9.1.1不等式及其解集2
人教版数学下册:9.1.1不等式及其解集 课件(共20张PPT)
D.18≤t≤27
2.无论x取什么数,下列不等式总成立的是(D )
A.x+5>0
B.x+5<0
C.x2<0 D.x2≥0
随堂检测
3.高钙牛奶的包装盒上注明“每100克内含钙≥150毫克”,它的含义是指( B )
A.每100克内含钙150毫克 B.每100克内含钙不低于150毫克 C.每100克内含钙高于150毫克 D.每100克内含钙不超过150毫克
本节目标
了解不等式概念,理解不等式的解集,能正确表示
1 不等式的解集 .
2 培养数感,渗透数形结合的思想. .
3 培养自主学习的能力,合作交流意识与探究精神 .
预习反馈
1.下面给出了5个式子:①3>0,②4x+3y>O,③x=3,④x﹣1,⑤x+2≤3,
其中不等式有(B )
A.2个 B.3个 C.4个 D.5个
2.若m是非负数,则用不等式表示正确的是( D )
A.m<0 B.m>0 C.m≤0
D.m≥0
预习反馈
3.用不等号“>、<、≥、≤”填空:a2+1 > 0.
4.“a<b”的反面是( C )
A.a≠b B.a>b
C.a≥b
D.a=b
课堂探究
问题
一辆匀速行驶的汽车在11 :20距离A地50千米,要在12 :00之前驶过A地,车 速应满足什么条件?
一般地,一个含有未知数的不等式的 所有的解,组成这个不等式的 解集.求不等式的 解集 的过程叫做解不等式.
典例精析
4.不等式的解集的表示方法 第一种:用式子(如x>3),即用最简形式的不等式(如x>a或x<a)来表示.
第二种:利用数轴表示不等式的解集.
9.1.1 不等式及其解集
9.1.1 不等式及其解集 学习目标:1. 知道不等式的定义,理解不等式的解集和方程的解的不同.2. 会在数轴上表示出不等式的解集,并且能把数轴上的某部分数集用相应的不等式表示.3. 知道一元一次不等式的定义 重点:不等式和不等式解集的概念的理解,利用数轴表示不等式的解集 难点:总结归纳不等式及不等式的解,正确理解不等式解集的概念 学习过程: 1、用“>”或“<”填空. 7+3 4+3 7×2 4×22、以上式子是等式吗?它是用 或 号表示 关系的式子,叫做 .3、求不等式的解集的过程叫做 .4、不等式用符号>,<,≥,≤.“≥”读作“大于等于”,表示大于或等于也就是不小于。
“≤”读作“小于等于”. 表示小于或等于,也就是不大于。
例如:x ≥y 表示 ,也就是 .下列等式哪些是不等式?①42>;②230a +>;③235x x +;④24x x <+;⑤23x x =-;⑥2231x x x +<+;⑦a b c +≠;⑧58>;⑨8x ≥用不等式表示①a 与4的和是正数②m的3倍大于n的2倍③a与b和的2倍是非正数5、当x= 时,35x+=成立当x满足什么数值时,35x+>成立呢?使方程两边相等的未知数的值就是方程的解使成立的的值叫做不等式的解例如:当3,4,5.....x=时,不等式成立当2,1,0...x=时,不等式不成了我们发现,当x 时,不等式35x+>总不x+>总是成立;当x 时,不等式35成立.一般地,一个含有未知数的不等式的 ,组成这个不等式的解集.求不等式的的过程叫做解不等式.一个不等式的解有个.6、在数轴上表示不等式的解集:不等式x+2>5的解集,可以表示成x>3. x>3表示x取哪些数?在数轴上表示大于3的数的点应该数3所对应点的 (填写左边还是右边)?因此我们可以在数轴上把x>3直观地表示出来.画图时要注意方向(向 )和端点(不包括数3,在对应点画圆圈).如图所示:同样,如果某个不等式的解集为x≤-2, 那么它表示x取那些数?此时在作x≤-2的数轴表示时,要包括-2的对应点,因而在该点处应画圆点.如图所示:总结:小于向画,大于向画;无等号画圆圈,有等号画圆点.。
七年级下册数学(不等式)特级教师精品教案
第9章不等式与不等式组9.1.1不等式及其解集教学目标:1、感受生活中存在的不等关系,了解一元一次不等式的意义,会解决简单的实际问题,会把不等式的解集正确地表示到数轴上;2、通过对不等式、不等式解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域。
重点:建立方程解决实际问题,会解“ax +b=cx+d ”类型的一元一次方程难点:正确理解不等式、不等式解与解集的意义,把不等式的解集正确地表示到数轴上。
教学过程1、两个体重相同的孩子正在跷跷板上做游戏.现在换了一个小胖子上去,跷跷板发生了倾斜,游戏无法继续进行下去了.这是什么原因呢?2、一辆匀速行驶的汽车在11:20时距离A 地50千米。
要在12:00以前驶过A 地,车速应该具备什么条件?若设车速为每小时x 千米,能用一个式子表示吗?探究(Ⅰ)不等式、一元一次不等式的概念1、 在学生充分发表自己意见的基础上,师生共同归纳得出:用“<”或“>”表示大小关系的式子叫做不等式;用“并”表示不等关系的式子也是不等式。
2、下列式子中哪些是不等式?(1)a +b=b+a (2)-3>-5(3)x ≠l (4)x 十3>6(5)2m<n (6)2x-3上述不等式中,有些不含未知数,有些含有未知数.我们把那些类似于一元一次方程,含有一个未知数且未知数的次数是1的不等式,叫做一元一次不等式.3、小组交流:说说生活中的不等关系.分组活动.先独立思考,然后小组内互相交流并做记录,最后各组选派代表发言,在此基础上引出不等号“≥”和“≤”.补充说明:用“≥”和“≤”表示不等关系的式子也是不等式.(Ⅱ)不等式的解、不等式的解集问题1.要使汽车在12:00以前驶过A 地,你认为车速应该为多少呢?问题2.车速可以是每小时85千米吗?每小时82千米呢?每小时75.1千米呢?每小时74千米呢?问题3.我们曾经学过“使方程两边相等的未知数的值就是方程的解”,我们也可以把使不等式成立的未知数的值叫做不等式的解.刚才同学们所说的这些数,哪些是不等式x 32>50的解? 问题4,数中哪些是不等式x 32>50的解: 76,73,79,80,74.9,75.1,90,60你能找出这个不等式其他的解吗?它到底有多少个解?你从中发现了什么规律?一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集.求不等式的解集的过程叫做解不等式.1、 巩固新知下列哪些是不等式x +3>6的解?哪些不是?-4,-2.5,0,1,2.5,3,3.2,4.8,8,122、直接想出不等式的解集,并在数轴上表示出来:(1)x +3>6(2)2x<8(3)x -2>0拓广:比较分析对于问题1还有不同的未知数的设法吗?学生思考回答:若设去年购买电视机x 台,得方程21402x x x ++=若设今年购买电视机x 台,得方程 14042x x x ++= 解决问题某开山工程正在进行爆破作业.已知导火索燃烧的速度是每秒0.8厘米,人跑开的速度是每秒4米.为了使放炮的工人在爆炸时能跑到100米以外的安全地带,导火索的长度应超过多少厘米?小结归纳:1、不等式与一元一次不等式的概念;2、不等式的解与不等式的解集;3、不等式的解集在数轴上的表示.作业:习题9.1第1、2题9.1.2不等式的性质(一)教学目标:1、掌握不等式的性质;2、初步体会不等式与等式的异同;3、通过创设问题情境和实验探究活动,提高学习数学的兴趣,增进学习数学的信心,体会在解决问题的过程中与他人交流合作的重要性.重点:理解并掌握不等式的性质。
9.1.1不等式及其解集
教学目标
使学生经历“把实际问题抽象为不等式”的过程,能够“列出不等式 表示问题中的不等关系”,将符号化、模型化的思想进一步发展和加 强,体会不等式是刻画现实世界中不等关系的一种有效模型;通过类 比,了解不等式及其解与解集的概念;通过在数轴上表示出不等式的 解集,体会数形结合的思想;通过创设情境,增强应用意识和问题意 识,培养勇于探索、善于合作的精神品质.
类比 用等号连接表示相等关系的式子叫等式
教材114页
“<”或“>”
不等
不等式
定义:用“<”或“>” 表示大小关系的式子,叫做不等式.
像 a + 2 ≠ a-2 这样用符号 “≠” 表示不等关系的式子也是不等式.
持续探索,破茧成蝶
例1、请判断下列哪些是不等式?如果不是,请说明理由.
①-2<5 √ ②3+3=6 ×
数学智能AI:小度
徽章数:1
持续探索,破茧成蝶
小组抽盲盒
盲盒一:请用不等式表示: 1. x是正数; 2. a减1的差小于3
盲盒二:请用不等式表示: 1. y是负数; 2. x的两倍大于-1.
盲盒三:请用不等式表示: 1. m与n的和大于-2; 2. x的一半不等于6.
盲盒四:请用不等式表示: 一辆匀速行驶的汽车在11:20距离A地50km,要 在12:00之前驶过A地,车速x(km/h)应满足什 么条件?
持续探索,破茧成蝶
例4、在数轴上表示出教材116页第3题的解集:
(1)x 3
解:
(2)x 4
解:
(3)x 2
解:
0
3
0
4
0
2
在大家的帮助下,我获取了一些在数轴上表示不等式 的解集的图片,第三阶段学习顺利完成,获得第三枚徽章! 我终于可以回答部分人们关于不等关系的问题啦.
人教版数学七年级下册《9.1.1不等式及其解集》教学设计
人教版数学七年级下册《9.1.1不等式及其解集》教学设计一. 教材分析人教版数学七年级下册《9.1.1不等式及其解集》是学生在学习了整式、分式等基础知识后,引入的一种新的数学表达形式。
本节课主要让学生了解不等式的概念,学会用不等号表示两个数的大小关系,以及如何求解不等式的解集。
教材中通过丰富的实例,引导学生探究不等式的性质,培养学生的逻辑思维能力。
二. 学情分析七年级的学生已经具备了一定的数学基础,对数学符号和运算规则有一定的了解。
但学生在学习新知识时,可能对不等式的概念和性质理解不够深入,需要在教学过程中加以引导和巩固。
此外,学生对实际问题中不等式的应用还不够熟练,需要通过大量的练习来提高。
三. 教学目标1.了解不等式的概念,掌握不等式的基本性质。
2.学会求解不等式的解集,并能解决一些实际问题。
3.培养学生的逻辑思维能力,提高学生解决数学问题的能力。
四. 教学重难点1.重难点:不等式的概念、性质以及求解不等式的解集。
2.难点:对不等式性质的理解和应用,求解不等式时的运算技巧。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究不等式的性质。
2.利用多媒体辅助教学,生动展示不等式的图形表示,帮助学生形象理解。
3.运用实例分析,让学生体会不等式在实际问题中的应用。
4.注重练习,让学生在实践中巩固所学知识。
六. 教学准备1.教学课件:制作课件,包括不等式的概念、性质、例题及练习题。
2.教学素材:收集一些实际问题,用于引导学生应用不等式解决问题。
3.练习题:准备一些不等式的练习题,用于课堂练习和课后作业。
七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,引导学生思考如何用数学符号表示两个数的大小关系。
通过讨论,引出不等式的概念。
2.呈现(10分钟)介绍不等式的基本性质,如对称性、传递性等。
通过实例演示,让学生直观地感受不等式的性质。
3.操练(15分钟)让学生分组讨论,尝试解决一些不等式问题。
人教版七年级数学下册_9.1.1不等式及其解集
A.5
B.4
C.3
D.2
感悟新知
知识点 3 不等式的解集的表示方法
在数轴上表示不等式的解集:
特别提醒 在数轴上表示不等式的解集时,
大于向右画, 小于向左画;界点处 用空心圆圈圈住该点.
知3-讲
感悟新知
知3-讲
不等式的解集表示的是未知数的取值范围,所以不等
式的解集可以在数轴上直观地表示出来. 一般地,利用数
C. 3
D. 2
感悟新知
例2 用不等式表示: (1)a 的一半与3 的和大于5; (2)x 的3 倍与1 的差小于2; (3)a 的 1 与1 的差是正数;
2
(4)m 与2 的差是负数.
知1-练
解题秘方:紧扣不等关系中的关键词语列出不等式.
感悟新知
解:(1) 1 a+3>5.
2
(2)3x-1<2.
第9章 不等式与不等式组
9.1 不等式
9.1.1 不等式及其解集
学习目标
1 课时讲解 2 课时流程
不等式 不等式的解与解集 不等式的解集的表示方法
逐点 导讲练
课堂 小结
作业 提升
感悟新知
知识点 1 不等式
知1-讲
1. 定义:用符号“<”或“>”表示大小关系的式子叫做不等
式. 用符号“≠”表示不等关系的式子也是不等式.
轴表示不等式的解集通常有以下四种情况(设a>0):
不等式的解集 x>a
x>-4a
x<a
x<-a
数轴表示
感悟新知
知3-练
例4 在数轴上表示下列不等式的解集: (1)x>2 (2)x<-2 解题秘方:紧扣不等式解集在数轴上的表示方法, 看清不等号和端点值是解决问题的关键.
第 九章 不等式9.1.1不等式及其解集
(2) y+4>0.5. 如y=0,1.
(2)y与4的和大于0.5 (3) a<0 . 如a=-3,-4.
(3)a是负数; (4)b是非负数;
(4) b是非负数,就是b不是 负数,它可以是正数或零, 即b>0或b=0.如b=0,2.
(3)x=3;
(4) x2+xy+y2;
(5)x≠5; (6)x+2>y+5.
解 : (1)(2)(5)(6)是不等式; (3)(4)不是不等式.
知识讲解
练一练
C
知识讲解
2 用不等式表示数量关系
例2 用不等式表示下列数量关系:
(1)x的5倍大于-7; (2)a与b的和的一半小于-1;
5x >-7
知识讲解
例4 直接写出x+4<6的解集,并在数轴上表示出来. 解:x<2. 这个解集可以在数轴上表示为:
0 12 变式1 已知x的解集如图所示,你能写出x的解集吗?
(1)
-4
0
解:(1)x<-4;
(2)
0
4
(2)x>4.
知识讲解
变式2 直接写出不等式2x>8的解集,并在数轴上表示 出来.
解:x>4. 这个解集在数轴上表示为:
二、如何在小学数学教学活动中体现数学核心素养 1.数学抽象(符号意识、数感;几何直观、空间想象) 2.逻辑推理(推理能力、运算能力) 3.数学模型(模型思想、数据分析观念)
三、如何在数学教学评价中考查数学核心素养
教育质量监测的四个原则 1.不要求计算速度(速度的训练是课业负担重的主要原因) 2.监测内容蕴含的数学素养(概念、推理、计算、想象) 3.应当有一道开放题(超市的位置,加分原则) 4.说学生能懂的话(对可 直接写出不等式-2x>8的解集.
2014..9.1.1.不等式及其解集
比较等式与不等式的性质
等式的基本性质1
等式两边加(或 减)同一个数或式 子,结果仍相等。 等式的基本性质2 不等式的性质1 不等式两边加(或减) 同一个数(或式子),不 等号的方向不变。
不等式的性质2 不等式两边乘(或除以) 等式两边乘同一个 正数 同一个正数,不等号的方 数,或除以同一个 不变 向不变。 不为零的数,结果 不等式的性质3 仍相等. 不等式的两边乘(或除以)同 一个负数,不等号的方向改变 负数 改变.
达标检测
1、已知a>b,下列不等式不成立的是( B)
A: a-3>b-3 B:-2a>-2b C: D: -a<-b 2、由m>n到km<kn成立的条件是( B ) A: k>0 B :k<0 C: k≥0 D: k≤0 3、已知a>b,用“<”或“>”填空: > -3 < -3b (1) a-3____b (2) -3a____ > < -3b (4) a-b____0 (3) 3-3a____3 <-2,依据____________. 不等式的性质3 4、若-2x>4,则x___ 若m-2>3,则m___ _________. 1 >5 ,依据不等式的性质
正数:7×3
7 ×2 7 ×1 零: 7× 0
> > >
4×3
4× 2 4× 1
负数:7×(-1)
7 ×(-2) 7 × (-3)
< 4 × (-1) < 4 × (-2) <
4 × (-3)
= 4× 0
发现:同乘以一个正数,不等号方向不变,同乘以一
个 负数不等号方向改变,同乘以0的时候相等.
人教版初中数学七年级下册9.1.1《不等式及其解集》教案
明确验证解的方法,引入不等式的解集概念
解析:解集是个范围
例3 下列说法中正确的是( )
A.x=3是不是不等式2x>1的解
B.x=3是不是不等式2x>1的唯一解;
C.x=3不是不等式2x>1的解;
D.x=3是不等式2x>1的解集
注意:1.实心点表示包括这个点,空心点表示不包括这个点
例2 下列各数中,哪些是不等是x+1<3的解?哪些不是?
-3,-1,0,1,1.5,2.5,3,3.5
解:略.
练习:1.判断数:-3,-2,-1,0,1,2,3,是不是不等式2x+3<5 的解?再找出另外的小于0的解两个.
2.下列各数:-5,-4,-3,-2,-1,0,1,2,3,4,5中,同时适合x+5<7和2x+2>0的有哪几个数?
情境导入
导出新知
一.问题探知
两个体重相同的孩子正在跷跷板上做游戏.现在换了一个胖子上去,跷跷板发生了倾斜,这个游戏还能继续下去吗?
某班同学去植树,原计划每位同学植树4棵,但由于某组的10名同学另有任务,未能参加植树,其余同学每位植 树6棵,结果仍未能完成计划任务,若以该班同学的人数为x,此时的x应满足怎样的关系式?
含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式.
分析不等关系,渗透不等式的列法
2.不等式解集的表示方法
例4 在数轴上表示下列不等式的解集
(1)x>-1;(2)x≥-1;(3)x<-1;(4)x≤-1
分析:按画数轴,定界点,走方向的步骤答
解:
学生交流后,师生归纳:两者的条件和结论正好相反:
9.1.1 不等式及其解集(西藏民族交流课)
不等式的解集的表示:
一、用式子表示:
即用最简形式的不等式来表示,如: x <a 或 x> a
二、用数轴表示:
即标出数轴上某一区间,其中的点对应的数
值都是不等式的解.
如图所示,x>a
如图所示,x<a
如图所示,x≥a
如图所示,x≤a
【例3】在数轴上表示下列不等式的解集
(1) x>-1; (2) x≥-1; (3) x<-1; (4) x≤-1
【例3】在数轴上表示下列不等式的解集
(1) x>-1; (2) x≥-1; (3) x<-1; (4) x≤-1
解不等式:
求不等式解集的过程叫解不等式.
巩固应用,反馈提高
1.用不等式表示: ① a 是负数; ② x 与 -5 的和小于-9; ③ a 与 2 的差小于等于-1; ④ a 的 2 倍不小于-10; ⑤ a 是非正数 .
要使汽车在12:00以前驶过A 地,你认为
车速应该为多少呢?
问题7:
车速可以是每小时85 km吗?每小时82 km呢?每小时75.1 km呢? 每小时74 km呢?
不等式的解:
我们曾经学过使方程两边相等的未知数的 值就是方程的解,我们也可以把使不等式成立 的未知数的值叫做不等式的解.
【例2】读下列数中,哪些是不等式2x-1≤3的解? 哪些不是? -3,-1,0,1,1.5,2,2.5,3,3.5 【解析】利用定义,把每个值逐一代入不等式加以验算,
50 2 < 3 x
问题4:
设车速是 x km/h,从路程上看,汽车要在 12:00 之前驶
2 过 A 地,则以这个速度行驶 h 的路程要大于 50 km ,如何 3
用数学语言表示这样的数量关系?
课题:9.1.1 不等式及其解集
2 x > 50 不成立。这就是说,任何一个 3 2 大于 75 的数都是不等式 x > 50 的解,这样的解有无数个。 3 2 因此,x > 75 表示了能使不等式 x > 50 成立的“x”的取值范 3 2 围。我们把它叫做不等式 x > 50 的解的集合,简称解集.这 3
个解集还可以用数轴来表示(教师示范表示方法) .回到前面的 问题,要使汽车在 12:00 以前驶过 A 地,车速必须大于每小时 75 千米。 一般地, 一个含有未知数的不等式的所有的解, 组成这个不 等式的解集.求不等式的解集的过程叫做解不等式.
2 x > 50 的解: 3
意义以及不等式解与 方程解的不同之处.
ห้องสมุดไป่ตู้
76,73,79,80,74. 9,75.1,90,60 你能找出这个不等式其他的解吗?它到底有多少个解?你 从中发现了什么规律? 讨论后得出:当 x > 75 时,不等式 75 或 x=75 时,不等式
2 x > 50 成立;当 x < 3
教学目标
课题: 课题:9.1.1 不等式及其解集 1、感受生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义,通过解 决简单的实际问题,使学生自发地 寻找不等式的解,会把不等式的解集正确地表示到数轴上; 2、经历由具体实例建立不等模型的过程,经历探究不等式解与解集的不同意义的过程, 渗透数形结合思想; 3、通过对不等式、不等式解与解集的探究,引导学生在独立思考的基础上积极参与对 数学问题的讨论,培养他们的合作交流意识;让学生充分体会到生活中处处有数学,并 能将它们应用到生活的各个领域。 正确理解不等式、 不等式解与解集的意义,把不等式的解集正确地表示到数轴上。 建立方程解决实际问题,会解 “ax+b=cx+d”类型的一元一次方程 教学过程(师生活动) 多媒体演示: 1、两个体重相同的孩子正在跷跷板上做游戏.现在换了一 个小胖子上去, 跷跷板发生了倾斜, 游戏无法继续进行下去了. 这 是什么原因呢? 2、一辆匀速行驶的汽车在 11:20 时距离 A 地 50 千米。要 在 12:00 以前驶过 A 地,车速应该具备什么条件?若设车速为 每小时 x 千米,能用一个式子表示吗? (一)不等式、一元一次不等式的概念 1、 在学生充分发表自己意见的基础上,师生共同归纳得出:用 “<”或“>”表示大小关系的式子叫做不等式;用“并” 表示不等关系的式子也是不等式。 2、下列式子中哪些是不等式? (1)a+b=b+a (2)-3>-5 (3)x≠l (4)x 十 3>6 (5) 2m< n (6)2x-3 上述不等式中,有些不含未知数,有些含有未知数.我们把 那些类似于一元一次方程, 含有一个未知数且未知数的次数是 1 的不等式,叫做一元一次不等式. 3、小组交流:说说生活中的不等关系. 分组活动.先独立思考,然后小组内互相交流并做记录,最 后各组选派代表发言,在此基础上引出不等号 “≥” 和“≤” .补 充说明:用“≥”和“≤”表示不等关系的式子也是不等式. (二)不等式的解、不等式的解集 问题 1.要使汽车在 12:00 以前驶过 A 地,你认为车速应该 为多少呢? 问题 2.车速可以是每小时 85 千米吗?每小时 82 千米呢? 每小时 75.1 千米呢?每小时 74 千米呢? 问题 3.我们曾经学过“使方程两边相等的未知数的值就是 方程的解” ,我们也可以把使不等式成立的未知数的值叫做不等 式的解.刚才同学们所说的这些数,哪些是不等式 解? 设计理念 通过实例创设情境, 从“等”过渡到“不 等” ,培养学生的观察 能力,激发他们的学 习兴趣. 引导学生仔细观察并 归纳出不等式的意 义。 在甄别不等式的过程 中,加深对不等式意 义的理解,引出一元 一次不等式的概念.
人教版初中数学七年级下册9.1.1《不等式及其解集》教案设计
9.1.1《不等式及其解集》教学设计【内容】人教版七年级数学下第九章第一节【知识与技能】1.能够从现实问题中抽象出不等式,理解不等式的意义,会根据给定条件列不等式.2.正确理解“非负数”、“不小于”、“不大于”等数学术语.3.理解不等式的解、解集的意义,能举出一个不等式的几个解并且会检验一个数是否是某个不等式的解.4.能用数轴表示不等式的解集.【过程与方法】经历由具体实例建立不等式模型的过程,进一步发展学生的符号感和数学化的能力,体会在解决问题的过程中与他人合作的重要性.【情感、态度与价值观】使学生能独立克服困难,运用知识解决问题,树立学好数学的自信心;在独立思考的基础上,积极参与讨论,在合作交流中有一定收获.教学重点理解不等式、不等式的解和解集,能正确列出不等式.教学难点准确应用不等号,理解不等式的解和解集的意义.学情与教材分析一、学情分析学生在小学对不等量关系、数量大小的比较等知识已经有所了解,但对含有未知数的不等式还是第一次接触,本节就是对“不等式”这一概念进一步明确,使它成为一种有效的数学工具.学生在列不等式时,对数量关系中的“不大于”、“不小于”、“负数”、“非负数”等数学术语的含义不能准确理解,在把用文字语言表述的不等关系转化为用符号表示的不等式时有一定困难,对不等式的解、不等式的解集两个概念容易混淆.二、教材分析不等式是解决实际问题的一种数学模型,它不仅是初中阶段学习的重点内容,而且也是后面学习函数等知识的基础.它是在学习了一元一次方程、二元一次方程组之后的后续内容,贯穿于数学学习的始终,起着承上启下的作用.本节是本章的第一课时,主要学习四个概念:不等式、不等式的解、解集。
同时渗透建模、类比、分类等思想方法.教学方法:引导发现法教学准备:教具:圆规、三角尺、多媒体及课件。
学具:圆规、三角尺。
教学过程:一创设情景引入新知(一)动画演示情景激趣:两个体重相同的孩子正在跷跷板上做游戏,现在换了一个大人上去,跷跷板发生了倾斜,游戏无法继续进行下去了,这是什么原因呢?设计意图:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,分析能力,激发他们的学习兴趣问题1:出示图片(多媒体演示): 若设大象的体重为x吨,你能用式子表示图片中两个小朋友的对话吗?问题2:一辆匀速行驶的汽车在11:20时距离A地50千米。
人教版七年级数学下册9.1.1《不等式及其解集》说课稿
人教版七年级数学下册9.1.1《不等式及其解集》说课稿一. 教材分析《不等式及其解集》是人教版七年级数学下册第9.1.1节的内容,主要包括不等式的概念、不等式的解集及其表示方法。
本节内容是学生学习不等式的基础,对于培养学生的逻辑思维和解决问题的能力具有重要意义。
在教材中,不等式的概念是通过具体的例子引入的,让学生感受不等式在实际生活中的应用。
不等式的解集是指满足不等式的所有实数的集合,可以用数轴或区间表示。
教材通过例题和练习题的形式,帮助学生理解和掌握不等式及其解集的概念和表示方法。
二. 学情分析学生在学习本节内容前,已经学习了有理数、一元一次方程等基础知识,对于数学符号和概念有一定的理解。
但学生对于不等式的概念和解集的表示方法可能较为陌生,需要通过具体的例子和练习来逐步理解和掌握。
同时,学生可能对于数轴和区间的表示方法有一定的了解,但需要进一步学习和应用到不等式的解集中。
因此,在教学过程中,教师需要注重概念的引入和学生的实际操作,帮助学生建立起不等式和解集的知识体系。
三. 说教学目标1.知识与技能目标:学生能够理解不等式的概念,掌握不等式的解集及其表示方法。
2.过程与方法目标:学生能够通过具体的例子和练习,培养逻辑思维和解决问题的能力。
3.情感态度与价值观目标:学生能够体验数学在实际生活中的应用,激发学习数学的兴趣和积极性。
四. 说教学重难点1.教学重点:不等式的概念及其解集的表示方法。
2.教学难点:理解不等式和解集之间的关系,能够运用解集的表示方法解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作学习法,引导学生主动参与课堂,培养学生的逻辑思维和解决问题的能力。
2.教学手段:利用多媒体课件和黑板,进行图文并茂的讲解和演示,帮助学生直观地理解和掌握不等式及其解集的概念和表示方法。
六. 说教学过程1.导入新课:通过具体的例子,引入不等式的概念,激发学生的兴趣和好奇心。
9.1.1不等式及其解集ppt_七年级数学下册_2
观察它们未知数的个数与次数有何特点? 一元一次方程 8 5 一元一次不等式 8
x = 16
5
x < 16
Hale Waihona Puke 只含有一个未知数,未知数的次数是一次
像这样,含有 一个未知数,未知数的次 未知数,未知数的次数 类似地, 含有一个 是一次 的方 程,叫做一元一次方程 数是 一次 的不等式,叫做一元一次不等式
四.解不等式
(4)x与12的差比y的3倍大; 解: x-12>3y;
(5)x与y的和的不大于-2; 解:x+y ≤-2;
解:20%(a+b) ≤15
(6)a与b的和的20%至多为15.
8
5
x < 16
你能找出一个符合条件的x的值吗? 使方程等号两边相等的未知数的值 使不等式成立的未知数的值叫做 不等式的 解。 叫方程的解。
点此播放视频
问题1:老师按八折买了2件圣诞礼品, 共付了16元钱,你知道礼品的标价 每件是多少元吗?
用x表示礼品的标价,由题意,得: 8
x = 16
5
问题2:老师按八折买了2件圣诞礼品,付费少于16元
,你知道礼品的标价每件是多少元吗? 用x表示礼品的标价,由题意,得: 8 5 16
x < 16
>2 0.8 x
3
4
0
1 x>2
2
找点
定向
画线
练习 1.用不等式表示下列关系: (1)a与3的和是正数; (2)m的倒数大于n的一半;
解:a+3>0;
1 (3)a与b和的 是非正数 . 2 1 解: (a+b)≤0. 2
n 1 解: > ; m 2
(4)x与5的差的3倍不是负数;
解:3(x-5)≥0;
人教版七年级数学下册教学设计:9.1.1不等式及其解集
(2)结合自己的学习体会,谈谈在解决实际问题时,如何将问题转化为不等式模型。
2.不等式的解集
接着,我会详细讲解不等式的解集,以及如何用数轴表示解集。借助图形和数轴,让学生直观地理解解集的内涵。
3.不等式的变形
此外,我还会介绍不等式的简单变形,如加减乘除同一不等式的两边。通过实例和练习,让学生掌握不等式的变形方法。
(三)学生小组讨论
1.设计讨论题目
在此环节,我会给出几个实际问题,让学生分组讨论如何用不等式表示这些问题,并求解。
4.通过合作交流、讨论等形式,培养学生的团队合作意识和交流表达能力,提高学生的问题解决能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生学习数学的热情,树立正确的学习态度。
2.引导学生认识到不等式在生活中的重要性,体会数学与现实生活的紧密联系,增强学生的应用意识。
3.通过解决实际问题,培养学生的自信心和成就感,提高学生对数学价值的认识。
2.学生练习
学生在规定时间内完成练习,期间我会巡回指导,解答学生的疑问。
3.评讲练习
在学生完成练习后,我会挑选部分题目进行评讲,分析解题思路,强调注意事项。
(五)总结归纳
1.回顾所学内容
在本节课的最后,我会带领学生回顾本节课所学的不等式概念、性质、解集表示方法等。
2.强调重点和难点
在此过程中,我会强调不等式的定义、性质和求解方法,以及如何将实际问题转化为不等式模型。
3.鼓励学生提问
最后,我会鼓励学生提问,解答他们的疑惑。通过总结归纳,帮助学生巩固所学知识,提高他们的数学素养。
五、作业布置
为了巩固学生对不等式的理解,提高解题能力,特布置以下作业:
人教版数学七年级下册-9-1-1不等式及其解集-课件(2)
x >75在数轴上表示如下
0
75
在表示75的点上画空心圆圈,表 示不包含这一点,向右表示大于
解集的表示方法: 第一种:用式子(如x>2),即用最简形式的不等式 (如x>a或x<a)来表示. 第二种:用数轴,一般标出数轴上某一区间,其中的 点对应的数值都是不等式的解. 用数轴表示不等式的解集的步骤:
3.下列不是不等式5x-3<6的一个解的是( B ) A.1 B.2 C.-1 D.-2
4.在数轴上表示不等式x-1<0的解集,正确的是( C )
5. 用“<”或“>”号填空.
(1)-2_<___2;
(2)-3_<___-2;
(3)12_>___6;
(4)0_>___-8;
(5)-a__<__a (a>0); (6)-a_>___a(a<0).
一个式子是不等式,要把握两点: 一是含有不等号, 二是表示不等关系,而与不等式是否成立无关.
知识点二:列不等式表示不等关系
列不等式的一般步骤是: (1)分析题意,找出题目中的各种量; (2)寻找各种量之间的不等关系; (3)用代数式表示各量; (4)用适当的符号将各量连接起来.
例1 列不等式:
(1)a与1的和是正数:___a_+__1_>_0____; 表示不等关系的关键词有:
6.直接写出下列不等式的解集. x+3>6的解集是 x>3 ; 4x<8的解集是 x<2 ; x-2>0的解集是 x>2 .
7. 用不等式表示:
(1) a是正数;
(2) a是负数;
(3) a与5的和小于7;(4) a与2的差大于-1;
(5) a的4倍大于8; (6) a的一半小于3.
人教版七年级下册不等式及解集(最新整理)
第九章不等式与不等式组9.1不等式9.1.1不等式及其解集【知识与技能】1.掌握不等式的概念;2.理解不等式的解、解集;会在数轴上表示不等式的解集;3.掌握一元一次不等式的概念;4.会列出简单实际问题中的不等式.【过程与方法】从实例出发,引出不等式的概念,类比于方程的解理解不等式的解.进而理解不等式的解集,并学会在数轴上表示不等式的解集,类比于一元一次方程的概念理解一元一次不等式的概念.【情感态度】不等式是现实世界中普遍存在的关系,体验数学来源于实际生活又反过来服务于实际生活,提高同学们学习兴趣.【教学重点】不等式的概念,不等式的解、解集的概念,在数轴上表示不等式的解集.【教学难点】理解不等式的解集及在数轴上表示不等式的解集.一、情境导入,初步认识问题1 一辆匀速行驶的汽车在11:20距离A 地50km ,要在12:00之前驶过A地,车速满足什么条件?解:设车速是x 千米/时,本题可从两个方面来表示这个关系:(1)汽车行驶50千米的时间<_______.(2)汽车2/3小时(即40分钟)走过的路程______50.从而得到两个表示大小关系的式子:①_______________,②_______________.不等式的定义是:___________________.问题2 在中,当x =76,x=75,x =72,x =70时,不等式是否成立?76,2503x >75,72,70哪些是不等式的解,哪些不是?不等式的解有多少?它的所2503x >有解组成解的集合,怎样表示它的解集?【教学说明】同学们可以分组讨论,然后交流成果.最后解决问题,形成新知.对问题2教师要时时点拨,要参与学生之间去讨论,在用数轴表示x >75时,要使用空心圆圈,务必要强调这一点.二、思考探究,获取新知思考1 什么叫不等式?什么叫不等式的解、解集?什么叫解不等式?什么叫一元一次不等式?思考2 怎样在数轴上表示不等式的解集?【归纳结论】1.定义:用“<”或“>”或“≠”表示大小关系的式子,叫做不等式.不等式的解集:一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集.解不等式:求不等式的解集的过程叫做解不等式.一元一次不等式:含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式.2.在数轴上表示不等式的解集有下列四种情形:注意:不含等号的用空心的小圆圈,含等号的用实心小圆点,切记.三、运用新知,深化理解1.用不等式表示:(1)x 与1的和是正数;(2)a 的1/2与b 的1/3的差是负数;(3)y 的2倍与1的和大于3;(4)x 的一半与8的差小于x.2.下列说法错误的是( )A.x <2的负整数解有无数个B.x <2的整数解有无数个C.x <2的正整数解是1和2D.x <2的正整数解只有13.在-2,-1,0,1/3,1,2中.12(1)x 取哪些数值能使不等式x-1<0成立?(2)满足不等式x-1<0的x 有什么特点?4.在数轴上表示下列不等式的解集.(1)x >3;(2)x ≤3;(3)x <3;(4)x ≥3.5.比较下列各题中两个式子的大小.(1)a 4与-a 2-2;(2)2a 2-2b 2+4与3a 2+6b 2+8(提示:若A-B >0,则A >B ,若A-B <0,则A <B ,若A-B =0,则A =B ).【教学说明】题1、4可让学生自主探究,写出答案,画出解集,教师对出错的同学帮助其分析错误的原因,再加以改正,加深印象.题2、3、5,师生共同探讨,题5教师应事先给予提示,然后引导学生得出正确答案.【答案】1.解:(1)x+1>0;(2) a-b <0;1213(3)2y+1>3;(4) x-8<x.122.C 解析:不等式的解是使不等式成立的未知数的值,它可能有无数个解,可能只有有限个解,也可能无解.本题中,x <2的正整数解不包含2,只有1,故选项C 说法错误,选C.3.解:(1)当x 取-2,-1,0,1/3时,不等式x-1<0成立;(2)满足不等式x-1<0的x 的特点为均小于1.4.解:(1)(2)(3)(4)5.解:(1)由于a4-(-a2-2)=a4+a2+2>0,故a2>-a2-2;(2)由于(2a2-2b2+4)-(3a2+6b2+8)=2a2-2b2+4-3a2-6b2-8=-a2-8b2-4=-(a2+8b2+4)<0故2a2-2b2+4<3a2+6b2+8.四、师生互动,课堂小结1.不等式、不等式的解及解集、解不等式、一元一次不等式的概念.2.常见的基本语言及含义.(1)不大于、不高于、不超过的意义都是“≤”.(2)不小于、不低于的意义都是“≥”.1.布置作业:从教材“习题9.1”中选取.2.完成练习册中本课时的练习.等与不等是现实世界中存在的一种矛盾,但它们之间又是密切联系的.本课在教学上采用方程等式的观点进行不等式的教学,并进一步学习了解不等式的解集,这样既激发了学生的学习兴趣,又降低了他们在学习上的难度,充分调动了学生学习的积极性,让学生在教学活动中占主体地位.“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式的解:能使不等式成立的未知数的值,叫做不等式
的解。
2x 2 x 2 x 对于不等式 >50来说,x=78时, >50,这时78就是 3 3 3 >50的解。
不等式的解集:一个不等式的所有解,组成这个不等式的
解的集合,简称为这个不等式的解集。
9.1.1 不等式及其解集
不等式的解集的表示方法主要有两种:一是用式子
9.1.1 不等式及其解集 像上面那样,用不等号“<”或“>”表示不等关系的式子, 叫做不等式。
注意:① 用“ ≠ ”表示不等关系的式子也叫不等式.②
不等式中可以含有未知数 ,也可以不含有未知数 .③ “≥”读作“不小于”(即大于或等于);“≤”读作“不 大于”(即小于或等于)。
9.1.1 不等式及其解集
⑷a与b两数的和不小于3 a+b≥3 ;
⑸m不可能大于5 m≤5 .
9.1.1 不等式及其解集
7.用不等式表示图1中的解集,其中正确的是( C ).
A x>-2
B x<-2
C
x≥-2
D x≤-2
9.1.1 不等式及其解集 8. 下 图 中 表 示 的 是 不 等 式 的 解 集 , 其 中 错 误 的 是
(如x>2),即用最简形式的不等式(如x>a或x<a)来
表示;另一种是用数轴,标出数轴上某一区间,其 中的点对应的数值都是不等式的解。对于一元一次 不等式的解集一般来说有以下四种情况:
9.1.1 不等式及其解集 如图所示,x>a
如图所示,x<a
9.1.1 不等式及其解集 如图所示,x≥a
如图所示,x≤a
9.1.1 不等式及其解集 【例3】在数轴上表示下列不等式的解集
(1)
x>-1; (2) x≥-1; (3) x<-1; (4) x≤-1
【解析】按画数轴,定界点,走方向的步骤答 【答案】如图:
试一试: 写出下列数轴所表示的不等式的解集:
○ ●
-3 ⑴
0
0 ⑵
2
X > -3
X≥2
○
●
-3
⑶
0
0
⑷
9.1.1 不等式及其解集
【答案】
⑴a+3<-2 ⑵-x-1≥3
y ⑶ 2 >2y
⑷a+b≥0
9.1.1 不等式及其解集 【例2】读下列数中,哪些是不等式2x-1≤3的解? 哪些不是? -3,-1,0,1,1.5,2,2.5,3,3.5 【解析】利用定义,把每个值逐一代入不等式加以验算, 能使不等式成立的,就是不等式的解,否则就不是。 【答案】-3,-1,0,1,1.5,2是不等式2x- 1≤3的解,2.5,3,3.5不是不等式2x-1≤3。
9.1.1 不等式及其解集 问题:一辆匀速行驶的汽车在 11:20距A地50千米,要 在12:00之前驶过A地,车速应满足什么条件?
这属于行程问题,速度、时间和路程有关系:路程 = 速
度×时间。 如果设车速为 x 千米/小时,从路程的角度考虑可以得 出: 2 x >50 3 50 2 从时间的角度考虑可以得出: < x 3
( D ).
A x≤2
B x>1
C x≠0
D x<0
9.1.1 不等式及其解集 本节课我们首先以实际问题为例,结合问题中不等 关系,引出不等式及其解集的概念,然后类比一元一
次方程,引出一元一次不等式的概念。不等式是现实
世界中不等关系的一种数学表现形式,它不仅是学我 们现阶段学习的重点内容,而且也是我们后续学习的 重要基础。
a
X < -3
X≤a
9.1.1 不等式及其解集
1.用 不等号 连接的式子叫做不等式。
2.含有
一 个未知数,未知数的次数是1次 的不等
式叫做一元一次不等式. 3.用不等式表示下列关系:
⑴a与1的和是正数a+1>0 ;
⑵y的2倍与1的和大于3 2y+1>3 ; 1 ⑶x的一半与x的2倍的和是非正数 2 x+2x≤0 ;
9.1.1 不等式及其解集 【例1】根据题意列不等式
⑴a与3的和小于-2;
⑵x的相反数与1的差不小于3;
⑶y的一半比它的2倍大; ⑷a与b的和是非负数. 【解析】⑴关键词语是“小于”;⑵关键词语是“不小
于”,即是大于或等于,用“ ≥ ”表示;⑶关键词语是
“大”;⑷关键词语是“非负数”,即是大于0或等于0 的数,用“≥”表示。
收获和体会
不等式的定义 不等式的解 不等式的解集 不等式解集的表示方法
9.1.1 不等式及其解集
4.直接写出不等式的解集: ⑴x+3>6的解集
⑶x-2>0的解集
x>3 x>2
;⑵2x<8的解集
x<4 ;⑷0.5x≤5的解集 x≤10 .
;
5.下列各数中,哪些是不等式x+3<6的解?哪些是不等式 3x>12的解? -5,-4,-2,0,1,5.4,10,15. 6.数值-2,-1.5,-1,0,1.5,2中,能使不等式x+3>2 成立的数有(C ). A 1个 B 2个 C 3个 D 4个