(完整版)勾股定理基础班习题

合集下载

(完整版)勾股定理练习题(含答案)

(完整版)勾股定理练习题(含答案)

希望教育 勾股定理练习题1. 下列说法正确的是( )A.若 a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2;B.若 a 、b 、c 是Rt△ABC 的三边,则a 2+b 2=c 2;C.若 a 、b 、c 是Rt△ABC 的三边, 90=∠A ,则a 2+b 2=c 2;D.若 a 、b 、c 是Rt△ABC 的三边, 90=∠C ,则a 2+b 2=c 2.2. Rt△ABC 的三条边长分别是a 、b 、c ,则下列各式成立的是( )A .c b a =+ B. c b a >+ C. c b a <+ D. 222c b a =+3. 如果Rt△的两直角边长分别为k 2-1,2k (k >1),那么它的斜边长是( )A 、2kB 、k+1C 、k 2-1D 、k 2+14. 已知a ,b ,c 为△ABC 三边,且满足(a 2-b 2)(a 2+b 2-c 2)=0,则它的形状为( )A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形5. 直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A .121B .120C .90D .不能确定6. △ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( )A .42B .32C .42 或 32D .37 或 337.※直角三角形的面积为,斜边上的中线长为,则这个三角形周长为( )S d (A(B(C ) (D)2dd 2d +d+8、在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为( )A :3B :4C :5D :79.若△ABC 中,AB=25cm ,AC=26cm 高AD=24,则BC 的长为( )A .17 B.3 C.17或3 D.以上都不对10.已知a 、b 、c 是三角形的三边长,如果满足则三角形的形状是( 2(6)100a -+=)A :底与边不相等的等腰三角形B :等边三角形C :钝角三角形D :直角三角形11.斜边的边长为cm 17,一条直角边长为cm 8的直角三角形的面积是 .12. 等腰三角形的腰长为13,底边长为10,则顶角的平分线为__. 13. 一个直角三角形的三边长的平方和为200,则斜边长为14.一个三角形三边之比是6:8:10,则按角分类它是 三角形.15. 一个三角形的三边之比为5∶12∶13,它的周长为60,则它的面积是__. 16. 在Rt△ABC 中,斜边AB=4,则AB 2+BC 2+AC 2=_____.17.如图,已知ABC ∆中,︒=∠90C ,15=BA ,12=AC ,以直角边BBC 为直径作半圆,则这个半圆的面积是 .18.若三角形的三个内角的比是3:2:1,最短边长为cm 1,最长边长为cm 2,则这个三角形三个角度数分别是 ,另外一边的平方是 .19. 一长方形的一边长为cm 3,面积为212cm ,那么它的一条对角线长是 .20.如图,一个高4m 、宽3m 的大门,需要在对角线的顶点间加固一个木条,求木条的长.21、有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿∠CAB 的角平分线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗? 22.一个三角形三条边的长分别为cm 15,cm 20,cm 25,这个三角形最长边上的高是多少?23.如图,要修建一个育苗棚,棚高h=3m ,棚宽a=4m ,棚的长为12m ,现要在棚顶上覆盖塑料薄膜,试求需要多少平方米塑料薄膜?24.如图,有一只小鸟在一棵高13m 的大树树梢上捉虫子,它的伙伴在离该树12m ,高8m 的一棵小树树梢上发出友好的叫声,它立刻以2m/s 的速度飞向小树树梢,它最短要飞多远?这只小鸟至少几秒才可能到达小树和伙伴在一起?25.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m 处,过了2s 后,测得小汽车与车速检测仪间距离为50m ,这辆小汽车超速了吗?AE答案:一、基础达标1. 解析:利用勾股定理正确书写三角形三边关系的关键是看清谁是直角.答案: D.2. 解析:本题考察三角形的三边关系和勾股定理.答案:B.3. 解析:设另一条直角边为x ,则斜边为(x+1)利用勾股定理可得方程,可以求出x .然后再求它的周长.答案:C .4.解析:解决本题关键是要画出图形来,作图时应注意高AD 是在三角形的内部还是在三角形的外部,有两种情况,分别求解.答案:C.5. 解析: 勾股定理得到:22215817=-,另一条直角边是15,所求直角三角形面积为21158602cm ⨯⨯=.答案: 260cm .6. 解析:本题目主要是强调直角三角形中直角对的边是最长边,反过来也是成立.答案:222c b a =+,c ,直角,斜,直角.7. 解析:本题由边长之比是6:8:10 可知满足勾股定理,即是直角三角形.答案:直角.8. 解析:由三角形的内角和定理知三个角的度数,断定是直角三角形.答案:︒30、︒60、︒90,3.9. 解析:由勾股定理知道:22222291215=-=-=AC AB BC ,所以以直角边9=BC 为直径的半圆面积为10.125π.答案:10.125π.10. 解析:长方形面积长×宽,即12长×3,长4=,所以一条对角线长为5.答案:cm 5.二、综合发展11. 解析:木条长的平方=门高长的平方+门宽长的平方.答案:5m .12解析:因为222252015=+,所以这三角形是直角三角形,设最长边(斜边)上的高为xcm ,由直角三角形面积关系,可得1115202522x ⨯⨯=⨯⋅,∴12=x .答案:12cm 13.解析:透阳光最大面积是塑料薄膜的面积,需要求出它的另一边的长是多少,可以借助勾股定理求出.答案:在直角三角形中,由勾股定理可得:直角三角形的斜边长为5m,所以矩形塑料薄膜的面积是:5×20=100(m 2) .14.解析:本题的关键是构造直角三角形,利用勾股定理求斜边的值是13m ,也就是两树树梢之间的距离是13m ,两再利用时间关系式求解.答案:6.5s .15.解析:本题和14题相似,可以求出BC 的值,再利用速度等于路程除以时间后比较.BC=40米,时间是2s ,可得速度是20m/s=72km/h >70km/h .答案:这辆小汽车超速了.A 观测点。

勾股定理练习题及标准答案(共6套)

勾股定理练习题及标准答案(共6套)

勾股定理课时练(1)1.在直角三角形 ABC 中,斜边 AB=1 ,则 AB 2BC 2AC 2的值是()A.2B.4C.6D.82.如图 18-2- 4 所示 ,有一个形状为直角梯形的零件ABCD ,AD ∥ BC,斜腰 DC 的长为10 cm,∠ D=120°,则该零件另一腰 AB 的长是 ______ cm(结果不取近似值) .3.直角三角形两直角边长分别为 5 和 12,则它斜边上的高为 _______.4.一根旗杆于离地面12 m处断裂,犹如装有铰链那样倒向地面,旗杆顶落于离旗杆地步16 m,旗杆在断裂之前高多少m ?5. 如图,如下图,今年的冰雪灾害中,一棵大树在离地面 3 米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米 .3m“路”4m第5题图第2题图6. 飞机在空中水平飞行, 某一时刻刚好飞到一个男孩子头顶正上方4000 米处 , 过了 20 秒, 飞机距离这个男孩头顶 5000 米, 求飞机每小时飞行多少千米 ?7.如图所示,无盖玻璃容器,高 18 cm,底面周长为 60 cm,在外侧距下底 1 cm的点 C 处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口 1 cm的 F 处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,所走的最短路线的长度 .8.一个零件的形状如图所示,已知AC=3cm, AB=4cm,BD=12cm。

求 CD的长 .9.如图,在四边形 ABCD中,∠ A=60°,∠ B=∠ D=90°, BC=2,CD=3,求 AB 的长 .10. 如图,一个牧童在小河的南4km 的 A 处牧马,而他正位于他的小屋B 第的西7 8km题图北 7km处,第 8题图. 他要完成这件事情所走的最短路程是多少?他想把他的马牵到小河边去饮水,然后回家11 如图,某会展中心在会展期间准备将高5m, 长 13m,宽2m 的楼道上铺地毯 , 已知地毯平方米 18 元,请你帮助计算一下,铺完这个楼第9题图道至少需要多少元钱 ?12. 甲、乙两位探险者到沙漠进行探险,没有了水,需要寻13m5m 找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为 15 千米.早晨 8:00甲先出发,他以 6 千米 / 时的第 11题速度向东行走, 1 小时后乙出发,他以 5 千米 / 时的速度向北行进,上午10:00,甲、乙二人相距多远?还第一课时答案:1.A ,提示:根据勾股定理得BC2AC21,所以 AB2BC 2AC 2=1+1=2 ;2.4 ,提示:由勾股定理可得斜边的长为 5 m ,而 3+4-5=2 m ,所以他们少走了4 步.3.60 ,提示:设斜边的高为 x ,根据勾股定理求斜边为12252169 13 ,再利13用面积法得,15 12 1 13 x, x60 ; 2 2134. 解:依题意, AB=16 m , AC=12 m ,在直角三角形 ABC 中 ,由勾股定理 ,BC 2 AB 2AC 2162 122202,所以 BC=20 m ,20+12=32( m ), 故旗杆在断裂之前有 32 m 高.5.86. 解: 如图 , 由题意得 ,AC=4000 米 , ∠C=90° ,AB=5000 米 , 由勾股定理得BC=50002 400023000 ( 米 ),3所以飞机飞行的速度为540( 千米 / 小时 )2036007. 解:将曲线沿 AB 展开,如图所示,过点 C 作 CE ⊥ AB 于 E.在Rt CEF , CEF 90 , EF=18-1-1=16 ( cm ),1CE= 30(cm) ,2. 60CE2EF230 2 16 234( )由勾股定理,得 CF=8. 解:在直角三角形 ABC 中,根据勾股定理,得22222在直角三角形 CBD 中,根据勾股定理,得 2222CD=BC+BD=25+12 =169,所以 CD=13.9. 解:延长 BC 、AD 交于点 E. (如图所示)∵∠ B=90°,∠ A=60°,∴∠ E=30°又∵ CD=3,∴ CE=6,∴ BE=8, 设 AB=x ,则 AE=2x ,由勾股定理。

勾股定理练习题(含答案)

勾股定理练习题(含答案)

勾股定理练习题1. 下列说法正确的是( )A.若 a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2; B.若 a 、b 、c 是Rt△ABC 的三边,则a 2+b 2=c 2; C.若 a 、b 、c 是Rt△ABC 的三边, 90=∠A ,则a 2+b 2=c 2; D.若 a 、b 、c 是Rt△ABC 的三边, 90=∠C ,则a 2+b 2=c 2. 2. Rt △ABC 的三条边长分别是a 、b 、c ,则下列各式成立的是( )A .c b a =+ B. c b a >+ C. c b a <+ D. 222c b a =+ 3. 如果Rt △的两直角边长分别为k 2-1,2k (k >1),那么它的斜边长是( )A 、2kB 、k+1C 、k 2-1D 、k 2+14. 已知a ,b ,c 为△ABC 三边,且满足(a 2-b 2)(a 2+b 2-c 2)=0,则它的形状为( )A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形5. 直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A .121B .120C .90D .不能确定6. △ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( ) A .42 B .32 C .42 或 32 D .37 或 337.※直角三角形的面积为S ,斜边上的中线长为d ,则这个三角形周长为( )(A2d (Bd (C)2d (D)d 8、在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为( ) A :3 B :4 C :5 D :79.若△ABC 中,AB=25cm ,AC=26cm 高AD=24,则BC 的长为( )A .17 B.3 C.17或3 D.以上都不对 10.已知a 、b 、c 是三角形的三边长,如果满足2(6)100a c --=则三角形的形状是( )A :底与边不相等的等腰三角形B :等边三角形C :钝角三角形D :直角三角形 11.斜边的边长为cm 17,一条直角边长为cm 8的直角三角形的面积是 . 12. 等腰三角形的腰长为13,底边长为10,则顶角的平分线为__. 13. 一个直角三角形的三边长的平方和为200,则斜边长为 14.一个三角形三边之比是6:8:10,则按角分类它是 三角形.15. 一个三角形的三边之比为5∶12∶13,它的周长为60,则它的面积是__. 16. 在Rt △ABC 中,斜边AB=4,则AB 2+BC 2+AC 2=_____.17.如图,已知ABC ∆中,︒=∠90C ,15=BA ,12=AC ,以直角边BC 为直径作半圆,则这个半圆的面积是 .AB18.若三角形的三个内角的比是3:2:1,最短边长为cm 1,最长边长为cm 2,则这个三角形三个角度数分别是 ,另外一边的平方是 .19. 一长方形的一边长为cm 3,面积为212cm ,那么它的一条对角线长是 . 20.如图,一个高4m 、宽3m 的大门,需要在对角线的顶点间加固一个木条,求木条的长.21、有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿∠CAB 的角平分线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?22.一个三角形三条边的长分别为cm 15,cm 20,cm 25,这个三角形最长边上的高是多少?23.如图,要修建一个育苗棚,棚高h=3m ,棚宽a=4m ,棚的长为12m ,现要在棚顶上覆盖塑料薄膜,试求需要多少平方米塑料薄膜?24.如图,有一只小鸟在一棵高13m 的大树树梢上捉虫子,它的 伙伴在离该树12m ,高8m 的一棵小树树梢上发出友好的叫声, 它立刻以2m/s 的速度飞向小树树梢,它最短要飞多远?这只小鸟 至少几秒才可能到达小树和伙伴在一起?25.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m 处,过了2s 后,测得小汽车与车速检测仪间距离为50m ,这辆小汽车超速了吗?AE答案: 一、基础达标1. 解析:利用勾股定理正确书写三角形三边关系的关键是看清谁是直角.答案: D.2. 解析:本题考察三角形的三边关系和勾股定理.答案:B.3. 解析:设另一条直角边为x ,则斜边为(x+1)利用勾股定理可得方程,可以求出x .然后再求它的周长.答案:C .4.解析:解决本题关键是要画出图形来,作图时应注意高AD 是在三角形的内部还是在三角形的外部,有两种情况,分别求解. 答案:C.5. 解析: 勾股定理得到:22215817=-,另一条直角边是15,所求直角三角形面积为21158602cm ⨯⨯=.答案: 260cm .6. 解析:本题目主要是强调直角三角形中直角对的边是最长边,反过来也是成立.答案:222c b a =+,c ,直角,斜,直角.7. 解析:本题由边长之比是6:8:10 可知满足勾股定理,即是直角三角形.答案:直角.8. 解析:由三角形的内角和定理知三个角的度数,断定是直角三角形.答案:︒30、︒60、︒90,3.9. 解析:由勾股定理知道:22222291215=-=-=AC AB BC ,所以以直角边9=BC 为直径的半圆面积为10.125π.答案:10.125π.10. 解析:长方形面积长×宽,即12长×3,长4=,所以一条对角线长为5.答案:cm 5. 二、综合发展11. 解析:木条长的平方=门高长的平方+门宽长的平方.答案:5m .12解析:因为222252015=+,所以这三角形是直角三角形,设最长边(斜边)上的高为xcm ,由直角三角形面积关系,可得1115202522x ⨯⨯=⨯⋅,∴12=x .答案:12cm 13.解析:透阳光最大面积是塑料薄膜的面积,需要求出它的另一边的长是多少,可以借助勾股定理求出.答案:在直角三角形中,由勾股定理可得:直角三角形的斜边长为5m,所以矩形塑料薄膜的面积是:5×20=100(m 2) .14.解析:本题的关键是构造直角三角形,利用勾股定理求斜边的值是13m ,也就是两树树梢之间的距离是13m ,两再利用时间关系式求解. 答案:6.5s .15.解析:本题和14题相似,可以求出BC 的值,再利用速度等于路程除以时间后比较.BC=40米,时间是2s ,可得速度是20m/s=72km/h >70km/h . 答案:这辆小汽车超速了.。

勾股定理练习题(含答案)

勾股定理练习题(含答案)

勾股定理练习题一、基础达标:1. 下列说法正确的是( )A.若 a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2;B.若 a 、b 、c 是Rt △ABC 的三边,则a 2+b 2=c 2;C.若 a 、b 、c 是Rt △ABC 的三边,ο90=∠A ,则a 2+b 2=c 2;D.若 a 、b 、c 是Rt △ABC 的三边,ο90=∠C ,则a 2+b 2=c 2.2. Rt △ABC 的三条边长分别是a 、b 、c ,则下列各式成立的是( )A .c b a =+ B. c b a >+ C. c b a <+ D. 222c b a =+3. 如果Rt △的两直角边长分别为k 2-1,2k (k >1),那么它的斜边长是( )A 、2kB 、k+1C 、k 2-1D 、k 2+14. 已知a ,b ,c 为△ABC 三边,且满足(a 2-b 2)(a 2+b 2-c 2)=0,则它的形状为( )A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形 5. 直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A .121B .120C .90D .不能确定6. △ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( )A .42B .32C .42 或 32D .37 或 337.※直角三角形的面积为S ,斜边上的中线长为d ,则这个三角形周长为( )(A 2d (B d(C )2d (D )d8、在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为( )A :3 B :4 C :5 D :79.若△ABC 中,AB=25cm ,AC=26cm 高AD=24,则BC 的长为( )A .17 B.3 C.17或3 D.以上都不对10.已知a 、b 、c 是三角形的三边长,如果满足2(6)100a c --=则三角形的形状是( )A :底与边不相等的等腰三角形B :等边三角形C :钝角三角形D :直角三角形11.斜边的边长为cm 17,一条直角边长为cm 8的直角三角形的面积是 .12. 等腰三角形的腰长为13,底边长为10,则顶角的平分线为__.13. 一个直角三角形的三边长的平方和为200,则斜边长为14.一个三角形三边之比是6:8:10,则按角分类它是 三角形.15. 一个三角形的三边之比为5∶12∶13,它的周长为60,则它的面积是___.16. 在Rt △ABC 中,斜边AB=4,则AB 2+BC 2+AC 2=_____.17.若三角形的三个内角的比是3:2:1,最短边长为cm 1,最长边长为cm 2,则这个三角形三个角度数分别是 ,另外一边的平方是 .18.如图,已知ABC ∆中,︒=∠90C ,15=BA ,12=AC ,以直角边BC 为直径作半圆,则这个半圆的面积是.19. 一长方形的一边长为cm 3,面积为212cm ,那么它的一条对角线长是 . 二、综合发展:1.如图,一个高4m 、宽3m 的大门,需要在对角线的顶点间加固一个木条,求木条的长.2、有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿∠CAB 的角平分线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?3.一个三角形三条边的长分别为cm 15,cm 20,cm 25,这个三角形最长边上的高是多少?4.如图,要修建一个育苗棚,棚高h=3m ,棚宽a=4m ,棚的长为12m ,现要在棚顶上覆盖塑料薄膜,试求需要多少平方米塑料薄膜?5.如图,有一只小鸟在一棵高13m 的大树树梢上捉虫子,它的伙伴在离该树12m ,高8m 的一棵小树树梢上发出友好的叫声,它立刻以2m/s 的速度飞向小树树梢,它最短要飞多远?这只小鸟至少几秒才可能到达小树和伙伴在一起?15.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m 处,过了2s 后,测得小汽车与车速检测仪间距离为50m ,这辆小汽车超速了吗?A 小汽车 小汽车BC 观测点A CB AE CD答案:一、基础达标1. 解析:利用勾股定理正确书写三角形三边关系的关键是看清谁是直角.答案: D.2. 解析:本题考察三角形的三边关系和勾股定理.答案:B.3. 解析:设另一条直角边为x ,则斜边为(x+1)利用勾股定理可得方程,可以求出x .然后再求它的周长.答案:C .4.解析:解决本题关键是要画出图形来,作图时应注意高AD 是在三角形的内部还是在三角形的外部,有两种情况,分别求解.答案:C.5. 解析: 勾股定理得到:22215817=-,另一条直角边是15, 所求直角三角形面积为21158602cm ⨯⨯=.答案: 260cm .6. 解析:本题目主要是强调直角三角形中直角对的边是最长边,反过来也是成立.答案:222c b a =+,c ,直角,斜,直角.7. 解析:本题由边长之比是6:8:10 可知满足勾股定理,即是直角三角形.答案:直角.8. 解析:由三角形的内角和定理知三个角的度数,断定是直角三角形.答案:︒30、︒60、︒90,3.9. 解析:由勾股定理知道:22222291215=-=-=AC AB BC ,所以以直角边9=BC 为直径的半圆面积为10.125π.答案:10.125π.10. 解析:长方形面积长×宽,即12长×3,长4=,所以一条对角线长为5.答案:cm 5.二、综合发展11. 解析:木条长的平方=门高长的平方+门宽长的平方.答案:5m .12解析:因为222252015=+,所以这三角形是直角三角形,设最长边(斜边)上的高为xcm ,由直角三角形面积关系,可得1115202522x ⨯⨯=⨯⋅,∴12=x .答案:12cm 13.解析:透阳光最大面积是塑料薄膜的面积,需要求出它的另一边的长是多少,可以借助勾股定理求出.答案:在直角三角形中,由勾股定理可得:直角三角形的斜边长为5m,所以矩形塑料薄膜的面积是:5×20=100(m 2) .14.解析:本题的关键是构造直角三角形,利用勾股定理求斜边的值是13m ,也就是两树树梢之间的距离是13m ,两再利用时间关系式求解.答案:6.5s .15.解析:本题和14题相似,可以求出BC 的值,再利用速度等于路程除以时间后比较.BC=40米,时间是2s ,可得速度是20m/s=72km/h >70km/h .答案:这辆小汽车超速了.。

勾股定理基础练习题(含答案与解析)

勾股定理基础练习题(含答案与解析)

勾股定理基础练习题(含答案与解析)勾股定理勾股定理基础练习题(含答案与解析)第Ⅰ卷(选择题)请点击修改第I卷的文字说明一.选择题(共15小题)1.在直角三角形中,有两边分别为3和4,则第三边是()A.1 B.5 C.D.5或2.直角三角形有一条直角边为6,另两条边长是连续偶数,则该三角形周长为()A.20 B.22 C.24 D.263.如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.644.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为()A.8 B.4 C.6 D.无法计算5.如图,在△ABC中,AD⊥BC于D,AB=17,BD=15,DC=6,则AC的长为()A.11 B.10 C.9 D.86.若等腰三角形的腰长为10,底边长为12,则底边上的高为()A.6 B.7 C.8 D.97.一直角三角形的一直角边长为6,斜边长比另一直角边长大2,则斜边的长为()A.4 B.6 C.8 D.108.如图所示:是一段楼梯,高BC是3m,斜边AC是5m,如果在楼梯上铺地毯,那么至少需要地毯()勾股定理基础练习题(含答案与解析)A.5m B.6m C.7m D.8m9.如图,已知,CD是Rt△ABC斜边上的高,∠ACB=90°,AC=4m,BC=3m,则线段CD的长为()A.5m B.C.D.10.若等边△ABC的边长为2cm,那么△ABC的面积为()A.cm2B.2cm2 C.3cm2 D.4cm211.直角三角形的一直角边长是12,斜边长是15,则另一直角边是()A.8 B.9 C.10 D.1112.如图,2×2的方格中,小正方形的边长是1,点A、B、C都在格点上,则AB边上的高长为()A.B.C.D.13.用下列各组线段为边,能构成直角三角形的是()A.1cm,2cm,3cm B.cm,cm,cm C.1cm,2cm,cm D.2cm,3cm,4cm14.将一个直角三角形的三边扩大3倍,得到的三角形是()A.直角三角形 B.锐角三角形 C.钝角三角形 D.不能确定15.下列条件中,不能判断△ABC为直角三角形的是()A.a=1.5,b=2,c=2.5 B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:5勾股定理基础练习题(含答案与解析)第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共13小题)16.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A,B,C,D的面积和是49cm2,则其中最大的正方形S 的边长为cm.17.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.18.如图:5米长的滑梯AB开始在B点距墙面水平距离3米,当向后移动1米,A点也随着向下滑一段距离,则下滑的距离(大于,小于或等于)1米.19.如图,长方体长、宽、高分别为4cm,3cm,12cm,则BD′=.勾股定理基础练习题(含答案与解析)20.如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a,较短直角边为b,则ab的值是.21.2002年8月在北京召开的国际数学大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图),如果大正方形的面积是25,小正方形的面积是1,直角三角形较短的直角边为a,较长的直角边为b,那么(a+b)2的值为.22.把两个全等的直角三角形拼成如图图形,那么图中三角形面积之和与梯形面积之间的关系用式子可表示为,整理后即为.23.如图,正方形网格中的△ABC,若小方格边长都为1,则△ABC是:三角形.勾股定理基础练习题(含答案与解析)24.如图,四边形ABCD中,∠B=90°,AB=4cm,BC=3cm,AD=13cm,CD=12cm,则四边形ABCD的面积cm2.25.如图,AD=8,CD=6,∠ADC=90°,AB=26,BC=24,该图形的面积等于.26.已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止当t=时,△PBQ是直角三角形.27.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm 的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为cm.勾股定理基础练习题(含答案与解析)28.一个圆桶儿,底面直径为16cm,高为18cm,有一只小虫从底部点A处爬到上底B处,则小虫所爬的最短路径长是(π取3).评卷人得分三.解答题(共5小题)29.如图,已知一架竹梯AB斜靠在墙角MON处,竹梯AB=13m,梯子底端离墙角的距离BO=5m.(1)求这个梯子顶端A距地面有多高;(2)如果梯子的顶端A下滑4m到点C,那么梯子的底部B在水平方向上滑动的距离BD=4m吗?为什么?30.如图,一个直径为10cm的杯子,在它的正中间竖直放一根筷子,筷子露出杯子外1cm,当筷子倒向杯壁时(筷子底端不动),筷子顶端刚好触到杯口,求筷子长度和杯子的高度.勾股定理基础练习题(含答案与解析)31.在甲村至乙村的公路有一块山地正在开发,现有一C处需要爆破.已知点C与公路上的停靠站A的距离为300米,与公路上的另一停靠站B的距离为400米,且CA⊥CB,如图所示.为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险而需要暂时封锁?请通过计算进行说明.32.如图,一只蜘蛛在一块长方体木块的一个顶点A处,一只苍蝇在这个长方体的对角顶点G处,若AB=3cm,BC=5cm,BF=6cm,问蜘蛛要沿着怎样的路线爬行,才能最快抓到苍蝇?这时蜘蛛走过的路程是多少厘米?33.有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多什么米?勾股定理基础练习题(含答案与解析)本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

(完整版)勾股定理练习题及答案(共6套)

(完整版)勾股定理练习题及答案(共6套)

勾股定理课时练(1)8. 一个部件的形状以下图,已知AC=3cm, AB=4cm,BD=12cm。

求 CD的长 .1. 在直角三角形 ABC 中,斜边 AB=1 ,则 AB 2 BC 2 AC 2的值是()2.如图 18-2- 4 所示 ,有一个形状为直角梯形的部件ABCD ,AD ∥ BC,斜腰 DC 的长为10 cm,∠ D=120°,则该部件另一腰 AB 的长是 ______ cm(结果不取近似值) . 第 8 题图3. 直角三角形两直角边长分别为 5 和 12,则它斜边上的高为 _______.9. 如图,在四边形 ABCD中,∠ A=60°,∠ B=∠ D=90°, BC=2,CD=3,求 AB 的长 .4.一根旗杆于离地面12 m处断裂,如同装有铰链那样倒向地面,旗杆顶落于离旗杆地步16 m,旗杆在断裂以前高多少m ?第 9 题图10. 如图,一个牧童在小河的南4km 的 A 处牧马,而他正位于他的小屋 B 的西 8km 北 7km 处,5. 如图,以以下图,今年的冰雪灾祸中,一棵大树在离地面 3 米处折断,树的顶端落在离树杆底部4 他想把他的马牵到小河畔去饮水,而后回家. 他要达成这件事情所走的最短行程是多少?米处,那么这棵树折断以前的高度是米 .“路”3m4m第 5 题图第 2 题图11 如图,某会展中心在会展时期准备将高5m, 长 13m,宽 2m 的楼道上铺地毯 , 已知地毯平方米 18 6. 飞机在空中水平飞翔, 某一时辰恰巧飞到一个男孩子头顶正上方4000 米处 , 过了 20 秒, 飞机距离元,请你帮助计算一下,铺完这个楼道起码需要多少元钱?这个男孩头顶 5000 米, 求飞机每小时飞翔多少千米 ?13m 5m第 11 题12. 甲、乙两位探险者到荒漠进行探险,没有了水,需要找寻水源.为了不致于走散,他们用两部7. 以下图,无盖玻璃容器,高18 cm,底面周长为 60 cm,在外侧距下底 1 cm的点 C 处有一对话机联系,已知对话机的有效距离为15 千米.清晨 8:00 甲先出发,他以 6 千米 / 时的速度向蜘蛛,与蜘蛛相对的容器的上口外侧距张口 1 cm的 F 处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,东行走, 1 小时后乙出发,他以 5 千米 / 时的速度向北前进,上午10: 00,甲、乙二人相距多远?所走的最短路线的长度 . 还可以保持联系吗?第 7 题图第一课时答案:1.A ,提示:依据勾股定理得BC 2 AC 2 1,所以AB 2BC 2 AC 2 =1+1=2 ;2.4 ,提示:由勾股定理可得斜边的长为 5 m,而 3+4-5=2 m ,所以他们少走了 4 步.3. 60 ,提示:设斜边的高为x ,依据勾股定理求斜边为122 52 169 13 ,再利13用面积法得,15 12 1 13 x, x 60 ;2 2 134.解:依题意, AB=16 m, AC=12 m,在直角三角形 ABC 中 ,由勾股定理 ,BC 2AB 2AC 216 212 220 2,所以 BC=20 m ,20+12=32( m ),故旗杆在断裂以前有32 m高.6. 解: 如图 , 由题意得 ,AC=4000 米 , ∠C=90° ,AB=5000 米 , 由勾股定理得BC=50002400023000(米),3所以飞机飞翔的速度为540 (千米/小时)2036007.解:将曲线沿 AB睁开,以下图,过点 C 作 CE⊥ AB于 E.在R t CEF , CEF90 ,EF=18-1-1=16( cm ),1CE=30(cm) ,2. 60CE 2 EF 2 30 2 16 2 34( ) 由勾股定理,得CF=8.解:在直角三角形ABC中,依据勾股定理,得在直角三角形 CBD中,依据勾股定理,得2 2 2 2CD=BC+BD=25+12 =169,所以 CD=13.9.解:延伸 BC、AD交于点 E. (以下图)∵∠ B=90°,∠ A=60°,∴∠ E=30°又∵ CD=3,∴ CE=6,∴ BE=8,设 AB=x,则 AE=2x,由勾股定理。

勾股定理练习题及答案(共6套)

勾股定理练习题及答案(共6套)

勾股定理课时练(1)1. 在直角三角形ABC 中,斜边AB=1,则AB 222AC BC ++的值是( ) A.2 B.4 C.6 D.82.如图18-2-4所示,有一个形状为直角梯形的零件ABCD ,AD ∥BC ,斜腰DC 的长为10 cm ,∠D=120°,则该零件另一腰AB 的长是______ cm (结果不取近似值).3. 直角三角形两直角边长分别为5和12,则它斜边上的高为_______.4.一根旗杆于离地面12m 处断裂,犹如装有铰链那样倒向地面,旗杆顶落于离旗杆地步16m ,旗杆在断裂之前高多少m ?5.如图,如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米.6. 飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,求飞机每小时飞行多少千米?7. 如图所示,无盖玻璃容器,高18cm ,底面周长为60cm ,在外侧距下底1cm 的点C 处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口1cm 的F 处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,所走的最短路线的长度.8. 一个零件的形状如图所示,已知AC=3cm ,AB=4cm ,BD=12cm9. 如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,求AB 的长. 10. 如图,一个牧童在小河的南4km 的A 处牧马,而他正位于他的小屋B 的西8km 北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?11如图,某会展中心在会展期间准备将高5m ,长13m ,宽2m 的楼道上铺地毯,已知地毯平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?12. 甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?勾股定理的逆定理(2)一、 选择题1.下列各组数据中,不能作为直角三角形三边长的是( ) A.9,12,15 B.43,1,45C.0.2,0.3,0.4D.40,41,92.满足下列条件的三角形中,不是直角三角形的是( ) A.三个内角比为1∶2∶1 B.三边之比为1∶2∶5C.三边之比为3∶2∶5 D. 三个内角比为1∶2∶33.已知三角形两边长为2和6,要使这个三角形为直角三角形,则第三边的长为( ) A.2 B.102 C.10224或 D.以上都不对4. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )724252071520242572520247202415(A)(B)(C)(D)A B C D二、填空题5. △ABC 的三边分别是7、24、25,则三角形的最大内角的度数是 .6.三边为9、12、15的三角形,其面积为 .7.已知三角形ABC 的三边长为c b a ,,满足18,10==+ab b a ,8=c,则此三角形为 三角形.8.在三角形ABC 中,AB=12cm ,AC=5cm ,BC=13cm ,则BC 边上的高为AD= cm . 三、解答题9. 如图,已知四边形ABCD 中,∠B =90°,AB =3,BC =4,CD =12,AD =13,求四边形ABCD 的面积.10. 如图,E 、F 分别是正方形ABCD 中BC 和CD 边上的点,且AB =4,CE =41BC ,F 为CD 的中点,连接AF 、AE ,问△AEF 是什么三角形?请说明理由.11. 如图,AB 为一棵大树,在树上距地面10m 的D 处有两只猴子,它们同时发现地面上的C 处有一筐水果,一只猴子从D 处上爬到树顶A 处,利用拉在A 处的滑绳AC ,滑到C 处,另一只猴子从D 处滑到地面B ,再由B 跑到C ,已知两猴子所经路程都是15m ,求树高AB .12.如图,为修通铁路凿通隧道AC ,量出∠A=40°∠B =50°,AB =5公里,BC =4公里,若每天凿隧道0.3公里,问几天才能把隧道AB 凿通?勾股定理的逆定理 (3)一、基础·巩固1.满足下列条件的三角形中,不是直角三角形的是( )A.三内角之比为1∶2∶3B.三边长的平方之比为1∶2∶3C.三边长之比为3∶4∶5D.三内角之比为3∶4∶52.如图18-2-4所示,有一个形状为直角梯形的零件ABCD ,AD ∥BC ,斜腰DC 的长为10 cm ,∠D=120°,则该零件另一腰AB 的长是________ cm (结果不取近似值).图18 图18-2-5 图18-2-63.如图18-2-5,以Rt △ABC 的三边为边向外作正方形,其面积分别为S 1、S 2、S 3,且S 1=4,S 2=8,则AB 的长为_________.4.如图18-2-6,已知正方形ABCD 的边长为4,E 为AB 中点,F 为AD 上的一点,且AF=41AD ,试判断△EFC 的形状.5.一个零件的形状如图18-2-7,按规定这个零件中∠A 与∠BDC 都应为直角,工人师傅量得零件各边尺寸:AD=4,AB=3,BD=5,DC=12 , BC=13,这个零件符合要求吗?图18-2-76.已知△ABC 的三边分别为k 2-1,2k ,k 2+1(k >1),求证:△ABC 是直角三角形.二、综合·应用7.已知a 、b 、c 是Rt △ABC 的三边长,△A 1B 1C 1的三边长分别是2a 、2b 、2c ,那么△A 1B 1C 1是直角三角形吗?为什么?8.已知:如图18-2-8,在△ABC 中,CD 是AB 边上的高,且CD 2=AD·BD.求证:△ABC 是直角三角形.图18-2-89.如图18-2-9所示,在平面直角坐标系中,点A 、B 的坐标分别为A (3,1),B (2,4),△OAB 是直角三角形吗?借助于网格,证明你的结论. 图18-2-910.已知:在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,满足a 2+b 2+c 2+338=10a+24b+26c.试判断△ABC 的形状.12.已知:如图18-2-10,四边形ABCD ,AD ∥BC ,AB=4,BC=6,CD=5,AD=3. 求:四边形ABCD 的面积.CAD图18-2-10勾股定理的应用(4)1.三个半圆的面积分别为S 1=4.5π,S 2=8π,S 3=12.5π,把三个半圆拼成如图所示的图形,则△ABC 一定是直角三角形吗?说明理由。

勾股定理练习题(含答案)

勾股定理练习题(含答案)

勾股定理练习题一、基础达标:1. 下列说法准确的是( )A.若 a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2;B.若 a 、b 、c 是Rt△ABC 的三边,则a 2+b 2=c 2;C.若 a 、b 、c 是Rt△ABC 的三边, 90=∠A ,则a 2+b 2=c 2;D.若 a 、b 、c 是Rt△ABC 的三边, 90=∠C ,则a 2+b 2=c 2. 2. Rt △ABC 的三条边长分别是a 、b 、c ,则下列各式成立的是( )A .c b a =+ B. c b a >+ C. c b a <+ D. 222c b a =+ 3. 如果Rt △的两直角边长分别为k 2-1,2k (k >1),那么它的斜边长是( )A 、2kB 、k+1C 、k 2-1D 、k 2+1 4. 已知a ,b ,c 为△ABC 三边,且满足(a 2-b 2)(a 2+b 2-c 2)=0,则它的形状为( )A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形 5. 直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A .121B .120C .90D .不能确定 6. △ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( ) A .42 B .32 C .42 或 32 D .37 或 33 7.※直角三角形的面积为S ,斜边上的中线长为d ,则这个三角形周长为( )(A 2d (B d(C )2d (D )d8、在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为( )A :3B :4C :5D :79.若△ABC 中,AB=25cm ,AC=26cm 高AD=24,则BC 的长为( )A .17 B.3 C.17或3 D.以上都不对10.已知a 、b 、c 是三角形的三边长,如果满足2(6)100a c --=则三角形的形状是( )A :底与边不相等的等腰三角形B :等边三角形C :钝角三角形D :直角三角形 11.斜边的边长为cm 17,一条直角边长为cm 8的直角三角形的面积是 .12. 等腰三角形的腰长为13,底边长为10,则顶角的平分线为__. 13. 一个直角三角形的三边长的平方和为200,则斜边长为 14.一个三角形三边之比是6:8:10,则按角分类它是 三角形. 15. 一个三角形的三边之比为5∶12∶13,它的周长为60,则它的面积是___.16. 在Rt △ABC 中,斜边AB=4,则AB 2+BC 2+AC 2=_____.17.若三角形的三个内角的比是3:2:1,最短边长为cm 1,最长边长为cm 2,则这个三角形三个角度数分别是 ,另外一边的平方是 .18.如图,已知ABC ∆中,︒=∠90C ,15=BA ,12=AC ,以直角边BC 为直径作半圆,则这个半圆的面积是 .19. 一长方形的一边长为cm 3,面积为212cm ,那么它的一条对角线长是 .ACB二、综合发展:1.如图,一个高4m 、宽3m 的大门,需要在对角线的顶点间加固一个木条,求木条的长.2、有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿∠CAB 的角平分线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?3.一个三角形三条边的长分别为cm 15,cm 20,cm 25,这个三角形最长边上的高是多少?4.如图,要修建一个育苗棚,棚高h=3m ,棚宽a=4m ,棚的长为12m ,现要在棚顶上覆盖塑料薄膜,试求需要多少平方米塑料薄膜?AECDB5.如图,有一只小鸟在一棵高13m 的大树树梢上捉虫子,它的伙伴在离该树12m ,高8m 的一棵小树树梢上发出友好的叫声,它立刻以2m/s 的速度飞向小树树梢,它最短要飞多远?这只小鸟至少几秒才可能到达小树和伙伴在一起?15.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m 处,过了2s 后,测得小汽车与车速检测仪间距离为50m ,这辆小汽车超速了吗?A小汽车小汽车BC观测点答案:一、基础达标1. 解析:利用勾股定理准确书写三角形三边关系的关键是看清谁是直角.答案: D.2. 解析:本题考察三角形的三边关系和勾股定理.答案:B.3. 解析:设另一条直角边为x ,则斜边为(x+1)利用勾股定理可得方程,可以求出x .然后再求它的周长. 答案:C .4.解析:解决本题关键是要画出图形来,作图时应注意高AD 是在三角形的内部还是在三角形的外部,有两种情况,分别求解. 答案:C.5. 解析: 勾股定理得到:22215817=-,另一条直角边是15,所求直角三角形面积为21158602cm ⨯⨯=.答案: 260cm .6. 解析:本题目主要是强调直角三角形中直角对的边是最长边,反过来也是成立.答案:222c b a =+,c ,直角,斜,直角.7. 解析:本题由边长之比是6:8:10 可知满足勾股定理,即是直角三角形.答案:直角. 8. 解析:由三角形的内角和定理知三个角的度数,断定是直角三角形.答案:︒30、︒60、︒90,3. 9. 解析:由勾股定理知道:22222291215=-=-=AC AB BC ,所以以直角边9=BC 为直径的半圆面积为10.125π.答案:10.125π.10. 解析:长方形面积长×宽,即12长×3,长4=,所以一条对角线长为5. 答案:cm 5. 二、综合发展11. 解析:木条长的平方=门高长的平方+门宽长的平方.答案:5m .12解析:因为222252015=+,所以这三角形是直角三角形,设最长边(斜边)上的高为xcm ,由直角三角形面积关系,可得1115202522x ⨯⨯=⨯⋅,∴12=x .答案:12cm13.解析:透阳光最大面积是塑料薄膜的面积,需要求出它的另一边的长是多少,可以借助勾股定理求出.答案:在直角三角形中,由勾股定理可得:直角三角形的斜边长为5m,所以矩形塑料薄膜的面积是:5×20=100(m 2) .14.解析:本题的关键是构造直角三角形,利用勾股定理求斜边的值是13m ,也就是两树树梢之间的距离是13m ,两再利用时间关系式求解. 答案:6.5s . 15.解析:本题和14题相似,可以求出BC 的值,再利用速度等于路程除以时间后比较.BC=40米,时间是2s ,可得速度是20m/s=72km/h >70km/h . 答案:这辆小汽车超速了.。

勾股定理练习题(含答案)

勾股定理练习题(含答案)

勾股定理练习题(含答案)一、基础达标:1. 下列说法正确的是( )A.若 a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2;B.若 a 、b 、c 是Rt △ABC 的三边,则a 2+b 2=c 2;C.若 a 、b 、c 是Rt △ABC 的三边, 90=∠A ,则a 2+b 2=c 2;D.若 a 、b 、c 是Rt △ABC 的三边, 90=∠C ,则a 2+b 2=c 2. 2. △ABC 的三条边长分别是a 、b 、c ,则下列各式成立的是( )A .c b a =+ B. c b a >+ C. c b a <+ D. 222c b a =+ 3.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A .121B .120C .90D .不能确定 4.△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( ) A .42 B .32 C .42 或 32 D .37 或 33 5.斜边的边长为cm 17,一条直角边长为cm 8的直角三角形的面积是 .6.假如有一个三角形是直角三角形,那么三边a 、b 、c 之间应满足 ,其中 边是直角所对的边;如果一个三角形的三边a 、b 、c 满足222b c a =+,那么这个三角形是 三角形,其中b 边是 边,b 边所对的角是 . 7.一个三角形三边之比是6:8:10,则按角分类它是 三角形.8. 若三角形的三个内角的比是3:2:1,最短边长为cm 1,最长边长为cm 2,则这个三角形三个角度数分别是 ,另外一边的平方是 .9.如图,已知ABC ∆中,︒=∠90C ,15=BA ,12=AC ,以直角边BC 为直径作半圆,则这个半圆的面积是 .10. 一长方形的一边长为cm 3,面积为212cm ,那么它的一条对角线长是 .二、综合发展:11.如图,一个高4m 、宽3m 的大门,需要在对角线的顶点间加固一个木条,求木条的长.AB12.一个三角形三条边的长分别为cm 15,cm 20,cm 25,这个三角形最长边上的高是多少?13.如图,小李准备建一个蔬菜大棚,棚宽4m ,高3m ,长20m ,棚的斜面用塑料薄膜遮盖,不计墙的厚度,请计算阳光透过的最大面积.14.如图,有一只小鸟在一棵高13m 12m ,高8m 的一棵小树树梢上发出友好的叫声,它立刻以2m/s 的速度飞向小树树梢,那么这只小鸟至少几秒才可能到达小树和伙伴在一起?15.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m 处,过了2s 后,测得小汽车与车速检测仪间距离为50m ,这辆小汽车超速了吗?观测点答案: 一、基础达标1. 解析:利用勾股定理正确书写三角形三边关系的关键是看清谁是直角.答案: D.2. 解析:本题考察三角形的三边关系和勾股定理.答案:B.3. 解析:设另一条直角边为x ,则斜边为(x+1)利用勾股定理可得方程,可以求出x .然后再求它的周长. 答案:C . 4.解析:解决本题关键是要画出图形来,作图时应注意高AD 是在三角形的内部还是在三角形的外部,有两种情况,分别求解. 答案:C.5. 解析: 勾股定理得到:22215817=-,另一条直角边是15,所求直角三角形面积为21158602cm ⨯⨯=. 答案: 260cm .6. 解析:本题目主要是强调直角三角形中直角对的边是最长边,反过来也是成立.答案:222c b a =+,c ,直角,斜,直角.7. 解析:本题由边长之比是6:8:10 可知满足勾股定理,即是直角三角形.答案:直角.8. 解析:由三角形的内角和定理知三个角的度数,断定是直角三角形.答案:︒30、︒60、︒90,3.9. 解析:由勾股定理知道:22222291215=-=-=AC AB BC所以以直角边9=BC 为直径的半圆面积为10.125π. 答案:10.125π.10. 解析:长方形面积长×宽,即12长×3,长4=,所以一条对角线长为5.答案:cm 5. 二、综合发展11. 解析:木条长的平方=门高长的平方+门宽长的平方.答案:5m .12解析:因为222252015=+,所以这三角形是直角三角形,设最长边(斜边)上的高为xcm ,由直角三角形面积关系,可得1115202522x ⨯⨯=⨯⋅,∴ 12=x (cm ).答案:12=x (cm ).13.解析:透阳光最大面积是塑料薄膜的面积,需要求出它的另一边的长是多少,可以借助勾股定理求出.答案:在直角三角形中,由勾股定理可得:直角三角形的斜边长为5m,所以矩形塑料薄膜的面积是:5×20=100(m2) .14.解析:本题的关键是构造直角三角形,利用勾股定理求斜边的值是13m,也就是两树树梢之间的距离是13m,两再利用时间关系式求解.答案:6.5s.15.解析:本题和14题相似,可以求出BC的值,再利用速度等于路程除以时间后比较.BC=40米,时间是2s,可得速度是20m/s=72km/h>70km/h.答案:这辆小汽车超速了.。

勾股定理练习题及答案(共6套)

勾股定理练习题及答案(共6套)

勾股定理课时练(1)的值是()1.在直角三角形ABC中,斜边AB=1,则AB2+眈2€AC2A.2B.4C.6D.82•有一个形状为直角梯形的零件ABCD,AD〃BC,斜腰DC的长为10cm,Z D=120°,则该零件另一腰AB的长是cm(结果不取近似值).3.__________________________________________________ 直角三角形两直角边长分别为5和12,则它斜边上的高为•4•一根旗杆于离地面12m处断裂,犹如装有铰链那样倒向地面,旗杆顶落于离旗杆地步16m,旗杆在断裂之前高多少m?5•如图,如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米.第5题图6.飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,求飞机每小时飞行多少千米?7.如图所示,无盖玻璃容器,高18cm,底面周长为60cm,在外侧距下底1cm的点C处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口1cm的F处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,所走的最短路线的长度.第7题图8.一个零件的形状如图所示,已知AC=3cm,AB=4cm,BD=12cm。

求CD的长.第8题图9.如图,在四边形ABCD中,ZA=60°,ZB=ZD=90°,BC=2,CD=3,求AB的长.n第9题图10.如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家•他要完成这件事情所走的最短路程是多少?11如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯平方米18元请你帮助计算一下,铺完这个楼道至少需要多少元钱?5m12.甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?、选择题1•下列各组数据中,不能作为直角三角形三边长的是(2•满足下列条件的三角形中,不是直角三角形的是()C.三边之比为訂:2:驀D.三个内角比为1:2:33•已知三角形两边长为2和6,要使这个三角形为直角三角形,则第三边的长为()A 迈B.^10C.4-込或2颅D.以上都不对4. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是()CD25,则三角形的最大内角的度数是.其面积为. 7•已知三角形ABC 的三边长为a ,b ,c 满足.「,c=8,则此三角形为三角形.a +b 二10,ab=188. 在三角形ABC 中,AB=12cm ,AC=5cm ,BC=13cm ,则BC 边上的高为AD=cm . 三、解答题9. 如图,已知四边形ABCD 中,Z B =90°,AB =3,BC =4,CD =12,AD =13,求四边形ABCD 的面积.第9题图勾股定理的逆定理(2)A.9,12,15B.C.0.2,0.3,0.4D.40,41,9A.三个内角比为1:2:1B.三边之比为1:2:A B二、填空题5.△ABC 的三边分别是7、24、6•三边为9、12、15的三角(A)(B)(C)25 (D)110.如图,E、F分别是正方形ABCD中BC和CD边上的点,且AB=4,CE=4BC,F为CD的中点,连接AF、AE,问A AEF是什么三角形?请说明理由.11.如图,AB为一棵大树,在树上距地面10m的D处有两只猴子,它们同时发现地面上的C处有一筐水果,一只猴子从D处上爬到树顶A处,利用拉在A处的滑绳AC,滑到C处,另一只猴子从D处滑到地面B,再由B跑到C,已知两猴子所经路程都是15m,求树高AB.12.如图,为修通铁路凿通隧道AC,量出ZA=40°ZB=50°,AB=5公里,BC=4公里,若每天凿隧道0.3公里,问几天才能把隧道AB凿通?勾股定理的逆定理(3)一、基础•巩固1•满足下列条件的三角形中,不是直角三角形的是()A.三内角之比为1:2:3B.三边长的平方之比为1:2:3C.三边长之比为3:4:5D.三内角之比为3:4:5二、综合•应用9.如图18—2—9所示,在平面直角坐标系中,点A、B的坐标分别为A(3,1),B(2,4),△OAB是直角三角形吗?借助于网格,证明你的结论12.已知:如图18—2—10,四边形ABCD,AD〃BC,AB=4,BC=6,CD=5,AD=3.求:四边形ABCD勾股定理的应用(4)2.求知中学有一块四边形的空地ABCD,如下图所示,学校计划在空地上种植草皮,经测量ZA=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200天,问学校需要投入多少资金买草皮?3..(12分)如图所示,折叠矩形的一边AD,使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,求EC的长。

(完整版)勾股定理习题(附答案)

(完整版)勾股定理习题(附答案)

C勾股定理评估试卷(1)一、选择题(每小题3分,共30分)1. 直角三角形一直角边长为12,另两条边长均为自然数,则其周长为( ). (A )30 (B )28 (C )56 (D )不能确定2. 直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长(A )4 cm(B )8 cm (C )10 cm(D )12 cm3. 已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) (A )25(B )14(C )7(D )7或254. 等腰三角形的腰长为10,底长为12,则其底边上的高为( ) (A )13 (B )8 (C )25 (D )645. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )715242520715202425157252024257202415(A)(B)(C)(D)6. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )(A ) 钝角三角形 (B ) 锐角三角形 (C ) 直角三角形 (D ) 等腰三角形. 7. 如图小方格都是边长为1的正方形,则四边形ABCD 的面积是 ( ) (A ) 25 (B ) 12.5 (C ) 9 (D ) 8.5 8. 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( ) (A ) 等边三角形 (B ) 钝角三角形 (C ) 直角三角形 (D ) 锐角三角形.9.△ABC 是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,AB=50米,如果要在这块空地上种植草皮,按每平方米草皮a 元计算,那么共需要资金( ). (A )50a 元 (B )600a 元 (C )1200a 元 (D )1500a 元 10.如图,A B ⊥CD 于B ,△ABD 和△BCE 都是等腰直角三角形,如果CD=17,BE=5,那么AC 的长为( ).(A )12 (B )7 (C )5 (D )135米3米(第10题) (第11题) (第14题)二、填空题(每小题3分,24分)11. 如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.12. 在直角三角形ABC 中,斜边AB =2,则222AB AC BC ++=______. 13. 直角三角形的三边长为连续偶数,则其周长为 .14. 如图,在△ABC 中,∠C=90°,BC=3,AC=4.以斜边AB 为直径作半圆,则这个半圆的面积是____________.(第15题) (第16题) (第17题) 15. 如图,校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞___________米. 16. 如图,△ABC 中,∠C =90°,AB 垂直平分线交BC 于D若BC =8,AD =5,则AC 等于______________. 17. 如图,四边形ABCD 是正方形,AE 垂直于BE ,且AE =3,BE =4,阴影部分的面积是______.18. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2.EABCDBDE ABCD第18题图7cm三、解答题(每小题8分,共40分)19. 11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题:“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树跟有多远?20. 如图,已知一等腰三角形的周长是16,底边上的高是4.求这个三角形各边的长.21. 如图,A 、B 两个小集镇在河流CD 的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A 、B 两镇供水,铺设水管的费用为每千米3万,请你在河流CD 上选择水厂的位置M ,使铺设水管的费用最节省,并求出总费用是多少?22. 如图所示的一块地,∠ADC=90°,AD=12m ,CD=9m ,AB=39m ,BC=36m ,求这块地的面积。

(完整版)勾股定理基础练习题

(完整版)勾股定理基础练习题

勾股定理练习题一、填空题(每空3分,共24分)1、若直角三角形两直角边分别为6和8,则斜边为___________;2、已知两条线的长为5cm和4cm,当第三条线段的长为_________时,这三条线段能组成一个直角三角形;3、能够成为直角三角形三条边长的正整数,称为勾股数。

请你写出三组勾股数:_________________________;4、如图,求出下列直角三角形中未知边的长度。

C=__________ b=__________ h=__________5、在Rt△ABC中,∠C=90°,BC∶AC=3∶4,AB=10,则AC=_______,BC=________二、选择题(每题3分,共15分)1、a、b、c是△ABC的三边,①a=5,b=12,c=13 ②a=8,b=15,c=17 ③a∶b∶c=3∶4∶5 ④a=15,b=20,c=25上述四个三角形中直角三角形有 ( )A、1个B、2个C、3个D、4个2、一直角三角形的三边分别为2、3、x,那么以x为边长的正方形的面积为( )A、13B、5C、13或5D、无法确定3、将一个直角三角形两直角边同时扩大到原来的两倍,则斜边扩大到原来的 ( )A、4倍B、2倍C、不变D、无法确定4、正方形的面积是4,则它的对角线长是()2 D、4A、2B、2C、25、如图,在△ABC中,AD⊥BC于D,AB=3,BD=2,DC=1,则AC=()A、6B、6C、5D、4三、在5×5的正方形网格中,每个小正方形的边长都为1,请在给定网格中按下列要求画出图形。

(1)从点A出发画一条线段AB,使它的另一端点B在格点上,且长度为5;(2)画出所有的以(1)中的AB为边的等腰三角形,使另一个顶点在格点上,且令两边的长度都是无理数。

四、解答题1、公路旁有一棵大树高为5。

4米,在刮风时被吹断,断裂处距地面1.5米,请你通过计算说明在距离该大树多大范围内将受到影响。

完整版)勾股定理测试题(含答案)

完整版)勾股定理测试题(含答案)

完整版)勾股定理测试题(含答案)18.2勾股定理的逆定理达标训练一、基础巩固1.下列条件满足不是直角三角形的三角形是()A。

三内角之比为1∶2∶3B。

三边长的平方之比为1∶2∶3C。

三边长之比为3∶4∶5D。

三内角之比为3∶4∶52.如图18-2-4所示,有一个形状为直角梯形的零件ABCD,AD∥BC,斜腰DC的长为10cm,∠D=120°,则该零件另一腰AB的长是________ cm(结果不取近似值)。

图18-2-43.如图18-2-5,以直角三角形ABC的三边为边向外作正方形,其面积分别为S1、S2、S3,且S1=4,S2=8,则AB的长为_________。

图18-2-54.如图18-2-6,已知正方形ABCD的边长为4,E为AB 中点,F为AD上的一点,且AF=√10,则BE的长为_________。

图18-2-65.一个零件的形状如图18-2-7,按规定这个零件中∠A与∠BDC都应为直角,工人师傅量得零件各边尺寸:AD=4,AB=3,BD=5,DC=12,BC=13,这个零件符合要求吗?试判断△XXX的形状。

图18-2-76.已知△ABC的三边分别为k2-1,2k,k2+1(k>1),求证:△ABC是直角三角形。

二、综合应用7.已知a、b、c是直角三角形ABC的三边长,△A1B1C1的三边长分别是2a、2b、2c,那么△A1B1C1是直角三角形吗?为什么?8.已知:如图18-2-8,在△ABC中,CD是AB边上的高,且CD2=AD·BD。

求证:△ABC是直角三角形。

图18-2-89.如图18-2-9所示,在平面直角坐标系中,点A、B的坐标分别为A(3,1),B(2,4),△OAB是直角三角形吗?借助于网格,证明你的结论。

图18-2-910.已知a、b、c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△XXX的形状。

解:∵a2c2-b2c2=a4-b4,(A)∴c2(a2-b2)=(a2+b2)(a2-b2),(B)∴c2=a2+b2,(C)∴△ABC是直角三角形。

初中勾股定理练习题精选全文完整版

初中勾股定理练习题精选全文完整版

可编辑修改精选全文完整版第一章《勾股定理》练习题一、选择题(8×3′=24′) 1、在Rt △ABC 中,∠C=90°,三边长分别为a 、b 、c ,则下列结论中恒成立的是( ) A 、2ab<c 2 B 、2ab ≥c 2 C 、2ab>c 2 D 、2ab ≤c 22、已知x 、y 为正数,且│x 2-4│+(y 2-3)2=0,如果以x 、y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( ) A 、5 B 、25 C 、7 D 、153、直角三角形的一直角边长为12,另外两边之长为自然数,则满足要求的直角三角形共有( ) A 、4个 B 、5个 C 、6个 D 、8个4、下列命题①如果a 、b 、c 为一组勾股数,那么4a 、4b 、4c 仍是勾股数;②如果直角三角形的两边是3、4,那么斜边必是5;③如果一个三角形的三边是12、25、21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a 、b 、c ,(a>b=c ),那么a 2∶b 2∶c 2=2∶1∶1。

其中正确的是( ) A 、①② B 、①③ C 、①④ D 、②④5、若△ABC 的三边a 、b 、c 满足a 2+b 2+c 2+338=10a+24b+26c ,则此△为( ) A 、锐角三角形 B 、钝角三角形 C 、直角三角形 D 、不能确定6、已知等腰三角形的腰长为10,一腰上的高为6,则以底边为边长的正方形的面积为( ) A 、40 B 、80 C 、40或360 D 、80或3607、如图,在Rt △ABC 中,∠C=90°,D 为AC 上一点,且DA=DB=5,又△DAB 的面积为10,那么DC 的长是( ) A 、4 B 、3 C 、5 D 、4.58、如图,一块直角三角形的纸片,两直角边AC=6㎝,BC=8㎝。

现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( ) A 、2㎝ B 、3㎝ C 、4㎝ D 、5㎝ 二、填空题(12×3′=36′)9、在△ABC 中,点D 为BC 的中点,BD=3,AD=4,AB=5,则AC=___________。

勾股定理练习题(含答案)

勾股定理练习题(含答案)

勾股定理练习题一、基础达标:1。

下列说法正确的是( )A 。

若 a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2; B.若 a 、b 、c 是Rt△ABC 的三边,则a 2+b 2=c 2;C 。

若 a 、b 、c 是Rt△ABC 的三边, 90=∠A ,则a 2+b 2=c 2;D 。

若 a 、b 、c 是Rt△ABC 的三边, 90=∠C ,则a 2+b 2=c 2.2。

Rt △ABC 的三条边长分别是a 、b 、c ,则下列各式成立的是( )A .c b a =+B 。

c b a >+C 。

c b a <+D 。

222c b a =+ 3. 如果Rt △的两直角边长分别为k 2-1,2k(k >1),那么它的斜边长是( )A 、2kB 、k+1C 、k 2-1D 、k 2+14。

已知a ,b ,c 为△ABC 三边,且满足(a 2-b 2)(a 2+b 2-c 2)=0,则它的形状为( )A 。

直角三角形B.等腰三角形C.等腰直角三角形D 。

等腰三角形或直角三角形5. 直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A .121B .120C .90D .不能确定6. △ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( ) A .42 B .32 C .42 或 32 D .37 或 337.※直角三角形的面积为S ,斜边上的中线长为d ,则这个三角形周长为( )(A 2d d(C )2d (D )d8、在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为( )A :3 B :4C:5 D :79.若△ABC 中,AB=25cm ,AC=26cm 高AD=24,则BC 的长为( )A .17B 。

3 C.17或3 D 。

以上都不对10.已知a 、b 、c 是三角形的三边长,如果满足2(6)100a c --=则三角形的形状是( )A :底与边不相等的等腰三角形B :等边三角形 C:钝角三角形 D :直角三角形11.斜边的边长为cm 17,一条直角边长为cm 8的直角三角形的面积是 . 12. 等腰三角形的腰长为13,底边长为10,则顶角的平分线为__。

(完整版)勾股定理经典例题(含答案)

(完整版)勾股定理经典例题(含答案)

经典例题透析种类一:勾股定理的直接用法1、在 Rt△ ABC 中,∠ C=90 °(1)已知 a=6, c=10,求 b, (2)已知 a=40, b=9 ,求 c; (3)已知 c=25, b=15,求 a.思路点拨 : 写解的过程中,必定要先写上在哪个直角三角形中,注意勾股定理的变形使用。

分析: (1) 在△ ABC 中,∠ C=90 °, a=6, c=10,b=(2)在△ ABC 中,∠ C=90°, a=40, b=9,c=(3)在△ ABC 中,∠ C=90°, c=25, b=15,a=贯通融会【变式】 :如图∠ B=∠ ACD =90 ° , AD =13,CD=12, BC=3,则 AB 的长是多少 ?【答案】∵∠ ACD =90 °AD = 13, CD=12∴AC 2 =AD 2-CD2 =132- 122=25∴AC=5又∵∠ ABC=90 °且 BC=3∴由勾股定理可得AB 2= AC 2-BC2=52- 32=16∴AB= 4∴AB 的长是 4.种类二:勾股定理的结构应用2、如图,已知:在中,,,. 求: BC 的长 .思路点拨:由条件,想到结构含角的直角三角形,为此作于D,则有,,再由勾股定理计算出AD 、DC 的长,从而求出BC 的长 .分析:作于D,则因,∴(的两个锐角互余)∴(在中,假如一个锐角等于,那么它所对的直角边等于斜边的一半).依据勾股定理,在中,..∴.贯通融会【变式 1】如图,已知:,,于P.求证:.分析:连结 BM ,依据勾股定理,在中,.而在中,则依据勾股定理有.∴又∵(已知),∴.在中,依据勾股定理有,∴.【变式 2】已知:如图,∠B=∠ D=90 °,∠ A=60 °, AB=4 , CD=2 。

求:四边形ABCD 的面积。

剖析:怎样结构直角三角形是解本题的重点,能够连结 AC ,或延伸 AB 、DC 交于 F,或延伸 AD 、BC 交于点 E,依据本题给定的角应选后两种,进一步依据本题给定的边选第三种较为简单。

(完整版)《勾股定理》练习题及答案

(完整版)《勾股定理》练习题及答案

《勾股定理》练习题及答案测试1 勾股定理(一)学习要求掌握勾股定理的内容及证明方法,能够熟练地运用勾股定理由已知直角三角形中的两条边长求出第三条边长.课堂学习检测一、填空题1.如果直角三角形的两直角边长分别为a、b,斜边长为c,那么______=c2;这一定理在我国被称为______.2.△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边.(1)若a=5,b=12,则c=______;(2)若c=41,a=40,则b=______;(3)若∠A=30°,a=1,则c=______,b=______;(4)若∠A=45°,a=1,则b=______,c=______.3.如图是由边长为1m的正方形地砖铺设的地面示意图,小明沿图中所示的折线从A→B→C 所走的路程为______.4.等腰直角三角形的斜边为10,则腰长为______,斜边上的高为______.5.在直角三角形中,一条直角边为11cm,另两边是两个连续自然数,则此直角三角形的周长为______.二、选择题6.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为( ).(A)8 (B)4 (C)6 (D)无法计算7.如图,△ABC中,AB=AC=10,BD是AC边上的高线,DC=2,则BD等于( ).2(A)4 (B)6 (C)8 (D)108.如图,Rt△ABC中,∠C=90°,若AB=15cm,则正方形ADEC和正方形BCFG的面积和为( ).(A)150cm2 (B)200cm2 (C)225cm2 (D)无法计算三、解答题9.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.(1)若a∶b=3∶4,c=75cm,求a、b; (2)若a∶c=15∶17,b=24,求△ABC的面积;(3)若c-a=4,b=16,求a、c; (4)若∠A=30°,c=24,求c边上的高h c;(5)若a、b、c为连续整数,求a+b+c.综合、运用、诊断一、选择题10.若直角三角形的三边长分别为2,4,x,则x的值可能有( ).(A)1个(B)2个 (C)3 (D)4个二、填空题11.如图,直线l经过正方形ABCD的顶点B,点A、C到直线l的距离分别是1、2,则正方形的边长是______.12.在直线上依次摆着7个正方形(如图),已知倾斜放置的3个正方形的面积分别为1,2,3,水平放置的4个正方形的面积是S1,S2,S3,S4,则S1+S2+S3+S4=______.三、解答题13.如图,Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,AD=20,求BC的长.拓展、探究、思考14.如图,△ABC中,∠C=90°.(1)以直角三角形的三边为边向形外作等边三角形,探究S1+S2与S3的关系;图①(2)以直角三角形的三边为斜边向形外作等腰直角三角形,探究S1+S2与S3的关系;(3)以直角三角形的三边为直径向形外作半圆(如图③),探究S 1+S 2与S 3的关系.测试2 勾股定理(二)学习要求掌握勾股定理,能够运用勾股定理解决简单的实际问题,会运用方程思想解决问题.课堂学习检测一、填空题1.若一个直角三角形的两边长分别为12和5,则此三角形的第三边长为______.2.甲、乙两人同时从同一地点出发,已知甲往东走了4km ,乙往南走了3km ,此时甲、乙两人相距______km . 3.如图,有一块长方形花圃,有少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了______m 路,却踩伤了花草.4.如图,有两棵树,一棵高8m ,另一棵高2m ,两树相距8m ,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少要飞______m . 二、选择题5.如图,一棵大树被台风刮断,若树在离地面3m 处折断,树顶端落在离树底部4m 处,则树折断之前高( ). (A)5m(B)7m(C)8m(D)10m6.如图,从台阶的下端点B 到上端点A 的直线距离为( ). (A)212 (B)310 (C)56(D)58三、解答题7.在一棵树的10米高B 处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A 处;另一只爬到树顶D 后直接跃到A 处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高多少米?8.在平静的湖面上,有一支红莲,高出水面1米,一阵风吹来,红莲移到一边,花朵齐及水面,已知红莲移动的水平距离为2米,求这里的水深是多少米?综合、运用、诊断一、填空题9.如图,一电线杆AB的高为10米,当太阳光线与地面的夹角为60°时,其影长AC为______米.10.如图,有一个圆柱体,它的高为20,底面半径为5.如果一只蚂蚁要从圆柱体下底面的A点,沿圆柱表面爬到与A相对的上底面B点,则蚂蚁爬的最短路线长约为______(取3)二、解答题:11.长为4 m的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了______m.12.如图,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯的长度至少需要多少米?若楼梯宽2米,地毯每平方米30元,那么这块地毯需花多少元?9 10 11 12拓展、探究、思考13.如图,两个村庄A、B在河CD的同侧,A、B两村到河的距离分别为AC=1千米,BD =3千米,CD=3千米.现要在河边CD上建造一水厂,向A、B两村送自来水.铺设水管的工程费用为每千米20000元,请你在CD上选择水厂位置O,使铺设水管的费用最省,并求出铺设水管的总费用W.测试3 勾股定理(三)学习要求熟练应用勾股定理解决直角三角形中的问题,进一步运用方程思想解决问题.课堂学习检测一、填空题1.在△ABC中,若∠A+∠B=90°,AC=5,BC=3,则AB=______,AB边上的高CE=______.2.在△ABC中,若AB=AC=20,BC=24,则BC边上的高AD=______,AC边上的高BE=______.3.在△ABC中,若AC=BC,∠ACB=90°,AB=10,则AC=______,AB边上的高CD=______.4.在△ABC 中,若AB =BC =CA =a ,则△ABC 的面积为______.5.在△ABC 中,若∠ACB =120°,AC =BC ,AB 边上的高CD =3,则AC =______,AB =______,BC 边上的高AE =______. 二、选择题6.已知直角三角形的周长为62+,斜边为2,则该三角形的面积是( ).(A)41 (B)43 (C)21 (D)17.若等腰三角形两边长分别为4和6,则底边上的高等于( ). (A)7 (B)7或41(C)24(D)24或7三、解答题8.如图,在Rt △ABC 中,∠C =90°,D 、E 分别为BC 和AC 的中点,AD =5,BE =102求AB 的长.9.在数轴上画出表示10-及13的点.综合、运用、诊断10.如图,△ABC 中,∠A =90°,AC =20,AB =10,延长AB 到D ,使CD +DB =AC +AB ,求BD 的长.11.如图,将矩形ABCD 沿EF 折叠,使点D 与点B 重合,已知AB =3,AD =9,求BE 的长.12.如图,折叠矩形的一边AD ,使点D 落在BC 边的点F 处,已知AB =8cm ,BC =10cm ,求EC 的长.13.已知:如图,△ABC中,∠C=90°,D为AB的中点,E、F分别在AC、BC上,且DE⊥DF.求证:AE2+BF2=EF2.拓展、探究、思考14.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,求AC的长是多少?15.如图,如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去,……已知正方形ABCD的面积S1为1,按上述方法所作的正方形的面积依次为S2,S3,…,S n(n为正整数),那么第8个正方形的面积S8=______,第n个正方形的面积S n=______.测试4 勾股定理的逆定理学习要求掌握勾股定理的逆定理及其应用.理解原命题与其逆命题,原定理与其逆定理的概念及它们之间的关系.课堂学习检测一、填空题1.如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是______三角形,我们把这个定理叫做勾股定理的______.2.在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做____________;如果把其中一个命题叫做原命题,那么另一个命题叫做它的____________.3.分别以下列四组数为一个三角形的边长:(1)6、8、10,(2)5、12、13,(3)8、15、17,(4)4、5、6,其中能构成直角三角形的有____________.(填序号)4.在△ABC中,a、b、c分别是∠A、∠B、∠C的对边,①若a 2+b 2>c 2,则∠c 为____________; ②若a 2+b 2=c 2,则∠c 为____________; ③若a 2+b 2<c 2,则∠c 为____________.5.若△ABC 中,(b -a )(b +a )=c 2,则∠B =____________;6.如图,正方形网格中,每个小正方形的边长为1,则网格上的△ABC 是______三角形. 7.若一个三角形的三边长分别为1、a 、8(其中a 为正整数),则以a -2、a 、a +2为边的三角形的面积为______.8.△ABC 的两边a ,b 分别为5,12,另一边c 为奇数,且a +b +c 是3的倍数,则c 应为______,此三角形为______. 二、选择题9.下列线段不能组成直角三角形的是( ). (A)a =6,b =8,c =10 (B)3,2,1===c b a (C)43,1,45===c b a (D)6,3,2===c b a10.下面各选项给出的是三角形中各边的长度的平方比,其中不是直角三角形的是( ).(A)1∶1∶2(B)1∶3∶4 (C)9∶25∶26(D)25∶144∶16911.已知三角形的三边长为n 、n +1、m (其中m 2=2n +1),则此三角形( ).(A)一定是等边三角形 (B)一定是等腰三角形 (C)一定是直角三角形(D)形状无法确定综合、运用、诊断一、解答题12.如图,在△ABC 中,D 为BC 边上的一点,已知AB =13,AD =12,AC =15,BD =5,求CD 的长.13.已知:如图,四边形ABCD 中,AB ⊥BC ,AB =1,BC =2,CD =2,AD =3,求四边形ABCD 的面积.14.已知:如图,在正方形ABCD 中,F 为DC 的中点,E 为CB 的四等分点且CE =CB 41,求证:AF ⊥FE .15.在B港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里的速度前进,乙船沿南偏东某个角度以每小时15海里的速度前进,2小时后,甲船到M岛,乙船到P岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?拓展、探究、思考16.已知△ABC中,a2+b2+c2=10a+24b+26c-338,试判定△ABC的形状,并说明你的理由.17.已知a、b、c是△ABC的三边,且a2c2-b2c2=a4-b4,试判断三角形的形状.18.观察下列各式:32+42=52,82+62=102,152+82=172,242+102=262,…,你有没有发现其中的规律?请用含n的代数式表示此规律并证明,再根据规律写出接下来的式子.参考答案 第十八章 勾股定理 测试1 勾股定理(一)1.a 2+b 2,勾股定理. 2.(1)13; (2)9; (3)2,3; (4)1,2.3.52. 4.52,5. 5.132cm . 6.A . 7.B . 8.C . 9.(1)a =45cm .b =60cm ; (2)540; (3)a =30,c =34; (4)63; (5)12.10.B . 11..5 12.4. 13..310 14.(1)S 1+S 2=S 3;(2)S 1+S 2=S 3;(3)S 1+S 2=S 3.测试2 勾股定理(二)1.13或.119 2.5. 3.2. 4.10. 5.C . 6.A . 7.15米. 8.23米. 9.⋅3310 10.25. 11..2232- 12.7米,420元. 13.10万元.提示:作A 点关于CD 的对称点A ′,连结A ′B ,与CD 交点为O .测试3 勾股定理(三)1.;343415,34 2.16,19.2. 3.52,5. 4..432a 5.6,36,33. 6.C . 7.D8..132 提示:设BD =DC =m ,CE =EA =k ,则k 2+4m 2=40,4k 2+m 2=25.AB =.1324422=+k m9.,3213,31102222+=+=图略.10.BD =5.提示:设BD =x ,则CD =30-x .在Rt △ACD 中根据勾股定理列出(30-x )2=(x +10)2+202,解得x =5.11.BE =5.提示:设BE =x ,则DE =BE =x ,AE =AD -DE =9-x .在Rt △ABE 中,AB 2+AE 2=BE 2,∴32+(9-x )2=x 2.解得x =5.12.EC =3cm .提示:设EC =x ,则DE =EF =8-x ,AF =AD =10,BF =622=-AB AF ,CF =4.在Rt △CEF中(8-x )2=x 2+42,解得x =3.13.提示:延长FD 到M 使DM =DF ,连结AM ,EM .14.提示:过A ,C 分别作l 3的垂线,垂足分别为M ,N ,则易得△AMB ≌△BNC ,则.172,34=∴=AC AB 15.128,2n -1.测试4 勾股定理的逆定理1.直角,逆定理. 2.互逆命题,逆命题. 3.(1)(2)(3). 4.①锐角;②直角;③钝角. 5.90°. 6.直角.7.24.提示:7<a <9,∴a =8. 8.13,直角三角形.提示:7<c <17. 9.D . 10.C . 11.C . 12.CD =9. 13..51+14.提示:连结AE ,设正方形的边长为4a ,计算得出AF ,EF ,AE 的长,由AF 2+EF 2=AE 2得结论. 15.南偏东30°.16.直角三角形.提示:原式变为(a -5)2+(b -12)2+(c -13)2=0.17.等腰三角形或直角三角形.提示:原式可变形为(a 2-b 2)(a 2+b 2-c 2)=0. 18.352+122=372,[(n +1)2-1]2+[2(n +1)]2=[(n +1)2+1]2.(n ≥1且n 为整数)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

草稿区
勾股定理基础班习题
考点一:勾股定理
1) 对于任意的直角三角形,如果它的两条直角边分别为a 、b ,斜边为c ,那么一定有
222c b a =+
勾股定理:直角三角形两直角边的平方和等于斜边的平方。

题型一:直接考查勾股定理
例1. 在ABC ∆中,90C ∠=︒.
⑴已知6AC =,8BC =.求AB 的长
⑵已知17AB =,15AC =,求BC 的长
题型二:利用勾股定理测量长度
例题1 如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的
高度是多少米?
例题2 如图(8),水池中离岸边D 点1.5米的C 处,直立长
着一根芦苇,出水部分BC 的长是0.5米,把芦苇拉到岸边,它
的顶端B 恰好落到D 点,并求水池的深度AC.
题型三:利用勾股定理求线段长度——
例题:如图4,已知长方形ABCD 中AB=8cm,BC=10cm,在边CD 上取一点E ,
将△ADE 折叠使点D 恰好落在BC 边上的点F ,求CE 的长.
题型四:已知直角三角形的一边以及另外两边的关系利用勾股定理求周长、面积等问题。

(1)直角三角形两直角边长分别为5和12,则它斜边上的高为__________。

(2)已知Rt △ABC 中,∠C=90°,若a+b=14cm ,c=10cm ,则Rt △ABC 的面积是( )
A 、242c m
B 、36 2c m
C 、482c m
D 、602c m
考点二:勾股定理的逆定理
题型一:勾股数的应用
(1)下列各组数据中的三个数,可作为三边长构成直角三角形的是( )
A. 4,5,6
B. 2,3,4
C. 11,12,13
D. 8,15,17
(2)若线段a ,b ,c 组成直角三角形,则它们的比为( )
A 、2∶3∶4
B 、3∶4∶6
C 、5∶12∶13
D 、4∶6∶7
题型二:利用勾股定理逆定理判断三角形的形状
(1)下面的三角形中:
①△ABC 中,∠C=∠A -∠B ;
②△ABC 中,∠A :∠B :∠C=1:2:3;
③△ABC 中,a :b :c=3:4:5;
④△ABC 中,三边长分别为8,15,17.
其中是直角三角形的个数有( ).
A .1个
B .2个
C .3个
D .4个
(2)将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )
A . 钝角三角形 B. 锐角三角形 C. 直角三角形 D. 等腰三角形
考点三:勾股定理的应用
题型一:面积问题
(1)下图是一株美丽的勾股树,其中所有的四边形都是正方形,
所有的三角形都是直角三角形,若正方形A 、B 、C 、D 的边长分别是3、5、2、3,则最大正方形E 的面积是( ) A. 13 B. 26 C. 47 D. 94
A
B
C
D E
草稿区
题型二:求长度问题
在一棵树10m 高的B 处,有两只猴子,一只爬下树走到离树20m 处的池塘A 处;•另外一只爬到树顶D 处后直接跃到A 外,距离以直线计算,如果两只猴子所经过的距离相等,试问这棵树有多高? C
A D
B
题型三:最短路程问题
(1)如图2,有一个长、宽、高为3米的封闭的正方体纸盒,一只
昆虫从顶点A 要爬到顶点B ,那么这只昆虫爬行的最短距离
为 。

题型四:航海问题
(1)一轮船以16海里/时的速度从A 港向东北方向航行,另一艘船同时以12海里/时的速度从A 港向西北方向航行,经过1.5小时后,它们相距________海里.
(2)某公司的大门如图所示,其中四边形AB CD是长方形,上部是以AD
为直径的半圆,其中AB=2.3m,BC=2m,现有一辆装满货物的卡车,高为2.5
m,宽为1.6m,问这辆卡车能否通过公司的大门?并说明你的理由
.
题型五:关于翻折问题
例1、如图,矩形纸片ABCD 的边AB=10cm ,BC=6cm ,E 为BC 上一点,将矩形纸片沿AE 折叠,点B 恰好落在CD 边上的点G 处,求BE 的长.
B A。

相关文档
最新文档