广东省广州市2016届高三普通高中毕业班综合测试(一)数学(理)试题 含答案

合集下载

2016年广州一模理科数学答案

2016年广州一模理科数学答案


3 , OA1 AA12 OA2 1.………………6 分
则 B 1,0,0 , C 0, 3, 0 , A 0, 3, 0 , A 1 0,0,1 ,



所以 BB1 AA1 0, 3,1 ,OB1 OB + BB1 1, 3,1 .………………………7 分 设平面 OBB1 的法向量为 n x, y, z ,

tr .e
所以 AD 的长为 5 . …………………………………………………………………6 分

解得 x 5 .
du
.c n
/
AB 2 BC 2 AC 2 13x 2 100 .…………4 分 2 AB BC 6 x 4 x 2 25
解法三:因为 AD 的长为 5 , 所以 cosCDB = 所以 S ADC

6 5
.…………………………………………9 分
tr .e
du
.c n
C
/
所以 cos CKH
KH CK

6 4
.……………………………………………………11 分
所以二面角 B OB1 C 的余弦值为
6 4
.……………………………………12 分
(20) (Ⅰ)解法一:设椭圆 C 的方程为


A1
tp :/
x 0, x 3 y z 0.
/w
D O A B x
C
y
令 y 1,
得 n 0,1, 3 .…………………………………………………………9 分
ht


同理可求得平面 OCB1 的法向量为 m 1,0, 1 .………………………………10 分 所以 cos n, m

2019年3月广东省广州市高2019届高2016级高三广州市一测一模理科数学试题参考答案

2019年3月广东省广州市高2019届高2016级高三广州市一测一模理科数学试题参考答案

所以 AB 3AE .
在 Rt ABD 中,有 1 AE BD 1 AB AD ,得 BD
2
2
3AD , B
因为 BD 6 , 所以 AD 2 .
E
Dy
又 BD2 AB2 AD2 ,得 AB 2 .
C
则 AE 2 3 , ED
6
.
x …………………………………8 分
因为 b a 2,所以 ab 15.
………………………………………10 分
所以△ABC 的面积 S 1 absinC 1 15 2 2 5 2 .……………………………12 分
2
2
3
解法 2: 由余弦定理得 c2 a2 b2 2abcosC , …………………………………7 分
因为圆 O 与 x 轴的两个交点的坐标分别为 1, 0, 1, 0 ,与 y 轴的两个交点的坐标分
别为 0,1,0, 1 ,
根据题意,得 b c 1, 故 a2 b2 c2 2.
…………………………………1 分 …………………………………2 分
所以椭圆 C 的方程为 x2 y2 1. 2
点 F 到 l 的距离为 d 2 , 所以△ ABF 的面积为 S 1 AB d 2 .
2
…………………………………5 分
②当 m 1时, 设圆 O 的切线 l 的方程为 y k x mk 0 , 即 kx y km 0 ,
2ac
2ab
化简得 a2 b2 c2 2 ab , 3
所以 cos C

a2
b2
c2

2 ab 3

2016届高考模拟试题_广东省广州六中、广雅中学、执信中学等六校2016届高三第一次联考数学(理)试题附答案

2016届高考模拟试题_广东省广州六中、广雅中学、执信中学等六校2016届高三第一次联考数学(理)试题附答案

PA 1 , PB 4
PD 1 B . PC 2 AD (Ⅰ)求 的值; BC (Ⅱ)若 BD 为⊙ O 的直径,且 PA 1 ,求 BC 的长.
23、(本题满分 10 分)选修 4—4:坐标系与参数方程 直线 l :
O
A P D
C
x a 4t , (t为参数),圆C : 2 2 cos( ) (极轴与 x 轴的非负半轴重合, 4 y 1 2t
且单位长度相同) 。 (1)求圆心 C 到直线 l 的距离; (2)若直线 l 被圆 C 截的弦长为
6 5 , 求a 的值。 5
24、(本题满分 10 分)选修 4—5:不等式选讲 设对于任意实数 x ,不等式 | x 7 | | x 1| ≥ m 恒成立. (I)求 m 的取值范围; (Ⅱ)当 m 取最大值时,解关于 x 的不等式: | x 3 | 2 x 2m 12 .
1 2 1 1 x , g ( x) g ( x) f ( x) x 2 f ( x) x 2 0 2 2 2
) 时, g / ( x) f / ( x) x 0 ,函数 g ( x ) 在 x (0 , ) 为减函数 , g (0) 0 ,所以函数 g ( x ) 在 R 上为减函数
18、解:设甲、乙、丙各自击中目标分别为事件A、B、C (Ⅰ)由题设可知 0 时,甲、乙、丙三人均未击中目标,即 P ( 0) P ( A B C ) ∴ P 0 2 1 m 1 n 1 , 5 15 化简得 mn m n 5 ① ……2分 6 同理, P 3 3 m n 1 mn 1 ② 5 5 3 0 1 2 ……4分 1 a b P 2 15 联立①②可得 m , n 1 ……6分 3 2

2016年高考全国Ⅰ理科数学试题及答案(word解析版)

2016年高考全国Ⅰ理科数学试题及答案(word解析版)

2016年普通高等学校招生全国统一考试(全国Ⅰ)数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2016年全国Ⅰ,理1,5分】设集合{}2|430A x x x =-+<,{}|230B x x =->,则AB =( )(A )33,2⎛⎫-- ⎪⎝⎭ (B )33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭(D )3,32⎛⎫⎪⎝⎭【答案】D【解析】{|13}A x x =<<,3{|}2B x x =>,3{|3}2A B x x ∴=<<,故选D .【点评】考察集合运算和简单不等式解法,属于必考题型,难易程度:易. (2)【2016年全国Ⅰ,理2】设(1i)1i x y +=+,其中x ,y 是实数,则i =x y +( )(A )1 (B )2 (C )3 (D )2 【答案】B【解析】由题意知:1x y ==,i =1i 2x y ∴++=,故选B .【点评】察复数相等条件和复数的模,属于必考题型,难易程度:易. (3)【2016年全国Ⅰ,理3,5分】已知等差数列{}n a 前9项的和为27,108a =,则100a =( )(A )100 (B )99 (C )98 (D )97 【答案】C【解析】解法一:199599272a a S a +===,53a ∴= 1051105a a d -∴==-()100101001089098a a d ∴=+-=+=,选C . 解法二:91989272S a d ⨯=+=,即143a d +=,又10198a a d =+=,解得11,1a d =-=,()1001100119998a a d ∴=+-=-+=,故选C . 【点评】考察等差数列的基本性质、前n 项和公式和通项公式,属于必考题型,难易程度:易. (4)【2016年全国Ⅰ,理4,5分】某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )(A )13(B )12 (C )23 (D )34【答案】B【解析】小明可以到达车站时长为40分钟,可以等到车的时长为20分钟,则他等车时间不超过10分钟的概率是201402P ==,故选B .【点评】考察几何概型的概率计算,第一次考察,难易程度:易.(5)【2016年全国Ⅰ,理5,5分】已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )(A )()1,3- (B )()1,3- (C )()0,3 (D )()0,3 【答案】A【解析】由题意知:2234m n m n ++-=,解得21m =,1030n n +>⎧∴⎨->⎩,解得13n -<<,故选A .【点评】考察双曲线的简单几何性质,属于了解层次,必考题,难易程度:易. (6)【2016年全国Ⅰ,理6,5分】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( )(A )17π (B )18π (C )20π (D )28π 【答案】A【解析】该几何体为球体,从球心挖掉整个球的18(如右图所示),故34728383r ππ=解得2r =,2271431784S r r πππ∴=⋅+⋅=,故选A .【点评】考察三视图还原,球的体积表面积计算,经常考察,难易程度:中等. (7)【2016年全国Ⅰ,理7,5分】函数22xy x e =-在[2,2]-的图像大致为( )(A )(B )(C ) (D )【答案】D【解析】解法1(排除法):2()2xf x x e =-为偶函数,且2(2)887.40.6f e =-≈-=,故选D .解法2:2()2xf x x e =-为偶函数,当0x >时,'()4x f x x e =-,作4y x =与x y e =(如图),故存在实数0(0,1)x ∈,使得'0()0f x =且0(0,)x x ∈时,'0()0f x <,0(,2)x x ∈时, '0()0f x >,()f x ∴在0(0,)x 上递减,在0(,2)x 上递增,故选D .【点评】本题结合导数利用函数奇偶性,综合考察函数解析式与函数图像之间的关系,常规题型,属于必考题,难易程度:中等.这类题型的最佳解法应为结合函数的性质,选取特殊点进行排除.(8)【2016年全国Ⅰ,理8,5分】若101a b c >><<,,则( ) (A )c c a b < (B )c c ab ba < (C )log log b a a c b c < (D )log log a b c c <【答案】C【解析】解法1(特殊值法):令14,22a b c ===,,易知C 正确.解法2:当0α>时,幂函数()f x x α=在(0,)+∞上递增,故A 选项错误;当1a >时,a 越大对数函数()log a f x x =的图像越靠近x 轴,当01c <<时,log log a b c c >,故D 选项错误;c c ab ba <可化为()c a ab b<,由指数函数知,当1a >时,()x f x a =在(0,)+∞上递增,故B 选项错误;log log b a a c b c <可化为11log log abb ac c <,1111abbb b a <<<,故选C .【点评】本题综合考察幂函数、指数函数、对数函数的性质和不等式的性质,属于常考题型,难易程度:中等. 结合函数性质证明不等式是比较麻烦的,最好采用特殊值法验证排除.(9)【2016年全国Ⅰ,理9,5分】执行右面的程序图,如果输入的011x y n ===,,,则输出x ,y 的值满足( )(A )2y x = (B )3y x = (C )4y x = (D )5y x = 【答案】C【解析】011x y n ===,,时,框图运行如下: 1、012x y n ===,,;2、1232x y n ===,,;3、3632x y n ===,,,故选C .【点评】考察算法中的循环结构,必考题型,难易程度:易. (10)【2016年全国Ⅰ,理10,5分】以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C的标准线于D 、E 两点.已知42AB =,25DE =,则C 的焦点到准线的距离为( ) (A )2 (B )4 (C )6 (D )8【答案】B【解析】解法1排除法:当4p =时,不妨令抛物线方程为28y x =,当y =1x =,即A 点坐标为(,所以圆的半径为3r =,此时D 点坐标为(-,符合题意,故B 选项正确.解法2:不妨令抛物线方程为22y px =,D 点坐标为2P ⎛- ⎝,则圆的半径为r =,22834p r -=-,即A 点坐标为⎭,所以22=,解得4p =,故选B . 【点评】考察抛物线和圆的简单性质,必考题型,难易程度:中等. (11)【2016年全国Ⅰ,理11,5分】平面a 过正方体1111ABCD A B C D -的顶点A ,//a 平面11CB D ,a 平面ABCD m =,a 平面11ABA B n =,则m 、n 所成角的正弦值为( )(A (B )2 (C (D )13【答案】A【解析】令平面a 与平面11CB D 重合,则11m B D =,1n CD =,故直线m 、n 所成角为60o ,,故选A . 【点评】考察正方体中线面位置关系和两条直线夹角的计算,必考题型,难易程度:中等.(12)【2016年全国Ⅰ,理12,5分】已知函数()()sin 02f x x +πωϕωϕ⎛⎫=>≤ ⎪⎝⎭,,4x π=-为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫ ⎪⎝⎭,单调,则ω的最大值为( )(A )11 (B )9 (C )7 (D )5 【答案】B【解析】解法1(特殊值验证法)令9ω=,则周期29T π=,区间[]44ππ-,刚为94T ,且在53636ππ⎡⎤⎢⎥⎣⎦,上递减,恰好符合题意,故选B .解法2:由题意知152()24369T πππ≥-=,所以29Tπω=≤,故选B .【点评】综合考察三角函数图像的单调性、对称性、零点、周期等性质,属于必考题型,难易程度:偏难.第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分(13)【2016年全国Ⅰ,理13,5分】设向量(),1m =a ,()1,2=b ,且222+=+a b a b ,则m = . 【答案】2-【解析】解法一(几何法)由向量加法的几何意义知a b ⊥,故20a b m ⋅=+=,所以2m =-;解法二(代数法)22(1)9114m m ++=+++,解得2m =-.【点评】考察向量运算,必考题型,难易程度:易.(14)【2016年全国Ⅰ,理14,5分】(52x +的展开式中,3x 的系数是 .(用数字填写答案) 【答案】10【解析】()555215522r rrrr rr T Cx C x---+==,令532r-=,解得4r =,454525210C -∴=⨯=. 【点评】考察二项式定理展开式中指定项问题,必考题型,难易程度:中等.(15)【2016年全国Ⅰ,理15,5分】设等比数列{}n a 满足1310a a +=,245a a +=,则12n a a a ⋅⋅⋅的最大值为 . 【答案】64【解析】由1310a a +=,245a a +=解得118,2a q ==,14118()()22n n n a --∴==,27321(4)21211()()22n nn n a a a ----+⋅⋅⋅+-∴⋅⋅⋅==,所以当3n =或4时,12n a a a ⋅⋅⋅有最大值64.【点评】考察等比数列的通项公式、等差数列求和及二次函数最值问题,必考题型,难易程度:中等. (16)【2016年全国Ⅰ,理16,5分】某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料。

广东省广州市2016届高三1月模拟考试数学(理)试卷

广东省广州市2016届高三1月模拟考试数学(理)试卷

2016年广州市普通高中毕业班模拟考试理科数学2016.1注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效. 4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)若全集U=R ,集合{}124xA x =<<,{}10B x x =-≥,则U A B I ð=(A ){}12x x << (B ){}01x x <≤ (C ){}01x x << (D ){}12x x ≤< (2)已知,a b ∈R ,i 是虚数单位,若i a -与2i b +互为共轭复数,则()2i =a b +(A )3+4i (B )5+4i (C )34i - (D )54i - (3)下列说法中正确的是(A )“(0)0f =”是“函数()f x 是奇函数”的充要条件(B )若2000:,10p x x x ∃∈-->R ,则2:,10p x x x ⌝∀∈--<R(C )若p q ∧为假命题,则p ,q 均为假命题(D )命题“若6απ=,则1sin 2α=”的否命题是“若6απ≠,则1sin 2α≠” (4)已知()f x 在R 上是奇函数,且满足()()4f x f x +=,当()0,2x ∈时,()22f x x =,则()7f =(A ) 2 (B )2- (C )98- (D )98 (5)执行如图所示的程序框图,输出的结果为(A )()22-, (B )()40-,(C )()44--,(D )()08-,(6)各项均为正数的等差数列{}n a 中,3694=a a ,则前12项和12S 的最小值为(A )78(B )48(C )60 (D )72(7)一个几何体的三视图如图所示,其中正视图与侧视图都是斜边长为2的直角三角形,俯视图是半径为1的四分之一圆周和两条半径,则这个 几何体的体积为 (A(B(C(D(8)已知3sin 5ϕ=,且2ϕπ⎛⎫∈π ⎪⎝⎭,,函数()sin()(0)f x x ωϕω=+>的图像 的相邻两条对称轴之间的距离等于2π,则4f π⎛⎫⎪⎝⎭的值为 (A )35- (B )45- (C )35 (D )45(9)若实数,x y 满足约束条件220,240,2,x y x y y --≤⎧⎪+-≥⎨⎪≤⎩则x y 的取值范围是(A )2,23⎡⎤⎢⎥⎣⎦ (B )13,22⎡⎤⎢⎥⎣⎦ (C )3,22⎡⎤⎢⎥⎣⎦(D )[]1,2(10)过双曲线22221(0,0)x y a b a b-=>>的一个焦点F 作一条渐近线的垂线,垂足为点A ,与另一条渐近线交于点B ,若2FB FA =uu r uu r,则此双曲线的离心率为(A(B(C )2 (D(11)将5位同学分别保送到北京大学,上海交通大学,中山大学这3所大学就读,每所大学至少保送1人,则不同的保送方法共有(A ) 150种 (B ) 180种 (C ) 240种 (D )540种(12)已知ABC ∆的三个顶点A ,B ,C 的坐标分别为())()0,1,,0,2-,O 为坐标原点,动点P 满足1CP =uu r ,则OA OB OP ++uu r uu u r uu u r的最小值是(A1- (B1 (C1 (D1+第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二.填空题:本大题共4小题,每小题5分.(13)已知向量a ,b 满足||4=b ,a 在b 方向上的投影是12,则=a b . (14)已知()1cos 3θ+π=-,则sin 22θπ⎛⎫+= ⎪⎝⎭ . (15)102a x ⎫+⎪⎭展开式中的常数项为180,则a = .(16)已知()y f x =为R 上的连续可导函数,且()()0xf x f x '+>,则函数()()1g x xf x =+()0x >的零点个数为___________.三.解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)设n S 为数列{}n a 的前n 项和,已知12a =,对任意*n ∈N ,都有()21n n S n a =+. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若数列4(2)n n a a ⎧⎫⎨⎬+⎩⎭的前n 项和为n T ,求证:112n T ≤<.(18)(本小题满分12分)如图,在三棱柱11ABC A B C -中,侧棱1AA ⊥底面ABC ,12AB AC AA ==,120BAC ∠=,1,D D 分别是线段11,BC B C 的中点,过线段AD 的中点P 作BC 的平行线,分别交AB ,AC 于点M ,N .(Ⅰ)证明:MN ⊥平面11ADD A ; (Ⅱ)求二面角1A A M N --的余弦值.ABCDPM N A 1B 1C 1D 1(19)(本小题满分12分)计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量X (年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.(Ⅰ)求在未来4年中,至多1年的年入流量超过120的概率;(Ⅱ)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X 限制,并有如下关系;若某台发电机运行,则该台发电机年利润为5000万元;若某台发电机未运行,则该台发电机年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?(20)(本小题满分12分)在平面直角坐标系xOy 中,已知椭圆221221x y C a b +=:()1a b >≥的离心率e =,且椭圆1C 上一点M 到点()30,Q 的距离的最大值为4. (Ⅰ)求椭圆1C 的方程;(Ⅱ)设1016A ⎛⎫⎪⎝⎭,,N 为抛物线22x y C =:上一动点,过点N 作抛物线2C 的切线交椭圆1C 于B ,C 两点,求ABC ∆面积的最大值.(21)(本小题满分12分)已知函数()e xf x ax =-(e 为自然对数的底数,a 为常数)在点()0,1处的切线斜率为1-.(Ⅰ)求a 的值及函数()x f 的极值; (Ⅱ)证明:当0>x 时,2e x x <;(III )证明:对任意给定的正数c ,总存在0x ,使得当()∞+∈,0x x ,恒有2e x x c <.请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题计分.做答时请写清题号.(22)(本小题满分10分)选修4—1:几何证明选讲如图90ACB ∠=︒,CD AB ⊥于点D ,以BD 为直径的圆O 与BC 交于点E . (Ⅰ)求证:BC CE AD DB ⋅=⋅;(Ⅱ)若4BE =,点N 在线段BE 上移动,90ONF ∠=o,NF 与O e 相交于点F ,求NF 的最大值.(23)(本小题满分10分)选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,已知曲线1C :1,12x t y t =+⎧⎨=-⎩(t 为参数)与曲线2C :cos 3sin x a y θθ=⎧⎨=⎩,(θ为参数,0a >). (Ⅰ)若曲线1C 与曲线2C 有一个公共点在x 轴上,求a 的值;(Ⅱ)当3a =时,曲线1C 与曲线2C 交于A ,B 两点,求A ,B 两点的距离.(24)(本小题满分10分)选修4—5:不等式选讲已知定义在R 上的函数()||||f x x m x =-+,*m ∈N ,存在实数x 使()2f x <成立. (Ⅰ)求实数m 的值;(Ⅱ)若,1αβ>,()()2f f αβ+=,求证:4192αβ+≥.参考答案。

广东省广州市2016届高三数学毕业班综合测试试卷一理含解析

广东省广州市2016届高三数学毕业班综合测试试卷一理含解析

2016年广州市普通高中毕业班综合测试(一)理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上,并用铅笔在答题卡上的相应位置填涂考生号。

2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)已知集合{}1A x x =<,{}20B x x x =-≤,则AB =(A ){}11x x -≤≤ (B ){}01x x ≤≤ (C ){}01x x <≤ (D ){}01x x ≤< 答案:D解析:集合A ={}11x x <-<,集合B ={}1x x ≤≤0,所以,A B ={}01x x ≤<。

(2)已知复数3i1iz +=-,其中i 为虚数单位,则复数z 的共轭复数z 所对应的点在 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限答案:D解析:(3)(1)122i i z i ++==+,共轭复数为12i -,在第四象限。

(3)执行如图所示的程序框图,如果输入3x =,则输出k 的值为(A )6 (B )8 (C )10 (D )12 答案:C解析:第一步:x =9,k =2;第二步:x =21,k =4;第三步:x =45,k =6; 第四步:x =93,k =8;第五步:x =189,k =10;退出循环,故k =10。

(4)如果函数()sin 6f x x ωπ⎛⎫=+ ⎪⎝⎭()0ω>的相邻两个零点之间的距离为6π,则ω的值为(A )3 (B )6 (C )12 (D )24答案:B解析:依题意,得:周期T =3π,23ππω=,所以,ω=6。

2016年普通高等学校招生全国统一考试 全国卷3 数学试卷含答案(理科)

2016年普通高等学校招生全国统一考试 全国卷3 数学试卷含答案(理科)

2016年普通高等学校招生全国统一考试(课标全国卷Ⅲ)理 数本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合S={x|(x-2)(x-3)≥0},T={x|x>0},则S∩T=( ) A.[2,3] B.(-∞,2]∪[3,+∞) C.[3,+∞) D.(0,2]∪[3,+∞)2.若z=1+2i,则4izz -1=( )A.1B.-1C.iD.-I3.已知向量BA ⃗⃗⃗⃗⃗ =(12,√32),BC ⃗⃗⃗⃗⃗ =(√32,12),则∠ABC=( ) A.30° B.45° C.60° D.120°4.某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15 ℃,B 点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是( )A.各月的平均最低气温都在0 ℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20 ℃的月份有5个 5.若tan α=34,则cos 2α+2sin 2α=( ) A.6425B.4825C.1D.16256.已知a=243,b=425,c=2513,则( ) A.b<a<cB.a<b<cC.b<c<aD.c<a<b7.执行下面的程序框图,如果输入的a=4,b=6,那么输出的n=( )A.3B.4C.5D.68.在△ABC中,B=π4,BC边上的高等于13BC,则cos A=( )A.3√1010B.√1010C.-√1010D.-3√10109.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )A.18+36√5B.54+18√5C.90D.8110.在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V 的最大值是( )A.4πB.9π2C.6π D.32π311.已知O为坐标原点,F是椭圆C:x 2a2+y2b2=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为( )A.13B.12C.23D.3412.定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数,若m=4,则不同的“规范01数列”共有( ) A.18个 B.16个 C.14个 D.12个第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答. 二、填空题:本题共4小题,每小题5分.13.若x,y 满足约束条件{x -y +1≥0,x -2y ≤0,x +2y -2≤0,则z=x+y 的最大值为 .14.函数y=sin x-√3cos x 的图象可由函数y=sin x+√3cos x 的图象至少向右平移 个单位长度得到.15.已知f(x)为偶函数,当x<0时, f(x)=ln(-x)+3x,则曲线y=f(x)在点(1,-3)处的切线方程是 .16.已知直线l:mx+y+3m-√3=0与圆x 2+y 2=12交于A,B 两点,过A,B 分别作l 的垂线与x 轴交于C,D 两点.若|AB|=2√3,则|CD|= .三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (Ⅰ)证明{a n }是等比数列,并求其通项公式; (Ⅱ)若S 5=3132,求λ.18.(本小题满分12分)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.(Ⅰ)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明;(Ⅱ)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 附注:参考数据:∑i=17y i =9.32,∑i=17t i y i =40.17,√∑i=17(y i -y )2=0.55,√7≈2.646.参考公式:相关系数r=∑i=1n(t i -t )(y -y )√∑i=1(t i -t )2∑i=1(y i -y )2,回归方程y ^=a ^+b ^t 中斜率和截距的最小二乘估计公式分别为:b ^=∑i=1n(t i -t )(y i -y )∑i=1n(t i -t )2,a ^=y -b ^t .19.(本小题满分12分)如图,四棱锥P-ABCD 中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M 为线段AD 上一点,AM=2MD,N 为PC 的中点. (Ⅰ)证明MN∥平面PAB;(Ⅱ)求直线AN 与平面PMN 所成角的正弦值.20.(本小题满分12分)已知抛物线C:y 2=2x 的焦点为F,平行于x 轴的两条直线l 1,l 2分别交C 于A,B 两点,交C 的准线于P,Q 两点.(Ⅰ)若F 在线段AB 上,R 是PQ 的中点,证明AR∥FQ;(Ⅱ)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.21.(本小题满分12分)设函数f(x)=αcos 2x+(α-1)(cos x+1),其中α>0,记|f(x)|的最大值为A. (Ⅰ)求f '(x); (Ⅱ)求A;(Ⅲ)证明|f '(x)|≤2A.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4—1:几何证明选讲如图,☉O 中AB⏜的中点为P,弦PC,PD 分别交AB 于E,F 两点. (Ⅰ)若∠PFB=2∠PCD,求∠PCD 的大小;(Ⅱ)若EC 的垂直平分线与FD 的垂直平分线交于点G,证明OG⊥CD.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,曲线C 1的参数方程为{x =√3cosα,y =sinα(α为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin (θ+π4)=2√2.(Ⅰ)写出C 1的普通方程和C 2的直角坐标方程;(Ⅱ)设点P 在C 1上,点Q 在C 2上,求|PQ|的最小值及此时P 的直角坐标.24.(本小题满分10分)选修4—5:不等式选讲 已知函数f(x)=|2x-a|+a.(Ⅰ)当a=2时,求不等式f(x)≤6的解集;(Ⅱ)设函数g(x)=|2x-1|.当x∈R 时, f(x)+g(x)≥3,求a 的取值范围.2016年普通高等学校招生全国统一考试(课标全国卷Ⅲ)一、选择题1.D S={x|(x-2)(x-3)≥0}={x|x ≤2或x ≥3},在数轴上表示出集合S,T,如图所示:由图可知S ∩T=(0,2]∪[3,+∞), 故选D.2.C ∵z z =(1+2i)(1-2i)=5,∴zz -1=4i4=i,故选C. 3.A cos ∠ABC=BA ⃗⃗⃗⃗⃗ ·BC⃗⃗⃗⃗⃗ |BA ⃗⃗⃗⃗⃗ |·|BC ⃗⃗⃗⃗⃗ |=√32,所以∠ABC=30°,故选A. 4.D 由雷达图易知A 、C 正确;七月的平均最高气温超过20 ℃,平均最低气温约为12 ℃,一月的平均最高气温约为6 ℃,平均最低气温约为2 ℃,所以七月的平均温差比一月的平均温差大,故B 正确;由雷达图知平均最高气温超过20 ℃的月份有3个月.故选D.5.A 当tan α=34时,原式=cos 2α+4sin αcos α=cos 2α+4sinαcosαsin 2α+cos 2α=1+4tanαtan 2α+1=1+4×4916+1=6425,故选A.6.A 因为a=243=423,c=2513=523,函数y=x 23在(0,+∞)上单调递增,所以423<523,即a<c,又因为函数y=4x 在R 上单调递增,所以425<423,即b<a,所以b<a<c,故选A.7.B 第一次循环:a=2,b=4,a=6,s=6,n=1; 第二次循环:a=-2,b=6,a=4,s=10,n=2; 第三次循环:a=2,b=4,a=6,s=16,n=3;第四次循环:a=-2,b=6,a=4,s=20,n=4.结束循环, 输出n 的值为4,故选B.8.C 解法一:过A 作AD ⊥BC,垂足为D,由题意知AD=BD=13BC,则CD=23BC,AB=√23BC,AC=√53BC,在△ABC 中,由余弦定理的推论可知,cos ∠BAC=AB 2+AC 2-BC 22AB ·AC=29BC 2+59BC 2-BC 22×√23BC×√53BC=-√1010,故选C.解法二:过A 作AD ⊥BC,垂足为D,由题意知AD=BD=13BC,则CD=23BC,在Rt △ADC 中,AC=√53BC,sin ∠DAC=2√55,cos ∠DAC=√55,又因为∠B=π4,所以cos ∠BAC=cos (∠DAC +π4)=cos ∠DAC ·cos π4-sin ∠DAC ·sin π4=√55×√22-2√55×√22=-√1010,故选C.解法三:过A 作AD ⊥BC,垂足为D,由题意知AD=BD=13BC, 则CD=23BC,AB=√23BC,AC=√53BC,而AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =(AD ⃗⃗⃗⃗⃗ +DB ⃗⃗⃗⃗⃗⃗ )·(AD ⃗⃗⃗⃗⃗ +DC ⃗⃗⃗⃗⃗ )=AD ⃗⃗⃗⃗⃗ 2+AD ⃗⃗⃗⃗⃗ ·DC ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ ·DB ⃗⃗⃗⃗⃗⃗ +DB ⃗⃗⃗⃗⃗⃗ ·DC ⃗⃗⃗⃗⃗ =19BC 2-29BC 2=-19BC 2,所以cos ∠BAC=AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ ||AC ⃗⃗⃗⃗⃗ |=-19BC 2√23BC×√53BC=-√1010,故选C.解法四:过A 作AD ⊥BC,垂足为D,设BC=3a(a>0),结合题意知AD=BD=a,DC=2a.以D 为原点,DC,DA 所在直线分别为x 轴,y 轴建立平面直角坐标系,则B(-a,0),C(2a,0),A(0,a),所以AB ⃗⃗⃗⃗⃗ =(-a,-a),AC ⃗⃗⃗⃗⃗ =(2a,-a),所以|AB ⃗⃗⃗⃗⃗ |=√2a,|AC ⃗⃗⃗⃗⃗ |=√5a,所以cos ∠BAC=AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗|AB ⃗⃗⃗⃗⃗ ||AC ⃗⃗⃗⃗⃗ |=22√2a×√5a=-√1010,故选C.9.B 由三视图可知,该几何体的底面是边长为3的正方形,高为6,侧棱长为3√5,则该几何体的表面积S=2×32+2×3×3√5+2×3×6=54+18√5.故选B.10.B 易知AC=10.设底面△ABC 的内切圆的半径为r,则12×6×8=12×(6+8+10)·r,所以r=2,因为2r=4>3,所以最大球的直径2R=3,即R=32.此时球的体积V=43πR 3=9π2.故选B.11.A 由题意知过点A 的直线l 的斜率存在且不为0,故可设直线l 的方程为y=k(x+a),当x=-c 时,y=k(a-c),当x=0时,y=ka,所以M(-c,k(a-c)),E(0,ka).如图,设OE 的中点为N,则N (0,ka 2),由于B,M,N 三点共线,所以k BN =k BM ,即ka 2-a=k(a -c)-c -a,所以12=a -ca+c,即a=3c,所以e=13.故选A.12.C 当m=4时,数列{a n }共有8项,其中4项为0,4项为1,要满足对任意k ≤8,a 1,a 2,…,a k 中0的个数不少于1的个数,则必有a 1=0,a 8=1,a 2可为0,也可为1.(1)当a 2=0时,分以下3种情况:①若a 3=0,则a 4,a 5,a 6,a 7中任意一个为0均可,则有C 41=4种情况;②若a 3=1,a 4=0,则a 5,a 6,a 7中任意一个为0均可,有C 31=3种情况;③若a 3=1,a 4=1,则a 5必为0,a 6,a 7中任一个为0均可,有C 21=2种情况;(2)当a 2=1时,必有a 3=0,分以下2种情况:①若a 4=0,则a 5,a 6,a 7中任一个为0均可,有C 31=3种情况;②若a 4=1,则a 5必为0,a 6,a 7中任一个为0均可,有C 21=2种情况.综上所述,不同的“规范01数列”共有4+3+2+3+2=14个,故选C.二、填空题 13.答案32解析 由题意画出可行域(如图所示),其中A(-2,-1),B (1,12),C(0,1),由z=x+y 知y=-x+z,当直线y=-x+z 过点B (1,12)时,z 取最大值32.14.答案23π解析 设f(x)=sin x-√3cos x=2sin (x +53π),g(x)=sin x+√3cos x=2sin (x +π3),将g(x)的图象向右平移φ(φ>0)个单位长度后得到函数g(x-φ)=2sin (x -φ+π3)=2sin (x +5π3)=f(x)的图象,所以x-φ+π3=2kπ+x+5π3,k ∈Z ,此时φ=-2kπ-4π3,k ∈Z ,当k=-1时,φ有最小值,为2π3.15.答案 y=-2x-1解析 令x>0,则-x<0, f(-x)=ln x-3x,又f(-x)=f(x), ∴f(x)=ln x-3x(x>0),则f '(x)=1x -3(x>0),∴f '(1)=-2,∴在点(1,-3)处的切线方程为y+3=-2(x-1),即y=-2x-1.16.答案 4解析 由题意可知直线l 过定点(-3,√3),该定点在圆x 2+y 2=12上,不妨设点A(-3,√3),由于|AB|=2√3,r=2√3,所以圆心到直线AB 的距离为d=√(2√3)2-(√3)2=3,又由点到直线的距离公式可得d=√3|√m 2+1=3,解得m=-√33,所以直线l 的斜率k=-m=√33,即直线l 的倾斜角为30°.如图,过点C 作CH ⊥BD,垂足为H,所以|CH|=2√3,在Rt △CHD 中,∠HCD=30°,所以|CD|=2√3cos30°=4.三、解答题17.解析 (Ⅰ)由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,a 1≠0.(2分)由S n =1+λa n ,S n+1=1+λa n+1得a n+1=λa n+1-λa n ,即a n+1(λ-1)=λa n .由a 1≠0,λ≠0得a n ≠0, 所以a n+1a n=λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ(λλ-1)n -1.(6分)(Ⅱ)由(Ⅰ)得S n =1-(λλ-1)n.由S 5=3132得1-(λλ-1)5=3132,即(λλ-1)5=132. 解得λ=-1.(12分)18.解析 (Ⅰ)由折线图中数据和附注中参考数据得t =4,∑i=17(t i -t )2=28,√∑i=17(y i -y)2=0.55,∑i=17(t i -t )(y i -y )=∑i=17t i y i -t ∑i=17y i =40.17-4×9.32=2.89, r ≈ 2.890.55×2×2.646≈0.99.(4分)因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归模型拟合y 与t 的关系.(6分)(Ⅱ)由y =9.327≈1.331及(Ⅰ)得b ^=∑i=17(t i -t)(y i -y)∑i=17(t i -t)2=2.8928≈0.10, a ^=y -b ^t =1.331-0.10×4≈0.93.所以,y 关于t 的回归方程为y ^=0.93+0.10t.(10分)将2016年对应的t=9代入回归方程得y ^=0.93+0.10×9=1.83.所以预测2016年我国生活垃圾无害化处理量约为1.83亿吨.(12分)19.解析 (Ⅰ)由已知得AM=23AD=2. 取BP 的中点T,连结AT,TN,由N 为PC 中点知TN ∥BC,TN=12BC=2.(3分)又AD ∥BC,故TN AM,故四边形AMNT 为平行四边形,于是MN ∥AT.因为AT ⊂平面PAB,MN ⊄平面PAB,所以MN ∥平面PAB.(6分)(Ⅱ)取BC 的中点E,连结AE.由AB=AC 得AE ⊥BC,从而AE ⊥AD,且AE=√AB 2-BE 2=√AB 2-(BC 2)2=√5.以A 为坐标原点,AE⃗⃗⃗⃗⃗ 的方向为x 轴正方向,建立如图所示的空间直角坐标系A-xyz. 由题意知,P(0,0,4),M(0,2,0),C(√5,2,0),N (√52,1,2),PM ⃗⃗⃗⃗⃗⃗ =(0,2,-4),PN ⃗⃗⃗⃗⃗⃗ =(√52,1,-2),AN ⃗⃗⃗⃗⃗⃗ =(√52,1,2). 设n =(x,y,z)为平面PMN 的法向量,则{n ·PM ⃗⃗⃗⃗⃗⃗ =0,n ·PN ⃗⃗⃗⃗⃗ =0,即{2y -4z =0,√52x +y -2z =0,(10分) 可取n =(0,2,1).于是|cos<n ,AN ⃗⃗⃗⃗⃗⃗ >|=|n ·AN ⃗⃗⃗⃗⃗⃗||n||AN ⃗⃗⃗⃗⃗⃗ |=8√525. 即直线AN 与平面PMN 所成角的正弦值为8√525.(12分)20.解析 由题设知F (12,0).设l 1:y=a,l 2:y=b,则ab ≠0, 且A (a 22,a),B (b 22,b),P (-12,a),Q (-12,b),R (-12,a+b 2).记过A,B 两点的直线为l,则l 的方程为2x-(a+b)y+ab=0.(3分)(Ⅰ)由于F 在线段AB 上,故1+ab=0.记AR 的斜率为k 1,FQ 的斜率为k 2,则k 1=a -b 1+a 2=a -b a 2-ab =1a =-aba =-b=k 2.所以AR ∥FQ.(5分)(Ⅱ)设l 与x 轴的交点为D(x 1,0),则S △ABF =12|b-a||FD|=12|b-a||x 1-12|,S △PQF =|a -b|2.由题设可得2×12|b-a||x 1-12|=|a -b|2,所以x 1=0(舍去),或x 1=1.(8分)设满足条件的AB 的中点为E(x,y).当AB 与x 轴不垂直时,由k AB =k DE 可得2a+b =y x -1(x ≠1).而a+b2=y,所以y 2=x-1(x ≠1).当AB 与x 轴垂直时,E 与D 重合.所以,所求轨迹方程为y 2=x-1.(12分)21.解析 (Ⅰ)f '(x)=-2αsin 2x-(α-1)sin x.(2分)(Ⅱ)当α≥1时,|f(x)|=|αcos 2x+(α-1)(cos x+1)|≤α+2(α-1)=3α-2=f(0).因此A=3α-2.(4分)当0<α<1时,将f(x)变形为f(x)=2αcos 2x+(α-1)cos x-1.设t=cos x,则t ∈[-1,1],令g(t)=2αt 2+(α-1)t-1,则A 是|g(t)|在[-1,1]上的最大值,g(-1)=α,g(1)=3α-2,且当t=1-α4α时,g(t)取得最小值,最小值为g (1-α4α)=-(α-1)28α-1=-α2+6α+18α. 令-1<1-α4α<1,解得α<-13(舍去),或α>15.(5分)(i)当0<α≤15时,g(t)在(-1,1)内无极值点,|g(-1)|=α,|g(1)|=2-3α,|g(-1)|<|g(1)|,所以A=2-3α. (ii)当15<α<1时,由g(-1)-g(1)=2(1-α)>0,知g(-1)>g(1)>g (1-α4α).又|g (1-α4α)|-|g(-1)|=(1-α)(1+7α)8α>0,所以A=|g (1-α4α)|=α2+6α+18α.综上,A={2-3α,0<α≤15,α2+6α+18α,15<α<1,3α-2,α≥1.(9分)(Ⅲ)由(Ⅰ)得|f '(x)|=|-2αsin 2x-(α-1)sin x|≤2α+|α-1|.当0<α≤15时,|f '(x)|≤1+α≤2-4α<2(2-3α)=2A.当15<α<1时,A=α8+18α+34>1,所以|f '(x)|≤1+α<2A.当α≥1时,|f '(x)|≤3α-1≤6α-4=2A.所以|f '(x)|≤2A.(12分)22.解析 (Ⅰ)连结PB,BC,则∠BFD=∠PBA+∠BPD,∠PCD=∠PCB+∠BCD.因为AP⏜=BP ⏜,所以∠PBA=∠PCB,又∠BPD=∠BCD, 所以∠BFD=∠PCD.又∠PFB+∠BFD=180°,∠PFB=2∠PCD,所以3∠PCD=180°,因此∠PCD=60°.(5分)(Ⅱ)因为∠PCD=∠BFD,所以∠EFD+∠PCD=180°,由此知C,D,F,E 四点共圆,其圆心既在CE 的垂直平分线上,又在DF 的垂直平分线上,故G 就是过C,D,F,E 四点的圆的圆心,所以G 在CD 的垂直平分线上.又O 也在CD 的垂直平分线上,因此OG ⊥CD.(10分)23.解析 (Ⅰ)C 1的普通方程为x 23+y 2=1.C 2的直角坐标方程为x+y-4=0.(5分)(Ⅱ)由题意,可设点P 的直角坐标为(√3cos α,sin α).因为C 2是直线,所以|PQ|的最小值即为P 到C 2的距离d(α)的最小值,d(α)=√3cosα+sinα√2=√2|sin (α+π3)-2|.(8分) 当且仅当α=2kπ+π6(k ∈Z )时,d(α)取得最小值,最小值为√2,此时P 的直角坐标为(32,12).(10分)24.解析 (Ⅰ)当a=2时, f(x)=|2x-2|+2.解不等式|2x-2|+2≤6得-1≤x ≤3.因此f(x)≤6的解集为{x|-1≤x ≤3}.(5分)(Ⅱ)当x ∈R 时,f(x)+g(x)=|2x-a|+a+|1-2x|≥|2x-a+1-2x|+a=|1-a|+a,当x=1时等号成立,所以当x∈R时, f(x)+g(x)≥3等价于|1-a|+a≥3.①(7分) 2当a≤1时,①等价于1-a+a≥3,无解.当a>1时,①等价于a-1+a≥3,解得a≥2.所以a的取值范围是[2,+∞).(10分)。

2016届高三诊断性大联考(一)数学(理)试卷(含解析)

2016届高三诊断性大联考(一)数学(理)试卷(含解析)

绝密★启用前数学(理科)班级姓名注意事项:1.本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。

考试时间120分钟,总共150分。

2.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

3.回答第I 卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

回答第Ⅱ卷时,将答案写在答题卡上,答在本试卷上无效。

4.考试结束后,将试卷和答题卡一并交回。

第I 卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合 题目要求的.1.已知集合A ={X ∣X-1>0},集合 B={X ∣∣X ∣≤2},则A ∩B= A. (-1,2) B. [-2,2] C. (1,2] D.[-2,+∞)2.复数Z 满足(1-2i)z =(1+i)2,则z 对应复平面上的点的坐标为 A.(-54 ,52 ) B.(-52 ,53 ) C.(54,-52) D.(52,53) 3.已知向量a 、b ,其中a=(-2,-6),b= ,a •b=-10 ,则a 与b 的夹角为A.1500B.-300C.-600D.12004.设a , b 表示两条不同的直线, α、β、γ表示三个不同的平面,则下列命题中正确的是A.若a 丄α,且a 丄b,则b ∥aB.若γ丄α且γ丄β,则α∥βC.若a ∥α且a ∥β, 则α∥βD.若γ∥α且γ∥β,则α∥β5.函数f(x)=asin3x+bx 3+4,其中 a ,b ∈R ,f'(x)为f(x)的导函数,则f( 2014 )+f(-2014 ) +f'( 2015 )-f'(-2015) = A. 0B. 2014C. 8D. 20156.已知右边程序框图(如图),若输入a 、b 分别为10、4,则输出的a 的值为A.0B.2C.4D.147.在△ABC 中,角A 、B 、C 所对应的边长分别为a 、b 、c ,若asinA+bsinB=2sinC,则cosC 的最小值为A. B.C.21 D. -21 8.有如下几种说法:①若pVq 为真命题,则p 、q 均为真命题; ②命题“∃x 0∈R ,2x0≤ 0”的否定是∀x ∈R,2X>0;③直线l:y=kx+l 与圆O:x 2+y 2=1相交于A 、B 两点,则“k =l”是△OAB 的面积为21的充分而不必要条件;④随机变量ξ-N(0,1),已知φ (-1.96)=0.025,则 P( ξ∣f ∣< 1.96 )=0.975. 其中正确的为A. ①④B.②③C. ②③④D.②④ 9.将函数f(x)=Sin(2x+3π)的图象向右平移2π个单位长度,得到函数y=g(x)的图象,则dx x g ⎰π)(A. 0B. πC.2D.110.任取k ∈[-1,1],直线 L:y=kx+3 与圆 C:(x-2)2+(y-3) 2=4 相交于M 、N 两点,则∣MN ∣≥的概率为A. 33B. 23 C. 32 D. 2111.已知函数f (x )g(x)= 54-f(1-x),则函数y=f(x)-g(x)的零点的个数为 A.2 B.3 C.4 D.512.多面体的三视图如图所示,则该多面体表面积为(单位cm 2) A.28+B. 30+C. 28+D. 28+第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分. 13.二项式(2x+x1)6的展开式中的常数项是 .14.实数x 、y 满足条件的最小值为 .15.已知sina=53 ,α∈(0, 2π),tan β=41,则 tan(α+β))= . 16.已知AB 是圆C:(x+2)2+(y-l)2=52的一条直径,若楠圆 x 2+4y 2=4b 2(b ∈R)经过 A 、B 两点,则该椭圆的方程是 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知各项均为正数的等差数列{a n },且a 2+b 2=20,a 1+a 2=64. (I)求数列{a n }的通项公式; (Ⅱ)设b n =nX 42an,求数列的前n 项和.18.(本小题满分12分)如图,在四边形ABCD 中,△ABC 是边长为2的等边三角形, AD 丄DC ,AD=DC ,E 、F 是平面ABCD 同一侧的两点,BE 丄平面ABCD, DF 丄平面ABCD ,且DF=1. (I)若AE 丄CF ,求 BE 的值;(Ⅱ)求当BE 为何值时,二面角E-AC-F 的大小是60°. 19. (本小题满分12分)2015年10月4日,强台风“彩虹”登陆广东省湛江市,“彩虹”是1949年以来登陆中国陆地的最强台风。

2016年全国高考数学(理科)试题及答案-全国1卷(解析版)

2016年全国高考数学(理科)试题及答案-全国1卷(解析版)

绝密 ★ 启用前2016年普通高等学校招生全国统一考试(全国1卷)数学(理科)注意事项: 1。

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页。

2。

答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3。

全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回。

第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设集合{}2430A x x x =-+< ,{}230x x ->,则A B =(A )33,2⎛⎫-- ⎪⎝⎭ (B )33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭(D)3,32⎛⎫⎪⎝⎭【答案】D考点:集合的交集运算【名师点睛】集合是每年高考中的必考题,一般以基础题形式出现,属得分题。

解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数轴进行运算。

(2)设(1i)1i x y +=+,其中x ,y 实数,则i =x y + (A )1 (B 2 (3 (D )2 【答案】B 【解析】试题分析:因为(1)=1+,x i yi +所以=1+,=1,1,||=|1+|2,x xi yi x y x x yi i +==+=故选B 。

考点:复数运算【名师点睛】复数题也是每年高考必考内容,一般以客观题形式出现,属得分题。

高考中复数考查频率较高的内容有:复数相等,复数的几何意义,共轭复数,复数的模及复数的乘除运算,这类问题一般难度不大,但容易出现运算错误,特别是2i 1=-中的负号易忽略,所以做复数题要注意运算的准确性。

(3)已知等差数列{}n a 前9项的和为27,108a =,则100a = (A )100 (B )99 (C )98 (D)97 【答案】C 【解析】试题分析:由已知,1193627,98a d a d +=⎧⎨+=⎩所以110011,1,9919998,a d a a d =-==+=-+=故选C 。

(完整word版)2016年全国高考数学(理科)试题及答案-全国1卷(解析版)

(完整word版)2016年全国高考数学(理科)试题及答案-全国1卷(解析版)

范围是
(A) 1,3 (B) 1, 3 (C) 0,3 (D) 0, 3
【答案】A
考点:双曲线的性质 【名师点睛】双曲线知识一般作为客观题学生出现,主要考查双曲线几何性质,属于基础题.注意 双曲线的焦距是 2c 不是 c,这一点易出错. (6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何
一. 选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目 要求的.
(1)设集合 A x x2 4x 3 0 , x 2x 3 0 ,则 A B
(A)
3,
3 2
【答案】D
(B)
3,
3 2
(C)
1,
3 2
(D)
3 2
,
3
考点:集合的交集运算 【名师点睛】集合是每年高考中的必考题,一般以基础题形式出现,属得分题.解决此类问题一般 要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数 集之间的运算,常借助数轴进行运算.
(8)若 a b 1,0 c 1,则 (A) ac bc (B) abc bac (C) a logb c b loga c (D) loga c logb c
【答案】C 【解析】
试题分析:用特殊值法,令 a 3, b
2,c
1
1
得 32
1
22 ,选项
A
1
错误, 3 22
1
2 32 ,选项
2016 高考数学(理科)试卷(全国 1 卷)
绝密 ★ 启用前
2016 年普通高等学校招生全国统一考试(全国 1 卷)
数学(理科)
注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷 1 至 3 页,第Ⅱ卷 3 至 5 页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回. 第Ⅰ卷

广东省广州市高三数学毕业班综合测试试卷(一)文(含解析)

广东省广州市高三数学毕业班综合测试试卷(一)文(含解析)

2016年广州市普通高中毕业班综合测试(一)文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上,并用铅笔在答题卡上的相应位置填涂考生号。

2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{}11A x x =-≤≤,{}220B x x x =-≤,则AB =(A ){}12x x -≤≤ (B ){}10x x -≤≤ (C ){}12x x ≤≤ (D ){}01x x ≤≤答案:D解析:集合A ={}11x x ≤≤-,集合B ={}2x x ≤≤0,所以,A B ={}01x x ≤≤。

(2)已知复数3i1iz +=+,其中i 为虚数单位,则复数z 所对应的点在 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限答案:D 解析:(3)(1)22i i z i +==--,对应坐标为(2,-1),在第四象限。

(3)已知函数()2,1,1,1,1x x x f x x x⎧-≤⎪=⎨>⎪-⎩则()()2f f -的值为(A )12 (B )15 (C )15- (D )12-答案:C解析:2f (-)=4+2=6,11((2))(6)165f f f -===--,选C 。

(4)设P 是△ABC 所在平面内的一点,且2CP PA =,则△PAB 与△PBC 的面积之比是(A )13 (B )12 (C )23 (D )34答案:B解析:依题意,得:CP =2PA ,设点P 到AC 之间的距离为h ,则△PAB 与△PBC 的面积之比为1212BPA BCPPA h S S PC h ∆∆==12(5)如果函数()cos 4f x x ωπ⎛⎫=+ ⎪⎝⎭()0ω>的相邻两个零点之间的距离为6π,则ω的值为(A )3 (B )6 (C )12 (D )24 答案:B解析:依题意,得:周期T =3π,23ππω=,所以,ω=6。

2016年秋高三(上)期末测试卷(理科数学)试题和参考答案

2016年秋高三(上)期末测试卷(理科数学)试题和参考答案

2016年秋高三(上)期末测试卷(理科数学)试题和参考答案2016年秋高三(上)期末测试卷理科数学一、选择题1.已知$a+2i$,其中$i$是虚数单位,则$ab=b+i$,其中$a$,$b$是实数。

(C)2.已知某品种的幼苗每株成活率为$p$,则栽种3株这种幼苗恰好成活2株的概率为$p^2(1-p)$。

(D)3.已知集合$A=\{1,2,3,4\}$,$B=\{xy=2x,y\in A\}$,则$A\cap B=\{2\}$。

(A)4.命题$p$:甲的数学成绩不低于100分,命题$q$:乙的数学成绩低于100分,则$p\lor(\neg q)$表示甲、乙两人至少有一人数学成绩不低于100分。

(D)5.在平面直角坐标系$xOy$中,不等式组$\begin{cases}-1\leq x\leq 3\\ x+y-1\geq x-y-1\end{cases}$表示的平面区域的面积为$12$。

(C)6.我国古代数学算经十书之一的《九章算术》有一衰分问题:今有北乡八千一百人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,则北乡遣$120$人。

(D)7.执行如图所示的程序框图,若分别输入1,2,3,则输出的值得集合为$\{1,3\}$。

(D)8.设曲线$x=2y-y^2$上的点到直线$x-y-2=0$的距离的最大值为$a$,最小值为$b$,则$a-b$的值为$2$。

(B)9.函数$y=\sin x-\frac{1}{2}$的图像大致是$\begin{cases}y=\sin x-\frac{1}{2},-\pi\leq x\leq \pi\\ y=-\frac{1}{2}\end{cases}$。

(A)10.已知$\triangle ABC$的外接圆半径为$2$,$D$为该圆上一点,且$AB+AC=AD$,则$\triangle ABC$的面积的最大值为$4\sqrt{3}$。

(D)A)设定义在R上的函数f(x)的导函数为f'(x),且满足f(2-x)=f(x),x1+x22>2,x1<x2,则()B)f(x1)=f(x2)C)f(x1)>f(x2)D)f(x1)与f(x2)的大小不能确定答案:(C)改写后:设在定义在实数集上的函数f(x)的导数为f'(x),且满足f(2-x)=f(x),当x1+x22>2,x1f(x2)。

2016年广州市高三一模考试参考答案及评分(文科数学)

2016年广州市高三一模考试参考答案及评分(文科数学)

文科数学试题答案 第1页(共15页)绝密 ★ 启用前2016年广州市普通高中毕业班综合测试(一)文科数学试题答案及评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题不给中间分. 一.选择题(1)D (2)D (3)C (4)B (5)B (6)C (7)A (8)B(9)A(10)D(11)B(12)A二.填空题(13)2-(14)[]6,15- (15(16)5三.解答题(17)解:(Ⅰ)设数列{}n a 的公比为q ,因为24a =,所以34a q =,244a q =.…………………………………………1分因为32a +是2a 和4a 的等差中项,所以()32422a a a +=+.……………………2分 即()224244q q +=+,化简得220q q -=.因为公比0q ≠,所以2q =.………………………………………………………4分 所以222422n n n n a a q --==⨯=(*n ∈N ).…………………………………………5分 (Ⅱ)因为2n na =,所以22log 121n nb a n =-=-.所以()212nn n a b n =-.……………………………………………………………7分 则()()231123252232212n n n T n n -=⨯+⨯+⨯+⋅⋅⋅+-+-, ①()()23412123252232212n n n T n n +=⨯+⨯+⨯+⋅⋅⋅+-+-. ②………………9分文科数学试题答案 第2页(共15页)①-②得,()2312222222212n n n T n +-=+⨯+⨯+⋅⋅⋅+⨯--……………………………………10分()()()11142221262321212n n n n n ++-=+⨯--=-----,所以()16232n n T n +=+-.……………………………………………………………12分(18)解:(Ⅰ)设区间[]75,85内的频率为x ,则区间[)55,65,[)65,75内的频率分别为4x 和2x .…………………………1分 依题意得()0.0040.0120.0190.03010421x x x +++⨯+++=,……………3分 解得0.05x =.所以区间[]75,85内的频率为0.05.………………………………………………4分 (Ⅱ)由(Ⅰ)得,区间[)45,55,[)55,65,[)65,75内的频率依次为0.3,0.2,0.1.用分层抽样的方法在区间[)45,75内抽取一个容量为6的样本,则在区间[)45,55内应抽取0.3630.30.20.1⨯=++件,记为1A ,2A ,3A .在区间[)55,65内应抽取0.2620.30.20.1⨯=++件,记为1B ,2B . 在区间[)65,75内应抽取0.1610.30.20.1⨯=++件,记为C .…………………6分 设“从样本中任意抽取2件产品,这2件产品都在区间[)45,65内”为事件M , 则所有的基本事件有:{}12,A A ,{}13,A A ,{}11,A B ,{}12,A B ,{}1,A C ,{}23,A A , {}21,A B ,{}22,A B ,{}2,A C ,{}31,A B ,{}32,A B ,{}3,A C ,{}12,B B ,{}1,B C ,{}2,B C ,共15种.…………………………………………………………………8分事件M 包含的基本事件有:{}12,A A ,{}13,A A ,{}11,A B ,{}12,AB ,{}23,A A , {}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,{}12,B B ,共10种.…………10分所以这2件产品都在区间[)45,65内的概率为102153=.………………………12分文科数学试题答案 第3页(共15页)(19)(Ⅰ)证明:因为1AO ⊥平面ABCD ,BD ⊂平面ABCD , 所以1AO ⊥BD .……………………………………………………………………1分 因为ABCD 是菱形,所以CO ⊥BD .……………………………………………2分因为1AO CO O = ,1AO ,CO ⊂平面1ACO , 所以BD ⊥平面1ACO .……………………………………………………………3分 (Ⅱ)解法一:因为底面ABCD 是菱形,AC BD O = ,21==AA AB ,60BAD ∠=, 所以1OB OD ==,OA OC ==4分所以OBC ∆的面积为112212OBC S OB OC ∆==⨯=⨯⨯.…………………5分 因为1AO ⊥平面ABCD ,AO ⊂平面ABCD , 所以1AO AO ⊥,11AO ==.………………………………………6分因为11A B 平面ABCD ,所以点1B 到平面ABCD 的距离等于点1A 到平面ABCD 的距离1AO .…………7分 由(Ⅰ)得,BD ⊥平面1A AC .因为1A A ⊂平面1AAC ,所以BD ⊥1A A . 因为11A A B B ,所以BD ⊥1B B .………………………………………………8分 所以△1OBB 的面积为111121212OBB S OB BB ∆=⨯⨯==⨯⨯.……………………9分 设点C 到平面1OBB 的距离为d , 因为11C OBB B OBC V V --=,所以111133OBB OBC S d S A O D D =gg .………………………………………………10分所以111212OBC OBBS AO d S ∆∆⋅===文科数学试题答案 第4页(共15页)所以点C 到平面1OBB的距离为2.……………………………………………12分 解法二:由(Ⅰ)知BD因为BD ⊂平面11BB D D 所以平面1ACO ⊥平面连接11AC 与11B D 交于点连接1CO ,1OO ,因为11AA CC =,11//AA CC ,所以11CAAC 为平行四边形. 又O ,1O 分别是AC ,11AC 的中点,所以11OAO C 为平行四边形. 所以111OC OA ==.…………………………………………………………………6分 因为平面11OAO C 与平面11BB D D 交线为1OO , 过点C 作1CH OO ⊥于H ,则CH ⊥平面11BB D D .………………………………8分 因为11O C A O ,1AO ⊥平面ABCD ,所以·1O C ⊥平面ABCD . 因为OC ⊂平面ABCD ,所以·1O C ⊥OC ,即△1OCO 为直角三角形.………10分 所以11122O C OC CH OO ⋅===.所以点C 到平面1OBB 的距离为212分(20)(Ⅰ)解法一:设椭圆C 的方程为22221(0)x y a b a b+=>>,因为椭圆的左焦点为()120F -,,所以224a b -=.……………………………1分 设椭圆的右焦点为()220F ,,已知点(2B 在椭圆C 上, 由椭圆的定义知122BF BF a +=,所以2a ==………………………………………………………2分 所以a =2b =.………………………………………………………3分文科数学试题答案 第5页(共15页)所以椭圆C 的方程为22184x y +=.………………………………………………4分解法二:设椭圆C 的方程为22221(0)x y a b a b+=>>,因为椭圆的左焦点为()120F -,,所以224a b -=. ①…………………1分因为点(2B 在椭圆C 上,所以22421a b +=. ②…………………2分由①②解得,a =2b =.…………………………………………………3分所以椭圆C 的方程为22184x y +=.………………………………………………4分 (Ⅱ)解法一:因为椭圆C 的左顶点为A ,则点A的坐标为()-.…………5分因为直线(0)y kx k =≠与椭圆22184x y +=交于两点E ,F , 设点()00,E x y (不妨设00x >),则点()00,F x y --.联立方程组22,184y kx x y =⎧⎪⎨+=⎪⎩消去y 得22812x k =+.所以0x =0y =.………………………………………………6分所以直线AE的方程为y x =+.……………………………7分因为直线AE 与y 轴交于点M ,令0x =得y =M ⎛ ⎝.……………………8分同理可得点N ⎛ ⎝.…………………………………………………9分 假设在x 轴上存在点(,0)P t ,使得MPN ∠为直角,则0MP NP ⋅=.………10分即20t =,即240t -=.………………………11分文科数学试题答案 第6页(共15页)解得2t =或2t =-.故存在点()2,0P 或()2,0P -,无论非零实数k 怎样变化,总有MPN ∠为直角. ………………………………12分 解法二: 因为椭圆C 的左端点为A ,则点A的坐标为()-.……………5分因为直线(0)y kx k =≠与椭圆22184x y +=交于两点E ,F , 设点00(,)E x y ,则点00(,)F x y --.所以直线AE的方程为y x =+.………………………………6分 因为直线AE 与y 轴交于点M ,令0x =得y =,即点M ⎛⎫⎝.……………………………7分同理可得点N ⎛ ⎝.……………………………………………………8分假设在x 轴上存在点(),0P t ,使得MPN ∠为直角,则0MP NP ⋅=.即20t =,即2220808y t x +=-. (※)…………9分 因为点00(,)E x y 在椭圆C 上,所以2200184x y +=,即220082x y -=.……………………………………………10分 将220082x y -=代入(※)得240t -=.………………………………………11分解得2t =或2t =-.故存在点()2,0P 或()2,0P -,无论非零实数k 怎样变化,总有MPN ∠为直角. ………………………………12分 解法三:因为椭圆C 的左顶点为A ,则点A的坐标为()-.……………5分因为直线(0)y kx k =≠与椭圆22184x y +=交于两点E ,F ,设点(),2sin E θθ(0θ<<π),则点(),2sin F θθ--.……6分文科数学试题答案 第7页(共15页)所以直线AE的方程为y x =+.………………………7分 因为直线AE 与y 轴交于点M ,令0x =得2sin cos 1y θθ=+,即点2sin 0,cos 1M θθ⎛⎫⎪+⎝⎭.………………………………8分同理可得点2sin 0,cos 1N θθ⎛⎫⎪-⎝⎭.………………………………………………………9分 假设在x 轴上存在点(,0)P t ,使得MPN ∠为直角,则0MP NP ⋅=.………10分即22sin 2sin 0cos 1cos 1t θθθθ--+⨯=+-,即240t -=.…………………………………11分解得2t =或2t =-.故存在点()2,0P 或()2,0P -,无论非零实数k 怎样变化,总有MPN ∠为直角. ………………………………12分(21)(Ⅰ)解:当1m =时,()e ln 1x f x x =--,所以1()e xf x x'=-.………………………………………………………………1分 所以(1)e 1f =-,(1)e 1f '=-. …………………………………………………2分 所以曲线()y f x =在点()()11f ,处的切线方程为(e 1)(e 1)(1)y x --=--. 即()e 1y x =-.………………………………………………………………………3分 (Ⅱ)证法一:当1m ≥时,()e ln 1e ln 1x x f x m x x =--≥--.要证明()1f x >,只需证明e ln 20xx -->.……………………………………4分 以下给出三种思路证明e ln 20xx -->.思路1:设()e ln 2xg x x =--,则1()e x g x x'=-. 设1()e xh x x =-,则21()e 0xh x x'=+>, 所以函数()h x =1()e xg x x'=-在0+∞(,)上单调递增.…………………………6分文科数学试题答案 第8页(共15页)因为121e 202g ⎛⎫'=-< ⎪⎝⎭,(1)e 10g '=->,所以函数1()e xg x x '=-在0+∞(,)上有唯一零点0x ,且01,12x ⎛⎫∈ ⎪⎝⎭.…………8分 因为0()0g x '=时,所以01ex x =,即00ln x x =-.………………………………9分 当()00,x x ∈时,()0g x '<;当()0,x x ∈+∞时,()0g x '>.所以当0x x =时,()g x 取得最小值()0g x .……………………………………10分 故()000001()=e ln 220xg x g x x x x ≥--=+->. 综上可知,当1m ≥时,()1f x >.………………………………………………12分 思路2:先证明e 1xx ≥+()x ∈R .………………………………………………5分 设()e 1xh x x =--,则()e 1xh x '=-.因为当0x <时,()0h x '<,当0x >时,()0h x '>,所以当0x <时,函数()h x 单调递减,当0x >时,函数()h x 单调递增. 所以()()00h x h ≥=.所以e 1xx ≥+(当且仅当0x =时取等号).………………………………………7分 所以要证明e ln 20xx -->,只需证明()1ln 20x x +-->.……………………………………………………8分 下面证明ln 10x x --≥. 设()ln 1p x x x =--,则()111x p x x x-'=-=. 当01x <<时,()0p x '<,当1x >时,()0p x '>,所以当01x <<时,函数()p x 单调递减,当1x >时,函数()p x 单调递增. 所以()()10p x p ≥=.所以ln 10x x --≥(当且仅当1x =时取等号).………………………………10分文科数学试题答案 第9页(共15页)由于取等号的条件不同, 所以e ln 20xx -->.综上可知,当1m ≥时,()1f x >.………………………………………………12分 (若考生先放缩ln x ,或e x、ln x 同时放缩,请参考此思路给分!) 思路3:先证明e ln 2xx ->.因为曲线e x y =与曲线ln y x =的图像关于直线y x =对称,设直线x t =()0t >与曲线e x y =,ln y x =分别交于点A ,B ,点A ,B 到直线y x = 的距离分别为1d ,2d ,则)12AB d d =+.其中1t d =2d ()0t >.①设()e t h t t =-()0t >,则()e 1t h t '=-. 因为0t >,所以()e 10t h t '=->.所以()h t 在()0,+∞上单调递增,则()()01h t h >=.所以1t d => ②设()ln g t t t =-()0t >,则()111t g t t t -'=-=.因为当01t <<时,()0g t '<;当1t >时,()0g t '>,所以当01t <<时,()ln g t t t =-单调递减;当1t >时,()ln g t t t =-单调递增. 所以()()11g t g ≥=.所以2d =≥所以)122AB d d +=⎭. 综上可知,当1m ≥时,()1f x >.………………………………………………12分文科数学试题答案 第10页(共15页)证法二:因为()e ln 1x f x m x =--,要证明()1f x >,只需证明e ln 20xm x -->.…………………………………4分以下给出两种思路证明e ln 20xm x -->.思路1:设()e ln 2x g x m x =--,则1()e xg x m x'=-. 设1()e xh x m x =-,则21()e 0xh x m x'=+>. 所以函数()h x =()1e xg x m x'=-在()0+∞,上单调递增.……………………6分因为11221e 2e 202m mg m m m m ⎛⎫⎛⎫'=-=-< ⎪ ⎪⎝⎭⎝⎭,()1e 10g m '=->, 所以函数1()e xg x m x '=-在()0+∞,上有唯一零点0x ,且01,12x m ⎛⎫∈⎪⎝⎭.……8分 因为()00g x '=,所以01ex m x =,即00ln ln x x m =--.……………………9分 当()00,x x ∈时,()0g x '<;当()0,x x ∈+∞时,()0g x '>.所以当0x x =时,()g x 取得最小值()0g x .……………………………………10分 故()()000001e ln 2ln 20xg x g x m x x m x ≥=--=++->. 综上可知,当1m ≥时,()1f x >.………………………………………………12分 思路2:先证明e 1()x x x ≥+∈R ,且ln 1(0)x x x ≤+>.……………………5分 设()e 1x F x x =--,则()e 1x F x '=-.因为当0x <时,()0F x '<;当0x >时,()0F x '>, 所以()F x 在(,0)-∞上单调递减,在(0,)+∞上单调递增. 所以当0x =时,()F x 取得最小值(0)0F =.所以()(0)0F x F ≥=,即e 1xx ≥+(当且仅当0x =时取等号).……………7分 由e 1()xx x ≥+∈R ,得1ex x -≥(当且仅当1x =时取等号).………………8分文科数学试题答案 第11页(共15页)所以ln 1(0)x x x ≤->(当且仅当1x =时取等号).……………………………9分 再证明e ln 20xm x -->.因为0x >,1m ≥,且e 1xx ≥+与ln 1x x ≤-不同时取等号,所以()()e ln 2112x m x m x x -->+---()()11m x =-+0≥.综上可知,当1m ≥时,()1f x >.………………………………………………12分(22)(Ⅰ)证明:因为AD 是⊙O 的切线,所以DAC B ∠=∠(弦切角定理). (1)因为DE CA ,所以DAC EDA ∠=∠.……………………………2所以EDA B ∠=∠.因为AED DEB ∠=∠(公共角),所以△AED ∽△DEB .……………………………………………………………3分 所以DE AE BEDE=.即2DE AE BE = .…………………………………………………………………4分 (Ⅱ)解:因为EF 是⊙O 的切线,EAB 是⊙O 的割线,所以2EF EA EB = (切割线定理).……………………………………………5分 因为4EF =,2EA =,所以8EB =,6AB EB EA =-=.…………………7分 由(Ⅰ)知2DE AE BE = ,所以4DE =.………………………………………8分 因为DE CA ,所以△BAC ∽△BED . ………………………………………9分 所以BA ACBEED=.所以6438BA EDAC BE⋅⨯===. …………………………………………………10分文科数学试题答案 第12页(共15页)(23)(Ⅰ)解:由θρsin 2=,[)0,2θ∈π,可得22sin ρρθ=.…………………………………………………………………1分 因为222x y ρ=+,sin y ρθ=,…………………………………………………2分所以曲线C 的普通方程为2220x y y +-=(或()2211x y +-=). …………4分(Ⅱ)解法一:因为直线的参数方程为32x y t ⎧=+⎪⎨=-+⎪⎩(t 为参数,t ∈R ),消去t 得直线l的普通方程为5y =+. ……………………………………5分因为曲线C :()2211x y +-=是以G ()1,0为圆心,1为半径的圆,设点()00,D x y ,且点D 到直线l:5y =+的距离最短, 所以曲线C 在点D 处的切线与直线l:5y =+平行. 即直线GD 与l 的斜率的乘积等于1-,即(0011y x -⨯=-.………………7分 因为()220011x y +-=,解得0x =或0x = 所以点D的坐标为12⎛⎫ ⎪ ⎪⎝⎭,或32⎫⎪⎪⎝⎭,.……………………………………9分 由于点D到直线5y =+的距离最短,所以点D 的坐标为32⎫⎪⎪⎝⎭,.……………………………………………………10分 解法二:因为直线l的参数方程为32x y t ⎧=+⎪⎨=-+⎪⎩(t 为参数,t ∈R ),消去t 得直线l50y +-=.……………………………………5分因为曲线C ()2211x y +-=是以G ()1,0为圆心,1为半径的圆,因为点D 在曲线C 上,所以可设点D ()cos ,1sin ϕϕ+[)()0,2ϕ∈π.………7分文科数学试题答案 第13页(共15页)所以点D 到直线l的距离为d =2sin 3ϕπ⎛⎫=-+ ⎪⎝⎭.………………………………8分 因为[)0,2ϕ∈π,所以当6ϕπ=时,min 1d =.…………………………………9分 此时D 322⎛⎫ ⎪ ⎪⎝⎭,,所以点D的坐标为322⎛⎫⎪ ⎪⎝⎭,.……………………………10分(24)(Ⅰ)解:当1a =时,()12f x ≥等价于112x x +-≥.……………………1分 ①当1x ≤-时,不等式化为112x x --+≥,无解;②当10x -<<时,不等式化为112x x ++≥,解得104x -≤<;③当0x ≥时,不等式化为112x x +-≥,解得0x ≥.…………………………3分综上所述,不等式()1≥x f 的解集为1,4⎡⎫-+∞⎪⎢⎣⎭.………………………………4分 (Ⅱ)因为不等式()f x b ≥的解集为空集,所以()max b f x >⎡⎤⎣⎦.…………………5分以下给出两种思路求()f x 的最大值.思路1:因为()f x x x =+ ()01a ≤≤,当x ≤()f x x x =-=0<.当x <时,()f x x x =2x =≤=当x ≥()f x x x ==所以()max f x ⎡⎤⎣⎦=7分思路2:因为()f x x x=-x x≤+==当且仅当x≥所以()maxf x⎡⎤⎣⎦=7分因为对任意[]0,1a∈,不等式()f x b≥的解集为空集,所以maxb>.………………………………………………………8分以下给出三种思路求()g a=.思路1:令()g a=所以()21g a=+2212≤++=.=12a=时等号成立.所以()maxg a=⎡⎤⎣⎦所以b的取值范围为)+∞.…………………………………………………10分思路2:令()g a=因为01a≤≤,所以可设2cosaθ=02θπ⎛⎫≤≤⎪⎝⎭,则()g a=cos sin4θθθπ⎛⎫=+=+≤⎪⎝⎭当且仅当4θπ=时等号成立.所以b的取值范围为)+∞.…………………………………………………10分思路3:令()g a=因为01a≤≤,设xyìï=ïíï=ïî则221x y+=()01,01x y##.文科数学试题答案第14页(共15页)文科数学试题答案 第15页(共15页)问题转化为在221x y +=()01,01x y ##的条件下,求z x y =+的最大值.利用数形结合的方法容易求得z此时2x y ==.所以b 的取值范围为)+∞.…………………………………………………10分。

广东省广州市2016届高三数学毕业班综合测试试题(二)文(含解析)

广东省广州市2016届高三数学毕业班综合测试试题(二)文(含解析)

2016年某某市普通高中毕业班综合测试(二)数 学(文科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符 合题目要求的。

1.已知集合{0,1,2}M =,{11,}N x x x =-≤≤∈Z , 则( ) A .M N ⊆ B . N M ⊆ C .{0,1}M N = D .M N N =【答案】C【解析】{1,0,1}N =-,∴{0,1}MN =.2.已知(1i)i i(,)a b a b +=+∈R ,其中i 为虚数单位,则a b +的值为( ) A . 1-B . 0 C .1 D .2 【答案】B【解析】∵(1i)i i a b +=+,∴1i i a b -+=+,∴1,1a b =-=,0a b +=. 3.已知等比数列{}n a 的公比为12-, 则135246a a a a a a ++++的值是( )A .2-B .12-C .12D .2 【答案】A 【解析】1351352461352()a a a a a aa a a q a a a ++++==-++++.4.从数字1,2,3,4,5中任取2个,组成一个没有重复数字的两位数,则这个两位数大于30的概率是( )A . 15B .25C .35D .45【答案】C【解析】重复数字的两位数共有10个,两位数大于30的数共有12个,∴123205P ==.5.执行如图的程序框图,若程序运行中输出的一组数是(),12x-则x 的值为( )A . 27B . 81C .243D .729 【答案】B【解析】由程序框图可知:6.不等式组0,2,22x y x y x y -≤⎧⎪+≥-⎨⎪-≥-⎩的解集记为D , 若(,)a b D ∈, 则23z a b =-的最大值是( )A .1B .4C .1-D .4- 【答案】A【解析】不等式组表示的平面区域的角点 坐标分别为(1,1),(2,0),(2,2)A B C ---,1,4,2A B C z z z ==-=-,故选A .7.已知函数()sin(2)4f x x π=+,则下列结论中正确的是( )A .函数()f x 的最小正周期为2πB .函数()f x 的图象关于点(,0)4π对称 C .由函数()f x 的图象向右平移8π个单位长度可以得到函数sin 2y x =的图象 D .函数()f x 在区间5(,)88ππ上单调递增 【答案】C【解析】()f x 的最小正周期为π,故A 错误;()sin(2)04442f πππ=⨯+=≠,故B 错误; ()sin[2()]sin 2884f x x x πππ-=-+=,故C 正确.8.已知1F ,2F 分别是椭圆C :()222210x y a b a b+=>>的左, 右焦点,点A 在椭圆C 上, 124AF AF +=, 则椭圆C 的离心率是( )A .12 B.23D【答案】D【解析】∵1242AF AF a +==,∴2a =.∵点A 在椭圆C 上,∴213144b+=,∴1b =,c =2e =.9.已知球O 的半径为R ,,,A B C 三点在球O 的球面上,球心O 到平面ABC 的距离为12R ,2AB AC ==,120BAC ︒∠=, 则球O 的表面积为( )A .169π B .163π C .649π D .643π 【答案】D【解析】∵2AB AC ==,120BAC ︒∠=,,∴2222cos BC AB AC AB AC A =+-⋅⋅22122222()122=+-⨯⨯⨯-=,∴BC =设ABC ∆外接圆的半径为r ,则24sin 2BC r A ===,∴2r =. ∴2221()2R R r =+,得2163R =.∴球O 的表面积为26443R ππ=.10.已知命题p :*x ∀∈N , 11()()23x x≥,命题q :x ∃∈R, 122x x-+=,则下列命题中为真命题的是( )A .p q ∧B .()p q ⌝∧C .()p q ∧⌝D .()()p q ⌝∧⌝ 【答案】A【解析】由11()()23xx≥,得0x ≥,故命题p 为真命题.∵122xx-+=2202x x +-=,∴2(2)220x x -+=,∴2(20x =,∴12x =,故命题q 为真命题.∴p q ∧为真命题.11.如图, 网格纸上的小正方形的边长为1, 体的体积是( ) A .86π+ B .46π+ C .412π+ D .812π+【答案】A【解析】该几何体为半圆柱和四棱锥组成, 其中,平面PDC ⊥平面ABCD , ∴21143223V r h π=+⨯⨯⨯ 21238862ππ=⨯⨯+=+.12.设函数()f x 的定义域为R , ()(),()(2)f x f x f x f x -==-, 当[0,1]x ∈时,3()f x x =,则函数()cos()()g x x f x π=-在区间13[,]22-上的所有零点的和为( )A .4B .3C .2D .1 【答案】B【解析】∵()(),()(2)f x f x f x f x -==-,∴()(2)f x f x -=-,∴()f x 的周期为2. 画出()y f x =和cos()y x π=的图象, 由图可知,()g x 共有5个零点, 其中120x x +=,40x =,352x x +=. ∴所有零点的和为3.二、填空题(本题共4小题,每小题5分,共20分) 13.曲线2()23f x x x =-在点(1,(1))f 的处的切线方程为. 【答案】20x y --=【解析】()43f x x '=-,(1)1f '=,(1)1f =-,∴切线方程为11y x +=-,即20x y --=.C BADP14.已知a 与b 的夹角为3π,=a,2-=a b =b . 【答案】2【解析】∵2-=a b 224412-⋅=a a b+b .∴22242cos 4123π-⨯⨯⨯=b +b .∴220--=b b ,∴2=b .15.设数列{}n a 的前n 项和为n S ,若212a =,2*1()n S kn n =-∈N ,则数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为. 【答案】21nn + 【解析】依题意得112141a k a a k =-⎧⎨+=-⎩,∵212a =,∴4k =,13a =.∴241n S n =-,211111()4122121n S n n n ==---+, ∴数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为 11111111[(1)()()()2335572121n n -+-+-+⋅⋅⋅+--+ 11(1)22121nn n =-=++.16.已知点O 为坐标原点,点M 在双曲线:C 22(x y λλ-=为正常数)上,过点M 作双曲线C 的某一条渐近线的垂线,垂足为N ,则2ON MN +的最小值为.【答案】【解析】双曲线的渐近线为y x =±.设00(,)M x y ,直线MN 的方程为00()y x x y =--+, 由00()y x y x x y =⎧⎨=--+⎩,解得0000(,)22x y x y N ++.∴00ON y =+,00MN y ==-, ∵2200x y λ-=,∴0000()()x y x y λ-+=∴0000x y x y λ-=+,002MN x y =+.∴00002ON MN y x y +=+++≥=三、 解答题:解答应写出文字说明,证明过程或演算步骤。

2016年广州市普通高中毕业班模拟考试理科数学试题及参考答案

2016年广州市普通高中毕业班模拟考试理科数学试题及参考答案

2016年广州市普通高中毕业班模拟考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若全集U=R ,集合{}124xA x =<<,{}10B x x =-≥,则U A B I ð=(A){}12x x << (B){}01x x <≤ (C){}01x x << (D){}12x x ≤< (2)已知,a b ∈R ,i 是虚数单位,若i a -与2i b +互为共轭复数,则()2i =a b +(A)3+4i (B)5+4i (C)34i - (D)54i - (3)下列说法中正确的是(A)“(0)0f =”是“函数()f x 是奇函数”的充要条件(B)若2000:,10p x x x ∃∈-->R ,则2:,10p x x x ⌝∀∈--<R(C)若p q ∧为假命题,则p ,q 均为假命题(D)命题“若6απ=,则1sin 2α=”的否命题是“若6απ≠,则1sin 2α≠”(4)已知()f x 在R 上是奇函数,且满足()()4f x f x +=,当()0,2x ∈时,()22f x x =,则()7f =(A) 2 (B)2- (C)98- (D)98 (5)执行如图所示的程序框图,输出的结果为(A)()22-, (B)()40-,(C)()44--,(D)()08-,(6)各项均为正数的等差数列{}n a 中,3694=a a ,则前12项和12S 的最小值为(A)78 (B)48 (C)60(D)72(7)一个几何体的三视图如图所示,其中正视图与侧视图都是斜边长为2的直角三角形,俯视图是半径为1的四分之一圆周和两条半径,则这个 几何体的体积为π(8)已知3sin 5ϕ=,且2ϕπ⎛⎫∈π ⎪⎝⎭,,函数()sin()(0)f x x ωϕω=+>的图像 的相邻两条对称轴之间的距离等于2π,则4f π⎛⎫⎪⎝⎭的值为 (A)35- (B)45- (C)35 (D)45(9)若实数,x y 满足约束条件220,240,2,x y x y y --≤⎧⎪+-≥⎨⎪≤⎩则x y 的取值范围是(A)2,23⎡⎤⎢⎥⎣⎦ (B)13,22⎡⎤⎢⎥⎣⎦ (C)3,22⎡⎤⎢⎥⎣⎦(D)[]1,2(10)过双曲线22221(0,0)x y a b a b-=>>的一个焦点F 作一条渐近线的垂线,垂足为点A ,与另一条渐近线交于点B ,若2FB FA =uu r uu r,则此双曲线的离心率为(C)2(11)将5位同学分别保送到北京大学,上海交通大学,中山大学这3所大学就读,每所大学至少保送1人,则不同的保送方法共有(A) 150种 (B) 180种 (C) 240种 (D)540种 (12)已知ABC ∆的三个顶点A ,B ,C 的坐标分别为())()0,1,0,0,2-,O 为坐标原点,动点P 满足1CP =uu r,则OA OB OP ++uu r uu u r uu u r 的最小值是1111俯视图第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二.填空题:本大题共4小题,每小题5分.(13)已知向量a ,b 满足||4=b ,a 在b 方向上的投影是12,则=a b . (14)已知()1cos 3θ+π=-,则sin 22θπ⎛⎫+= ⎪⎝⎭ .(15)102a x ⎫⎪⎭展开式中的常数项为180,则a = .(16)已知()y f x =为R 上的连续可导函数,且()()0xf x f x '+>,则函数()()1g x xf x =+()0x >的零点个数为___________.三.解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)设n S 为数列{}n a 的前n 项和,已知12a =,对任意*n ∈N ,都有()21n n S n a =+.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若数列4(2)n n a a ⎧⎫⎨⎬+⎩⎭的前n 项和为nT ,求证:112n T ≤<.(18)(本小题满分12分)如图,在三棱柱11ABC A B C -中,侧棱1AA ⊥底面ABC ,12AB AC AA ==,120BAC ∠=,1,D D 分别是线段11,BC B C 的中点,过线段AD 的中点P 作BC 的平行线,分别交AB ,AC 于点M ,N . (Ⅰ)证明:MN ⊥平面11ADD A ; (Ⅱ)求二面角1A A M N --的余弦值.ABCDPMN A 1B 1C 1D 1(19)(本小题满分12分)计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量X (年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.(Ⅰ)求在未来4年中,至多1年的年入流量超过120的概率;(Ⅱ)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X 限制,并有如下关系;若某台发电机运行,则该台发电机年利润为5000万元;若某台发电机未运行,则该台发电机年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?(20)(本小题满分12分)在平面直角坐标系xOy 中,已知椭圆221221x y C a b +=:()1a b >≥的离心率2e =,且椭圆1C 上一点M到点()30,Q 的距离的最大值为4. (Ⅰ)求椭圆1C 的方程;(Ⅱ)设1016A ⎛⎫ ⎪⎝⎭,,N 为抛物线22x y C =:上一动点,过点N 作抛物线2C 的切线交椭圆1C 于B ,C 两点,求ABC ∆面积的最大值.(21)(本小题满分12分)已知函数()e xf x ax =-(e 为自然对数的底数,a 为常数)在点()0,1处的切线斜率为1-.(Ⅰ)求a 的值及函数()x f 的极值; (Ⅱ)证明:当0>x 时,2e xx <;(III)证明:对任意给定的正数c ,总存在0x ,使得当()∞+∈,0x x ,恒有2e xx c <.请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题计分.做答时请写清题号.(22)(本小题满分10分)选修4—1:几何证明选讲如图90ACB ∠=︒,CD AB ⊥于点D ,以BD 为直径的圆O 与BC 交于点E . (Ⅰ)求证:BC CE AD DB ⋅=⋅;(Ⅱ)若4BE =,点N 在线段BE 上移动,90ONF ∠=o,NF 与O e 相交于点F ,求NF 的最大值.(23)(本小题满分10分)选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,已知曲线1C :1,12x t y t =+⎧⎨=-⎩(t 为参数)与曲线2C :cos 3sin x a y θθ=⎧⎨=⎩,(θ为参数,0a >).(Ⅰ)若曲线1C 与曲线2C 有一个公共点在x 轴上,求a 的值;(Ⅱ)当3a =时,曲线1C 与曲线2C 交于A ,B 两点,求A ,B 两点的距离.(24)(本小题满分10分)选修4—5:不等式选讲已知定义在R 上的函数()||||f x x m x =-+,*m ∈N ,存在实数x 使()2f x <成立. (Ⅰ)求实数m 的值;(Ⅱ)若,1αβ≥,()()4f f αβ+=,求证:413αβ+≥.2016年广州市普通高中毕业班模拟考试理科数学答案及评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数.选择题不给中间分.一.选择题(1)C (2)A (3)D (4)B (5)B (6)D (7)A (8)B(9)B(10)C(11)A(12)A二.填空题(13)2(14)79-(15)2或2-(16)0(其中第15题中,答对2个给5分,答对1个给3分)三.解答题(17)证明:(Ⅰ)因为()21n n S n a =+,………………………………………………………………1 分当2≥n 时,112n n S na --=,两式相减,得()121n n n a n a na -=+-, ………………………………………………………2 分 即()11n n n a na --=, 所以当2≥n 时,11n n a a n n -=-. ………………………………………………………3分 所以11n a a n =. ………………………………………………………4分 因为12a =,所以2n a n =. ………………………………………………………5 分 (Ⅱ)因为2n a n =,4(2)n n n b a a =+,*∈N n ,所以41112(22)(1)1n b n n n n n n ===-+++. ………………………………………………………7分所以12n n T b b b =+++1111112231n n ⎛⎫⎛⎫⎛⎫=-+-+- ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭=1111n n n -=++. ………………………………………………………9分 因为101n >+,所以1111n -<+.………………………………………………………10 分 因为()11f n n =+在*N 上是单调递减函数,所以111n -+在*N 上是单调递增函数.所以当1n =时,n T 取最小值21. ………………………………………………………11 分所以112n T ≤<. ………………………………………………………12 分(18)(Ⅰ)证明:因为AB AC =,D 是BC 的中点,所以,BC AD ⊥.因为M ,N 分别为AB ,AC 的中点,所以MN BC . ……………………………………1 分所以MN AD ⊥. ………………………………………………………2分因为1AA ⊥平面ABC ,MN ⊂平面ABC ,所以1AA ⊥MN .…………………………………3分又因为1,AD AA 在平面11ADD A 内,且AD 与1AA 相交, 所以MN ⊥平面11ADD A . ………………………………………………………4 分(Ⅱ)解法一:连接1A P ,过A 作1AE A P ⊥于E , 过E 作1EF A M ⊥于F ,连接AF . 由(Ⅰ)知,MN ⊥平面1AEA , 所以平面1AEA ⊥平面1AMN . 所以AE ⊥平面1AMN ,则1A M AE ⊥. 所以1A M ⊥平面AEF ,则1A M ⊥AF .故AFE ∠为二面角1A AM N --的平面角(设为θ). ………………………………………6 分 设11AA =,则由12AB AC AA ==,120BAC ∠=,有60BAD ∠=,2,1AB AD ==.A BCDP M N A 1B 1C 1D 1F E又P 为AD 的中点,则M 为AB 的中点,所以1,12AP AM ==. 在1Rt AA P,1AP =在1Rt A AM 中,1AM =………………………………8 分 从而1155AA AP AE A P ==,1122AA AM AF A M ==. ………………………………………10 分 所以sin AE AF θ==. ………………………………………………………11 分因为AFE ∠为锐角,所以cos 5θ===. 故二面角1AAM N --的余弦值为5. ………………………………………………………12 分 解法二: 设11AA =.如图,过1A 作1A E 平行于11B C ,以1A 为坐标原点,分别以111,AE AD ,1A A 的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O xyz -(点O 与点1A 重合). ………………5 分 则()10,0,0A ,()0,0,1A .因为P 为AD 的中点,所以,M N 分别为,AB AC 的中点,故11,1,,12222M N ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以131,12A M ⎛⎫= ⎪⎪⎝⎭,()10,0,1A A =,()3,0,0NM =. (6)分设平面1AAM 的法向量为()1111,,x y z =n , 则1111,,A M A A ⎧⊥⎪⎨⊥⎪⎩n n 即11110,0,A M A A ⎧∙=⎪⎨∙=⎪⎩n n 故有()()()1111111,,,10,2,,0,0,10.x y z x y z ⎧⎫∙=⎪⎪⎪⎨⎝⎭⎪∙=⎩…………………………7分 从而111110,220.x y z z ++=⎪⎨⎪=⎩取11x =,则1y =, 所以()11,=n 是平面1AAM 的一个法向量. ……………………………………………8 分1C设平面1AMN 的法向量为()2222,,x y z =n , 则212,,A M NM ⎧⊥⎪⎨⊥⎪⎩n n 即2120,0,A M NM ⎧∙=⎪⎨∙=⎪⎩n n 故有()())2222221,,,10,22,,0.x y z x y z ⎧⎛⎫∙=⎪⎪ ⎪⎪⎝⎭⎨⎪∙=⎪⎩ ………………………9分从而222210,20.x y z ++=⎨⎪=⎩取22y =,则21z =-, 所以()20,2,1=-n 是平面1AMN 的一个法向量. ……………………………………………10 分 设二面角1A AM N --的平面角为θ,又θ为锐角, 则1212cos θ∙=∙n n n n ………………………………………………………11 分5==. 故二面角1A AM N --. ………………………………………………………12 分(19)解:(I)依题意1101(4080)505P P X =<<==, 2357(80120)5010P P X =≤≤==,351(120)5010P P X =>==. ……………………………3分 由二项分布,在未来4年中至多有1年入流量超过120的概率为:43041343433991C (1)C (1)4101010P P P P ⎛⎫⎛⎫=-+-=+⨯⨯ ⎪ ⎪⎝⎭⎝⎭……………………………………4 分94770.947710000==.………………………………………………………5分(Ⅱ)记水电站年总利润为Y (单位:万元),由于水库年入流量总大于40,所以至少安装1台. ………………………………………………6 分 ①安装1台发电机的情形:由于水库年入流量总大于40,所以一台发电机运行的概率为1,对应的年利润5000=Y ,500015000EY =⨯=. ……………………………………………7分②安装2台发电机的情形:当8040<<X 时,一台发电机运行,此时42008005000=-=Y , 因此1(4200)(4080)0.2P Y P X P ==<<==.当80≥X 时,两台发电机运行,此时1000025000=⨯=Y , 因此23(10000)(80)0.8P Y P X P P ==≥=+=. 所以Y 的分布列如下:所以42000.2100000.88840EY =⨯+⨯=. ………………………………………………9分 ③安装3台发电机的情形:当8040<<X 时,一台发电机运行,此时500080023400Y =-⨯=, 因此2.0)8040()3400(1==<<==P X P Y P .当12080≤≤X 时,两台发电机运行,此时920080025000=-⨯=Y , 此时7.0)12080()9200(2==≤≤==P X P Y P .当120>X 时,三台发电机运行,此时1500035000=⨯=y , 因此1.0)120()15000(3==>==P X P Y P . 所以Y 的分布列如下:所以86201.0150007.092002.03400=⨯+⨯+⨯=EY . ……………………………………11 分 综上,欲使水电站年总利润的均值达到最大,应安装2台发电机.………………………12 分(20)解:(Ⅰ)因为22222234c a b e a a -===,所以224a b =.……………………………………1 分 则椭圆方程为,142222=+by b x 即22244x y b +=.设),(y x M ,则MQ == 124)1(394632222+++-=++--=b y b y y .……………………3 分当1-=y 时,||MQ 有最大值为41242=+b .………………………………………4分解得21b =,则24a =.所以椭圆1C 的方程是1422=+y x . ………………………………………………………5 分 (Ⅱ)设曲线C :2y x =上的点2(,)N t t ,因为2y x '=,所以直线BC 的方程为:222),(2t tx y t x t t y -=-=-即. ①…………………………6 分将①代入椭圆方程1422=+y x 中整理, 得04416)161(4322=-+-+t x t x t . ………………………………………………………7分则有)116(16)44)(161(4)16(244223++-=-+-=∆t t t t t .且2421232116144,16116t t x x t t x x +-=+=+. 所以2122122124)(41||41||x x x x t x x t BC -++=-+=2242161116414t t t t +++-+=. ………………………………………………………8分 设点A 到直线BC 的距离为d ,则2d =.…………………………………………9 分所以ABC ∆的面积2211||22116S BC d t ==∙+……………10 分== 当22±=t 时取到“=”,经检验此时0>∆,满足题意. …………………………………11 分综上,ABC ∆面积的最大值为865. ………………………………………………………12分(21)(I)解:由()e x f x ax =-,得'()e x f x a =-.因为(0)11f a '=-=-,所以2a =. ………………………………………………………1 分 所以()e 2x f x x =-,'()e 2x f x =-.令'()0f x =,得ln 2x =. ………………………………………………………2 分当ln 2x <时, '()0,()f x f x <单调递减;当ln 2x >时, '()0,()f x f x >单调递增.所以当ln 2x =时, ()f x 取得极小值,且极小值为ln2(ln 2)e 2ln 22ln 4,()f f x =-=-无极大值.………………………………………………………4分(Ⅱ)证明:令2()e x g x x =-,则'()e 2x g x x =-.由(I)得'()()(ln 2)0g x f x f =≥>,故()g x 在R 上单调递增. ……………………………5分 所以当0x >时,()(0)10g x g >=>,即2e x x <. ……………………………………………6 分 (Ⅲ)证明一:①若1c ≥,则e e x x c ≤. ………………………………………………………7分由(Ⅱ)知,当0x >时,2e x x <.所以当0x >时, 2e x x c <.取00x =,当0(,)x x ∈+∞时,恒有2e x x c <. ……………………………………………………8分 ②若01c <<,令11k c =>, ………………………………………………………9 分 要使不等式2e x x c <成立,只要2e x kx >成立.而要使2e x kx >成立,则只要2ln()x kx >,只要2ln ln x x k >+成立.令()2ln ln h x x x k =--,则22'()1x h x x x-=-=. 所以当2x >时, '()0,()h x h x >在(2,)+∞内单调递增.取01616x k =>,所以()h x 在0(,)x +∞内单调递增.又0()162ln(16)ln 8(ln 2)3(ln )5h x k k k k k k k =--=-+-+,易知ln ,ln 2,50k k k k >>>.所以0()0h x >.即存在016x c=,当0(,)x x ∈+∞时,恒有2e x x c <. …………………………11 分综上,对任意给定的正数c ,总存在0x ,当0(,)x x ∈+∞时,恒有2e x x c <. …………………12 分 证明二:对任意给定的正数c ,取0x =, ……………………………………………………8分 由(Ⅱ)知,当0x >时,2e x x >,所以2222e e e 22xx x x x ⎛⎫⎛⎫=> ⎪ ⎪⎝⎭⎝⎭.…………………………10分 当0x x >时,222241e 222x x x x x c c⎛⎫⎛⎫⎛⎫>>= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 因此,对任意给定的正数c ,总存在0x ,当0(,)x x ∈+∞时,恒有2e x x c <. …………………12分 证明三:首先证明当()0,x ∈+∞时,恒有31e 3x x <. 令()31e 3x h x x =-,则()2e x h x x '=-. 由(Ⅱ)知,当0x >时,2e x x >,从而()0h x '<,()h x 在()0,+∞上单调递减。

广东省广州市2016届高考数学1月模拟试卷 理(含解析)

广东省广州市2016届高考数学1月模拟试卷 理(含解析)

2016年某某省某某市高考数学模拟试卷(理科)(1月份)一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若全集U=R,集合A={x|1<2x<4},B={x|x﹣1≥0},则A∩∁U B=()A.{x|1<x<2} B.{x|0<x≤1} C.{x|0<x<1} D.{x|1≤x<2}2.已知a,b∈R,i是虚数单位,若a﹣i与2+bi互为共轭复数,则(a+bi)2=()A.3+4i B.5+4i C.3﹣4i D.5﹣4i3.下列说法正确的是()A.“f(0)=0”是“函数f(x)是奇函数”的充要条件B.若p:∃x0∈R,x02﹣x0﹣1>0,则¬p:∀x∈R,x2﹣x﹣1<0C.若p∧q为假命题,则p,q均为假命题D.“若α=,则sinα=”的否命题是“若α≠,则sinα≠”4.已知f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(7)=()A.2 B.﹣2 C.﹣98 D.985.执行如图所示的程序框图输出的结果为()A.(﹣2,2)B.(﹣4,0)C.(﹣4,﹣4)D.(0,﹣8)6.各项均为正数的等差数列{a n}中,a4a9=36,则前12项和S12的最小值为()A.78 B.48 C.60 D.727.一个几何体的三视图如图所示,其中正视图与侧视图都是斜边长为2的直角三角形,俯视图是半径为1的圆周和两条半径,则这个几何体的体积为()A.π B.π C.π D.π8.已知sinφ=,且φ∈(,π),函数f(x)=sin(ωx+φ)(ω>0)的图象的相邻两条对称轴之间的距离等于,则f()的值为()A.﹣B.﹣C.D.9.若实数x、y满足约束条件,则的取值X围是()A.[,2] B.[,] C.[,2] D.[1,2]10.过双曲线的一个焦点F作一条渐线的垂线,垂足为点A,与另一条渐近线交于点B,若,则此双曲线的离心率为()A.B.C.2 D.11.将5位同学分别保送到大学,某某交通大学,某某大学这3所大学就读,每所大学至少保送1人,则不同的保送方法共有()A.150种B.180种C.240种D.540种12.已知△ABC的三个顶点A,B,C的坐标分别为(0,1),(,0),(0,﹣2),O为坐标原点,动点P满足||=1,则|++|的最小值是()A.﹣1 B.﹣1 C.+1 D.+1二.填空题:本大题共4小题,每小题5分.13.已知向量,满足||=4,在方向上的投影是,则•=.14.已知cos(θ+π)=﹣,则sin(2θ+)=.15.(+)10展开式中的常数项为180,则a=.16.己知y=f(x)为R上的连续可导函数,且xf′(x)+f(x)>0,则函数g(x)=xf (x)+1(x>0)的零点个数为.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.设S n为数列{a n}的前n项和,已知a1=2,对任意n∈N*,都有2S n=(n+1)a n.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{}的前n项和为T n,求证:≤T n<1.18.如图,在三棱柱ABC﹣A1B1C中,侧棱AA1⊥底面ABC,AB=AC=2AA1,∠BAC=120°,D,D1分别是线段BC,B1C1的中点,过线段AD的中点P作BC的平行线,分别交AB,AC于点M,N.(Ⅰ)证明:MN⊥平面ADD1A1;(Ⅱ)求二面角A﹣A1M﹣N的余弦值.19.计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量X(年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,假设各年的年入流量相互独立.(Ⅰ)求未来4年中,至多有1年的年入流量超过120的概率;(Ⅱ)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X 限制,并有如下关系:年入流量X 40<X<80 80≤X≤120X>120发电机最多可运行台数1 2 3若某台发电机运行,则该台年利润为5000万元,若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?20.在平面直角坐标系xOy中,已知椭圆C1:+=1(a>b≥1)的离心率e=,且椭圆C1上一点M到点Q(0,3)的距离的最大值为4.(Ⅰ)求椭圆C1的方程;(Ⅱ)设A(0,),N为抛物线C2:y=x2上一动点,过点N作抛物线C2的切线交椭圆C1于B,C两点,求△ABC面积的最大值.21.已知函数f(x)=e x﹣ax(e为自然对数的底数,a为常数)在点(0,1)处的切线斜率为﹣1.(Ⅰ)求a的值及函数f(x)的极值;(Ⅱ)证明:当x>0时,x2<e x;(Ⅲ)证明:对任意给定的正数c,总存在x0,使得当x∈(x0,+∞),恒有x2<ce x.选修4-1:几何证明选讲22.如图∠ACB=90°,CD⊥AB于点D,以BD为直径的eO与BC交于点E.(Ⅰ)求证:BC•CD=AD•DB;(Ⅱ)若BE=4,点N在线段BE上移动,∠ONF=90°,NF与⊙O相交于点F,求NF的最小值.选修4-4:坐标系与参数方程23.在平面直角坐标系xOy中,已知曲线C1:(t为参数)与曲线C2:(θ为参数,a>0).(Ⅰ)若曲线C1与曲线C2有一个公共点在x轴上,求a的值;(Ⅱ)当a=3时,曲线C1与曲线C2交于A,B两点,求A,B两点的距离.选修4-5:不等式选讲24.已知定义在R上的函数f(x)=|x﹣m|+|x|,m∈N*,存在实数x使f(x)<2成立.(Ⅰ)某某数m的值;(Ⅱ)若α,β>1,f(α)+f(β)=2,求证:+≥.2016年某某省某某市高考数学模拟试卷(理科)(1月份)参考答案与试题解析一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若全集U=R,集合A={x|1<2x<4},B={x|x﹣1≥0},则A∩∁U B=()A.{x|1<x<2} B.{x|0<x≤1} C.{x|0<x<1} D.{x|1≤x<2}【考点】交、并、补集的混合运算.【专题】集合思想;综合法;集合.【分析】本题考查集合的运算,将两个集合化简,故直接运算得出答案即可.【解答】解:∵全集U=R,集合A={x|1<2x<4}={x|0<x<2},B={x|x﹣1≥0}={x|x≥1},则∁U B={x|x<1},∴A∩(∁U B)={x|0<x<1},故选:C.【点评】本题考查集合的交、并、补的混合运算,熟练掌握集合的交并补的运算规则是解本题的关键.本题考查了推理判断的能力.2.已知a,b∈R,i是虚数单位,若a﹣i与2+bi互为共轭复数,则(a+bi)2=()A.3+4i B.5+4i C.3﹣4i D.5﹣4i【考点】复数代数形式的乘除运算.【专题】计算题;分析法;数系的扩充和复数.【分析】由a﹣i与2+bi互为共轭复数,可求出a,b的值,代入(a+bi)2进一步化简求值,则答案可求.【解答】解:∵a﹣i与2+bi互为共轭复数,∴a=2,b=1.则(a+bi)2=(2+i)2=3+4i.故选:A.【点评】本题考查了复数代数形式的乘除运算,是基础题.3.下列说法正确的是()A.“f(0)=0”是“函数f(x)是奇函数”的充要条件B.若p:∃x0∈R,x02﹣x0﹣1>0,则¬p:∀x∈R,x2﹣x﹣1<0C.若p∧q为假命题,则p,q均为假命题D.“若α=,则sinα=”的否命题是“若α≠,则sinα≠”【考点】命题的真假判断与应用.【专题】简易逻辑.【分析】利用充要条件判断A的正误;命题的否定判断B的正误;复合命题的真假判断C 的正误;否命题的关系判断D的正误;【解答】解:对于A,“f(0)=0”是“函数f(x)是奇函数”的充要条件,显然不正确,如果函数的定义域中没有0,函数可以是奇函数例如,y=,∴A不正确;对于B,若p:∃x0∈R,x02﹣x0﹣1>0,则¬p:∀x∈R,x2﹣x﹣1≤0,∴B不正确;对于C,若p∧q为假命题,则p,q一假即假命,∴C不正确;对于D,“若α=,则sinα=”的否命题是“若α≠,则sinα≠”,满足否命题的形式,∴D正确;故选:D.【点评】本题考查命题的真假的判断,四种命题的关系,充要条件的判定,基本知识的考查.4.已知f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(7)=()A.2 B.﹣2 C.﹣98 D.98【考点】函数奇偶性的性质.【专题】转化思想;转化法;函数的性质及应用.【分析】根据函数奇偶性和周期性的关系进行转化求解即可.【解答】解:∵f(x+4)=f(x),∴函数的周期是4,∵f(x)在R上是奇函数,且当x∈(0,2)时,f(x)=2x2,∴f(7)=f(7﹣8)=f(﹣1)=﹣f(1)=﹣2,故选:B【点评】本题主要考查函数值的计算,根据函数奇偶性和周期性的关系进行转化是解决本题的关键.5.执行如图所示的程序框图输出的结果为()A.(﹣2,2)B.(﹣4,0)C.(﹣4,﹣4)D.(0,﹣8)【考点】程序框图.【专题】算法和程序框图.【分析】模拟程序框图的运行过程,即可得出程序运行后输出的结果.【解答】解:模拟程序框图的运行过程,如下;x=1,y=1,k=0时,s=x﹣y=0,t=x+y=2;x=s=0,y=t=2,k=1时,s=x﹣y=﹣2,t=x+y=2;x=s=﹣2,y=t=2,k=2时,s=x﹣y=﹣4,t=x+y=0;x=s=﹣4,y=t=0,k=3时,循环终止,输出(x,y)是(﹣4,0).故选:B.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,是基础题目.6.各项均为正数的等差数列{a n}中,a4a9=36,则前12项和S12的最小值为()A.78 B.48 C.60 D.72【考点】等差数列的性质.【专题】计算题;等差数列与等比数列.【分析】利用基本不等式,结合等差数列的求和及通项公式,即可求出前12项和S12的最小值.【解答】解:由题意,a4+a9≥2=12,∴S12=(a1+a12)=6(a4+a9)≥72,故选:D.【点评】本题考查基本不等式,考查等差数列的求和及通项公式,正确运用等差数列的求和及通项公式是关键.7.一个几何体的三视图如图所示,其中正视图与侧视图都是斜边长为2的直角三角形,俯视图是半径为1的圆周和两条半径,则这个几何体的体积为()A.π B.π C.π D.π【考点】由三视图求面积、体积.【专题】计算题;数形结合;数形结合法;立体几何.【分析】几何体为圆锥的,根据三视图的数据计算体积即可.【解答】解:由三视图可知几何体为圆锥的,圆锥的底面半径为1,母线长为2,∴圆锥的高为.∴V=××=.故选A.【点评】本题考查了圆锥的三视图和体积计算,属于基础题.8.已知sinφ=,且φ∈(,π),函数f(x)=sin(ωx+φ)(ω>0)的图象的相邻两条对称轴之间的距离等于,则f()的值为()A.﹣B.﹣C.D.【考点】正弦函数的图象.【专题】转化思想;综合法;三角函数的图像与性质.【分析】由周期求出ω,由条件求出cosφ的值,从而求得f()的值.【解答】解:根据函数f(x)=sin(ωx+φ)(ω>0)的图象的相邻两条对称轴之间的距离等于,可得==,∴ω=2.由sinφ=,且φ∈(,π),可得cosφ=﹣,∴则f()=sin(+φ)=cosφ=﹣,故选:B.【点评】本题主要考查正弦函数的周期性,同角三角函数的基本关系,属于基础题.9.若实数x、y满足约束条件,则的取值X围是()A.[,2] B.[,] C.[,2] D.[1,2]【考点】简单线性规划.【专题】计算题;数形结合;转化法;不等式.【分析】作出不等式组对应的平面区域,设k=,则z==,利用k的几何意义进行求解即可.【解答】解:作出不等式组对应的平面区域,则由图象知x>0,则设k=,则z==,则k的几何意义是区域内的点到原点的斜率,由图象知,OA的斜率最大,OC的斜率最小,由得,即A(1,2),由得,即C(,1),则OA的斜率k=2,OC的斜率k==,则≤k≤2,则≤≤,即≤≤,即的取值X围是[,],故选:B【点评】本题主要考查线性规划的应用,利用换元法转化为直线斜率的取值X围是解决本题的关键.10.过双曲线的一个焦点F作一条渐线的垂线,垂足为点A,与另一条渐近线交于点B,若,则此双曲线的离心率为()A.B.C.2 D.【考点】双曲线的简单性质.【专题】计算题;数形结合.【分析】先由,得出A为线段FB的中点,再借助于图象分析出其中一条渐近线对应的倾斜角的度数,找到a,b之间的等量关系,进而求出双曲线的离心率.【解答】解:如图因为,所以A为线段FB的中点,∴∠2=∠4,又∠1=∠3,∠2+∠3=90°,所以∠1=∠2+∠4=2∠2=∠3.故∠2+∠3=90°=3∠2⇒∠2=30°⇒∠1=60°⇒.∴=4⇒e=2.故选:C.【点评】本题是对双曲线的渐近线以及离心率的综合考查,是考查基本知识,属于基础题.11.将5位同学分别保送到大学,某某交通大学,某某大学这3所大学就读,每所大学至少保送1人,则不同的保送方法共有()A.150种B.180种C.240种D.540种【考点】计数原理的应用.【专题】计算题;分类讨论;综合法;排列组合.【分析】每所大学至少保送一人,可以分类来解,当5名学生分成2,2,1时,共有C52C32A33,当5名学生分成3,1,1时,共有C53A33,根据分类计数原理得到结果.【解答】解:当5名学生分成2,2,1或3,1,1两种形式,当5名学生分成2,2,1时,共有C52C32A33=90种结果,当5名学生分成3,1,1时,共有C53A33=60种结果,∴根据分类计数原理知共有90+60=150故不同保送的方法数为150种,故选:A.【点评】本题考查了分组分配问题,关键是如何分组,属于中档题.12.已知△ABC的三个顶点A,B,C的坐标分别为(0,1),(,0),(0,﹣2),O为坐标原点,动点P满足||=1,则|++|的最小值是()A.﹣1 B.﹣1 C.+1 D.+1【考点】平面向量的坐标运算.【专题】计算题;转化思想;向量法;平面向量及应用.【分析】设点P(x,y),则动点P满足||=1可得x2+(y+2)2=1.根据|++|=,表示点P(x y)与点Q(﹣,﹣1)之间的距离.显然点Q在圆C x2+(y+2)2=1的外部,求得QC=,问题得以解决.【解答】解:设点P(x,y),则动点P满足||=1可得x2+(y+2)2=1.根据++的坐标为(+x,y+1),可得|++|=,表示点P(x y)与点Q(﹣,﹣1)之间的距离.显然点Q在圆C x2+(y+2)2=1的外部,求得QC=,|++|的最小值为QC﹣1=﹣1,故选:A.【点评】本题主要考查两点间的距离公式,两个向量坐标形式的运算,求向量的模,属于基础题.二.填空题:本大题共4小题,每小题5分.13.已知向量,满足||=4,在方向上的投影是,则•= 2 .【考点】平面向量数量积的运算.【专题】对应思想;综合法;平面向量及应用.【分析】设的夹角为θ,则||cosθ=,于是•=||•||cosθ=4×=2.【解答】解:设的夹角为θ,则在方向上的投影为||cosθ=,∴•=||•||cos θ=4×=2.故答案为:2.【点评】本题考查了平面向量的数量积运算,属于基础题.14.已知cos(θ+π)=﹣,则sin(2θ+)=.【考点】两角和与差的正弦函数;二倍角的正弦.【专题】计算题;函数思想;定义法;三角函数的求值.【分析】根据诱导公式和二倍角公式即可求出.【解答】解:∵cos(θ+π)=﹣,∴cosθ=,∴sin(2θ+)=cos2θ=2cos2θ﹣1=﹣1=﹣,故答案为:﹣【点评】本题考查了诱导公式和二倍角公式,属于基础题.15.(+)10展开式中的常数项为180,则a= ±2 .【考点】二项式定理的应用.【专题】转化思想;综合法;二项式定理.【分析】先求出二项式展开式的通项公式,再令x的幂指数等于0,求得r的值,即可求得展开式中的常数项的值,再根据常数项的值为180,求得a的值.【解答】解:(+)10展开式中的通项公式为T r+1=•a r•,令5﹣=0,求得r=2,可得它的常数项为a2•=180,故a=±2,故答案为:±2.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题.16.己知y=f(x)为R上的连续可导函数,且xf′(x)+f(x)>0,则函数g(x)=xf (x)+1(x>0)的零点个数为0 .【考点】根的存在性及根的个数判断.【专题】计算题;函数思想;构造法;函数的性质及应用;导数的综合应用.【分析】求导g′(x)=f(x)+xf′(x)>0,从而可得g(x)在其定义域上单调递增;再由g(0)=0+1=1,从而判断.【解答】解:∵g(x)=xf(x)+1,∴g′(x)=f(x)+xf′(x)>0,故g(x)在其定义域上单调递增;∵y=f(x)为R上的连续可导函数,∴函数g(x)=xf(x)+1在R上连续;又∵g(0)=0+1=1,∴函数g(x)=xf(x)+1(x>0)的零点个数为0;故答案为:0.【点评】本题考查了导数的综合应用及函数的零点的判定定理的应用.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.设S n为数列{a n}的前n项和,已知a1=2,对任意n∈N*,都有2S n=(n+1)a n.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{}的前n项和为T n,求证:≤T n<1.【考点】数列的求和;数列递推式.【专题】转化思想;等差数列与等比数列.【分析】(I)2S n=(n+1)a n,当n≥2时,2S n﹣1=na n﹣1,可得==,可得a n.(II)==.利用“裂项求和”与数列的单调性即可得出.【解答】(I)解:∵2S n=(n+1)a n,∴当n≥2时,2S n﹣1=na n﹣1,可得2a n=(n+1)a n﹣na n﹣1,∴=.∴=,∴a n=2n.(II)证明:==.∴T n=++…+=1﹣.∴=T1≤T n<1,∴≤T n<1.【点评】本题考查了递推关系、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.18.如图,在三棱柱ABC﹣A1B1C中,侧棱AA1⊥底面ABC,AB=AC=2AA1,∠BAC=120°,D,D1分别是线段BC,B1C1的中点,过线段AD的中点P作BC的平行线,分别交AB,AC于点M,N.(Ⅰ)证明:MN⊥平面ADD1A1;(Ⅱ)求二面角A﹣A1M﹣N的余弦值.【考点】二面角的平面角及求法;直线与平面垂直的判定.【专题】转化思想;向量法;空间位置关系与距离;空间角.【分析】(1)根据线面垂直的判定定理即可证明MN⊥平面ADD1A1;(2)建立空间坐标系,利用向量法求出平面的法向量,利用向量法进行求解即可.【解答】(Ⅰ)证明:∵AB=AC,D是BC的中点,∴BC⊥AD,∵M,N分别为AB,AC的中点,∴MN∥BC,∴MN⊥AD,∵AA1⊥平面ABC,MN⊂平面ABC,∴AA1⊥MN,∵AD,AA1⊂平面ADD1A1,且AD∩AA1=A,∴MN⊥平面ADD1A1;(Ⅱ)设AA1=1,如图:过A1作A1E∥BC,建立以A1为坐标原点,A1E,A1D1,A1A分别为x,y,z轴的空间直角坐标系如图:则A1(0,0,0),A(0,0,1),∵P是AD的中点,∴M,N分别为AB,AC的中点.则M(,,1),N(﹣,,1),则=(,,1),=(0,0,1),=(,0,0),设平面AA1M的法向量为=(x,y,z),则,得,令x=1,则y=﹣,则=(1,﹣,0),同理设平面A1MN的法向量为=(x,y,z),则,得,令y=2,则z=﹣1,则=(0,2,﹣1),则cos<,>===﹣,∵二面角A﹣A1M﹣N是锐二面角,∴二面角A﹣A1M﹣N的余弦值是.【点评】本题主要考查直线垂直的判定以及二面角的求解,建立空间直角坐标系,利用向量法进行求解,综合性较强,运算量较大.19.计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量X(年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,假设各年的年入流量相互独立.(Ⅰ)求未来4年中,至多有1年的年入流量超过120的概率;(Ⅱ)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X 限制,并有如下关系:年入流量X 40<X<8080≤X≤120X>120发电机最多可运行台数1 2 3若某台发电机运行,则该台年利润为5000万元,若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【专题】概率与统计.【分析】(Ⅰ)先求出年入流量X的概率,根据二项分布,求出未来4年中,至少有1年的年入流量超过120的概率;(Ⅱ)分三种情况进行讨论,分别求出一台,两台,三台的数学期望,比较即可得到.【解答】解:(Ⅰ)依题意,p1=P(40<X<80)=,,,由二项分布,未来4年中,至多有1年的年入流量超过120的概率为=(Ⅱ)记水电站的总利润为Y(单位,万元)(1)安装1台发电机的情形,由于水库年入流总量大于40,故一台发电机运行的概率为1,对应的年利润Y=5000,E(Y)=5000×1=5000,(2)安装2台发电机的情形,依题意,当40<X<80时,一台发电机运行,此时Y=5000﹣800=4200,因此P(Y=4200)=P(40<X<80)=p1=,当X≥80时,两台发电机运行,此时Y=5000×2=10000,因此,P(Y=10000)=P(X≥80)=P2+P3=0.8,由此得Y的分布列如下Y 420 0 1000 0P 0.2 0.8所以E(Y)=4200×0.2+10000×0.8=8840.(3)安装3台发电机的情形,依题意,当40<X<80时,一台发电机运行,此时Y=5000﹣1600=3400,因此P(Y=3400)=P(40<X<80)=p1=0.2,当80≤X≤120时,两台发电机运行,此时Y=5000×2﹣800=9200,因此,P(Y=9200)=P(80≤X≤120)=p2=0.7,当X>120时,三台发电机运行,此时Y=5000×3=15000,因此,P(Y=15000)=P(X >120)=p3=0.1,由此得Y的分布列如下Y 340 0 9201500P 0.2 0.7 0.1所以E(Y)=3400×0.2+9200×0.7+15000×0.1=8620.综上,欲使水电站年总利润的均值达到最大,应安装发电机2台.【点评】本题主要考查了数学期望和二项分布,再求最大利润时,需要分类讨论,属于中档题.20.在平面直角坐标系xOy中,已知椭圆C1:+=1(a>b≥1)的离心率e=,且椭圆C1上一点M到点Q(0,3)的距离的最大值为4.(Ⅰ)求椭圆C1的方程;(Ⅱ)设A(0,),N为抛物线C2:y=x2上一动点,过点N作抛物线C2的切线交椭圆C1于B,C两点,求△ABC面积的最大值.【考点】椭圆的简单性质.【专题】综合题;转化思想;综合法;圆锥曲线的定义、性质与方程.【分析】(Ⅰ)由椭圆的离心率及椭圆C1上一点M到点Q(0,3)的距离的最大值为4,利用椭圆性质能求出a,b,由此能求出椭圆C1的方程.(Ⅱ)设曲线C:y=x2上的点N(t,t2),由导数几何意义求出直线BC的方程为y=2tx ﹣t2,代入椭圆方程,得(1+16t2)x2﹣16t3x+4t4﹣4=0,由此利用根的判别式、韦达定理、弦长公式能求出△ABC面积的最大值.【解答】解:(Ⅰ)∵椭圆C1:+=1(a>b≥1)的离心率e=,∴=,∴a2=4b2,∴椭圆方程为=1,即x2+4y2=4b2,∵椭圆C1上一点M到点Q(0,3)的距离的最大值为4,设M(x,y),则|MQ|====,∴当y=﹣1时,|MQ|取最大值=4,解得b2=1,则a2=4,∴椭圆C1的方程为.(Ⅱ)设曲线C:y=x2上的点N(t,t2),∵y′=2x,∴直线BC的方程为y﹣t2=2t(x﹣t),即y=2tx﹣t2,①将①代入椭圆方程,整理,得(1+16t2)x2﹣16t3x+4t4﹣4=0,则△=(16t3)2﹣4(1+16t2)(4t4﹣4)=16(﹣t4+16t2+1),且,,∴|BC|=|x1﹣x2|=•=,设点A到直线BC的距离为d,则d=,∴△ABC的面积S=|BC|d=••,当t=时,取到“=”,此时△>0,满足题意,∴△ABC面积的最大值为.【点评】本题考查椭圆方程的求法,考查三角形面积的最大值的求法,是中档题,解题时要认真审题,注意根的判别式、韦达定理、弦长公式的合理运用.21.已知函数f(x)=e x﹣ax(e为自然对数的底数,a为常数)在点(0,1)处的切线斜率为﹣1.(Ⅰ)求a的值及函数f(x)的极值;(Ⅱ)证明:当x>0时,x2<e x;(Ⅲ)证明:对任意给定的正数c,总存在x0,使得当x∈(x0,+∞),恒有x2<ce x.【考点】利用导数研究函数的单调性;利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【专题】分类讨论;转化思想;导数的综合应用;不等式的解法及应用.【分析】(I)f′(x)=e x﹣a,由f′(0)=﹣1,解得a=2.可得f(x)=e x﹣2x,f′(x)=e x﹣2.利用导数研究其单调性极值即可得出.(II)令g(x)=e x﹣x2,则g′(x)=e x﹣2x,由(I)可得:g′(x)≥f(ln2)>0,利用g(x)在R上单调递增,即可证明.(III)法一:首项证明当x∈(0,+∞)时,恒有<e x,令h(x)=﹣e x,由(II)可知:当x>0时,e x>x2,利用h(x)的单调性可得:<e x.取x0=,当x>x0时,即可证明x2<ce x.法二:对任意给定的正数c,取x0=,由(II)可知:当x>0时,e x>x2,可得e x>•,当x>x0时,恒有x2<ce x.法三:①若c≥1,则e x≤ce x.由(II)可知:当x>0时,ce x>x2.取x0=0,即可证明x2<ce x.②若0<c<1,令>1,要使不等式x2<ce x成立,只要e x>kx2成立.而要使e x>kx2成立,只要x>ln(kx2),即只要x>2lnx+lnk成立.令h(x)=x﹣2lnx﹣lnk,利用导数研究其单调性极值即可证明.【解答】(I)解:f′(x)=e x﹣a,∵f′(0)=﹣1=1﹣a,∴a=2.∴f(x)=e x﹣2x,f′(x)=e x﹣2.令f′(x)=0,解得x=ln2.当x<ln2时,f′(x)<0,函数f(x)单调递减;当x>ln2时,f′(x)>0,函数f(x)单调递增.∴当x=ln2时,函数f(x)取得极小值,为f(ln2)=2﹣2ln2,无极大值.(II)证明:令g(x)=e x﹣x2,则g′(x)=e x﹣2x,由(I)可得:g′(x)=f(x)≥f(ln2)>0,∴g(x)在R上单调递增,因此:x>0时,g(x)>g(0)=1>0,∴x2<e x.(III)证明:法一:首项证明当x∈(0,+∞)时,恒有<e x,令h(x)=﹣e x,则h′(x)=x2﹣e x,由(II)可知:当x>0时,e x>x2,从而h′(x)<0,h(x)在(0,+∞)上单调递减.∴h(x)<h(0)=﹣1<0,即<e x.取x0=,当x>x0时,有<e x.因此,对任意给定的正数c,总存在x0,使得当x∈(x0,+∞),恒有x2<ce x.法二:对任意给定的正数c,取x0=,由(II)可知:当x>0时,e x>x2,∴e x=>•,当x>x0时,e x>•>=,对任意给定的正数c,总存在x0,使得当x∈(x0,+∞),恒有x2<ce x.法三:①若c≥1,则e x≤ce x.由(II)可知:当x>0时,e x>x2,∴当x>0时,ce x>x2.取x0=0,当x∈(x0,+∞)时,恒有x2<ce x.②若0<c<1,令>1,要使不等式x2<ce x成立,只要e x>kx2成立.而要使e x>kx2成立,只要x>ln(kx2),即只要x>2lnx+lnk成立.令h(x)=x﹣2lnx﹣lnk,则h′(x)=1﹣=,∴当x>2时,h′(x)>0,h(x)在(2,+∞)内单调递增.取x0=16k>16,∴h(x)在(x0,+∞)内单调递增.又h(x0)=16k﹣2ln(16k)﹣lnk=8(k﹣ln2)+3(k﹣lnk)+5k,易知k>lnk,k>ln2,5k>0.∴h(x0)>0,即存在x0=,当x∈(x0,+∞)时,恒有x2<ce x.综上:对任意给定的正数c,总存在x0,使得当x∈(x0,+∞),恒有x2<ce x.【点评】本题考查了利用导数研究函数的单调性极值与最值、不等式的性质、方程的解法,考查了分类讨论方法、推理能力与计算能力,属于难题.选修4-1:几何证明选讲22.如图∠ACB=90°,CD⊥AB于点D,以BD为直径的eO与BC交于点E.(Ⅰ)求证:BC•CD=AD•DB;(Ⅱ)若BE=4,点N在线段BE上移动,∠ONF=90°,NF与⊙O相交于点F,求NF的最小值.【考点】与圆有关的比例线段.【专题】计算题;选作题;转化思想;综合法;推理和证明.【分析】(Ⅰ)由∠ACB=90°,CD⊥AB于D,得到CD2=AD•DB,由此利用切割线定理能证明CE•CB=AD•DB.(Ⅱ)由NF=,线段OF的长为定值,得到需求解线段ON长度的最小值,由此能求出结果.【解答】证明:(Ⅰ)在△ABC中,∠ACB=90°,CD⊥AB于D,∴CD2=AD•DB,∵CD是圆O的切线,由切割线定理,得CD2=CE•CB,∴CE•CB=AD•DB.解:(Ⅱ)∵ON⊥NF,∴NF=,∵线段OF的长为定值,即需求解线段ON长度的最小值,弦中点到圆心的距离最短,此时N为BE的中点,点F与点B或E重合,∴|NF|min=|BE|=2.【点评】本题考查两组线段乘积相等的证明,考查线段长最小的求法,是中档题,解题时要认真审题,注意切割线定理的合理运用.选修4-4:坐标系与参数方程23.在平面直角坐标系xOy中,已知曲线C1:(t为参数)与曲线C2:(θ为参数,a>0).(Ⅰ)若曲线C1与曲线C2有一个公共点在x轴上,求a的值;(Ⅱ)当a=3时,曲线C1与曲线C2交于A,B两点,求A,B两点的距离.【考点】参数方程化成普通方程.【专题】数形结合;转化思想;坐标系和参数方程.【分析】(I)曲线C1:(t为参数),化为:y=3﹣2x.令y=0可得与x轴的交点.曲线C2:(θ为参数,a>0)的直角坐标方程为:+=1.利用y=0可得与x轴的交点.(II)当a=3时,曲线C2:化为:x2+y2=9.利用点到直线的距离公式可得:圆心到直线的距离d.利用弦长公式可得|AB|=2.【解答】解:(I)曲线C1:(t为参数),化为:y=3﹣2x.与x轴的交点为.曲线C2:(θ为参数,a>0)的直角坐标方程为:+=1.与x轴的交点为(±a,0).∵a>0,∴a=.(II)当a=3时,曲线C2:化为:x2+y2=9.圆心到直线的距离d==.∴|AB|=2=2=.【点评】本题考查了极坐标方程化为直角坐标方程、点到直线的距离公式、圆的标准方程及其应用、弦长公式,考查了推理能力与计算能力,属于中档题.选修4-5:不等式选讲24.已知定义在R上的函数f(x)=|x﹣m|+|x|,m∈N*,存在实数x使f(x)<2成立.(Ⅰ)某某数m的值;(Ⅱ)若α,β>1,f(α)+f(β)=2,求证:+≥.【考点】基本不等式;绝对值三角不等式.【专题】转化思想;分析法;不等式.【分析】(I)|x﹣m|+|x|≥|x﹣m﹣x|=|m|,要使|x﹣m|+|x|<2有解,则|m|<2,m∈N*,解得m.文档(II )α,β>1,f(α)+f (β)=2α﹣1+2β﹣1=2,可得α+β=2.再利用基本不等式的性质即可得出.【解答】(I)解:∵|x﹣m|+|x|≥|x﹣m﹣x|=|m|,∴要使|x﹣m|+|x|<2有解,则|m|<2,解得﹣2<m<2.∵m∈N*,∴m=1.(II)证明:α,β>0,f(α)+f(β)=2α﹣1+2β﹣1=2,∴α+β=2.∴+==≥=,当且仅当α=2β=时取等号.【点评】本题考查了绝对值不等式的性质、基本不等式的性质,考查了推理能力与计算能力,属于中档题.31 / 31。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密 ★ 启用前2016年广州市普通高中毕业班综合测试(一)理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上,并用铅笔在答题卡上的相应位置填涂考生号。

2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)已知集合{}1A x x =<,{}20B x x x =-≤,则A B =(A ){}11x x -≤≤ (B ){}01x x ≤≤ (C ){}01x x <≤ (D ){}01x x ≤< (2)已知复数3i1iz +=-,其中i 为虚数单位,则复数z 的共轭复数z 所对应的点在 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 (3)执行如图所示的程序框图,如果输入3x =,则输出k 的值为(A )6 (B )8 (C )10 (D )12 (4)如果函数()sin 6f x x ωπ⎛⎫=+ ⎪⎝⎭()0ω>的相邻两个零点之间的距离为6π,则ω的值为(A )3 (B )6 (C )12(D )24(5)设等差数列{}n a 的前n 项和为n S ,且271224a a a ++=,则13S =(A )52 (B )78 (C )104 (D )208 (6)如果1P ,2P ,…,n P 是抛物线C :24y x =上的点,它们的横坐标依次为1x ,2x ,…,n x ,F 是抛物线C 的焦点,若1210n x x x +++= ,则12n PF P F P F +++= (A )10n + (B )20n + (C )210n + (D )220n +(7)在梯形ABCD 中,A D B C ,已知4AD =,6BC =,若C D m B A n =+ (),m n ∈R ,则mn =(A )3- (B )13- (C )13(D )3(8)设实数x ,y 满足约束条件10,10,1x y x y x --≤⎧⎪+-≤⎨⎪≥-⎩, 则()222x y ++的取值范围是(A )1,172⎡⎤⎢⎥⎣⎦ (B )[]1,17 (C)⎡⎣ (D)⎣ (9)一个六棱柱的底面是正六边形,侧棱垂直于底面,所有棱的长都为1,顶点都在同一个球面上,则该球的体积为(A )20π (B)3 (C )5π (D)6(11)已知下列四个命题:1p :若直线l 和平面α内的无数条直线垂直,则l α⊥; 2p :若()22x x f x -=-,则x ∀∈R ,()()f x f x -=-; 3p :若()11f x x x =++,则()00,x ∃∈+∞,()01f x =; 4p :在△ABC 中,若A B >,则sin sin A B >.其中真命题的个数是(A )1 (B )2 (C )3 (D )4(11)如图,网格纸上小正方形的边长为1,粗线画出的是某个四面体的三视图,则该四面体的表面积为(A)8+ (B)8+(C)2+ (D)1224(12)以下数表的构造思路源于我国南宋数学家杨辉所著的《详解九章算术》一书中的“杨辉三角形”.1 2 3 4 5 … 2013 2014 2015 20163 5 7 9 ………… 4027 4029 4031 8 12 16 ………………… 8056 8060 20 28 ………………………… 16116 …………………………………………该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数为(A )201520172⨯ (B )201420172⨯ (C )201520162⨯ (D )201420162⨯第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二.填空题:本大题共4小题,每小题5分.(13)一个总体中有60个个体,随机编号0,1,2,…,59,依编号顺序平均分成6个小组,组号依次为1,2,3,…,6.现用系统抽样方法抽取一个容量为6的样本,若在第1组随机抽取的号码为3,则在第5组中抽取的号码是 .(14)已知双曲线C :22221x y a b-=()0,0a b >>的左顶点为A ,右焦点为F ,点()0,B b ,且0BA BF =,则双曲线C 的离心率为 .(15)()422x x --的展开式中,3x 的系数为 . (用数字填写答案)(16)已知函数()211,1,42,1x x f x x x x ⎧-+<⎪=⎨-+≥⎪⎩,则函数()()22xg x f x =-的零点个数为个.三.解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)如图,在△ABC 中,点D 在边AB 上,CD BC ⊥,AC =5CD =,2BD AD =.(Ⅰ)求AD 的长; (Ⅱ)求△ABC 的面积.从某企业生产的某种产品中抽取100件,测量这些产品的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间[)55,65,[)65,75,[]75,85内的频率之比为4:2:1.(Ⅰ)求这些产品质量指标值落在区间[]75,85内的频率;(Ⅱ)若将频率视为概率,从该企业生产的这种产品中随机抽取3件,记这3件产 品中质量指标值位于区间[)45,75内的产 品件数为X ,求X 的分布列与数学期望.(19)(本小题满分12分)如图,四棱柱1111ABCD A BC D -的底面ABCD 是菱形,AC BD O = ,1AO ⊥底面ABCD ,21==AA AB .(Ⅰ)证明:平面1ACO ⊥平面11BB D D ;(Ⅱ)若60BAD ∠=,求二面角1B OB -已知椭圆C 的中心在坐标原点,焦点在x 轴上,左顶点为A ,左焦点为()120F -,,点(B 在椭圆C 上,直线()0y kx k =≠与椭圆C 交于E ,F 两点,直线AE ,AF 分别与y 轴交于点M ,N .(Ⅰ)求椭圆C 的方程;(Ⅱ)以MN 为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.(21)(本小题满分12分)已知函数+3()e x m f x x =-,()()ln 12g x x =++.(Ⅰ)若曲线()y f x =在点()()00f ,处的切线斜率为1,求实数m 的值; (Ⅱ)当1m ≥时,证明:()3()f x g x x >-.请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题计分.做答时请写清题号.(22)(本小题满分10分)选修4-1:几何证明选讲如图所示,△ABC 内接于⊙O ,直线AD 与⊙O 相切于点A ,交BC 的延长线于点D ,过点D 作DE CA 交BA 的延长线于点E . (Ⅰ)求证:2DE AE BE = ;(Ⅱ)若直线EF 与⊙O 相切于点F ,且4EF =,2EA =,求线段AC 的长.(23)(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为θρsin 2=,[)0,2θ∈π. (Ⅰ)求曲线C 的直角坐标方程;(Ⅱ)在曲线C 上求一点D ,使它到直线l:32x y t ⎧=⎪⎨=-+⎪⎩(t 为参数,t ∈R )的距离最短,并求出点D 的直角坐标.(24)(本小题满分10分)选修4-5:不等式选讲设函数()f x x x =+- (Ⅰ)当1a =时,求不等式()12f x ≥的解集; (Ⅱ)若对任意[]0,1a ∈,不等式()f x b ≥的解集为空集,求实数b 的取值范围.绝密 ★ 启用前2016年广州市普通高中毕业班综合测试(一)理科数学试题答案及评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题不给中间分. 一.选择题(1)D (2)D (3)C (4)B (5)C (6)A (7)A (8)A(9)D(10)B(11)A(12)B二.填空题(13)43(14 (15)40- (16)2三.解答题(17)(Ⅰ) 解法一: 在△ABC 中,因为2BD AD =,设AD x =()0x >,则2BD x =.在△BCD 中,因为CD BC ⊥,5CD =,2BD x =, 所以cos CD CDB BD ∠=52x=.………………………………………………………2分在△ACD 中,因为AD x =,5CD =,AC =由余弦定理得222cos 2AD CD AC ADC AD CD +-∠==⨯⨯ ………4分 因为CDB ADC ∠+∠=π, 所以cos cos ADC CDB ∠=-∠,52x=-.………………………………………………………5分 解得5x =.所以AD 的长为5. …………………………………………………………………6分解法二: 在△ABC 中,因为2BD AD =,设AD x =()0x >,则2BD x =. 在△BCD 中,因为CD BC ⊥,5CD =,2BD x =,所以BC =.所以cos BC CBD BD ∠==.……………………………………………2分在△ABC 中,因为3AB x =,BC AC =由余弦定理得2222cos 2AB BC AC CBA AB BC +-∠==⨯⨯.…………4分=25分 解得5x =.所以AD 的长为5. …………………………………………………………………6分(Ⅱ)解法一:由(Ⅰ)求得315AB x ==,BC ==.………………8分所以cos 2BC CBD BD ∠==1sin 2CBD ∠=.…………………………10分 所以1sin 2ABC S AB BC CBA ∆=⨯⨯⨯∠111522=⨯⨯=12分解法二:由(Ⅰ)求得315AB x ==,BC =.………………8分因为AC =ABC 为等腰三角形.因为cos BC CBD BD ∠==30CBD ∠=.……………………………10分所以△ABC 底边AB 上的高12h BC == 所以12ABC S AB h ∆=⨯⨯1152=⨯=12分解法三:因为AD 的长为5, 所以51cos ==22CD CDB BD x ∠=,解得3CDB π∠=.……………………………8分所以12sin 234ADC S AD CD ∆π=⨯⨯⨯=.1sin 232BCD S BD CD ∆π=⨯⨯⨯=.……………………………………10分所以ABC ADC BCD S S S ∆∆∆=+=12分(18)解:(Ⅰ)设区间[]75,85内的频率为x ,则区间[)55,65,[)65,75内的频率分别为4x 和2x .…………………………1分 依题意得()0.0040.0120.0190.0310421x x x +++⨯+++=,………………3分 解得0.05x =.所以区间[]75,85内的频率为0.05.………………………………………………4分 (Ⅱ)从该企业生产的该种产品中随机抽取3件,相当于进行了3次独立重复试验,所以X 服从二项分布(),B n p ,其中3n =.由(Ⅰ)得,区间[)45,75内的频率为0.30.2+0.1=0.6+,将频率视为概率得0.6p =.………………………………………………………5分 因为X 的所有可能取值为0,1,2,3,…………………………………………6分且0033(0)C 0.60.40.064P X ==⨯⨯=,1123(1)C 0.60.40.288P X ==⨯⨯=, 2213(2)C 0.60.40.432P X ==⨯⨯=,3303(3)C 0.60.40.216P X ==⨯⨯=.所以X 的分布列为:X 0 1 2 3 P0.064 0.288 0.432 0.216所以X 的数学期望为00.06410.28820.43230.216 1.8EX =⨯+⨯+⨯+⨯=. (或直接根据二项分布的均值公式得到30.6 1.8EX np ==⨯=)……………12分………………………10分(19)(Ⅰ)证明:因为1AO ⊥BD ⊂平面ABCD ,所以1AO BD ⊥因为ABCD 是菱形,所以CO BD ⊥因为1AO CO O = ,所以BD ⊥平面1ACO 因为BD ⊂平面11BB D D ,所以平面11BB D D ⊥平面1ACO .…………………………………………………4分 (Ⅱ)解法一:因为1AO ⊥平面ABCD ,CO BD ⊥,以O 为原点,OB ,OC ,1OA方 向为x ,y ,z 轴正方向建立如图所示空间直角坐标系.………………………5分 因为12AB AA ==,60BAD ∠=, 所以1OB OD ==,OA OC ==11OA ==.………………6分则()1,0,0B ,()C ,()0,A ,()10,0,1A ,所以()11BB AA ==设平面1OBB 的法向量为n 因为()1,0,0OB = ,1OB =所以0,0.x x z =⎧⎪⎨+=⎪⎩令1=y ,得(0,1,=n 同理可求得平面1OCB 的法向量为()1,0,1=-m .………………………………10分 所以cos ,<>==n m 11分 因为二面角1B OB C --的平面角为钝角,所以二面角1B OB C --的余弦值为4-.……………………………………12分解法二:由(Ⅰ)知平面连接11AC 与11B D 交于点连接1CO ,1OO ,因为11AA CC =,1//AA 所以11CAAC 因为O ,1O 分别是AC ,11所以11OAO C 为平行四边形.且111OC OA ==. 因为平面1ACO 平面11BB D D 1OO =, 过点C 作1CH OO ⊥于H ,则CH ⊥平面11BB D D .过点H 作1HK OB ⊥于K ,连接CK ,则1CK OB ⊥.所以CKH ∠是二面角1B OB C --的平面角的补角.……………………………6分 在1Rt OCO ∆中,11122O C OC CH OO ⨯===.………………………………7分在1OCB ∆中,因为1AO ⊥11A B ,所以1OB ==因为11A B CD =,11//A B CD , 所以11B C A D ===.因为22211B C OC OB +=,所以1OCB ∆为直角三角形.……………………………8分 所以11CB OC CK OB ===⨯9分所以KH ==.…………………………………………………10分所以cos 4KH CKH CK∠==.……………………………………………………11分所以二面角1B OB C --的余弦值为4-.……………………………………12分(20)(Ⅰ)解法一:设椭圆C 的方程为22221(0)x y a b a b+=>>,因为椭圆的左焦点为()120F -,,所以224a b -=.……………………………1分 设椭圆的右焦点为()220F ,,已知点(2B 在椭圆C 上, 由椭圆的定义知122BF BF a +=,所以2a ==.………………………………………………………2分所以a =2b =.………………………………………………………3分所以椭圆C 的方程为22184x y +=.………………………………………………4分 解法二:设椭圆C 的方程为22221(0)x y a b a b+=>>,因为椭圆的左焦点为()120F -,,所以224a b -=. ①…………………1分因为点(2B 在椭圆C 上,所以22421a b +=. ②…………………2分由①②解得,a =2b =.…………………………………………………3分所以椭圆C 的方程为22184x y +=.………………………………………………4分 (Ⅱ)解法一:因为椭圆C 的左顶点为A ,则点A的坐标为()-.…………5分因为直线(0)y kx k =≠与椭圆22184x y +=交于两点E ,F , 设点()00,E x y (不妨设00x >),则点()00,F x y --.联立方程组22,184y kx x y =⎧⎪⎨+=⎪⎩消去y 得22812x k =+.所以0x =,则0y =.所以直线AE的方程为y x =+.……………………………6分因为直线AE ,AF 分别与y 轴交于点M ,N ,令0x =得y =M ⎛ ⎝.……………………7分同理可得点N ⎛ ⎝.…………………………………………………8分所以MN ==.…………………9分设MN的中点为P ,则点P 的坐标为0,P k ⎛⎫- ⎪ ⎪⎝⎭.…………………………10分则以MN 为直径的圆的方程为22x y ⎛+= ⎝⎭2, 即224x y y k++=.…………………………………………………………11分 令0y =,得24x =,即2x =或2x =-.故以MN 为直径的圆经过两定点()12,0P ,()22,0P -.………………………12分 解法二:因为椭圆C 的左端点为A ,则点A 的坐标为()-.……………5分因为直线(0)y kx k =≠与椭圆22184x y +=交于两点E ,F , 设点00(,)E x y ,则点00(,)F x y --.所以直线AE的方程为y x =+.………………………………6分 因为直线AE 与y 轴交于点M ,令0x =得y =,即点M ⎛ ⎝.……………………………7分同理可得点N ⎛⎫⎝.……………………………………………………8分所以020168y MN x =-=-.因为点00(,)E x y 在椭圆C 上,所以2200184x y +=. 所以08MN y =.……………………………………………………………………9分 设MN 的中点为P ,则点P的坐标为000,P y ⎛⎫-⎪ ⎪⎝⎭.………………………10分 则以MN为直径的圆的方程为2200x y y ⎛⎫++= ⎪ ⎪⎝⎭2016y .即220+x y y y +=4.………………………………………………………11分 令0y =,得24x =,即2x =或2x =-.故以MN 为直径的圆经过两定点()12,0P ,()22,0P -.………………………12分 解法三:因为椭圆C 的左顶点为A ,则点A的坐标为()-.……………5分因为直线(0)y kx k =≠与椭圆22184x y +=交于两点E ,F ,设点(),2sin E θθ(0θ<<π),则点(),2sin F θθ--. 所以直线AE的方程为y x =+.………………………6分因为直线AE 与y 轴交于点M ,令0x =得2sin cos 1y θθ=+,即点2sin 0,cos 1M θθ⎛⎫⎪+⎝⎭.………………………………7分同理可得点2sin 0,cos 1N θθ⎛⎫⎪-⎝⎭.………………………………………………………8分所以2sin 2sin 4cos 1cos 1sin MN θθθθθ=-=+-.………………………………………9分 设MN 的中点为P ,则点P 的坐标为2cos 0,sin P θθ⎛⎫-⎪⎝⎭.………………………10分 则以MN 为直径的圆的方程为222cos sin x y θθ⎛⎫++= ⎪⎝⎭24sin θ,即224cos 4sin x y y θθ++=.………………………………………………………11分 令0y =,得24x =,即2x =或2x =-.故以MN 为直径的圆经过两定点()12,0P ,()22,0P -.………………………12分(21)(Ⅰ)解:因为+3()e x m f x x =-,所以+2()e 3x m f x x '=-.……………………………………………………………1分 因为曲线()y f x =在点()()00f ,处的切线斜率为1,所以()0e 1mf '==,解得0m =.…………………………………………………2分(Ⅱ)证法一:因为+3()e x m f x x =-,()()ln 12g x x =++,所以()3()f x g x x >-等价于()+e ln 120x mx -+->.当1m ≥时,()()+1e ln 12e ln 12x mx x x +-+-≥-+-.要证()+eln 120x mx -+->,只需证明1e ln(1)20x x +-+->.………………4分以下给出三种思路证明1e ln(1)20x x +-+->. 思路1:设()()1eln 12x h x x +=-+-,则()11e 1x h x x +'=-+. 设()11e 1x p x x +=-+,则()()121e 01x p x x +'=+>+. 所以函数()p x =()11e 1x h x x +'=-+在()1+-∞,上单调递增.…………………6分 因为121e 202h ⎛⎫'-=-< ⎪⎝⎭,()0e 10h '=->,所以函数()11e1x h x x +'=-+在()1+-∞,上有唯一零点0x ,且01,02x ⎛⎫∈- ⎪⎝⎭. ………………………………8分 因为()00h x '=,所以0+101e1x x =+,即()()00ln 11x x +=-+.………………9分 当()01,x x ∈-时,()0h x '<;当()0,x x ∈+∞时,()0h x '>,所以当0x x =时,()h x 取得最小值()0h x .………………………………………10分 所以()()()0100=e ln 12x h x h x x +≥-+-()0011201x x =++->+. 综上可知,当1m ≥时,()3()f x g x x >-. ……………………………………12分 思路2:先证明1e2x x +≥+()x ∈R .……………………………………………5分设()1e 2x h x x +=--,则()+1e 1x h x '=-.因为当1x <-时,()0h x '<,当1x >-时,()0h x '>,所以当1x <-时,函数()h x 单调递减,当1x >-时,函数()h x 单调递增. 所以()()10h x h ≥-=. 所以1e2x x +≥+(当且仅当1x =-时取等号).…………………………………7分所以要证明1e ln(1)20x x +-+->,只需证明()2ln(1)20x x +-+->.………………………………………………8分 下面证明()ln 10x x -+≥.设()()ln 1p x x x =-+,则()1111xp x x x '=-=++. 当10x -<<时,()0p x '<,当0x >时,()0p x '>,所以当10x -<<时,函数()p x 单调递减,当0x >时,函数()p x 单调递增. 所以()()00p x p ≥=.所以()ln 10x x -+≥(当且仅当0x =时取等号).……………………………10分 由于取等号的条件不同, 所以1eln(1)20x x +-+->.综上可知,当1m ≥时,()3()f x g x x >-. ……………………………………12分 (若考生先放缩()ln 1x +,或e x、()ln 1x +同时放缩,请参考此思路给分!) 思路3:先证明1eln(1)20x x +-+->.令1t x =+,转化为证明e ln 2tt ->()0t >.……………………………………5分因为曲线e t y =与曲线ln y t =关于直线y t =对称,设直线0x x =()00x >与曲线e t y =、ln y t =分别交于点A 、B ,点A 、B 到直线y t =的距离分别为1d 、2d ,则)12AB d d =+.其中01x d =,2d ()00x >.①设()000e x h x x =-()00x >,则()00e 1x h x '=-. 因为00x >,所以()00e 10x h x '=->.所以()0h x 在()0,+∞上单调递增,则()()001h x h >=.所以01x d =>. ②设()000ln p x x x =-()00x >,则()0000111x p x x x -'=-=. 因为当001x <<时,()00p x '<;当01x >时,()00p x '>, 所以当001x <<时,函数()000ln p x x x =-单调递减;当01x >时,函数()000ln p x x x =-单调递增. 所以()()011p x p ≥=.所以2d ≥.所以)122AB d d ≥+>=⎭. 综上可知,当1m ≥时,()3()f x g x x >-.……………………………………12分 证法二:因为+3()ex mf x x =-,()()ln 12g x x =++,所以()3()f x g x x >-等价于()+e ln 120x mx -+->.…………………………4分以下给出两种思路证明()+eln 120x mx -+->.思路1:设()()+e ln 12x m h x x =-+-,则()+1e 1x mh x x '=-+. 设()+1e1x mp x x =-+,则()()+21e 01x m p x x '=+>+. 所以函数()p x =()+1e 1x mh x x '=-+在()+∞-1,上单调递增.………………6分 因为1m ≥, 所以()()1e+1e 1ee e e e 10mmmmm m h ----+-+'-+=-=-<,()0e 10m h '=->.所以函数()+1e1x mh x x '=-+在()+∞-1,上有唯一零点0x ,且()01e ,0m x -∈-+. …………………8分 因为()00h x '=,所以0+01e1x mx =+,即()00ln 1x x m +=--.………………9分 当()00,x x ∈时,()0h x '<;当()0,x x ∈+∞时,()0h x '>.所以当0x x =时,()h x 取得最小值()0h x .……………………………………10分 所以()()()0+00e ln 12x mh x h x x ≥=-+-00121x m x =++-+ ()0011301x m x =+++->+. 综上可知,当1m ≥时,()3()f x g x x >-.……………………………………12分 思路2:先证明e 1()xx x ≥+∈R ,且ln(1)(1)x x x +≤>-.…………………5分 设()e 1xF x x =--,则()e 1x F x '=-.因为当0x <时,()0F x '<;当0x >时,()0F x '>, 所以()F x 在(,0)-∞上单调递减,在(0,)+∞上单调递增. 所以当0x =时,()F x 取得最小值(0)0F =.所以()(0)0F x F ≥=,即e 1()xx x ≥+∈R .…………………………………7分 所以ln(1)x x +≤(当且仅当0x =时取等号).…………………………………8分 再证明()+eln 120x mx -+->.由e 1()x x x ≥+∈R ,得1e 2x x +≥+(当且仅当1x =-时取等号).…………9分 因为1x >-,1m ≥,且1e2x x +≥+与ln(1)x x +≤不同时取等号,所以 ()()+11e ln 12e e ln 12x m m x x x -+-+-=⋅-+-11e (2)2(e 1)(2)0m m x x x -->+--=-+≥.综上可知,当1m ≥时,()3()f x g x x >-.……………………………………12分(22)(Ⅰ)证明:因为AD 是⊙O 的切线,所以DAC B ∠=∠(弦切角定理). (1)因为DE CA ,所以DAC EDA ∠=∠.……………………………2所以EDA B ∠=∠.因为AED D EB ∠=∠(公共角),所以△AED ∽△DEB .……………………………………………………………3分 所以DE AE BEDE=.即2DE AE BE = .…………………………………………………………………4分 (Ⅱ)解:因为EF 是⊙O 的切线,EAB 是⊙O 的割线,所以2EF EA EB = (切割线定理).……………………………………………5分 因为4EF =,2EA =,所以8EB =,6AB EB EA =-=.…………………7分 由(Ⅰ)知2DE AE BE = ,所以4DE =.………………………………………8分 因为DE CA ,所以△BAC ∽△BED . ………………………………………9分 所以BA ACBEED =.所以6438BA EDAC BE⋅⨯===. …………………………………………………10分(23)(Ⅰ)解:由θρsin 2=,[)0,2θ∈π,可得22sin ρρθ=.…………………………………………………………………1分 因为222x y ρ=+,sin y ρθ=,…………………………………………………2分所以曲线C 的普通方程为2220x y y +-=(或()2211x y +-=). …………4分(Ⅱ)解法一:因为直线的参数方程为32x y t ⎧=+⎪⎨=-+⎪⎩(t 为参数,t ∈R ),消去t 得直线l的普通方程为5y =+. ……………………………………5分因为曲线C :()2211x y +-=是以G ()1,0为圆心,1为半径的圆,设点()00,D x y ,且点D 到直线l:5y =+的距离最短, 所以曲线C 在点D 处的切线与直线l:5y =+平行. 即直线GD 与l 的斜率的乘积等于1-,即(0011y x -⨯=-.………………7分 因为()220011x y +-=,解得0x =或0x = 所以点D 的坐标为12⎛⎫ ⎪ ⎪⎝⎭,或32⎫⎪⎪⎝⎭,.……………………………………9分 由于点D到直线5y =+的距离最短,所以点D 的坐标为32⎫⎪⎪⎝⎭,.……………………………………………………10分 解法二:因为直线l的参数方程为32x y t ⎧=+⎪⎨=-+⎪⎩(t 为参数,t ∈R ),消去t 得直线l50y +-=.……………………………………5分因为曲线C ()2211x y +-=是以G ()1,0为圆心,1为半径的圆,因为点D 在曲线C 上,所以可设点D ()cos ,1sin ϕϕ+[)()0,2ϕ∈π.………7分 所以点D 到直线l的距离为d =2sin 3ϕπ⎛⎫=-+⎪⎝⎭.………………………………8分 因为[)0,2ϕ∈π,所以当6ϕπ=时,min 1d =.…………………………………9分 此时D 32⎫⎪⎪⎝⎭,,所以点D 的坐标为32⎫⎪⎪⎝⎭,.……………………………10分(24)(Ⅰ)解:当1a =时,()12f x ≥等价于112x x +-≥.……………………1分 ①当1x ≤-时,不等式化为112x x --+≥,无解; ②当10x -<<时,不等式化为112x x ++≥,解得104x -≤<; ③当0x ≥时,不等式化为112x x +-≥,解得0x ≥.…………………………3分 综上所述,不等式()1≥x f 的解集为1,4⎡⎫-+∞⎪⎢⎣⎭.………………………………4分 (Ⅱ)因为不等式()f x b ≥的解集为空集,所以()max b f x >⎡⎤⎣⎦.…………………5分以下给出两种思路求()f x 的最大值.思路1:因为()f x x x =+-()01a ≤≤,当x ≤()f x x x =-=0<.当x <时,()f x x x =2x =£=+当x ≥()f x x x =+=所以()max f x ⎡⎤⎣⎦=7分思路2:因为 ()f x x x =+-x x ≤++==当且仅当x ≥所以()max f x ⎡⎤⎣⎦=7分因为对任意[]0,1a ∈,不等式()f x b ≥的解集为空集,所以max b >.………………………………………………………8分以下给出三种思路求()g a =. 思路1:令()g a =所以()21g a =+2212≤++=.=12a =时等号成立. 所以()max g a =⎡⎤⎣⎦所以b的取值范围为)∞.…………………………………………………10分 思路2:令()g a =因为01a ≤≤,所以可设2cos a θ= 02θπ⎛⎫≤≤ ⎪⎝⎭, 则()g a=cos sin 4θθθπ⎛⎫=+=+≤ ⎪⎝⎭ 当且仅当4θπ=时等号成立. 所以b的取值范围为)∞.…………………………………………………10分 思路3:令()g a =因为01a ≤≤,设x y ìï=ïíï=ïî则221x y +=()01,01x y ##. 问题转化为在221x y +=()01,01x y ##的条件下, 求z x y =+的最大值.利用数形结合的方法容易求得z此时x y ==. 所以b的取值范围为)∞.…………………………………………………10分。

相关文档
最新文档