复数专题

合集下载

第12章复数章末题型归纳总结 高考数学

第12章复数章末题型归纳总结 高考数学

又∠ ∈ , ,所以∠ = .



故答案为:






= ,
试卷讲评课件
例11.(2024 ⋅高一·江苏·专题练习)在复平面内,O是原点,向量OZ对应
的复数是−1 +
− 2
复数为_____.
π
i,将OZ绕点O按逆时针方向旋转 ,则所得向量对应的
4
【解析】如图,由题意可知 = −, ,与
经典题型六:复数的三角表示
模块三:数学思想与方法
①分类与整合思想②等价转换思想③
数形结合的思想
试卷讲评课件
模块一:本章知识思维导图
试卷讲评课件
模块二:典型例题
经典题型一:复数的概念
例1.(2024
z
⋅高三·河南商丘·阶段练习)若复数z满足 为纯虚数,且
2+i
z = 1,则z的虚部为(

2 5
A.±
若 = ,则有 = , = , ∴ = ,反之由 = ,
推不出 = ,如 = +, = − 时, = ,故C正确;
D中两个复数不能比较大小,但任意两个复数的模总能比较大小,∴
错.
选.
试卷讲评课件
【解析】复数 = + ,则 = +

= − + = −,
−=

又是实数,因此
,解得 = −,
= −
所以实数的值是−.
试卷讲评课件
z1
z1
(2)若 是纯虚数,求
z2
z2
+
z1 2
z2
+
z1 3

复数的8种运算规则专题讲解

复数的8种运算规则专题讲解

复数的8种运算规则专题讲解1. 加法运算规则:复数的加法规则是将实部相加,虚部相加。

例如,对于两个复数a+bi和c+di,它们的和为(a+c)+(b+d)i。

2. 减法运算规则:复数的减法规则是将实部相减,虚部相减。

例如,对于两个复数a+bi和c+di,它们的差为(a-c)+(b-d)i。

3. 乘法运算规则:复数的乘法规则是将实部与虚部相乘,并通过虚部的平方成为负数来计算。

例如,对于两个复数a+bi和c+di,它们的乘积为(ac-bd)+(ad+bc)i。

4. 除法运算规则:复数的除法规则是通过将被除数和除数同时乘以共轭复数的倒数来计算。

共轭复数是指将虚部取负的复数。

例如,对于两个复数a+bi和c+di的除法计算,可以使用公式[(a+bi)/(c+di)]*[(c-di)/(c-di)]来得到结果。

5. 模运算规则:复数的模运算规则是计算复数的绝对值,即复数的平方和的平方根。

例如,对于复数a+bi,它的模为√(a^2+b^2)。

6. 幂运算规则:复数的幂运算规则是通过将复数转换为极坐标形式,并使用欧拉公式计算。

欧拉公式可以表示为e^(iθ)=cosθ+isinθ。

例如,对于复数a+bi的幂运算a^b,可以使用欧拉公式来计算。

7. 开方运算规则:复数的开方运算规则是将复数转换为极坐标形式,并使用特定的公式来计算。

例如,对于复数a+bi的开方运算,可以使用公式√(r*[cos(θ/n)+isin(θ/n)])来计算。

8. 对数运算规则:复数的对数运算规则是将复数转换为极坐标形式,并使用特定的公式来计算。

例如,对于复数a+bi的对数运算,可以使用公式ln(r)+i[θ+(2nπ)]来计算。

这些是复数的8种基本运算规则,了解和掌握这些规则将有助于在复数运算中进行准确的计算操作。

专题2.1复数的概念(七个重难点突破)高考数学

专题2.1复数的概念(七个重难点突破)高考数学

故答案为:④.
1
2
3
4
5
6
7
16
8
17
9
18
10
11
12
13
14
15
试卷讲评课件
2 + 2i/2i + 2
6.以2 + i的实部为虚部,2i + 1的虚部为实部的复数为_____________.
【分析】依题意分别确定实部与虚部,即可得解.
【详解】因为 + 的实部为2, + 的虚部为2,故所求复数为 + .

及正切型函数的值域,即可求得参数的范围.
1
2
3
4
5
6
7
16
8
17
9
18
10
11
12
13
14
15
试卷讲评课件
【详解】∵ 是实数, ∈ , ,�� ≠ ,∴ + − = ,
即 =

恒成立.








=


【详解】由
,解得 = −,故 = −.
+≠
故答案为: = −
1
2
3
4
5
6
7
16
8
17
9
18
10
11
12
13
14
15
试卷讲评课件
8.已知x是实数,则“复数x x − 1 + i是纯虚数”的充分不必要条件是“
x = 0(或x = 1)
_______________”.
【分析】根据复数的概念、复数的代数形式以及复数的分类即可求解.

高考数学压轴专题(易错题)备战高考《复数》难题汇编及解析

高考数学压轴专题(易错题)备战高考《复数》难题汇编及解析

新高中数学《复数》专题解析(1)一、选择题1.若1+是关于x 的实系数方程20x bx c ++=的一个复数根,则( )A .2,3b c ==B .2,1b c ==-C .2,1b c =-=-D .2,3b c =-=【答案】D 【解析】 【分析】由题意,将根代入实系数方程x 2+bx +c =0整理后根据得数相等的充要条件得到关于实数a ,b的方程组10b c -++=⎧⎪⎨=⎪⎩,解方程得出a ,b 的值即可选出正确选项【详解】由题意1是关于x 的实系数方程x 2+bx +c =0∴﹣2+b bi +c =0,即()10b c i -+++=∴10b c -++=⎧⎪⎨=⎪⎩,解得b =﹣2,c =3 故选:D . 【点睛】本题考查复数相等的充要条件,解题的关键是熟练掌握复数相等的充要条件,能根据它得到关于实数的方程,本题考查了转化的思想,属于基本计算题2.设i 为虚数单位,321iz i=+-,则||z =( ) A .1 BCD.2【答案】D 【解析】 【分析】计算出z ,进而计算z 即可. 【详解】()()()3133313222,111222i i i i i z i i i ⋅+-=+=+=+=+--+2z ∴==. 【点睛】本题考查复数的除法运算及模的求法,考查计算能力.3.已知i 是虚数单位,复数134z i =-,若在复平面内,复数1z 与2z 所对应的点关于虚轴对称,则12z z ⋅= A .25- B .25C .7-D .7【答案】A 【解析】 【分析】根据复数1z 与2z 所对应的点关于虚轴对称,134z i =-,求出2z ,代入计算即可 【详解】Q 复数1z 与2z 所对应的点关于虚轴对称,134z i =-234z i ∴=--()()12343425z z i i ⋅=---=-故选A 【点睛】本题主要考查了复数的运算法则及其几何意义,属于基础题4.已知复数21iz =-+,则( ) A .2z =B .z 的实部为1C .z 的虚部为1-D .z 的共轭复数为1i +【答案】C 【解析】分析:由题意首先化简复数z ,然后结合z 的值逐一考查所给的选项即可确定正确的说法. 详解:由复数的运算法则可得:()()()()21211112i i z i i i ----===---+--,则z =,选项A 错误;z 的实部为1-,选项B 错误; z 的虚部为1-,选项C 正确; z 的共轭复数为1zi =-+,选项D 错误.本题选择C 选项.点睛:本题主要考查复数的运算法则,复数的几何意义等知识,意在考查学生的转化能力和计算求解能力.5.已知复数z 的模为2,则z i -的最大值为:( )A .1B .2C D .3【答案】D 【解析】因为z i -213z i ≤+-=+= ,所以最大值为3,选D.6.若复数z 满足232,z z i +=-其中i 为虚数单位,则z= A .1+2i B .1-2iC .12i -+D .12i --【答案】B 【解析】试题分析:设i z a b =+,则23i 32i z z a b +=+=-,故,则12i z =-,选B.【考点】注意共轭复数的概念【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目看,复数题目往往不难,有时对复数的运算与概念、复数的几何意义等进行综合考查,也是考生必定得分的题目之一.7.a 为正实数,i 为虚数单位,2a ii+=,则a=( ) A .2 B 3C 2D .1【答案】B 【解析】 【分析】 【详解】2||21230,3a ia a a a i+=+=∴=±>∴=Q ,选B.8.在复平面内,若复数z 满足|z +1|=|1+i z |,则z 在复平面内对应点的轨迹是( ) A .直线 B .圆 C .椭圆 D .抛物线【答案】A 【解析】 【分析】设()z x yi x y R =+∈、,代入11z iz +=+,求模后整理得z 在复平面内对应点的轨迹是直线. 【详解】设()z x yi x y R =+∈、,()2211x yi x y ++=++,()()22111iz i x yi y x +=++=-+()()222211x y y x ++-+=y x =-,所以复数z x yi =+对应点的轨迹为直线,故选A. 【点睛】本题考查复数的代数表示法及其几何意义,考查复数模的求法,动点的轨迹问题,是基础题.9.已知复数1223,z i z a bi =+=+(,R,0a b b 且∈≠),其中i 为虚数单位,若12z z 为实数,则ab的值为( ) A .32-B .23-C .23D .32【答案】B 【解析】 【分析】先根据复数乘法计算,再根据复数概念求a,b 比值. 【详解】因为()1223(z z i a bi =++)()23(32a b a b =-++) i , 所以320a b +=, 因为0b ≠,所以23a b =-,选B. 【点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b 、模为(,)a b 、共轭为.-a bi10.若复数z 的虚部小于0,|z |=4z z +=,则iz =( ) A .13i + B .2i +C .12i +D .12i -【答案】C 【解析】 【分析】根据4z z +=可得()2z mi m =+∈R ,结合模长关系列方程,根据虚部小于0即可得解. 【详解】由4z z +=,得()2z mi m =+∈R ,因为||z ==1m =±. 又z 的虚部小于0,所以2z i =-,12iz i =+. 故选:C 【点睛】此题考查复数的概念辨析和模长计算,根据复数的概念和运算法则求解.11.设复数21i x i=-(i 是虚数单位),则112233202020202020202020202020C x C x C x C x+++⋅⋅⋅+=( ) A .1i + B .i -C .iD .0【答案】D 【解析】 【分析】先化简1x +,再根据所求式子为2020(1)1x +-,从而求得结果. 【详解】 解:复数2(1ix i i=-是虚数单位), 而1122332020202020202020202020202020(1)1C x C x C x C x x +++⋯+=+-, 而2121(1)111(1)(1)i i i i x i i i i i -++++====--+-, 故11223320202020202020202020202020202020(1)11110C x C x C x C x x i +++⋯+=+-=-=-=, 故选:D . 【点睛】本题主要考查复数的乘除法运算、二项式定理的应用,属于中档题.12.若复数z 满足2(12)1i z z +=+,则其共轭复数z 为( ) A .1188i + B .1188i -+C .1188i --D .1188i - 【答案】B 【解析】 【分析】 计算得到18iz --=,再计算共轭复数得到答案. 【详解】21111(12)1,,44888i i z z z z i i --+=+∴===-+-Q . 故选:B . 【点睛】本题考查了复数的化简,共轭复数,意在考查学生的计算能力.13.“1x >”是“复数2(1)()z x x x i x R =-+-∈在复平面内对应的点在第一象限”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【答案】C 【解析】 【分析】根据充分必要条件的定义结合复数与复平面内点的对应关系,从而得到答案. 【详解】若复数()()21z x x x i x R =-+-∈在复平面内对应的点在第一象限,则20,10x x x ⎧->⎨->⎩ 解得1x >,故“1x >”是“复数()()21z x x x i x R =-+-∈在复平面内对应的点在第一象限”的充要条件. 故选C. 【点睛】本题考查了充分必要条件,考查了复数的与复平面内点的对应关系,是一道基础题.14.复数12i2i+=-( ). A .i B .1i +C .i -D .1i -【答案】A 【解析】试题分析:12(12)(2)2422(2)(2)5i i i i i i i i i +++++-===--+,故选A. 【考点】复数运算【名师点睛】复数代数形式的四则运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式的乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化.15.已知i 为虚数单位,,a b ∈R ,复数12ii a bi i+-=+-,则a bi -=( ) A .1255i - B .1255i + C .2155i - D .21i 55+ 【答案】B 【解析】 【分析】由复数的除法运算,可得(1)(2)12(2)(2)55i i i i i i a b i=+++-=--+,即可求解a b i -,得到答案. 【详解】由题意,复数12ii a bii+-=+-,得(1)(2)1312(2)(2)555i ia b i=ii i ii i++++-=-=--+,所以1255a b i=i-+,故选B.【点睛】本题主要考查了复数的运算,其中解答中熟记复数的基本运算法则,准确化简是解答的关键,着重考查了推理与运算能力,属于基础题.16.已知2a ib ii+=+,,a b∈R,其中i为虚数单位,则+a b=()A.-1 B.1 C.2 D.3【答案】B【解析】【分析】利用复数除法运算法则化简原式可得2ai b i-=+,再利用复数相等列方程求出,a b的值,从而可得结果.【详解】因为22222a i ai iai b ii i+--==-=+-,,a b∈R,所以2211b ba a==⎧⎧⇒⎨⎨-==-⎩⎩,则+1a b=,故选B.【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.17.复数z11ii-=+,则|z|=( )A.1 B.2 C D.【答案】A【解析】【分析】运用复数的除法运算法则,先计算出z的表达式,然后再计算出z.【详解】由题意复数z11ii-=+得221(1)12=1(1)(1)2i i i iii i i---+===-++-,所以=1z.故选A本题考查了运用复数的除法运算求出复数的表达式,并能求出复数的模,需要掌握其计算法则,较为基础.18.在复平面内,虚数z 对应的点为A ,其共轭复数z 对应的点为B ,若点A 与B 分别在24y x =与y x =-上,且都不与原点O 重合,则OA OB ⋅=u u u v u u u v( )A .-16B .0C .16D .32【答案】B 【解析】 【分析】先求出(4,4)OA =u u u r ,(4,4)OB =-u u u r,再利用平面向量的数量积求解. 【详解】∵在复平面内,z 与z 对应的点关于x 轴对称, ∴z 对应的点是24y x =与y x =-的交点.由24y x y x ⎧=⎨=-⎩得(4,4)-或(0,0)(舍),即44z i =-,则44z i =+,(4,4)OA =u u u r ,(4,4)OB =-u u u r, ∴444(4)0OA OB ⋅=⨯+⨯-=u u u r u u u r.故选B 【点睛】本题主要考查共轭复数和数量积的坐标运算,考查直线和抛物线的交点的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.19.若复数z 满足()12z i i +=(i 为虚数单位),则z =( )A .1B .2C D .【答案】C 【解析】试题分析:因为(1)2z i i +=,所以22(1)1,12i i i z i i -===++因此1z i =+= 考点:复数的模20.若复数(1)(1)z m m m i =-+-是纯虚数,其中m 是实数,则1z=( ) A .i B .i -C .2iD .2i -【答案】A因为复数()()11z m m m i =-+-是纯虚数,所以()1010m m m ⎧-=⎨-≠⎩,则m =0,所以z i =-,则11i z i==-.。

高考数学专题02 复数(解析版)

高考数学专题02 复数(解析版)

专题02 复数一、单选题1.(2022·河北深州市中学高三期末)已知复数()()2i 1i z a =++(其中i 为虚数单位,a R ∈)在复平面内对应的点为()1,3,则实数a 的值为( ) A .1 B .2C .1-D .0【答案】A 【解析】 【分析】先利用复数的乘法化简,再利用复数的几何意义求解. 【详解】因为()()()2i 1i 22i z a a a =++=-++, 又因为复数在复平面内对应的点为()1,3,所以2123a a -=⎧⎨+=⎩,解得1a = 故选:A2.(2022·河北保定·高三期末)()()2212i 1i --+=( ) A .32i -- B .36i -- C .32i - D .36i -【答案】B 【解析】 【分析】根据复数的四则运算计算即可. 【详解】22(12i)(1i)34i 2i 36i --+=---=--.故选:B3.(2022·河北张家口·高三期末)已知12z i =-,则5iz=( ) A .2i -+ B .2i - C .105i -D .105i -+【答案】A 【解析】 【分析】利用复数的除法化简可得结果. 【详解】()()()5i 12i 5i 5i2i 12i 12i 12i z +===-+--+, 故选:A.4.(2021·福建·莆田二中高三期末)复数()()cos2isin3cos isin θθθθ+⋅+的模为1,其中i 为虚数单位,[]0,2πθ∈,则这样的θ一共有( )个. A .9 B .10C .11D .无数【答案】C 【解析】 【分析】先根据复数()()cos2isin3cos isin θθθθ+⋅+的模为1及复数模的运算公式,求得22cos 2sin 31θθ+=即22cos 2cos 3θθ=,接下来分cos2cos3θθ=与cos2cos3θθ=-两种情况进行求解,结合[]0,2πθ∈,求出θ的个数. 【详解】()()cos2isin3cos isin =cos2isin3cos isin 1θθθθθθθθ+⋅++⋅+=,其中cos isin 1θθ+=,所以cos2isin31θθ+=,即22cos 2sin 31θθ+=,222cos 21sin 3cos 3θθθ=-=,当cos2cos3θθ=时,①1232πk θθ=+,1k Z ∈,所以12πk θ=-,1k Z ∈,因为[]0,2πθ∈,所以0θ=或2π;②2232πk θθ=-+,2k Z ∈,所以22π5k θ=,2k Z ∈,因为[]0,2πθ∈,所以0θ=,2π5,4π5,6π5,8π5或2π;当cos2cos3θθ=-时,①()32321πk θθ=++,3k Z ∈,即()321πk θ=-+,3k Z ∈,因为[]0,2πθ∈,所以πθ=,②()42321πk θθ=-++,4k Z ∈,即()421π5k θ+=,4kZ ∈,因为[]0,2πθ∈,所以π5θ=,3π5,π,7π5,9π5,综上:π5mθ=,0,1,10m =,一共有11个. 故选:C5.(2022·山东省淄博实验中学高三期末)设复数z 满足()23i 32i z -=+,则z =( )A.12 B C .1 D 【答案】C 【解析】 【分析】根据给定条件结合复数除法计算复数z ,进而计算z 的模作答. 【详解】因复数z 满足()23i 32i z -=+,则32i (32i)(23i)13ii 23i (23i)(23i)13z +++====--+, 所以1z =. 故选:C6.(2022·山东枣庄·高三期末)已知i 为虚数单位,则2022i =( ). A .1 B .1- C .I D .i -【答案】B 【解析】 【分析】由于41i =,故2022i 可以化简为2i ,即可得到答案. 【详解】20224505+22i i ==i ⨯=1-.故选:B.7.(2022·山东德州·高三期末)已知复数z 满足()121i iz +=-,其中i 为虛数单位,则复数z 在复平面内所对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】A 【解析】 【分析】根据复数的模长公式以及四则运算得出z =,最后确定复数z 在复平面内所对应的点的象限. 【详解】21i 22|2i |i i +=+=-=z =则复数z 在复平面内所对应的点坐标为⎝⎭,在第一象限.故选:A8.(2022·山东淄博·高三期末)已知复数z 是纯虚数,11iz+-是实数,则z =( ) A .-i B .iC .-2iD .2i【答案】B 【解析】 【分析】由题意设i()z b b R =∈,代入11iz+-中化简,使其虚部为零,可求出b 的值,从而可求出复数z ,进而可求得其共轭复数 【详解】由题意设i()z b b R =∈, 则11i (1i)(1i)(1)(1)i1i 1i (1i)(1i)2z b b b b ++++-++===---+, 因为11iz+-是实数,所以10b +=,得1b =-, 所以i z =-, 所以i z =, 故选:B9.(2022·山东临沂·高三期末)已知复数26i1iz +=-,i 为虚数单位,则z =( )A.B .C .D .【答案】C 【解析】 【分析】利用复数除法运算求得z ,然后求得z . 【详解】 ()()()()()()()()26i 1i 26i 1i 13i 1i 24i1i 1i 2z ++++===++=-+-+,z =故选:C10.(2022·湖北武昌·高三期末)已知复数1i z =-,则2iz=-( ) A .13i 55-B .13i 55--C .13i 55-+D .1355i +【答案】D 【解析】 【分析】先得出z ,由复数的乘法运算可得答案. 【详解】复数1i z =-,则1i z =+则()()()()1i 2i 1i 13i 2i 2i 2i 2i 5z ++++===---+ 故选:D11.(2022·湖北·黄石市有色第一中学高三期末)已知复数数列{}n a 满足12i a =,1i i 1n n a a +=++,N n *∈,(i 为虚数单位),则10a =( ) A .2i B .2i - C .1i + D .1i -+【答案】D 【解析】 【分析】推导出数列{}i n a -是等比数列,确定该数列的首项和公比,即可求得10a 的值. 【详解】由已知可得()1i i i n n a a +-=-,因此,数列{}i n a -是以1i i a -=为首项,以i 为公比的等比数列,所以,91010i i i i 1a -=⋅==-,故101i a =-+.故选:D.12.(2022·湖北江岸·高三期末)已知()12i 43i z -=-,则z =( ) A .10i +B .2i +C .2i -D .25i +【解析】 【分析】利用复数的除法化简复数z ,利用共轭复数的定义可得结果. 【详解】 由已知可得()()()()43i 12i 43i 105i2i 12i 12i 12i 5z -+-+====+--+,因此,2i z =-. 故选:C.13.(2022·湖北襄阳·高三期末)下面是关于复数22i 1i z =-(i 为虚数单位)的命题,其中真命题为( )A .2z =B .复数z 在复平面内对应点在直线y x =上C .z 的共轭复数为11i 22-D .z 的虚部为1i 2-【答案】B 【解析】 【分析】化简复数为代数形式,然后求模,写出对应点的坐标.得其共轭复数及虚部,判断各选项即得. 【详解】∵22i 11i 1i 1i 2z ---===--,所以z =A 错误;所以复数z 在复平面内对应点坐标为11(,)22--,在直线y x =上,B 正确;所以z 的共轭复数为11i 22-+,C 错误;所以z 的虚部为12-,D 错误.故选:B .14.(2022·湖北省鄂州高中高三期末)复数4i1iz =+,则z =( ) A .22i -- B .22i -+C .22i +D .22i -【答案】D 【解析】先计算z ,再根据共轭复数的概念即可求解. 【详解】根据复数除法的运算法则可得41i z i =+()()()414422112i i i i i i -+===+-+ ,所以可得其共轭复数22z i =-.故选:D.15.(2022·湖北·高三期末)已知复数121i,i z z =-=,则复数12z z 的共轭复数的模为( ) A .12 B2C .2 D【答案】D 【解析】 【分析】根据复数的除法运算得121i z z =--,再根据共轭复数的概念与模的公式计算即可. 【详解】解:因为121i,i z z =-=, 所以()121iii 1i 1i z z -==--=--, 所以复数12z z 的共轭复数为1i -+.故选:D16.(2022·湖北·恩施土家族苗族高中高三期末)若1i z =-+.设zz ω=,则ω=( ) A .2i B .2C .22i +D .22i -【答案】B 【解析】 【分析】根据1i z =-+求出1i z =--,结合复数的乘法运算即可. 【详解】由1i z =-+,得1i z =--,所以2(1i)(1i)=(i 1)=2zz ω==-+----. 故选:B17.(2022·湖南常德·高三期末)已知复数z 满足:()1i i z +=,则z z ⋅=( )A .12 B C .1D .i 2【答案】A 【解析】 【分析】首先根据复数的除法运算求出z ,然后根据复数的乘法运算即可求出结果. 【详解】 因为(1)z i i +=, 所以()()i 1i i 1i 11i 1i (1i)1i 222z -+====+++-, 因此11111i i 22222z z ⎛⎫⎛⎫+-= ⎪⎪⎝⎭⎝⎭⋅=.故选:A.18.(2022·湖南娄底·高三期末)复数()i 3i z =-⋅在复平面内对应的点位于( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】A 【解析】 【分析】由复数乘法法则计算出z ,然后可得其对应点的坐标,得所在象限. 【详解】∵()3i i 13i z =-=+⋅,∴z 在复平面内对应的点为()1,3,位于第一象限. 故选:A .19.(2022·湖南郴州·高三期末)已知i 为虚数单位,复数z 满足()i 123i 4z +=+,则z 的共轭复数z =( ) A .12i - B .12i +C .2i -D .2i +【答案】B 【解析】根据复数的模和除法运算,即可得到答案; 【详解】 |43i |55(12i)12i 12i 12i 5z +-====-++ ∴12i z =+,故选:B20.(2022·广东揭阳·高三期末)复数z 满足()1i 1i(i z +=-为虚数单位),则z 的模为( ) A.12-B .12C .1 D【答案】C 【解析】 【分析】先做除法运算求出复数z ,再根据复数模的计算公式求其模. 【详解】由()1i 1i z +=-得1ii 1iz -==-+,从而i 1z =-= 21.(2022·广东潮州·高三期末)已知i 为虚数单位,复数21i 1i -=+z ,则z 的虚部为( )A .0B .-1C .-iD .1【答案】B 【解析】 【分析】化简复数z 1i =-, z 的虚部为i 前面的系数,即可得到答案. 【详解】21i 22(1-i)1i 1i 1i (1i)(1-i)z -====-+++.则z 的虚部为-1.故选:B.22.(2022·广东罗湖·高三期末)已知复数()1i i =+⋅z (i 为虚数单位),则z 的共轭复数z =( ) A .1i + B .1i -C .1i -+D .1i --【答案】D 【解析】求出复数z,进而可得其共轭复数.【详解】()1i i=1+iz=+⋅-,则1iz=--故选:D.23.(2022·广东清远·高三期末)已知i为虚数单位,复数z的共轭复数z满足(1i)|1|+=z,则z=()A.1i-B.1i+C.22i-D.22i+【答案】B【解析】【分析】结合复数除法运算求出z,进而得出z.【详解】因为21i1i===-+z,所以1iz=+.故选:B24.(2022·广东汕尾·高三期末)若复数z满足1i12iz+=+其中(i为虚数单位),则复数z的共轭复数为()A.3i5--B.3i5-+C.3i5-D.3i5+【答案】D 【解析】【分析】化简可得3i5z-=,根据共轭复数的概念,即可得答案.【详解】因为1i(1i)(12i)3i12i(12i)(12i)5z++--===++-,所以3i5z+ =,故选:D.25.(2022·江苏通州·高三期末)20221i1i-⎛⎫=⎪+⎝⎭()A .1B .iC .-1D .-i【答案】C 【解析】 【分析】由复数的除法和复数的乘方运算计算. 【详解】21i (1i)i 1i (1i)(1i)--==-+-+, 所以2022202221i (i)i 11i -⎛⎫=-==- ⎪+⎝⎭.故选:C .26.(2022·江苏宿迁·高三期末)已知复数z 满足()1i 4i z +=,则z =( ) A.2 B C .D .【答案】C 【解析】 【分析】利用复数的除法化简复数z ,利用复数的模长公式可求得结果. 【详解】由已知可得()()()()4i 1i 4i2i 1i 22i 1i 1i 1i z -===-=+++-,因此,z = 故选:C.27.(2022·江苏扬州·高三期末)若复数z =202112i +(i 为虚数单位),则它在复平面上对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D 【解析】 【分析】 化简复数z =202112i +,得到其对应点的坐标即可解决.【详解】z 202112i ==+12i =+2i 21i 555-=-, 则z 在复平面上对应的点为21(,)55Z -,Z 位于第四象限.故选:D28.(2022·江苏海安·高三期末)已知复数z 满足(1-i)z =2+3i (i 为虚数单位),则z =( ) A .-12+52iB .12+52iC .12-52iD .-12-52i 【答案】A 【解析】 【分析】利用复数的运算法则求解. 【详解】 ∵(1-i)z =2+3i, ∴()()()()23i 1i 23i 15i 15i 1i 1i 1i 222z +++-+====-+-+-. 故选:A.29.(2022·江苏如东·高三期末)已知复数z 满足202120222023i 4i 3i z =-,则z =( ) A .4+3i B .4-3iC .3+4iD .3-4i【答案】C 【解析】 【分析】将202120222023i 4i 3i z =-中的202120222023i ,i ,i ,根据41i = 化简,即可得答案. 【详解】 因为41i =,故由202120222023i 4i 3i z =-可得:23i 4i 3i z =-,即4i 334i z =+=+, 故选:C.30.(2022·江苏苏州·高三期末)设i 为虚数单位,若复数(1i)(1i)a -+是纯虚数,则实数a 的值为( ) A .1- B .0C .1D .2【答案】A【解析】 【分析】用复数的乘法法则及纯虚数的定义即可. 【详解】(1i)(1i)1i i 1(1)i a a a a a -+=+-+=++-为纯虚数,10a ∴+=,1a ∴=-,故选:A .31.(2022·江苏无锡·高三期末)已知3i1ia ++(i 为虚数单位,a ∈R )为纯虚数,则=a ( ) A .1- B .1C .3-D .3【答案】C 【解析】 【分析】先利用复数除法法则进行化简,结合纯虚数条件列出方程,求出a 的值. 【详解】3i (3i)(1i)i 3i+31i 22a a a a ++--+==+3(3)i2a a ++-=为纯虚数, 30a ∴+=,3a ∴=-,故选:C. 二、多选题32.(2022·河北唐山·高三期末)已知复数i z a b =+(,a b ∈R 且0b ≠),z 是z 的共扼复数,则下列命题中的真命题是( ) A .z z +∈R B .z z -∈RC .z z ⋅∈RD .zz∈R【答案】AC 【解析】 【分析】由题知i z a b =-,进而根据复数的加减乘除运算依次讨论各选项即可得答案. 【详解】解:对于A 选项,i z a b =+,i z a b =-,所以2z z a +=∈R ,故正确; 对于B 选项,i z a b =+,i z a b =-,2i z z b -=∉R ,故错误;对于C 选项,i z a b =+,i z a b =-,22z z a b ⋅=+∈R ,故正确;对于D 选项,i z a b =+,i z a b =-,()22222222i i i i z a b ab z a a b a b a b b a b --===+-+-+, 所以当0a =时,z z ∈R ,当0a ≠时,zz ∉R ,故错误.故选:AC33.(2022·山东莱西·高三期末)已知复数()21i z a a =+-,i 为虚数单位,a R ∈,则下列正确的为( )A .若z 是实数,则1a =-B .复平面内表示复数z 的点位于一条抛物线上C .zD .若21z z =+,则1a =±【答案】BC 【解析】 【分析】以实数定义求出参数a 判断选项A ;以复数z 对应点的坐标判断选项B ;求出复数z 的模判断选项C ;以复数相等求出参数a 判断选项D. 【详解】选项A :由复数()21i z a a =+-是实数可知210a -=,解之得1a =±.选项A 判断错误;选项B :复数()21i z a a =+-在复平面内对应点2(,1)Z a a -,其坐标满足方程21y x =-,即点2(,1)Z a a -位于抛物线21y x =-上. 判断正确;选项C :由()21i z a a =+-,可得z ===判断正确; 选项D :21z z =+ 即()()221i =2121i a a a a +-+--可得()2221121a a a a =+⎧⎪⎨-=--⎪⎩,解之得1a =-.选项D 判断错误. 故选:BC34.(2022·广东东莞·高三期末)已知复数123,,z z z ,1z 是1z 的共轭复数,则下列结论正确的是( ) A .若120z z +=,则12=z zB .若21z z =,则12=z zC .若312z z z =,则312z z z =D .若1211z z +=+,则12=z z【答案】ABC 【解析】 【分析】若i z a b =+ ,则i z a b =-,z z ==,利用复数代数运算,可以判断AB ;利用复数的三角运算,可以判断C ;利用数形结合,可以判断D. 【详解】 对于A :若120z z += ,则12z z =-,故122z z z =-=, 所以A 正确; 对于B :若21z z =,则12=z z , 所以B 正确; 对于C :设11(cos i sin )z r αα=+ ,22(cos i sin )z r ββ=+则()()31212cos()i sin z z z r r αβαβ==+++ ,故312z z z = , 所以C 正确; 对于D :如下图所示,若11OA z =+ ,21OB z =+,则1OC z =,2OD z =,故12z z ≠ , 所以D 错误.故选:ABC35.(2022·江苏如皋·高三期末)关于复数12z =- (i 为虚数单位),下列说法正确的是( )A .|z |=1B .z +z 2=-1C .z 3=-1D .(z +1)3=i【答案】AB 【解析】 【分析】根据复数模的计算公式求得复数的模,可判断A;根据复数的乘方运算可判断B,C,D. 【详解】由复数12z =-,可得||1z == ,故A 正确;2211112222z z +=--=-- ,故B 正确;3222111()1222z z z =⋅=--+--=,故C 错误;3221111(1)(1)(1)(((12222z z z ⎛⎫+=++=+=-=- ⎪ ⎪⎝⎭,故D 错误, 故选:AB.36.(2022·江苏苏州·高三期末)下列命题正确的是( ) A .若12,z z 为复数,则1212z z z z =⋅ B .若,a b 为向量,则a b a b ⋅=⋅C .若12,z z 为复数,且1212z z z z +=-,则120z z =D .若,a b 为向量,且a b a b +=-,则0a b ⋅= 【答案】AD 【解析】 【分析】根据复数运算、向量运算的知识对选项进行分析,从而确定正确选项. 【详解】令1i z a b =+,()2i ,,,R z c d a b c d =+∈,,12()i z z ac bd ad bc =-++,12z z ===1z =2z =1212z z z z ∴=⋅,A 对;cos a b a b θ⋅=⋅⋅,cos a b a b a b θ∴⋅=⋅⋅=⋅不一定成立,B 错; 12()()i z z a c b d +=+++,12()()i z z a c b d -=-+-,1212z z z z -=+,0ac bd ∴+=,12(i)(i)()i 0z z a b c d ac bd ad bc =++=-++≠,C 错.将a b a b +=-两边平方并化简得0a b ⋅=,D 对. 故选:AD 三、填空题37.(2021·福建·莆田二中高三期末)设x ∈R ,记[]x 为不大于x 的最大整数,{}x 为不小于x 的最小整数.设集合{}|23,A z z z C =≤⎡⎤≤∈⎣⎦,{}{}|23,B z z z C =≤≤∈,则A B 在复平面内对应的点的图形面积是______ 【答案】5π 【解析】 【分析】依题意表示出集合{}|24,A z z z C =≤<∈,{}|13,B z z z C =<≤∈,从求出A B ,再根据复数的几何意义求出复数z 的轨迹,即可得解; 【详解】解:依题意由23z ≤⎡⎤≤⎣⎦,所以24z ≤<,由{}23z ≤≤,所以13z <≤,所以{}{}|23,|24,A z z z C z z z C =≤⎡⎤≤∈=≤<∈⎣⎦,{}{}{}|23,|13,B z z z C z z z C =≤≤∈=<≤∈,所以{}|23,A B z z z C =≤≤∈设()i ,z x y x y R =+∈,由23z ≤≤,所以23≤,所以2249x y ≤+≤,所以复数z 再复平面内对应的点为在复平面内到坐标原点的距离大于等于2且小于等于3的圆环部分,所以圆环的面积()22325S ππ=-=故答案为:5π38.(2022·广东佛山·高三期末)在复平面内,复数z 对应的点的坐标是(3,5)-.则(1i)z -=___________. 【答案】28i -- 【解析】 【分析】根据给定条件求出复数,再利用复数的乘法运算计算作答. 【详解】在复平面内,复数z 对应的点的坐标是(3,5)-,则35i z =-,所以(1i)(1i)(35i)28i z -=--=--. 故答案为:28i --39.(2022·江苏常州·高三期末)i 是虚数单位,已知复数z 满足等式2i0i z z+=,则z 的模z =________.【解析】 【分析】以复数运算规则和复数模的运算性质对已知条件进行变形整理,是本题的简洁方法. 【详解】 由2i 0i z z +=,可得2i i z z =- 则有2ii z z-=,即i 2i 2z z ⨯=⨯-=,故有z =。

精选高中数学复数多选题专项训练专题复习含答案(5)

精选高中数学复数多选题专项训练专题复习含答案(5)

一、复数多选题1.已知i 为虚数单位,复数322i z i +=-,则以下真命题的是( ) A .z 的共轭复数为4755i - B .z 的虚部为75i C .3z = D .z 在复平面内对应的点在第一象限 答案:AD【分析】先利用复数的除法、乘法计算出,再逐项判断后可得正确的选项.【详解】,故,故A 正确.的虚部为,故B 错,,故C 错,在复平面内对应的点为,故D 正确.故选:AD.【点睛】本题考解析:AD【分析】先利用复数的除法、乘法计算出z ,再逐项判断后可得正确的选项.【详解】()()32232474725555i i i i i z i ++++====+-,故4755i z =-,故A 正确.z 的虚部为75,故B 错,3z ==≠,故C 错, z 在复平面内对应的点为47,55⎛⎫ ⎪⎝⎭,故D 正确. 故选:AD.【点睛】本题考查复数的概念、复数的运算以及复数的几何意义,注意复数(),z a bi a b R =+∈的虚部为b ,不是bi ,另外复数的除法运算是分子分母同乘以分母的共轭复数.2.复数21i z i+=-,i 是虚数单位,则下列结论正确的是( )A .|z |=B .z 的共轭复数为3122i +C .z 的实部与虚部之和为2D .z 在复平面内的对应点位于第一象限答案:CD【分析】根据复数的四则运算,整理复数,再逐一分析选项,即得.【详解】由题得,复数,可得,则A 不正确;的共轭复数为,则B 不正确;的实部与虚部之和为,则C 正确;在复平面内的对应点为,位于第一解析:CD【分析】根据复数的四则运算,整理复数z ,再逐一分析选项,即得.【详解】 由题得,复数22(2)(1)13131(1)(1)122i i i i z i i i i i ++++====+--+-,可得||2z ==,则A 不正确;z 的共轭复数为1322i -,则B 不正确;z 的实部与虚部之和为13222+=,则C 正确;z 在复平面内的对应点为13(,)22,位于第一象限,则D 正确.综上,正确结论是CD.故选:CD【点睛】本题考查复数的定义,共轭复数以及复数的模,考查知识点全面.3.以下命题正确的是( )A .0a =是z a bi =+为纯虚数的必要不充分条件B .满足210x +=的x 有且仅有iC .“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件D .已知()f x =()1878f x x '= 答案:AC【分析】利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式解析:AC【分析】利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程210x +=可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式可判断D 选项的正误.综合可得出结论.【详解】对于A 选项,若复数z a bi =+为纯虚数,则0a =且0b ≠,所以,0a =是z a bi =+为纯虚数的必要不充分条件,A 选项正确;对于B 选项,解方程210x +=得x i =±,B 选项错误;对于C 选项,当(),x a b ∈时,若()0f x '>,则函数()f x 在区间(),a b 内单调递增, 即“在区间(),a b 内()0f x '>”⇒“()f x 在区间(),a b 内单调递增”.反之,取()3f x x =,()23f x x '=,当()1,1x ∈-时,()0f x '≥, 此时,函数()y f x =在区间()1,1-上单调递增,即“在区间(),a b 内()0f x '>”⇐/“()f x 在区间(),a b 内单调递增”.所以,“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件.C 选项正确;对于D 选项,()11172488f x x x ++===,()1878f x x -'∴=,D 选项错误. 故选:AC.【点睛】本题考查命题真假的判断,涉及充分条件与必要条件的判断、实系数方程的根以及导数的计算,考查推理能力与计算能力,属于中等题.4.已知复数z a =+在复平面内对应的点位于第二象限,且2z = 则下列结论正确的是( ).A .38z =B .zC .z 的共轭复数为1D .24z = 答案:AB【分析】利用复数的模长运算及在复平面内对应的点位于第二象限求出 ,再验算每个选项得解.【详解】解:,且,复数在复平面内对应的点位于第二象限选项A:选项B: 的虚部是选项C:解析:AB【分析】利用复数2z =的模长运算及z a =+在复平面内对应的点位于第二象限求出a ,再验算每个选项得解.【详解】解:z a =+,且2z =224a +∴=,=1a ±复数z a =+在复平面内对应的点位于第二象限1a ∴=-选项A : 3323(1)(1)+3(1)+3())8-+=---+=选项B : 1z =-选项C : 1z =-的共轭复数为1z =--选项D : 222(1)(1)+2()2-+=--=--故选:AB .【点睛】本题考查复数的四则运算及共轭复数,考查运算求解能力.求解与复数概念相关问题的技巧:复数的分类、复数的相等、复数的模及共轭复数的概念都与复数的实部、虚部有关,所以解答与复数相关概念有关的问题时,需把所给复数化为代数形式,即()a bi a b R ∈+,的形式,再根据题意求解.5.已知复数z 满足(2i)i z -=(i 为虚数单位),复数z 的共轭复数为z ,则( )A .3||5z = B .12i 5z +=- C .复数z 的实部为1- D .复数z 对应复平面上的点在第二象限 答案:BD【分析】因为复数满足,利用复数的除法运算化简为,再逐项验证判断.【详解】因为复数满足,所以所以,故A 错误;,故B 正确;复数的实部为 ,故C 错误;复数对应复平面上的点在第二象限解析:BD【分析】因为复数z 满足(2i)i z -=,利用复数的除法运算化简为1255z i =-+,再逐项验证判断. 【详解】因为复数z 满足(2i)i z -=,所以()(2)1222(2)55i i i z i i i i +===-+--+所以z ==,故A 错误; 1255z i =--,故B 正确; 复数z 的实部为15- ,故C 错误; 复数z 对应复平面上的点12,55⎛⎫- ⎪⎝⎭在第二象限,故D 正确. 故选:BD【点睛】本题主要考查复数的概念,代数运算以及几何意义,还考查分析运算求解的能力,属于基础题.6.已知复数z 的共轭复数为z ,且1zi i =+,则下列结论正确的是( )A .1z +=B .z 虚部为i -C .202010102z =-D .2z z z += 答案:ACD【分析】先利用题目条件可求得,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由可得,,所以,虚部为;因为,所以,.故选:ACD .【解析:ACD【分析】先利用题目条件可求得z ,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由1zi i =+可得,11i z i i+==-,所以12z i +=-==,z 虚部为1-;因为2422,2z i z =-=-,所以()5052020410102z z ==-,2211z z i i i z +=-++=-=.故选:ACD .【点睛】本题主要考查复数的有关概念的理解和运用,复数的模的计算公式的应用,复数的四则运算法则的应用,考查学生的数学运算能力,属于基础题.7.已知复数z 满足(1﹣i )z =2i ,则下列关于复数z 的结论正确的是( )A .||z =B .复数z 的共轭复数为z =﹣1﹣iC .复平面内表示复数z 的点位于第二象限D .复数z 是方程x 2+2x +2=0的一个根答案:ABCD【分析】利用复数的除法运算求出,再根据复数的模长公式求出,可知正确;根据共轭复数的概念求出,可知正确;根据复数的几何意义可知正确;将代入方程成立,可知正确.【详解】因为(1﹣i )z =解析:ABCD【分析】利用复数的除法运算求出1z i =-+,再根据复数的模长公式求出||z ,可知A 正确;根据共轭复数的概念求出z ,可知B 正确;根据复数的几何意义可知C 正确;将z 代入方程成立,可知D 正确.【详解】因为(1﹣i )z =2i ,所以21i z i=-2(1)221(1)(1)2i i i i i i +-+===-+-+,所以||z ==A 正确; 所以1i z =--,故B 正确;由1z i =-+知,复数z 对应的点为(1,1)-,它在第二象限,故C 正确;因为2(1)2(1)2i i -++-++22220i i =--++=,所以D 正确.故选:ABCD.【点睛】本题考查了复数的除法运算,考查了复数的模长公式,考查了复数的几何意义,属于基础题.8.已知复数1z =-(i 为虚数单位),z 为z 的共轭复数,若复数z w z =,则下列结论正确的有( )A .w 在复平面内对应的点位于第二象限B .1w =C .w 的实部为12-D .w答案:ABC【分析】对选项求出,再判断得解;对选项,求出再判断得解;对选项复数的实部为,判断得解;对选项,的虚部为,判断得解.【详解】对选项由题得.所以复数对应的点为,在第二象限,所以选项正确解析:ABC【分析】对选项,A 求出1=2w -+,再判断得解;对选项B ,求出1w =再判断得解;对选项,C 复数w 的实部为12-,判断得解;对选项D ,w 判断得解. 【详解】对选项,A 由题得1,z =-221=422w -+∴===-+.所以复数w 对应的点为1(2-,在第二象限,所以选项A 正确;对选项B ,因为1w ==,所以选项B 正确; 对选项,C 复数w 的实部为12-,所以选项C 正确;对选项D ,w 的虚部为2,所以选项D 错误. 故选:ABC【点睛】 本题主要考查复数的运算和共轭复数,考查复数的模的计算,考查复数的几何意义,考查复数的实部和虚部的概念,意在考查学生对这些知识的理解掌握水平.9.i 是虚数单位,下列说法中正确的有( )A .若复数z 满足0z z ⋅=,则0z =B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数()z a ai a R =+∈,则z 可能是纯虚数D .若复数z 满足234z i =+,则z 对应的点在第一象限或第三象限答案:ADA 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题解析:AD【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题中条件,求出复数,由几何意义,即可判断出结果.【详解】A 选项,设(),z a bi a b R =+∈,则其共轭复数为(),z a bi a b R =-∈, 则220z z a b ⋅=+=,所以0a b ,即0z =;A 正确;B 选项,若11z =,2z i =,满足1212z z z z +=-,但12z z i =不为0;B 错;C 选项,若复数()z a ai a R =+∈表示纯虚数,需要实部为0,即0a =,但此时复数0z =表示实数,故C 错;D 选项,设(),z a bi a b R =+∈,则()2222234z a bi a abi b i =+=+-=+, 所以22324a b ab ⎧-=⎨=⎩,解得21a b =⎧⎨=⎩或21a b =-⎧⎨=-⎩,则2z i =+或2z i =--, 所以其对应的点分别为()2,1或()2,1--,所以对应点的在第一象限或第三象限;D 正确. 故选:AD.10.下列说法正确的是( )A .若2z =,则4z z ⋅=B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数z 的平方是纯虚数,则复数z 的实部和虛部相等D .“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件 答案:AD【分析】由求得判断A ;设出,,证明在满足时,不一定有判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】若,则,故A 正确;设,则,而不一定为0,故B 错误;当时解析:AD【分析】 由z 求得z z ⋅判断A ;设出1z ,2z ,证明在满足1212z z z z +=-时,不一定有120z z =判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】 若2z =,则24z z z ⋅==,故A 正确;设()11111,z a bi a b R =+∈,()22222,z a b i a b R =+∈ 由1212z z z z +=-,可得()()()()222222121212121212z z a a b b z z a a b b +=+++=-=-+-则12120a a b b +=,而()()121122121212121212122z z a bi a b i a a bb a b i b a i a a a b i b a i =++=-++=++不一定为0,故B 错误;当1z i =-时22z i =-为纯虚数,其实部和虚部不相等,故C 错误;若复数()()()211z a a i a R =-+-∈是虚数,则210a -≠,即1a ≠± 所以“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件,故D 正确; 故选:AD【点睛】本题考查的是复数的相关知识,考查了学生对基础知识的掌握情况,属于中档题.11.已知复数12z =-+(其中i 为虚数单位,,则以下结论正确的是( ).A .20zB .2z z =C .31z =D .1z = 答案:BCD【分析】计算出,即可进行判断.【详解】,,故B 正确,由于复数不能比较大小,故A 错误;,故C 正确;,故D 正确.故选:BCD.本题考查复数的相关计算,属于基础题.解析:BCD【分析】 计算出23,,,z z z z ,即可进行判断.【详解】12z =-+, 221313i i=2222z z ,故B 正确,由于复数不能比较大小,故A 错误; 33131313i i i 1222222z ,故C 正确; 2213122z,故D 正确.故选:BCD.【点睛】 本题考查复数的相关计算,属于基础题.12.下面关于复数的四个命题中,结论正确的是( )A .若复数z R ∈,则z R ∈B .若复数z 满足2z ∈R ,则z R ∈C .若复数z 满足1R z ∈,则z R ∈D .若复数1z ,2z 满足12z z R ∈,则12z z = 答案:AC【分析】根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果.【详解】A 选项,设复数,则,因为,所以,因此,即A 正确;B 选项,设复数,则,因为,所,若,则;故B 错;C 选项,设解析:AC【分析】根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果.【详解】A 选项,设复数(,)z a bi a b R =+∈,则(i ,)z a b a b =-∈R ,因为z R ∈,所以0b =,因此z a R =∈,即A 正确;B 选项,设复数(,)z a bi a b R =+∈,则()22222z a bi a b abi =+=-+,因为2z ∈R ,所0ab =,若0,0a b =≠,则z R ∉;故B 错;C 选项,设复数(,)z a bi a b R =+∈,则22222211a bi a b i z a bi a b a b a b -===-++++, 因为1R z∈,所以220b a b =+,即0b =,所以z a R =∈;故C 正确; D 选项,设复数1(,)z a bi a b R =+∈,2(,)z c di c d R =+∈,则()()()()12z z a bi c di ac bd ad bc i =++=-++,因为12z z R ∈,所以0ad bc +=,若11a b =⎧⎨=⎩,22c d =⎧⎨=-⎩能满足0ad bc +=,但12z z ≠,故D 错误.故选:AC.【点睛】本题主要考查复数相关命题的判断,熟记复数的运算法则即可,属于常考题型.13.已知复数z 满足220z z +=,则z 可能为( )A .0B .2-C .2iD .2i - 答案:ACD【分析】令代入已知等式,列方程组求解即可知的可能值.【详解】令代入,得:,∴,解得或或∴或或.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.解析:ACD【分析】令z a bi =+代入已知等式,列方程组求解即可知z 的可能值.【详解】令z a bi =+代入22||0z z +=,得:2220a b abi -+=,∴22020a b ab ⎧⎪-+=⎨=⎪⎩,解得0,0a b =⎧⎨=⎩或0,2a b =⎧⎨=⎩或0,2,a b =⎧⎨=-⎩ ∴0z =或2z i =或2z i =-.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.14.已知复数z 满足220z z +=,则z 可能为( ).A .0B .2-C .2iD .2i+1- 答案:AC【分析】令,代入原式,解出的值,结合选项得出答案.【详解】令,代入,得,解得,或,或,所以,或,或.故选:AC【点睛】本题考查复数的运算,考查学生计算能力,属于基础题.解析:AC【分析】令()i ,z a b a b R =+∈,代入原式,解出,a b 的值,结合选项得出答案.【详解】令()i ,z a b a b R =+∈,代入220z z +=,得222i 0a b ab -+=,解得00a b =⎧⎨=⎩,或02a b =⎧⎨=⎩,或02a b =⎧⎨=-⎩, 所以0z =,或2i z =,或2i z =-.故选:AC【点睛】本题考查复数的运算,考查学生计算能力,属于基础题.15.已知复数cos sin 22z i ππθθθ⎛⎫=+-<< ⎪⎝⎭(其中i 为虚数单位)下列说法正确的是( )A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .1z =D .1z的虚部为sin θ 答案:BC【分析】分、、三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数,利用复数的概念可判断D 选项的正误.【详解】对于AB 选项,当时,,,此时复数在复平面内的点解析:BC【分析】 分02θπ-<<、0θ=、02πθ<<三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数1z ,利用复数的概念可判断D 选项的正误. 【详解】对于AB 选项,当02θπ-<<时,cos 0θ>,sin 0θ<,此时复数z 在复平面内的点在第四象限;当0θ=时,1z R =-∈; 当02πθ<<时,cos 0θ>,sin 0θ>,此时复数z 在复平面内的点在第一象限.A 选项错误,B 选项正确;对于C 选项,1z ==,C 选项正确;对于D 选项,()()11cos sin cos sin cos sin cos sin cos sin i i z i i i θθθθθθθθθθ-===-++⋅-, 所以,复数1z 的虚部为sin θ-,D 选项错误. 故选:BC.16.已知复数Z 在复平面上对应的向量(1,2),OZ =-则( )A .z =-1+2iB .|z |=5C .12z i =+D .5z z ⋅= 答案:AD【分析】因为复数Z 在复平面上对应的向量,得到复数,再逐项判断.【详解】因为复数Z 在复平面上对应的向量,所以,,|z|=,,故选:AD解析:AD【分析】因为复数Z 在复平面上对应的向量(1,2)OZ =-,得到复数12z i =-+,再逐项判断.【详解】因为复数Z 在复平面上对应的向量(1,2)OZ =-,所以12z i =-+,12z i =--,|z 5z z ⋅=,故选:AD17.下列关于复数的说法,其中正确的是( )A .复数(),z a bi a b R =+∈是实数的充要条件是0b =B .复数(),z a bi a b R =+∈是纯虚数的充要条件是0b ≠C .若1z ,2z 互为共轭复数,则12z z 是实数D .若1z ,2z 互为共轭复数,则在复平面内它们所对应的点关于y 轴对称答案:AC【分析】根据复数的有关概念和充分条件和必要条件的定义进行判断即可.【详解】解:对于:复数是实数的充要条件是,显然成立,故正确;对于:若复数是纯虚数则且,故错误;对于:若,互为共轭复数解析:AC【分析】根据复数的有关概念和充分条件和必要条件的定义进行判断即可.【详解】解:对于A :复数(),z a bi a b R =+∈是实数的充要条件是0b =,显然成立,故A 正确;对于B :若复数(),z a bi a b R =+∈是纯虚数则0a =且0b ≠,故B 错误;对于C :若1z ,2z 互为共轭复数,设()1,z a bi a b R =+∈,则()2,z a bi a b R =-∈,所以()()2122222z a bi a bi a b b z i a =+-=-=+是实数,故C 正确; 对于D :若1z ,2z 互为共轭复数,设()1,z a bi a b R =+∈,则()2,z a bi a b R =-∈,所对应的坐标分别为(),a b ,(),a b -,这两点关于x 轴对称,故D 错误;故选:AC【点睛】本题主要考查复数的有关概念的判断,利用充分条件和必要条件的定义是解决本题的关键,属于基础题.18.已知复数122z =-,则下列结论正确的有( )A .1z z ⋅=B .2z z =C .31z =-D .202012z =-+答案:ACD【分析】分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.【详解】因为,所以A 正确;因为,,所以,所以B 错误;因为,所以C 正确;因为,所以,所以D 正确解析:ACD【分析】分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.【详解】因为11131222244z z i ⎛⎫⎛⎫-+=+= ⎪⎪ ⎪⎪⎝⎭⎭=⎝⋅,所以A 正确;因为221122z ⎛⎫-=-- ⎪ ⎪⎝⎭=,122z =+,所以2z z ≠,所以B 错误;因为321112222z z z i ⎛⎫⎛⎫=⋅=---=- ⎪⎪ ⎪⎪⎝⎭⎝⎭,所以C 正确;因为6331z z z =⋅=,所以()2020633644311122zz z z z ⨯+⎛⎫===⋅=-⋅=-+ ⎪ ⎪⎝⎭,所以D 正确,故选:ACD.【点睛】 本题考查复数乘法与乘方的计算,其中还涉及到了共轭复数的计算,难度较易.19.(多选题)已知集合{},n M m m i n N ==∈,其中i 为虚数单位,则下列元素属于集合M 的是( )A .()()11i i -+B .11i i -+C .11i i +-D .()21i - 答案:BC【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】根据题意,中,时,;时,;时,;时,,.选项A 中,;选项B 中,;选项C 中,;选项D 中,.解析:BC【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】 根据题意,{},n M m m i n N ==∈中, ()4n k k N =∈时,1n i =;()41n k k N =+∈时,n i i =;()42n k k N =+∈时,1n i =-;()43n k k N =+∈时,n i i =-,{}1,1,,M i i ∴=--.选项A 中,()()112i i M -+=∉;选项B 中,()()()211111i i i i i i M --==-+-∈+; 选项C 中,()()()211111i i i i i i M ++==-+∈-; 选项D 中,()212i i M -=-∉.故选:BC.【点睛】此题考查复数的基本运算,涉及复数的乘方和乘法除法运算,准确计算才能得解.20.已知i 为虚数单位,则下列选项中正确的是( )A .复数34z i =+的模5z =B .若复数34z i =+,则z (即复数z 的共轭复数)在复平面内对应的点在第四象限C .若复数()()2234224m m m m +-+--i 是纯虚数,则1m =或4m =-D .对任意的复数z ,都有20z答案:AB求解复数的模判断;由共轭复数的概念判断;由实部为0且虚部不为0求得值判断;举例说明错误.【详解】解:对于,复数的模,故正确;对于,若复数,则,在复平面内对应的点的坐标为,在第四解析:AB【分析】求解复数的模判断A ;由共轭复数的概念判断B ;由实部为0且虚部不为0求得m 值判断C ;举例说明D 错误.【详解】解:对于A ,复数34z i =+的模||5z ==,故A 正确;对于B ,若复数34z i =+,则34z i =-,在复平面内对应的点的坐标为(3,4)-,在第四象限,故B 正确;对于C ,若复数22(34)(224)m m m m i +-+--是纯虚数,则223402240m m m m ⎧+-=⎨--≠⎩,解得1m =,故C 错误; 对于D ,当z i 时,210z =-<,故D 错误.故选:AB .【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,考查复数模的求法,属于基础题.21.下列命题中,正确的是( )A .复数的模总是非负数B .复数集与复平面内以原点为起点的所有向量组成的集合一一对应C .如果复数z 对应的点在第一象限,则与该复数对应的向量的终点也一定在第一象限D .相等的向量对应着相等的复数 答案:ABD【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数,对于A ,,故A 正确.对于B ,复数对应的向量为,且对于平面内以原点为起点的任一向量,其对应的复数为,故复数集与【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数(),z a bi a b R =+∈,对于A ,0z =≥,故A 正确.对于B ,复数z 对应的向量为(),OZ a b =,且对于平面内以原点为起点的任一向量(),m n α=,其对应的复数为m ni +, 故复数集与复平面内以原点为起点的所有向量组成的集合一一对应,故B 正确. 对于B ,复数z 对应的向量为(),OZ a b =,且对于平面内的任一向量(),m n α=,其对应的复数为m ni +,故复数集中的元素与复平面内以原点为起点的所有向量组成的集合中的元素是一一对应,故B 正确.对于C ,如果复数z 对应的点在第一象限,则与该复数对应的向量的终点不一定在第一象限,故C 错.对于D ,相等的向量的坐标一定是相同的,故它们对应的复数也相等,故D 正确. 故选:ABD .【点睛】本题考查复数的几何意义,注意复数(),z a bi a b R =+∈对应的向量的坐标为(),a b ,它与终点与起点的坐标的差有关,本题属于基础题.22.设()()2225322z t t t t i =+-+++,t ∈R ,i 为虚数单位,则以下结论正确的是( )A .z 对应的点在第一象限B .z 一定不为纯虚数C .z 一定不为实数D .z 对应的点在实轴的下方 答案:CD【分析】利用配方法得出复数的实部和虚部的取值范围,结合复数的概念和几何意义可判断出各选项的正误,由此可得出结论.【详解】,,所以,复数对应的点可能在第一象限,也可能在第二象限,故A 错误 解析:CD【分析】利用配方法得出复数z 的实部和虚部的取值范围,结合复数的概念和几何意义可判断出各选项的正误,由此可得出结论.【详解】22549492532488t t t ⎛+⎫= ⎪⎝⎭+-->-,()2222110t t t ++=++>, 所以,复数z 对应的点可能在第一象限,也可能在第二象限,故A 错误;当222530220t t t t ⎧+-=⎨++≠⎩,即3t =-或12t =时,z 为纯虚数,故B 错误; 因为2220t t ++>恒成立,所以z 一定不为实数,故C 正确;由选项A 的分析知,z 对应的点在实轴的上方,所以z 对应的点在实轴的下方,故D 正确. 故选:CD.【点睛】本题考查复数的几何意义与复数的概念相关命题真假的判断,解题的关键就是求出复数虚部和实部的取值范围,考查计算能力与推理能力,属于中等题.。

复数专题(有答案) 百度文库

复数专题(有答案) 百度文库

一、复数选择题1.设复数1i z i=+,则z 的虚部是( ) A .12 B .12i C .12- D .12i - 2.已知复数1=-i z i ,其中i 为虚数单位,则||z =( )A .12B .2CD .2 3.复数3(23)i +(其中i 为虚数单位)的虚部为( )A .9iB .46i -C .9D .46- 4.已知复数()2m m m i z i --=为纯虚数,则实数m =( ) A .-1 B .0 C .1 D .0或15.欧拉是瑞士著名数学家,他首先发现:e cos isin i θθθ=+(e 为自然对数的底数,i 为虚数单位),此结论被称为“欧拉公式”,它将指数函数的定义域扩大到复数集,建立了三角函数和指数函数的关系.根据欧拉公式可知,i e π=( )A .1B .0C .-1D .1+i6.已知i 为虚数单位,则复数23i i -+的虚部是( ) A .35 B .35i - C .15- D .15i - 7.设()2211z i i =+++,则||z =( )A B .1 C .2 D8.已知复数512z i =+,则z =( )A .1BCD .5 9.已知复数()211i z i-=+,则z =( ) A .1i -- B .1i -+C .1i +D .1i - 10.已知复数z 的共轭复数212i z i -=+,i 是虚数单位,则复数z 的虚部是( ) A .1 B .-1 C .i D .i -11.复数z 满足22z z i +=,则z 在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 12.复数2i i-的实部与虚部之和为( ) A .35 B .15- C .15D .35 13.122i i-=+( ) A .1 B .-1 C .iD .-i 14.复数()()212z i i =-+在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限15.若复数()()1i 3i a +-(i 为虚数单位)的实部和虚部互为相反数,则实数a =( ) A .1- B .12- C .13 D .1二、多选题16.下面是关于复数21i z =-+的四个命题,其中真命题是( )A .||z =B .22z i =C .z 的共轭复数为1i -+D .z 的虚部为1-17.已知复数122z =-,则下列结论正确的有( )A .1z z ⋅=B .2z z =C .31z =-D .202012z =-+ 18.已知复数(),z x yi x y R =+∈,则( )A .20zB .z 的虚部是yiC .若12z i =+,则1x =,2y =D .z =19.(多选题)已知集合{},n M m m i n N ==∈,其中i 为虚数单位,则下列元素属于集合M 的是( ) A .()()11i i -+ B .11i i-+ C .11i i +- D .()21i - 20.下面是关于复数21iz =-+(i 为虚数单位)的命题,其中真命题为( ) A .||2z = B .22z i = C .z 的共轭复数为1i + D .z 的虚部为1- 21.已知复数1cos 2sin 222z i ππθθθ⎛⎫=++-<< ⎪⎝⎭(其中i 为虚数单位),则( ) A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .2cos z θ=D .1z 的实部为12-22.复数z 满足233232i z i i+⋅+=-,则下列说法正确的是( )A .z 的实部为3-B .z 的虚部为2C .32z i =-D .||z =23.已知i 为虚数单位,复数322i z i +=-,则以下真命题的是( ) A .z 的共轭复数为4755i - B .z 的虚部为75i C .3z = D .z 在复平面内对应的点在第一象限24.设i 为虚数单位,复数()(12)z a i i =++,则下列命题正确的是( )A .若z 为纯虚数,则实数a 的值为2B .若z 在复平面内对应的点在第三象限,则实数a 的取值范围是(,)122- C .实数12a =-是z z =(z 为z 的共轭复数)的充要条件 D .若||5()z z x i x R +=+∈,则实数a 的值为2 25.下列命题中,正确的是( )A .复数的模总是非负数B .复数集与复平面内以原点为起点的所有向量组成的集合一一对应C .如果复数z 对应的点在第一象限,则与该复数对应的向量的终点也一定在第一象限D .相等的向量对应着相等的复数26.已知复数z 满足(2i)i z -=(i 为虚数单位),复数z 的共轭复数为z ,则( )A .3||5z =B .12i 5z +=-C .复数z 的实部为1-D .复数z 对应复平面上的点在第二象限27.以下命题正确的是( ) A .0a =是z a bi =+为纯虚数的必要不充分条件B .满足210x +=的x 有且仅有iC .“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件D .已知()f x =()1878f x x '= 28.对任意1z ,2z ,z C ∈,下列结论成立的是( )A .当m ,*n N ∈时,有m n m n z z z +=B .当1z ,2zC ∈时,若22120z z +=,则10z =且20z = C .互为共轭复数的两个复数的模相等,且22||||z z z z ==⋅D .12z z =的充要条件是12=z z29.已知i 为虚数单位,下列命题中正确的是( )A .若x ,y ∈C ,则1x yi i +=+的充要条件是1x y ==B .2(1)()a i a +∈R 是纯虚数C .若22120z z +=,则120z z == D .当4m =时,复数22lg(27)(56)m m m m i --+++是纯虚数30.已知复数i z a b =+(a ,b ∈R ,i 为虚数单位),且1a b +=,下列命题正确的是( ) A .z 不可能为纯虚数B .若z 的共轭复数为z ,且z z =,则z 是实数C .若||z z =,则z 是实数D .||z 可以等于12【参考答案】***试卷处理标记,请不要删除一、复数选择题1.A【分析】根据复数除法运算整理得到,根据虚部定义可得到结果.【详解】,的虚部为.故选:.解析:A【分析】根据复数除法运算整理得到z ,根据虚部定义可得到结果.【详解】()()()1111111222i i i i z i i i i -+====+++-,z ∴的虚部为12. 故选:A .2.B【分析】先利用复数的除法运算将化简,再利用模长公式即可求解.【详解】由于,则.故选:B解析:B【分析】先利用复数的除法运算将1=-i z i 化简,再利用模长公式即可求解. 【详解】 由于()(1i)(1i)111(1i)222i i i i z i i ++====-+--+,则||2z ===. 故选:B3.C【分析】应用复数相乘的运算法则计算即可.【详解】解:所以的虚部为9.故选:C.解析:C【分析】应用复数相乘的运算法则计算即可.【详解】解:()()()32351223469i i i i +=-++=-+所以()323i +的虚部为9.故选:C. 4.C【分析】结合复数除法运算化简复数,再由纯虚数定义求解即可【详解】解析:因为为纯虚数,所以,解得,故选:C.解析:C【分析】结合复数除法运算化简复数z ,再由纯虚数定义求解即可【详解】解析:因为()()22m m m iz m m mi i --==--为纯虚数,所以200m m m ⎧-=⎨≠⎩,解得1m =,故选:C.5.C【分析】利用复数和三角函数的性质,直接代入运算即可【详解】由题意可知=,故选C解析:C【分析】利用复数和三角函数的性质,直接代入运算即可【详解】由题意可知i e π=cos sin 101i ππ+=-+=-,故选C6.A【分析】先由复数的除法运算化简复数,再由复数的概念,即可得出其虚部.【详解】因为,所以其虚部是.故选:A.解析:A【分析】 先由复数的除法运算化简复数23i i-+,再由复数的概念,即可得出其虚部. 【详解】 因为22(3)26133(3)(3)1055i i i i i i i i -----===--++-,所以其虚部是35. 故选:A.7.D【分析】利用复数的乘除法运算法则将化简,然后求解.【详解】因为,所以,则.故选:D .【点睛】本题考查复数的运算,解答时注意复数的乘法运算符合多项式乘法的运算法则,计算复数的除法时,解析:D利用复数的乘除法运算法则将z 化简,然后求解||z .【详解】 因为()()()()2221211211211111i z i i i i i i i i i -=++=+++=-++-=+++-,所以1z i =-,则z =故选:D .【点睛】本题考查复数的运算,解答时注意复数的乘法运算符合多项式乘法的运算法则,计算复数的除法时,需要给分子分母同乘以分母的共轭复数然后化简.8.C【分析】根据模的运算可得选项.【详解】.故选:C.解析:C【分析】根据模的运算可得选项.【详解】512z i ====+ 故选:C.9.B【分析】根据复数的除法运算法则求出复数,然后根据共轭复数的概念即可得解.【详解】由题意可得,则.故答案为:B解析:B【分析】根据复数的除法运算法则求出复数z ,然后根据共轭复数的概念即可得解.【详解】由题意可得()()()()()212111111i i i z i i i ii i ---===--=--++-,则1z i =-+. 故答案为:B【分析】先化简,由此求得,进而求得的虚部.【详解】,所以,则的虚部为.故选:A解析:A【分析】 先化简z ,由此求得z ,进而求得z 的虚部.【详解】()()()()212251212125i i i i z i i i i ----====-++-, 所以z i ,则z 的虚部为1.故选:A11.B【分析】先设复数,根据复数模的计算公式,以及复数相等,求出,得出复数,再由复数的几何意义,即可得出结果.【详解】设复数,由得,所以,解得,因为时,不能满足,舍去;故,所以,其对应的解析:B【分析】先设复数(),z x yi x R y R =+∈∈,根据复数模的计算公式,以及复数相等,求出,x y ,得出复数,再由复数的几何意义,即可得出结果.【详解】设复数(),z x yi x R y R =+∈∈, 由22z z i +=得222x yi i +=,所以2022x y ⎧⎪+=⎨=⎪⎩,解得31x y ⎧=±⎪⎨⎪=⎩,因为1x y ⎧=⎪⎨⎪=⎩时,不能满足20x =,舍去;故31x y ⎧=-⎪⎨⎪=⎩,所以3z i =-+,其对应的点⎛⎫ ⎪ ⎪⎝⎭位于第二象限, 故选:B.12.C【分析】利用复数代数形式的乘除运算化简得答案.【详解】,的实部与虚部之和为.故选:C【点睛】易错点睛:复数的虚部是,不是.解析:C【分析】利用复数代数形式的乘除运算化简得答案.【详解】()()()2+1212222+555i i i i i i i i -+===-+--,2i i ∴-的实部与虚部之和为121555-+=. 故选:C 【点睛】易错点睛:复数z a bi =+的虚部是b ,不是bi .13.D【分析】利用复数的除法求解.【详解】.故选:D解析:D【分析】利用复数的除法求解.【详解】()()()()12212222i i i i i i i ---==-++-. 故选:D14.A【分析】利用复数的乘法化简复数,利用复数的乘法可得出结论.【详解】,因此,复数在复平面内对应的点位于第一象限.故选:A.解析:A【分析】利用复数的乘法化简复数z ,利用复数的乘法可得出结论.【详解】()()221223243z i i i i i =-+=+-=+,因此,复数z 在复平面内对应的点位于第一象限.故选:A.15.B【分析】利用复数代数形式的乘法运算化简,再由实部加虚部为0求解.【详解】解:,所以复数的实部为,虚部为,因为实部和虚部互为相反数,所以,解得 故选:B解析:B【分析】利用复数代数形式的乘法运算化简,再由实部加虚部为0求解.【详解】解:()()()()21i 3i 33331a i ai ai a a i +-=-+-=++-,所以复数()()1i 3i a +-的实部为3a +,虚部为31a -,因为实部和虚部互为相反数,所以3310a a ++-=,解得12a =- 故选:B二、多选题16.ABCD【分析】先根据复数的除法运算计算出,再依次判断各选项.【详解】,,故A 正确;,故B 正确;的共轭复数为,故C 正确;的虚部为,故D 正确;故选:ABCD.【点睛】本题考查复数的除法解析:ABCD【分析】先根据复数的除法运算计算出z ,再依次判断各选项.【详解】()()()2121111i z i i i i --===---+-+--,z ∴==,故A 正确;()2212z i i =--=,故B 正确;z 的共轭复数为1i -+,故C 正确;z 的虚部为1-,故D 正确;故选:ABCD.【点睛】本题考查复数的除法运算,以及对复数概念的理解,属于基础题.17.ACD【分析】分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.【详解】因为,所以A 正确;因为,,所以,所以B 错误;因为,所以C 正确; 因为,所以,所以D 正确解析:ACD 【分析】 分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.【详解】因为11131222244z z i ⎛⎫⎛⎫-+=+= ⎪⎪ ⎪⎪⎝⎭⎭=⎝⋅,所以A 正确;因为221122z ⎛⎫-=-- ⎪ ⎪⎝⎭=,122z =+,所以2z z ≠,所以B 错误;因为3211122z z z ⎛⎫⎛⎫=⋅=-=- ⎪⎪ ⎪⎪⎝⎭⎝⎭,所以C 正确;因为6331z z z =⋅=,所以()2020633644311122z z z z z ⨯+⎛⎫===⋅=-⋅=-+ ⎪ ⎪⎝⎭,所以D 正确,故选:ACD.【点睛】本题考查复数乘法与乘方的计算,其中还涉及到了共轭复数的计算,难度较易.18.CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取,则,A 选项错误;对于B 选项,复数的虚部为,B 选项错误;解析:CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取z i ,则210z =-<,A 选项错误;对于B 选项,复数z 的虚部为y ,B 选项错误;对于C 选项,若12z i =+,则1x =,2y =,C 选项正确;对于D 选项,z =D 选项正确.故选:CD.【点睛】本题考查复数相关命题真假的判断,涉及复数的计算、复数的概念以及复数的模,属于基础题. 19.BC【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】根据题意,中,时,;时,;时,;时,,.选项A 中,;选项B 中,;选项C 中,;选项D 中,.解析:BC【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】 根据题意,{},n M m m i n N ==∈中, ()4n k k N =∈时,1n i =;()41n k k N =+∈时,n i i =;()42n k k N =+∈时,1n i =-;()43n k k N =+∈时,n i i =-,{}1,1,,M i i ∴=--.选项A 中,()()112i i M -+=∉;选项B 中,()()()211111i i i i i i M --==-+-∈+; 选项C 中,()()()211111i i i i i i M ++==-+∈-; 选项D 中,()212i i M -=-∉.故选:BC.【点睛】此题考查复数的基本运算,涉及复数的乘方和乘法除法运算,准确计算才能得解. 20.BD【分析】把分子分母同时乘以,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】解:,,A 错误;,B 正确;z 的共轭复数为,C 错误;z 的虚部为,D 正确.故选:BD.【点解析:BD【分析】把21iz =-+分子分母同时乘以1i --,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】 解:22(1)11(1)(1)i z i i i i --===---+-+--,||z ∴=A 错误;22i z =,B 正确;z 的共轭复数为1i -+,C 错误;z 的虚部为1-,D 正确.故选:BD.【点睛】本题主要考查复数除法的基本运算、复数的基本概念,属于基础题.21.BC【分析】由可得,得,可判断A 选项,当虚部,时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得,的实部是,可判断D 选项.【详解】因为,所以,所以,所以,所以A 选解析:BC【分析】由22ππθ-<<可得2πθπ-<<,得01cos22θ<+≤,可判断A 选项,当虚部sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得11cos 2sin 212cos 2i z θθθ+-=+,1z 的实部是1cos 2122cos 22θθ+=+,可判断D 选项.【详解】因为22ππθ-<<,所以2πθπ-<<,所以1cos21θ-<≤,所以01cos22θ<+≤,所以A 选项错误; 当sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,复数z 是实数,故B 选项正确;2cos z θ===,故C 选项正确:()()111cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 212cos 2i i z i i i θθθθθθθθθθθ+-+-===+++++-+,1z 的实部是1cos 2122cos 22θθ+=+,故D 不正确. 故选:BC【点睛】本题主要考查复数的概念,复数模的计算,复数的运算,以及三角恒等变换的应用,属于中档题.22.AD【分析】由已知可求出,进而可求出实部、虚部、共轭复数、复数的模,进而可选出正确答案.【详解】解:由知,,即,所以的实部为,A 正确;的虚部为-2,B 错误;,C 错误;,D 正确;故选:A解析:AD【分析】由已知可求出32z i =--,进而可求出实部、虚部、共轭复数、复数的模,进而可选出正确答案.【详解】 解:由233232i z i i +⋅+=-知,232332i z i i +⋅=--,即()()()2233232232313i i i z i i ---=-=+ 39263213i i --==--,所以z 的实部为3-,A 正确;z 的虚部为-2,B 错误;32z i =-+,C 错误;||z ==D 正确; 故选:AD.【点睛】 本题考查了复数的除法运算,考查了复数的概念,考查了共轭复数的求解,考查了复数模的求解,属于基础题.23.AD【分析】先利用复数的除法、乘法计算出,再逐项判断后可得正确的选项.【详解】,故,故A 正确.的虚部为,故B 错,,故C 错,在复平面内对应的点为,故D 正确.故选:AD.【点睛】本题考解析:AD【分析】先利用复数的除法、乘法计算出z ,再逐项判断后可得正确的选项.【详解】()()32232474725555i i i i i z i ++++====+-,故4755i z =-,故A 正确.z 的虚部为75,故B 错,355z ==≠,故C 错, z 在复平面内对应的点为47,55⎛⎫ ⎪⎝⎭,故D 正确. 故选:AD.【点睛】本题考查复数的概念、复数的运算以及复数的几何意义,注意复数(),z a bi a b R =+∈的虚部为b ,不是bi ,另外复数的除法运算是分子分母同乘以分母的共轭复数.24.ACD【分析】首先应用复数的乘法得,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】∴选项A :为纯虚数,有可得,故正确选项B解析:ACD【分析】首先应用复数的乘法得2(12)z a a i =-++,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】()(12)2(12)z a i i a a i =++=-++∴选项A :z 为纯虚数,有20120a a -=⎧⎨+≠⎩可得2a =,故正确 选项B :z 在复平面内对应的点在第三象限,有20120a a -<⎧⎨+<⎩解得12a <-,故错误 选项C :12a =-时,52z z ==-;z z =时,120a +=即12a =-,它们互为充要条件,故正确选项D :||5()z z x i x R +=+∈时,有125a +=,即2a =,故正确故选:ACD【点睛】本题考查了复数的运算及分类和概念,应用复数乘法运算求得复数,再根据复数的概念及性质、相等关系等确定参数的值或范围25.ABD【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数,对于A ,,故A 正确.对于B ,复数对应的向量为,且对于平面内以原点为起点的任一向量,其对应的复数为,故复数集与解析:ABD【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数(),z a bi a b R =+∈,对于A ,0z =≥,故A 正确.对于B ,复数z 对应的向量为(),OZ a b =,且对于平面内以原点为起点的任一向量(),m n α=,其对应的复数为m ni +, 故复数集与复平面内以原点为起点的所有向量组成的集合一一对应,故B 正确. 对于B ,复数z 对应的向量为(),OZ a b =,且对于平面内的任一向量(),m n α=,其对应的复数为m ni +,故复数集中的元素与复平面内以原点为起点的所有向量组成的集合中的元素是一一对应,故B 正确.对于C ,如果复数z 对应的点在第一象限,则与该复数对应的向量的终点不一定在第一象限,故C 错.对于D ,相等的向量的坐标一定是相同的,故它们对应的复数也相等,故D 正确. 故选:ABD .【点睛】本题考查复数的几何意义,注意复数(),z a bi a b R =+∈对应的向量的坐标为(),a b ,它与终点与起点的坐标的差有关,本题属于基础题.【分析】因为复数满足,利用复数的除法运算化简为,再逐项验证判断.【详解】因为复数满足,所以所以,故A 错误;,故B 正确;复数的实部为 ,故C 错误;复数对应复平面上的点在第二象限解析:BD【分析】因为复数z 满足(2i)i z -=,利用复数的除法运算化简为1255z i =-+,再逐项验证判断. 【详解】因为复数z 满足(2i)i z -=, 所以()(2)1222(2)55i i i z i i i i +===-+--+所以5z ==,故A 错误; 1255z i =--,故B 正确; 复数z 的实部为15- ,故C 错误; 复数z 对应复平面上的点12,55⎛⎫- ⎪⎝⎭在第二象限,故D 正确. 故选:BD【点睛】本题主要考查复数的概念,代数运算以及几何意义,还考查分析运算求解的能力,属于基础题. 27.AC【分析】利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式解析:AC利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程210x +=可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式可判断D 选项的正误.综合可得出结论.【详解】对于A 选项,若复数z a bi =+为纯虚数,则0a =且0b ≠,所以,0a =是z a bi =+为纯虚数的必要不充分条件,A 选项正确;对于B 选项,解方程210x +=得x i =±,B 选项错误;对于C 选项,当(),x a b ∈时,若()0f x '>,则函数()f x 在区间(),a b 内单调递增, 即“在区间(),a b 内()0f x '>”⇒“()f x 在区间(),a b 内单调递增”.反之,取()3f x x =,()23f x x '=,当()1,1x ∈-时,()0f x '≥, 此时,函数()y f x =在区间()1,1-上单调递增,即“在区间(),a b 内()0f x '>”⇐/“()f x 在区间(),a b 内单调递增”.所以,“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件.C 选项正确;对于D 选项,()11172488f x x x ++===,()1878f x x -'∴=,D 选项错误. 故选:AC.【点睛】本题考查命题真假的判断,涉及充分条件与必要条件的判断、实系数方程的根以及导数的计算,考查推理能力与计算能力,属于中等题. 28.AC【分析】根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取,进行判断;D 中的必要不充分条件是.【详解】解:由复数乘法的运算律知,A 正确;取,;,满足,但且不解析:AC【分析】根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取11z =,2z i =进行判断;D 中12z z =的必要不充分条件是12=z z .【详解】解:由复数乘法的运算律知,A 正确;取11z =,;2z i =,满足22120z z +=,但10z =且20z =不成立,B 错误; 由复数的模及共轭复数的概念知结论成立,C 正确;由12z z =能推出12=z z ,但12||||z z =推不出12z z =,因此12z z =的必要不充分条件是12=z z ,D 错误. 故选:AC【点睛】本题主要考查复数乘法的运算律和复数的基本知识以及共轭复数的概念,属于基础题.29.BD【分析】选项A :取,满足方程,所以错误;选项B :,恒成立,所以正确;选项C :取,,,所以错误;选项D :代入,验证结果是纯虚数,所以正确.【详解】取,,则,但不满足,故A 错误;,恒成解析:BD【分析】选项A :取x i =,y i =-满足方程,所以错误;选项B :a ∀∈R ,210a +>恒成立,所以正确;选项C :取1z i =,21z =,22120z z +=,所以错误;选项D :4m =代入 22lg(27)(56)m m m m i --+++,验证结果是纯虚数,所以正确.【详解】取x i =,y i =-,则1x yi i +=+,但不满足1x y ==,故A 错误;a ∀∈R ,210a +>恒成立,所以2(1a i +)是纯虚数,故B 正确;取1z i =,21z =,则22120z z +=,但120z z ==不成立,故C 错误; 4m =时,复数2212756=42g m m m m i i --+++()()是纯虚数,故D 正确.故选:BD .【点睛】本题考查复数有关概念的辨析,特别要注意复数的实部和虚部都是实数,解题时要合理取特殊值,属于中档题.30.BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当时,,此时为纯虚数,A 错误;若z 的共轭复数为,且,则,因此,B 正确;由是实数,且知,z 是实数,C 正确;由解析:BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当0a =时,1b =,此时z i 为纯虚数,A 错误;若z 的共轭复数为z ,且z z =,则a bi a bi +=-,因此0b =,B 正确;由||z 是实数,且||z z =知,z 是实数,C 正确;由1||2z =得2214a b +=,又1a b +=,因此28830a a -+=,64483320∆=-⨯⨯=-<,无解,即||z 不可以等于12,D 错误. 故选:BC【点睛】本小题主要考查复数的有关知识,属于基础题.。

专题2.2复数的四则运算(七个重难点突破)高考数学

专题2.2复数的四则运算(七个重难点突破)高考数学
【答案】−;
【详解】原式= − − + − − − = −.
(2)设z1 = x + 2i,z2 = 3 − yi(x,y ∈ R),且z1 + z2 = 5 − 6i,求z1 − z2.
【答案】− + .
【详解】因为 = + , = − , + = − ,
− = + + − ,
显然 − ≠ ,由 − 为纯虚数,得 + = ,解得 = −,
所以 + = −.
故选:
试卷讲评课件
3.在复平面内,复数z对应的点Z的坐标为 −2sin120∘ , −2cos120∘ ,则
z + 2 3 =(
求 z1 + z2 .
【答案】
【分析】设对应的复数为 ,对应的复数为 ,利用向量运算
和复数的向量表示可解.
试卷讲评课件
【详解】设对应的复数为 ,对应的复数为

则 + 对应的复数为 + , − 对应的
复数为 − ,
因为 = = ,且 − = ,
所以 + + − = − ,
=
+=
所以
,解得

=
− = −
所以
− = + − − = − + [ − − ] = − + .
试卷讲评课件
【分析】(1)(2)运用复数加减运算及复数相等求解即可.
③当 = 时, − = − ,
所以 = − + = − + − + − − = − + ,

高中数学第七章复数考点专题训练(带答案)

高中数学第七章复数考点专题训练(带答案)

高中数学第七章复数考点专题训练单选题1、若复数z =21+i ,其中i 为虚数单位,则z =( )A .1+iB .1−iC .−1+iD .−1−i答案:B分析:复数的除法运算,分子分母同时乘以分母的共轭复数,化简即可.z =21+i =2(1−i)(1+i)(1−i)=1−i 故选:B.2、设i 为虚数单位,a ∈R ,“复数z =a 22−i 20201−i 不是纯虚数“是“a ≠1”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案:A分析:先化简z ,求出a ,再判断即可.z =a 22−i 20201−i =a 22−11−i =a 22−1+i (1−i )(1+i )=a 22−12−12i , z 不是纯虚数,则a 22−12≠0,所以a 2≠1,即a ≠±1,所以a ≠±1是a ≠1的充分而不必要条件.故选:A .小提示:本题主要考查根据复数的类型求参数,考查充分条件和必要条件的判断,考查逻辑思维能力和计算能力,属于常考题.3、z 1、z 2是复数,则下列结论中正确的是( )A .若z 12+z 22>0,则z 12>−z 22B .|z 1−z 2|=√(z 1+z 2)2−4z 1⋅z 2C .z 12+z 22=0⇔z 1=z 2=0D .|z 12|=|z 1|2答案:D解析:举反例z 1=2+i ,z 2=2−i 可判断选项A 、B ,举反例,z 2=i 可判断选项C ,设z 1=a +bi ,11z(a,b∈R),分别计算|z12|、|z1|2即可判断选项D,进而可得正确选项.对于选项A:取z1=2+i,z2=2−i,z12=(2+i)2=3+2i,z22=(2−i)2=3−2i,满足z12+z22=6>0,但z12与z22是两个复数,不能比较大小,故选项A不正确;对于选项B:取z1=2+i,z2=2−i,|z1−z2|=|2i|=2,而√(z1+z2)2−4z1⋅z2=√42−4(2+i)(2−i)=√16−20无意义,故选项B不正确;对于选项C:取,z2=i,则z12+z22=0,但是z1≠0,z2≠0,故选项C不正确;对于选项D:设z1=a+bi,(a,b∈R),则z12=(a+bi)2=a2−b2+2abi|z12|=√(a2−b2)2+4a2b2=√(a2+b2)2=a2+b2,z1=a−bi,|z1|=√a2+b2,所以|z1|2=a2+b2,所以|z12|=|z1|2,故选项D正确.故选:D.4、已知i为虚数单位,则i+i2+i3+⋅⋅⋅+i2021=()A.i B.−i C.1D.-1答案:A分析:根据虚数的运算性质,得到i4n+i4n+1+i4n+2+i4n+3=0,得到i+i2+i3+⋅⋅⋅+i2021=i2021,即可求解.根据虚数的性质知i4n+i4n+1+i4n+2+i4n+3=1+i−1−i=0,所以i+i2+i3+⋅⋅⋅+i2021=505×0+i2021=i.故选:A.5、已知复数z=1+i,z是z的共轭复数,若z·a=2+bi,其中a,b均为实数,则b的值为()A.-2B.-1C.1D.2答案:A分析:根据共轭复数的定义,结合复数的运算性质和复数相等的性质进行求解即可.因为z=1+i,所以z=1−i,因此z=2+bia =2a+bai=1−i,所以2a =1且ba=−1,则a=2,b=−2.11z故选:A6、在复平面内,复数z对应的点的坐标是(1,−2),则zi的共轭复数为()A.1−2i B.1+2i C.2+i D.2−i答案:D分析:依题意根据复数的几何意义得到z=1−2i,再根据复数代数形式的乘法运算及共轭复数的概念计算可得.解:由题知,z=1−2i,则zi=(1−2i)i=2+i,所以zi=2−i,故选:D.7、若i(1−z)=1,则z+z=()A.−2B.−1C.1D.2答案:D分析:利用复数的除法可求z,从而可求z+z.由题设有1−z=1i =ii2=−i,故z=1+i,故z+z=(1+i)+(1−i)=2,故选:D8、若z=1+i.则|iz+3z|=()A.4√5B.4√2C.2√5D.2√2答案:D分析:根据复数代数形式的运算法则,共轭复数的概念以及复数模的计算公式即可求出.因为z=1+i,所以iz+3z=i(1+i)+3(1−i)=2−2i,所以|iz+3z|=√4+4=2√2.故选:D.多选题9、已知复数z满足(1+i3)z=2,则下列说法中正确的有()A.z的虚部是iB.|z|=√2C.z⋅z=2D.z2=2答案:BC分析:根据复数的除法运算求出z,结合相关概念以及复数乘法运算即可得结果.z=21+i3=21−i=1+i,其虚部为1,|z|=√2,z⋅z=(1+i)(1−i)=2,z2=(1+i)2=2i≠2.故选:BC.10、欧拉公式e xi=cosx+isinx(其中i为虚数单位,x∈R)是由瑞士著名数学家欧拉创立的,该公式将指数函数的定义域扩大到复数,建立了三角函数与指数函数之间的关系,在复变函数论里面占有非常重要的地位,被誉为“数学中的天桥”,依据欧拉公式,下列选项正确的是()A.复数e2i对应的点位于第三象限B.eπ2i为纯虚数C.复数xi√3+i 的模等于12D.eπ6i的共轭复数为12−√32i答案:BC分析:根据欧拉公式写出e2i=cos2+isin2、eπ2i=cosπ2+isinπ2、eπ6i=cosπ6+isinπ6,再判断复数所在象限、类型及求模长、共轭复数.由题知e2i=cos2+isin2,而cos2<0,sin2>0,则复数e2i对应的点位于第二象限,故A错误;eπ2i=cosπ2+isinπ2=i,则eπ2i为纯虚数,故B正确;xi √3+i =√3+i=√3−i)(√3+i)(√3−i)=√3cosx+sinx4+√3sinx−cosx4i,则xi√3+i的模为√(√3cosx+sinx4)2+(√3sinx−cosx4)2=√3cos2x+sin2x+3sin2x+cos2x16=12,故C正确;eπ6i=cosπ6+isinπ6=√32+12i,其共轭复数为√32−12i,故D错误.故选:BC11、设复数z1,z2满足z1+z2=0,则()A.z1=z2B.|z1|=|z2|C.若z1(2−i)=3+i,则z1z2=−2i D.若|z1−(1+√3i)|=1,则1≤|z2|≤3答案:BCD分析:由待定系数法先假设z1=a+bi,则z2=−a−bi,根据共轭复数的概念判断A选项,根据模长的公式判断B选项,根据复数的运算法则判断C选项,根据复数的几何意义判断D选项.设复数z1=a+bi,由z1+z2=0,所以z2=−a−bi,因此:z1=a−bi≠z2,故A选项错误;因为|z1|=√a2+b2,|z2|=√(−a)2+(−b)2=√a2+b2,所以B选项正确;因为z1(2−i)=3+i,所以z1=3+i2−i=1+i,则z2=−1−i所以z1z2=(1+i)(−1−i)=−2i,所以C选项正确;因为|z1−(1+√3i)|=1,根据复数的几何意义可知,复数z1=a+bi所表示的点(a,b)的轨迹是以(1,√3)为圆心,1为半径的圆,则由对称性可知,复数z2=−a−bi所表示的点(−a,−b)的轨迹是以(−1,−√3)为圆心,1为半径的圆,由|z2|的几何意义表示点(−a,−b)与(0,0)间的距离,由图可知:1≤|z2|≤3,故D选项正确;故选:BCD.小提示:本题主要考查了复数的几何意义以及复数的乘除运算,在求解过程中始终利用i2=−1对式子进行化简,而复数的几何意义有两个,一个是点对应,一个是向量对应,在解题中要清楚.12、对任意复数z=a+bi(a,b∈R),i为虚数单位,则下列结论中正确的是()A.z−z=2a B.|z|=|z|C.z+z=2a D.z+z=2bi答案:BC分析:写出共轭复数,然后计算判断各选项.由已知z=a−bi,因此z−z=2bi,z+z=2a,|z|=√a2+b2=|z|.故选:BC.13、欧拉公式e xi=cosx+isinx(其中i为虚数单位,x∈R),是由瑞士著名数学家欧拉创立的,公式将指数函数的定义域扩大到复数,建立了三角函数与指数的数的关联,在复变函数论里面占有非常重要的地位,被誉为数学中的天桥,依据欧拉公式,下列选项能确的是()A.复数e2i对应的点位于第三象限B.eπi2为纯虚数C.eπi3的共轭复数为12−√32i;D.复数xi√3+i的模长等于12答案:BCD分析:对于A,e2i=cos2+isin2,根据2∈(π2,π),即可判断出;对于BCD,根据欧拉公式e xi=cosx+ isinx逐项计算,然后判断正误即可.解:对于A,由于e2i=cos2+isin2,∵2∈(π2,π),∴cos2∈(−1,0),sin2∈(0,1),∴e2i表示的复数在复平面中位于第二象限,故A错误;对于B,e π2i=cosπ2+isinπ2=i,可得eπ2i为纯虚数,故B正确;对于C,e π3i=cosπ3+isinπ3=12+√32i,∴eπ3i的共轭复数为12−√32i,故C正确.对于D,xi√3+i =√3+i=√3−i)(√3+i)(√3−i)=√3cosx+sinx4+√3sinx−cosx4i,可得其模的长为√(√3cosx+sinx4)2+(√3sinx−cosx4)2=√3cos2x+2√3sinxcosx+sin2x16+3sin2x−2√3sinxcosx+cos2x16=12,故D正确;故选:BCD.填空题14、已知复数z=√3+i(1−√3i)2,则z·z=________.答案:14分析:化简z,计算z·z即可.z=√3+i(1−√3i)2=√3i2(1−√3i)2=√3i)(1−√3i)2=1−√3i=√3i)(1−√3i)(1+√3i)=−√34+i4z=−√34−i4z⋅z=316+116=14所以答案是:1415、若非零复数x,y满足x2+xy+y2=0,则(xx+y )2020+(yx+y)2020的值是___________.答案:−1分析:由题设有xy =−1±√3i2、xy+1=−(xy)2易得(xy)3n=1,同理(yx)3n=1,n∈N∗,而xx+y=−yx,yx+y=−xy,由此可知(xx+y )2020+(yx+y)2020=yx+xy,即可求值.由题设有:(xy )2+xy+1=0,解得xy=−1±√3i2,且xy+1=−(xy)2,∴(xy )3=1,即(xy)3n=1,同理有(yx)3n=1,n∈N∗,x x+y =x(x+y)(x+y)2=x2+xyx2+2xy+y2,yx+y=y(x+y)(x+y)2=y2+xyx2+2xy+y2,又x2+xy+y2=0,∴xx+y =−y2xy=−yx,yx+y=−x2xy=−xy,∴(xx+y )2020+(yx+y)2020=(yx)2020+(xy)2020=(yx)3×673+1+(xy)3×673+1=yx+xy=−1,所以答案是:−1.16、若复数z1=sinπ3−icosπ6,z2=2+3i,则|z1|________|z2|(填“>”“<”或“=”).答案:<分析:由复数模的计算公式,分别计算出|z1|和|z2|,即可比较大小.|z1|=√sin2π3+cos2π6=√34+34=√62,|z2|=√22+32=√13.因为√62=√32<√13,所以|z1|<|z2|.所以答案是:<解答题17、已知复数z1=4-m2+(m-2)i,z2=λ+2sin θ+(cos θ-2)i(其中i是虚数单位,m,λ,θ∈R).(1)若z1为纯虚数,求实数m的值;(2)若z1=z2,求实数λ的取值范围.答案:(1)-2;(2)[2,6]分析:(1)z 1为纯虚数,则其实部为0,虚部不为0,解得参数值;(2)由z 1=z 2,实部、虚部分别相等,求得λ关于θ的函数表达式,根据sinθ的范围求得参数取值范围.(1)由z 1为纯虚数,则{4−m 2=0,m −2≠0,解得m =-2. (2)由z 1=z 2,得{4−m 2=λ+2sinθ,m −2=cosθ−2,∴λ=4-cos 2θ-2sin θ=sin 2θ-2sin θ+3=(sinθ−1)2+2. ∵-1≤sin θ≤1,∴当sin θ=1时,λmin =2,当sin θ=-1时,λmax =6,∴实数λ的取值范围是[2,6].18、已知m ∈R ,α、β是关于x 的方程x 2+2x +m =0的两根.(1)若|α−β|=2√2,求m 的值;(2)用m 表示|α|+|β|.答案:(1)−1或3;(2)|α|+|β|={2√m,m >12,0≤m ≤12√1−m,m <0.分析:(1)由α、β是关于x 的方程x 2+2x +m =0的两根.可得α+β=−2,αβ=m ,对α,β分为实数,与一对共轭虚根即可得出.(2)不妨设α⩽β,对m 及其判别式分类讨论,利用根与系数的关系即可得出.解:(1)∵α、β是关于x 的方程x 2+2x +m =0的两根.∴α+β=−2,αβ=m ,若α,β为实数,即Δ=4−4m ≥0,解得m ≤1时;则2√2=|α−β|=√(α+β)2−4αβ=√4−4m ,解得m =−1.若α,β为一对共轭复数,即Δ=4−4m<0,解得m>1时;则2√2=|α−β|=√(α+β)2−4αβ=|√4m−4i|,解得m=3.综上可得:m=−1或3.(2)因为x2+2x+m=0,不妨设α⩽β.Δ=4−4m⩾0,即m⩽1时,方程有两个实数根.α+β=−2,αβ=m,0⩽m⩽1时,|α|+|β|=|α+β|=2.m<0时,α与β必然一正一负,则|α|+|β|=−α+β=√(α+β)2−4αβ=2√1−m.Δ=4−4m<0,即m>1时,方程有一对共轭虚根.|α|+|β|=2|α|=2√α2=2√m综上可得:|α|+|β|={2√m,m>1 2,0⩽m⩽12√1−m,m<0.。

高考数学压轴专题(易错题)备战高考《复数》知识点总复习含答案

高考数学压轴专题(易错题)备战高考《复数》知识点总复习含答案

【高中数学】数学复习题《复数》知识点练习一、选择题1.设复数4273i z i -=-,则复数z 的虚部为( ) A .1729- B .1729 C .129- D .129【答案】C【解析】【分析】 根据复数运算法则求解1712929z i =-,即可得到其虚部. 【详解】 依题意,()()()()427342281214634217173737358582929i i i i i i z i i i i -+-+-+-=====---+ 故复数z 的虚部为129-故选:C【点睛】此题考查复数的运算和概念辨析,关键在于熟练掌握运算法则,准确计算,正确辨析虚部的概念.2.已知i 是虚数单位,44z 3i (1i)=-+,则z (= )A .10BC .5D 【答案】B【解析】【分析】利用复数代数形式的乘除运算化简,再由复数模的计算公式求解.【详解】4244z 3i 3i 13i (1i)(2i)=-=-=--+Q ,z ∴== 故选B .【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.3.已知复数z 满足()1z i i =-,(i 为虚数单位),则z =( )A B C .2 D .3【解析】()11z i i i =-=+,故2z =,故选A.4.若复数z 满足232,z z i +=-其中i 为虚数单位,则z=A .1+2iB .1-2iC .12i -+D .12i --【答案】B 【解析】试题分析:设i z a b =+,则23i 32i z z a b +=+=-,故,则12i z =-,选B.【考点】注意共轭复数的概念【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目看,复数题目往往不难,有时对复数的运算与概念、复数的几何意义等进行综合考查,也是考生必定得分的题目之一.5.a 为正实数,i 为虚数单位,2a i i+=,则a=( ) A .2B 3C 2D .1【答案】B【解析】【分析】【详解】 2||21230,3a i a a a a i+=+=∴=±>∴=Q ,选B.6.设i 是虚数单位,则()()3211i i -+等于( ) A .1i -B .1i -+C .1i +D .1i --【答案】B【解析】【分析】化简复数得到答案.【详解】 ()()3221(1)(1)2(1)1221i i i i i i i ii -----===-++ 故答案选B本题考查了复数的计算,意在考查学生的计算能力.7.复数21i z i+=-,i 是虚数单位,则下列结论正确的是A .z =B .z 的共轭复数为31+22iC .z 的实部与虚部之和为1D .z 在复平面内的对应点位于第一象限 【答案】D【解析】【分析】 利用复数的四则运算,求得1322z i =+,在根据复数的模,复数与共轭复数的概念等即可得到结论.【详解】 由题意()()()()22121313111122i i i i z i i i i i ++++====+--+-,则22z ==,z 的共轭复数为1322z i =-, 复数z 的实部与虚部之和为2,z 在复平面内对应点位于第一象限,故选D .【点睛】复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化,其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b (,)a b 、共轭为a bi -.8.(2018江西省景德镇联考)若复数2i 2a z -=在复平面内对应的点在直线0x y +=上,则z =( )A .2B C .1 D .【答案】B【解析】分析:化简复数z ,求出对应点坐标,代入直线方程,可求得a 的值,从而可得结果. 详解:因为复数2i 22a a z i -==-, 所以复数2i 2a z -=在复平面内对应的点的坐标为,12a ⎛⎫- ⎪⎝⎭,由复数2i 2a z -=在复平面内对应的点在直线0x y +=上, 可得10212a a z i -=⇒==-,,z ==,故选B.9.已知(,)a bi a b R +∈是11i i +-的共轭复数,则a b +=( ) A .1-B .12-C .12D .1 【答案】A【解析】【分析】 先利用复数的除法运算法则求出11i i+-的值,再利用共轭复数的定义求出a +bi ,从而确定a ,b 的值,求出a +b .【详解】 ()()21(1)21112i i i i i i ++===-+-i , ∴a +bi =﹣i ,∴a =0,b =﹣1,∴a +b =﹣1,故选:A .【点睛】本题主要考查了复数代数形式的乘除运算,考查了共轭复数的概念,是基础题.10.在复平面内与复数21i z i =+所对应的点关于虚轴对称的点为A ,则A 对应的复数为( )A .1i --B .1i -C .1i +D .1i -+ 【答案】D【解析】【分析】根据复数的运算法则求出1z i =+,即可得到其对应点关于虚轴对称点的坐标,写出复数.【详解】 由题()()()2122211112i i i i z i i i i -+====+++-,在复平面对应的点为(1,1), 关于虚轴对称点为(-1,1),所以其对应的复数为1i -+.故选:D【点睛】此题考查复数的几何意义,关键在于根据复数的乘法除法运算准确求解,熟练掌握复数的几何意义.11.若复数z 满足2(12)1i z z +=+,则其共轭复数z 为( )A .1188i +B .1188i -+C .1188i --D .1188i - 【答案】B【解析】【分析】 计算得到18i z --=,再计算共轭复数得到答案. 【详解】 21111(12)1,,44888i i z z z z i i --+=+∴===-+-Q . 故选:B .【点睛】本题考查了复数的化简,共轭复数,意在考查学生的计算能力.12.设i 是虚数单位,则复数734i i ++在复平面内所对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【解析】 因为734i i ++(7)(34)2525=1(34)(34)25i i i i i i +--==-+-, 所以所对应的点为(1,1)-,位于第四象限,选D.13.已知z C ∈,2z i z i ++-=,则z 对应的点Z 的轨迹为( )A .椭圆B .双曲线C .抛物线D .线段【答案】D【解析】【分析】由复数模的几何意义,结合三角不等式可得出点Z 的轨迹.【详解】 2z i z i ++-=的几何意义为复数z 对应的点Z 到点()0,1A -和点()0,1B 的距离之和为2,即ZA ZB AB +=,另一方面,由三角不等式得ZA ZB AB +≥.当且仅当点Z 在线段AB 上时,等号成立.因此,点Z 的轨迹为线段.故选:D.【点睛】本题考查复数模的几何意义,将问题转化为距离之和并结合三角不等式求解是解题的关键,考查分析问题和解决问题的能力,属于中等题.14.已知复数z 满足21zi z i +=-,则z =A .12i +B .12i -C .1i +D .1i - 【答案】C【解析】【分析】设出复数z ,根据复数相等求得结果.【详解】设(),z a bi a b R =+∈,则z a bi =-, 故()()()()22221zi z a bi i a bi b a a b i i +=++-=-++-=-,故2121b a a b -+=⎧⎨-=-⎩,解得11a b =⎧⎨=⎩. 所以1z i =+.故选:C .【点睛】本题考查复数的运算,共轭复数的求解,属综合基础题.15.在复平面内,复数21i z i =+ (i 为虚数单位)的共轭复数对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【解析】分析:首先求得复数z ,然后求解其共轭复数即可. 详解:由复数的运算法则有:()()()()2121211112i i i i i z i i i i --====+++-, 则1z i =-,其对应的点()1,1-位于第四象限.本题选择D 选项.点睛:本题主要考查复数的运算法则及其应用等知识,意在考查学生的转化能力和计算求解能力.16.如果复数z 满足336z i z i ++-=,那么1z i ++的最小值是( )A .1B C .2 D 【答案】A【解析】 分析:先根据已知336z i z i ++-=找到复数z 对应的点Z 的轨迹,再利用数形结合求 1z i ++的最小值.详解:设复数z 对应的点Z(x,y),6=,它表示点Z 到A (0,-3)和B (0,3)的距离和为6,所以点Z 的轨迹为线段AB,因为1z i ++Z 到点C (-1,-1)的距离,所以当点Z 在点D(0,-1)时,它和点C (-1,-1)的距离最小,且这个最小距离为1. 故答案为:A点睛:(1)本题主要考查复数的几何意义,意在考查学生对这些知识的掌握水平和数形结合的思想方法.(2)z a bi ++表示复数z 对应的点到(-a,-b )的距离,类似这样的结论还有一些,大家要结合直角坐标理解它的几何意义,并做到能利用它解题.17.已知i 是虚数单位,复数z 满足()12i z i +=,则z 的虚部是( )A .1B .iC .1-D .i -【答案】A【解析】 ()12i z i +=22(1)112i i i z i i -⇒===++,所以z 的虚部是1,选A. 18.已知复数z 在复平面内对应点是()1,2-,i 为虚数单位,则21z z +=-( ) A .1i --B .1i +C .312i -D .312i + 【答案】D【解析】 21z z +=-323122i i i -=+- ,选D.19.已知下列三个命题:①若复数z 1,z 2的模相等,则z 1,z 2是共轭复数;②z 1,z 2都是复数,若z 1+z 2是虚数,则z 1不是z 2的共轭复数;③复数z 是实数的充要条件是z z =.则其中正确命题的个数为( )A .0个B .1个C .2个D .3个【答案】C【解析】【分析】 运用复数的模、共轭复数、虚数等知识对命题进行判断.【详解】对于①中复数1z 和2z 的模相等,例如1=1+z i ,2z ,则1z 和2z 是共轭复数是错误的;对于②1z 和2z 都是复数,若12+z z 是虚数,则其实部互为相反数,则1z 不是2z 的共轭复数,所以②是正确的;对于③复数z 是实数,令z a =,则z a =所以z z =,反之当z z =时,亦有复数z 是实数,故复数z 是实数的充要条件是z z =是正确的.综上正确命题的个数是2个.故选C【点睛】本题考查了复数的基本概念,判断命题是否正确需要熟练掌握基础知识,并能运用举例的方法进行判断,本题较为基础.20.已知复数z 满足()11z i i +=-,则z = ( )A .iB .1C .i -D .1-【答案】B【解析】 ()()1i 1i z +=-,则()()()21i 1i 2i 1i 1i 1i 2z ---====-++-i ,1z ∴=,故选B.。

高考数学压轴专题(易错题)备战高考《复数》知识点总复习附答案解析

高考数学压轴专题(易错题)备战高考《复数》知识点总复习附答案解析

新数学《复数》专题解析(1)一、选择题1.若43i z =+,则zz=( ) A .1 B .1-C .4355i + D .4355i - 【答案】D 【解析】 【详解】由题意可得 :5z ==,且:43z i =-,据此有:4343555z i i z -==-. 本题选择D 选项.2.在复平面内,若复数z 满足|z +1|=|1+i z |,则z 在复平面内对应点的轨迹是( ) A .直线 B .圆 C .椭圆 D .抛物线【答案】A 【解析】 【分析】设()z x yi x y R =+∈、,代入11z iz +=+,求模后整理得z 在复平面内对应点的轨迹是直线. 【详解】设()z x yi x y R =+∈、,1x yi ++=,()11iz i x yi +=++=y x =-,所以复数z x yi =+对应点的轨迹为直线,故选A. 【点睛】本题考查复数的代数表示法及其几何意义,考查复数模的求法,动点的轨迹问题,是基础题.3.已知复数z 的模为2,则z i -的最大值为:( )A .1B .2C D .3【答案】D因为z i -213z i ≤+-=+= ,所以最大值为3,选D.4.已知复数(2)z i i =-,其中i 是虚数单位,则z 的模z = ( ) A .3 B .5C .3D .5【答案】B 【解析】22(2)22(1)5z i i i i =-=-=+-=,故选B .5.在复平面内复数83i +、45i -+对应的点分别为A 、B ,若复数z 对应的点C 为线段AB 的中点,z 为复数z 的共轭复数,则z z ⋅的值为( ) A .61 B .13 C .20 D .10【答案】C 【解析】由题意知点、的坐标为、,则点的坐标为,则,从而,选C.6.a 为正实数,i 为虚数单位,2a ii+=,则a=( ) A .2 B 3C 2D .1【答案】B 【解析】 【分析】 【详解】2||21230,3a ia a a a i+=+=∴=±>∴=Q ,选B.7.在复平面内,已知复数z 对应的点与复数2i --对应的点关于实轴对称,则zi=( ) A .12i - B .12i +C .12i -+D .12i --【答案】B 【解析】 【分析】 由已知求得z ,代入zi,再由复数代数形式的乘除运算化简得答案.由题意,2z i =-+,则22(2)()12z i i i i i i i -+-+-===+-. 故选:B . 【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.8.(2018江西省景德镇联考)若复数2i2a z -=在复平面内对应的点在直线0x y +=上,则z =( )A .2 BC .1D .【答案】B 【解析】分析:化简复数z ,求出对应点坐标,代入直线方程,可求得a 的值,从而可得结果. 详解:因为复数2i 22a az i -==-, 所以复数2i 2a z -=在复平面内对应的点的坐标为,12a ⎛⎫- ⎪⎝⎭,由复数2i2a z -=在复平面内对应的点在直线0x y +=上, 可得10212aa z i -=⇒==-,,z ==,故选B.9.已知复数z 满足121iz i i+⋅=--(其中z 为z 的共轭复数),则z 的值为( )A .1B .2C D 【答案】D 【解析】 【分析】按照复数的运算法则先求出z ,再写出z ,进而求出z . 【详解】21(1)21(1)(1)2i i i i i i i ++===--+Q , 1222(2)121i iz i i z i z i i i i i+-∴⋅=-⇒⋅=-⇒==--=---,12||z i z ∴=-+⇒==故选:D 【点睛】本题考查复数的四则运算、共轭复数及复数的模,考查基本运算能力,属于基础题.10.已知复数z,则|z |=( ) A .14 B .12C .1D .2【答案】B 【解析】 【分析】 【详解】解:因为===,因此|z |=1211.在复平面内与复数21iz i=+所对应的点关于虚轴对称的点为A ,则A 对应的复数为( ) A .1i -- B .1i -C .1i +D .1i -+【答案】D 【解析】 【分析】根据复数的运算法则求出1z i =+,即可得到其对应点关于虚轴对称点的坐标,写出复数. 【详解】 由题()()()2122211112i i i i z i i i i -+====+++-,在复平面对应的点为(1,1), 关于虚轴对称点为(-1,1),所以其对应的复数为1i -+. 故选:D 【点睛】此题考查复数的几何意义,关键在于根据复数的乘法除法运算准确求解,熟练掌握复数的几何意义.12.若121z z -=,则称1z 与2z 互为“邻位复数”.已知复数1z a =与22z bi =+互为“邻位复数”,,a b ∈R ,则22a b +的最大值为( )A .8-B .8+C .1+D .8【答案】B 【解析】 【分析】根据题意点(,)a b 在圆22(2)(1x y -+-=(,)a b 到原点的距离,计算得到答案. 【详解】|2|1a bi --=,故22(2))1a b -+=,点(,)a b 在圆22(2)(1x y -+=上,(,)a b 到原点的距离,故22a b +的最大值为)221(18=+=+.故选:B . 【点睛】本题考查了复数的运算,点到圆距离的最值,意在考查学生的计算能力和转化能力.13.设i 是虚数单位,z 表示复数z 的共轭复数,若231zi i=+-,则4z i +=( )A .6B .50C .D 【答案】C 【解析】 【分析】计算5z i =-,再代入计算得到答案. 【详解】由231zi i =+-,得()()2315z i i i =+-=-,则45455z i i i i +=++=+= 故选:C . 【点睛】本题考查了复数运算,共轭复数,复数的模,意在考查学生对于复数知识的综合应用.14.复数12i2i+=-( ). A .i B .1i +C .i -D .1i -【答案】A 【解析】试题分析:12(12)(2)2422(2)(2)5i i i i i i i i i +++++-===--+,故选A. 【考点】复数运算【名师点睛】复数代数形式的四则运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式的乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化.15.复数(1)(2)z ai a i =-+在复平面内对应的点在第一象限,其中a R ∈,i 为虚数单位,则实数a 的取值范围是( )A .B .)+∞C .(,-∞D .(【答案】A 【解析】 【分析】利用复数代数形式的乘除运算、化简,再由实部与虚部均大于0,列出不等式组,即可求解. 【详解】由题意,复数2(1)(2)3(2)z ai a i a a i =-+=+-在复平面内对应的点在第一象限,所以23020a a >⎧⎨->⎩,解得0a <<,即实数a 的取值范围是. 故选:A . 【点睛】本题主要考查了复数的乘法运算,以及复数的代数表示法及其几何意义的应用,着重考查了推理与运算能力.16.若z C ∈且342z i ++≤,则1z i --的最大和最小值分别为,M m ,则M m -的值等于( ) A .3 B .4C .5D .9【答案】B 【解析】 【分析】根据复数差的模的几何意义可得复数z 在复平面上对应的点的轨迹,再次利用复数差的模的几何意义得到,M m ,从而可得M m -的值. 【详解】因为342z i ++≤,故复数z 在复平面上对应的点P 到134z i =--对应的点A 的距离小于或等于2, 所以P 在以()3,4C --为圆心,半径为2的圆面内或圆上, 又1z i --表示P 到复数21z i =+对应的点B 的距离,故该距离的最大值为222AB +==,最小值为22AB -=,故4M m -=. 故选:B. 【点睛】本题考查复数中12z z -的几何意义,该几何意义为复平面上12,z z 对应的两点之间的距离,注意12z z +也有明确的几何意义(可把12z z +化成()12z z --),本题属于中档题.17.已知复数134z i=+,则下列说法正确的是( ) A .复数z 的实部为3 B .复数z 的虚部为425i C .复数z 的共轭复数为342525i + D .复数的模为1【答案】C 【解析】 【分析】直接利用复数的基本概念得选项. 【详解】1343434252525i z i i -===-+, 所以z 的实部为325,虚部为425-,z 的共轭复数为342525i +15=, 故选C. 【点睛】该题考查的是有关复数的概念和运算,属于简单题目.18.复数z 11ii-=+,则|z |=( )A .1B .2C D .【答案】A 【解析】 【分析】运用复数的除法运算法则,先计算出z 的表达式,然后再计算出z . 【详解】由题意复数z 11ii-=+得221(1)12=1(1)(1)2i i i i i i i i ---+===-++-,所以=1z .故选A【点睛】本题考查了运用复数的除法运算求出复数的表达式,并能求出复数的模,需要掌握其计算法则,较为基础.19.若复数满足,则复数的虚部为()A.B.C.D.【答案】B【解析】分析:先根据复数除法法则得复数,再根据复数虚部概念得结果.详解:因为,所以,因此复数的虚部为,选B.点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为20.已知复数为纯虚数(为虚数单位),则实数()A.-1 B.1 C.0 D.2【答案】B【解析】【分析】化简得到,根据纯虚数概念计算得到答案.【详解】为纯虚数,故且,即.故选:.【点睛】本题考查了根据复数类型求参数,意在考查学生的计算能力.。

复数专题复习(经典、全面)

复数专题复习(经典、全面)

复数专题复习(经典、全面)复数专题复一、复数的概念及运算:1、复数的概念:复数由实部和虚部组成,其中虚部用虚数单位i表示。

2、复数的分类:根据实部和虚部的取值情况,复数可以分为实数、虚数、纯虚数和非纯虚数。

3、复数的运算法则:加减法具有交换律和结合律,乘法具有交换律、结合律和分配律,除法可以通过复数的共轭和模来计算。

4、复数的共轭和模:复数的共轭是实部不变、虚部取相反数的复数,复数的模表示复数对应点与原点的距离。

5、复数共轭和模的运算性质:复数的共轭和模具有一些特殊的运算性质,例如复数的和的共轭等于各自的共轭之和,复数的积的模等于各自的模之积。

二、典型问题分析:考点1:复数的基本运算1.复数(1+3i)/(3-i)的值等于-1+i。

2.已知复数z满足(3+3i)z=3i,则z=-1+i。

3.复数(1-i)^2/(3+3i)的值等于-1/2+i/2.4.复数(1+i)^2/(1-i)的值等于1-i。

考点2:复数的模长运算1.已知复数z=(3+i)/(2-6i),则|z|=11/10.2.已知|z-1+i|=2,复数z的实部为a,虚部为1,则1<a<3.考点3:复数的实部与虚部1.复数1-i的虚部为-1.考点4:复数与复平面内的点关系1.在复平面内,复数1+i对应的点位于第一象限。

1.正确的结论个数是1.2.设 $f(z)=1-z$,$z_1=2+3i$,$z_2=5-i$,则 $f(z_1-z_2)=f(-3+4i)=-4-4i$,答案为 A。

3.设 $z=x+yi$,则 $(x+2)^2+(y-2)^2=1$,即$x^2+y^2+4x-4y+3=0$,这是一个圆心为 $(-2,2)$,半径为$\sqrt{2}$ 的圆。

$|z-2-2i|=\sqrt{(x-2)^2+(y-2)^2}$,是以$(2,2)$ 为圆心,半径为 $1$ 的圆,最小值为 $2$,答案为 A。

4.$p=z+z^*=2a$,$q=z\cdot z^*=a^2+1$,因为 $a^2+1\geq 2a$,所以 $q\geq p$,答案为 D。

复数复习专题(含答案)

复数复习专题(含答案)

复数复习专题一、选择题1.(1-i)2·i =( )A .2-2iB .2+2iC . 2D .-2 2.设复数ωω++-=1,2321则i =( ) A .ω- B .2ω C .ω1- D .21ω3.复数4)11(i +的值是 ( )A .4iB .-4iC .4D .-44.在复平面上复数i,1,4+2i 所对应的点分别是A 、B 、C,则平面四边形ABCD 的对角线BD 的长为( ) A .5 B.13 C.15 D. 175.复数101()1ii -+的值是 ( )A .-1B .1C .32D .-3265的值是 ( )A .-16B .16C .-14D .14-7.若复数(m 2-3m -4)+(m 2-5m -6)i 是虚数,则实数m 满足( )A. m ≠-1B.m ≠6C. m ≠-1或m ≠6D. m ≠-1且m ≠68.已知复数z 1=3+4i ,z 2=t+i ,且12∙z z 是实数,则实数t = ( )A .43B .34C .-34D .-439.=+-2)3(31i i( )A .i 4341+ B.i 4341-- C.i 2321+ D.i 2321--10.若C z ∈且|22|,1|22|i z i z --=-+则的最小值是( )A .2B .3C .4D .511.复数534+i 的共轭复数是 ( )A .34-iB .3545+i C .34+i D .3545-i12.设12()1,23,5,=-=+=-f z z z i z i 则12()-=f z z ( )i iD iC iB A 44444444+--+--13.若12,z z C ∈,则1212z z z z ⋅+⋅是( )A 纯虚数B 实数C 虚数D 无法确定14.(),()n n f n i i n N -+=+∈的值域中,元素的个数是( )A 2B 3C 4D 无数个15.|34|2z i ++≤,则||z 的最大值为( )A 3B 7C 9D 516.已知z =则501001z z ++的值为( ) A i B 1 C 2i + D 3二、填空题17.实数x 、y 满足(1–i )x+(1+i)y=2,则xy 的值是 .18.已知复数z 与 (z +2)2-8i 均是纯虚数,则 z = ____________.19.复数ia ai 222+-的模为2,则实数a 的值是 。

复数运算专题

复数运算专题

复数运算专题例1.i 为虚数单位,则i+1i 等于( ). A. 0B. 2iC. 1+iD. -1+i 例2.已知i 是虚数单位,则(1+i)31−i=( ). A. 2iB. -2iC. 2D. -2例3.设复数z=2+i,则5z+z 2=( ). A. -5+3i B. -5-3i C. 5+3i D. 5-3i 例4.复数1+i(i 为虚数单位)的模等于( ). A. √2 B. 1 C. √22D. 12例5.设复数z 1=3+2i,z 2=1-i,则|z 1+2z 2|=( ). A. 2 B. 3 C. 4 D. 5例6.已知i 为虚数单位,实数x,y 满足(x+2i)i=y-i,则|x-yi|=( ). A. 1 B. √2 C. √3 D. √5例7.i 为虚数单位,则复数i(1-i)的虚部为( ). A. i B. -i C. 1 D. -1 例8.设z=1-i(i 是虚数单位),则复数2z +i 2的虚部是( ). A. -i B. -1 C. i D. 1例9.已知i 是虚数单位,复数z 满足(1+i)z=i,则z 的虚部是( ). A . 12B . -12i C. 12i D. -12例10.设复数z 为纯虚数,且z 2=-9,则复数(1+z)2的实部为( ). A. -6 B. ±6 C. -8 D. ±8 例11.若复数z 满足iz=1+2i,其中i 为虚数单位,则在复平面上复数z 对应的点的坐标为( ).A.(-2,-1) B.(-2,1) C.(2,-1) D.(2,1) 例12.若z 1=2+i,z 2=3+ai(a ∈R), z 1+z 2的和所对应的点在实轴上,则a 为( ). A. 3 B. 2 C. 1 D. -1例13.若复数a+i 1+2i(a ∈R)为纯虚数,其中i 为虚数单位,则a= ( ). A. -3 B. -2 C. 2 D. 3例14.设a ∈R,若(a-i)2i(i 为虚数单位)为正实数,则a=( ). A. 2 B. 1 C. 0 D. -1 例15.已知a,b ∈R,i 为虚数单位,(2a+i)+(1+3i)=-7+bi,则a-b=( ). A. -8 B. 0 C. -7 D. 1 例16.若复数z=1−i 1+i,则z ̅=( ). A. 1 B. -1 C. i D. -i例17.已知复数z=−2+ii2008(i 为虚数单位),则复数z 的共轭复数z ̅的虚部为( ). A. i B. -i C. 1 D. -1例18.已知复数z 的共轭复数为z ̅,若z ̅(1-i)=2i(i 为虚数单位),则z=( ). A. i B. i-1 C. -i-1 D. -i 例19.已知复数z 满足∣z ∣=√2,z+z ̅=2,(z ̅为z 的共轭复数).下列选项(选项中的i 为虚数单位)中z=( ).A. 1+iB. 1-iC. 1+i 或1-iD. -1+i 或-1-i例20.已知z=x+yi(x,y∈R),且 2x+y+ilog 2x-8=(1-log 2y)i,则z=( ). A. 2+i B. 1+2i C. 2+i 或1+2i D. 无解 例21.已知关于x 的方程x 2+(k+2i)x+2+ki=0有实根,则实数k 的值为 . 例22.已知√32+12i 是实系数一元二次方程ax 2+bx+1=0的一个根,则a= ,b= . 例23.若1+i 是实系数方程x 2+bx+c=0的一个根,则方程的另一个根为( ). A. 1-i B. -1+i C. -1-i D. i例24.已知复数z 1=cos θ-i,z 2=sin θ+i,则∣z 1·z 2∣的最大值为( ). A. 32B. √2C. √62D. 3例25.设f(n)=(1+i 1−i)n+(1−i 1+i)n(n ∈N),则集合{x ∣x=f(n)}中元素的个数是( ). A. 1 B. 2 C. 3 D. 无穷多个例26.使不等式m 2-(m 2-3m)i <(m 2-4m+3)i+10成立的实数m( ). A. 1 B. 0 C. 3 D. 复数无法比较大小 例27.定义运算: |abcd |=ad-bc,若复数z=x+yi(x,y ∈R)满足|z 111|=2,则x= ;y= . 例28.实数m 为何值时,复数z=m 2(1m+5+i)+(8m+15)i+m−6m+5.(1)为实数(2)为虚数;(3)为纯虚数;(4)对应点在第二象限.练习1.复数2−i 3−i =( ). A. 710-110i B. 710+110i C. 110+710i D. 110-710i 2.复数√3i)21+√3i的值是( ). A. -2 B. 16 C. -14D. 14-√34i3.设z=1+i(i 是虚数单位),则2z +z 2=( ). A. -1-i B. 1+iC. 1-iD. -1+i4.(18惠3)已知复数z=(1+i )21−i,则|z|=( ). A. 1 B. √2 C. √3 D. √55.设i 为虚数单位,则复数|1−√3i |1+i= ( ). A. -1+i B. -2+2i C. 1-i D. 2-2i6.已知复数z 满足(1+i)z=3+i,其中i 为虚数单位,则|z|等于( ). A. 10 B. √10 C. 5 D. √57.已知i 是虚数单位,则复数1-2i 的虚部为( ). A. 2 B. 1 C. -1 D. -28.复数21+i 的虚部是( ). A. -2B. -1C. 1D. 29.已知i 是虚数单位,则复数z=i 3•(-1+2i)的虚部为( ). A. -2 B. 2 C. -1 D. 1 10.已知复数z 1、z 2在复平面内对应的点关于实轴对称,若(2-i)·z 1=i+i 2+i 3+…+i 2018(其中i 是虚数单位),则复数z 2的虚部等于( )A. -15B. 15C. -35D. -15i11.如果复数2−bi 1+2i (其中i 为虚数单位,b 为实数)的实部和虚部互为相反数,那么b 等于( ). A. -6 B. 23C. -23D. 212.已知i 为虚数单位,在复平面内,复数z=3−2i1+i对应的点所在的象限是( ). A.第一象限 B.第二象限 C.第三象限 D.第四象限13.复数z=(a 2-2a)+(a 2-a-2)i 对应的点在虚轴上,则( ). A. a ≠2或a ≠1 B. a ≠2且a ≠1 C. a=0 D. a=2或a=014.已知a ∈R,i 为虚数单位,若复数z=a+i 1−i纯虚数,则a=( ). A. 0 B. 1 C. 2 D. ±115.若1+(a-2)i 是实数,则a+i i等于( ). A. 1-2i B. 1+2i C. -1+2i D. 2+i16.i 是虚数单位,复数z 满足(1+i)z=1+3i,则z=( ). A. 1+2i B. 2+i C. 1-2i D. 2-i 17.复数21+i 的共轭复数是( ). A. 1+iB. 1-iC. -1+iD. -1-i18.设复数z 满足zi=(1-i)2,则复数z 的共轭复数z ̅=( ). A. -2 B. 2C. -2iD. 2i19.设i 为虚数单位,则复数z=|1−√3i |1+i的共轭复数是( ). A. 1+i B. 1-i C. -1+i D. 2+i20.已知i 为虚数单位,复数z 1=a+i,z 2=2-i,且∣z 1∣=∣z 2∣,则实数a 的值为( ). A. 2 B. -2 C. 2或-2 D. ±2或0 21.实数x,y 满足(1+i)x+(1-i)y=2,则xy 的值是( ). A. 1B. 2C. -2D. -122.若1-i(i 是虚数单位)是关于x 的方程x 2+2px+q=0(p 、q ∈R)的一个解,则p+q=( ). A. -3 B. -1 C. 1 D. 3 23.已知关于x 的方程x 2-(6+i)x+9+ai=0(a ∈R)有实数根b,则求实数a=______,b=_______. 24.(1)若x ∈R,且x 2-(2+i)x+2i=0,则x=_______;(2)若x ∈C,且x 2-2xi-1=0,则x=___________. 25.复数z=2+i 1−i,i 是虚数单位,则下列结论正确的是( )A.∣z ∣=√5B. z 的共轭复数为32+12i C. z 的实部与虚部之和为1 D. z 在复平面内的对应点位于第一象限 26.集合{i n|n ∈N *}(其中i 是虚数单位)中元素的个数是( ). A. 1 B. 2 C. 4 D. 无穷多个 27.求同时满足下列条件的所有复数z:(1)1<z+10z ≤6;(2)z 的实部和虚部都是整数.28.复数z=1-cos θ+isin θ(2π<θ<3π)的模为( ). A. 2cos θ2B. -2cos θ2C. 2sin θ2D. -2sin θ229.已知复数z=(m 2+5m+6)+(m 2-2m-15)i,当实数m 为何值时.(1)z 为实数;(2)z 为虚数;(3)z 为纯虚数.30.定义运算|a b c d |=ad-bc,则符合条件|2−1zzi|=3+2i 的复数z= . 31设z=log 2(m 2-3m-3)+ilog 2(m-3)(m ∈R),若z 对应的点在直线x-2y+1=0上,则m 的值是 . 32.在下列命题中,正确命题的个数为( ). A. 0B. 1C. 2D. 3①两个复数不能比较大小;②z 1,z 2,z 3∈C,若(z 1-z 2)2+(z 2-z 1)2=0,则z 1=z 3;③若(x 2-1)+(x 2+3x+2)i 是纯虚数,则实数x=±1;④z 是虚数的一个充要条件是z+z ̅∈R;⑤若a,b 是两个相等的实数,则(a+b)+(a+b)i 是纯虚数;⑥z ∈R 的一个充要条件是z=z ̅.检测题1.方程2z+|z|=2+6i的解的情况是( ). A. 没有解 B. 只有一解 C. 有两解 D. 多于两解2.若复数z=cosθ-sinθ·i所对应的点在第四象限,则θ为第象限角.3.若复数z=sin2α-i(1-cos2α)是纯虚数,则α= .4.已知M={1,2,(a2-3a-1)+(a2-5a-6)i},N={-1,3},M∩N={3},则实数a= .5.已知复数z1=3+4i,z2=t+i,且z1与z2共轭复数的积是实数,则实数t的值为.6.如果z=a+bi(a,b∈R,且a≠0)是虚数,则z,z̅,z̿,∣z∣,∣z̅∣,z·z̅,z2,∣z∣2,∣z2∣中是虚数的有____个,是实数的有____个,相等的有____组.7.复数4-3a-a2i与复数a2+4ai相等,则实数a的值为( ). A. 1 B. 1或-4 C. -4 D. 0或-48.以2i-√5的虚部为实部,以√5i-2i2的实部为虚部的复数是.9.若(2k2-3k-2)+(k2-2k)i是纯虚数,则实数k的值等于.10.若z∈C,且|z+2-2i|=1,则|z-1-2i|的最小值是( ). A. 2 B. 3 C. 4 D. 511.设集合A={z∣z∈C,且1<∣z∣≤10},则在下列四个复数中,不属于A的复数的为( )A. z1=cos60o+isin30oB. z2=cos30o+isin60oC. z3=10cos60o+(√10sin30o)iD. z4=10cos60o+(10sin60o)i12.已知关于x的方程x2-(6+i)x+9+ai=0(a∈R)有实数根b.(1)求实数a,b的值;(2)若复数z满足∣z̅-a-bi∣=2∣z∣,求z为何值时,∣z∣有最小值并求出最小值.13.已知x 2−x−6x+1+(x2-2x-3)i=0(x∈R),求x的值.14.已知z=1+i,a,b为实数.(1)若ω=z2+3z̅-4,求∣ω∣;(2)若z 2+az+bz2−z+1=1-i,求a,b的值.15.复数z满足条件:∣2z+1∣=∣z-i∣,那么z对应的点的轨迹是( ). A. 圆 B. 椭圆 C. 双曲线 D. 抛物线16.已知z∈C,∣z-2∣=1,则∣z+2+5i∣的最大值和最小值分别是( )A. √41+1和√41-1B. 3和1C. 5√2和√34D. √39和317.利用公式a2+b2=(a+bi(a-bi),把x2+2cosα·x+1分解成一次因式的积为.。

高考数学压轴专题(易错题)备战高考《复数》技巧及练习题

高考数学压轴专题(易错题)备战高考《复数》技巧及练习题

【最新】数学《复数》专题解析一、选择题1.已知复数z 满足11212i i z+=+(i 为虚数单位),则z 的虚部为( ) A .4 B .4i C .4- D .4i -【答案】C 【解析】112i 11420i 34i 12i 5z ++-===-+ ,所以z 的虚部为4-,选C.2.已知复数z 满足()1z i i =-,(i 为虚数单位),则z =( )AB C .2 D .3【答案】A【解析】 ()11z i i i =-=+,故z = A.3.已知复数z 的模为2,则z i -的最大值为:( )A .1B .2CD .3【答案】D【解析】 因为z i -213z i ≤+-=+= ,所以最大值为3,选D.4.若z C ∈且342z i ++≤,则1z i --的最大和最小值分别为,M m ,则M m -的值等于( )A .3B .4C .5D .9【答案】B【解析】【分析】根据复数差的模的几何意义可得复数z 在复平面上对应的点的轨迹,再次利用复数差的模的几何意义得到,M m ,从而可得M m -的值.【详解】 因为342z i ++≤,故复数z 在复平面上对应的点P 到134z i =--对应的点A 的距离小于或等于2, 所以P 在以()3,4C --为圆心,半径为2的圆面内或圆上, 又1z i --表示P 到复数21z i =+对应的点B 的距离,故该距离的最大值为()()22231412412AB +=--+--+=+, 最小值为2412AB -=-,故4M m -=.故选:B.【点睛】本题考查复数中12z z -的几何意义,该几何意义为复平面上12,z z 对应的两点之间的距离,注意12z z +也有明确的几何意义(可把12z z +化成()12z z --),本题属于中档题.5.设i 是虚数单位,则()()3211i i -+等于( ) A .1i -B .1i -+C .1i +D .1i --【答案】B【解析】【分析】化简复数得到答案.【详解】 ()()3221(1)(1)2(1)1221i i i i i i i ii -----===-++ 故答案选B【点睛】本题考查了复数的计算,意在考查学生的计算能力.6.已知为虚数单位, m R ∈,复数()()22288z m m m m=-+++-,若z 为负实数,则m 的取值集合为( )A .{}0B .{}8C .()2,4-D .()4,2-【答案】B 【解析】由题设可得2280{280m m m m -=-++<,解之得8m =,应选答案B 。

专题10.2---复数--学生版

专题10.2---复数--学生版

专题10.2复数练基础1.(2020·全国高考真题(理))复数113i-的虚部是()A.310-B.110-C.110D.3102.(2020·全国高考真题(文))(1–i)4=()A.–4B.4C.–4iD.4i3.(2021·北京·高考真题)在复平面内,复数z 满足(1)2i z -=,则z =()A .1i--B .1i-+C .1i-D .1i+4.(2021·全国·高考真题)已知2i z =-,则()i z z +=()A .62i-B .42i-C .62i+D .42i +5.(2021·全国·高考真题(文))已知2(1)32i z i -=+,则z =()A .312i--B .312i-+C .32i-+D .32i--6.(2021·全国·高考真题(理))设()()2346z z z z i ++-=+,则z =()A .12i-B .12i+C .1i+D .1i-7.(2021·全国·高考真题(文))设i 43i z =+,则z =()A .–34i-B .34i-+C .34i-D .34i+8.(2021·浙江·高考真题)已知a R ∈,()13ai i i +=+,(i 为虚数单位),则a =()A .1-B .1C .3-D .39.(2019·北京高考真题(文))已知复数z =2+i,则z z ⋅=()C.3D.510.(2019·全国高考真题(文))设3i12iz -=+,则z =()A.2C.D.1练提升1.(2010·山东高考真题(文))已知2a ib i i+=+,,a b ∈R ,其中i 为虚数单位,则+a b =()A.-1B.1C.2D.32.(全国高考真题(理))复数212ii+-的共轭复数是()A.i -B.iC.35i-D.35i 3.(2018·全国高考真题(理))设1i2i 1iz -=++,则||z =()A.0B.12C.14.(2009·重庆高考真题(理))已知复数z 的实部为1-,虚部为2,则5iz的共轭复数是()A.2i-B.2i+C.2i--D.2i-+5.(2017·山东高考真题(理))已知R a ∈,i 是虚数单位,若z a =+,4z z ⋅=,则a =()A.1或1-或C.6.(2021·广东龙岗·高三期中)已知复数z 满足()2i 34i z +=+(其中i 为虚数单位),则复数z =()A .2i-B .2i-+C .2i+D .2i--7.(2021·安徽·合肥一六八中学高一期中)欧拉公式i s co in s i x e x x +=(i 是虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,i 3e π表示的复数位于复平面中的()A .第一象限B .第二象限C .第三象限D .第四象限8.【多选题】(2021·全国·模拟预测)已知复数z =+(i 为虚数单位),则下列说法正确的是()A .复数z 在复平面内对应的点坐标为()sin 3cos 3,sin 3cos 3+-B .z的虚部为C .2z z ⋅=D .z ⋅为纯虚数9.【多选题】(2021·河北武强中学高三月考)已知复数cos isin z θθ=+(其中i 为虚数单位),下列说法正确的是()A .1z z ⋅=B .1z z+为实数C .若83πθ=,则复数z 在复平面上对应的点落在第一象限D .若(0,)θπ∈,复数z 是纯虚数,则2πθ=10.(2021·福建·厦门一中模拟预测)在复平面内,复数(,)z a bi a b R =+∈对应向量OZ(O 为坐标原点),设||OZ r = ,以射线Ox 为始边,OZ 为终边旋转的角为θ,则(cos sin )z r i θθ=+,法国数学家棣莫弗发现了棣莫弗定理:1111(cos sin )z r i θθ=+,2222(cos sin )z r i θθ=+,则12121212[cos()sin()]z z rr i θθθθ=+++,由棣莫弗定理可以推导出复数乘方公式:[(cos sin )](cos sin )n n r i r n i n θθθθ+=+,已知4)z i =+,则||z =______;若复数ω满足()*10n n ω-=∈N ,则称复数ω为n 次单位根,若复数ω是6次单位根,且ω∉R ,请写出一个满足条件的ω=______.练真题1.(2021·江苏·高考真题)若复数z 满足()1i 3i z +=-,则z 的虚部等于()A .4B .2C .-2D .-42.(2021·全国·高考真题)复数2i13i--在复平面内对应的点所在的象限为()A .第一象限B .第二象限C .第三象限D .第四象限3.(2020·全国高考真题(理))若z=1+i ,则|z 2–2z |=()A.0B.1C.D.24.(2020·全国高考真题(文))若312i i z =++,则||=z ()A.0B.1D.25.(2019·全国高考真题(理))设z =-3+2i,则在复平面内z 对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限6.(2018·江苏高考真题)若复数z 满足i 12i z ⋅=+,其中i 是虚数单位,则z 的实部为________.。

《复数的三角形式》专题精讲

《复数的三角形式》专题精讲

《复数的三角形式》专题精讲1.复数的三角表示式及复数的辐角和辐角的主值一般地,任何一个复数i z a b =+都可以表示成(cos isin )r θθ+的形式,其中,r 是复数z 的模;θ是以x 轴的非负半轴为始边,向量OZ 所在射线(射线OZ )为终边的角,叫做复数i z a b =+的辐角,我们规定在02θπ<范围内的辐角θ的值为辐角的主值,通常记作arg .(cos isin )z r θθ+叫做复数i z a b =+的三角表示式,简称三角形式.i a b +叫做复数的代数表示式,简称代数形式.2.复数三角形式的乘、除运算若复数()()11112222cos isin ,cos isin z r z r θθθθ=+=+,且12z z ≠,则(1)()(1211122cos isin cos isin z z r r θθθ=+⋅+)()()2121212cos isin rr θθθθθ⎡⎤=+++⎣⎦. (2)()()()111111222222cos isin cos cos isin r z r z r r θθθθθθ+⎡==-+⎣+()12isin θθ⎤-⎦. 即两个复数相乘,积的模等于各复数的模的积,积的辐角等于各复数的辐角的和.两个复数相除,商的模等于被除数的模除以除数的模所得的商,商的辐角等于被除数的辐角减去除数的辐角所得的差.典例1 将复数7710cos isin 66ππ⎛⎫+ ⎪⎝⎭表示成代数形式为__________. 解析:通过复数的三角形式与代数形式的互化,分析计算即可解答本题.77110cos isin 10i 5i 6622ππ⎛⎫⎛⎫+=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭. 答案:5i - 典例2 计算()()cos40isin 40cos10isin10︒+︒÷︒+︒=__________.解析:本题考查复数的除法运算的三角形式.()()cos40isin 40cos10isin10︒+︒÷︒+︒()()cos 4010isin 4010=︒-︒+︒-︒1cos30isin 30i 2=︒+︒=. 答案1i 2+典例3如图所示,等边三角形ABC的两个顶点,A B所表示的复数分别是1i22+和2,则点C所表示的复数为__________.解析:本题考查复数乘、除运算的几何意义,即平面向量在坐标系中的旋转、伸缩.,A B所表示的复数分别是12+和2,AB所表示的复数为32-,把AB逆时针旋转60︒得到,AC AC对应的复数为()33cos60isin6022OC OA AC⎛⎫︒+︒==+= ⎪⎪⎝⎭13222+++=+,即点C对应的复数是2+.答案:2+。

专题09 名词的复数形式 (原卷版)(1)

专题09 名词的复数形式 (原卷版)(1)

高考英语一轮复习语法填空专题应对策略专题09 名词的复数形式名词复数;名词所有格;词性转换备考策略:当所给提示词是名词:①考虑名词复数;①考虑名词所有格;①考虑词性转换。

确定名词为复数的情况:①some, many, all, these,one of...等复数概念的词所修饰的名词。

①谓语动词是复数,名词作主语时。

①根据上下文语境。

基本知识:1.定义:名词是什么?词类的一种,属于实词。

它表示人、事、物、地点或抽象概念的统一名称。

2.分类:专有名词:是个别的人、地、物、团体、机构等的专用名称普通名词:是许多人或事物的共有名称。

2.1. 专有名词:①. 专有名词中实词的第一个字母要大写。

Eg:Beijing, Tom, the People's Republic of China②. 专有名词如果是含有普通名词的短语, 则必须使用定冠词the。

Eg: the Great Wall, the earth, the moon③. 姓氏名如果采用复数形式, 则表示该姓氏一家人(复数含义)。

Eg: the Greens, the Browns, the Blacks2.2. 普通名词:普通名词是许多人或事物的共有名称。

Eg: pupil, family, man, foot3. 普通名词:可数名词:可以用简单的数词进行计数的名词,即可以数得清不可数名词:不可以用简单的数词进行计数的名词即数不清可数名词单数:= 1 Eg: boy, girl, dog 复数:≧ 2 Eg: boys, girls, dogs2.名词由单数变复数:1.可数名词的复数(1)规则变化①以-f或-fe结尾的名词需要把f或fe去掉,加-ves:“为了自己活命,小偷和他的妻子手里拿着刀子和树叶站在架子上,把狼劈成两半”,即selves,lives,thieves,wives,knives,leaves,shelves,wolves,halves。

专题03 复数问题(解析版)

专题03 复数问题(解析版)

专题03 复数问题【高考真题】1.(2022·全国乙理) 已知z =1-2i ,且z +a z -+b =0,其中a ,b 为实数,则( )A .a =1,b =-2B .a =-1,b =2C .a =1,b =2D .a =-1,b =-21.答案 A 解析 z -=1+2i ,z +a z -+b =1-2i +a (1+2i)+b =(1+a +b )+(2a -2i)i ,由z +a z -+b=0,得a =1,b =-2,故选A .2.(2022·全国乙文) 设(1+2i)a +b =2i ,其中a ,b 为实数,则( )A .a =1,b =-1B .a =1,b =1C .a =-1,b =1D .a =-1,b =-12.答案 A 解析 因为a ,b 为实数,(a +b )+2a i =2i ,所以a +b =0,2a =0,解得,a =1,b =-1.故选A .3.(2022·全国甲理) 若z =-1+3i ,则z z z --1=( ) A .-1+3i B .-1-3i C .-13+33i D .-13-33i 3.答案 C 解析 z -=-1-3i ,z z -=(-1+3i)(-1-3i)=4,z z z --1=z 3=-13+33i .故选C .4.(2022·全国甲文) 若z =1+i .则|i z +3z -|=( )A .45B .42C .25D .2 24.答案 D 解析 因为z =1+i .所以i z +3z -=i(1+i)+3(1-i)=2-2i ,所以|i z +3z -|=22.故选D .5.(2022·新高考Ⅰ) 若i(1-z )=1,则z +z -=( )A .-2B .-1C .1D .25.答案 D 解析 由题设有1-z =1i=-i ,所以z =1+i ,故z +z -=2,故选D . 6.(2022·新高考Ⅰ) (2+2i)(1-2i)=( )A .-2+4iB .-2-4iC .6+2iD .6-2i6.答案 D 解析 (2+2i)(1-2i)=2+4-4i +2i =6-2i ,故选D .7.(2022·北京) 若复数z 满足i z =3-4i =,则|z |=( )A .1B .5C .7D .257.答案 B 解析 由题意有z =3-4i i=1+i ,故|z |=(-4)2+(-3)2=5.故选B . 8.(2022·浙江)已知a ,b ∈R ,a +3i =(b +i) i(i 为虚数单位),则( )A .a =1,b =-3B .a =-1,b =3C .a =-1,b =-3D .a =1,b =38.答案 B 解析 a +3i =-1+b i ,而a ,b 为实数,故a =-1,b =3,故选B .【知识总结】1.复数的相关概念及运算法则(1)复数z =a +b i(a ,b ∈R )的分类①z 是实数⇔b =0;②z 是虚数⇔b ≠0;③z 是纯虚数⇔a =0且b ≠0.(2)共轭复数复数z =a +b i(a ,b ∈R )的共轭复数z =a -b i.(3)复数的模复数z =a +b i(a ,b ∈R )的模|z |=a 2+b 2.(4)复数相等的充要条件a +b i =c +d i ⇔a =c 且b =d (a ,b ,c ,d ∈R ).特别地,a +b i =0⇔a =0且b =0(a ,b ∈R ).(5)复数的运算法则加减法:(a +b i)±(c +d i)=(a ±c )+(b ±d )i ;乘法:(a +b i)(c +d i)=(ac -bd )+(ad +bc )i ;除法:(a +b i)÷(c +d i)=ac +bd c 2+d 2+bc -ad c 2+d 2i(c +d i ≠0). ()其中a ,b ,c ,d ∈R2.复数的几个常见结论(1)(1±i)2=±2i.(2)1+i 1-i =i ,1-i 1+i=-i. (3)i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i ,i 4n +i 4n +1+i 4n +2+i 4n +3=0(n ∈Z ).【同类问题】题型一 复数的概念1.(2021·浙江)已知a ∈R ,(1+a i)i =3+i(i 为虚数单位),则a 等于( )A .-1B .1C .-3D .31.答案 C 解析 方法一 因为(1+a i)i =-a +i =3+i ,所以-a =3,解得a =-3.方法二 因为(1+a i)i =3+i ,所以1+a i =3+i i=1-3i ,所以a =-3.2.(2020·全国Ⅲ)若z (1+i)=1-i ,则z 等于( )A .1-iB .1+iC .-iD .i2.答案 D 解析 因为z =1-i 1+i =1-i 21+i 1-i=-i ,所以z =i . 3.若复数z 满足z (1+i )i 32-i=1-i ,则复数z 的虚部为( ) A .i B .-i C .1 D .-13.答案 C 解析 ∵z (1+i )i 32-i=1-i ,∴z (1+i)(-i)=(2-i)(1-i),∴z (1-i)=(2-i)(1-i),∴z =2-i ,∴z =2+i ,∴z 的虚部为1.4.(2020·全国Ⅰ)若z =1+i ,则|z 2-2z |等于( )A .0B .1C .2D .24.答案 D 解析 方法一 z 2-2z =(1+i)2-2(1+i)=-2,|z 2-2z |=|-2|=2.方法二 |z 2-2z |=|(1+i)2-2(1+i)|=|(1+i)(-1+i)|=|1+i|·|-1+i|=2.5.已知x 1+i=1-y i ,其中x ,y 是实数,i 是虚数单位,则x +y i 的共轭复数为( ) A .2+i B .2-i C .1+2i D .1-2i5.答案 B 解析 由x 1+i =1-y i ,得x 1-i 1+i 1-i=1-y i ,即x 2-x 2i =1-y i ,∴⎩⎨⎧ x 2=1,x 2=y ,解得x=2,y =1,∴x +y i =2+i ,∴其共轭复数为2-i .6.(2021·上海)已知z =1-3i ,则|z --i|=________.6.答案5 解析 ∵z =1-3i ,∴z -=1+3i ,∴z --i =1+3i -i =1+2i ,∴|z --i|=12+22=5.7.如果复数2+b i i(b ∈R )的实部与虚部相等,那么b =( ) A .-2 B .1 C .2 D .47.答案 A 解析2+b i i =(2+b i )(-i )i (-i )=b -2i ,所以实部为b ,虚部为-2,故b 的值为-2,故选A .8.若复数z =(x 2-1)+(x -1)i 为纯虚数,则实数x 的值为________.8.答案 -1 解析 ∵z 为纯虚数,∴⎩⎪⎨⎪⎧x 2-1=0,x -1≠0,∴x =-1. 9.(多选)若复数z =21+i,其中i 为虚数单位,则下列结论正确的是( ) A .z 的虚部为-1 B .|z |=2 C .z 2为纯虚数 D .z 的共轭复数为-1-i9.答案 ABC 解析 z =21+i =2(1-i )(1+i )(1-i )=2-2i 2=1-i ,对于A ,z 的虚部为-1,正确;对于B ,模长|z |=2,正确;对于C ,因为z 2=(1-i)2=-2i ,故z 2为纯虚数,正确;对于D ,z 的共轭复数为1+i ,错误.10.(多选)(2022·武汉模拟)下列说法正确的是( )A .若|z |=2,则z ·z =4B .若复数z 1,z 2满足|z 1+z 2|=|z 1-z 2|,则z 1z 2=0C .若复数z 的平方是纯虚数,则复数z 的实部和虚部相等D .“a ≠1”是“复数z =(a -1)+(a 2-1)i(a ∈R )是虚数”的必要不充分条件10.答案 AD 解析 若|z |=2,则z ·z =|z |2=4,故A 正确;设z 1=a 1+b 1i(a 1,b 1∈R ),z 2=a 2+b 2i(a 2,b 2∈R ),由|z 1+z 2|=|z 1-z 2|,可得|z 1+z 2|2=(a 1+a 2)2+(b 1+b 2)2=|z 1-z 2|2=(a 1-a 2)2+(b 1-b 2)2则a 1a 2+b 1b 2=0,而z 1z 2=(a 1+b 1i)(a 2+b 2i)=a 1a 2-b 1b 2+a 1b 2i +b 1a 2i =2a 1a 2+a 1b 2i +b 1a 2i 不一定为0,故B 错误;当z =1-i 时,z 2=-2i 为纯虚数,其实部和虚部不相等,故C 错误;若复数z =(a -1)+(a 2-1)i(a ∈R )是虚数,则a 2-1≠0,即a ≠±1,所以“a ≠1”是“复数z =(a -1)+(a 2-1)i(a ∈R )是虚数”的必要不充分条件,故D 正确. 题型二 复数的四则运算11.(2021·新高考全国Ⅰ)已知z =2-i ,则z (z +i)等于( )A .6-2iB .4-2iC .6+2iD .4+2i11.答案 C 解析 因为z =2-i ,所以z (z +i)=(2-i)(2+2i)=6+2i .12.(2021·北京)在复平面内,复数z 满足(1-i)·z =2,则z =( )A .1B .iC .1-iD .1+i12.答案 D 解析 由题意可得z =21-i =2·(1+i )(1-i )(1+i )=1+i . 13.(2020·新高考全国Ⅰ)2-i 1+2i等于( ) A .1 B .-1 C .i D .-i13.答案 D 解析 2-i 1+2i =(2-i )(1-2i )(1+2i )(1-2i )=-5i 5=-i . 14.(2021·全国乙)设i z =4+3i ,则z 等于( )A .-3-4iB .-3+4iC .3-4iD .3+4i14.答案 C 解析 方法一 (转化为复数除法运算)因为i z =4+3i ,所以z =4+3i i =(4+3i)(-i)i -i= -4i -3i 2-i 2=3-4i . 方法二 (利用复数的代数形式)设z =a +b i(a ,b ∈R ),则由i z =4+3i ,可得i(a +b i)=4+3i ,即-b +a i =4+3i ,所以⎩⎪⎨⎪⎧ -b =4,a =3,即⎩⎪⎨⎪⎧a =3,b =-4,所以z =3-4i . 方法三 (巧用同乘技巧)因为i z =4+3i ,所以i z ·i =(4+3i)·i ,所以-z =4i -3,所以z =3-4i .15.(2021·全国乙)设2(z +z -)+3(z -z -)=4+6i ,则z =( )A .1-2iB .1+2iC .1+iD .1-i15.答案 C 解析 设z =a +b i(a ,b ∈R ),则z -=a -b i ,代入2(z +z -)+3(z -z -)=4+6i ,可得4a +6b i = 4+6i ,所以a =1,b =1,故z =1+i .16.(2021·全国甲)已知(1-i)2z =3+2i ,则z =( )A .-1-32iB .-1+32iC .-32+iD .-32-i 16.答案 B 解析 z =3+2i (1-i )2=3+2i -2i=3i -22=-1+32i . 17.(多选)(2022·湛江一模)若复数z =3-i ,则( )A .|z |=2B .|z |=4C .z 的共轭复数z -=3+i D .z 2=4-23i17.答案 AC 解析 依题意得|z |=(3)2+(-1)2=2,故A 正确,B 错误;z -=3+i ,C 正确; z 2=(3-i)2=3-23i +i 2=2-23i ,D 错误.18.若z =(a -2)+a i 为纯虚数,其中a ∈R ,则a +i 71+a i=________. 18.答案 -i 解析 ∵z 为纯虚数,∴⎩⎨⎧a -2=0,a ≠0,∴a =2,∴a +i 71+a i =2-i 1+2i =2-i1-2i 1+2i1-2i =-3i 3=-i . 19.已知复数z =a +b i(a ,b ∈R ,i 为虚数单位),且z 1-i=3+2i ,则a =________,b =________. 19.答案 5 1 解析 由z =a +b i(a ,b ∈R ,i 为虚数单位),则z =a -b i ,所以z1-i =1+i 2(a -b i)=a +b 2+a -b 2i =3+2i ,故a +b 2=3,a -b 2=2,所以a =5,b =1. 20.(多选)设z 1,z 2,z 3为复数,z 1≠0.下列命题中正确的是( )A .若|z 2|=|z 3|,则z 2=±z 3B .若z 1z 2=z 1z 3,则z 2=z 3C .若z 2=z 3,则|z 1z 2|=|z 1z 3|D .若z 1z 2=|z 1|2,则z 1=z 220.答案 BC 解析 由|i|=|1|,知A 错误;z 1z 2=z 1z 3,则z 1(z 2-z 3)=0,又z 1≠0,所以z 2=z 3,故B 正确;|z 1z 2|=|z 1||z 2|,|z 1z 3|=|z 1||z 3|,又z 2=z 3,所以|z 2|=|z 2|=|z 3|,故C 正确,令z 1=i ,z 2=-i ,满足z 1z 2=|z 1|2,不满足z 1=z 2,故D 错误.题型三 复数的几何意义21.(2021·新高考全国Ⅱ)复数2-i 1-3i在复平面内对应的点所在的象限为( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限21.答案 A 解析2-i 1-3i =(2-i )(1+3i )10=5+5i 10=1+i 2,所以该复数在复平面内对应的点为⎝⎛⎭⎫12,12,该点在第一象限.22.已知i 是虚数单位,则复数z =i 2 023+i(i -1)在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限22.答案 C 解析 因为z =i 2 023+i(i -1)=-i -1-i =-1-2i ,所以复数z 在复平面内对应的点是(-1,-2),位于第三象限.23.若复数z =(2+a i)(a -i)在复平面内对应的点在第三象限,其中a ∈R ,i 为虚数单位,则实数a 的取值范围为( )A .(-2,2)B .(-2,0)C .(0,2)D .[0,2)23.答案 B 解析 z =(2+a i)(a -i)=3a +(a 2-2)i 在复平面内对应的点在第三象限,∴⎩⎪⎨⎪⎧3a <0,a 2-2<0,解得 -2<a <0.24.如图,若向量OZ →对应的复数为z ,则z +4z表示的复数为( )A .1+3iB .-3-iC .3-iD .3+i24.答案 D 解析 由题图可得Z (1,-1),即z =1-i ,所以z +4z =1-i +41-i=1-i +41+i 1-i 1+i=1-i +4+4i 2=1-i +2+2i =3+i . 25.(2020·北京)在复平面内,复数z 对应的点的坐标是(1,2),则i·z 等于( )A .1+2iB .-2+iC .1-2iD .-2-i25.答案 B 解析 由题意知,z =1+2i ,∴i·z =i(1+2i)=-2+i .26.在复平面内,复数z -=5i 3-4i(i 为虚数单位),则z 对应的点的坐标为( ) A .(3,4) B .(-4,3) C .⎝⎛⎭⎫45,-35 D .⎝⎛⎭⎫-45,-35 26.答案 D 解析 因为z -=5i 3-4i =5i (3+4i )(3-4i )(3+4i )=3i -45=-45+35i ,所以z =-45-35i ,所以复数z 所对应的点的坐标为⎝⎛⎭⎫-45,-35. 27.(2019·全国Ⅰ)设复数z 满足|z -i|=1,z 在复平面内对应的点为(x ,y ),则( )A .(x +1)2+y 2=1B .(x -1)2+y 2=1C .x 2+(y -1)2=1D .x 2+(y +1)2=127.答案 C 解析 ∵z 在复平面内对应的点为(x ,y ),∴z =x +y i(x ,y ∈R ).∵|z -i|=1,∴|x +(y -1)i|=1,∴x 2+(y -1)2=1.28.(2020·全国Ⅱ)设复数z 1,z 2满足|z 1|=|z 2|=2,z 1+z 2=3+i ,则|z 1-z 2|=________.28.答案 23 解析 方法一 设z 1-z 2=a +b i ,a ,b ∈R ,因为z 1+z 2=3+i ,所以2z 1=(3+a )+(1+b )i ,2z 2=(3-a )+(1-b )i .因为|z 1|=|z 2|=2,所以|2z 1|=|2z 2|=4,所以3+a 2+1+b 2=4,①,3-a 2+1-b 2=4,②,①2+②2,得a 2+b 2=12.所以|z 1-z 2|=a 2+b 2=23.方法二 设复数z 1,z 2在复平面内分别对应向量OA →,OB →,则z 1+z 2对应向量OA →+OB →.由题意知|OA →|=|OB →|=|OA →+OB →|=2,如图所示,以OA ,OB 为邻边作平行四边形OACB ,则z 1-z 2对应向量BA →,且|OA →|=|AC →|=|OC →|=2,可得|BA →|=2|OA →|sin 60°=23.故|z 1-z 2|=|BA →|=23.29.已知复数z 满足|z -1-i|≤1,则|z |的最小值为( )A .1B .2-1C .2D .2+129.答案 B 解析 令z =x +y i(x ,y ∈R ),则由题意有(x -1)2+(y -1)2≤1,∴|z |的最小值即为圆(x -1)2+(y -1)2=1上的动点到原点的最小距离,∴|z |的最小值为2-1.30.(多选)欧拉公式e x i =cos x +isin x 是由瑞士著名数学家欧拉创立,该公式将指数函数的定义域扩大到复数,建立了三角函数与指数函数的关联,在复变函数论里面占有非常重要的地位,被誉为数学中的天桥,依据欧拉公式,下列选项正确的是( )A .复数e 2i 对应的点位于第二象限B .πi 2e 为纯虚数C .复数e x i 3+i 的模长等于12D .πi 6e 的共轭复数为12-32i 30.答案 ABC 解析 对于A ,e 2i =cos 2+isin 2,因为π2<2<π,即cos 2<0,sin 2>0,复数e 2i 对应的点位于第二象限,A 正确;对于B ,πi 2e =cos π2+isin π2=i ,πi 2e 为纯虚数,B 正确;对于C ,e x i 3+i =cos x +isin x 3+i =(cos x +isin x )(3-i)(3+i)(3-i)=3cos x +sin x 4+3sin x -cos x 4i ,于是得⎪⎪⎪⎪⎪⎪e x i 3+i =⎝ ⎛⎭⎪⎫3cos x +sin x 42+⎝ ⎛⎭⎪⎫3sin x -cos x 42=12,C 正确;对于D ,πi 6e =cos π6+isin π6=32+12i ,其共轭复数为32-12i ,D 不正确.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复数的概念与运算大连二十四中学 张宁一、知识归纳:1、复数z 的表示方法有四种: (1)代数形式:,,;z a bi a b R =+∈(2)三角形式:()cos sin ,0,;z r i r R θθθ=+∈≥ (3)指数形式:,0,,cos sin i i z re r R e i θθθθθ=∈=+≥; (4)几何形式:复平面上的点Z(a,b)或由原点出发的向量OZ;其中角θ是z 的辐角,当02θπ<≤时记为argz ,称为z 的辐角主值;r 是z 的模,记为|z|; 数a 与b 分别是z 的实部与虚部,记为Re (z )与Im(z). 2、关于模与共轭复数的运算:()()()()()()()()()()()()()()(){}()1112121212222221212121212231231;2;(3)0;114;5R e ,;226||||;7||||||;8||||||||||||;9||m ax R e ,;10,,,,,,,,n n k z zz z z z z z z z z z z zz z R z z z Im z z z iz z z z z z z z z z z z z z z z Im z a a a a b b b b a ⎛⎫±=±⋅=⋅=≠ ⎪⎝⎭=⇔∈=+=-⋅===-±+ 1≤≤≥对于两组复数 ,,有|222|||||kkk b ab ⋅∑∑∑nnnk=1k=1k=1≤当0k b =()1,2,,k n = 时可取等号,当存在实数,λ使()1,2,,k k a b k n λ== 时可取等号,其它情形取不等号(许瓦尔兹不等式)。

3、复数运算的几何意义设复平面内任意两点12,,z z 其对应复数分别为111,z x y i =+ ()2221212,,,,z x y i x x y y R =+∈ (1)12,,z z 两点间的距离:12|||d z z z =-=表示z 到原点的距离。

(2)定比分点所对应的复数:设Z 为线段12Z Z 中一点,且12||,||z z z z λ-=-则121212.111x x y y z z z x yi i λλλλλλ+++=+=+=+++特别地,若Z 为线段12Z Z 的中点,则12.2z z z +=(3)三角形的重心: 设123,,Z Z Z 是复平面内不共线三点,其对应复数分别为123,,,z z z 则△123Z Z Z 的重心所对应的复数()1231.3z z z z =++(4)三角形的垂心:当123||||||O Z O Z O Z ==,则△123Z Z Z 的垂心Z 对应的复数为123.z z z z =++(5)两直线的夹角:复平面上三点012,,Z Z Z 对应的复数分别为012,,,z z z 则210210arg .z z Z Z Z z z ⎛⎫-∠= ⎪-⎝⎭(6)平行、垂直及共线:在复平面上的A 、B 、C 、D 四点对应的复数是1234,,,,z z z z 以k 表示一实数,则021431z z k z z -=-的充要条件是AB//CD;21432z z ki z z -=-的充要条件是;AB CD ⊥3,,A B C 三点共线的充要条件是2123z z R z z -∈-;4、复数方法复数是解决数学问题的工具之一,一些代数与几何利用复数来处理较易得到解决;也可利用复数解决几何问题,探求点的轨迹,解决三角问题,证明代数不等式,求最值,探求数列问题等。

一、复数的运算例1:给定实数,,a b c ,已知复数123,,z z z 满足123||||||1,z z z ===且3122311,z z z z z z ++=求123||az bz cz ++的值。

解法1:记cos sin ,i e i θθθ=+可设()312231,,i i i z z z e e ez z z θϕθϕ-+===,由题设,有()1,i i i e e eθϕθϕ-+++=,两边取虚部等于0,即:()0sin sin sin θϕθϕ=+-+2sin cos 2sincos2sincoscos22222224sinsinsin,222θϕθϕθϕθϕθϕθϕθϕθϕθϕ+-+++-+⎛⎫=-=- ⎪⎝⎭+=故2k θπ=或2k ϕπ=或2k θϕπ+=,因而有12z z =或23z z =或31z z =。

如果12,z z =代入原已知等式,即313111,z z z z ++=故233211,,z z iz z ⎛⎫=-=± ⎪⎝⎭这时1231|||||.a z b z c zz a bc++=++类似地,如果23,z z =,则123||az bz cz ++=如果31,z z =,则123||az bz cz ++=所以:123||az bz cz ++解法2:设312123231,,,z z z x x x z z z ===则1231223311231,1,1,x x x x x x x x x x x x ++=++==由多项式根与系数的关系得123,,x x x 是方程3210x x x -+-=的三根, 而()()()3211,x x x x x i x i -+-=--+所以{}{}123,,1,,.x x x i i =-当11x =时,12,z z =当21x =时23,z z =当31x =时31.z z = 例2:设复数)122,1z ai z b i =-+=-+的模相等,12z z 的辐角主值是,2π求实数,a b 的值。

解:因()11212||||,0,||1,1z z z z z =≠∴=依题设,12z z 的辐角主值是,2π而()()2221211211||,arg arg ,22z z z z z z z z z π⎛⎫=∴== ⎪⎝⎭由(1)(2)知:21,z i z =即()21.3z z i =依题设))()12.12.b i i ai b i a i ⎡⎤-+=-+∴-+=-+-⎣⎦由复数相等知:11.22aa b b -=-∴===-二、复数与数列、不等式例3:设2008,N n n *∈≤,且存在θ满足()sin cos sin cos ni n i n θθθθ+=+,那么这种n 的总个数是多少?解:()sin cos cos sin cos sin 2222nnn n i i n i n ππππθθθθθθ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=-+-=-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦sin cos cos sin .22n i n n i n ππθθθθ⎛⎫⎛⎫+=-+- ⎪ ⎪⎝⎭⎝⎭()()2.41.22120080501,n n k n k Z n k k Z n k ππθπθ-=+-∈∴=+∈∴ ≤≤≤≤所以:所求n 的总个数是502。

例4:n 个复数12,,,n z z z 成等比数列,其中1||1,z ≠公比为,||1q q =且1,q ≠± 复数12,,,n ωωω 满足条件:1,k k kz h z ω=++其中0,1,,,k n h = 为已知实数,求证:复平面内表示12,,,n ωωω 的点12,,,n P P P 都在一个焦距为4的椭圆上。

分析:运算涉及乘方,宜用三角形式。

设()1cos sin ,cos sin ,z r i q i ααθθ=+=+其中1,.r k θπ≠≠ 则()()()()11cos 1sin 1.k k z z q r k i k αθαθ-⎡⎤==+-++-⎣⎦从而:()()111cos 1sin 1k k k h z r k i r k z r r ωαθαθ⎛⎫⎛⎫-=+=++-+-⋅+-⎡⎤⎡⎤ ⎪ ⎪⎣⎦⎣⎦⎝⎭⎝⎭ (1) 令(),,k x yi x y R ω=+∈由(1)得()()1cos 1,1sin 1,x h r k r y r k r αθαθ⎧⎛⎫-=++-⎡⎤ ⎪⎪⎣⎦⎪⎝⎭⎨⎛⎫⎪=-⋅+-⎡⎤ ⎪⎣⎦⎪⎝⎭⎩于是,消去,αθ可得:()22221.11x h yr r r r -+=⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭说明点()1,2,,i P i n =都在同一个椭圆上,其焦距为 4.=例5:已知实数列{}{},n n a b 的各项均不为0,且1111cos sin ,sin cos ,n n n n n n a a b b a b θθθθ----=-=+且111,tan ,a b θθ==为已知数,求{}{},n n a b 的通项公式。

解:构造复数(),n n n z a b i n N *=+∈ 则()()11111111cos sin sin cos cos sin .n n n n n n n n z a b a b i i z a ib θθθθθθ-------=-++⋅=+⎡⎤⎣⎦+所以{}n z 是以11tan z i θ=+为首项,cos sin i θθ+为公比的等比数列, 易得:()()11tan cos sin n n z i i θθθ-=++()()()1sec cos sin cos sin sec cos sin sec cos sec sin sec cos ,sec sin .n nn n i i i n i n a n b n θθθθθθθθθθθθθθθθ-=++=+=+∴==例6:设12,,,n z z z 为复数,满足12||||||1,n z z z +++= 求证:上述n 个复数中,必存在在若干个复数,它们的和的模不小于16。

证明:设(),,z a bi a b R =+∈则必有||||||,z a b +≤从而:()()()1111011||||||1||||||2||||||3i i i i nnnii ii i i ni i i i a a nii i i a a za ba a a bb b ====<=<=+=+=+∑∑∑∑∑∑∑∑∑≥≥≤ 由(1)(2)(3)知:0||,||,||,||i i i i i i i i a a b b a a b b <<∑∑∑∑≥≥中必有一项不小于1,4不妨设1||,4i i a a ∑≥≥那么01||.6i i i i a a z a >∑∑≥≥1≥≥4例7:求证:11sin 1sin 2sin sin .2n -⎛⎫+++ ⎪⎝⎭ ≤证明:设cos1sin 1,z i =+则cos sin ,kz k i k =+故1nkk z =∑的虚部即为1sin ,nk k =∑故有:()11111|1|1||11|sin |||||||sin ,1111122sin 2sin sin222nnnnn nkk k z z zz z k z zz -==---+⎛⎫===== ⎪--⎝⎭∑∑≤≤从而:111sin sin .2nk k -=⎛⎫ ⎪⎝⎭∑≤例8:试问:当且仅当实数()01,,2n x x x n ,≥满足什么条件时,存在实数01,,,,n y y y 使得2222012n z z z z =+++成立。

相关文档
最新文档