祁阳县第二高级中学2018-2019学年高二上学期第二次月考试卷数学

合集下载

祁阳县实验中学2018-2019学年上学期高二数学12月月考试题含解析

祁阳县实验中学2018-2019学年上学期高二数学12月月考试题含解析

祁阳县实验中学2018-2019学年上学期高二数学12月月考试题含解析班级__________姓名__________ 分数__________一、选择题1. 已知向量,,,若为实数,,则( )(1,2)a = (1,0)b = (3,4)c = λ()//a b c λ+λ=A . B . C .1D .214122. “x 2﹣4x <0”的一个充分不必要条件为( )A .0<x <4B .0<x <2C .x >0D .x <43. 如图,在△ABC 中,AB=6,AC=4,A=45°,O 为△ABC 的外心,则•等于( )A .﹣2B .﹣1C .1D .24. 二项式的展开式中项的系数为10,则( )(1)(N )nx n *+Î3x n =A .5B .6C .8D .10【命题意图】本题考查二项式定理等基础知识,意在考查基本运算能力.5. 已知函数()在定义域上为单调递增函数,则的最小值是( )2()2ln 2f x a x x x =+-a R ∈A .B .C .D .14126. 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若sinB=2sinC ,a 2﹣c 2=3bc ,则A 等于( )A .30°B .60°C .120°D .150°7. 将甲,乙等5位同学分别保送到北京大学,清华大学,浙江大学等三所大学就读,则每所大学至少保送一人的不同保送的方法数为( )(A )150种( B ) 180 种(C ) 240 种(D ) 540 种8. 已知=(2,﹣3,1),=(4,2,x ),且⊥,则实数x 的值是( )A .﹣2B .2C .﹣D .9. 若当时,函数(且)始终满足,则函数的图象大致是R x ∈||)(x a x f =0>a 1≠a 1)(≥x f 3||log xx y a =()【命题意图】本题考查了利用函数的基本性质来判断图象,对识图能力及逻辑推理能力有较高要求,难度中等.10.设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且=2,=2,=2,则与()A .互相垂直B .同向平行C .反向平行D .既不平行也不垂直11.如图,在等腰梯形ABCD 中,AB=2DC=2,∠DAB=60°,E 为AB 的中点,将△ADE 与△BEC 分别沿ED 、EC 向上折起,使A 、B 重合于点P ,则P ﹣DCE 三棱锥的外接球的体积为()A .B .C .D .12.用反证法证明命题“a ,b ∈N ,如果ab 可被5整除,那么a ,b 至少有1个能被5整除.”则假设的内容是( )A .a ,b 都能被5整除B .a ,b 都不能被5整除C .a ,b 不能被5整除D .a ,b 有1个不能被5整除二、填空题13.在极坐标系中,点(2,)到直线ρ(cos θ+sin θ)=6的距离为 .14.已知等差数列{a n }中,a 3=,则cos (a 1+a 2+a 6)= .15.已知直线5x+12y+m=0与圆x 2﹣2x+y 2=0相切,则m= .16.若直线y ﹣kx ﹣1=0(k ∈R )与椭圆恒有公共点,则m 的取值范围是 .17.设集合 ,满足{}{}22|27150,|0A x x x B x x ax b =+-<=++≤,,求实数__________.A B =∅ {}|52A B x x =-<≤ a =18.已知函数是定义在R 上的奇函数,且当时,,则在R 上的解析式为()f x 0x ≥2()2f x x x =-()y f x =三、解答题19.(本题满分12分) 已知数列{a n }满足a 1=1,a n+1=2a n +1.(1)求数列{a n }的通项公式;(2)令b n =n (a n +1),求数列{b n }的前n 项和T n .20.(本小题满分12分)已知圆:的圆心在第二象限,半径为,且圆与直线及轴都C 022=++++F Ey Dx y x 2C 043=+y x y 相切.(1)求;F E D 、、(2)若直线与圆交于两点,求.022=+-y x C B A 、||AB 21.已知函数f (x )=|2x+1|+|2x ﹣3|.(Ⅰ)求不等式f (x )≤6的解集;(Ⅱ)若关于x 的不等式f (x )﹣log 2(a 2﹣3a )>2恒成立,求实数a 的取值范围. 22.(本小题满分12分)已知数列的各项均为正数,,.{}n a 12a =114n n n na a a a ++-=+(Ⅰ)求数列的通项公式;{}n a (Ⅱ)求数列的前项和.11n n a a +⎧⎫⎨⎬+⎩⎭n n S 23.某校为了解2015届高三毕业班准备考飞行员学生的身体素质,对他们的体重进行了测量,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右前3个小组的频率之比为1:2:4,其中第二小组的频数为11.(Ⅰ)求该校报考飞行员的总人数;(Ⅱ)若经该学校的样本数据来估计全省的总体数据,若从全省报考飞行员的学生中(人数很多)任选3人,设X 表示体重超过60kg 的学生人数,求X 的数学期望与方差.24.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=(2﹣a )(x ﹣1)﹣2lnx ,g (x )=(a 1x xe -.∈R ,e 为自然对数的底数)(Ⅰ)当a=1时,求f (x )的单调区间;(Ⅱ)若函数f (x )在上无零点,求a 的最小值;10,2⎛⎫⎪⎝⎭(Ⅲ)若对任意给定的x 0∈(0,e],在(0,e]上总存在两个不同的x i (i=1,2),使得f (x i )=g (x 0)成立,求a 的取值范围.祁阳县实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】B 【解析】试题分析:因为,,所以,又因为,所以(1,2)a = (1,0)b = ()()1,2a b λλ+=+ ()//a b c λ+,故选B. ()14160,2λλ+-==考点:1、向量的坐标运算;2、向量平行的性质.2. 【答案】B【解析】解:不等式x 2﹣4x <0整理,得x (x ﹣4)<0∴不等式的解集为A={x|0<x <4},因此,不等式x 2﹣4x <0成立的一个充分不必要条件,对应的x 范围应该是集合A 的真子集.写出一个使不等式x 2﹣4x <0成立的充分不必要条件可以是:0<x <2,故选:B . 3. 【答案】A【解析】解:结合向量数量积的几何意义及点O 在线段AB ,AC 上的射影为相应线段的中点,可得,,则•==16﹣18=﹣2;故选A .【点评】本题考查了向量数量积的几何意义和三角形外心的性质、向量的三角形法则,属于中档题 4. 【答案】B【解析】因为的展开式中项系数是,所以,解得,故选A .(1)(N )n x n *+Î3x 3C n 3C 10n =5n =5. 【答案】A 【解析】试题分析:由题意知函数定义域为,,因为函数),0(+∞2'222()x x a f x x++=2()2ln 2f x a x x x=+-()在定义域上为单调递增函数在定义域上恒成立,转化为在a R ∈0)('≥x f 2()222h x x x a =++),0(+∞恒成立,,故选A. 110,4a ∴∆≤∴≥考点:导数与函数的单调性.6. 【答案】C【解析】解:由sinB=2sinC ,由正弦定理可知:b=2c ,代入a 2﹣c 2=3bc ,可得a 2=7c 2,所以cosA===﹣,∵0<A <180°,∴A=120°.故选:C .【点评】本题考查正弦定理以及余弦定理在解三角形中的应用,考查了转化思想,属于基本知识的考查. 7. 【答案】A【解析】人可以分为和两种结果,所以每所大学至少保送一人的不同保送的方法数为51,1,31,2,2种,故选A .223335353322150C C C A A A ⋅⋅+⋅=8. 【答案】A【解析】解:∵ =(2,﹣3,1),=(4,2,x ),且⊥,∴=0,∴8﹣6+x=0;∴x=﹣2;故选A .【点评】本题考查向量的数量积判断向量的共线与垂直,解题的关键是将垂直关系转化为两向量的内积为0,建立关于x 的方程求出x 的值. 9. 【答案】C【解析】由始终满足可知.由函数是奇函数,排除;当时,||)(x a x f =1)(≥x f 1>a 3||log xx y a =B )1,0(∈x ,此时,排除;当时,,排除,因此选.0||log <x a 0||log 3<=x x y a A +∞→x 0→y D C 10.【答案】D【解析】解:如图所示,△ABC 中,=2,=2,=2,根据定比分点的向量式,得==+,=+,=+,以上三式相加,得++=﹣,所以,与反向共线.【点评】本题考查了平面向量的共线定理与定比分点的应用问题,是基础题目. 11.【答案】C【解析】解:易证所得三棱锥为正四面体,它的棱长为1,故外接球半径为,外接球的体积为,故选C .【点评】本题考查球的内接多面体,球的体积等知识,考查逻辑思维能力,是中档题. 12.【答案】B【解析】解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.命题“a ,b ∈N ,如果ab 可被5整除,那么a ,b 至少有1个能被5整除.”的否定是“a ,b 都不能被5整除”.故应选B .【点评】反证法是命题的否定的一个重要运用,用反证法证明问题大大拓展了解决证明问题的技巧. 二、填空题13.【答案】 1 .【解析】解:点P (2,)化为P.直线ρ(cosθ+sinθ)=6化为.∴点P到直线的距离d==1.故答案为:1.【点评】本题考查了极坐标化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.14.【答案】 .【解析】解:∵数列{a n}为等差数列,且a3=,∴a1+a2+a6=3a1+6d=3(a1+2d)=3a3=3×=,∴cos(a1+a2+a6)=cos=.故答案是:.15.【答案】8或﹣18【解析】【分析】根据直线与圆相切的性质可知圆心直线的距离为半径,先把圆的方程整理的标准方程求得圆心和半径,在利用点到直线的距离求得圆心到直线的距离为半径,求得答案.【解答】解:整理圆的方程为(x﹣1)2++y2=1故圆的圆心为(1,0),半径为1直线与圆相切∴圆心到直线的距离为半径即=1,求得m=8或﹣18故答案为:8或﹣1816.【答案】 [1,5)∪(5,+∞) .【解析】解:整理直线方程得y﹣1=kx,∴直线恒过(0,1)点,因此只需要让点(0.1)在椭圆内或者椭圆上即可,由于该点在y轴上,而该椭圆关于原点对称,故只需要令x=0有5y2=5m得到y2=m要让点(0.1)在椭圆内或者椭圆上,则y≥1即是y2≥1得到m≥1∵椭圆方程中,m ≠5m 的范围是[1,5)∪(5,+∞)故答案为[1,5)∪(5,+∞)【点评】本题主要考查了直线与圆锥曲线的综合问题.本题采用了数形结合的方法,解决问题较为直观. 17.【答案】7,32a b =-=【解析】考点:一元二次不等式的解法;集合的运算.【方法点晴】本题主要考查了集合的综合运算问题,其中解答中涉及到一元二次不等式的解法、集合的交集和集合的并集的运算、以及一元二次方程中韦达定理的应用,试题有一定的难度,属于中档试题,着重考查了学生分析问题和解答问题的能力,同时考查了转化与化归思想的应用,其中一元二次不等式的求解是解答的关键.18.【答案】222,02,0x x x y x x x ⎧-≥⎪=⎨--<⎪⎩【解析】试题分析:令,则,所以,又因为奇函数满足,0x <0x ->()()()2222f x x x x x -=---=+()()f x f x -=-所以,所以在R 上的解析式为。

祁阳县第三中学校2018-2019学年高二上学期第二次月考试卷数学

祁阳县第三中学校2018-2019学年高二上学期第二次月考试卷数学

祁阳县第三中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 5名运动员争夺3项比赛冠军(每项比赛无并列冠军),获得冠军的可能种数为( )A .35B .C .D .532. 在△ABC 中,b=,c=3,B=30°,则a=( )A .B .2C .或2D .23. 有一学校高中部有学生2000人,其中高一学生800人,高二学生600人,高三学生600人,现采用分层抽样的方法抽取容量为50的样本,那么高一、高二、高三年级抽取的人数分别为( ) A .15,10,25 B .20,15,15 C .10,10,30 D .10,20,204. 下列计算正确的是( )A 、2133x x x ÷= B 、4554()x x = C 、4554x xx = D 、44550x x -=5. 执行如图的程序框图,则输出S 的值为( )A .2016B .2C .D .﹣16. 若直线L :047)1()12(=--+++m y m x m 圆C :25)2()1(22=-+-y x 交于B A ,两点,则弦长||AB 的最小值为( )A .58B .54C .52D .57. 若全集U={﹣1,0,1,2},P={x ∈Z|x 2<2},则∁U P=( ) A .{2} B .{0,2}C .{﹣1,2}D .{﹣1,0,2}8. 由小到大排列的一组数据x 1,x 2,x 3,x 4,x 5,其中每个数据都小于﹣1,则样本1,x 1,﹣x 2,x 3,﹣x 4,x 5的中位数为( )A .B .C .D .9. 把“二进制”数101101(2)化为“八进制”数是( ) A .40(8)B .45(8)C .50(8)D .55(8)10.在正方体1111ABCD A B C D -中,M 是线段11AC 的中点,若四面体M ABD -的外接球体积为36p , 则正方体棱长为( )A .2B .3C .4D .5【命题意图】本题考查以正方体为载体考查四面体的外接球半径问题,意在考查空间想象能力和基本运算能力. 11.集合{}5,4,3,2,1,0=S ,A 是S 的一个子集,当A x ∈时,若有A x A x ∉+∉-11且,则称x 为A 的一个“孤立元素”.集合B 是S 的一个子集, B 中含4个元素且B 中无“孤立元素”,这样的集合B 共有个A.4B. 5C.6D.712.已知某运动物体的位移随时间变化的函数关系为,设物体第n 秒内的位移为a n ,则数列{a n }是( ) A .公差为a 的等差数列 B .公差为﹣a 的等差数列C .公比为a 的等比数列D .公比为的等比数列二、填空题13.已知圆O :x 2+y 2=1和双曲线C :﹣=1(a >0,b >0).若对双曲线C 上任意一点A (点A 在圆O外),均存在与圆O 外切且顶点都在双曲线C 上的菱形ABCD ,则﹣= .14.已知(ax+1)5的展开式中x 2的系数与的展开式中x 3的系数相等,则a= .15.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,sinA ,sinB ,sinC 依次成等比数列,c=2a 且•=24,则△ABC 的面积是 .16.甲、乙两个箱子里各装有2个红球和1个白球,现从两个箱子中随机各取一个球,则至少有一 个红球的概率为 .17.如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是.已知样本中平均气温不大于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为 .18.若曲线f (x )=ae x +bsinx (a ,b ∈R )在x=0处与直线y=﹣1相切,则b ﹣a= .三、解答题19.已知数列{a n }满足a 1=,a n+1=a n +(n ∈N *).证明:对一切n ∈N *,有(Ⅰ)<;(Ⅱ)0<a n <1.20.(本小题12分)在多面体ABCDEFG 中,四边形ABCD 与CDEF 是边长均为a 正方形,CF ⊥平面ABCD ,BG ⊥平面ABCD ,且24AB BG BH ==.(1)求证:平面AGH ⊥平面EFG ; (2)若4a =,求三棱锥G ADE -的体积.【命题意图】本题主要考查空间直线与平面间的垂直关系、空间向量、二面角等基础知识,间在考查空间想象能力、逻辑推理能力,以及转化的思想、方程思想.21.在某大学自主招生考试中,所有选报Ⅱ类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A,B,C,D,E五个等级.某考场考生的两科考试成绩的数据统计如图所示,其中“数学与逻辑”科目的成绩为B的考生有10人.(Ⅰ)求该考场考生中“阅读与表达”科目中成绩为A 的人数;(Ⅱ)若等级A ,B ,C ,D ,E 分别对应5分,4分,3分,2分,1分,求该考场考生“数学与逻辑”科目的平均分;(Ⅲ)已知参加本考场测试的考生中,恰有两人的两科成绩均为A .在至少一科成绩为A 的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为A 的概率.22.已知椭圆C :=1(a >2)上一点P 到它的两个焦点F 1(左),F 2 (右)的距离的和是6.(1)求椭圆C 的离心率的值;(2)若PF 2⊥x 轴,且p 在y 轴上的射影为点Q ,求点Q 的坐标.23.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,且990S =,15240S =. (1)求{}n a 的通项公式n a 和前n 项和n S ;(2)设(){}1nn n b a --是等比数列,且257,71b b ==,求数列{}n b 的前n 项和n T .【命题意图】本题考查等差数列与等比数列的通项与前n 项和、数列求和等基础知识,意在考查逻辑思维能力、运算求解能力、代数变形能力,以及分类讨论思想、方程思想、分组求和法的应用.24.直三棱柱ABC﹣A1B1C1中,AA1=AB=AC=1,E,F分别是CC1、BC 的中点,AE⊥A1B1,D为棱A1B1上的点.(1)证明:DF⊥AE;(2)是否存在一点D,使得平面DEF与平面ABC所成锐二面角的余弦值为?若存在,说明点D的位置,若不存在,说明理由.祁阳县第三中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:每一项冠军的情况都有5种,故5名学生争夺三项冠军,获得冠军的可能的种数是53,故选:D.【点评】本题主要考查分步计数原理的应用,属于基础题.2.【答案】C【解析】解:∵b=,c=3,B=30°,∴由余弦定理b2=a2+c2﹣2accosB,可得:3=9+a2﹣3,整理可得:a2﹣3a+6=0,∴解得:a=或2.故选:C.3.【答案】B【解析】解:每个个体被抽到的概率等于=,则高一、高二、高三年级抽取的人数分别为800×=20,600×=15,600×=15,故选B.【点评】本题主要考查分层抽样的定义和方法,用每层的个体数乘以每个个体被抽到的概率等于该层应抽取的个体数,属于基础题.4.【答案】B【解析】试题分析:根据()a aβααβ⋅=可知,B正确。

祁阳县第二中学2018-2019学年上学期高三数学10月月考试题

祁阳县第二中学2018-2019学年上学期高三数学10月月考试题

祁阳县第二中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 某大学的8名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽 车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘 坐甲车的4名同学中恰有2名同学是来自同一年级的乘坐方式共有( )种. A .24 B .18 C .48 D .36【命题意图】本题考查排列与组合的基础知识,考查学生分类讨论,运算能力以及逻辑推理能力. 2. 已知函数()cos()3f x x π=+,则要得到其导函数'()y f x =的图象,只需将函数()y f x =的图象( )A .向右平移2π个单位 B .向左平移2π个单位 C. 向右平移23π个单位 D .左平移23π个单位3. 若等边三角形ABC 的边长为2,N 为AB 的中点,且AB 上一点M 满足CM xCA yCB =+, 则当14x y+取最小值时,CM CN ⋅=( ) A .6 B .5 C .4 D .34. 若P 是以F 1,F 2为焦点的椭圆=1(a >b >0)上的一点,且=0,tan ∠PF 1F 2=,则此椭圆的离心率为( )A .B .C .D .5. 已知平面向量与的夹角为3π,且32|2|=+b a ,1||=b ,则=||a ( ) A . B .3 C . D .6. 已知α是△ABC 的一个内角,tan α=,则cos (α+)等于( )A .B .C .D .7. 定义运算,例如.若已知,则=( )A .B .C .D .8. 已知集合,,则( )A .B .C .D .9. 如图,在棱长为1的正方体1111ABCD A B C D -中,P 为棱11A B 中点,点Q 在侧面11DCC D 内运动,若1PBQ PBD ∠=∠,则动点Q 的轨迹所在曲线为( )A.直线B.圆C.双曲线D.抛物线【命题意图】本题考查立体几何中的动态问题等基础知识,意在考查空间想象能力.10.某公园有P ,Q ,R 三只小船,P 船最多可乘3人,Q 船最多可乘2人,R 船只能乘1人,现有3个大人和2个小孩打算同时分乘若干只小船,规定有小孩的船必须有大人,共有不同的乘船方法为( ) A .36种 B .18种 C .27种 D .24种 11.棱台的两底面面积为1S 、2S ,中截面(过各棱中点的面积)面积为0S ,那么( )A .=B .0S =C .0122S S S =+D .20122S S S =12.已知||=3,||=1,与的夹角为,那么|﹣4|等于( )A .2B .C .D .13二、填空题13.【2017-2018第一学期东台安丰中学高三第一次月考】函数()2ln f x x x =-的单调递增区间为__________. 14.已知函数()ln a f x x x =+,(0,3]x ∈,其图象上任意一点00(,)P x y 处的切线的斜率12k ≤恒 成立,则实数的取值范围是 .15.若函数2(1)1f x x +=-,则(2)f = .16.已知抛物线1C :x y 42=的焦点为F ,点P 为抛物线上一点,且3||=PF ,双曲线2C :12222=-by a x(0>a ,0>b )的渐近线恰好过P 点,则双曲线2C 的离心率为 .【命题意图】本题考查了双曲线、抛物线的标准方程,双曲线的渐近线,抛物线的定义,突出了基本运算和知识交汇,难度中等.17.已知,x y 满足41y xx y x ≥⎧⎪+≤⎨⎪≥⎩,则22223y xy x x -+的取值范围为____________. 三、解答题18.衡阳市为增强市民的环境保护意识,面向全市征召义务宣传志愿者,现从符合条件的志愿者中 随机抽取100名后按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第 5组[40,45],得到的频率分布直方图如图所示.(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,则应从第3,4,5组 各抽取多少名志愿者?(2)在(1)的条件下,该市决定在第3,4组的志愿者中随机抽取2名志愿者介绍宣传经验,求第4组 至少有一名志愿者被抽中的概率.19.在直接坐标系中,直线的方程为,曲线的参数方程为(为参数)。

祁阳县二中2018-2019学年高二上学期第二次月考试卷数学

祁阳县二中2018-2019学年高二上学期第二次月考试卷数学

祁阳县二中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 与向量=(1,﹣3,2)平行的一个向量的坐标是( )A .(,1,1)B .(﹣1,﹣3,2)C .(﹣,,﹣1)D .(,﹣3,﹣2)2. 已知m ,n 为不同的直线,α,β为不同的平面,则下列说法正确的是( ) A .m ⊂α,n ∥m ⇒n ∥αB .m ⊂α,n ⊥m ⇒n ⊥αC .m ⊂α,n ⊂β,m ∥n ⇒α∥βD .n ⊂β,n ⊥α⇒α⊥β3. 若函数f (x )=ka x ﹣a ﹣x ,(a >0,a ≠1)在(﹣∞,+∞)上既是奇函数,又是增函数,则g (x )=log a (x+k )的是( )A .B .C .D .4. 已知集合A={x|x 是平行四边形},B={x|x 是矩形},C={x|x 是正方形},D={x|x 是菱形},则( ) A .A ⊆B B .C ⊆B C .D ⊆C D .A ⊆D5. 在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若﹣+1=0,则角B 的度数是( )A .60°B .120°C .150°D .60°或120°6. 与函数 y=x 有相同的图象的函数是( ) A .B .C .D .7. 如图,在等腰梯形ABCD 中,AB=2DC=2,∠DAB=60°,E 为AB 的中点,将△ADE 与△BEC 分别沿ED 、EC 向上折起,使A 、B 重合于点P ,则P ﹣DCE 三棱锥的外接球的体积为( )A .B .C .D .8. 已知集合M={x|x 2<1},N={x|x >0},则M ∩N=( ) A .∅B .{x|x >0}C .{x|x <1}D .{x|0<x <1}可.9. 集合A={x|﹣1≤x ≤2},B={x|x <1},则A ∩B=( )A .{x|x <1}B .{x|﹣1≤x ≤2}C .{x|﹣1≤x ≤1}D .{x|﹣1≤x <1}10.已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )﹣g (x )=x 3﹣2x 2,则f (2)+g (2)=( ) A .16B .﹣16C .8D .﹣811.函数f (x )=x 3﹣3x 2+5的单调减区间是( )A .(0,2)B .(0,3)C .(0,1)D .(0,5)12.已知复数z 满足:zi=1+i (i 是虚数单位),则z 的虚部为( ) A .﹣i B .i C .1D .﹣1二、填空题13.已知点E 、F 分别在正方体 的棱上,且, ,则面AEF 与面ABC 所成的二面角的正切值等于 .14.设直线系M :xcos θ+(y ﹣2)sin θ=1(0≤θ≤2π),对于下列四个命题: A .M 中所有直线均经过一个定点B .存在定点P 不在M 中的任一条直线上C .对于任意整数n (n ≥3),存在正n 边形,其所有边均在M 中的直线上D .M 中的直线所能围成的正三角形面积都相等其中真命题的代号是 (写出所有真命题的代号).15.已知实数x ,y 满足约束条,则z=的最小值为 .16.已知函数,则__________;的最小值为__________.17.抛物线y 2=6x ,过点P (4,1)引一条弦,使它恰好被P 点平分,则该弦所在的直线方程为 .18.在空间直角坐标系中,设)1,3(,m A ,)1,1,1(-B ,且22||=AB ,则=m . 三、解答题19.数列{a n }的前n 项和为S n ,a 1=1,a n+1=2S n +1,等差数列{b n }满足b 3=3,b 5=9, (1)分别求数列{a n },{b n }的通项公式;(2)若对任意的n ∈N *,恒成立,求实数k 的取值范围.20.已知函数f (x )=2cosx (sinx+cosx )﹣1 (Ⅰ)求f (x )在区间[0,]上的最大值;(Ⅱ)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且f(B )=1,a+c=2,求b 的取值范围.21.(本小题满分10分)选修4-4:坐标系与参数方程 已知曲线1C 的极坐标方程是2=ρ,曲线2C 的参数方程是θππθθ],2,6[,0(21sin 2,1∈>⎪⎩⎪⎨⎧+==t t y x 是参数). (Ⅰ)写出曲线1C 的直角坐标方程和曲线2C 的普通方程;(Ⅱ)求t 的取值范围,使得1C ,2C 没有公共点.22X(I )求该运动员两次都命中7环的概率; (Ⅱ)求ξ的数学期望E ξ.23.(本小题满分10分) 已知函数()|||2|f x x a x =++-.(1)当3a =-时,求不等式()3f x ≥的解集; (2)若()|4|f x x ≤-的解集包含[1,2],求的取值范围.24.已知函数f (x )=|x ﹣5|+|x ﹣3|. (Ⅰ)求函数f (x )的最小值m ;(Ⅱ)若正实数a ,b 足+=,求证:+≥m .祁阳县二中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:对于C中的向量:(﹣,,﹣1)=﹣(1,﹣3,2)=﹣,因此与向量=(1,﹣3,2)平行的一个向量的坐标是.故选:C.【点评】本题考查了向量共线定理的应用,属于基础题.2.【答案】D【解析】解:在A选项中,可能有n⊂α,故A错误;在B选项中,可能有n⊂α,故B错误;在C选项中,两平面有可能相交,故C错误;在D选项中,由平面与平面垂直的判定定理得D正确.故选:D.【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.3.【答案】C【解析】解:∵函数f(x)=ka x﹣a﹣x,(a>0,a≠1)在(﹣∞,+∞)上是奇函数则f(﹣x)+f(x)=0即(k﹣1)(a x﹣a﹣x)=0则k=1又∵函数f(x)=ka x﹣a﹣x,(a>0,a≠1)在(﹣∞,+∞)上是增函数则a>1则g(x)=log a(x+k)=log a(x+1)函数图象必过原点,且为增函数故选C【点评】若函数在其定义域为为奇函数,则f(﹣x)+f(x)=0,若函数在其定义域为为偶函数,则f(﹣x)﹣f(x)=0,这是函数奇偶性定义的变形使用,另外函数单调性的性质,在公共单调区间上:增函数﹣减函数=增函数也是解决本题的关键.4.【答案】B【解析】解:因为菱形是平行四边形的特殊情形,所以D⊂A,矩形与正方形是平行四边形的特殊情形,所以B⊂A,C⊂A,正方形是矩形,所以C⊆B.故选B.5.【答案】A【解析】解:根据正弦定理有:=,代入已知等式得:﹣+1=0,即﹣1=,整理得:2sinAcosB﹣cosBsinC=sinBcosC,即2sinAcosB=sinBcosC+cosBsinC=sin(B+C),又∵A+B+C=180°,∴sin(B+C)=sinA,可得2sinAcosB=sinA,∵sinA≠0,∴2cosB=1,即cosB=,则B=60°.故选:A.【点评】此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.6.【答案】D【解析】解:A:y=的定义域[0,+∞),与y=x的定义域R不同,故A错误B:与y=x的对应法则不一样,故B错误C:=x,(x≠0)与y=x的定义域R不同,故C错误D:,与y=x是同一个函数,则函数的图象相同,故D正确故选D【点评】本题主要考查了函数的三要素:函数的定义域,函数的值域及函数的对应法则的判断,属于基础试题7.【答案】C【解析】解:易证所得三棱锥为正四面体,它的棱长为1,故外接球半径为,外接球的体积为,故选C.【点评】本题考查球的内接多面体,球的体积等知识,考查逻辑思维能力,是中档题.8.【答案】D【解析】解:由已知M={x|﹣1<x<1},N={x|x>0},则M∩N={x|0<x<1},故选D.【点评】此题是基础题.本题属于以不等式为依托,求集合的交集的基础题,9.【答案】D【解析】解:A∩B={x|﹣1≤x≤2}∩{x|x<1}={x|﹣1≤x≤2,且x<1}={x|﹣1≤x<1}.故选D.【点评】本题考查了交集,关键是理解交集的定义及会使用数轴求其公共部分.10.【答案】B【解析】解:∵f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)﹣g(x)=x3﹣2x2,∴f(﹣2)﹣g(﹣2)=(﹣2)3﹣2×(﹣2)2=﹣16.即f(2)+g(2)=f(﹣2)﹣g(﹣2)=﹣16.故选:B.【点评】本题考查函数的奇函数的性质函数值的求法,考查计算能力.11.【答案】A【解析】解:∵f(x)=x3﹣3x2+5,∴f′(x)=3x2﹣6x,令f′(x)<0,解得:0<x<2,故选:A.【点评】本题考察了函数的单调性,导数的应用,是一道基础题.12.【答案】D【解析】解:由zi=1+i,得,∴z的虚部为﹣1.故选:D.【点评】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.二、填空题13.【答案】【解析】延长EF交BC的延长线于P,则AP为面AEF与面ABC的交线,因为,所以为面AEF与面ABC所成的二面角的平面角。

祁阳县第一高级中学2018-2019学年高二上学期第二次月考试卷数学

祁阳县第一高级中学2018-2019学年高二上学期第二次月考试卷数学

祁阳县第一高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 已知,A B 是球O 的球面上两点,60AOB ∠=︒,C 为该球面上的动点,若三棱锥O ABC -体积的最大值为O 的体积为( )A .81πB .128πC .144πD .288π【命题意图】本题考查棱锥、球的体积、球的性质,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.2. 下列各组表示同一函数的是( )A .y=与y=()2B .y=lgx 2与y=2lgxC .y=1+与y=1+D .y=x 2﹣1(x ∈R )与y=x 2﹣1(x ∈N )3. 某高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信 息,可确定被抽测的人数及分数在[]90,100内的人数分别为( )A .20,2B .24,4C .25,2D .25,4 4. 一个圆的圆心为椭圆的右焦点,且该圆过椭圆的中心交椭圆于P ,直线PF 1(F 1为椭圆的左焦点)是该圆的切线,则椭圆的离心率为( )A .B .C .D .5. 已知集合A={0,1,2},则集合B={x ﹣y|x ∈A ,y ∈A}的元素个数为( ) A .4B .5C .6D .96. 过抛物线22(0)y px p =>焦点F 的直线与双曲线2218-=y x 的一条渐近线平行,并交其抛物线于A 、 B 两点,若>AF BF ,且||3AF =,则抛物线方程为( )A .2y x = B .22y x = C .24y x = D .23y x =【命题意图】本题考查抛物线方程、抛物线定义、双曲线标准方程和简单几何性质等基础知识,意在考查方程思想和运算能力.7. 设方程|x 2+3x ﹣3|=a 的解的个数为m ,则m 不可能等于( ) A .1B .2C .3D .48. 下列命题中正确的是( )A .若命题p 为真命题,命题q 为假命题,则命题“p ∧q ”为真命题B .命题“若xy=0,则x=0”的否命题为:“若xy=0,则x ≠0”C .“”是“”的充分不必要条件D .命题“∀x ∈R ,2x >0”的否定是“”9. 函数f (x )=3x +x 的零点所在的一个区间是( ) A .(﹣3,﹣2) B .(﹣2,﹣1) C .(﹣1,0) D .(0,1)10.从一群学生中抽取一个一定容量的样本对他们的学习成绩进行分析,已知不超过70分的人数为8人,其累计频率为0.4,则这样的样本容量是( ) A .20人B .40人C .70人D .80人11.在曲线y=x 2上切线倾斜角为的点是( )A .(0,0)B .(2,4)C .(,)D .(,)12.已知集合A={﹣1,0,1,2},集合B={0,2,4},则A ∪B 等于( )A .{﹣1,0,1,2,4}B .{﹣1,0,2,4}C .{0,2,4}D .{0,1,2,4}二、填空题13.已知=1﹣bi ,其中a ,b 是实数,i 是虚数单位,则|a ﹣bi|= .14.不等式的解为 .15.函数y=f (x )的图象在点M (1,f (1))处的切线方程是y=3x ﹣2,则f (1)+f ′(1)= .16.i 是虚数单位,化简: = .17.给出下列命题:(1)命题p :;菱形的对角线互相垂直平分,命题q :菱形的对角线相等;则p ∨q 是假命题(2)命题“若x 2﹣4x+3=0,则x=3”的逆否命题为真命题 (3)“1<x <3”是“x 2﹣4x+3<0”的必要不充分条件(4)若命题p :∀x ∈R ,x 2+4x+5≠0,则¬p :.其中叙述正确的是 .(填上所有正确命题的序号) 18.已知z 是复数,且|z|=1,则|z ﹣3+4i|的最大值为 .三、解答题19.本小题满分12分 设函数()ln xf x e a x =- Ⅰ讨论()f x 的导函数'()f x 零点个数; Ⅱ证明:当0a >时,()2ln f x a a a ≥-20.已知斜率为1的直线l 经过抛物线y 2=2px (p >0)的焦点F ,且与抛物线相交于A ,B 两点,|AB|=4.(I )求p 的值;(II )若经过点D (﹣2,﹣1),斜率为k 的直线m 与抛物线有两个不同的公共点,求k 的取值范围.21.已知等差数列{a n }满足a 2=0,a 6+a 8=10. (1)求数列{a n }的通项公式;(2)求数列{}的前n 项和.22.在直角坐标系xOy 中,过点P (2,﹣1)的直线l 的倾斜角为45°.以坐标原点为极点,x 轴正半轴为极坐标建立极坐标系,曲线C 的极坐标方程为ρsin 2θ=4cos θ,直线l 和曲线C 的交点为A ,B .(1)求曲线C 的直角坐标方程; (2)求|PA|•|PB|.23.(本题满分15分)已知函数c bx ax x f ++=2)(,当1≤x 时,1)(≤x f 恒成立. (1)若1=a ,c b =,求实数b 的取值范围;(2)若a bx cx x g +-=2)(,当1≤x 时,求)(x g 的最大值.【命题意图】本题考查函数单调性与最值,分段函数,不等式性质等基础知识,意在考查推理论证能力,分析问题和解决问题的能力.24.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()()3244f x x a x a b x c =+--++(),,R a b c ∈有一个零点为4,且满足()01f =.(1)求实数b 和c 的值;(2)试问:是否存在这样的定值0x ,使得当a 变化时,曲线()y f x =在点()()00,x f x 处的切线互相平行?若存在,求出0x 的值;若不存在,请说明理由; (3)讨论函数()()g x f x a =+在()0,4上的零点个数.祁阳县第一高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案) 一、选择题1. 【答案】D【解析】当OC ⊥平面AOB 平面时,三棱锥O ABC -的体积最大,且此时OC 为球的半径.设球的半径为R ,则由题意,得211sin 6032R R ⨯⨯︒⋅=6R =,所以球的体积为342883R π=π,故选D . 2. 【答案】C【解析】解:A .y=|x|,定义域为R ,y=()2=x ,定义域为{x|x ≥0},定义域不同,不能表示同一函数.B .y=lgx 2,的定义域为{x|x ≠0},y=2lgx 的定义域为{x|x >0},所以两个函数的定义域不同,所以不能表示同一函数.C .两个函数的定义域都为{x|x ≠0},对应法则相同,能表示同一函数.D .两个函数的定义域不同,不能表示同一函数.故选:C .【点评】本题主要考查判断两个函数是否为同一函数,判断的标准就是判断两个函数的定义域和对应法则是否一致,否则不是同一函数.3. 【答案】C 【解析】考点:茎叶图,频率分布直方图. 4. 【答案】D【解析】解:设F 2为椭圆的右焦点由题意可得:圆与椭圆交于P ,并且直线PF 1(F 1为椭圆的左焦点)是该圆的切线,所以点P 是切点,所以PF 2=c 并且PF 1⊥PF 2.又因为F 1F 2=2c ,所以∠PF 1F 2=30°,所以.根据椭圆的定义可得|PF 1|+|PF 2|=2a ,所以|PF 2|=2a ﹣c .所以2a ﹣c=,所以e=.故选D .【点评】解决此类问题的关键是熟练掌握直线与圆的相切问题,以即椭圆的定义.5. 【答案】B【解析】解:①x=0时,y=0,1,2,∴x ﹣y=0,﹣1,﹣2; ②x=1时,y=0,1,2,∴x ﹣y=1,0,﹣1; ③x=2时,y=0,1,2,∴x ﹣y=2,1,0; ∴B={0,﹣1,﹣2,1,2},共5个元素. 故选:B .6. 【答案】C【解析】由已知得双曲线的一条渐近线方程为=y ,设00(,)A x y ,则02>p x,所以0002002322ì=ïï-ïïïï+=íïï=ïïïïîy p x p x y px ,解得2=p 或4=p ,因为322->p p,故03p <<,故2=p ,所以抛物线方程为24y x . 7. 【答案】A【解析】解:方程|x 2+3x ﹣3|=a 的解的个数可化为函数y=|x 2+3x ﹣3|与y=a 的图象的交点的个数,作函数y=|x 2+3x ﹣3|与y=a 的图象如下,,结合图象可知,m的可能值有2,3,4;故选A.8.【答案】D【解析】解:若命题p为真命题,命题q为假命题,则命题“p∧q”为假命题,故A不正确;命题“若xy=0,则x=0”的否命题为:“若xy≠0,则x≠0”,故B不正确;“”⇒“+2kπ,或,k∈Z”,“”⇒“”,故“”是“”的必要不充分条件,故C不正确;命题“∀x∈R,2x>0”的否定是“”,故D正确.故选D.【点评】本题考查命题的真假判断,是基础题,解题时要认真审题,仔细解答.9.【答案】C【解析】解:由函数f(x)=3x+x可知函数f(x)在R上单调递增,又f(﹣1)=﹣1<0,f(0)=30+0=1>0,∴f(﹣1)f(0)<0,可知:函数f(x)的零点所在的区间是(﹣1,0).故选:C.【点评】本题考查了函数零点判定定理、函数的单调性,属于基础题.10.【答案】A【解析】解:由已知中的频率分布直方图可得时间不超过70分的累计频率的频率为0.4,则这样的样本容量是n==20.故选A.【点评】本题考查的知识点是频率分布直方图,熟练掌握频率的两个公式频率=矩形高×组距=是解答的关键.11.【答案】D【解析】解:y'=2x,设切点为(a,a2)∴y'=2a,得切线的斜率为2a,所以2a=tan45°=1,∴a=,在曲线y=x2上切线倾斜角为的点是(,).故选D.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.12.【答案】A【解析】解:∵A={﹣1,0,1,2},B={0,2,4},∴A∪B={﹣1,0,1,2}∪{0,2,4}={﹣1,0,1,2,4}.故选:A.【点评】本题考查并集及其运算,是基础的会考题型.二、填空题13.【答案】.【解析】解:∵=1﹣bi,∴a=(1+i)(1﹣bi)=1+b+(1﹣b)i,∴,解得b=1,a=2.∴|a﹣bi|=|2﹣i|=.故答案为:.【点评】本题考查了复数的运算法则、模的计算公式,考查了计算能力,属于基础题.14.【答案】{x|x>1或x<0}.【解析】解:即即x(x﹣1)>0解得x>1或x<0故答案为{x|x>1或x<0}【点评】本题考查将分式不等式通过移项、通分转化为整式不等式、考查二次不等式的解法.注意不等式的解以解集形式写出15.【答案】4.【解析】解:由题意得f′(1)=3,且f(1)=3×1﹣2=1所以f(1)+f′(1)=3+1=4.故答案为4.【点评】本题主要考查导数的几何意义,要注意分清f(a)与f′(a).16.【答案】﹣1+2i.【解析】解:=故答案为:﹣1+2i.17.【答案】(4)【解析】解:(1)命题p:菱形的对角线互相垂直平分,为真命题.命题q:菱形的对角线相等为假命题;则p∨q是真命题,故(1)错误,(2)命题“若x2﹣4x+3=0,则x=3或x=1”,即原命题为假命题,则命题的逆否命题为假命题,故(2)错误,(3)由x2﹣4x+3<0得1<x<3,则“1<x<3”是“x2﹣4x+3<0”的充要条件,故(3)错误,(4)若命题p :∀x ∈R ,x 2+4x+5≠0,则¬p :.正确,故答案为:(4)【点评】本题主要考查命题的真假判断,涉及复合命题的真假关系,四种命题,充分条件和必要条件以及含有量词的命题的否定,知识点较多,属于中档题.18.【答案】 6 .【解析】解:∵|z|=1,|z ﹣3+4i|=|z ﹣(3﹣4i )|≤|z|+|3﹣4i|=1+=1+5=6,∴|z ﹣3+4i|的最大值为6,故答案为:6.【点评】本题考查复数求模,着重考查复数模的运算性质,属于基础题.三、解答题19.【答案】【解析】:Ⅰ'()xaf x e x=-,因为定义域为(0,)+∞, '()0x a f x e x=⇒=有解 即xxe a =有解. 令()x h x xe =,'()(1)x h x e x =+, 当0,'()0,(0)0()0x h x h h x >>=∴> 所以,当0a ≤时,'()0,f x >无零点; 当0a >时,有唯一零点. Ⅱ由Ⅰ可知,当0a >时,设'()f x 在(0,)+∞上唯一零点为0x , 当0(,),'()0x x f x ∈+∞>,()f x 在0(,)x +∞为增函数;当0(0,)x x ∈,'()0,f x <()f x 在0(0,)x 为减函数.0000x x ae e x a x =∴= 000000000()ln ln (ln )ln 2ln x x a a a af x e a x a a a x ax a a a a a x e x x ∴=-=-=--=+-≥-20.【答案】【解析】解:(I )由题意可知,抛物线y 2=2px (p >0)的焦点坐标为,准线方程为.所以,直线l 的方程为…由消y 并整理,得…设A(x1,y1),B(x2,y2)则x1+x2=3p,又|AB|=|AF|+|BF|=x1+x2+p=4,所以,3p+p=4,所以p=1…(II)由(I)可知,抛物线的方程为y2=2x.由题意,直线m的方程为y=kx+(2k﹣1).…由方程组(1)可得ky2﹣2y+4k﹣2=0(2)…当k=0时,由方程(2),得y=﹣1.把y=﹣1代入y2=2x,得.这时.直线m与抛物线只有一个公共点.…当k≠0时,方程(2)得判别式为△=4﹣4k(4k﹣2).由△>0,即4﹣4k(4k﹣2)>0,亦即4k2﹣2k﹣1<0.解得.于是,当且k≠0时,方程(2)有两个不同的实根,从而方程组(1)有两组不同的解,这时,直线m与抛物线有两个不同的公共点,…因此,所求m的取值范围是.…【点评】本题考查抛物线的方程与性质,考查直线与抛物线的位置关系,考查学生分析解决问题的能力,属于中档题.21.【答案】【解析】解:(1)设等差数列{a n}的公差为d,∵a2=0,a6+a8=10.∴,解得,∴a n﹣1+(n﹣1)=n﹣2.(2)=.∴数列{}的前n项和S n=﹣1+0+++…+,=+0++…++,∴=﹣1++…+﹣=﹣2+﹣=,∴S n=.22.【答案】【解析】(1)∵ρsin 2θ=4cos θ,∴ρ2sin 2θ=4ρcos θ,…∵ρcos θ=x ,ρsin θ=y ,∴曲线C 的直角坐标方程为y 2=4x …(2)∵直线l 过点P (2,﹣1),且倾斜角为45°.∴l的参数方程为(t 为参数).…代入 y 2=4x 得t 2﹣6t ﹣14=0…设点A ,B 对应的参数分别t 1,t 2 ∴t 1t 2=﹣14… ∴|PA|•|PB|=14.…23.【答案】【解析】(1)]0,222[-;(2)2.(1)由1=a 且c b =,得4)2()(222b b b x b bx x x f -++=++=,当1=x 时,11)1(≤++=b b f ,得01≤≤-b ,…………3分故)(x f 的对称轴]21,0[2∈-=b x ,当1≤x 时,2min max ()()124()(1)11b b f x f b f x f ⎧=-=-≥-⎪⎨⎪=-=≤⎩,………… 5分 解得222222+≤≤-b ,综上,实数b 的取值范围为]0,222[-;…………7分112≤+=,…………13分且当2a =,0b =,1c =-时,若1≤x ,则112)(2≤-=x x f 恒成立,且当0=x 时,2)(2+-=x x g 取到最大值2.)(x g 的最大值为2.…………15分24.【答案】(1)1,14b c ==;(2)答案见解析;(3)当1a <-或0a >时,()g x 在()0,4有两个零点;当10a -≤≤时,()g x 在()0,4有一个零点.【解析】试题分析:(1)由题意得到关于实数b ,c 的方程组,求解方程组可得1,14b c ==; (3)函数()g x 的导函数()()2132444g x x a x a ⎛⎫=+--+ ⎪⎝⎭',结合导函数的性质可得当1a <-或0a >时,()g x 在()0,4有两个零点;当10a -≤≤时,()g x 在()0,4有一个零点.试题解析:(1)由题意()()01{ 440f c f b c =+=-+=,解得1{ 41b c ==;(2)由(1)可知()()324f x x a x =+--1414a x ⎛⎫++ ⎪⎝⎭,∴()()2132444f x x a x a ⎛⎫=+--+⎪⎝⎭'; 假设存在0x 满足题意,则()()2000132444f x x a x a ⎛⎫=+--+⎪⎝⎭'是一个与a 无关的定值, 即()2000124384x a x x -+--是一个与a 无关的定值, 则0240x -=,即02x =,平行直线的斜率为()1724k f ==-'; (3)()()()324g x f x a x a x =+=+-1414a x a ⎛⎫-+++ ⎪⎝⎭, ∴()()2132444g x x a x a ⎛⎫=+--+⎪⎝⎭', 其中()21441244a a ⎛⎫∆=-++= ⎪⎝⎭()224166742510a a a ++=++>,设()0g x '=两根为1x 和()212x x x <,考察()g x 在R 上的单调性,如下表1°当0a >时,()010g a =+>,()40g a =>,而()152302g a =--<, ∴()g x 在()0,2和()2,4上各有一个零点,即()g x 在()0,4有两个零点; 2°当0a =时,()010g =>,()40g a ==,而()15202g =-<, ∴()g x 仅在()0,2上有一个零点,即()g x 在()0,4有一个零点;3°当0a <时,()40g a =<,且13024g a ⎛⎫=-> ⎪⎝⎭, ①当1a <-时,()010g a =+<,则()g x 在10,2⎛⎫ ⎪⎝⎭和1,42⎛⎫⎪⎝⎭上各有一个零点,即()g x 在()0,4有两个零点;②当10a -≤<时,()010g a =+≥,则()g x 仅在1,42⎛⎫⎪⎝⎭上有一个零点, 即()g x 在()0,4有一个零点;综上:当1a <-或0a >时,()g x 在()0,4有两个零点; 当10a -≤≤时,()g x 在()0,4有一个零点.点睛:在解决类似的问题时,首先要注意区分函数最值与极值的区别.求解函数的最值时,要先求函数y=f (x)在[a,b]内所有使f′(x)=0的点,再计算函数y=f(x)在区间内所有使f′(x)=0的点和区间端点处的函数值,最后比较即得.。

祁阳县第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

祁阳县第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

第 2 页,共 16 页
15.设双曲线 ﹣ =1,F1,F2 是其两个焦点,点 M 在双曲线上.若∠F1MF2=90°,则△F1MF2 的面积是


16 . 已 知 函 数
f
(
x)


x2 1, x 1,
x0 x0

g(x) 2x 1, 则
f (g(2))
, f [g(x)] 的 值 域




8. 【答案】C 【解析】解:如图,设 A1C1∩B1D1=O1,∵B1D1⊥A1O1,B1D1⊥AA1,∴B1D1⊥平面 AA1O1, 故平面 AA1O1⊥面 AB1D1,交线为 AO1,在面 AA1O1 内过 B1 作 B1H⊥AO1 于 H, 则易知 A1H 的长即是点 A1 到截面 AB1D1 的距离,在 Rt△A1O1A 中,A1O1= ,
【解析】解:幂函数 y=x 为增函数,且增加的速度比价缓慢,
只有④符合. 故选:D. 【点评】本题考查了幂函数的图象与性质,属于基础题. 11.【答案】C
第 9 页,共 16 页
【解析】解:sin(﹣510°)=sin(﹣150°)=﹣sin150°=﹣sin30°=﹣ ,
故选:C. 12.【答案】B 【解析】
AO1=3
,由 A1O1•A1A=h•AO1,可得 A1H= ,
故选:C.
第 8 页,共 16 页
【点评】本题主要考查了点到平面的距离,同时考查空间想象能力、推理与论证的能力,属于基础题. 9. 【答案】C
【解析】解:假设存在过点 P(﹣2,2)的直线 l,使它与两坐标轴围成的三角形的面积为 8,
B.2 条
C.1 条
D.0 条

祁阳县第一中学校2018-2019学年高二上学期第二次月考试卷数学

祁阳县第一中学校2018-2019学年高二上学期第二次月考试卷数学

祁阳县第一中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 如图在圆O 中,AB ,CD 是圆O 互相垂直的两条直径,现分别以OA ,OB ,OC ,OD 为直径作四个 圆,在圆O 内随机取一点,则此点取自阴影部分的概率是( )A .π1B .π21 C .π121- D .π2141- 【命题意图】本题考查几何概型概率的求法,借助圆这个载体,突出了几何概型的基本运算能力,因用到圆的几何性质及面积的割补思想,属于中等难度. 2. “p q ∨为真”是“p ⌝为假”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要 3. 已知d 为常数,p :对于任意n ∈N *,a n+2﹣a n+1=d ;q :数列 {a n }是公差为d 的等差数列,则¬p 是¬q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4. 设f (x )与g (x )是定义在同一区间[a ,b]上的两个函数,若函数y=f (x )﹣g (x )在x ∈[a ,b]上有两个不同的零点,则称f (x )和g (x )在[a ,b]上是“关联函数”,区间[a ,b]称为“关联区间”.若f (x )=x 2﹣3x+4与g (x )=2x+m 在[0,3]上是“关联函数”,则m 的取值范围为( )A.(﹣,﹣2]B .[﹣1,0]C .(﹣∞,﹣2]D.(﹣,+∞)5. 设集合M={x|x >1},P={x|x 2﹣6x+9=0},则下列关系中正确的是( ) A .M=P B .P ⊊M C .M ⊊P D .M ∪P=R 6. 如果是定义在上的奇函数,那么下列函数中,一定为偶函数的是( ) A .B .C .D .7. 若函数f (x )的定义域为R ,则“函数f (x )是奇函数”是“f (0)=0”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件DABCO8.设集合A={x|x+2=0},集合B={x|x2﹣4=0},则A∩B=()A.{﹣2} B.{2} C.{﹣2,2} D.∅9.已知函数f(x)=lnx+2x﹣6,则它的零点所在的区间为()A.(0,1) B.(1,2) C.(2,3) D.(3,4)10.已知长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点,则直线AE与平面A1ED1所成角的大小为()A.60°B.90°C.45°D.以上都不正确11.下列判断正确的是()A.①不是棱柱B.②是圆台C.③是棱锥D.④是棱台12.如果a>b,那么下列不等式中正确的是()A.B.|a|>|b| C.a2>b2D.a3>b3二、填空题13.命题“若a>0,b>0,则ab>0”的逆否命题是(填“真命题”或“假命题”.)14.已知角α终边上一点为P(﹣1,2),则值等于.15.记等比数列{a n}的前n项积为Πn,若a4•a5=2,则Π8=.16.设i是虚数单位,是复数z的共轭复数,若复数z=3﹣i,则z•=.17.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示.根据条形图可得这50名学生这一天平均的课外阅读时间为小时.18.已知函数,则__________;的最小值为__________.三、解答题19.由四个不同的数字1,2,4,x 组成无重复数字的三位数. (1)若x=5,其中能被5整除的共有多少个? (2)若x=9,其中能被3整除的共有多少个? (3)若x=0,其中的偶数共有多少个?(4)若所有这些三位数的各位数字之和是252,求x .20.(本小题满分10分)选修4-5:不等式选讲 已知函数()|21|f x x =-.(1)若不等式1()21(0)2f x m m +≤+>的解集为(][),22,-∞-+∞,求实数m 的值;(2)若不等式()2|23|2yyaf x x ≤+++,对任意的实数,x y R ∈恒成立,求实数a 的最小值.21.已知{}{}22,1,3,3,31,1A a a B a a a =+-=--+,若{}3AB =-,求实数的值.22.(本小题满分12分)已知()()2,1,0,2A B 且过点()1,1P -的直线与线段AB 有公共点, 求直 线的斜率的取值范围.23.(本小题满分10分)选修41-:几何证明选讲如图所示,已知PA 与⊙O 相切,A 为切点,过点P 的割线交圆于C B ,两点,弦AP CD //,BC AD ,相 交于点E ,F 为CE 上一点,且EC EF DE ⋅=2. (Ⅰ)求证:P EDF ∠=∠;(Ⅱ)若2,3,2:3:===EF DE BE CE ,求PA 的长.【命题意图】本题考查相交弦定理、三角形相似、切割线定理等基础知识,意在考查逻辑推理能力.24.巳知二次函数f (x )=ax 2+bx+c 和g (x )=ax 2+bx+c •lnx (abc ≠0).(Ⅰ)证明:当a <0时,无论b 为何值,函数g (x )在定义域内不可能总为增函数;(Ⅱ)在同一函数图象上取任意两个不同的点A (x 1,y 1),B (x 2,y 2),线段AB 的中点C (x 0,y 0),记直线AB 的斜率为k 若f (x )满足k=f ′(x 0),则称其为“K 函数”.判断函数f (x )=ax 2+bx+c 与g (x )=ax 2+bx+c •lnx 是否为“K 函数”?并证明你的结论.祁阳县第一中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】C【解析】设圆O 的半径为2,根据图形的对称性,可以选择在扇形OAC 中研究问题,过两个半圆的交点分别向OA ,OC 作垂线,则此时构成一个以1为边长的正方形,则这个正方形内的阴影部分面积为12-π,扇形OAC 的面积为π,所求概率为πππ12112-=-=P . 2. 【答案】B 【解析】试题分析:因为p 假真时,p q ∨真,此时p ⌝为真,所以,“p q ∨ 真”不能得“p ⌝为假”,而“p ⌝为假”时p 为真,必有“p q ∨ 真”,故选B. 考点:1、充分条件与必要条件;2、真值表的应用. 3. 【答案】A【解析】解:p :对于任意n ∈N *,a n+2﹣a n+1=d ;q :数列 {a n }是公差为d 的等差数列, 则¬p :∃n ∈N *,a n+2﹣a n+1≠d ;¬q :数列 {a n }不是公差为d 的等差数列,由¬p ⇒¬q ,即a n+2﹣a n+1不是常数,则数列 {a n }就不是等差数列,若数列 {a n }不是公差为d 的等差数列,则不存在n ∈N *,使得a n+2﹣a n+1≠d ,即前者可以推出后者,前者是后者的充分条件, 即后者可以推不出前者, 故选:A .【点评】本题考查等差数列的定义,是以条件问题为载体的,这种问题注意要从两个方面入手,看是不是都能够成立.4. 【答案】A【解析】解:∵f (x )=x 2﹣3x+4与g (x )=2x+m 在[0,3]上是“关联函数”,故函数y=h (x )=f (x )﹣g (x )=x 2﹣5x+4﹣m 在[0,3]上有两个不同的零点,故有,即,解得﹣<m ≤﹣2,故选A .【点评】本题考查函数零点的判定定理,“关联函数”的定义,二次函数的性质,体现了转化的数学思想,属于基础题.5.【答案】B【解析】解:P={x|x=3},M={x|x>1};∴P⊊M.故选B.6.【答案】B【解析】【知识点】函数的奇偶性【试题解析】因为奇函数乘以奇函数为偶函数,y=x是奇函数,故是偶函数。

祁阳县二中2018-2019学年上学期高二数学12月月考试题含解析

祁阳县二中2018-2019学年上学期高二数学12月月考试题含解析

祁阳县二中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.在正方体ABCD﹣A1B1C1D1中,点E,F分别是棱AB,BB1的中点,则异面直线EF和BC1所成的角是()A.60°B.45°C.90°D.120°2.已知三棱锥A﹣BCO,OA、OB、OC两两垂直且长度均为6,长为2的线段MN的一个端点M在棱OA 上运动,另一个端点N在△BCO内运动(含边界),则MN的中点P的轨迹与三棱锥的面所围成的几何体的体积为()A.B.或36+C.36﹣D.或36﹣3.在△ABC中,已知D是AB边上一点,若=2,=,则λ=()A.B.C.﹣D.﹣4.sin3sin1.5cos8.5,,的大小关系为()A.sin1.5sin3cos8.5<<<<B.cos8.5sin3sin1.5C.sin1.5cos8.5sin3<<<<D.cos8.5sin1.5sin35.已知F1、F2是椭圆的两个焦点,满足=0的点M总在椭圆内部,则椭圆离心率的取值范围是()A.(0,1)B.(0,] C.(0,)D.[,1)6.在中,角、、所对应的边分别为、、,若角、、依次成等差数列,且,,则等于()A.B.C.D.27.点集{(x,y)|(|x|﹣1)2+y2=4}表示的图形是一条封闭的曲线,这条封闭曲线所围成的区域面积是()A. B. C. D.8. 曲线y=在点(1,﹣1)处的切线方程为( )A .y=x ﹣2B .y=﹣3x+2C .y=2x ﹣3D .y=﹣2x+1 9. 若点O 和点F (﹣2,0)分别是双曲线的中心和左焦点,点P 为双曲线右支上的任意一点,则的取值范围为( )A.B. C. D.10.sin45°sin105°+sin45°sin15°=( )A .0B.C.D .111.把“二进制”数101101(2)化为“八进制”数是( ) A .40(8)B .45(8)C .50(8)D .55(8)12.已知双曲线﹣=1的一个焦点与抛物线y 2=4x 的焦点重合,且双曲线的渐近线方程为y=±x ,则该双曲线的方程为( ) A.﹣=1B .﹣y 2=1 C .x 2﹣=1 D.﹣=1二、填空题13.已知正整数m 的3次幂有如下分解规律:113=;5323+=;119733++=;1917151343+++=;…若)(3+∈N m m 的分解中最小的数为91,则m 的值为 .【命题意图】本题考查了归纳、数列等知识,问题的给出比较新颖,对逻辑推理及化归能力有较高要求,难度中等.14.已知||=1,||=2,与的夹角为,那么|+||﹣|= .15.设,y x 满足约束条件2110y x x y y ≤⎧⎪+≤⎨⎪+≥⎩,则3z x y =+的最大值是____________.16.当a >0,a ≠1时,函数f (x )=log a (x ﹣1)+1的图象恒过定点A ,若点A 在直线mx ﹣y+n=0上,则4m +2n 的最小值是 .17.若直线y ﹣kx ﹣1=0(k ∈R )与椭圆恒有公共点,则m 的取值范围是 .18.有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色的涂料,且三个房间的颜色各不相同.三个房间的粉刷面积和三种颜色的涂料费用如下表:那么在所有不同的粉刷方案中,最低的涂料总费用是 _______元.三、解答题19.(本小题满分12分)已知平面向量(1,)a x =,(23,)b x x =+-,()x R ∈. (1)若//a b ,求||a b -;(2)若与夹角为锐角,求的取值范围.20.(本小题满分12分)设函数()()2741201x x f x a a a --=->≠且.(1)当a =时,求不等式()0f x <的解集; (2)当[]01x ∈,时,()0f x <恒成立,求实数的取值范围.21.(本小题满分12分)设f (x )=-x 2+ax +a 2ln x (a ≠0).(1)讨论f(x)的单调性;(2)是否存在a>0,使f(x)∈[e-1,e2]对于x∈[1,e]时恒成立,若存在求出a的值,若不存在说明理由.22.(本小题满分12分)为了普及法律知识,达到“法在心中”的目的,某市法制办组织了普法知识竞赛.5名职工的成绩,成绩如下表:(1掌握更稳定;(2)用简单随机抽样法从乙单位5名职工中抽取2名,他们的成绩组成一个样本,求抽取的2名职工的分数差至少是4的概率.23.如图,已知边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=2,M为BC的中点(Ⅰ)试在棱AD上找一点N,使得CN∥平面AMP,并证明你的结论.(Ⅱ)证明:AM⊥PM.24.设极坐标与直角坐标系xOy有相同的长度单位,原点O为极点,x轴坐标轴为极轴,曲线C1的极坐标方程为ρ2cos2θ+3=0,曲线C2的参数方程为(t是参数,m是常数).(Ⅰ)求C1的直角坐标方程和C2的普通方程;(Ⅱ)若C1与C2有两个不同的公共点,求m的取值范围.祁阳县二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】解:如图所示,设AB=2,则A(2,0,0),B(2,2,0),B1(2,2,2),C1(0,2,2),E(2,1,0),F(2,2,1).∴=(﹣2,0,2),=(0,1,1),∴===,∴=60°.∴异面直线EF和BC1所成的角是60°.故选:A.【点评】本题考查了利用向量的夹角公式求异面直线所成的夹角,考查了推理能力与计算能力,属于中档题.2.【答案】D【解析】【分析】由于长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在△BCO内运动(含边界),有空间想象能力可知MN的中点P的轨迹为以O为球心,以1为半径的球体,故MN的中点P的轨迹与三棱锥的面所围成的几何体的体积,利用体积分割及球体的体积公式即可.【解答】解:因为长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在△BCO内运动(含边界),有空间想象能力可知MN的中点P的轨迹为以O为球心,以1为半径的球体,则MN的中点P的轨迹与三棱锥的面所围成的几何体可能为该球体的或该三棱锥减去此球体的,即:或.故选D3.【答案】A【解析】解:在△ABC 中,已知D 是AB 边上一点∵=2,=,∴=,∴λ=, 故选A .【点评】经历平面向量分解定理的探求过程,培养观察能力、抽象概括能力、体会化归思想,基底给定时,分解形式唯一,字母系数是被基底唯一确定的数量.4. 【答案】B 【解析】试题分析:由于()cos8.5cos 8.52π=-,因为8.522πππ<-<,所以cos8.50<,又()sin3sin 3sin1.5π=-<,∴cos8.5sin 3sin1.5<<. 考点:实数的大小比较. 5. 【答案】C 【解析】解:设椭圆的半长轴、半短轴、半焦距分别为a ,b ,c ,∵=0,∴M 点的轨迹是以原点O 为圆心,半焦距c 为半径的圆. 又M 点总在椭圆内部,∴该圆内含于椭圆,即c <b ,c 2<b 2=a 2﹣c 2.∴e 2=<,∴0<e <.故选:C .【点评】本题考查椭圆的基本知识和基础内容,解题时要注意公式的选取,认真解答.6. 【答案】C【解析】 因为角、、依次成等差数列,所以由余弦定理知,即,解得所以, 故选C答案:C7.【答案】A【解析】解:点集{(x,y)|(|x|﹣1)2+y2=4}表示的图形是一条封闭的曲线,关于x,y轴对称,如图所示.由图可得面积S==+=+2.故选:A.【点评】本题考查线段的方程特点,由曲线的方程研究曲线的对称性,体现了数形结合的数学思想.8.【答案】D【解析】解:y′=()′=,∴k=y′|x=1=﹣2.l:y+1=﹣2(x﹣1),则y=﹣2x+1.故选:D9.【答案】B【解析】解:因为F(﹣2,0)是已知双曲线的左焦点,所以a2+1=4,即a2=3,所以双曲线方程为,设点P(x0,y0),则有,解得,因为,,所以=x0(x0+2)+=,此二次函数对应的抛物线的对称轴为,因为,所以当时,取得最小值=,故的取值范围是,故选B.【点评】本题考查待定系数法求双曲线方程,考查平面向量的数量积的坐标运算、二次函数的单调性与最值等,考查了同学们对基础知识的熟练程度以及知识的综合应用能力、运算能力.10.【答案】C【解析】解:sin45°sin105°+sin45°sin15°=cos45°cos15°+sin45°sin15°=cos(45°﹣15°)=cos30°=.故选:C.【点评】本题主要考查了诱导公式,两角差的余弦函数公式,特殊角的三角函数值在三角函数化简求值中的应用,考查了转化思想,属于基础题.11.【答案】D【解析】解:∵101101(2)=1×25+0+1×23+1×22+0+1×20=45(10).再利用“除8取余法”可得:45(10)=55(8).故答案选D.12.【答案】B【解析】解:已知抛物线y2=4x的焦点和双曲线的焦点重合,则双曲线的焦点坐标为(,0),即c=,又因为双曲线的渐近线方程为y=±x,则有a2+b2=c2=10和=,解得a=3,b=1.所以双曲线的方程为:﹣y2=1.故选B.【点评】本题主要考查的知识要点:双曲线方程的求法,渐近线的应用.属于基础题.二、填空题13.【答案】10【解析】3m 的分解规律恰好为数列1,3,5,7,9,…中若干连续项之和,32为连续两项和,33为接下来三项和,故3m 的首个数为12+-m m .∵)(3+∈N m m 的分解中最小的数为91,∴9112=+-m m ,解得10=m .14.【答案】 .【解析】解:∵||=1,||=2,与的夹角为,∴==1×=1.∴|+||﹣|====. 故答案为:.【点评】本题考查了数量积的定义及其运算性质,考查了推理能力与计算能力,属于中档题.15.【答案】73【解析】试题分析:画出可行域如下图所示,由图可知目标函数在点12,33A ⎛⎫⎪⎝⎭处取得最大值为73.考点:线性规划.16.【答案】2.【解析】解:整理函数解析式得f(x)﹣1=log a(x﹣1),故可知函数f(x)的图象恒过(2,1)即A(2,1),故2m+n=1.∴4m+2n≥2=2=2.当且仅当4m=2n,即2m=n,即n=,m=时取等号.∴4m+2n的最小值为2.故答案为:217.【答案】[1,5)∪(5,+∞).【解析】解:整理直线方程得y﹣1=kx,∴直线恒过(0,1)点,因此只需要让点(0.1)在椭圆内或者椭圆上即可,由于该点在y轴上,而该椭圆关于原点对称,故只需要令x=0有5y2=5m得到y2=m要让点(0.1)在椭圆内或者椭圆上,则y≥1即是y2≥1得到m≥1∵椭圆方程中,m≠5m的范围是[1,5)∪(5,+∞)故答案为[1,5)∪(5,+∞)【点评】本题主要考查了直线与圆锥曲线的综合问题.本题采用了数形结合的方法,解决问题较为直观.18.【答案】1464【解析】【知识点】函数模型及其应用【试题解析】显然,面积大的房间用费用低的涂料,所以房间A用涂料1,房间B用涂料3,房间C用涂料2,即最低的涂料总费用是元。

祁阳县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析

祁阳县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析

(ⅱ)设函数 g x 在区间 D 上的两个极值分别为 g x1 和 g x2 , 求证: x1 x2 e .
第 5 页,共 17 页
祁阳县第二中学 2018-2019 学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题
1. 【答案】B 【解析】解:设 x1∈{x|f(x)=0}={x|f(f(x))=0}, ∴f(x1)=f(f(x1))=0, ∴f(0)=0, 即 f(0)=m=0, 故 m=0; 故 f(x)=x2+nx, f(f(x))=(x2+nx)(x2+nx+n)=0, 当 n=0 时,成立; 当 n≠0 时,0,﹣n 不是 x2+nx+n=0 的根, 故△=n2﹣4n<0, 故 0<n<4; 综上所述,0≤n+m<4; 故选 B. 【点评】本题考查了函数与集合的关系应用及分类讨论的思想应用,同时考查了方程的根的判断,属于中档题 . 2. 【答案】B 【解析】解:当 x=﹣1 时,满足 x≠0,但 x>0 不成立. 当 x>0 时,一定有 x≠0 成立, ∴“x≠0”是“x>0”是的必要不充分条件. 故选:B. 3. 【答案】C 【解析】解:a=( )﹣2=52=25>1, b=log5 <0,c=log53∈(0,1),
α
,但
不共线,故

1 2i 1 2i ( i) 2 i ,所以虚部为-1,故选 A. i i ( i)

故选:A. 11.【答案】B 【解析】解:①x=0 时,y=0,1,2,∴x﹣y=0,﹣1,﹣2; ②x=1 时,y=0,1,2,∴x﹣y=1,0,﹣1; ③x=2 时,y=0,1,2,∴x﹣y=2,1,0; ∴B={0,﹣1,﹣2,1,2},共 5 个元素. 故选:B. 12.【答案】

祁阳县第二中学2018-2019学年高二上学期第二次月考试卷数学

祁阳县第二中学2018-2019学年高二上学期第二次月考试卷数学

祁阳县第二中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.过抛物线y2=4x焦点的直线交抛物线于A,B两点,若|AB|=10,则AB的中点到y轴的距离等于()A.1 B.2 C.3 D.42.已知x,y满足,且目标函数z=2x+y的最小值为1,则实数a的值是()A.1 B.C.D.3.已知一组函数f n(x)=sin n x+cos n x,x∈[0,],n∈N*,则下列说法正确的个数是()①∀n∈N*,f n(x)≤恒成立②若f n(x)为常数函数,则n=2③f4(x)在[0,]上单调递减,在[,]上单调递增.A.0 B.1 C.2 D.34.给出下列两个结论:①若命题p:∃x0∈R,x02+x0+1<0,则¬p:∀x∈R,x2+x+1≥0;②命题“若m>0,则方程x2+x﹣m=0有实数根”的逆否命题为:“若方程x2+x﹣m=0没有实数根,则m≤0”;则判断正确的是()A.①对②错B.①错②对C.①②都对D.①②都错5.已知集合M={1,4,7},M∪N=M,则集合N不可能是()A.∅B.{1,4} C.M D.{2,7}6.已知i为虚数单位,则复数所对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.拋物线E:y2=2px(p>0)的焦点与双曲线C:x2-y2=2的焦点重合,C的渐近线与拋物线E交于非原点的P点,则点P到E的准线的距离为()A.4 B.6C.8 D.108. 将正方形的每条边8等分,再取分点为顶点(不包括正方形的顶点),可以得到不同的三角形个数为( ) A .1372 B .2024 C .3136 D .44959. f()=,则f (2)=( ) A .3B .1C .2D.10.下列式子中成立的是( ) A .log 0.44<log 0.46 B .1.013.4>1.013.5 C .3.50.3<3.40.3 D .log 76<log 6711.方程(x 2﹣4)2+(y 2﹣4)2=0表示的图形是( ) A .两个点B .四个点C .两条直线D .四条直线12.设函数()()21,141x x f x x ⎧+<⎪=⎨-≥⎪⎩,则使得()1fx ≥的自变量的取值范围为( )A .(][],20,10-∞-B .(][],20,1-∞-C .(][],21,10-∞- D .[][]2,01,10-二、填空题13.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是 .14.定义在[1,+∞)上的函数f (x )满足:(1)f (2x )=2f (x );(2)当2≤x ≤4时,f (x )=1﹣|x ﹣3|,则集合S={x|f (x )=f (34)}中的最小元素是 .15.如果定义在R 上的函数f (x ),对任意x 1≠x 2都有x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2(fx 1),则称函数为“H 函数”,给出下列函数①f (x )=3x+1 ②f (x )=()x+1 ③f (x )=x 2+1 ④f (x )=其中是“H 函数”的有 (填序号)16.有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色的涂料,且三个房间的颜色各不相同.三个房间的粉刷面积和三种颜色的涂料费用如下表:那么在所有不同的粉刷方案中,最低的涂料总费用是 _______元. 17.已知x ,y 为实数,代数式2222)3(9)2(1yx x y ++-++-+的最小值是 . 【命题意图】本题考查两点之间距离公式的运用基础知识,意在考查构造的数学思想与运算求解能力. 18.曲线y=x+e x 在点A (0,1)处的切线方程是 .三、解答题19.已知函数f (x )=e ﹣x (x 2+ax )在点(0,f (0))处的切线斜率为2. (Ⅰ)求实数a 的值;(Ⅱ)设g (x )=﹣x (x ﹣t ﹣)(t ∈R ),若g (x )≥f (x )对x ∈[0,1]恒成立,求t 的取值范围;(Ⅲ)已知数列{a n }满足a 1=1,a n+1=(1+)a n ,求证:当n ≥2,n ∈N 时 f ()+f ()+L+f ()<n •()(e 为自然对数的底数,e ≈2.71828).20.已知等差数列{a n }满足a 1+a 2=3,a 4﹣a 3=1.设等比数列{b n }且b 2=a 4,b 3=a 8 (Ⅰ)求数列{a n },{b n }的通项公式;(Ⅱ)设c n =a n +b n ,求数列{c n }前n 项的和S n .21.(本小题满分12分)已知函数()2ln f x a x b x x =+-(,a b ∈R ). (1)当1,3a b =-=时,求函数()f x 在1,22⎡⎤⎢⎥⎣⎦上的最大值和最小值; (2)当0a =时,是否存在实数b ,当(]0,e x ∈(e 是自然常数)时,函数()f x 的最小值是3,若存在,求出b 的值;若不存在,说明理由;22.已知a >0,a ≠1,命题p :“函数f (x )=a x 在(0,+∞)上单调递减”,命题q :“关于x 的不等式x 2﹣2ax+≥0对一切的x ∈R 恒成立”,若p ∧q 为假命题,p ∨q 为真命题,求实数a 的取值范围.23.某城市决定对城区住房进行改造,在建新住房的同时拆除部分旧住房.第一年建新住房am 2,第二年到第四年,每年建设的新住房比前一年增长100%,从第五年起,每年建设的新住房都比前一年减少 am 2;已知旧住房总面积为32am 2,每年拆除的数量相同.(Ⅰ)若10年后该城市住房总面积正好比改造前的住房总面积翻一番,则每年拆除的旧住房面积是多少m 2?(Ⅱ),求前n (1≤n ≤10且n ∈N )年新建住房总面积S n24.某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.(Ⅰ)求出f(5);(Ⅱ)利用合情推理的“归纳推理思想”归纳出f(n+1)与f(n)的关系式,并根据你得到的关系式求f(n)的表达式.祁阳县第二中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:抛物线y2=4x焦点(1,0),准线为l:x=﹣1,设AB的中点为E,过A、E、B分别作准线的垂线,垂足分别为C、G、D,EF交纵轴于点H,如图所示:则由EG为直角梯形的中位线知,EG====5,∴EH=EG﹣1=4,则AB的中点到y轴的距离等于4.故选D.【点评】本题考查抛物线的定义、标准方程,以及简单性质的应用,体现了数形结合的数学思想.2.【答案】B【解析】解:由约束条件作出可行域如图,由图可知A(a,a),化目标函数z=2x+y为y=﹣2x+z,由图可知,当直线y=﹣2x+z过A(a,a)时直线在y轴上的截距最小,z最小,z的最小值为2a+a=3a=1,解得:a=.故选:B.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.3.【答案】D【解析】解:①∵x∈[0,],∴f(x)=sin n x+cos n x≤sinx+cosx=≤,因此正确;n②当n=1时,f1(x)=sinx+cosx,不是常数函数;当n=2时,f2(x)=sin2x+cos2x=1为常数函数,当n≠2时,令sin2x=t∈[0,1],则f n(x)=+=g(t),g′(t)=﹣=,当t∈时,g′(t)<0,函数g(t)单调递减;当t∈时,g′(t)>0,函数g(t)单调递增加,因此函数f n(x)不是常数函数,因此②正确.③f4(x)=sin4x+cos4x=(sin2x+cos2x)2﹣2sin2xcos2x=1﹣==+,当x∈[0,],4x∈[0,π],因此f4(x)在[0,]上单调递减,当x∈[,],4x∈[π,2π],因此f4(x)在[,]上单调递增,因此正确.综上可得:①②③都正确.故选:D.【点评】本题考查了三角函数的图象与性质、倍角公式、平方公式、两角和差的正弦公式,考查了推理能力与计算能力,属于中档题.4. 【答案】C【解析】解:①命题p 是一个特称命题,它的否定是全称命题,¬p 是全称命题,所以①正确.②根据逆否命题的定义可知②正确. 故选C .【点评】考查特称命题,全称命题,和逆否命题的概念.5. 【答案】D【解析】解:∵M ∪N=M ,∴N ⊆M , ∴集合N 不可能是{2,7}, 故选:D【点评】本题主要考查集合的关系的判断,比较基础.6. 【答案】A【解析】解: ==1+i ,其对应的点为(1,1),故选:A .7. 【答案】【解析】解析:选D.双曲线C 的方程为x 22-y 22=1,其焦点为(±2,0),由题意得p2=2,∴p =4,即拋物线方程为y 2=8x , 双曲线C 的渐近线方程为y =±x ,由⎩⎪⎨⎪⎧y 2=8x y =±x ,解得 x =0(舍去)或x =8,则P 到E 的准线的距离为8+2=10,故选D.8. 【答案】C【解析】【专题】排列组合.【分析】分两类,第一类,三点分别在三条边上,第二类,三角形的两个顶点在正方形的一条边上,第三个顶点在另一条边,根据分类计数原理可得.【解答】解:首先注意到三角形的三个顶点不在正方形的同一边上.任选正方形的三边,使三个顶点分别在其上,有4种方法,再在选出的三条边上各选一点,有73种方法.这类三角形共有4×73=1372个.另外,若三角形有两个顶点在正方形的一条边上,第三个顶点在另一条边上,则先取一边使其上有三角形的两个顶点,有4种方法,再在这条边上任取两点有21种方法,然后在其余的21个分点中任取一点作为第三个顶点.这类三角形共有4×21×21=1764个.综上可知,可得不同三角形的个数为1372+1764=3136.故选:C.【点评】本题考查了分类计数原理,关键是分类,还要结合几何图形,属于中档题.9.【答案】A【解析】解:∵f()=,∴f(2)=f()==3.故选:A.10.【答案】D【解析】解:对于A:设函数y=log0.4x,则此函数单调递减∴log0.44>log0.46∴A选项不成立对于B:设函数y=1.01x,则此函数单调递增∴1.013.4<1.013.5 ∴B选项不成立对于C:设函数y=x0.3,则此函数单调递增∴3.50.3>3.40.3 ∴C选项不成立对于D:设函数f(x)=log7x,g(x)=log6x,则这两个函数都单调递增∴log76<log77=1<log67∴D选项成立故选D11.【答案】B【解析】解:方程(x2﹣4)2+(y2﹣4)2=0则x2﹣4=0并且y2﹣4=0,即,解得:,,,,得到4个点.故选:B.【点评】本题考查二元二次方程表示圆的条件,方程的应用,考查计算能力.12.【答案】A【解析】考点:分段函数的应用.【方法点晴】本题主要考查了分段函数的应用,其中解答中涉及到不等式的求解,集合的交集和集合的并集运算,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,根据分段函数的分段条件,列出相应的不等式,通过求解每个不等式的解集,利用集合的运算是解答的关键. 二、填空题13.【答案】.【解析】解:在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥,8个三棱锥的体积为:=.剩下的凸多面体的体积是1﹣=.故答案为:.【点评】本题考查几何体的体积的求法,转化思想的应用,考查空间想象能力计算能力.14.【答案】6【解析】解:根据题意,得;∵f(2x)=2f(x),∴f(34)=2f(17)=4f()=8f()=16f();又∵当2≤x≤4时,f(x)=1﹣|x﹣3|,∴f()=1﹣|﹣3|=,∴f(2x)=16×=2;当2≤x≤4时,f(x)=1﹣|x﹣3|≤1,不存在;当4≤x≤8时,f(x)=2f()=2[1﹣|﹣3|]=2,解得x=6;故答案为:6.【点评】本题考查了根据函数的解析式求函数值以及根据函数值求对应自变量的最小值的应用问题,是基础题目.15.【答案】①④【解析】解:∵对于任意给定的不等实数x1,x2,不等式x1f(x1)+x2f(x2)≥x1f(x2)+x2f(x1)恒成立,∴不等式等价为(x1﹣x2)[f(x1)﹣f(x2)]≥0恒成立,即函数f(x)是定义在R上的不减函数(即无递减区间);①f(x)在R递增,符合题意;②f(x)在R递减,不合题意;③f(x)在(﹣∞,0)递减,在(0,+∞)递增,不合题意;④f(x)在R递增,符合题意;故答案为:①④.16.【答案】1464【解析】【知识点】函数模型及其应用【试题解析】显然,面积大的房间用费用低的涂料,所以房间A用涂料1,房间B用涂料3,房间C用涂料2,即最低的涂料总费用是元。

祁阳县三中20182019学年高二上学期第二次月考试卷数学

祁阳县三中20182019学年高二上学期第二次月考试卷数学

优选高中模拟试卷祁阳县三中2018-2019学年高二上学期第二次月考试卷数学班级__________姓名__________分数__________一、选择题1.已知数列{an}知足a1=1,a2=2,an+2=(1+cos2)an+sin2,则该数列的前10项和为()A.89B.76C.77D.352.?x∈R,x2﹣2x+3>0的否认是()22x+30B.?x∈R,x2﹣2x+30A.不存在x∈R,使?x﹣≥≤22x+30D.?x∈R,x22x+3>C.?x∈R,x﹣≤﹣3.若复数z知足iz=2+4i,则在复平面内,z对应的点的坐标是()A.(2,4)B.(2,﹣4)C.(4,﹣2)D.(4,2)4.履行如图的程序框图,则输出S的值为()A.2016B.2C.D.﹣15.定义新运算⊕:当2a≥b时,a⊕b=a;当a<b时,a⊕b=b,则函数f(x)=(1⊕x)x﹣(2⊕x),x∈[﹣2,2]的最大值等于()A.﹣1B.1C.6D.126.已知函数,函数,此中b∈R,若函数y=f(x)﹣g(x)恰有4个零点,则b的取值范围是()A.B.C.D.7.在如图5×5的表格中,假如每格填上一个数后,每一横行成等差数列,每一纵列成等比数列,那么x+y+z的值为()12第1页,共19页优选高中模拟试卷1xyzA.1B.2C.3D.48f x)的定义域为A,若存在非零实数l使得对于随意xII?A),有x+lAfx+l≥fx),.设函数(∈(∈,且()(则称f(x)为I上的l高调函数,假如定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x﹣a2|﹣a2,且函数f(x)为R上的1高调函数,那么实数a的取值范围为()A.0<a<1B.﹣≤a≤C.﹣1≤a≤1D.﹣2≤a≤29.在平面直角坐标系中,直线y=x与圆x2+y2﹣8x+4=0交于A、B两点,则线段 AB的长为()A.4B.4C.2D.210.以下图,在平行六面体ABCD﹣A1B1C1D1中,点E为上底面对角线A1C1的中点,若=+x+y,则()A.x=﹣B.x=C.x=﹣D.x=11.已知在R上可导的函数 f(x)的图象以下图,则不等式f(x)?f′(x)<0的解集为()A.(﹣2,0)B.(﹣∞,﹣2)∪(﹣1,0)C.(﹣∞,﹣2)∪(0,+∞)D.(﹣2,﹣1)∪(0,+∞)第2页,共19页12.在函数y=中,若f(x)=1,则x的值是()A.1B.1或C.±1 D.二、填空题32.13.已知函数f(x)=x﹣ax+3x在x∈[1,+∞)上是增函数,务实数a的取值范围14.若履行如图3所示的框图,输入,则输出的数等于。

祁阳外国语学校2018-2019学年高二上学期第二次月考试卷数学

祁阳外国语学校2018-2019学年高二上学期第二次月考试卷数学

祁阳县外国语学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.求值:=()A.tan 38°B.C.D.﹣a ,则输出的k值是()2.阅读如右图所示的程序框图,若输入0.45(A)3 (B )4(C) 5 (D) 63.如图所示的程序框图输出的结果是S=14,则判断框内应填的条件是()A.i≥7?B.i>15?C.i≥15?D.i>31?4.学校将5个参加知识竞赛的名额全部分配给高一年级的4个班级,其中甲班级至少分配2个名额,其它班级可以不分配或分配多个名额,则不同的分配方案共有()A.20种B.24种C.26种D.30种5.已知x,y∈R,且,则存在θ∈R,使得xcosθ+ysinθ+1=0成立的P(x,y)构成的区域面积为()A.4﹣B.4﹣ C.D.+6.如图,网格纸上小正方形的边长为1,粗线画出的是一正方体被截去一部分后所得几何体的三视图,则该几何体的表面积为()A.54 B.162 C.54+18 D.162+187.函数y=sin(2x+)图象的一条对称轴方程为()A.x=﹣B.x=﹣C.x=D.x=8.某几何体的三视图如图所示,则该几何体的体积为()A.16163π-B.32163π-C.1683π-D.3283π-【命题意图】本题考查三视图、圆柱与棱锥的体积计算,意在考查识图能力、转化能力、空间想象能力.9.已知定义在R上的函数f(x)满足f(x)=,且f(x)=f(x+2),g(x)=,则方程g(x)=f(x)﹣g(x)在区间[﹣3,7]上的所有零点之和为()A.12 B.11 C.10 D.910.下列关系式中正确的是()A.sin11°<cos10°<sin168°B.sin168°<sin11°<cos10°C.sin11°<sin168°<cos10°D.sin168°<cos10°<sin11°11.已知a=log 23,b=8﹣0.4,c=sin π,则a ,b ,c 的大小关系是( )A .a >b >cB .a >c >bC .b >a >cD .c >b >a12.若直线2y x =上存在点(,)x y 满足约束条件30,230,,x y x y x m +-≤⎧⎪--≤⎨⎪≥⎩则实数m 的最大值为 A 、1- B 、 C 、32D 、2 二、填空题13.等差数列{}n a 的前项和为n S ,若37116a a a ++=,则13S 等于_________.14.已知某几何体的三视图如图所示,则该几何体的体积为 .15.若的展开式中含有常数项,则n 的最小值等于 .16.“黑白配”游戏,是小朋友最普及的一种游戏,很多时候被当成决定优先权的一种方式.它需要参与游戏的人(三人或三人以上)同时出示手势,以手心(白)、手背(黑)来决定胜负,当其中一个人出示的手势与其它人都不一样时,则这个人胜出,其他情况,则不分胜负.现在甲乙丙三人一起玩“黑白配”游戏.设甲乙丙三人每次都随机出“手心(白)、手背(黑)”中的某一个手势,则一次游戏中甲胜出的概率是 .17.已知平面上两点M (﹣5,0)和N (5,0),若直线上存在点P 使|PM|﹣|PN|=6,则称该直线为“单曲型直线”,下列直线中:①y=x+1 ②y=2 ③y=x ④y=2x+1 是“单曲型直线”的是 .18.已知变量x,y,满足,则z=log4(2x+y+4)的最大值为.三、解答题19.已知a>0,a≠1,设p:函数y=log a(x+3)在(0,+∞)上单调递减,q:函数y=x2+(2a﹣3)x+1的图象与x轴交于不同的两点.如果p∨q真,p∧q假,求实数a的取值范围.20..(1)求证:(2),若.21.已知函数f(x)=.(1)求f(f(﹣2));(2)画出函数f(x)的图象,根据图象写出函数的单调增区间并求出函数f(x)在区间(﹣4,0)上的值域.22.某公司制定了一个激励销售人员的奖励方案:当销售利润不超过8万元时,按销售利润的15%进行奖励;当销售利润超过8万元时,若超出A万元,则超出部分按log5(2A+1)进行奖励.记奖金为y(单位:万元),销售利润为x(单位:万元).(1)写出奖金y关于销售利润x的关系式;(2)如果业务员小江获得3.2万元的奖金,那么他的销售利润是多少万元?23.已知f(x)=log3(1+x)﹣log3(1﹣x).(1)判断函数f(x)的奇偶性,并加以证明;(2)已知函数g(x)=log,当x∈[,]时,不等式f(x)≥g(x)有解,求k的取值范围.24.如图,在Rt△ABC中,∠ACB=,AC=3,BC=2,P是△ABC内一点.(1)若P是等腰三角形PBC的直角顶角,求PA的长;(2)若∠BPC=,设∠PCB=θ,求△PBC的面积S(θ)的解析式,并求S(θ)的最大值.祁阳县外国语学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】C【解析】解: =tan (49°+11°)=tan60°=,故选:C .【点评】本题主要考查两角和的正切公式的应用,属于基础题.2. 【答案】 D.【解析】该程序框图计算的是数列前n 项和,其中数列通项为()()12121n a n n =-+()()11111113352121221n S n n n ⎡⎤∴=+++=-⎢⎥⨯⨯-++⎣⎦90.452n S n n >∴>∴最小值为5时满足0.45n S >,由程序框图可得k 值是6. 故选D .3. 【答案】C【解析】解:模拟执行程序框图,可得 S=2,i=0不满足条件,S=5,i=1 不满足条件,S=8,i=3 不满足条件,S=11,i=7 不满足条件,S=14,i=15由题意,此时退出循环,输出S 的值即为14, 结合选项可知判断框内应填的条件是:i ≥15? 故选:C .【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的S ,i 的值是解题的关键,属于基本知识的考查.4. 【答案】A【解析】解:甲班级分配2个名额,其它班级可以不分配名额或分配多个名额,有1+6+3=10种不同的分配方案;甲班级分配3个名额,其它班级可以不分配名额或分配多个名额,有3+3=6种不同的分配方案; 甲班级分配4个名额,其它班级可以不分配名额或分配多个名额,有3种不同的分配方案;甲班级分配5个名额,有1种不同的分配方案.故共有10+6+3+1=20种不同的分配方案,故选:A.【点评】本题考查分类计数原理,注意分类时做到不重不漏,是一个中档题,解题时容易出错,本题应用分类讨论思想.5.【答案】A【解析】解:作出不等式组对应的平面区域如图:对应的区域为三角形OAB,若存在θ∈R,使得xcosθ+ysinθ+1=0成立,则(cosθ+sinθ)=﹣1,令sinα=,则cosθ=,则方程等价为sin(α+θ)=﹣1,即sin(α+θ)=﹣,∵存在θ∈R,使得xcosθ+ysinθ+1=0成立,∴|﹣|≤1,即x2+y2≥1,则对应的区域为单位圆的外部,由,解得,即B(2,2),A(4,0),则三角形OAB的面积S=×=4,直线y=x的倾斜角为,则∠AOB=,即扇形的面积为,则P(x,y)构成的区域面积为S=4﹣,故选:A【点评】本题主要考查线性规划的应用,根据条件作出对应的图象,求出对应的面积是解决本题的关键.综合性较强.6. 【答案】D【解析】解:由已知中的三视图可得:该几何体是一个正方体截去一个三棱锥得到的组合体, 其表面有三个边长为6的正方形,三个直角边长为6的等腰直角三角形,和一个边长为6的等边三角形组成,故表面积S=3×6×6+3××6×6+×=162+18,故选:D7. 【答案】A【解析】解:对于函数y=sin (2x+),令2x+=k π+,k ∈z ,求得x=π,可得它的图象的对称轴方程为x=π,k ∈z , 故选:A .【点评】本题主要考查正弦函数的图象的对称性,属于基础题.8. 【答案】D【解析】由三视图知几何体为一个底面半径为2高为4的半圆柱中挖去一个以轴截面为底面高为2的四棱锥,因此该几何体的体积为21132244428233V =π⨯⨯-⨯⨯⨯=π-,故选D . 9. 【答案】B【解析】解:∵f (x )=f (x+2),∴函数f (x )为周期为2的周期函数, 函数g (x )=,其图象关于点(2,3)对称,如图,函数f (x )的图象也关于点(2,3)对称,函数f(x)与g(x)在[﹣3,7]上的交点也关于(2,3)对称,设A,B,C,D的横坐标分别为a,b,c,d,则a+d=4,b+c=4,由图象知另一交点横坐标为3,故两图象在[﹣3,7]上的交点的横坐标之和为4+4+3=11,即函数y=f(x)﹣g(x)在[﹣3,7]上的所有零点之和为11.故选:B.【点评】本题考查函数的周期性,函数的零点的概念,以及数形结合的思想方法.属于中档题.10.【答案】C【解析】解:∵sin168°=sin(180°﹣12°)=sin12°,cos10°=sin(90°﹣10°)=sin80°.又∵y=sinx在x∈[0,]上是增函数,∴sin11°<sin12°<sin80°,即sin11°<sin168°<cos10°.故选:C.【点评】本题主要考查诱导公式和正弦函数的单调性的应用.关键在于转化,再利用单调性比较大小.11.【答案】B【解析】解:1<log23<2,0<8﹣0.4=2﹣1.2,sinπ=sinπ,∴a>c>b,故选:B.【点评】本题主要考查函数值的大小比较,根据对数函数,指数函数以及三角函数的图象和性质是解决本题的关键.12.【答案】B【解析】如图,当直线m x =经过函数x y 2=的图象 与直线03=-+y x 的交点时,函数x y 2=的图像仅有一个点P 在可行域内, 由230y xx y =⎧⎨+-=⎩,得)2,1(P ,∴1≤m .二、填空题13.【答案】26 【解析】试题分析:由题意得,根据等差数列的性质,可得371177362a a a a a ++==⇒=,由等差数列的求和11313713()13262a a S a +===.考点:等差数列的性质和等差数列的和. 14.【答案】.【解析】解:由三视图可知几何体为四棱锥,其中底面是边长为1的正方形,有一侧棱垂直与底面,高为2. ∴棱锥的体积V==.故答案为.15.【答案】5 【解析】解:由题意的展开式的项为T r+1=C n r (x 6)n ﹣r()r=C n r=C n r令=0,得n=,当r=4时,n 取到最小值5故答案为:5.【点评】本题考查二项式的性质,解题的关键是熟练掌握二项式的项,且能根据指数的形式及题设中有常数的条件转化成指数为0,得到n 的表达式,推测出它的值.16.【答案】 .42541415432【解析】解:一次游戏中,甲、乙、丙出的方法种数都有2种,所以总共有23=8种方案,而甲胜出的情况有:“甲黑乙白丙白”,“甲白乙黑丙黑”,共2种,所以甲胜出的概率为故答案为.【点评】本题考查等可能事件的概率,关键是分清甲在游戏中胜出的情况数目.17.【答案】①②.【解析】解:∵|PM|﹣|PN|=6∴点P在以M、N为焦点的双曲线的右支上,即,(x>0).对于①,联立,消y得7x2﹣18x﹣153=0,∵△=(﹣18)2﹣4×7×(﹣153)>0,∴y=x+1是“单曲型直线”.对于②,联立,消y得x2=,∴y=2是“单曲型直线”.对于③,联立,整理得144=0,不成立.∴不是“单曲型直线”.对于④,联立,消y得20x2+36x+153=0,∵△=362﹣4×20×153<0∴y=2x+1不是“单曲型直线”.故符合题意的有①②.故答案为:①②.【点评】本题考查“单曲型直线”的判断,是中档题,解题时要认真审题,注意双曲线定义的合理运用.18.【答案】【解析】解:作的可行域如图:易知可行域为一个三角形,验证知在点A(1,2)时,z1=2x+y+4取得最大值8,∴z=log4(2x+y+4)最大是,故答案为:.【点评】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.三、解答题19.【答案】【解析】解:由题意得命题P真时0<a<1,命题q真时由(2a﹣3)2﹣4>0解得a>或a<,由p∨q真,p∧q 假,得,p,q一真一假即:或,解得≤a<1或a>.【点评】本题考查了复合命题的判断,考查对数函数,二次函数的性质,是一道基础题.20.【答案】【解析】解:(1)∵,∴a n+1=f(a n)=,则,∴{}是首项为1,公差为3的等差数列;(2)由(1)得,=3n﹣2,∵{b n}的前n项和为,∴当n≥2时,b n=S n﹣S n﹣1=2n﹣2n﹣1=2n﹣1,而b1=S1=1,也满足上式,则b n=2n﹣1,∴==(3n﹣2)2n﹣1,∴=20+4•21+7•22+…+(3n﹣2)2n﹣1,①则2T n=21+4•22+7•23+…+(3n﹣2)2n,②①﹣②得:﹣T n=1+3•21+3•22+3•23+…+3•2n﹣1﹣(3n﹣2)2n,∴T n=(3n﹣5)2n+5.21.【答案】【解析】解:(1)函数f(x)=.f(﹣2)=﹣2+2=0,f(f(﹣2))=f(0)=0.3分(2)函数的图象如图:…单调增区间为(﹣∞,﹣1),(0,+∞)(开区间,闭区间都给分)…由图可知:f(﹣4)=﹣2,f(﹣1)=1,函数f(x)在区间(﹣4,0)上的值域(﹣2,1].…12分.22.【答案】【解析】解:(1)由题意,当销售利润不超过8万元时,按销售利润的1%进行奖励;当销售利润超过8万元时,若超出A万元,则超出部分按log5(2A+1)进行奖励,∴0<x≤8时,y=0.15x;x>8时,y=1.2+log5(2x﹣15)∴奖金y关于销售利润x的关系式y=(2)由题意知1.2+log5(2x﹣15)=3.2,解得x=20.所以,小江的销售利润是20万元.【点评】本题以实际问题为载体,考查函数模型的构建,考查学生的计算能力,属于中档题.23.【答案】【解析】解:(1)f(x)=log3(1+x)﹣log3(1﹣x)为奇函数.理由:1+x>0且1﹣x>0,得定义域为(﹣1,1),(2分)又f(﹣x)=log3(1﹣x)﹣log3(1+x)=﹣f(x),则f(x)是奇函数.(2)g(x)=log=2log3,(5分)又﹣1<x<1,k>0,(6分)由f(x)≥g(x)得log3≥log3,即≥,(8分)即k2≥1﹣x2,(9分)x∈[,]时,1﹣x2最小值为,(10分)则k2≥,(11分)又k>0,则k≥,即k的取值范围是(﹣∞,].【点评】本题考查函数的奇偶性的判断和证明,考查不等式有解的条件,注意运用对数函数的单调性,考查运算化简能力,属于中档题.24.【答案】【解析】解:(1)∵P为等腰直角三角形PBC的直角顶点,且BC=2,∴∠PCB=,PC=,∵∠ACB=,∴∠ACP=,在△PAC中,由余弦定理得:PA2=AC2+PC2﹣2AC•PC•cos=5,整理得:PA=;(2)在△PBC中,∠BPC=,∠PCB=θ,∴∠PBC=﹣θ,由正弦定理得:==,∴PB=sinθ,PC=sin(﹣θ),∴△PBC的面积S(θ)=PB•PCsin=sin(﹣θ)sinθ=sin(2θ+)﹣,θ∈(0,),则当θ=时,△PBC面积的最大值为.【点评】此题考查了正弦、余弦定理,以及三角形面积公式,熟练掌握定理及公式是解本题的关键.。

永州市祁阳县2018届高三数学上学期第二次月考试题文

永州市祁阳县2018届高三数学上学期第二次月考试题文

湖南省永州市祁阳县2018届高三数学上学期第二次月考试题 文一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1。

已知集合{}{}22,0.2,|20A B x x x =-=--=,则A B =()A .∅B .{2}C .{0}D .{—2}2.复数i iz +-=12在复平面上对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限3。

已知命题“R ∈∃x ,使021)1(22≤+-+x a x ”是假命题,则实数a 的取值范围是()A .)1,(--∞B .)3,1(-C .),3(+∞-D .)1,3(- 4.设0,x y R >∈,则“x y >”是“||x y >”的()A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件 5。

已知()1145279722,,,l o g 979x xf x a b c --⎛⎫⎛⎫=-=== ⎪ ⎪⎝⎭⎝⎭,则()()(),,fafbfc 的大小顺序为()A .()()()fb fa fc <<B .()()()fc fb fa <<C .()()()fc fa fb <<D .()()()fb fc fa <<6. 为得到函数1co s()2y x =的图象,只需将函数1sin()23y x π=+的图象() A .向右平移个单位B .向左平移个单位C .向右平移个单位D .向左平移个单位7。

已知y x,满足约束条件⎪⎩⎪⎨⎧≥+-≤-≤+03045y x y x y x ,则下列目标函数中,在点)1,4(处取得最大值的是()A .y x z -=51B .y x z +-=3C .15z x y=--D .y x z -=38、在平面直角坐标系中,()()0,0,3,4O P ,将向量O P 按逆时针旋转34π后,得向量O Q ,则点Q 坐标是()A .(72,2)--B .722,22⎛⎫-- ⎪ ⎪⎝⎭C .()26,1--D .(46,2)-9. 已知函数()2ln x f x x x=-,则函数()y f x =的大致图像为()10.如图,网格纸上正方形小格的边长为1,图中粗线画出 的是某几何体的三视图,则该几何体的体积为() A .B .C .D .411、若1()s i n 22s i n 3f x x -x m x =+在(),-∞+∞单调递增,则m 的取值范围是()A .11,22⎡⎤-⎢⎥⎣⎦B .11,3⎡⎤-⎢⎥⎣⎦C .11,26⎡⎤--⎢⎥⎣⎦D .11,66⎡⎤-⎢⎥⎣⎦12.设函数)cos (sin )(x x e x f x-= EMBED Equation.DSMT4 (02016)x π≤≤,则函数)(x f 的各极小值之和为()A .220162(1)1e e e πππ---B .21008(1)1e e e πππ--- C .210082(1)1e e e πππ---D .220142(1)1e e e πππ---二、填空题:本大题共4小题,每小题5分. 13、已知1t a n ,2α=则c o s 2α=.14、在A B C 中,54s i n ,c o s 135A B ==,则c o s C = 15。

祁阳县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析

祁阳县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析

祁阳县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 一个圆的圆心为椭圆的右焦点,且该圆过椭圆的中心交椭圆于P ,直线PF 1(F 1为椭圆的左焦点)是该圆的切线,则椭圆的离心率为( )A .B .C .D .2. 三个实数a 、b 、c 成等比数列,且a+b+c=6,则b 的取值范围是( ) A .[﹣6,2] B .[﹣6,0)∪( 0,2] C .[﹣2,0)∪( 0,6] D .(0,2]3. 设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且=2, =2, =2,则与( )A .互相垂直B .同向平行C .反向平行D .既不平行也不垂直4. 现准备将7台型号相同的健身设备全部分配给5个不同的社区,其中甲、乙两个社区每个社区至少2台,其它社区允许1台也没有,则不同的分配方案共有( )A .27种B .35种C .29种D .125种5. 某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量P (单位:毫克/升)与时间t (单位:小时)间的关系为0e ktP P -=(0P,k 均为正常数).如果前5个小时消除了10%的污染物,为了消除27.1% 的污染物,则需要( )小时. A.8B.10C. 15D. 18【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用,体现“数学是有用的”的新课标的这一重要思想.6. 在△ABC 中,若A=2B ,则a 等于( ) A .2bsinAB .2bcosAC .2bsinBD .2bcosB7. 已知命题p 和命题,若p q ∧为真命题,则下面结论正确的是( )A .p ⌝是真命题B .q ⌝是真命题C .p q ∨是真命题D .()()p q ⌝∨⌝是真命题 8. 已知等差数列的公差且成等比数列,则( )A .B .C .D .9. 若函数f (x )=log a (2x 2+x )(a >0且a ≠1)在区间(0,)内恒有f (x )>0,则f (x )的单调递增区间为( )A .(﹣∞,)B .(﹣,+∞)C .(0,+∞)D .(﹣∞,﹣)10.如图所示是一样本的频率分布直方图,则由图形中的数据,可以估计众数与中位数分别为( )A .10 13B .12.5 12C .12.5 13D .10 1511.已知抛物线28y x =与双曲线2221x y a-=的一个交点为M ,F 为抛物线的焦点,若5MF =,则该双曲线的渐近线方程为A 、530x y ±=B 、350x y ±=C 、450x y ±=D 、540x y ±= 12.函数f (x )=xsinx 的图象大致是( )A .B .C .D .二、填空题13.某种产品的加工需要 A ,B ,C ,D ,E 五道工艺,其中 A 必须在D 的前面完成(不一定相邻),其它工艺的顺序可以改变,但不能同时进行,为了节省加工时间,B 与C 必须相邻,那么完成加工该产品的不同工艺的排列顺序有 种.(用数字作答)14.在复平面内,记复数+i 对应的向量为,若向量饶坐标原点逆时针旋转60°得到向量所对应的复数为 .15.数列{a n }是等差数列,a 4=7,S 7= .16.自圆C :22(3)(4)4x y -++=外一点(,)P x y 引该圆的一条切线,切点为Q ,切线的长度等于点P 到原点O 的长,则PQ 的最小值为( ) A .1310 B .3 C .4 D .2110【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力、数形结合的思想.17.若函数f(x)=x2﹣2x(x∈[2,4]),则f(x)的最小值是.18.已知函数f(x)=,则关于函数F(x)=f(f(x))的零点个数,正确的结论是.(写出你认为正确的所有结论的序号)①k=0时,F(x)恰有一个零点.②k<0时,F(x)恰有2个零点.③k>0时,F(x)恰有3个零点.④k>0时,F(x)恰有4个零点.三、解答题19.已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点.(1)求椭圆C的方程;(2)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等于4?若存在,求出直线l的方程;若不存在,说明理由.20.如图,边长为2的正方形ABCD绕AB边所在直线旋转一定的角度(小于180°)到ABEF的位置.(Ⅰ)求证:CE∥平面ADF;(Ⅱ)若K为线段BE上异于B,E的点,CE=2.设直线AK与平面BDF所成角为φ,当30°≤φ≤45°时,求BK的取值范围.21.已知x2﹣y2+2xyi=2i,求实数x、y的值.22.已知和均为给定的大于1的自然数,设集合,,,...,,集合..。

祁阳县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析

祁阳县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析


【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思 维能力与计算能力. 16.已知 x 1, x 3 是函数 f x sin x 0 两个相邻的两个极值点,且 f x 在 x 处的导数 f

4
), 0 向右平移

6
个单位后得到曲线 C2 ,若 C1 与 C2 关于 x 轴对称,则
第 2 页,共 17 页
14.运行如图所示的程序框图后,输出的结果是
15.已知向量 a (1, x), b (1, x 1), 若 ( a 2b) a ,则 | a 2b | ( A. 2 B. 3 C.2 D. 5
【命题意图】本题考查排列与组合的基础知识,考查学生分类讨论,运算能力以及逻辑推理能力. 9. 设 {an } 是递增等差数列,前三项的和为 12,前三项的积为 48,则它的首项是( A.1 、 B.2 ,则下列判断正确的是( ) C.4
10.在“唱响内江”选拔赛中,甲、乙两位歌手的 5 次得分情况如茎叶图所示,记甲、乙两人的平均得分分别
23.如图,在四棱锥 P﹣ABCD 中,底面 ABCD 为等腰梯形,AD∥BC,PA=AB=BC=CD=2,PD=2 PD,Q 为 PD 的中点. (Ⅰ)证明:CQ∥平面 PAB; (Ⅱ)若平面 PAD⊥底面 ABCD,求直线 PD 与平面 AQC 所成角的正弦值.
,PA⊥
第 5 页,共 17 位:度),以 160,180 , 180, 200 , 200, 220 ,
3 2
3 0 ,则 2
1 f ___________. 3
,则关于函数 F(x)=f(f(x))的零点个数,正确的结论是 .

祁阳县一中2018-2019学年高二上学期第二次月考试卷数学

祁阳县一中2018-2019学年高二上学期第二次月考试卷数学

祁阳县一中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知a=log 23,b=8﹣0.4,c=sinπ,则a ,b ,c 的大小关系是( )A .a >b >cB .a >c >bC .b >a >cD .c >b >a2. 圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( ) A . B .12+ C .122+ D .122+ 3. 直线x+y ﹣1=0与2x+2y+3=0的距离是( )A .B .C .D .4. 已知球的半径和圆柱体的底面半径都为1且体积相同,则圆柱的高为( )A .1B .C .2D .45. 若方程C :x 2+=1(a 是常数)则下列结论正确的是( )A .∀a ∈R +,方程C 表示椭圆B .∀a ∈R ﹣,方程C 表示双曲线C .∃a ∈R ﹣,方程C 表示椭圆D .∃a ∈R ,方程C 表示抛物线6. 已知函数f (x )=1+x ﹣+﹣+…+,则下列结论正确的是( )A .f (x )在(0,1)上恰有一个零点B .f (x )在(﹣1,0)上恰有一个零点C .f (x )在(0,1)上恰有两个零点D .f (x )在(﹣1,0)上恰有两个零点7. 已知P (x ,y )为区域内的任意一点,当该区域的面积为4时,z=2x ﹣y 的最大值是( )A .6B .0C .2D .28. 已知在R 上可导的函数f (x )的图象如图所示,则不等式f (x )•f ′(x )<0的解集为( )A .(﹣2,0)B .(﹣∞,﹣2)∪(﹣1,0)C .(﹣∞,﹣2)∪(0,+∞)D .(﹣2,﹣1)∪(0,+∞)9. 1F ,2F 分别为双曲线22221x y a b-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=,若12PF F ∆ )C. 1D. 1【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.10.设F 1,F 2为椭圆=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则的值为( )A .B .C .D .11.已知F 1、F 2是椭圆的两个焦点,满足=0的点M 总在椭圆内部,则椭圆离心率的取值范围是( )A .(0,1)B .(0,]C .(0,)D .[,1)12.设a=lge ,b=(lge )2,c=lg ,则( )A .a >b >cB .c >a >bC .a >c >bD .c >b >a二、填空题13.在下列给出的命题中,所有正确命题的序号为 . ①函数y=2x 3+3x ﹣1的图象关于点(0,1)成中心对称; ②对∀x ,y ∈R .若x+y ≠0,则x ≠1或y ≠﹣1;③若实数x ,y 满足x 2+y 2=1,则的最大值为;④若△ABC 为锐角三角形,则sinA <cosB .⑤在△ABC 中,BC=5,G ,O 分别为△ABC 的重心和外心,且•=5,则△ABC 的形状是直角三角形.14.观察下列等式 1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49 …照此规律,第n 个等式为 .15.在(1+x )(x 2+)6的展开式中,x 3的系数是 .16.把函数y=sin2x 的图象向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式为 .17.已知[2,2]a ∈-,不等式2(4)420x a x a +-+->恒成立,则的取值范围为__________. 18.已知直线5x+12y+m=0与圆x 2﹣2x+y 2=0相切,则m= .三、解答题19.设定义在(0,+∞)上的函数f (x )=ax++b (a >0)(Ⅰ)求f (x )的最小值;(Ⅱ)若曲线y=f (x )在点(1,f (1))处的切线方程为y=,求a ,b 的值.20.本小题满分10分选修45-:不等式选讲 已知函数2()log (12)f x x x m =++--. Ⅰ当7=m 时,求函数)(x f 的定义域;Ⅱ若关于x 的不等式2)(≥x f 的解集是R ,求m 的取值范围.21.某滨海旅游公司今年年初用49万元购进一艘游艇,并立即投入使用,预计每年的收入为25万元,此外每年都要花费一定的维护费用,计划第一年维护费用4万元,从第二年起,每年的维修费用比上一年多2万元,设使用x 年后游艇的盈利为y 万元. (1)写出y 与x 之间的函数关系式;(2)此游艇使用多少年,可使年平均盈利额最大?22.已知函数f(x)=log a(1﹣x)+log a(x+3),其中0<a<1.(1)求函数f(x)的定义域;(2)若函数f(x)的最小值为﹣4,求a的值.23.已知数列{a n}和{b n}满足a1•a2•a3…a n=2(n∈N*),若{a n}为等比数列,且a1=2,b3=3+b2.(1)求a n和b n;(2)设c n=(n∈N*),记数列{c n}的前n项和为S n,求S n.24.设{a n}是公比小于4的等比数列,S n为数列{a n}的前n项和.已知a1=1,且a1+3,3a2,a3+4构成等差数列.(1)求数列{a n}的通项公式;(2)令b n=lna3n+1,n=12…求数列{b n}的前n项和T n.祁阳县一中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】B【解析】解:1<log 23<2,0<8﹣0.4=2﹣1.2,sin π=sin π,∴a >c >b , 故选:B .【点评】本题主要考查函数值的大小比较,根据对数函数,指数函数以及三角函数的图象和性质是解决本题的关键.2. 【答案】B 【解析】试题分析:化简为标准形式()()11122=-+-y x ,圆上的点到直线的距离的最大值为圆心到直线的距离加半径,22211=--=d ,半径为1,所以距离的最大值是12+,故选B.考点:直线与圆的位置关系 1 3. 【答案】A【解析】解:直线x+y ﹣1=0与2x+2y+3=0的距离,就是直线2x+2y ﹣2=0与2x+2y+3=0的距离是:=.故选:A .4. 【答案】B【解析】解:设圆柱的高为h ,则V 圆柱=π×12×h=h ,V 球==,∴h=.故选:B .5. 【答案】 B【解析】解:∵当a=1时,方程C :即x 2+y 2=1,表示单位圆∴∃a ∈R +,使方程C 不表示椭圆.故A 项不正确;∵当a <0时,方程C :表示焦点在x 轴上的双曲线∴∀a ∈R ﹣,方程C 表示双曲线,得B 项正确;∀a ∈R ﹣,方程C 不表示椭圆,得C 项不正确∵不论a 取何值,方程C :中没有一次项∴∀a ∈R ,方程C 不能表示抛物线,故D 项不正确 综上所述,可得B 为正确答案 故选:B6. 【答案】B【解析】解:∵f ′(x )=1﹣x+x 2﹣x 3+…+x 2014=(1﹣x )(1+x 2+…+x 2012)+x 2014; ∴f ′(x )>0在(﹣1,0)上恒成立; 故f (x )在(﹣1,0)上是增函数;又∵f (0)=1,f (﹣1)=1﹣1﹣﹣﹣…﹣<0;故f (x )在(﹣1,0)上恰有一个零点;故选B .【点评】本题考查了导数的综合应用及函数零点的个数的判断,属于中档题.7. 【答案】A解析:解:由作出可行域如图,由图可得A (a ,﹣a ),B (a ,a ),由,得a=2.∴A (2,﹣2),化目标函数z=2x ﹣y 为y=2x ﹣z ,∴当y=2x ﹣z 过A 点时,z 最大,等于2×2﹣(﹣2)=6. 故选:A .8. 【答案】B【解析】解:由f (x )图象单调性可得f ′(x )在(﹣∞,﹣1)∪(0,+∞)大于0, 在(﹣1,0)上小于0,∴f (x )f ′(x )<0的解集为(﹣∞,﹣2)∪(﹣1,0). 故选B .9. 【答案】D【解析】∵120PF PF ⋅=,∴12PFPF ⊥,即12PF F ∆为直角三角形,∴222212124PF PF F F c +==,12||2PF PF a -=,则222221212122()4()PF PF PF PF PF PF c a ⋅=+--=-,2222121212()()484PF PF PF PF PF PF c a +=-+⋅=-.所以12PF F ∆内切圆半径12122PF PF F F r c +-==,外接圆半径R c =.c =,整理,得2()4ca=+1e =,故选D. 10.【答案】C【解析】解:F1,F 2为椭圆=1的两个焦点,可得F 1(﹣,0),F 2().a=2,b=1.点P 在椭圆上,若线段PF 1的中点在y 轴上,PF 1⊥F 1F 2,|PF 2|==,由勾股定理可得:|PF 1|==.==.故选:C .【点评】本题考查椭圆的简单性质的应用,考查计算能力.11.【答案】C 【解析】解:设椭圆的半长轴、半短轴、半焦距分别为a ,b ,c ,∵=0,∴M 点的轨迹是以原点O 为圆心,半焦距c 为半径的圆. 又M 点总在椭圆内部,∴该圆内含于椭圆,即c<b,c2<b2=a2﹣c2.∴e2=<,∴0<e<.故选:C.【点评】本题考查椭圆的基本知识和基础内容,解题时要注意公式的选取,认真解答.12.【答案】C【解析】解:∵1<e<3<,∴0<lge<1,∴lge>lge>(lge)2.∴a>c>b.故选:C.【点评】本题主要考查对数的单调性.即底数大于1时单调递增,底数大于0小于1时单调递减.二、填空题13.【答案】:①②③【解析】解:对于①函数y=2x3﹣3x+1=的图象关于点(0,1)成中心对称,假设点(x0,y0)在函数图象上,则其关于①点(0,1)的对称点为(﹣x0,2﹣y0)也满足函数的解析式,则①正确;对于②对∀x,y∈R,若x+y≠0,对应的是直线y=﹣x以外的点,则x≠1,或y≠﹣1,②正确;对于③若实数x,y满足x2+y2=1,则=,可以看作是圆x2+y2=1上的点与点(﹣2,0)连线的斜率,其最大值为,③正确;对于④若△ABC为锐角三角形,则A,B,π﹣A﹣B都是锐角,即π﹣A﹣B<,即A+B>,B>﹣A,则cosB<cos(﹣A),即cosB<sinA,故④不正确.对于⑤在△ABC中,G,O分别为△ABC的重心和外心,取BC的中点为D,连接AD、OD、GD,如图:则OD⊥BC,GD=AD,∵=|,由则,即则又BC=5则有由余弦定理可得cosC<0,即有C为钝角.则三角形ABC为钝角三角形;⑤不正确.故答案为:①②③14.【答案】n+(n+1)+(n+2)+…+(3n﹣2)=(2n﹣1)2.【解析】解:观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49…等号右边是12,32,52,72…第n个应该是(2n﹣1)2左边的式子的项数与右边的底数一致,每一行都是从这一个行数的数字开始相加的,照此规律,第n个等式为n+(n+1)+(n+2)+…+(3n﹣2)=(2n﹣1)2,故答案为:n+(n+1)+(n+2)+…+(3n﹣2)=(2n﹣1)2【点评】本题考查归纳推理,考查对于所给的式子的理解,主要看清楚式子中的项与项的数目与式子的个数之间的关系,本题是一个易错题.15.【答案】20.【解析】解:(1+x)(x2+)6的展开式中,x3的系数是由(x2+)6的展开式中x3与1的积加上x2与x的积组成;又(x2+)6的展开式中,通项公式为T r+1=•x12﹣3r,令12﹣3r=3,解得r=3,满足题意;令12﹣3r=2,解得r=,不合题意,舍去;所以展开式中x 3的系数是=20.故答案为:20.16.【答案】 y=cosx .【解析】解:把函数y=sin2x 的图象向左平移个单位长度,得,即y=cos2x 的图象,把y=cos2x的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y=cosx 的图象;故答案为:y=cosx .17.【答案】(,0)(4,)-∞+∞【解析】试题分析:把原不等式看成是关于的一次不等式,在2],[-2a ∈时恒成立,只要满足在2],[-2a ∈时直线在轴上方即可,设关于的函数44)2(24)4(x f(x)y 22+-+-=-+-+==x x a x a x a 对任意的2],[-2a ∈,当-2a =时,044)42(x )2(f(a)y 2>++--+=-==x f ,即086x )2(2>+-=-x f ,解得4x 2x ><或;当2a =时,044)42(x )2(y 2>-+-+==x f ,即02x )2(2>-=x f ,解得2x 0x ><或,∴的取值范围是{x|x 0x 4}<>或;故答案为:(,0)(4,)-∞+∞.考点:换主元法解决不等式恒成立问题.【方法点晴】本题考查了含有参数的一元二次不等式得解法,解题时应用更换主元的方法,使繁杂问题变得简洁,是易错题.把原不等式看成是关于的一次不等式,在2],[-2a ∈时恒成立,只要满足在2],[-2a ∈时直线在轴上方即可.关键是换主元需要满足两个条件,一是函数必须是关于这个量的一次函数,二是要有这个量的具体范围.18.【答案】8或﹣18【解析】【分析】根据直线与圆相切的性质可知圆心直线的距离为半径,先把圆的方程整理的标准方程求得圆心和半径,在利用点到直线的距离求得圆心到直线的距离为半径,求得答案.【解答】解:整理圆的方程为(x ﹣1)2++y 2=1 故圆的圆心为(1,0),半径为1 直线与圆相切∴圆心到直线的距离为半径即=1,求得m=8或﹣18故答案为:8或﹣18三、解答题19.【答案】【解析】解:(Ⅰ)f (x )=ax++b ≥2+b=b+2当且仅当ax=1(x=)时,f (x )的最小值为b+2(Ⅱ)由题意,曲线y=f (x )在点(1,f (1))处的切线方程为y=,可得:f (1)=,∴a++b=①f'(x )=a ﹣,∴f ′(1)=a ﹣=②由①②得:a=2,b=﹣120.【答案】【解析】Ⅰ当7m =时,函数)(x f 的定义域即为不等式1270x x ++-->的解集.[来 由于1(1)(2)70x x x ≤-⎧⎨-+--->⎩,或12(1)(2)70x x x -<<⎧⎨+--->⎩, 或2(1)(2)70x x x ≥⎧⎨++-->⎩. 所以3x <-,无解,或4x >.综上,函数)(x f 的定义域为(,3)(4,)-∞-+∞Ⅱ若使2)(≥x f 的解集是R ,则只需min (124)m x x ≤++--恒成立. 由于124(1)(2)41x x x x ++--≥+---=- 所以m 的取值范围是(,1]-∞-.21.【答案】 【解析】解:(1)(x ∈N *) (6)(2)盈利额为…当且仅当即x=7时,上式取到等号 (11)答:使用游艇平均7年的盈利额最大. (12)【点评】本题考查函数模型的构建,考查利用基本不等式求函数的最值,属于中档题.22.【答案】【解析】解:(1)要使函数有意义:则有,解得﹣3<x <1,所以函数f (x )的定义域为(﹣3,1).(2)f(x)=log a(1﹣x)+log a(x+3)=log a(1﹣x)(x+3)==,∵﹣3<x<1,∴0<﹣(x+1)2+4≤4,∵0<a<1,∴≥log a4,即f(x)min=log a4;由log a4=﹣4,得a﹣4=4,∴a==.【点评】本题考查对数函数的图象及性质,考查二次函数的最值求解,考查学生分析问题解决问题的能力.23.【答案】【解析】解:(1)设等比数列{a n}的公比为q,∵数列{a n}和{b n}满足a1•a2•a3…a n=2(n∈N*),a1=2,∴,,,∴b1=1,=2q>0,=2q2,又b3=3+b2.∴23=2q2,解得q=2.∴a n=2n.∴=a1•a2•a3…a n=2×22×…×2n=,∴.(2)c n===﹣=,∴数列{c n}的前n项和为S n=﹣+…+=﹣2=﹣2+=﹣﹣1.【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式、递推式的应用、“裂项求和”,考查了推理能力与计算能力,属于中档题.24.【答案】【解析】解:(1)设等比数列{a n}的公比为q<4,∵a1+3,3a2,a3+4构成等差数列.∴2×3a2=a1+3+a3+4,∴6q=1+7+q2,解得q=2.(2)由(1)可得:a n=2n﹣1.b n=lna3n+1=ln23n=3nln2.∴数列{b n}的前n项和T n=3ln2×(1+2+…+n)=ln2.。

祁阳县民族中学2018-2019学年上学期高二数学12月月考试题含解析

祁阳县民族中学2018-2019学年上学期高二数学12月月考试题含解析

祁阳县民族中学2018-2019学年上学期高二数学12月月考试题含解析班级__________姓名__________ 分数__________一、选择题1. 命题“∀x ∈R ,2x 2+1>0”的否定是( )A .∀x ∈R ,2x 2+1≤0B .C .D .2. 对一切实数x ,不等式x 2+a|x|+1≥0恒成立,则实数a 的取值范围是()A .(﹣∞,﹣2)B .D .上是减函数,那么b+c ()A .有最大值B .有最大值﹣C .有最小值D .有最小值﹣3. 已知定义域为的偶函数满足对任意的,有,且当R )(x f R x ∈)1()()2(f x f x f -=+时,.若函数在上至少有三个零点,则]3,2[∈x 18122)(2-+-=x x x f )1(log )(+-=x x f y a ),0(+∞实数的取值范围是( )111]A .B .C .D .)22,0()33,0()55,0()66,0(4. 已知角的终边经过点,则的值为( )α(sin15,cos15)-2cos αA .B . C.D .012+12345. “1<x <2”是“x <2”成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6. 已知变量x 与y 负相关,且由观测数据算得样本平均数=3, =2.7,则由该观测数据算得的线性回归方程可能是()A . =﹣0.2x+3.3B . =0.4x+1.5C . =2x ﹣3.2D . =﹣2x+8.67. 已知集合,,则(){2,1,0,1,2,3}A =--{|||3,}B y y x x A ==-∈A B = A .B .C .D .{2,1,0}--{1,0,1,2}-{2,1,0}--{1,,0,1}-【命题意图】本题考查集合的交集运算,意在考查计算能力.8. 某几何体的三视图如图所示,该几何体的体积是()A .B .C .D .9. 设0<a <1,实数x ,y 满足,则y 关于x 的函数的图象形状大致是( )A .B .C .D .10.已知向量=(1,),=(,x )共线,则实数x 的值为( )A .1B .C .tan35°D .tan35°11. 在区间上恒正,则的取值范围为()()()22f x ax a =-+[]0,1A .B .C .D .以上都不对0a >0a <<02a <<12.数列1,﹣4,7,﹣10,13,…,的通项公式a n 为( )A .2n ﹣1B .﹣3n+2C .(﹣1)n+1(3n ﹣2)D .(﹣1)n+13n ﹣2二、填空题13.已知某几何体的三视图如图,正(主)视图中的弧线是半圆,根据图中标出的尺寸,可得这个几何体的表面积是_________(单位:).14.已知函数f (x )=,若f (f (0))=4a ,则实数a= .15.若关于x ,y 的不等式组(k 是常数)所表示的平面区域的边界是一个直角三角形,则k= . 16.设抛物线的焦点为,两点在抛物线上,且,,三点共线,过的中点作24y x =F ,A B A B F AB M y 轴的垂线与抛物线在第一象限内交于点,若,则点的横坐标为 .P 32PF =M 17.函数()2log f x x =在点()1,2A 处切线的斜率为▲ .18.已知函数,且,则,的大小关系()f x 23(2)5x =-+12|2||2|x x ->-1()f x 2()f x 是.三、解答题19.若函数f (x )=a x (a >0,且a ≠1)在[1,2]上的最大值比最小值大,求a 的值. 20.(本小题满分12分)菜农为了蔬菜长势良好,定期将用国家规定的低毒杀虫农药对蔬菜进行喷洒,以防止害虫的危害,待蔬菜成熟时将采集上市销售,但蔬菜上仍存有少量的残留农药,食用时可用清水清洗干净,下表是用清水x (单位:千克)清洗该蔬菜1千克后,蔬菜上残存的农药y (单位:微克)的统计表:x i 12345y i 5753403010(1)在下面的坐标系中,描出散点图,并判断变量x 与y 的相关性;(2)若用解析式y=cx2+d作为蔬菜农药残量与用水量的回归方程,求其解析式;(c,a精确到0.01);附:设ωi=x,有下列数据处理信息:=11,=38,2iωy(ωi-)(y i-)=-811,(ωi-)2=374,ωyω对于一组数据(x1,y1),(x2,y2),…,(x n,y n),其回归直线方程y=bx+a的斜率和截距的最小二乘估计分别为(3)为了节约用水,且把每千克蔬菜上的残留农药洗净估计最多用多少千克水.(结果保留1位有效数字)21.双曲线C与椭圆+=1有相同的焦点,直线y=x为C的一条渐近线.求双曲线C的方程.22.已知命题p:x2﹣3x+2>0;命题q:0<x<a.若p是q的必要而不充分条件,求实数a的取值范围.23.(1)化简:(2)已知tanα=3,计算的值.24.24.(本小题满分10分)选修4­5:不等式选讲.已知函数f(x)=|x+1|+2|x-a2|(a∈R).(1)若函数f(x)的最小值为3,求a的值;(2)在(1)的条件下,若直线y=m与函数y=f(x)的图象围成一个三角形,求m的范围,并求围成的三角形面积的最大值.祁阳县民族中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】C【解析】解:∵命题∀x ∈R ,2x 2+1>0是全称命题,∴根据全称命题的否定是特称命题得命题的否定是:“”,.故选:C .【点评】本题主要考查含有量词的命题的否定,要求掌握特称命题的否定是全称命题,全称命题的否定是特称命题,比较基础. 2. 【答案】B【解析】解:由f (x )在上是减函数,知f ′(x )=3x 2+2bx+c ≤0,x ∈,则⇒15+2b+2c ≤0⇒b+c ≤﹣.故选B . 3. 【答案】B 【解析】试题分析:,令,则,是定义在上的偶函数,()()1)2(f x f x f -=+ 1-=x ()()()111f f f --=()x f R .则函数是定义在上的,周期为的偶函数,又∵当时,()01=∴f ()()2+=∴x f x f ()x f R []3,2∈x ,令,则与在的部分图象如下图,()181222-+-=x x x f ()()1log +=x x g a ()x f ()x g [)+∞,0在上至少有三个零点可化为与的图象在上至少有三个交点,()()1log +-=x x f y a ()+∞,0()x f ()x g ()+∞,0在上单调递减,则,解得:故选A .()x g ()+∞,0⎩⎨⎧-><<23log 10aa 330<<a考点:根的存在性及根的个数判断.【方法点晴】本题是一道关于函数零点的题目,关键是结合数形结合的思想进行解答.根据已知条件推导可得是周期函数,其周期为,要使函数在上至少有三个零点,等价于函数的()x f ()()1log +-=x x f y a ()+∞,0()x f 图象与函数的图象在上至少有三个交点,接下来在同一坐标系内作出图象,进而可得的()1log +=x y a ()+∞,0范围.4. 【答案】B 【解析】考点:1、同角三角函数基本关系的运用;2、两角和的正弦函数;3、任意角的三角函数的定义.5. 【答案】A【解析】解:设A={x|1<x <2},B={x|x <2},∵A ⊊B ,故“1<x <2”是“x <2”成立的充分不必要条件.故选A .【点评】本题考查的知识点是必要条件,充分条件与充要条件判断,其中熟练掌握集合法判断充要条件的原则“谁小谁充分,谁大谁必要”,是解答本题的关键. 6. 【答案】A【解析】解:变量x 与y 负相关,排除选项B ,C ;回归直线方程经过样本中心,把=3, =2.7,代入A 成立,代入D 不成立.故选:A . 7. 【答案】C【解析】当时,,所以,故选C .{2,1,0,1,2,3}x ∈--||3{3,2,1,0}y x =-∈---A B = {2,1,0}--8. 【答案】A【解析】解:几何体如图所示,则V=,故选:A .【点评】本题考查的知识点是由三视图求体积,正确得出直观图是解答的关键. 9. 【答案】A【解析】解:0<a <1,实数x ,y 满足,即y=,故函数y 为偶函数,它的图象关于y轴对称,在(0,+∞)上单调递增,且函数的图象经过点(0,1),故选:A .【点评】本题主要指数式与对数式的互化,函数的奇偶性、单调性以及特殊点,属于中档题. 10.【答案】B【解析】解:∵向量=(1,),=(,x )共线,∴x====,故选:B .【点评】本题考查了向量的共线的条件和三角函数的化简,属于基础题. 11.【答案】C 【解析】试题分析:由题意得,根据一次函数的单调性可知,函数在区间上恒正,则()()22f x ax a =-+[]0,1,即,解得,故选C.(0)0(1)0f f >⎧⎨>⎩2020a a a >⎧⎨-+>⎩02a <<考点:函数的单调性的应用.12.【答案】C【解析】解:通过观察前几项可以发现:数列中符号是正负交替,每一项的符号为(﹣1)n+1,绝对值为3n ﹣2,故通项公式a n =(﹣1)n+1(3n ﹣2).故选:C . 二、填空题13.【答案】【解析】【知识点】空间几何体的三视图与直观图【试题解析】该几何体是半个圆柱。

祁阳县三中2018-2019学年上学期高二数学12月月考试题含解析

祁阳县三中2018-2019学年上学期高二数学12月月考试题含解析

祁阳县三中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 下列函数中,既是奇函数又是减函数的为( ) A .y=x+1 B .y=﹣x 2 C .D .y=﹣x|x|2. 以椭圆+=1的顶点为焦点,焦点为顶点的双曲线C ,其左、右焦点分别是F 1,F 2,已知点M 坐标为(2,1),双曲线C 上点P (x 0,y 0)(x 0>0,y 0>0)满足=,则﹣S( ) A .2B .4C .1D .﹣13. 函数f (x )=log 2(x+2)﹣(x >0)的零点所在的大致区间是( ) A .(0,1) B .(1,2) C .(2,e ) D .(3,4)4. 已知集合{}2|10A x x =-=,则下列式子表示正确的有( ) ①1A ∈;②{}1A -∈;③A ∅⊆;④{}1,1A -⊆.A .1个B .2个C .3个D .4个 5. 下列满足“∀x ∈R ,f (x )+f (﹣x )=0且f ′(x )≤0”的函数是( ) A .f (x )=﹣xe |x| B .f (x )=x+sinxC .f (x )=D .f (x )=x 2|x|6. 已知a=5,b=log 2,c=log 5,则( )A .b >c >aB .a >b >cC .a >c >bD .b >a >c7. 已知函数()cos (0)f x x x ωωω=+>,()y f x =的图象与直线2y =的两个相邻交点的距离等于π,则()f x 的一条对称轴是( )A .12x π=-B .12x π=C .6x π=-D .6x π=8. f ()=,则f (2)=( )A .3B .1C .2D .9. 阅读下面的程序框图,则输出的S=( )A .14B .20C .30D .551010y -+=的倾斜角为( )A .150 B .120 C .60 D .30 11.下列各组函数为同一函数的是( ) A .f (x )=1;g (x )= B .f (x )=x ﹣2;g (x )= C .f (x )=|x|;g (x )=D .f (x )=•;g (x )=12.棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应截面面积 为1S 、2S 、3S ,则( )A .123S S S <<B .123S S S >>C .213S S S <<D .213S S S >>二、填空题13.若双曲线的方程为4x 2﹣9y 2=36,则其实轴长为 .14.设某总体是由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取6个个体,选取方 法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为 ________.【命题意图】本题考查抽样方法等基础知识,意在考查统计的思想.15.定义某种运算⊗,S=a ⊗b 的运算原理如图;则式子5⊗3+2⊗4= .1818 0792 4544 1716 5809 7983 86196206 7650 0310 5523 6405 0526 623816.若函数f(x)=x2﹣2x(x∈[2,4]),则f(x)的最小值是.17.图中的三个直角三角形是一个体积为20的几何体的三视图,则h __________.18.已知关于的不等式在上恒成立,则实数的取值范围是__________三、解答题19.(本小题满分10分)选修4-1:几何证明选讲.如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于E,过E的切线与AC交于D. (1)求证:CD=DA;(2)若CE=1,AB=2,求DE的长.20.已知函数.(Ⅰ)求曲线在点处的切线方程;(Ⅱ)设,若函数在上(这里)恰有两个不同的零点,求实数的取值范围.21.【徐州市2018届高三上学期期中】已知函数(,是自然对数的底数).(1)若函数在区间上是单调减函数,求实数的取值范围;(2)求函数的极值;(3)设函数图象上任意一点处的切线为,求在轴上的截距的取值范围.22.已知函数f(x)=cos(ωx+),(ω>0,0<φ<π),其中x∈R且图象相邻两对称轴之间的距离为;(1)求f(x)的对称轴方程和单调递增区间;(2)求f(x)的最大值、最小值,并指出f(x)取得最大值、最小值时所对应的x的集合.23.(本题满分12分)已知向量(sin ,(sin cos ))2a x x x =+,)cos sin ,(cos x x xb -=,R x ∈,记函数 x f ⋅=)(.(1)求函数)(x f 的单调递增区间;(2)在ABC ∆中,角C B A ,,的对边分别为c b a ,,且满足C a c b cos 22=-,求)(B f 的取值范围.【命题意图】本题考查了向量的内积运算,三角函数的化简及性质的探讨,并与解三角形知识相互交汇,对基本运算能力、逻辑推理能力有一定要求,但突出了基础知识的考查,仍属于容易题.24.如图所示,在正方体ABCD ﹣A 1B 1C 1D 1中,E 、F 分别是棱DD 1、C 1D 1的中点. (Ⅰ)证明:平面ADC 1B 1⊥平面A 1BE ; (Ⅱ)证明:B 1F ∥平面A 1BE ;(Ⅲ)若正方体棱长为1,求四面体A 1﹣B 1BE 的体积.祁阳县三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】D【解析】解:y=x+1不是奇函数;y=﹣x2不是奇函数;是奇函数,但不是减函数;y=﹣x|x|既是奇函数又是减函数,故选:D.【点评】本题考查的知识点是函数的奇偶性和函数的单调性,难度不大,属于基础题.2.【答案】A【解析】解:∵椭圆方程为+=1,∴其顶点坐标为(3,0)、(﹣3,0),焦点坐标为(2,0)、(﹣2,0),∴双曲线方程为,设点P(x,y),记F1(﹣3,0),F2(3,0),∵=,∴=,整理得:=5,化简得:5x=12y﹣15,又∵,∴5﹣4y2=20,解得:y=或y=(舍),∴P(3,),∴直线PF1方程为:5x﹣12y+15=0,∴点M 到直线PF 1的距离d==1,易知点M 到x 轴、直线PF 2的距离都为1,结合平面几何知识可知点M (2,1)就是△F 1PF 2的内心.故﹣===2,故选:A .【点评】本题考查椭圆方程,双曲线方程,三角形面积计算公式,注意解题方法的积累,属于中档题.3. 【答案】B【解析】解:∵f (1)=﹣3<0,f (2)=﹣=2﹣>0,∴函数f (x )=log 2(x+2)﹣(x >0)的零点所在的大致区间是(1,2), 故选:B .4. 【答案】C 【解析】试题分析:{}1,1A =-,所以①③④正确.故选C. 考点:元素与集合关系,集合与集合关系.5. 【答案】A【解析】解:满足“∀x ∈R ,f (x )+f (﹣x )=0,且f ′(x )≤0”的函数为奇函数,且在R 上为减函数, A 中函数f (x )=﹣xe |x|,满足f (﹣x )=﹣f (x ),即函数为奇函数,且f ′(x )=≤0恒成立,故在R 上为减函数,B 中函数f (x )=x+sinx ,满足f (﹣x )=﹣f (x ),即函数为奇函数,但f ′(x )=1+cosx ≥0,在R 上是增函数,C 中函数f (x )=,满足f (﹣x )=f (x ),故函数为偶函数;D 中函数f (x )=x 2|x|,满足f (﹣x )=f (x ),故函数为偶函数, 故选:A .6. 【答案】C【解析】解:∵a=5>1,b=log 2<log 5=c <0,∴a >c >b . 故选:C .7. 【答案】D 【解析】试题分析:由已知()2sin()6f x x πω=+,T π=,所以22πωπ==,则()2sin(2)6f x x π=+,令 2,62x k k Z πππ+=+∈,得,26k x k Z ππ=+∈,可知D 正确.故选D .考点:三角函数()sin()f x A x ωϕ=+的对称性. 8. 【答案】A【解析】解:∵f ()=,∴f (2)=f ()==3.故选:A .9. 【答案】C【解析】解:∵S 1=0,i 1=1; S 2=1,i 2=2; S 3=5,i 3=3; S 4=14,i 4=4; S 5=30,i=5>4 退出循环,故答案为C .【点评】本题考查程序框图的运算,通过对框图的分析,得出运算过程,按照运算结果进行判断结果,属于基础题.10.【答案】C 【解析】10y -+=,可得直线的斜率为k =tan 60αα==,故选C.1考点:直线的斜率与倾斜角. 11.【答案】C【解析】解:A 、函数f (x )的定义域为R ,函数g (x )的定义域为{x|x ≠0},定义域不同,故不是相同函数; B 、函数f (x )的定义域为R ,g (x )的定义域为{x|x ≠﹣2},定义域不同,故不是相同函数;C 、因为,故两函数相同;D 、函数f (x )的定义域为{x|x ≥1},函数g (x )的定义域为{x|x ≤1或x ≥1},定义域不同,故不是相同函数.综上可得,C 项正确. 故选:C .12.【答案】A 【解析】考点:棱锥的结构特征.二、填空题13.【答案】 6 .【解析】解:双曲线的方程为4x 2﹣9y 2=36,即为:﹣=1,可得a=3, 则双曲线的实轴长为2a=6.故答案为:6.【点评】本题考查双曲线的实轴长,注意将双曲线方程化为标准方程,考查运算能力,属于基础题.14.【答案】19【解析】由题意可得,选取的这6个个体分别为18,07,17,16,09,19,故选出的第6个个体编号为19.15.【答案】14.【解析】解:有框图知S=a⊗b=∴5⊗3+2⊗4=5×(3﹣1)+4×(2﹣1)=14故答案为14【点评】新定义题是近几年常考的题型,要重视.解决新定义题关键是理解题中给的新定义.16.【答案】0.【解析】解:f(x))=x2﹣2x=(x﹣1)2﹣1,其图象开口向上,对称抽为:x=1,所以函数f(x)在[2,4]上单调递增,所以f(x)的最小值为:f(2)=22﹣2×2=0.故答案为:0.【点评】本题考查二次函数在闭区间上的最值问题,一般运用数形结合思想进行处理.17.【答案】【解析】试题分析:由三视图可知该几何体为三棱锥,其中侧棱VA⊥底面ABC,且ABC∆为直角三角形,且5,,6AB VA h AC===,所以三棱锥的体积为115652032V h h=⨯⨯⨯==,解得4h=.考点:几何体的三视图与体积. 18.【答案】【解析】因为在上恒成立,所以,解得答案:三、解答题19.【答案】【解析】解:(1)证明:如图,连接AE,∵AB是⊙O的直径,AC,DE均为⊙O的切线,∴∠AEC=∠AEB=90°,∠DAE=∠DEA=∠B,∴DA=DE.∠C=90°-∠B=90°-∠DEA=∠DEC,∴DC=DE,∴CD=DA.(2)∵CA是⊙O的切线,AB是直径,∴∠CAB=90°,由勾股定理得CA2=CB2-AB2,又CA2=CE×CB,CE=1,AB=2,∴1·CB=CB2-2,即CB2-CB-2=0,解得CB=2,∴CA2=1×2=2,∴CA= 2.由(1)知DE=12CA=2 2,所以DE的长为22.20.【答案】【解析】【知识点】利用导数求最值和极值利用导数研究函数的单调性导数的概念和几何意义【试题解析】(Ⅰ)函数定义域为,又,所求切线方程为,即(Ⅱ)函数在上恰有两个不同的零点,等价于在上恰有两个不同的实根等价于在上恰有两个不同的实根,令则当时,,在递减;当时,,在递增.故,又.,,即21.【答案】(1)(2)见解析(3)【解析】试题分析:(1)由题意转化为在区间上恒成立,化简可得一次函数恒成立,根据一次函数性质得不等式,解不等式得实数的取值范围;(2)导函数有一个零点,再根据a的正负讨论导函数符号变化规律,确定极值取法(3)先根据导数得切线斜率再根据点斜式得切线方程,即得切线在x轴上的截距,最后根据a的正负以及基本不等式求截距的取值范围.试题解析:(1)函数的导函数,则在区间上恒成立,且等号不恒成立,又,所以在区间上恒成立,记,只需,即,解得.(2)由,得,①当时,有;,所以函数在单调递增,单调递减,所以函数在取得极大值,没有极小值.②当时,有;,所以函数在单调递减,单调递增,所以函数在取得极小值,没有极大值.综上可知: 当时,函数在取得极大值,没有极小值;当时,函数在取得极小值,没有极大值.(3)设切点为,则曲线在点处的切线方程为,当时,切线的方程为,其在轴上的截距不存在.当时,令,得切线在轴上的截距为,当时,,当且仅当,即或时取等号;当时,,当且仅当,即或时取等号.所以切线在轴上的截距范围是.点睛:函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)已知函数求极值.求→求方程的根→列表检验在的根的附近两侧的符号→下结论.(3)已知极值求参数.若函数在点处取得极值,则,且在该点左、右两侧的导数值符号相反.22.【答案】【解析】解:(1)函数f (x )=cos (ωx+)的图象的两对称轴之间的距离为=,∴ω=2,f (x )=cos (2x+).令2x+=k π,求得x=﹣,可得对称轴方程为 x=﹣,k ∈Z .令2k π﹣π≤2x+≤2k π,求得 k π﹣≤x ≤k π﹣,可得函数的增区间为,k ∈Z .(2)当2x+=2k π,即x=k π﹣,k ∈Z 时,f (x )取得最大值为1.当2x+=2k π+π,即x=k π+,k ∈Z 时,f (x )取得最小值为﹣1.∴f (x )取最大值时相应的x 集合为{x|x=k π﹣,k ∈Z};f (x )取最小值时相应的x 集合为{x|x=k π+,k ∈Z}.23.【答案】【解析】(1)由题意知,)cos )(sin cos (sin 23cos sin )(x x x x x x x f +-+=⋅= )32sin(2cos 232sin 21π-=-=x x x ……………………………………3分令223222πππππ+≤-≤-k x k ,Z k ∈,则可得12512ππππ+≤≤-k x k ,Z k ∈. ∴)(x f 的单调递增区间为]125,12[ππππ+-k k (Z k ∈).…………………………5分24.【答案】【解析】(Ⅰ)证明:∵ABCD ﹣A 1B 1C 1D 1为正方体, ∴B 1C 1⊥平面ABB 1A 1; ∵A 1B ⊂平面ABB 1A 1, ∴B 1C 1⊥A 1B .又∵A 1B ⊥AB 1,B 1C 1∩AB 1=B 1, ∴A 1B ⊥平面ADC 1B 1, ∵A 1B ⊂平面A 1BE ,∴平面ADC 1B 1⊥平面A 1BE ;(Ⅱ)证明:连接EF ,EF ∥,且EF=,设AB 1∩A 1B=O ,则B 1O ∥C 1D ,且,∴EF ∥B 1O ,且EF=B 1O , ∴四边形B 1OEF 为平行四边形. ∴B 1F ∥OE .又∵B 1F ⊄平面A 1BE ,OE ⊂平面A 1BE ,∴B1F∥平面A1BE,(Ⅲ)解:====.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

祁阳县第二高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( ) A .1B .2C .3D .42. 若a <b <0,则下列不等式不成立是( )A .>B .>C .|a|>|b|D .a 2>b 23. 已知是虚数单位,若复数22aiZ i+=+在复平面内对应的点在第四象限,则实数的值可以是( ) A .-2 B .1 C .2 D .3 4. 函数f (x )=kx +bx +1,关于点(-1,2)对称,且f (-2)=3,则b 的值为( )A .-1B .1C .2D .45. 下列推断错误的是( )A .命题“若x 2﹣3x+2=0,则x=1”的逆否命题为“若x ≠1则x 2﹣3x+2≠0”B .命题p :存在x 0∈R ,使得x 02+x 0+1<0,则非p :任意x ∈R ,都有x 2+x+1≥0C .若p 且q 为假命题,则p ,q 均为假命题D .“x <1”是“x 2﹣3x+2>0”的充分不必要条件6. 已知i z 311-=,i z +=32,其中i 是虚数单位,则21z z 的虚部为( ) A .1- B .54 C .i - D .i 54 【命题意图】本题考查复数及共轭复数的概念,复数除法的运算法则,主要突出对知识的基础性考查,属于容易题.7. 将函数y=cosx 的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向右平移个单位,所得函数图象的一条对称轴方程是( ) A .x=π B .C .D .8. 函数f (x )=,则f (﹣1)的值为( )A .1B .2C .3D .49. 函数y=a x +1(a >0且a ≠1)图象恒过定点( )A .(0,1)B .(2,1)C .(2,0)D .(0,2)10. +(a ﹣4)0有意义,则a 的取值范围是( ) A .a ≥2 B .2≤a <4或a >4C .a ≠2D .a ≠411.学校将5个参加知识竞赛的名额全部分配给高一年级的4个班级,其中甲班级至少分配2个名额,其它班级可以不分配或分配多个名额,则不同的分配方案共有( ) A .20种 B .24种 C .26种 D .30种12.已知函数f (x )=m (x ﹣)﹣2lnx (m ∈R ),g (x )=﹣,若至少存在一个x 0∈[1,e],使得f (x 0)<g (x 0)成立,则实数m 的范围是( ) A .(﹣∞,] B .(﹣∞,) C .(﹣∞,0]D .(﹣∞,0)二、填空题13.设函数 则______;若,,则的大小关系是______.14.已知实数x ,y 满足2330220y x y x y ≤⎧⎪--≤⎨⎪+-≥⎩,目标函数3z x y a =++的最大值为4,则a =______.【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力. 15.函数y=lgx 的定义域为 .16.设变量y x ,满足约束条件22022010x y x y x y --≤⎧⎪-+≥⎨⎪+-≥⎩,则22(1)3(1)z a x a y =+-+的最小值是20-,则实数a =______.【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力.17.如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是.已知样本中平均气温不大于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为 .18.下列命题: ①终边在y 轴上的角的集合是{a|a=,k ∈Z};②在同一坐标系中,函数y=sinx 的图象和函数y=x 的图象有三个公共点;③把函数y=3sin (2x+)的图象向右平移个单位长度得到y=3sin2x 的图象;④函数y=sin (x ﹣)在[0,π]上是减函数其中真命题的序号是 .三、解答题19.已知命题p :方程表示焦点在x 轴上的双曲线.命题q :曲线y=x 2+(2m ﹣3)x+1与x 轴交于不同的两点,若p ∧q 为假命题,p ∨q 为真命题,求实数m 的取值范围.20.(本小题满分12分)设函数()()2741201x x f x a a a --=->≠且.(1)当2a 时,求不等式()0f x <的解集; (2)当[]01x ∈,时,()0f x <恒成立,求实数的取值范围.21.巳知二次函数f(x)=ax2+bx+c和g(x)=ax2+bx+c•lnx(abc≠0).(Ⅰ)证明:当a<0时,无论b为何值,函数g(x)在定义域内不可能总为增函数;(Ⅱ)在同一函数图象上取任意两个不同的点A(x1,y1),B(x2,y2),线段AB的中点C(x0,y0),记直线AB的斜率为k若f(x)满足k=f′(x0),则称其为“K函数”.判断函数f(x)=ax2+bx+c与g(x)=ax2+bx+c•lnx 是否为“K函数”?并证明你的结论.22.已知曲线C1:ρ=1,曲线C2:(t为参数)(1)求C1与C2交点的坐标;(2)若把C1,C2上各点的纵坐标都压缩为原来的一半,分别得到曲线C1′与C2′,写出C1′与C2′的参数方程,C1与C2公共点的个数和C1′与C2′公共点的个数是否相同,说明你的理由.2015-2016学年安徽省合肥168中学高三(上)10月月考数学试卷(理科)23.已知函数y=3﹣4cos(2x+),x∈[﹣,],求该函数的最大值,最小值及相应的x值.24.在极坐标系下,已知圆O:ρ=cosθ+sinθ和直线l:.(1)求圆O和直线l的直角坐标方程;(2)当θ∈(0,π)时,求直线l与圆O公共点的极坐标.祁阳县第二高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案) 一、选择题1. 【答案】B【解析】解:设数列{a n }的公差为d ,则由a 1+a 5=10,a 4=7,可得2a 1+4d=10,a 1+3d=7,解得d=2, 故选B .2. 【答案】A 【解析】解:∵a <b <0,∴﹣a >﹣b >0,∴|a|>|b|,a 2>b 2,即,可知:B ,C ,D 都正确, 因此A 不正确. 故选:A .【点评】本题考查了不等式的基本性质,属于基础题.3. 【答案】A 【解析】 试题分析:()()()()2224(22)2225ai i ai a a ii i i +-+++-==++-,对应点在第四象限,故40220a a +>⎧⎨-<⎩,A 选项正确. 考点:复数运算. 4. 【答案】【解析】解析:选B.设点P (m ,n )是函数图象上任一点,P 关于(-1,2)的对称点为Q (-2-m ,4-n ),则⎩⎪⎨⎪⎧n =km +b m +14-n =k (-2-m )+b-1-m,恒成立.由方程组得4m +4=2km +2k 恒成立, ∴4=2k ,即k =2,∴f (x )=2x +b x +1,又f (-2)=-4+b -1=3,∴b =1,故选B. 5. 【答案】C【解析】解:对于A ,命题“若x 2﹣3x+2=0,则x=1”的逆否命题为“若x ≠1则x 2﹣3x+2≠0”,正确; 对于B ,命题p :存在x 0∈R ,使得x 02+x 0+1<0,则非p :任意x ∈R ,都有x 2+x+1≥0,正确; 对于C ,若p 且q 为假命题,则p ,q 至少有一个为假命题,故C 错误;对于D ,x 2﹣3x+2>0⇒x >2或x <1,故“x <1”是“x 2﹣3x+2>0”的充分不必要条件,正确. 综上所述,错误的选项为:C , 故选:C .【点评】本题考查命题的真假判断与应用,着重考查全称命题与特称命题的理解与应用,考查复合命题与充分必要条件的真假判断,属于中档题.6. 【答案】B【解析】由复数的除法运算法则得,i i i i i i i i z z 54531086)3)(3()3)(31(33121+=+=-+-+=++=,所以21z z 的虚部为54.7. 【答案】B【解析】解:将函数y=cosx 的图象上各点的横坐标伸长到原来的2倍(纵坐标不变), 得到y=cos x ,再向右平移个单位得到y=cos[(x )],由(x )=k π,得x =2k π,即+2k π,k ∈Z ,当k=0时,,即函数的一条对称轴为,故选:B【点评】本题主要考查三角函数的对称轴的求解,利用三角函数的图象关系求出函数的解析式是解决本题的关键.8. 【答案】A【解析】解:由题意可得f (﹣1)=f (﹣1+3)=f (2)=log 22=1 故选:A【点评】本题考查分度函数求值,涉及对数的运算,属基础题.9. 【答案】D【解析】解:令x=0,则函数f (0)=a 0+3=1+1=2. ∴函数f (x )=a x +1的图象必过定点(0,2).故选:D.【点评】本题考查了指数函数的性质和a0=1(a>0且a≠1),属于基础题.10.【答案】B【解析】解:∵+(a﹣4)0有意义,∴,解得2≤a<4或a>4.故选:B.11.【答案】A【解析】解:甲班级分配2个名额,其它班级可以不分配名额或分配多个名额,有1+6+3=10种不同的分配方案;甲班级分配3个名额,其它班级可以不分配名额或分配多个名额,有3+3=6种不同的分配方案;甲班级分配4个名额,其它班级可以不分配名额或分配多个名额,有3种不同的分配方案;甲班级分配5个名额,有1种不同的分配方案.故共有10+6+3+1=20种不同的分配方案,故选:A.【点评】本题考查分类计数原理,注意分类时做到不重不漏,是一个中档题,解题时容易出错,本题应用分类讨论思想.12.【答案】B【解析】解:由题意,不等式f(x)<g(x)在[1,e]上有解,∴mx<2lnx,即<在[1,e]上有解,令h(x)=,则h′(x)=,∵1≤x≤e,∴h′(x)≥0,∴h(x)max=h(e)=,∴<h(e)=,∴m<.∴m的取值范围是(﹣∞,).故选:B.【点评】本题主要考查极值的概念、利用导数研究函数的单调性等基础知识,解题时要认真审题,注意导数性质的合理运用.二、填空题13.【答案】,【解析】【知识点】函数图象分段函数,抽象函数与复合函数 【试题解析】,因为,所以 又若,结合图像知:所以:。

故答案为:,14.【答案】3-【解析】作出可行域如图所示:作直线0l :30x y +=,再作一组平行于0l 的直线l :3x y z a +=-,当直线l 经过点5(,2)3M 时,3z a x y -=+取得最大值,∴max 5()3273z a -=⨯+=,所以max 74z a =+=,故3a =-.15.【答案】 {x|x >0} .【解析】解:对数函数y=lgx 的定义域为:{x|x >0}.故答案为:{x|x >0}.【点评】本题考查基本函数的定义域的求法.16.【答案】2【解析】17.【答案】9.【解析】解:平均气温低于22.5℃的频率,即最左边两个矩形面积之和为0.10×1+0.12×1=0.22,所以总城市数为11÷0.22=50,平均气温不低于25.5℃的频率即为最右面矩形面积为0.18×1=0.18,所以平均气温不低于25.5℃的城市个数为50×0.18=9.故答案为:918.【答案】③.【解析】解:①、终边在y轴上的角的集合是{a|a=,k∈Z},故①错误;②、设f(x)=sinx﹣x,其导函数y′=cosx﹣1≤0,∴f(x)在R上单调递减,且f(0)=0,∴f(x)=sinx﹣x图象与轴只有一个交点.∴f(x)=sinx与y=x 图象只有一个交点,故②错误;③、由题意得,y=3sin[2(x﹣)+]=3sin2x,故③正确;④、由y=sin(x﹣)=﹣cosx得,在[0,π]上是增函数,故④错误.故答案为:③.【点评】本题考查的知识点是命题的真假判断及其应用,终边相同的角,正弦函数的性质,图象的平移变换,及三角函数的单调性,熟练掌握上述基础知识,并判断出题目中4个命题的真假,是解答本题的关键.三、解答题19.【答案】 【解析】解:∵方程表示焦点在x 轴上的双曲线,∴⇒m >2若p 为真时:m >2,∵曲线y=x 2+(2m ﹣3)x+1与x 轴交于不同的两点, 则△=(2m ﹣3)2﹣4>0⇒m >或m ,若q 真得:或,由复合命题真值表得:若p ∧q 为假命题,p ∨q 为真命题,p ,q 命题一真一假 若p 真q 假:;若p 假q 真:∴实数m 的取值范围为:或.【点评】本题借助考查复合命题的真假判定,考查了双曲线的标准方程,关键是求得命题为真时的等价条件.20.【答案】(1)158⎛⎫-∞ ⎪⎝⎭,;(2)()3211128a ⎫∈⎪⎪⎝⎭U ,,. 【解析】试题分析:(1)由于1222a -==⇒()14127222x x ---<⇒()127412x x -<--⇒158x <⇒原不等式的解集为158⎛⎫-∞ ⎪⎝⎭,;(2)由()()274144227lg241lg lg lg 0128x x a a x x a x a --<⇒-<-⇒+<g .设()44lg lg 128a g x x a =+g ,原命题转化为()()310212800g a g <⎧⎪<<⎨<⎪⎩⇒又0a >且1a ≠⇒()3211128a ⎫∈⎪⎪⎝⎭U ,,.考点:1、函数与不等式;2、对数与指数运算.【方法点晴】本题考查函数与不等式、对数与指数运算,涉及函数与不等式思想、数形结合思想和转化化高新,以及逻辑思维能力、等价转化能力、运算求解能力与能力,综合性较强,属于较难题型. 第一小题利用函数与不等式思想和转化化归思想将原不等式转化为()127412x x -<--,解得158x <;第二小题利用数学结合思想和转化思想,将原命题转化为()()310212800g a g <⎧⎪⇒<<⎨<⎪⎩ ,进而求得:()32111284a ⎛⎫∈ ⎪ ⎪⎝⎭U ,,. 21.【答案】【解析】解:(Ⅰ)证明:如果g (x )是定义域(0,+∞)上的增函数, 则有g ′(x )=2ax+b+=>0;从而有2ax 2+bx+c >0对任意x ∈(0,+∞)恒成立;又∵a <0,则结合二次函数的图象可得,2ax 2+bx+c >0对任意x ∈(0,+∞)恒成立不可能, 故当a <0时,无论b 为何值,函数g (x )在定义域内不可能总为增函数; (Ⅱ)函数f (x )=ax 2+bx+c 是“K 函数”,g (x )=ax 2+bx+c •lnx 不是“K 函数”, 事实上,对于二次函数f (x )=ax 2+bx+c , k==a (x 1+x 2)+b=2ax 0+b ;又f ′(x 0)=2ax 0+b ,故k=f′(x0);故函数f(x)=ax2+bx+c是“K函数”;对于函数g(x)=ax2+bx+c•lnx,不妨设0<x1<x2,则k==2ax0+b+;而g′(x0)=2ax0+b+;故=,化简可得,=;设t=,则0<t<1,lnt=;设s(t)=lnt﹣;则s′(t)=>0;则s(t)=lnt﹣是(0,1)上的增函数,故s(t)<s(1)=0;则lnt≠;故g(x)=ax2+bx+c•lnx不是“K函数”.【点评】本题考查了导数的综合应用及学生对新定义的接受能力,属于中档题.22.【答案】【解析】解:(1)∵曲线C1:ρ=1,∴C1的直角坐标方程为x2+y2=1,∴C1是以原点为圆心,以1为半径的圆,∵曲线C2:(t为参数),∴C2的普通方程为x﹣y+=0,是直线,联立,解得x=﹣,y=.∴C2与C1只有一个公共点:(﹣,).(2)压缩后的参数方程分别为:(θ为参数):(t为参数),化为普通方程为::x2+4y2=1,:y=,联立消元得,其判别式,∴压缩后的直线与椭圆仍然只有一个公共点,和C1与C2公共点个数相同.【点评】本题考查两曲线的交点坐标的求法,考查压缩后的直线与椭圆的公共点个数的判断,是基础题,解题时要认真审题,注意一元二次方程的根的判别式的合理运用.23.【答案】【解析】解:函数y=3﹣4cos(2x+),由于x∈[﹣,],所以:当x=0时,函数y min=﹣1当x=﹣π时,函数y max=7【点评】本题考查的知识要点:利用余弦函数的定义域求函数的值域.属于基础题型.24.【答案】【解析】解:(1)圆O:ρ=cosθ+sinθ,即ρ2=ρcosθ+ρsinθ,故圆O 的直角坐标方程为:x2+y2=x+y,即x2+y2﹣x﹣y=0.直线l:,即ρsinθ﹣ρcosθ=1,则直线的直角坐标方程为:y﹣x=1,即x﹣y+1=0.(2)由,可得,直线l与圆O公共点的直角坐标为(0,1),故直线l 与圆O 公共点的一个极坐标为.【点评】本题主要考查把极坐标方程化为直角坐标方程的方法,直线和圆的位置关系,属于基础题.。

相关文档
最新文档