf x e e =+--,下列说法正确的是()A .()f x 的定义域为(0,)+∞B .()f x 在定义域内单调递増C .不等式(1)(2)f m f m ->的解集为(1,)-+∞D .函数()f x 的图象关于直线y x =对称【答案】AD【解析】要使函数有意义,则10(0,)10x xe x e ⎧+>⇒∈+∞⎨->⎩,故A 正确;()()12()ln 1ln 1ln ln(111x xxx x e f x e e e e +=+--==+--,令211xy e =+-,易知其在(0,)+∞上单调递减,所以()f x 在(0,)+∞上单调递减,故B 不正确;由于()f x 在(0,)+∞上单调递减,所以对于(1)(2)f m f m ->,有1020(1,)12m m m m m ->⎧⎪>⇒∈+∞⎨⎪-<⎩,故C 不正确;令()ln(211x y f x e +=-=,解得11ln()11y xy y y e e e x e e ++=⇒=--,所以()f x 关于直线y x =对称,故D 正确.故选:AD11.(2021·福建厦门市高三模拟)某医药研究机构开发了一种新药,据监测,如果患者每次按规定的剂量注射该药物,注射后每毫升血液中的含药量y (微克)与时间t (小时)之间的关系近似满足如图所示的曲线.据进一步测定,当每毫升血液中含药量不少于0.125微克时,治疗该病有效,则()A .3a =B .注射一次治疗该病的有效时间长度为6小时C .注射该药物18小时后每毫升血液中的含药量为0.4微克D .注射一次治疗该病的有效时间长度为31532时【答案】AD【解析】由函数图象可知()4(01)112t at t y t -<⎧⎪=⎨⎛⎫≥ ⎪⎪⎝⎭⎩,当1t =时,4y =,即11()42a-=,解得3a =,∴()34(01)112t t t y t -<⎧⎪=⎨⎛⎫≥ ⎪⎪⎝⎭⎩,故A 正确,药物刚好起效的时间,当40.125t =,即132t =,药物刚好失效的时间31()0.1252t -=,解得6t =,故药物有效时长为131653232-=小时,药物的有效时间不到6个小时,故B 错误,D 正确;注射该药物18小时后每毫升血液含药量为140.58⨯=微克,故C 错误,故选:AD .12.(2021·辽宁省实验中学高三模拟)(多选题)已知函数()f x ,()g x 的图象分别如图1,2所示,方程(())1f g x =,(())1g f x =-,1(())2g g x =-的实根个数分别为a ,b ,c ,则()A .a b c +=B .b c a+=C .b a c=D .2b c a+=【答案】AD【解析】由图,方程(())1f g x =,1()0g x -<<,此时对应4个解,故4a =;方程(())1g f x =-,得()1f x =-或者()1f x =,此时有2个解,故2b =;方程1(())2g g x =-,()g x 取到4个值,如图所示:即2()1g x -<<-或1()0g x -<<或0()1g x <<或1()2g x <<,则对应的x 的解,有6个,故6c =.根据选项,可得A ,D 成立.故选AD .13.(2021·山东淄博实验中学高三模拟)如果函数y =a 2x +2a x -1(a >0,且a ≠1)在区间[-1,1]上的最大值是14,则a 的值为________.【答案】3或13【解析】令a x =t ,则y =a 2x +2a x -1=t 2+2t -1=(t +1)2-2.当a >1时,因为x ∈[-1,1],所以t ∈1,a a ⎡⎤⎢⎥⎣⎦,又函数y =(t +1)2-2在1,a a ⎡⎤⎢⎥⎣⎦上单调递增,所以y max =(a +1)2-2=14,解得a =3(负值舍去).当0<a <1时,因为x ∈[-1,1],所以t ∈1a a ⎡⎤⎢⎥⎣⎦,,又函数y =(t +1)2-2在1a a ⎡⎤⎢⎥⎣⎦,上单调递增,则y max =211a ⎛⎫+ ⎪⎝⎭-2=14,解得a =13(负值舍去).综上,a =3或a =13.14.(2021·北京高三一模)已知函数22,1,()log ,1,x x f x x x ⎧<=⎨-⎩则(0)f =________;()f x 的值域为_______.【答案】1(),2-∞【解析】0(0)2=1=f ;当1x <时,()()20,2=∈xf x ,当1x ≤时,()2log 0=-≤f x x ,所以()f x 的值域为(),2-∞故答案为:1;(),2-∞.15.(2021·重庆南开中学高三模拟)已知定义域为[4,4]-的函数()f x 的部分图像如图所示,且()()0f x f x --=,函数(lg )1f a ≤,则实数a 的取值范围为______.【答案】1,1010⎡⎤⎢⎥⎣⎦【解析】由题意知()()f x f x -=,且函数()f x 的定义域为[4,4]-,所以()f x 是偶函数.由图知()11f =,且函数()f x 在[0,4]上为增函数,则不等式(lg )1f a ≤等价于(|lg |)(1)f a f ≤,即|lg |1a ≤,所以1lg 1a -≤≤,解得11010a ≤≤.故实数a 的取值范围为1,1010⎡⎤⎢⎥⎣⎦.故答案为:1,1010⎡⎤⎢⎥⎣⎦16.(2021·湖南长沙市·长沙一中高三其他模拟)设函数()222,034,0x x x f x x x ⎧-+≥=⎨+<⎩,若互不相等的实数1x ,2x ,3x 满足()()()123f x f x f x ==,则123x x x ++的取值范围是__________.【答案】41,3⎛⎤ ⎥⎝⎦【解析】作出函数()f x 图像如下互不相等的实数1x ,2x ,3x 满足()()()123f x f x f x ==不妨设123x x x <<,则23,x x 关于1x =对称,所以232x x +=根据图像可得1213x -<≤-所以123413x x x <++≤,所以123x x x ++的取值范围为41,3⎛⎤ ⎥⎝⎦。
初中数学函数与方程知识点详解与应用方法
初中数学函数与方程知识点详解与应用方法函数与方程是初中数学中重要的概念和内容,它们在解决实际问题中起着重要的作用。
本文将对初中数学函数与方程的知识点进行详解,并介绍一些应用方法。
一、数学函数知识点详解1. 函数的概念函数是数学中一种重要的关系,它将一个集合的每个元素与另一个集合中的唯一一个元素相关联。
通常用$f(x)$表示函数,其中$x$是自变量,$f(x)$是因变量。
函数可以用表格、图像或公式的形式表示。
2. 函数的性质函数具有唯一性、有界性、增减性和奇偶性等性质。
唯一性表示每个自变量对应唯一的函数值;有界性表示函数在定义域内取值范围有限;增减性表示函数增加或减少的趋势;奇偶性表示函数关于原点对称或不对称。
3. 常见函数类型常见的函数类型包括线性函数、二次函数、指数函数和对数函数等。
线性函数的图像是一条直线,表达式为$f(x)=kx+b$,其中$k$和$b$为常数;二次函数的图像是一个抛物线,表达式为$f(x)=ax^2+bx+c$,其中$a$、$b$和$c$为常数;指数函数的图像是一个递增或递减的曲线,表达式为$f(x)=a^x$,其中$a$为常数且大于0;对数函数是指数函数的反函数,图像是一条拐弯的曲线,表达式为$f(x)=\log_a{x}$,其中$a$为大于0且不等于1的常数。
4. 函数的图像与性质分析通过绘制函数的图像,可以分析函数的性质。
可以通过计算函数的定义域、值域、零点、极值和对称轴等来了解函数的特点。
此外,还可以通过描点法对函数的图像进行大致绘制,进一步了解函数的行为。
二、数学方程知识点详解1. 方程的概念方程是一个等式,包含一个或多个未知数。
通过求解方程,可以确定未知数的值。
方程的解满足方程的等式关系。
2. 方程的解与解集方程的解是能够使方程成立的数值。
解集是方程的所有解的集合。
常见的方程解集包括整数解、有理数解、无理数解和实数解等。
3. 一次方程与二次方程一次方程是未知数的最高次数为1的方程,形式为$ax+b=0$,其中$a$和$b$为已知数,$x$为未知数。
高考数学专题 基本初等函数、函数与方程及函数的应用讲学案理数(解析)
【2016考纲解读】求方程的根、函数的零点的个数问题以及由零点存在性定理判断零点是否存在,利用函数模型解决实际问题是高考的热点;备考时应理解函数的零点,方程的根和函数的图象与x轴的交点的横坐标的等价性;掌握零点存在性定理.增强根据实际问题建立数学模型的意识,提高综合分析、解决问题的能力.【重点知识梳理】1.函数的零点与方程的根(1)函数的零点对于函数f(x),我们把使f(x)=0的实数x叫做函数f(x)的零点.(2)函数的零点与方程根的关系函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图象与函数y=g(x)的图象交点的横坐标.(3)零点存在性定理如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b)使得f(c)=0, 这个c也就是方程f(x)=0的根.注意以下两点:①满足条件的零点可能不唯一;②不满足条件时,也可能有零点.(4)二分法求函数零点的近似值,二分法求方程的近似解.2.应用函数模型解决实际问题的一般程序读题文字语言⇒建模数学语言⇒求解数学应用⇒反馈检验作答与函数有关的应用题,经常涉及到物价、路程、产值、环保等实际问题,也可涉及角度、面积、体积、造价的最优化问题.解答这类问题的关键是确切的建立相关函数解析式,然后应用函数、方程、不等式和导数的有关知识加以综合解答.3.在求方程解的个数或者根据解的个数求方程中的字母参数的范围的问题时,数形结合是基本的解题方法,即把方程分拆为一个等式,使两端都转化为我们所熟悉的函数的解析式,然后构造两个函数f(x),g(x),即把方程写成f(x)=g(x)的形式,这时方程根的个数就是两个函数图象交点的个数,可以根据图象的变化趋势找到方程中字母参数所满足的各种关系.【高频考点突破】 考点一 函数的零点例1、(1)(2015·海南)已知函数f (x )=ln x -⎝⎛⎭⎫12x -2的零点为x 0,则x 0所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)(2)[x ]表示不超过x 的最大整数,例如[2.9]=2,[-4.1]=-5.已知f (x )=x -[x ](x ∈R),g (x )=log 4(x -1),则函数h (x )=f (x )-g (x )的零点个数是( )A .1B .2C .3D .4 (1)答案:C(2)答案:B解析:函数h (x )=f (x )-g (x )的零点个数可转化为函数f (x )与g (x )图象的交点个数,作出函数f (x )=x -[x ]=⎩⎪⎨⎪⎧…,x +1,-1≤x <0,x ,0≤x <1,x -1,1≤x <2,…与函数g (x )=log 4(x -1)的大致图象,如图,由图知,两函数图象的交点个数为2,即函数h (x )=f (x )-g (x )的零点个数是2.【规律方法】1.判断函数零点个数的方法(1)直接求零点:令f (x )=0,则方程解的个数即为零点的个数.(2)零点存在性定理:利用该定理不仅要求函数在[a ,b ]上是连续的曲线,且f (a )·f (b )<0,还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点.(3)数形结合:对于给定的函数不能直接求解或画出图形,常会通过分解转化为两个函数图象,然后数形结合,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.2.判断函数零点所在区间的方法判断函数在某个区间上是否存在零点,要根据具体题目灵活处理.当能直接求出零点时,就直接求出进行判断;当不能直接求出时,可根据零点存在性定理判断;当用零点存在性定理也无法判断时可画出图象判断.【变式训练】函数f (x )=2x +x 3-2在区间(0,1)内的零点个数是( ) A .0 B .1 C .2 D .3 答案:B解析:函数f (x )=2x +x 3-2在(0,1)上递增.又f (0)=1+0-2=-1<0,f (1)=2+1-2=1>0,所以有1个零点.考点二 函数与方程的综合应用例2、(1)设函数f (x )=log 3x +2x -a 在区间(1,2)内有零点,则实数a 的取值范围是________.(2)设函数f (x )=x +a ,若曲线y =sin x 上存在点(x 0,y 0)使得f (f (y 0))=y 0,则a 的取值范围是________. (1)答案:(log 32,1)解析:因为x ∈(1,2),所以x +2x ∈(2,3),log 3x +2x ∈(log 32,1),故要使函数f (x )在(1,2)内存在零点,只要a ∈(log 32,1)即可.(2)答案:⎣⎡⎦⎤-14,0 解析:由已知点(x 0,y 0)在曲线y =sin x 上,得y 0=sin x 0,y 0∈[0,1]. 即存在y 0∈[0,1]使f (f (y 0))=y 0成立. 因为(f (y 0),y 0)满足方程f (f (y 0))=y 0,由于函数f (x )=x +a 在其定义域内是增函数, 所以f (y 0)=y 0.即方程x +a =x 在[0,1]内有解, 即a =x 2-x ,x ∈[0,1].当x ∈[0,1]时,x 2-x ∈⎣⎡⎦⎤-14,0,故a 的取值范围是⎣⎡⎦⎤-14,0. 【规律方法】利用函数零点的情况求参数值或取值范围的方法 (1)利用零点存在的判定定理构建不等式求解. (2)分离参数后转化为求函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解. 【变式训练】(2015·湖南卷)已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤a ,x 2,x >a ,若存在实数b ,使函数g (x )=f (x )-b 有两个零点,则a 的取值范围是________.答案:(-∞,0)∪(1,+∞)综上知,a<0或a>1.图①图②图③考点三 函数的实际应用例3、如图,现在要在边长为100 m 的正方形ABCD 内建一个交通“环岛”.以正方形的四个顶点为圆心在四个角分别建半径为x m(x 不小于9)的扇形花坛,以正方形的中心为圆心建一个半径为15x 2 m 的圆形草地.为了保证道路畅通,岛口宽不小于60 m ,绕岛行驶的路宽均不小于10 m.(1)看到求x 的取值范围(运算中2取1.4);(2)若中间草地的造价为a 元/m 2,四个花坛的造价为433ax 元/m 2,其余区域的造价为12a11元/m 2,当x 取何值时,可使“环岛”的整体造价最低?解:(1)由题意,得⎩⎪⎨⎪⎧x ≥9,100-2x ≥60,1002-2x -2×15x 2≥2×10,解得⎩⎪⎨⎪⎧x ≥9,x ≤20,-20≤x ≤15,即9≤x ≤15.故x 的取值范围为[9,15].【规律方法】1.应用函数模型解决实际问题的一般程序 读题文字语言⇒建模数学语言⇒求解数学应用⇒反馈检验作答2.与函数有关的应用题的常见类型及解题关键(1)常见类型:与函数有关的应用题,经常涉及物价、路程、产值、环保等实际问题,也可涉及角度、面积、体积、造价的最优化问题.(2)解题关键:解答这类问题的关键是确切地建立相关函数解析式,然后应用函数、方程、不等式和导数的有关知识加以综合解答.【变式训练】某人想开一家服装专卖店,经过预算,该门面需要门面装修费为20 000元,每天需要房租、水电等费用100元,受经营信誉度、销售季节等因素的影响,专卖店销售总收益R 与门面经营天数x 的关系式是R =R (x )=⎩⎪⎨⎪⎧400x -x 22,0≤x ≤400,80 000,x >400,则总利润最大时,该门面经营的天数是( ) A .100 B .150 C .200 D .300 答案:D【经典考题精析】【2015高考浙江,理7】存在函数()f x 满足,对任意x R ∈都有( ) A.(sin 2)sin f x x = B.2(sin 2)f x x x =+ C. 2(1)1f x x +=+ D.2(2)1f x x x +=+ 【答案】D. 【解析】A :取0=x ,可知0sin )0(sin =f ,即0)0(=f ,再取2π=x ,可知2sin)(sin ππ=f ,即1)0(=f ,矛盾,∴A 错误;同理可知B 错误,C :取1=x ,可知2)2(=f ,再取1-=x ,可知0)2(=f ,矛盾,∴C 错误,D :令)0(|1|≥+=t x t ,∴1)()0()1(2+=⇔≥=-x x f t t t f ,符合题意,故选D. 【2015高考湖南,理15】已知32,(),x x af x x x a ⎧≤=⎨>⎩,若存在实数b ,使函数()()g x f x b =-有两个零点,则a 的取值范围是.【答案】),1()0,(+∞-∞.【2015高考江苏,13】已知函数|ln |)(x x f =,⎩⎨⎧>--≤<=1,2|4|10,0)(2x x x x g ,则方程1|)()(|=+x g x f 实根的个数为【答案】4【解析】由题意得:求函数()y f x =与1()y g x =-交点个数以及函数()y f x =与1()y g x =--交点个数之和,因为221,011()7,21,12x y g x x x x x <≤⎧⎪=-=-≥⎨⎪-<<⎩,所以函数()y f x =与1()y g x =-有两个交点,又221,011()5,23,12x y g x x x x x -<≤⎧⎪=--=-≥⎨⎪-<<⎩,所以函数()y f x =与1()y g x =--有两个交点,因此共有4个交点【2015高考天津,理8】已知函数()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩函数()()2g x b f x =--,其中b R ∈,若函数()()y f x g x =-恰有4个零点,则b 的取值范围是( )(A )7,4⎛⎫+∞ ⎪⎝⎭ (B )7,4⎛⎫-∞ ⎪⎝⎭ (C )70,4⎛⎫ ⎪⎝⎭ (D )7,24⎛⎫⎪⎝⎭ 【答案】D【解析】由()()22,2,2,2,x x f x x x -≤⎧⎪=⎨->⎪⎩得222,0(2),0x x f x x x --≥⎧⎪-=⎨<⎪⎩,所以222,0()(2)42,0222(2),2x x x y f x f x x x x x x x ⎧-+<⎪=+-=---≤≤⎨⎪--+->⎩,即222,0()(2)2,0258,2x x x y f x f x x x x x ⎧-+<⎪=+-=≤≤⎨⎪-+>⎩()()()(2)y f x g x f x f x b =-=+--,所以()()y f x g x =-恰有4个零点等价于方程()(2)0f x f x b +--=有4个不同的解,即函数y b =与函数()(2)y f x f x =+-的图象的4个公共点,由图象可知724b <<.【2015高考浙江,理10】已知函数223,1()lg(1),1x x f x xx x ⎧+-≥⎪=⎨⎪+<⎩,则((3))f f -=,()f x 的最小值是.【答案】0,3-22.【解析】0)1())3((==-f f f ,当1≥x 时,322)(-≥x f ,当且仅当2=x 时,等号成立,当1<x 时,0)(≥x f ,当且仅当0=x 时,等号成立,故)(x f 最小值为322-.【2015高考四川,理13】某食品的保鲜时间y (单位:小时)与储存温度x (单位:C)满足函数关系b kx e y +=( 718.2=e 为自然对数的底数,k 、b 为常数)。
专题1第3讲基本初等函数精品课件大纲人教版课件.ppt
第3讲│ 主干知识整合
2.指数函数 y=ax(a>0,a≠1)的图象和性质 (1)图象:均过定点(0,1),图象均在第一和第二两个象限; 若底数 a>1,则图象是上升的,若底数 0<a<1,则图象是下 降的.但虽然底数都大于 1(或者都大于 0 小于 1),底数取不 同的值,其图象“高低”仍不相同,此时,我们可以根据指 数函数 y=ax 的图象一定过点(1,a)加以区分,显然,在 y 轴 右侧,底数越大,则图象的位置越靠上. (2)性质:定义域均为 R;值域均为(0,+∞);当 a>1 时 为增函数,当 0<a<1 时为减函数.
第3讲│ 要点热点探究
【点评】 本题考查函数、最值等基础知识,同 时考查运用数学知识解决实际问题的能力.解实际应 用题就是在阅读材料、理解题意的基础上,把实际问 题抽象转化成数学问题,然后再用相应的数学知识去 解决.本题涉及分段函数的最值,处理时一定要逐段 进行讨论,对两段的结果进行比较后最后选择正确结 论.
第3讲 基本初等函数
第3讲 基本初等函数
第3讲 │ 主干知识整合
主干知识整合
1.二次函数 f(x)=ax2+bx+c(a≠0)的图象和性质 (1)二次函数的图象 ①二次函数 f(x)=ax2+bx+c(a≠0)的图象是抛物线,对 称轴方程是 x=-2ba,顶点坐标是-2ba,4ac4-a b2. ②当 Δ=b2-4ac>0 时,设 f(x)=ax2+bx+c(a≠0)的图 象 与 x 轴 的 两 交 点为 M(x1,0), N(x2,0), 则 有 |x1 - x2| = b2-4ac |a| .
(1)当 0≤x≤200 时,求函数 v(x)的表达式; (2)当车流密度 x 为多大时,车流量(单位时间内通过桥上 某观测点的车辆数,单位:辆/小时)f(x)=x·v(x)可以达到最大, 并求出最大值.(精确到 1 辆/小时)
初中数学知识归纳函数与方程的应用
初中数学知识归纳函数与方程的应用初中数学知识归纳:函数与方程的应用数学是一门涵盖广泛的学科,而初中数学作为数学学科的基础,为我们打下了坚实的数学基础。
在初中数学中,函数与方程是两个非常重要的概念。
本文将围绕函数和方程的应用展开探讨,帮助读者更好地理解和应用数学知识。
一、函数的应用函数作为初中数学中的重要内容,具有广泛的应用。
我们来看几个具体的例子。
1. 函数在图像表示中的应用函数图像是函数概念的一种直观表示。
通过绘制函数的图像,我们可以更好地理解函数的性质和规律。
例如,平方函数y = x^2的图像是一个开口向上的抛物线,通过观察抛物线的开口朝向、顶点位置等特点,可以更好地理解平方函数的增减性和最值等概念。
2. 函数在实际问题中的应用函数在解决实际问题中起到了重要的作用。
例如,我们可以利用函数的性质解决最优化问题,如求最大值、最小值等。
另外,函数还可以用来拟合实验数据,通过函数拟合可以更好地理解和预测实验结果。
3. 函数在几何问题中的应用函数在几何问题中也有广泛的应用。
例如,我们可以通过函数的图像来解决直线与曲线之间的位置关系问题。
另外,利用函数的性质,可以判断两个图形是否相似,从而解决几何形状的变化问题。
二、方程的应用方程是数学中常见的一种表示关系的方式,也是初中数学中的重要内容。
下面我们来看几个方程的应用例子。
1. 方程在代数问题中的应用方程在解决代数问题中起到了关键的作用。
例如,通过列方程可以解决应用问题,如鸡兔同笼问题、水桶倒水问题等。
通过建立方程,我们可以将实际问题转化为代数问题,进而求解出问题的答案。
2. 方程在几何问题中的应用方程在几何问题中也有广泛的应用。
例如,我们可以通过建立方程解决线与线的位置关系问题,如平行线和垂直线问题。
另外,方程还可以帮助我们计算图形的面积、周长等属性。
3. 方程在自然科学中的应用方程在自然科学领域也有着广泛的应用。
例如,物理学中的运动方程、化学方程式、生物学中的遗传方程等都是通过方程来描述和解决自然现象。
初中数学知识归纳函数与方程的综合运用
初中数学知识归纳函数与方程的综合运用函数与方程是初中数学中的重要内容,也是学生们需要掌握的基本概念。
函数和方程在数学中具有广泛的应用,可以帮助我们解决各种实际问题。
本文将对初中数学中函数与方程的综合运用进行归纳总结。
一、线性函数与一元一次方程的关系线性函数是最简单的一类函数,其函数图像为一条直线。
线性函数与一元一次方程有着密切的关系。
在解决实际问题时,可以通过建立一元一次方程来描述线性关系。
以某商品价格为例,假设每个单位数量的价格为x,需购买的数量为y,则可以建立以下一元一次方程:y = kx + b。
其中,k代表单位数量的价格,b代表其他费用或常数项。
通过解这个方程,可以得到购买一定数量商品所需的总价格。
二、二次函数与一元二次方程的综合运用二次函数是函数中的另一类重要函数,其函数图像为抛物线。
与二次函数对应的是一元二次方程。
在解决实际问题时,可以通过建立一元二次方程来描述二次函数的关系。
例如,在研究物体自由落体运动时,可以通过建立一元二次方程来描述物体的高度和时间的关系。
假设物体自由落体的高度为h,时间为t,则可以建立以下一元二次方程:h = at^2 + vt + s。
其中,a代表重力加速度,v代表初始速度,s代表初始高度。
通过解这个方程,可以得到物体在某个时间点的高度。
三、函数与方程的应用于图形问题函数与方程在解决图形问题时也有广泛的应用。
例如,在解决平面几何问题时,我们可以通过建立函数或方程来找到几何关系。
以求两直线交点为例,可以通过建立两条直线的方程,将其联立求解,从而得到交点的坐标。
类似地,可以通过建立函数或方程来解决平行线、垂直线、相切等多种几何关系问题。
四、函数与方程在应用题中的运用在解决应用题时,函数与方程也有着重要的作用。
应用题通常需要将实际问题转化为数学问题,通过建立函数或方程来解决。
以“速度、时间、距离”问题为例,可以通过建立速度与时间的关系函数,根据已知条件列出方程,并求解未知数。
初中数学知识点的函数与方程应用总结
初中数学知识点的函数与方程应用总结函数与方程是初中数学中重要的知识点,它们在解决实际问题和数学思维的发展中起着重要的作用。
本文将对初中数学中与函数与方程相关的知识点进行总结,包括函数的概念与性质、方程的解法及应用等方面。
首先,我们来介绍函数的概念与性质。
函数是一个具有特定的输入与输出关系的数学工具。
通常表示为y=f(x),其中x为自变量,y为因变量,f为函数的规则或表达式。
函数的图像可以通过画出各个输入值与输出值之间的对应关系而得到。
函数的性质包括奇偶性、单调性、极值和周期性等。
奇函数与偶函数是对称的,奇函数以原点为对称中心,而偶函数以y轴为对称中心。
单调函数在定义域上只增或只减,极值点是函数的最大值或最小值点,周期函数具有重复出现的特征。
其次,我们来讨论方程的解法及应用。
方程是一个含有未知数的等式,其解即为使等式成立的未知数的值。
在初中数学中,我们主要学习一元一次方程、一元一次不等式和一次函数方程等。
对于一元一次方程,我们可以使用逆运算原则、等式的性质和方程组的方法进行解题。
一元一次不等式可以通过图像和代数的方法进行解答。
一次函数方程则需要利用函数的性质,将方程转化为关于自变量的等式进行求解。
函数与方程在实际问题中的应用广泛。
例如,利用函数的性质可以解决经济学中的边际分析问题,通过求导数和函数图像可以研究物体的运动和速度等。
方程的应用可以帮助我们解决生活中的实际问题,如购物打折、时间与速度的关系等。
在几何学中,函数与方程也被广泛应用于线性函数、二次函数、三角函数等的研究及应用中。
在学习函数与方程时,我们还需要注意一些常见的错误。
首先是函数的定义域和值域的范围,我们需要确保函数在定义域内有意义。
其次是方程在解答过程中不要忽略等式性质的应用,很多时候,我们可以通过一些数学技巧简化解题过程。
还需要注意的是,在解题过程中,我们要多使用变量和符号代表未知数,避免仅凭感觉思考和操作。
总结起来,函数与方程是初中数学中重要的知识点,它们的应用范围广泛。
基本初等函数、函数与方程及函数的应用
2<0,f(1)=e-1>0,所以f(a)=0时a∈(0,1).又g(x)=ln x+
x2-3在(0,+∞)上单调递增,且g(1)=-2<0,所以g(a)<0.
由g(2)=ln 2+1>0,g(b)=0得b∈(1,2),又f(1)=e-1>0,且
f(x)=ex+x-2在R上单调递增,所以f(b)>0.综上可知,
在零点的个数进行判断,如2013年重庆T6,天津T7,湖南T5等.
4.利用零点(方程实根)的存在求相关参数的值或取值范围.
5.对函数实际应用问题的考查,题目大多以社会生活为背景,
函数的实际应用 设问新颖、灵活,而解决这些问题所涉及的数学知识、思想方法都
问题
是高中教材和课标中所要求掌握的概念、公式、法则、定理等.
个零点分别位于区间(a,b)和(b,c)内.
答案:A
3.(2013·天津高考)函数f(x)=2x|log0.5x|-1的零点个数为
A.1
B.2
()
C.3
D.4
解析:函数f(x)=2x|log0.5x|-1的零点个数即为函数y=
|log0.5x|与y=
1 2x
图像的交点个数.在同一直角坐标系中作出
函数y=|log0.5x|与y=21x的图像,易知有2个交点. 答案:B
4.(2013·湖南高考)函数f(x)=2ln x的图像与函数g(x)=x2-4x+
5的图像的交点个数为
()
A.3
B.2
C.1
D.0
解析:由已知g(x)=(x-2)2+1,所以其顶点为(2,1),又f(2)
=2ln 2∈(1,2),可知点(2,1)位于函数f(x)=2ln x图像的下
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
首页
上一页
下一页
末页
质量铸就品牌 品质赢得未来
第三讲
基本初等函数、函数与方程及 函数的应用
结束
二、预测押题不能少 函数 y=f(x)满足
5 5 fx+ =-fx- ,当 4 4
x∈[-1,4]时,f(x)=x2 ( )
-2x,则 f(x)在区间[0,2 012]上零点的个数为 A.2 011 C.1 026 B.2 012 D.1 027
数学
首页
上一页
下一页
末页
质量铸就品牌 品质赢得未来
第三讲
基本初等函数、函数与方程及 函数的应用
结束
解决函数实际应用题的关键有两点:一是认真读题,缜
密审题,确切理解题意,明确问题的实际背景,然后进行科
学地抽象概括,将实际问题归纳为相应的数学问题;二是要 合理选取参变量,设定变量之后,就要寻找它们之间的内在 联系,选用恰当的代数式表示问题中的关系,建立相应的函 数模型,最终求解数学模型使实际问题获解.
数学
首页
上一页
下一页
末页
质量铸就品牌 品质赢得未来
第三讲
基本初等函数、函数与方程及 函数的应用
结束
二、预测押题不能少 3.某集团为了获得更大的利润,每年要投入一定的资金用于 广告促销.经调查,每年投入广告费t(百万元)可增加销售 额约为-t2+5t(百万元)(0≤t≤3). (1)若该集团将当年的广告费控制在三百万元以内,则应投 入多少广告费,才能使集团由广告费而产生的收益最大? (2)现在该集团准备投入三百万元,分别用于广告促销和技 术改造.经预算,每投入技术改造费x(百万元),可增加的 1 3 销售额约为- x +x2+3x(百万元).请设计一个资金分配 3 方案,使该集团由这两项共同产生的收益最大.
x+1,x≤0, f(x)= log2x,x>0,
则函数 y=f[f(x)+1]的 ( )
B. 3 D.5
首页 上一页 下一页 末页
质量铸就品牌 品质赢得未来
第三讲
基本初等函数、函数与方程及 函数的应用
结束
函数的零点、方程的根,都可以转化为函数图像与x轴 的交点,数形结合法是解决函数零点、方程根的分布、零 点个数、方程根的个数的一个有效方法.在解决函数零点问
-1,
1 x,b=2ln x,c=eln x,则a,b,c的大
( B.b>c>a D.b>a>c
)
数学
首页
上一页
下一页
末页
质量铸就品牌 品质赢得未来
第三讲
基本初等函数、函数与方程及 函数的应用
结束
函数的零点
一、基础知识要记牢 确定函数零点的常用方法: (1)解方程判定法,方程易解时用此法; (2)利用零点存在的判定定理; (3)利用数形结合,尤其是那些方程两端对应的函数类 型不同时多以数形结合法求解.
数学
首页
上一页
下一页
末页
质量铸就品牌 品质赢得未来
第三讲
基本初等函数、函数与方程及 函数的应用
结束
三、预测押题不能少 1.(1)函数y=x-x 的图像大致为
1 3
(
)
数学
首页
上一页
下一页
末页
质量铸就品牌 品质赢得未来
第三讲
基本初等函数、函数与方程及 函数的应用
结束
(2)若x∈(e 1),a=ln 小关系为 A.c>b>a C.a>b>c
质量铸就品牌 品质赢得未来
第三讲
基本初等函数、函数与方程及 函数的应用
结束
专题一 集合与常用逻辑用语、函数与导数、不等式
第三讲
基本初等函数、函数与 方程及函数的应用
数学
首页
上一页
下一页
末页
质量铸就品牌 品质赢得未来
第三讲
基本初等函数、函数与方程及 函数的应用
结束
基本初等函数的图像与性质
一、基础知识要记牢 指数函数y=ax(a>0,a≠1)与对数函数y=logax(a>0, a≠1)的图像和性质,分0<a<1,a>1两种情,当a>1时, 两函数在定义域内都为增函数,当0<a<1时,两函数在定义 域内都为减函数.
有两个不同的零点,则实数a的
取值范围是________.
数学
首页
上一页
下一页
末页
质量铸就品牌 品质赢得未来
第三讲
基本初等函数、函数与方程及 函数的应用
结束
函数的实际应用 一、经典例题领悟好
[例3]
某企业为打入国际市场,决定从A,B两种产品
中只选择一种进行投资生产.已知投资生产这两种产品的有 关数据如表:(单位:万美元) 项目类别 A产品 B产品
数学
首页
上一页
下一页
末页
质量铸就品牌 品质赢得未来
第三讲
基本初等函数、函数与方程及 函数的应用
结束
函数的性质与零点的交汇
函数零点(方程的根)的问题,常见的类型有: (1)零点或零点存在区间的确定; (2)零点个数的确定; (3)利用零点求参数范围问题.函数的性质与零点的交汇 问题成为新的命题点.
数学
数学
首页
上一页
下一页
末页
质量铸就品牌 品质赢得未来
结束
谢谢观看
数学
首页
上一页
下一页
末页
数学
首页
上一页
下一页
末页
质量铸就品牌 品质赢得未来
第三讲
基本初等函数、函数与方程及 函数的应用
结束
1本题在求解时,用了转化与化归、数形结合、分类讨 论思想.个别学生不会利用题设条件判定y=fx的值域以及函 数y=fx图像的变化趋势,导致求解受阻. 2函数与方程应用转化与化归的常见类型 ①判断函数零点个数常转化为两函数的图像交点. ②由函数的零点情况确定参数范围,常转化为利用函数 图像求解. ③方程根的讨论转化为函数零点的问题.
数学
年固定 每件产
成本 20 40 品成本 m 8
上一页
每件产品销 每年最多可
售价 10 18 生产的件数 200 120
末页
首页
下一页
质量铸就品牌 品质赢得未来
第三讲
基本初等函数、函数与方程及 函数的应用
结束
其中年固定成本与年生产的件数无关,m为待定常数, 其值由生产A产品的原材料价格决定,预计m∈[6,8].另外, 年销售x件B产品时需上交0.05x2万美元的特别关税.假设生 产出来的产品都能在当年销售出去. (1)写出该厂分别投资生产A,B两种产品的年利润y1,y2 与生产相应产品的件数x之间的函数关系并指明其定义域; (2)如何投资最合理(可获得最大年利润)?请你做出规 划.
题时,既要注意利用函数的图像,也要注意根据函数的零
点存在性定理、函数的性质等进行相关的计算,把数与形 紧密结合起来.
数学
首页
上一页
下一页
末页
质量铸就品牌 品质赢得未来
第三讲
基本初等函数、函数与方程及 函数的应用
结束
三、预测押题不能少
x 2 -a,x≤0 2.若函数f(x)= ln x,x>0
首页
上一页
下一页
末页
质量铸就品牌 品质赢得未来
第三讲
基本初等函数、函数与方程及 函数的应用
结束
一、经典例题领悟好 [例] (2012· 湖南高考)设定义在 R 上的函数 f(x)是最小正
周期为 2π 的偶函数,f′(x)是 f(x)的导函数,当 x∈[0,π ]时, π π 0<f(x)<1;当 x∈(0,π)且 x≠ 时,(x- )f′(x)>0.则函数 y= 2 2 f(x)-sin x 在[-2π ,2π]上的零点个数为 A.2 C.5 B.4 D.8 ( )
数学
首页
上一页
下一页
末页
质量铸就品牌 品质赢得未来
第三讲
基本初等函数、函数与方程及 函数的应用
结束
二、经典例题领悟好 1 [例 1] (2012· 四川高考)函数 y=a - (a>0,且 a≠1)的图 a
x
像可能是
(
)
数学
首页
上一页
下一页
末页
质量铸就品牌 品质赢得未来
第三讲
基本初等函数、函数与方程及 函数的应用
数学
首页
上一页
下一页
末页
质量铸就品牌 品质赢得未来
第三讲
基本初等函数、函数与方程及 函数的应用
结束
二、经典例题领悟好 [例 2] (1)函数 f(x)=2x+3x 的零点所在的一个区间是 ( A.(-2,-1) C.(0,1) (2)已知函数 零点个数是 A.2 C.4
数学
)
B.(-1,0) D.(1,2)
结束
(2)(2013· 全国卷Ⅱ)设 a=log36,b=log510,c=log714,则 ( A.c>b>a C.a>c>b B.b>c>a D.a>b>c )
数学
首页
上一页
下一页
末页
质量铸就品牌 品质赢得未来
第三讲
基本初等函数、函数与方程及 函数的应用
结束
比较指数函数值、对数函数值、幂函数值大小有三种 方法:一是根据同类函数的单调性进行比较;二是采用中 间值0或1等进行比较;三是将对数式转化为指数式,或将 指数式转化为对数式,通过转化进行比较.