面对高考牛顿运动定律复习
高考物理牛顿运动定律复习
牛顿运动定律牛顿第一定律1. 内容:一切物体总保持静止状态或者匀速直线运动状态,直到有外力迫使它改变这种状态为止。
2. 意义:⑴揭示了力与运动的关系:力不是使物体运动的原因,而是改变物体运动状态的原因,从而推翻了亚里士多德“没有力物体不能运动”的错误观点。
⑵揭示了任何物体都有保持静止或运动直线运动的性质------惯性3. 惯性(1)定义:物体所具有的保持静止状态或匀速直线运动状态的性质叫惯性。
(2)说明:①惯性是物体本身的固有属性。
与物体受力情况无关,与物体所处的地理位置无关,一切物体都具有惯性。
②质量是物体惯性大小的唯一量度,质量大惯性大。
③惯性不是一种力,惯性不是一种力,惯性的大小反映了改变物体运动状态的难易程度。
二、牛顿第三定律1. 内容:两个物体之间的作用力与反作用力总是大小相等、方向相反、作用在同一条直线上。
2. 表达式:F F3. 说明:作用力与反作用力有“三同、三不同”。
⑴ 三同:大小相同、性质相同、同时存在消失具有同时性⑵ 三不同:方向不同、作用对象不同、作用的效果不同。
三、牛顿第二定律1、内容:牛顿通过大量定量实验研究总结出:物体的加速度跟物体所受的合外力成正比,跟物体的质量成反比,加速度的方向和合外力的方向相同。
这就是牛顿第二定律。
2、其数学表达式为:Fam F maF x ma x牛顿第二定律分量式:F y ma yF合-P用动量表述:t3、牛顿定律的适用范围:(1)只适用于研究惯性系中运动与力的关系,不能用于非惯性系;(2)只适用于解决宏观物体的低速运动问题,不能用来处理微观粒子高速运动问题;四、两类动力学问题1. 由受力情况判断物体的运动状态;2. 由运动情况判断的受力情况五、单位制1、单位制:基本单位和导出单位一起组成了单位制。
(1)基本单位:所选定的基本物理量的(所有)单位都叫做基本单位,如在力学中,选定长度、质量和时间这三个基本物理量的单位作为基本单位:长度一cm、m km等;质量一g、kg等;时间一s、min、h等。
高考物理必拿满分系列之牛顿三大定律专题复习
高考物理必拿满分系列之牛顿三大定律-专题复习牛顿运动三定律在经典物理学中是最重要、最基本的规律,是力学乃至整个物理学的基础。
历年高考对本章知识的考查重点:①惯性、力和运动关系的理解;②熟练应用牛顿定律分析和解决两类问题(已知物体的受力确定物体的运动情况、已知物体的运动情况确定物体的受力)。
命题的能力考查涉及:①在正交的方向上质点受力合成和分解的能力;②应用牛顿定律解决学科内和跨学科综合问题的能力;③应用超重和失重的知识定量分析一些问题;④能灵活运用隔离法和整体法解决简单连接体问题的能力;⑤应用牛顿定律解题时的分析推理能力。
命题的最新发展:联系理科知识的跨学科综合问题。
一、牛顿第一定律(惯性定律):◎知识梳理一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。
1.理解要点:①运动是物体的一种属性,物体的运动不需要力来维持。
②它定性地揭示了运动与力的关系:力是改变物体运动状态的原因,是使物体产生加速度的原因。
③第一定律是牛顿以伽俐略的理想斜面实验为基础,总结前人的研究成果加以丰富的想象而提出来的;定律成立的条件是物体不受外力,不能用实验直接验证。
④牛顿第一定律是牛顿第二定律的基础,不能认为它是牛顿第二定律合外力为零时的特例,第一定律定性地给出了力与运动的关系,第二定律定量地给出力与运动的关系。
2.惯性:物体保持原来的匀速直线运动状态或静止状态的性质叫做惯性。
①惯性是物体的固有属性,与物体的受力情况及运动状态无关。
②质量是物体惯性大小的量度。
③由牛顿第二定律定义的惯性质量m=F/a和由万有引力定律定义的引力质量m Fr GM=2/严格相等。
④惯性不是力,惯性是物体具有的保持匀速直线运动或静止状态的性质、力是物体对物体的作用,惯性和力是两个不同的概念。
二、牛顿第二定律◎知识梳理1. 定律内容物体的加速度a跟物体所受的合外力F成正比,跟物体的质量合m成反比。
2. 公式:F ma=合理解要点:①因果性:F是产生加速度a的原因,它们同时产生,同时变合化,同时存在,同时消失;②方向性:a与F都是矢量,,方向严格相同;合是该时刻作用③瞬时性和对应性:a为某时刻物体的加速度,F合在该物体上的合外力。
高考物理二轮复习专题归纳总结—牛顿运动定律的应用
高考物理二轮复习专题归纳总结—牛顿运动定律的应用1.牛顿第二定律的理解2.动力学两类基本问题3.超重和失重(1)实重:物体实际所受的重力,它与物体的运动状态无关。
(2)视重:弹簧测力计的示数或台秤的示数。
(3)超重:当物体具有向上的加速度时,物体对支持物的压力(或对悬挂物的拉力)大于所受重力。
即视重大于实重。
(4)失重:当物体具有向下的加速度时,物体对支持物的压力(或对悬挂物的拉力)小于所受重力。
即视重小于实重。
4.连接体问题(1)若求解整体的加速度,可用整体法。
把整个系统看做一个研究对象,分析整体受外力情况,再由牛顿第二定律求出加速度。
(2)若求解系统内力,可先用整体法求出整体的加速度,再用隔离法将内力转化成外力,由牛顿第二定律求解。
5.瞬时问题1.动力学两类基本问题2.瞬时问题3.动力学图像问题图1图24.传送带模型(1)水平传送带模型项目图示滑块可能的运动情况情景1①可能一直加速②可能先加速后匀速情景2①v 0>v ,可能一直减速,也可能先减速再匀速②v 0=v ,一直匀速③v 0<v ,可能一直加速,也可能先加速再匀速情景3①传送带较短时,滑块一直减速到达左端②传送带较长时,滑块还要被传送带传回右端。
若v 0>v ,返回时速度为v ,若v 0<v ,返回时速度为v 0(2)倾斜传送带模型项目图示滑块可能的运动情况情景1①可能一直加速②可能先加速后匀速情景2①可能一直加速②可能先加速再匀速③可能先以a 1加速再以a 2加速情景3①可能一直匀速②可能一直加速③可能先减速再反向加速5.板块模型(1)分析“板块”模型时要抓住一个转折和两个关联(2)两种类型类型图示规律分析木板B 带动物块A ,物块恰好不从木板上掉下的临界条件是物块恰好滑到木板左端时二者速度相等,则位移关系为x B=x A+L物块A带动木板B,物块恰好不从木板上掉下的临界条件是物块恰好滑到木板右端时二者速度相等,则位移关系为x B+L=x A6.实验情景。
高考物理一轮复习讲义—牛顿运动三定律
高考物理一轮复习讲义—牛顿运动三定律考点一牛顿第一定律的理解1.牛顿第一定律(1)内容:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态.(2)意义:①揭示了物体的固有属性:一切物体都具有惯性,因此牛顿第一定律又被叫作惯性定律;②揭示了运动和力的关系:力不是维持物体运动的原因,而是改变物体运动状态的原因,即力是产生加速度的原因.2.惯性(1)定义:物体具有保持原来匀速直线运动状态或静止状态的性质.(2)量度:质量是惯性大小的唯一量度,质量大的物体惯性大,质量小的物体惯性小.(3)普遍性:惯性是物体的固有属性,一切物体都具有惯性,与物体的运动情况和受力情况无关.1.牛顿第一定律是实验定律.(×)2.运动的物体惯性大,静止的物体惯性小.(×)3.物体不受力时,将处于静止状态或匀速直线运动状态.(√)1.惯性的两种表现形式(1)物体在不受外力或所受的合外力为零时,惯性表现为使物体保持原来的运动状态不变(静止或匀速直线运动).(2)物体受到外力时,惯性表现为抗拒运动状态的改变,惯性大,物体的运动状态较难改变;惯性小,物体的运动状态较易改变.2.牛顿第一定律与牛顿第二定律的关系牛顿第一定律和牛顿第二定律是相互独立的.(1)牛顿第一定律告诉我们改变运动状态需要力,力是如何改变物体运动状态的问题则由牛顿第二定律来回答.(2)牛顿第一定律是经过科学抽象、归纳推理总结出来的,而牛顿第二定律是一条实验定律.例1(多选)科学家关于物体运动的研究对树立正确的自然观具有重要作用.下列说法中符合历史事实的是()A.亚里士多德认为,必须有力作用在物体上,物体的运动状态才会改变B.伽利略通过“理想实验”得出结论:如果物体不受力,它将以这一速度永远运动下去C.笛卡儿指出,如果运动中的物体没有受到力的作用,它将继续以同一速度沿同一直线运动,既不停下来也不偏离原来的方向D.牛顿认为,物体都具有保持原来匀速直线运动状态或静止状态的性质答案BCD解析亚里士多德认为,必须有力作用在物体上,物体才能运动,故A错误;伽利略通过“理想实验”得出结论:力不是维持运动的原因,如果物体不受力,它将以这一速度永远运动下去,故B正确;笛卡儿指出如果运动中的物体没有受到力的作用,它将继续以同一速度沿同一直线运动,既不停下来也不偏离原来的方向,故C正确;牛顿认为物体都具有保持原来匀速直线运动状态或静止状态的性质,故D正确.例2水平仪的主要测量装置是一个内部封有液体的玻璃管,液体中有一气泡,水平静止时,气泡位于玻璃管中央,如图甲所示.一辆在水平轨道上行驶的火车车厢内水平放置两个水平仪,一个沿车头方向,一个垂直于车头方向.某时刻,气泡位置如图乙所示,则此时关于火车运动的说法可能正确的是()A.加速行驶,且向左转弯B.加速行驶,且向右转弯C.减速行驶,且向左转弯D.减速行驶,且向右转弯答案B解析由题意可知,水平静止或匀速直线运动时,气泡位于玻璃管中央,由题图乙可以看出:沿车头方向的气泡向车头方向移动,当火车加速时,气泡和液体由于惯性不会随火车立即加速,还会以原来的速度运动,相对火车向后运动,因为气泡密度小于液体密度,所以气泡在液体作用下就向前运动,故C、D错误;垂直于车头方向的装置中气泡处于右端,因原来火车做直线远动,气泡位于中心位置,当火车向右转弯时,气泡和液体由于惯性不会立即随火车右转,还会沿直线运动,所以气泡和液体就相对火车向左运动,因为气泡密度小于液体密度,所以气泡在液体的作用下相对中心位置向右运动;所以此时刻火车应是加速运动且向右转弯,故B正确.考点二牛顿第二定律1.牛顿第二定律(1)内容:物体加速度的大小跟它受到的作用力成正比、跟它的质量成反比,加速度的方向跟作用力的方向相同.(2)表达式:F=ma.2.力学单位制(1)单位制:基本单位和导出单位一起组成了单位制.(2)基本单位:基本物理量的单位.国际单位制中基本物理量共七个,其中力学有三个,是长度、质量、时间,单位分别是米、千克、秒.(3)导出单位:由基本物理量根据物理关系推导出来的其他物理量的单位.1.物体加速度的方向一定与合外力方向相同.(√)2.由m=Fa可知,物体的质量与其所受合外力成正比,与其运动的加速度成反比.(×) 3.可以利用牛顿第二定律确定高速电子的运动情况.(×)4.物体所受的合外力减小,加速度一定减小,而速度不一定减小.(√)5.千克、秒、米、库仑、安培均为国际单位制的基本单位.(×)1.对牛顿第二定律的理解2.解题的思路和关键(1)选取研究对象进行受力分析;(2)应用平行四边形定则或正交分解法求合力;(3)根据F合=ma求物体的加速度a.考向1对牛顿第二定律的理解例3(多选)下列说法正确的是()A.对静止在光滑水平面上的物体施加一个水平力,当力刚作用瞬间,物体立即获得加速度B.物体由于做加速运动,所以才受合外力作用C.F=ma是矢量式,a的方向与F的方向相同,与速度方向无关D.物体所受合外力减小,加速度一定减小,而速度不一定减小答案ACD解析由于物体的加速度和合外力是瞬时对应关系,由此可知当力作用瞬间,物体会立即产生加速度,选项A正确;根据因果关系,合外力是产生加速度的原因,即物体由于受合外力作用,才会产生加速度,选项B错误;牛顿第二定律F=ma是矢量式,a的方向与F的方向相同,与速度方向无关,选项C正确;由牛顿第二定律可知物体所受合外力减小,加速度一定减小,如果物体做加速运动,其速度会增大,如果物体做减速运动,速度会减小,选项D 正确.例4某型号战斗机在某次起飞中,由静止开始加速,当加速度a不断减小至零时,飞机刚好起飞.关于起飞过程,下列说法正确的是()A.飞机所受合力不变,速度增加越来越慢B.飞机所受合力减小,速度增加越来越快C.速度方向与加速度方向相同,速度增加越来越快D.速度方向与加速度方向相同,速度增加越来越慢答案D解析根据牛顿第二定律可知,当加速度a不断减小至零时合力逐渐减小到零,速度增加得越来越慢,故A、B项错误;飞机做加速运动,加速度方向与速度方向相同,加速度减小,即速度增加得越来越慢,故C项错误,D项正确.考向2牛顿第二定律的简单应用例52021年10月16日0时23分,“神舟十三号”成功发射,顺利将三名航天员送入太空并进驻空间站.在空间站中,如需测量一个物体的质量,需要运用一些特殊方法:如图所示,先对质量为m 1=1.0kg 的标准物体P 施加一水平恒力F ,测得其在1s 内的速度变化量大小是10m/s ,然后将标准物体与待测物体Q 紧靠在一起,施加同一水平恒力F ,测得它们1s 内速度变化量大小是2m/s.则待测物体Q 的质量m 2为()A .3.0kgB .4.0kgC .5.0kgD .6.0kg 答案B 解析对P 施加F 时,根据牛顿第二定律有a 1=F m 1=Δv 1Δt=10m/s 2,对P 和Q 整体施加F 时,根据牛顿第二定律有a 2=F m 1+m 2=Δv 2Δt=2m/s 2,联立解得m 2=4.0kg ,故选B.例6(多选)如图甲所示,一竖直放置的足够长的固定玻璃管中装满某种液体,一半径为r 、质量为m 的金属小球,从t =0时刻起,由液面静止释放,小球在液体中下落,其加速度a 随速度v 的变化规律如图乙所示.已知小球在液体中受到的阻力F f =6πηvr ,式中r 是小球的半径,v 是小球的速度,η是常数.忽略小球在液体中受到的浮力,重力加速度为g ,下列说法正确的是()A .小球的最大加速度为gB.小球的速度从0增加到v0的过程中,做匀变速运动C.小球先做加速度减小的变加速运动,后做匀速运动D.小球的最大速度为mg6πηr答案ACD解析当t=0时,小球所受的阻力F f=0,此时加速度为g,A正确;随着小球速度的增加,加速度减小,小球的速度从0增加到v0的过程中,加速度减小,B错误;根据牛顿第二定律有mg-F f=ma,解得a=g-6πηvrm,当a=0时,速度最大,此后小球做匀速运动,最大速度v m=mg6πηr,C、D正确.考点三牛顿第三定律1.作用力和反作用力:两个物体之间的作用总是相互的,一个物体对另一个物体施加了力,后一个物体同时对前一个物体也施加力.2.内容:两个物体之间的作用力和反作用力总是大小相等、方向相反、作用在同一条直线上.3.表达式:F=-F′.1.作用力与反作用力的效果可以相互抵消.(×)2.人走在松软土地上下陷时,人对地面的压力大于地面对人的支持力.(×)3.物体静止在水平地面上,受到的重力和支持力为一对作用力和反作用力.(×)一对平衡力与作用力和反作用力的比较名称一对平衡力作用力和反作用力项目作用对象同一个物体两个相互作用的不同物体作用时间不一定同时产生、同时消失一定同时产生、同时消失力的性质不一定相同一定相同作用效果可相互抵消不可抵消考向1牛顿第三定律的理解例7(多选)如图所示,用水平力F把一个物体紧压在竖直墙壁上,物体保持静止,下列说法中正确的是()A.水平力F与墙壁对物体的弹力是一对作用力与反作用力B.物体的重力与墙壁对物体的静摩擦力是一对平衡力C.水平力F与物体对墙壁的压力是一对作用力与反作用力D.物体对墙壁的压力与墙壁对物体的弹力是一对作用力与反作用力答案BD解析水平力F与墙壁对物体的弹力作用在同一物体上,大小相等、方向相反,且作用在同一条直线上,是一对平衡力,选项A错误;物体在竖直方向上受竖直向下的重力以及墙壁对物体竖直向上的静摩擦力的作用,因物体处于静止状态,这两个力是一对平衡力,选项B正确;水平力F作用在物体上,而物体对墙壁的压力作用在墙壁上,这两个力不是平衡力,也不是相互作用力,选项C错误;物体对墙壁的压力与墙壁对物体的弹力是两个物体间的相互作用力,是一对作用力与反作用力,选项D正确.考向2相互作用力与一对平衡力的比较例8(2022·广东深圳市红岭中学高三月考)“电动平衡车”是时下热门的一种代步工具.如图,人笔直站在“电动平衡车”上,在某水平地面上沿直线匀速前进,下列说法正确的是()A.“电动平衡车”对人的作用力大于人对“电动平衡车”的作用力B.人的重力与车对人的支持力是一对相互作用力C.地面对车的摩擦力与人(含车)所受空气阻力平衡D.在行驶过程中突然向右转弯时,人会因为惯性向右倾斜答案C解析根据牛顿第三定律,“电动平衡车”对人的作用力等于人对“电动平衡车”的作用力,故A错误;人的重力与车对人的支持力的受力物体都是人,不可能是相互作用力,故B错误;地面对车的摩擦力与人(含车)所受空气阻力平衡,所以人与车能够匀速运动,故C正确;在行驶过程中突然向右转弯时,人会因为惯性向左倾斜,故D错误.考向3转换研究对象在受力分析中的应用例9如图所示,质量为m的木块在质量为M的长木板上以加速度a水平向右加速滑行,长木板与地面间的动摩擦因数为μ1,木块与长木板间的动摩擦因数为μ2,重力加速度为g,若长木板仍处于静止状态,则长木板对地面摩擦力的大小和方向为()A.μ1(m+M)g,向左B.μ2mg,向右C.μ2mg+ma,向右D.μ1mg+μ2Mg,向左答案B解析对木块分析可知,长木板对它水平向左的摩擦力大小为F f1=μ2mg,由牛顿第三定律可知,木块对长木板的摩擦力向右,大小也为F f1;由于长木板仍处于静止状态,对长木板受力分析可知,地面对它的静摩擦力方向向左,大小为F f2=F f1=μ2mg,由牛顿第三定律可知,长木板对地面的摩擦力大小为μ2mg,方向向右,故B正确.在对物体进行受力分析时,如果不便于直接分析求出物体受到的某些力时,可先求它的反作用力,再反过来求待求力.如求压力时,可先求支持力,在许多问题中,摩擦力的求解亦是如此.可见牛顿第三定律将起到非常重要的转换研究对象的作用,使得我们对问题的分析思路更灵活、更宽阔.课时精练1.对一些生活中的现象,某同学试图从惯性角度加以分析.其中正确的是()A.太空中处于失重状态的物体没有惯性B.“安全带,生命带,前排后排都要系”.系好安全带可以防止因人的惯性而造成的伤害C.“强弩之末,势不能穿鲁缟”,是因为强弩的惯性减小了D.战斗机作战前抛掉副油箱,是为了增大战斗机的惯性答案B解析惯性只与质量有关,所以处于失重状态的物体还是具有惯性,A错误;系好安全带可以防止因人的惯性而造成的伤害,B正确;“强弩之末,势不能穿鲁缟”,是因为强弩的速度减小了,惯性不变,C错误;战斗机作战前抛掉副油箱,是为了减小战斗机的惯性,增加灵活性,D错误.2.(2021·浙江1月选考·4)如图所示,电动遥控小车放在水平长木板上面,当它在长木板上水平向左加速运动时,长木板保持静止,此时()A.小车只受重力、支持力作用B.木板对小车的作用力方向水平向左C.木板对小车的作用力大于小车对木板的作用力D.木板对小车的作用力与小车对木板的作用力大小一定相等答案D解析小车在木板上水平向左加速运动时,受重力、支持力、水平向左的摩擦力,而木板对小车的作用力是支持力与摩擦力的合力,方向指向左上方,并不是水平向左,故A、B错误;根据牛顿第三定律,木板对小车的作用力与小车对木板的作用力一定大小相等,方向相反,故C错误,D正确.3.(多选)如图所示,体育项目“押加”实际上相当于两个人拔河,如果甲、乙两人在“押加”比赛中,甲获胜,则下列说法中正确的是()A.甲对乙的拉力大于乙对甲的拉力,所以甲获胜B.当甲把乙匀速拉过去时,甲对乙的拉力等于乙对甲的拉力C.当甲把乙加速拉过去时,甲对乙的拉力大于乙对甲的拉力D.甲对乙的拉力大小始终等于乙对甲的拉力大小,只是地面对甲的摩擦力大于地面对乙的摩擦力,所以甲获胜答案BD解析甲对乙的拉力与乙对甲的拉力是一对作用力与反作用力,大小相等,与二者的运动状态无关,即不管哪个获胜,甲对乙的拉力大小始终等于乙对甲的拉力大小,当地面对甲的摩擦力大于地面对乙的摩擦力,甲才能获胜,故A、C错误,B、D正确.4.在研究运动和力的关系时,伽利略设计了著名的理想斜面实验(如图所示),将可靠的事实和逻辑推理结合起来,能更深刻地反映自然规律.下面给出了伽利略斜面实验的五个事件,请对事件的性质进行判断并正确排序:在A点由静止释放的小球,①若没有摩擦时,能滚到另一斜面与A点等高的C点;②当减小斜面动摩擦因数时,滚到另一斜面的最高位置,更接近等高的C点;③若没有摩擦时减小斜面BC的倾角,小球将通过较长的路程,到达与A点等高的D点;④若没有摩擦,且另一斜面水平放置时,小球将沿水平面一直运动下去;⑤不能滚到另一斜面与A点等高的C点.以下正确的是()A.事实⑤→事实②→推论①→推论③→推论④B.事实⑤→事实②→推论③→事实①→推论④C.事实⑤→事实②→事实①→推论③→推论④D.事实⑤→事实②→推论①→事实③→推论④答案A解析根据实验事实⑤斜面不光滑,在A点由静止释放的小球不能滚到另一斜面与A点等高的C点,事实②当减小斜面动摩擦因数时,滚到另一斜面的最高位置,更接近与A点等高的C点,得出实验推论:如果没有摩擦,小球将上升到释放时的高度,即①,进一步假设若减小第二个斜面的倾角,小球在这斜面上仍然要达到原来的高度,即得出③,没有摩擦时减小斜面BC的倾角,小球将通过较长的路程,到达与A点等高的D点,最后使它成水平面,小球将沿水平面做持续匀速直线运动,即④,故A正确,B、C、D错误.5.一辆装满石块的货车在某段平直道路上遇到险情,司机以加速度a=3g紧急刹车.货箱中4石块B的质量为m=400kg,g=10m/s2,则石块B周围与它接触的物体对石块B的作用力为()A.3000N B.4000NC.5000N D.7000N答案C解析当货车刹车时,在竖直方向,其他物体对石块B的作用力F y=mg=4000N,在水平方向,其他物体对石块B的作用力F x=ma=3000N,故作用力F=F x2+F y2=5000N,故选C.6.一些问题你可能不会求解,但是你仍有可能对这些问题的解是否合理进行分析和判断,例如从解得物理量单位,解随某些已知量变化的趋势,解在一些特殊条件下的结果等方面进行分析,并与预期结果、实验结论等进行比较,从而判断解的合理性或正确性,举例如下:声音在空气中的传播速度v与空气的密度ρ、压强p有关,下列速度表达式中,k为比例系数,无单位,则这四个表达式中可能正确的是()A.v=kpρB.v=kpρC.v=kρpD.v=kpρ答案B解析速度的单位是m/s,密度的单位是kg/m3,压强的单位是kg/(m·s2),所以kpρ的单位是m2/s2,kpρ的单位是m/s,kρp的单位是s/m,kpρ的单位是kg/(m2·s),选项B正确,A、C、D错误.7.一个物体在多个力的作用下处于静止状态,如果仅使其中某个力的大小逐渐减小到零,然后又逐渐从零恢复到原来大小,那么,图中能正确描述该过程中物体速度与时间关系的是()答案D 解析原来物体在多个力的作用下处于静止状态,物体所受的合力为零,使其中某个力的大小逐渐减小到零,然后又从零逐渐恢复到原来的大小的过程中,物体的合力从零开始逐渐增大,又逐渐减小到零,则物体的加速度先增大后减小,物体先做加速度增大的加速运动,后做加速度减小的加速运动.根据v -t 图象的斜率表示加速度可知,v -t 图象的斜率先增大后减小,故A 、B 、C 错误,D 正确.8.如图甲所示,水平地面上轻弹簧左端固定,右端通过小物块压缩0.4m 后锁定,t =0时解除锁定释放小物块.计算机通过小物块上的速度传感器描绘出它的v -t 图线如图乙所示,其中Oab 段为曲线,bc 段为直线,倾斜直线Od 是t =0时图线的切线,已知小物块的质量为m =2kg ,重力加速度g =10m/s 2,则下列说法正确的是()A .小物块与地面间的动摩擦因数为0.3B .小物块与地面间的动摩擦因数为0.4C .弹簧的劲度系数为175N/mD .弹簧的劲度系数为150N/m答案C 解析根据v -t 图线的斜率大小表示加速度大小,由题图乙知,物块脱离弹簧后的加速度大小a =Δv Δt = 1.50.55-0.25m/s 2=5m/s 2,由牛顿第二定律得,摩擦力大小为F f =μmg =ma ,所以μ=a g =0.5,A 、B 错误;刚释放时物块的加速度为a ′=Δv ′Δt ′=30.1m/s 2=30m/s 2,由牛顿第二定律得kx-F f=ma′,代入数据解得k=175N/m,C正确,D错误.9.(2022·河北邢台市质检)一个箱子放在水平地面上,箱内有一固定的竖直杆,在杆上套着一个环,箱与杆的质量为M,环的质量为m,如图所示.已知重力加速度为g,环沿杆以加速度a匀加速下滑,则此时箱子对地面的压力大小为()A.Mg+mg-ma B.Mg-mg+maC.Mg+mg D.Mg-mg答案A解析环在竖直方向上受重力及箱子内的杆对它的竖直向上的摩擦力F f,受力情况如图甲所示,根据牛顿第三定律,环应给杆一个竖直向下的摩擦力F f′,故箱子竖直方向上受重力Mg、地面对它的支持力F N及环给它的摩擦力F f′,受力情况如图乙所示.以环为研究对象:mg-F f=ma,以箱子为研究对象,F N=F f′+Mg=F f+Mg=Mg+mg-ma.根据牛顿第三定律,箱子对地面的压力大小等于地面对箱子的支持力大小,即F N′=Mg+mg-ma,故选项A正确.10.(多选)如图所示,一个小球O用1、2两根细绳连接并分别系于箱子上的A点和B点,OA 与水平方向的夹角为θ,OB水平,开始时箱子处于静止状态,下列说法正确的是()A.若使箱子水平向右加速运动,则绳1、2的张力均增大B.若使箱子水平向右加速运动,则绳1的张力不变,绳2的张力增大C.若使箱子竖直向上加速运动,则绳1、2的张力均增大D.若使箱子竖直向上加速运动,则绳1的张力增大,绳2的张力不变答案BC解析箱子静止时,对小球,根据平衡条件得F OA sinθ=mg,F OB=F OA cosθ,若使箱子水平向右加速运动,则在竖直方向上合力为零,有F OA′sinθ=mg,F OB′-F OA′cosθ=ma,所以绳1的张力不变,绳2的张力增大,选项A错误,B正确;若使箱子竖直向上加速运动,则F OA″sin θ-mg=ma′,F OB″=F OA″cosθ,所以绳1的张力增大,绳2的张力也增大,选项C正确,D 错误.11.如图为用索道运输货物的情景,已知倾斜的索道与水平方向的夹角为37°,质量为m的货物与车厢地板之间的动摩擦因数为0.3.当载重车厢沿索道向上加速运动时,货物与车厢仍然保持相对静止状态,货物对车厢水平地板的正压力为其重力的1.15倍,连接索道与车厢的杆始终沿竖直方向,重力加速度为g,sin37°=0.6,cos37°=0.8,那么这时货物对车厢地板的摩擦力大小为()A.0.35mg B.0.3mgC.0.23mg D.0.2mg答案D解析将a沿水平和竖直两个方向分解,对货物受力分析如图所示水平方向:F f=ma x竖直方向:F N-mg=ma yF N=1.15mg又a y a x =34联立解得F f =0.2mg ,故D 正确.12.(多选)如图所示,水平地面上固定一斜面,初始时物体A 沿斜面向下做匀变速运动,其加速度大小为a 1;若在物体A 上施加一竖直向下的恒力F ,其加速度大小变为a 2,已知斜面倾角为θ,A 与斜面间的动摩擦因数为μ,则()A .若μ>tan θ,则a 1>a 2B .若μ>tan θ,则a 1<a 2C .若μ<tan θ,则a 1<a 2D .若μ<tan θ,则a 1>a 2答案BC 解析若μ>tan θ,即μmg cos θ>mg sin θ,重力沿斜面向下的分力小于滑动摩擦力,物体原来是向下做匀减速运动,加速度大小为a 1=μmg cos θ-mg sin θm=μg cos θ-g sin θ,施加F 后μF cos θ>F sin θ,加速度大小为a 2=μF +mgcos θ-F +mg sin θm =μg cos θ-g sin θ+μF cos θ-F sin θm>a 1,故A 错误,B 正确;若μ<tan θ,即μmg cos θ<mg sin θ,重力沿斜面向下的分力大于滑动摩擦力,物体原来是向下做匀加速运动,加速度大小为a 1=mg sin θ-μmg cos θm=g sin θ-μg cos θ,施加F 后μF cos θ<F sin θ,加速度大小为a 2=F +mg sin θ-μF +mg cos θm =g sin θ-μg cos θ+F sin θ-μF cos θm>a 1,故C 正确,D 错误.。
高考物理牛顿运动定律考点总结-经典教学教辅文档
高考物理牛顿运动定律考点总结高考物理牛顿运动定律考点一:对牛顿运动定律的理解1. 对牛顿第必然律的理解:(1) 揭示了物体不受外力作用时的运动规律(2) 牛顿第必然律是惯性定律,它指出一切物体都有惯性,惯性只与质量有关(3) 肯定了力和运动的关系:力是改变物体运动形状的缘由,不是保持物体运动的缘由(4) 牛顿第必然律是用理想化的实验总结出来的一条独立的规律,并非牛顿第二定律的特例(5) 当物体所受合力为零时,从运动效果上说,相当于物体不受力,此时可以运用牛顿第必然律2. 对牛顿第二定律的理解:(1) 揭示了a与F、m的定量关系,特别是a与F的几种特殊的对应关系:同时性、同向性、同体性、绝对性、独立性(2) 牛顿第二定律进一步揭示了力与运动的关系,一个物体的运动情况决定于物体的受力情况和初始形状(3) 加速度是联系受力情况和运动情况的桥梁,不管是由受力情况确定运动情况,还是由运动情况确定受力情况,都需求出加速度3. 对牛顿第三定律的理解:(1) 力总是成对出现于同一对物体之间,物体间的这对力一个是作用力,另一个是反作用力(2) 指出了物体间的彼此作用的特点:“四同”指大小相等,性质相等,作用在同不断线上,同时出现、消逝、存在;“三不同”指方向不同,施力物体和受力物体不同,效果不同高考物理牛顿运动定律考点二:运用牛顿运动定律经常用的方法、技巧1. 理想实验法2. 控制变量法3. 全体与隔离法4. 图解法5. 正交分解法6. 关于临界成绩处理的基本方法是:根据条件变化或过程的发展,分析引发的受力情况的变化和形状的变化,找到临界点或临界条件(更多类型见错题本)高考物理牛顿运动定律考点三:运用牛顿运动定律解决的几个典型成绩1. 力、加速度、速度的关系:(1) 物体所受合力的方向决定了其加速度的方向,合力与加速度的关系,合力只需不为零,不管速度是多大,加速度都不为零(2) 合力与速度无必然联系,只需速度变化才与合力有必然联系(3) 速度大小如何变化,取决于速度方向与所受合力方向之间的关系,当二者夹角为锐角或方向相反时,速度添加,否则速度减小2. 关于轻绳、轻杆、轻弹簧的成绩:(1) 轻绳:① 拉力的方向必然沿绳指向绳膨胀的方向②同一根绳上各处的拉力大小都相等③ 认为受力形变极微,看做不可伸长④ 弹力可做瞬时变化(2) 轻杆:① 作用力方向不必然沿杆的方向② 各处作用力的大小相等③ 轻杆不能伸长或紧缩④ 轻杆遭到的弹力方式有:拉力、压力⑤ 弹力变化所需工夫极短,可忽略不计(3) 轻弹簧:① 各处的弹力大小相等,方向与弹簧形变的方向相反② 弹力的大小恪守的关系③ 弹簧的弹力不能发生渐变3. 关于超重和失重的成绩:(1) 物体超重或失重是物体对支持面的压力或对悬挂物体的拉力大于或小于物体的实践重力(2) 物体超重或失重与速度方向和大小无关。
届高考物理牛顿运动定律专题复习正式版.ppt
3.考查牛顿第三定律
高考对牛顿第三定律的考查通常体现在区别作用力和反作用力与平衡
力上,其最直观的方法是观察力的作用点
考法2 对牛顿第二定律的理解和应用★★★
在对牛顿第二定律的基本考查中,经常涉及根据牛顿第二定律求解加 速度,在解题时,需要求得物体的合力列出方程F=ma求解,或者根据正交 分解法利用牛顿第二定律的独立性列出方程求解.
有外力迫使它改变这种状态为止.它是物体不受外力作用时所遵循的运动规律 .
2.惯性:物体保持原来的匀速直线运动状态或静止状态的性质.
(1)惯性大小只与物体的质量有关,质量越大,惯性越大. (2)惯性是物体的固有属性,不是一种力.在对物体进行受力分析时要尤 为注意.
3.牛顿第三定律:两个物体之间的作用力和反作用力总是大小相等,方
6
考点10 对牛顿运动定律的理解
1.合成法求合外力
若物体只受两个力的作用而产生加速度时,根据牛顿第二定律可知,
利用矢量合成法则,如平行四边形定则或三角形定则,求出合力的方向
就是加速度的方向.特别是两个力方向相同或相反时,此时加速度方向与 物体运动方向在同一直线上,一般使用合成法更简单.
2.正交分解法与牛顿第二定律的结合应用 正交分解法是求解高中物理问题最重要的方法之一,在解答与牛顿
考点10 对牛顿运动定律的理解
考法3 考查牛顿第二定律的瞬时性★★
高考对牛顿第二定律的瞬时性的考查,通常以小球、细绳、弹簧、 支持面建立情景,求剪断细绳或撤掉支持面时物体的加速度.
关键是分析瞬时状态前后的受力情况及运动状态,再由牛顿第二定
律求出瞬时加速度,此类问题应注意两种基本模型的建立.
10
考点10 对牛顿运动定律的理解
13
牛顿定律高中全题型归纳(全)
牛顿运动定律--(第一定律第三定律)一、牛顿第一定律:1.内容:一切物体总保持匀速直线运动运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态.2.理解:①定律的前一句话揭示了物体所具有的一个重要属性,即“保持匀速直线运动状态或静止状态”,这种性质叫惯性.牛顿第一定律指出了一切物体在任何情况下都具有惯性.②定律的后一句话“除非作用在它上面的力迫使它改变这种状态”这实际上是给力下的定义,即力是改变运动状态的原因(力并不是产生和维持物体运动的原因).③牛顿第一定律指出了物体不受外力作用时的运动规律.实际上,不受外力作用的物体是不存在的.物体所受到的几个力的合力为零时,其运动效果就跟不受外力相同,这时物体的运动状态是匀速直线运动或静止状态.二、牛顿第三定律1.内容:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一直线上.2.表达式:F甲对乙=-F乙对甲,负号表示方向相反.3.意义:揭示了力的作用的相互性,即两个物体间只要有作用就必然会出现一对作用力和反作用力.4.特点:(1).是同种性质的力如G与G/、F N与F N/、f与f/.(2).作用在两个物体上,如G作用于人,G/作用于地球.(3).同时产生、同时消失(甲对乙无作用、乙对甲也无作用).(4).不管静止或运动,作用力和反作用力总是大小相等,方向相反.(5).与物体是否平衡无关.题型1:怎样判断物体运动状态是否发生变化?例1关于运动状态的改变,下列说法正确的是()A.速度方向不变,速度大小改变的物体,运动状态发生了变化B.速度大小不变,速度方向改变的物体,运动状态发生了变化C.速度大小和方向同时改变的物体,运动状态一定发生了变化D.做匀速圆周运动的物体,运动状态没有改变1. 在以下各种情况中,物体运动状态发生了改变的有()A.静止的物体 B.物体沿着圆弧运动,在相等的时间内通过相同的路程C.物体做竖直上抛运动,到达最高点过程 D.跳伞运动员竖直下落过程,速率不变2.跳高运动员从地面上跳起,是由于()A.地面给运动员的支持力大于运动员给地面的压力 B.运动员给地面的压力大于运动员受的重力C.地面给运动员的支持力大于运动员受的重力 D.运动员给地面的压力等于地面给运动员的支持力3.某人用力推原来静止在水平面上的小车,使小车开始运动,此后改用较小的力就可以维持小车做匀速直线运动。
高考一轮复习-牛顿运动定律
牛顿运动定律1.牛顿第一定律(惯性定律):结论:力是的原因2.牛顿第二定律:加速度决定式:(a与成正比,与成反比);定义式:(a与无关)理解:(1)同体性:(2)矢量性:(3)瞬时性:(4)独立性:牛顿第二定律解题的基本思路:3.牛顿第三定律:区分一对作用力反作用力和一对平衡力牛顿力学解题思路:①确定研究对象(整体法、隔离法)②进行受力分析(先场力及已知力、弹力、摩擦力)③进行运动过程分析(确定加速度方向)④建立坐标系(一般以a为x轴正方向)⑤列方程(,=∑=∑FymaFx+运动学方程+辅助方程)⑥求解检验特别注意:解决力学和运动学知识还有动能定理,尤其对于变力做功,曲线运动,多过程问题更加简洁.............................................【题型一:用牛顿第二定律求加速度】如图所示,质量m=1kg的小球套在细斜杆上,斜杆与水平方向成a=30°角,球与杆之间的滑动摩擦因数µ=,球在竖直向上的拉力F=20N作用下沿杆向上滑动.(g=10m/s2).(1)在方框中画出小球的受力图.(2)求球对杆的压力大小和方向.(3)小球的加速度多大?【题型二:由受力情况求解运动情况】如图所示,质量为4 kg的物体静止于水平面上,物体与水平面间的动摩擦因数为0.5,物体受到大小为20N,与水平方向成37°角斜向上的拉力F作用时沿水平面做匀加速运动,求(1)物体的加速度是多大?(g取10 m/s2)(2)5s内物体发生的位移?一物体受到竖直向上的拉力F的作用,如图所示.当拉力F=42 N时,物体向上的加速度a=4.0 m/s2,不计空气阻力,g取10 m/s2.则:(1)物体的质量m为多大?(2)物体由静止开始向上运动2 s内的位移和2 s末的速度分别为多少?小试牛刀:一质量m=1kg的物体放在倾角θ为37°的斜面上,受到F=32N的水平推力作用从静止开始沿斜面向上运动。
高中物理牛顿定律复习资料
高中物理牛顿定律复习资料一、学习牛顿第一定律必须要注意的三个问题1.牛顿第一定律包含了两层含义:①保持匀速直线运动状态或静止状态是物体的固有属性;物体的运动不需要力来维持;②要使物体的运动状态改变,必须施加力的作用,力是改变物体运动状态的原因。
2.牛顿第一定律导出了两个概念:①力的概念。
力是改变物体运动状态即改变速度的原因。
又根据加速度定义,速度变化就一定有加速度,所以可以说力是使物体产生加速度的原因不能说"力是产生速度的原因"、"力是维持速度的原因",也不能说"力是改变加速度的原因"。
②惯性的概念。
一切物体都有保持原有运动状态的性质,这就是惯性。
惯性反映了物体运动状态改变的难易程度惯性大的物体运动状态不容易改变。
质量是物体惯性大小的量度。
3.牛顿第一定律描述的是理想情况下物体的运动规律。
它描述了物体在不受任何外力时怎样运动。
而不受外力的物体是不存在的。
物体不受外力和物体所受合外力为零是有区别的,所以不能把牛顿第一定律当成牛顿第二定律在F=0时的特例,因此不能说牛顿第一定律是实验定律。
二、应用牛顿第二定律的常用方法1.合成法首先确定研究对象,画出受力分析图,沿着加速度方向将各个力按照力的平行四边形定则在加速度方向上合成,直接求出合力,再根据牛顿第二定律列式求解。
此方法被称为合成法,具有直观简便的特点。
2.分解法确定研究对象,画出受力分析图,根据力的实际作用效果,将某一个力分解成两个分力,然后根据牛顿第二定律列式求解。
此方法被称为分解法。
分解法是应用牛顿第二定律解题的常用方法。
但此法要求对力的作用效果有着清楚的认识,要按照力的实际效果进行分解。
3.正交分解法确定研究对象,画出受力分析图,建立直角坐标系,将相关作用力投影到相互垂直的两个坐标轴上,然后在两个坐标轴上分别求合力,再根据牛顿第二定律列式求解的方法被称为正交分解法。
直角坐标系的选取,原则上是任意的。
高考物理牛顿运动定律考点归纳
高考物理牛顿运动定律考点归纳考点一:对牛顿运动定律的理解1.对牛顿第一定律的理解1揭示了物体不受外力作用时的运动规律2牛顿第一定律是惯性定律,它指出一切物体都有惯性,惯性只与质量有关3肯定了力和运动的关系:力是改变物体运动状态的原因,不是维持物体运动的原因4牛顿第一定律是用理想化的实验总结出来的一条独立的规律,并非牛顿第二定律的特例5当物体所受合力为零时,从运动效果上说,相当于物体不受力,此时可以应用牛顿第一定律2.对牛顿第二定律的理解1揭示了a与F、m的定量关系,特别是a与F的几种特殊的对应关系:同时性、同向性、同体性、相对性、独立性2牛顿第二定律进一步揭示了力与运动的关系,一个物体的运动情况决定于物体的受力情况和初始状态3加速度是联系受力情况和运动情况的桥梁,无论是由受力情况确定运动情况,还是由运动情况确定受力情况,都需求出加速度3.对牛顿第三定律的理解1力总是成对出现于同一对物体之间,物体间的这对力一个是作用力,另一个是反作用力2指出了物体间的相互作用的特点:“四同”指大小相等,性质相等,作用在同一直线上,同时出现、消失、存在;“三不同”指方向不同,施力物体和受力物体不同,效果不同考点二:应用牛顿运动定律时常用的方法、技巧1.理想实验法2.控制变量法3.整体与隔离法4.图解法5.正交分解法6.关于临界问题处理的基本方法是:根据条件变化或过程的发展,分析引起的受力情况的变化和状态的变化,找到临界点或临界条件更多类型见错题本考点三:应用牛顿运动定律解决的几个典型问题1.力、加速度、速度的关系1物体所受合力的方向决定了其加速度的方向,合力与加速度的关系,合力只要不为零,无论速度是多大,加速度都不为零2合力与速度无必然联系,只有速度变化才与合力有必然联系3速度大小如何变化,取决于速度方向与所受合力方向之间的关系,当二者夹角为锐角或方向相同时,速度增加,否则速度减小2.关于轻绳、轻杆、轻弹簧的问题1轻绳①拉力的方向一定沿绳指向绳收缩的方向②同一根绳上各处的拉力大小都相等③认为受力形变极微,看做不可伸长④弹力可做瞬时变化2轻杆①作用力方向不一定沿杆的方向②各处作用力的大小相等③轻杆不能伸长或压缩④轻杆受到的弹力方式有:拉力、压力⑤弹力变化所需时间极短,可忽略不计3轻弹簧①各处的弹力大小相等,方向与弹簧形变的方向相反②弹力的大小遵循的关系③弹簧的弹力不能发生突变3.关于超重和失重的问题1物体超重或失重是物体对支持面的压力或对悬挂物体的拉力大于或小于物体的实际重力2物体超重或失重与速度方向和大小无关。
高考物理力学知识点之牛顿运动定律知识点总复习
高考物理力学知识点之牛顿运动定律知识点总复习一、选择题1.如图所示,在水平地面上有一辆小车,小车内底面水平且光滑,侧面竖直且光滑。
球A 用轻绳悬挂于右侧面细线与竖直方向的夹角为37°,小车左下角放置球B ,并与左侧面接触。
小车在沿水平面向右运动过程中,A 与右侧面的弹力恰好为零。
设小车的质量为M ,两球的质量均为m ,则( )A .球A 和球B 受到的合力不相等 B .小车的加速度大小为6m/s 2C .地面对小车的支持力大小为(M +m )gD .小车对球B 的作用力大小为1.25mg2.随着人们生活水平的提高,高尔夫球将逐渐成为普通人的休闲娱乐运动.如图所示,某人从高出水平地面h 的坡上水平击出一个质量为m 的高尔夫球,由于恒定的水平风力作用,高尔夫球竖直地落入距击球点水平距离为L 的A 穴,则( )A .球被击出后做平抛运动B .由于水平风力的原因球在空中运动的时间大于2hgC .球被击出后受到的水平风力大小为mgLhD .球被击出时的初速度大小为L2g h3.在匀速行驶的火车车厢内,有一人从B 点正上方相对车厢静止释放一个小球,不计空气阻力,则小球( )A .可能落在A 处B .一定落在B 处C.可能落在C处D.以上都有可能4.如图所示,质量m=1kg、长L=0.8m的均匀矩形薄板静止在水平桌面上,其右端与桌子边缘相平.板与桌面间的动摩擦因数为μ=0.4.现用F=5N的水平力向右推薄板,使它翻下桌子,力F做的功至少为( )(g取10m/s2)A.1J B.1.6J C.2J D.4J5.如图所示,A、B两物块叠放在一起,在粗糙的水平面上保持相对静止地向右做匀减速直线运动,运动过程中B受到的摩擦力A.方向向左,大小不变B.方向向左,逐渐减小C.方向向右,大小不变D.方向向右,逐渐减小6.如图,物块a、b和c的质量相同,a和b、b和c之间用完全相同的轻弹簧S1和S2相连,通过系在a上的细线悬挂于固定点O;整个系统处于静止状态;现将细绳剪断,将物块a的加速度记为a1,S1和S2相对原长的伸长分别为∆x1和∆x2,重力加速度大小为g,在剪断瞬间()A.a1=g B.a1=3g C.∆x1=3∆x2D.∆x1=∆x27.滑雪运动员由斜坡高速向下滑行过程中其速度—时间图象如图乙所示,则由图象中AB 段曲线可知,运动员在此过程中A.做匀变速曲线运动B.做变加速运动C.所受力的合力不断增大D.机械能守恒8.如图所示,倾角为θ的光滑斜面体始终静止在水平地面上,其上有一斜劈A,A的上表面水平且放有一斜劈B ,B 的上表面上有一物块C ,A 、B 、C 一起沿斜面匀加速下滑。
高考物理牛顿运动定律专题复习
牛顿运动定律一、高考考试说明二、本章高考热点问题分析牛顿运动定律是经典力学的核心内容,是历年高考重点考查的内容之一.高考对牛顿定律的考查不仅局限在力学范围内,常常结合带电粒子在电场、磁场中的运动、导体棒切割磁感线的运动等问题,考查考生综合应用牛顿运动定律和其他相关规律分析解决问题的能力. 应用牛顿第二定律分析物体的瞬时加速度问题。
分析物体在谋一时刻的瞬时加速度,关键在于分析瞬时变化前后物体的受力情况和运动状态,再用牛顿第二定律求出瞬时加速度。
应用牛顿运动定律解决动力学问题,要对物体进行受力分析,进行力的分解和合成;要对物体运动规律进行分析,然后根据牛顿第二定律,把物体受的力和运动联系起来,列方程求解.这是对多方面力学知识、分析综合能力、推理能力、应用数学知识解决物理问题的能力的综合考查.要深刻理解牛顿运动定律的物理意义,要能够熟练地应用牛顿运动定律解题.即便是向应用型、能力型变革的高考试题中,无非是增加些结合实际生产、生活的一些实例,在把这些实例抽象成物理模型的过程中考查学生的能力和物理学的思想方法,最后解决物理问题,仍然离不开基本的物理知识和规律.三、知识要点(一)牛顿第一运动定律:1、内容:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。
2、理解要点:①牛顿第一运动定律定性地揭示了运动和力的关系,力不是维持物体运动的原因,而改变物体运动状态的原因。
②定律说明了任何物体都有一个极其重要的性质~惯性。
③不受力的物体是不存在的。
牛顿第一定律不能用实验直接验证,但它是建立在大量实验现象的基础之上,通过逻辑推理而发现的。
④牛顿第一运动定律是牛顿第二运动定律的基础,不能简单地认为它是牛顿第二定律的特例,牛顿第一运动定律定性地说明了运动和力的关系,牛顿第二运动定律定量地说明了运动和力的关系。
3、惯性:物体的这种保持原来的匀速直线运动状态或静止状态的性质叫惯性。
(1)惯性是物体保持自己原来运动状态(速度)的本性,不能克服和避免。
牛顿定律-高考二轮复习
考纲定位内容高考命题点考纲要求1.牛顿第一定律和牛顿第二定律通过实验,探究物体运动的加速度与物体受力、物体质量的关系.见2022年高考真题练习2.牛顿运动定律的应用理解牛顿运动定律,能用牛顿运动定律解释生产生活中的有关现象、解决有关问题.3.超重和失重通过实验,认识超重和失重现象.4.实验四探究加速度与物体受力、物体质量的关系知识重现一、牛顿第一定律1.内容:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止.2.理解牛顿第一定律需要注意的点(1)牛顿第一定律不是实验直接总结出来的,是牛顿以伽利略的理想实验为基础,加之高度的抽象思维概括总结出来的,牛顿第一定律是无法用实验直接证明的.(2)揭示了力和运动的关系:力不是维持物体运动的原因,而是改变物体运动状态的原因,即牛顿第一定律确定了力的含义.(3)牛顿第一定律不能看成是牛顿第二定律的特殊情况,不是进行定量计算和求解的具体方法,而在于体现着一个逻辑关系:物体运动状态改变的必要条件,是受到不为零的外力.(4)明确了惯性的概念:物体保持匀速直线运动状态或静止状态的性质,既说明了匀速直线运动状态和静止状态在受力的角度等效,也揭示了物体所具有的一个重要属性——惯性.二、惯性1.惯性是物体的固有属性,与物体的受力情况和运动状态无关.2.惯性的表现:物体不受外力作用时,有保持匀速直线运动状态或静止状态的性质;物体受到外力作用时其惯性大小表现在运动状态改变的难易程度上.3.惯性的唯一量度:质量是惯性大小的唯一量度,质量大的物体惯性大.物体惯性的大小是由其质量决定的,凡是有关惯性的问题都要同质量联系起来,可以减少出错.三、牛顿第二定律1.内容:物体的加速度与所受合外力成正比,与物体的质量成反比,a=Fm(表达式中F指物体受到的合外力).加速度的方向与合外力的方向相同.2.牛顿第二定律突出了力是使物体运动状态改变的原因,是物体产生加速度的原因,明确了加速度与合外力的瞬时对应关系.要求物体的瞬时加速度,就要搞清相应时刻的作用力,还要注意分析物体在该时刻前后的受力情况及运动状态的变化情况,再由牛顿运动定律求出瞬时加速度.3.牛顿第二定律的几个特性特性说明矢量性任意时刻物体加速度a的方向与作用力F的方向相同瞬时性加速度与作用力瞬时对应,同时存在,同时变化,同时消失同体性作用力、质量和加速度对应同一物体或同一系统物体受到的每个力各自产生的加速度都遵从牛顿第二定律,实际加速度等于独立性各个加速度的矢量和利用公式F合=ma解题时,要注意式中的a是相对惯性系而言的,一般选大相对性地为参考系四、牛顿第三定律1.内容:两物体之间的作用力与反作用力总是大小相等,方向相反,而且作用在同一条直线上.2.作用力与反作用力的特点(1)作用力与反作用力同时产生、同时变化、同时消失,同性质,分别作用在相互作用的两个物体上,作用效果不能抵消.(2)作用力和反作用力的关系与物体的运动状态无关.不管两物体处于什么状态,牛顿第三定律都适用.3.作用力和反作用力与平衡力的区别作用力和反作用力平衡力受力物体作用在两个相互作用的物体上作用在同一物体上相互依存,同时产生、同时变化、同时依赖关系无依赖关系消失作用效果可相互抵消,可叠叠加性作用效果不可叠加,不可求合力加,且合力为零力的性质一定是同种性质的力不一定是同种性质的力4.牛顿第三定律是转移研究对象的桥梁牛顿第三定律在受力分析、处理连接体问题中都有广泛的应用.当作用力不便直接分析或求解时,可利用牛顿第三定律转化为对反作用力的分析或求解,从而实现研究对象的转移.五、超重和失重超重失重完全失重加速度向下,大小等产生条件加速度向上加速度向下于g原理方程F-mg=ma⇒mg-F=ma⇒mg-F=ma,F =m (g +a )>mgF =m (g -a )<mg a =g ⇒F =0 运动状态加速上升或减速下降加速下降或减速上升以a =g 加速下降或减速上升规律应用一.常用结论1. 瞬时问题分析:先分析瞬时态前的状态(常见平衡态)后分析瞬时态,抓住两态相同量2.量是惯性大小的唯一量度。
高考物理牛顿运动定律考点复习
2019 年高考物理牛顿运动定律考点复习考点一:对牛顿运动定律的理解1.对牛顿第必定律的理解(1)揭露了物体不受外力作用时的运动规律(2)牛顿第必定律是惯性定律,它指出全部物体都有惯性,惯性只与质量相关(3)必定了力和运动的关系:力是改变物体运动状态的原由,不是维持物体运动的原由(4)牛顿第必定律是用理想化的实验总结出来的一条独立的规律,并非牛顿第二定律的特例(5)当物体所受协力为零时,从运动成效上说,相当于物体不受力,此时能够应用牛顿第必定律2.对牛顿第二定律的理解(1)揭露了 a 与 F、m 的定量关系,特别是 a 与 F 的几种特别的对应关系:同时性、同向性、同体性、相对性、独立性(2)牛顿第二定律进一步揭露了力与运动的关系,一个物体的运动情况决定于物体的受力状况和初始状态(3)加快度是联系受力状况和运动状况的桥梁,不论是由受力状况确定运动状况,仍是由运动状况确立受力状况,都需求出加快度3.对牛顿第三定律的理解(1)力老是成对出现于同一对物体之间,物体间的这对力一个是作用力,另一个是反作使劲(2)指出了物体间的互相作用的特色:“四同”指大小相等,性质相等,作用在同向来线上,同时出现、消逝、存在; “三不一样”指方向不一样,施力物体和受力物体不一样,成效不一样考点二:应用牛顿运动定律经常用的方法、技巧1.理想实验法2.控制变量法3.整体与隔绝法4.图解法5.正交分解法6.对于临界问题办理的基本方法是:依据条件变化或过程的发展,剖析惹起的受力状况的变化和状态的变化,找来临界点或临界条件(更多种类见错题本 )考点三:应用牛顿运动定律解决的几个典型问题1.力、加快度、速度的关系(1)物体所受协力的方向决定了其加快度的方向,协力与加快度的关系,协力只需不为零,不论速度是多大,加快度都不为零(2)协力与速度无必定联系,只有速度变化才与协力有必定联系(3)速度大小怎样变化,取决于速度方向与所受协力方向之间的关系,当两者夹角为锐角或方向同样时,速度增添,不然速度减小2.对于轻绳、轻杆、轻弹簧的问题(1)轻绳①拉力的方向必定沿绳指向绳缩短的方向②同一根绳上各处的拉力大小都相等③以为受力形变极微,看做不行伸长④弹力可做刹时变化(2)轻杆①作使劲方向不必定沿杆的方向②各处作使劲的大小相等③轻杆不可以伸长或压缩④轻杆遇到的弹力方式有:拉力、压力⑤弹力变化所需时间极短,可忽视不计(3)轻弹簧①各处的弹力大小相等,方向与弹簧形变的方向相反②弹力的大小按照的关系③弹簧的弹力不可以发生突变3.对于超重和失重的问题(1)物体超重或失重是物体对支持面的压力或对悬挂物体的拉力大于或小于物体的实质重力(2)物体超重或失重与速度方向和大小没关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牛顿运动定律问题分类分析深圳外国语学校 王印生牛顿运动定律是力学的基本规律,是力学的核心内容,在整个高中物理中占有重要地位,也是历年高考物理试题的的热点,也是反复考核的内容,所以必须让学生能够熟练的应用牛顿运动定律解决问题,本人在平时教学中,将牛顿运动定律的习题类型进行了分类解析,与大家分享。
问题1:弄清牛顿第二定律的矢量性。
牛顿第二定律F=ma 是矢量式,加速度的方向与物体所受合外力的方向相同。
在解题时,可以利用正交分解法进行求解。
问题2:弄清牛顿第二定律的瞬时性。
牛顿第二定律是表示力的瞬时作用规律,描述的是力的瞬时作用效果—产生加速度。
物体在某一时刻加速度的大小和方向,是由该物体在这一时刻所受到的合外力的大小和方向来决定的。
当物体所受到的合外力发生变化时,它的加速度随即也要发生变化,F=ma 对运动过程的每一瞬间成立,加速度与力是同一时刻的对应量,即同时产生、同时变化、同时消失。
问题3:弄清牛顿第二定律的独立性。
当物体受到几个力的作用时,各力将独立地产生与其对应的加速度(力的独立作用原理),而物体表现出来的实际加速度是物体所受各力产生加速度叠加的结果。
那个方向的力就产生那个方向的加速度。
(以上例题略)问题4:弄清牛顿第二定律的同体性。
加速度和合外力(还有质量)是同属一个物体的,所以解题时一定要把研究对象确定好,把研究对象全过程的受力情况都搞清楚。
例1、一人在井下站在吊台上,用如图1所示的定滑轮装置拉绳把吊台和自己提升上来。
图中跨过滑轮的两段绳都认为是竖直的且不计摩擦。
吊台的质量m=15kg,人的质量为M=55kg,起动时吊台向上的加速度是a=0.2m/s 2,求这时人对吊台的压力。
(g=9.8m/s 2)分析与解:选人和吊台组成的系统为研究对象,受力如图2所示,F 为绳的拉力,由牛顿第二定律有:2F-(m+M)g=(M+m)a则拉力大小为:N g a m M F 3502))((=++=再选人为研究对象,受力情况如图3所示,其中F N 是吊台对人的支持力。
由牛顿第二定律得:F+F N -Mg=Ma,故F N =M(a+g)-F=200N.由牛顿第三定律知,人对吊台的压力与吊台对人的支持力大小相等,方向相反,因此人对吊台的压图1图2aN图3力大小为200N ,方向竖直向下。
问题5:弄清面接触物体分离的条件及应用。
相互接触的物体间可能存在弹力相互作用。
对于面接触的物体,在接触面间弹力变为零时,它们将要分离。
抓住相互接触物体分离的这一条件,就可顺利解答相关问题。
下面举例说明。
例2、一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板将物体托住,并使弹簧处于自然长度。
如图4所示。
现让木板由静止开始以加速度a(a <g =匀加速向下移动。
求经过多长时间木板开始与物体分离。
分析与解:设物体与平板一起向下运动的距离为x 时,物体受重力mg ,弹簧的弹力F=kx 和平板的支持力N 作用。
据牛顿第二定律有:mg-kx-N=ma 得N=mg-kx-ma当N=0时,物体与平板分离,所以此时ka g m x )(-= 因为221at x =,所以kaa g m t )(2-=。
例3、如图5所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P 处于静止,P 的质量m=12kg ,弹簧的劲度系数k=300N/m 。
现在给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速直线运动,已知在t=0.2s 内F 是变力,在0.2s 以后F 是恒力,g=10m/s 2,则F 的最小值是 ,F 的最大值是 。
分析与解:因为在t=0.2s 内F 是变力,在t=0.2s 以后F 是恒力,所以在t=0.2s 时,P 离开秤盘。
此时P 受到盘的支持力为零,由于盘和弹簧的质量都不计,所以此时弹簧处于原长。
在0_____0.2s 这段时间内P 向上运动的距离:x=mg/k=0.4m因为221at x =,所以P 在这段时间的加速度22/202s m txa == 当P 开始运动时拉力最小,此时对物体P 有N-mg+F min =ma,又因此时N=mg ,所以有F min =ma=240N. 当P 与盘分离时拉力F 最大,F max =m(a+g)=360N. 问题6:会分析临界问题。
例4、如图6,在光滑水平面上放着紧靠在一起的AB两物体,B的质量是A的2倍,B受到向右的恒力FB =2N ,A受到的水平力FA =(9-2t)N ,(t 的单位是s)。
从t =0开始计时,则:A .A物体在3s 末时刻的加速度是初始时刻的5/11倍;B .t >4s 后,B物体做匀加速直线运动;C .t =4.5s 时,A物体的速度为零;D .t >4.5s 后,AB的加速度方向相反。
分析与解:对于A 、B 整体据牛顿第二定律有:F A +F B =(m A +m B )a,设A 、B 间的作用为N ,则对B 据牛顿第二定律可得: N+F B =m B a解得N tF m m F F m N B B A B A B3416-=-++=当t=4s 时N=0,A 、B 两物体开始分离,此后B 做匀加速直线运动,而A 做加速度逐渐减小的加速图5图6图4运动,当t=4.5s 时A 物体的加速度为零而速度不为零。
t >4.5s 后,A所受合外力反向,即A 、B 的加速度方向相反。
当t<4s 时,A 、B 的加速度均为BA BA m m F F a ++=。
综上所述,选项A 、B 、D 正确。
例5、如图7所示,细线的一端固定于倾角为450的光滑楔形滑块A 的顶端P 处,细线的另一端拴一质量为m 的小球。
当滑块至少以加速度向左运动时,小球对滑块的压力等于零,当滑块以a=2g 的加速度向左运动时,线中拉力T= 。
分析与解:当滑块具有向左的加速度a 时,小球受重力mg 、绳的拉力T 和斜面的支持力N 作用,如图8所示。
在水平方向有Tcos450-Ncos450=ma; 在竖直方向有Tsin450-Nsin450-mg=0.由上述两式可解出:0045cos 2)(,45sin 2)(a g m T a g m N +=-= 由此两式可看出,当加速度a 增大时,球受支持力N 减小,绳拉力T 增加。
当a=g 时,N=0,此时小球虽与斜面有接触但无压力,处于临界状态。
这时绳的拉力T=mg/cos450=mg 2.当滑块加速度a>g 时,则小球将“飘”离斜面,只受两力作用,如图9所示,此时细线与水平方向间的夹角α<450.由牛顿第二定律得:Tcos α=ma,Tsin α=mg,解得mg g a m T 522=+=。
问题7:会用整体法和隔离法解题。
两个或两个以上物体相互连接参与运动的系统称为连接体.以平衡态或非平衡态下连接体问题拟题屡次呈现于高考卷面中,是考生备考临考的难点之一.例6 如图9物体A 叠放在物体B 上,B 置于光滑水平面上。
A ,B 质量分别为m A =6kg ,m B =2kg ,A ,B 之间的动摩擦因数μ=0.2,开始时F=10N ,此后逐渐增加,在增大到45N 的过程中,则 ( )A .当拉力F <12N 时,两物体均保持静止状态;B .两物体开始没有相对运动,当拉力超过12N 时,开始相对滑动;C .两物体间从受力开始就有相对运动;D .两物体间始终没有相对运动。
分析解答:首先以A ,B 整体为研究对象。
受力如图10,在水平方向只受拉力F ,根据牛顿第二定律列方程F=(m A +m B )a ①再以B 为研究对象,如图11,B 水平方向受摩擦力f=m B a ②图8图9图7 图9图11图10代入式①F=(6+2)×6=48N由此可以看出当F <48N 时A ,B 间的摩擦力都达不到最大静摩擦力,也就是说,A ,B 间不会发生相对运动。
所以D 选项正确。
例7、如图12所示,AB 为一光滑水平横杆,杆上套一轻环,环上系一长为L 质量不计的细绳,绳的另一端拴一质量为m 的小球,现将绳拉直,且与AB 平行,由静止释放小球,则当细绳与AB 成θ角时,小球速度的水平分量和竖直分量的大小各是多少?轻环移动的距离d 是多少?分析与解:本题是“轻环”模型问题。
由于轻环是套在光滑水平横杆上的,在小球下落过程中,由于轻环可以无摩擦地向右移动,故小球在落到最低点之前,绳子对小球始终没有力的作用,小球在下落过程中只受到重力作用。
因此,小球的运动轨迹是竖直向下的,这样当绳子与横杆成θ角时,小球的水平分速度为V x =0,小球的竖直分速度θsin 2gL V y =。
可求得轻环移动的距离是d=L-Lcos θ.问题8:会分析传送带有关的问题。
例8、如图13所示,传送带与地面的倾角θ=37o,从A 到B 的长度为16m,传送带以V 0=10m/s的速度逆时针转动。
在传送带上端无初速的放一个质量为0.5㎏的物体,它与传送带之间的动摩擦因数μ=0.5,求物体从A 运动到B 所需的时间是多少?(sin37o=0.6,cos37o=0.8)分析与解:物体放在传送带上后,开始阶段,传送带的速度大于物体的速度,传送带给物体一沿斜面向下的滑动摩擦力,物体由静止开始加速下滑,受力分析如图14(a )所示;当物体加速至与传送带速度相等时,由于μ<tan θ,物体在重力作用下将继续加速,此后物体的速度大于传送带的速度,传送带给物体沿传送带向上的滑动摩擦力,但合力沿传送带向下,物体继续加速下滑,受力分析如图14(b)所示。
综上可知,滑动摩擦力的方向在获得共同速度的瞬间发生了“突变” 。
开始阶段由牛顿第二定律得:mgsin θ+μmgcos θ=ma 1; 所以:a 1=gsin θ+µgcos θ=10m/s 2;物体加速至与传送带速度相等时需要的时间t1=v/a 1=1s;发生的位移: s=a 1t12/2=5m<16m;物体加速到10m/s 时仍未到达B 点。
第二阶段,有:mgsin θ-µmgcos θ=ma 2 ;所以:a 2=2m/s 2;设第二阶段物体滑动到B的时A图12Afmg图13图14 (a)(b)间为t 2 则:L AB -S =vt2+a 2t22/2 ;解得:t 2=1s , t2/=-11s (舍去)。
故物体经历的总时间t=t 1+t 2 =2s .从上述例题可以总结出,皮带传送物体所受摩擦力可能发生突变,不论是其大小的突变,还是其方向的突变,都发生在物体的速度与传送带速度相等的时刻。
问题9:会分析求解联系的问题。
例9、风洞实验室中可产生水平方向的,大小可调节的风力。
现将一套有小球的细直杆放入风洞实验室。
小球孔径略大于细杆直径。
如图15所示。