中考数学新定义问题
中考数学复习考点题型专题讲解13 数轴动点问题中的新定义问题
中考数学复习考点题型专题讲解 专题13 数轴动点问题中的新定义问题例1.(2023·山东沂南期末)有如下定义 数轴上有三个点,若其中一个点与其它两个点的距离恰好满足3倍的数量关系,则称该点是其它两个点的“关键点”.若点A 表示数﹣4,点B 表示数8,M 为数轴一个动点.若点M 在线段AB 上,且点M 是点A 、点B 的“关键点”,则此时点M 表示的数是________. 【答案】5或﹣1.【解析】解 设点M 表示的数是x , ∴MA =x ﹣(﹣4)=x +4;BM =8﹣x ,∵若其中一个点与其它两个点的距离恰好满足3倍的数量关系,则称该点是其它两个点的“关键点”, ∴MA =3BM 或BM =3MA ,∴x +4=3(8﹣x )或8﹣x =3(x +4), 解得 x =5或x =﹣1. 故答案为 5或﹣1.例2.(2023·北京期中)在同一直线上的三点A 、B 、C ,若满足点C 到另两个点A 、B 的距离之比是2,则称点C 是其余两点的亮点(或暗点),具体地,当点C 在线段AB 上时,若2CACB=,则称点C 是[A ,B ]的亮点;若点C 在线段AB 延长线上,2CBCA=,则称点C 是[,]B A 的暗点,例如,如图1,在数轴上A B C D 、、、分别表示数,-1,2,1,0,则的点C 是[,]A B 的亮点,又是[,]A D 的暗点;点D 是[,]B A 的亮点,又是[,]B C 的暗点.(1)如图2,M 、N 为数轴上的两点,点M 表示的数为-2,点N 表示的数为4,则[,]M N 的亮点表示的数是,[,]N M 的暗点表示的数是 ;(2)如图3,数轴上的点A 所表示的数为点所表示的数为-20,点B 表示的数为40,一只电子蚂蚁P 从点B 出发以每秒2个单位的速度向左运动,设运动时间为t 秒.①求当t 为何值时,P 是[,]B A 的暗点;②求当t 为何值时,P 、A 和B 三个点中恰有一个点为其余两点的亮点.【答案】(1)2,-8;(2)①t =60;②当点P 为[,]A B 亮点时,t =10;当点P 为[,]B A 亮点时,t =20;当点A 为[,]P B 亮点时,t =90;当点A 为[,]B P 亮点时,t =45.【解析】解 (1)根据题意,[,]M N 的亮点表示的数在线段MN 上, 设亮点表示的数为x , 则x +2=2(4-x ), 解得 x =2∴[,]M N 的亮点表示的数是 2;根据题意,[,]N M 的暗点表示的数在线段NM 延长线上, 设暗点为y , 则4-y =2(-2-y ) 解得,y =-8故答案为 2,-8;(2)①根据题意,点P 是[,]B A 的暗点,即点P 在线段BA 的延长线上 ∴PB =2t ,P A =2t -60 ∵PB =2P A ∴2t =2(2t -60)解得 t =60;②当点P 为[,]A B 亮点时,即P 在线段AB 上 ∴PB =2t ,P A =60-2t ∴60-2t =2×2t ∴t =10当点P 为[,]B A 亮点时,即P 在线段AB 上 ∴2(60-2t )=2t ∴t =20;当点A 为[,]P B 亮点时,即A 在线段PB 上 同理,2t -60=2×60 ∴t =90当点A 为[,]B P 亮点时,即A 在线段BP 上 2(2t -60)=60 ∴t =45B 点不可能在线段AP 上,故B 不可能是[A ,P ]、[P ,A ]的亮点综上所述,当点P 为[,]A B 亮点时,t =10;当点P 为[,]B A 亮点时,t =20;当点A 为[,]P B 亮点时,t =90;当点A 为[,]B P 亮点时,t =45.例3.(2023·北京市期中)对于数轴上的两点P ,Q 给出如下定义 P ,Q 两点到原点О的距离之差的绝对值称为P ,Q 两点的“绝对距离”,记为POQ .例如,P ,Q 两点表示的数如图(1)所示,则312POQ PO QO =−=−=.(1)A ,B 两点表示的数如图(2)所示. ①求A ,B 两点的“绝对距离”;②若点C 为数轴上一点(不与点О重合),且2AOB AOC =,求点C 表示的数.(2)点M ,N 为数轴上的两点(点M 在点N 左侧)且2MN =,1MON =,请直接写出点M 表示的数为________.【答案】(1)①2;②2或-2;(2)12−或32−【解析】解 (1)①求A ,B 两点的绝对距离=2, ②∵AOB AO BO =−=2,又2AOB AOC =, ∴1AOC =,即1AO CO −= ∴OC =0或OC =2 ∵C 不与O 重合∴点C 表示的数为2或-2.(2)由题可知MON =1MO NO −= 得 MO -NO =1或MO -NO =-1 ∵点M 在点N 左侧∴①当M 、N 都在原点的左侧时,∵MN =2, ∴MO -ON =1≠2,该情况不存在,②当M 、N 都在原点的右侧时, 同理知,此情况不存在,③当M 点在原点的左侧,N 点在原点的右侧时, ∵MN =2,即MO +NO =2又MO -NO =1或MO -NO =-1 ∴点M 表示的数为12−或32−.例4.(2023·江苏省锡山期中)如图,数轴上点A 表示的数为-3,点B 表示的数为4,阅读并解决相应问题.(1)问题发现 若在数轴上存在一点P ,使得点P 到点A 的距离与点P 到点B 的距离之和等于n ,则称点P 为点A 、B 的“n 节点”.如图1,若点P 表示的数为1,点P 到点A 的距离与点P 到点B 的距离之和为4+3=7,则称点P 为点A 、B 的“7节点”.填空 ①若点P 表示的数为2−,则n 的值为;②数轴上表示整数的点称为整点,若整点P 为A 、B 的“7节点”,则这样的整点P 共有个.(2)类比探究 如图2,若点P 为数轴上一点,且点P 到点A 的距离为1,请你求出点P 表示的数及n 的值.(3)拓展延伸 若点P 在数轴上运动(不与点A 、B 重合),满足点P 到点B 的距离等于点P 到点A 的距离的34,且此时点P 为点A 、B 的“n 的节点”,请写出点P 表示的数及n 的值.【答案】(1)7①;8②;(2)点P 表示的数为 -4,n =9,或点P 表示的数为 -2,n =7;(3)P 表示的数为25,n =49,或P 表示的数为1,n =7.【解析】解 (1)①∵点P 表示的数为-2,∴点P 到点A 的距离与点P 到点B 的距离之和为1+6=7 ∴点P 为点A 、B 的“7节点” ∴n =7故答案为 7;②设出点P 表示的数为x∴点P 到点A 的距离为 ()33x x −−=+,点P 到点B 的距离为 4x −当x >4时,3+47x x +−>,不符合题意;当34x −≤≤时,34=347x x x x ++−++−=,符合题意 当3x <−时,3+47x x +−>,不符合题意; ∵P 为整点∴P 表示的数为 -3或-2或-1或0或1或2或3或4 ∴整点P 共有8个故答案为 8;(2)∵点P 到点A 的距离为1,点A 表示的数为-3, ∴点P 表示的数为 -4或-2当点P 表示的数为 -4时,n =9; 当点P 表示的数为 -2时,n =7; (3)设点P 表示的数为x由题意,得3344x x ×+=−解得 x =1或x =25 即P 表示的数为25或1 当P 表示的数为25时,n =49 当P 表示的数为1时,n =7.例5.(2023·北京八中期中)数轴上点A 表示10−,点B 表示10,点C 表示18,如图,将数轴在原点O 和点B 处各折一下,得到一条“折线数轴”,在“折线数轴”上,点M 、N 表示的数分别是m 、n ,我们把m 、n 之差的绝对值叫做点M ,N 之间友好距离,即||MN m n =−,那么我们称点A 和点C 在折线数轴上友好距离为28个长度单位.动点P 从点A 出发,以2单位/秒的速度沿着折线数轴的正方向运动,从点O 运动到点B 期间速度变为原来的一半 点P 从点A 出发的同时,点Q 从点C 出发,以1单位/秒的速度沿着“折线数轴”的负方向运动,当点P 到达B 点时,点P 、Q 均停止运动.设运动的时间为t 秒.(1)当14t =秒时,P 、Q 两点在折线数轴上的友好距离为______个单位长度. (2)当P 、Q 两点在折线数轴上相遇时,求运动的时间t 的值.(3)是否存在某一时刻使得P 、O 两点在折线数轴上的友好距离与Q 、B 两点在折线数轴上的友好距离相等?若存在,请直接写出t 的值;若不存在,请说明理由. 【答案】(1)5;(2)11.5;(3)存在,t =2或6.5【解析】解 (1)当t =14秒时,点P 和点O 在数轴上相距9个长度单位, 点Q 和点O 在数轴上相距18-1×14=4个长度单位,P 、Q 友好距离9-4=5 故答案为 5;(2)由题意可得 10+(t -5)+t =28, 解得 t =11.5.故运动的时间t的值为11.5;(3)①当点P在AO,点Q在BC上运动时,由题意得10-2t=8-t,解得t=2,②当点P、Q两点都在OB上运动时,t-5=t-8,无解,不存在③当P在OB上,Q在BC上运动时,8-t=t-5,解得t=6.5;即PO=QB时,运动的时间为2秒或6.5秒.综上所述,存在,t的值为2或6.5.例6.(2023·陕西富县月考)对于数轴上的A,B,C三点,给出如下定义若其中一个点与其他两个点的距离恰好满足3倍的数量关系,则称该点是其它两个点的“倍分点”.如图,数轴上点A,B,C表示的数分别是1,4,5,此时点B是点A,C的“倍分点”.(1)当点A表示数2−,点B表示数2时,下列各数52−,1,4是点A,B的“倍分点”的是____;(2)当点A表示数10−,点B表示数30时,D为数轴上一个动点.若点D是点A,B的“倍分点”,求此时点D表示的数.【答案】(1)1,4;(2)①20,0,50,-30;②20,0,50,-30,103,-130,703−,110,503,-90,150.【解析】解(1)∵点A表示数-2,点B表示数2∴AB=2-(-2)=4当C表示的数是52−时,此时点C不是点A,B的“倍分点”.如图,当点C 表示的数是1时,此时点C 是点A ,B 的“倍分点”.如图,当点C 表示的数是4时,此时点C 是点A ,B 的“倍分点”.故答案为 1,4.(2)设点D 对应的数为x .当点D 在AB 之间时,AB =40,所以BD =10, 即x =20; 当34BD AB =时,BD =30,即x =0. 当点D 在点B 右侧,AD =3BD ,即x +10=3(x -30),解得x =50; 当点D 在点A 左侧,BD =3AD ,即30-x =3(-x -10),解得x =-30. 综上所述,点D 表示的数可为20,0,50,-30.例7.(2023·辽宁沈阳月考)在数轴上,若点C 到点A 的距离恰好是3,则称点C 为点A 的“幸福点”;若点C 到点A ,B 的距离之和为6,则称点C 为点A ,B 的“幸福中心”.(1)如图1,点A 表示的数是﹣1,则点A 的“幸福点”C 表示的数是.(2)如图2,点M 表示的数是﹣2,点N 表示的数是4,若点C 为点M ,N 的“幸福中心”,则点C 表示的数可以是(填一个即可);(3)如图3,点A 表示的数是﹣1,点B 表示的数是4,点P 表示的数是8,点Q 从点P 出发,以2单位/s 的速度沿数轴向左运动,经过秒后点Q 是点A ,B 的“幸福中心”?【答案】(1)-4或2;(2)-2(答案不唯一);(3)1.75或4.75.【解析】解(1)由题意得点A的“幸福点”C表示的数为-1-3=-4或-1+3=2,故答案为-4或2;(2)由题意得点M、N的距离为4-(-2)=6,∵点C为点M,N的“幸福中心”,∴点C在点M、N之间,∴点C表示的数可以为-2、-1、0、1、2、3、4,故答案为-2(答案不唯一);(3)由题意可得A、B之间的距离为5,故有两种可能设经过x秒点Q是A、B的“幸福中心”,①点Q在点B和点P之间,则有8-2x-4+8-2x-(-1)=6,解得x=1.75;②点Q在点A的左侧,4-(8-2x)+(-1)-(8-2x)=6,解得x=4.75,综上所述当经过1.75秒或4.75秒时,点Q是A、B的“幸福中心”.例8.(2023·江苏高港月考)阅读理解点A、B、C为数轴上三点,如果点C在A、B之间到A的距离是点C到B的距离3倍,那么我们就称点C 是{A,B}的奇点.例如如图1,点A表示的数为﹣3,点B表80÷(3+1)=20,30−20=10,−50+20=−30,−50−80÷3=−7623(舍去),−50−80×3=−290.故P点运动到数轴上的−290,−30或10位置时,P、A和B中恰有一个点为其余两点的奇点.故答案为−290,−30或10.例9.(2023·湖南师大附中月考)已知数轴上两点A,B对应的数分别为8−和4,点P为数轴上一动点,若规定点P到A的距离是点P到B的距离的3倍时,我们就称点P是关于A B→的“好点”.(1)若点P到点A的距离等于点P到点B的距离时,求点P表示的数是多少;(2)①若点P运动到原点O时,此时点P关于A B→的“好点”(填是或者不是);②若点P以每秒1个单位的速度从原点O开始向右运动,当点P是关于A B→的“好点”时,求点P的运动时间;(3)若点P在原点的左边(即点P对应的数为负数),且点P,A,B中,其中有一个点是关于其它任意两个点的“好点”,请直接写出所有符合条件的点P表示的数.【答案】(1)-2;(2)①不是;1②秒或10秒;(3)-4,-5,-12,-14,-32,-44.【解析】解(1)∵数轴上两点A,B对应的数分别为-8和4,∴AB=4-(-8)=12,∵点P到点A、点B的距离相等,∴P为AB的中点,∴BP=P A=12AB=6,∴点P表示的数是-2;(2)①当点P运动到原点O时,P A=8,PB=4,∵P A≠3PB,∴点P不是关于A→B的“好点”;故答案为不是;②根据题意可知设点P运动的时间为t秒,P A=t+8,PB=|4-t|,∴t+8=3|4-t|,解得t=1或t=10,所以点P的运动时间为1秒或10秒;(3)根据题意可知设点P表示的数为n,P A=n+8或-n-8,PB=4-n,AB=12,①当点A是关于P→B的“好点”时,|P A|=3|AB|,即-n-8=36,解得n=-44;②当点A是关于B→P的“好点”时,|AB|=3|AP|,即3(-n-8)=12,解得n=-12;或3(n+8)=12,解得n=-4;③当点P是关于A→B的“好点”时,|P A|=3|PB|,即-n-8=3(4-n)或n+8=3(4-n),解得n=10或1(不符合题意,舍去);④当点P是关于B→A的“好点”时,|PB|=3|AP|,即4-n=3(n+8),解得n=-5;或4-n=3(-n-8),解得n=-14;⑤当点B是关于P→A的“好点”时,|PB|=3|AB|,即4-n=36,解得n=-32.综上所述所有符合条件的点P表示的数是-4,-5,-12,-14,-32,-44.。
专题2.4新定义的四种题型与真题训练-中考数学考前30天迅速提分复习方案(上海专用)(解析版)
专题2.4新定义的四种题型与真题训练题型一:函数中新定义问题1.(2022青浦一模18)如图,一次函数y =ax +b (a <0,b >0)的图象与x 轴,y 轴分别相交于点A ,点B ,将它绕点O 逆时针旋转90°后,与x 轴相交于点C ,我们将图象过点A ,B ,C 的二次函数叫做与这个一次函数关联的二次函数.如果一次函数y =﹣kx +k (k >0)的关联二次函数是y =mx 2+2mx +c (m ≠0),那么这个一次函数的解析式为.【解答】解:对y =﹣kx +k ,当x =0时,y =k ,当y =0时,x =1,∴A (1,0),B (0,k ),∴C (﹣k ,0),将A 、B 、C 的坐标代入y =mx 2+2mx +c 得,,解得:或或,∵m ≠0,k >0,∴m =﹣1,k =3,c =3,∴一次函数的解析式为y =﹣3x +3,故答案为:y =﹣3x +3.2.(2022黄埔一模18)若抛物线2111y ax b x c =++的顶点为A ,抛物线2222y ax b x c =-++的顶点为B ,且满足顶点A 在抛物线2y 上,顶点B 在抛物线1y 上,则称抛物线1y 与抛物线2y 互为“关联抛物线”,已知顶点为M 的抛物线()223y x =-+与顶点为N 的抛物线互为“关联抛物线”,直线MN 与x 轴正半轴交于点D ,如果3tan 4MDO ∠=,那么顶点为N 的抛物线的表达式为_________【详解】设顶点为N 的抛物线顶点坐标N 为(a ,b )已知抛物线()223y x =-+的顶点坐标M 为(2,3)∵3tan 4MDO ∠=,∴34M M N y x x =-,即3324Dx =-,解得24D x =±∵直线MN 与x 轴正半轴交于点D,∴D 点坐标为(6,0)则直线MD 解析式为3(6)4y x =--N 点在直线MD 3(6)4y x =--上,N 点也在抛物线()223y x =-+故有()23(6)423b a b a ⎧=--⎪⎨⎪=-+⎩,化简得2394247b a b a a ⎧=-+⎪⎨⎪=-+⎩联立得2394742a a a --=-+,化简得2135042a a -+=解得a =54或a =2(舍),将a =54代入3942b a =-有359157257442161616b =-⨯+=-+=解得545716a b ⎧=⎪⎪⎨⎪=⎪⎩,故N 点坐标为(54,5716)则顶点为N 的抛物线的表达式为2557()416y a x =-+将(2,3)代入2557()416y a x =-+有,25573(2416a =-+化简得95731616a =+,解得a =-1故顶点为N 的抛物线的表达式为2557(416y x =--+故答案为:2557()416y x =--+.3.(2020杨浦二模)定义:对于函数y =f (x ),如果当a ≤x ≤b 时,m ≤y ≤n ,且满足n ﹣m =k (b ﹣a )(k 是常数),那么称此函数为“k 级函数”.如:正比例函数y =﹣3x ,当1≤x ≤3时,﹣9≤y ≤﹣3,则﹣3﹣(﹣9)=k (3﹣1),求得k =3,所以函数y =﹣3x 为“3级函数”.如果一次函数y =2x ﹣1(1≤x ≤5)为“k 级函数”,那么k 的值是.【分析】根据一次函数y =2x ﹣1(1≤x ≤5)为“k 级函数”解答即可.【解答】解:因为一次函数y=2x﹣1(1≤x≤5)为“k级函数”,可得:k=2,故答案为:2.题型二:三角形中的新定义1.(2022嘉定一模18)如图,在△ABC中,∠C=90°,BC=2,,点D在边AC上,CD:AD=1:3,联结BD,点E在线段BD上,如果∠BCE=∠A,那么CE=.【解答】解:过点E作EF⊥BC,垂足为F,∵∠ACB=90°,BC=2,,∴AC===4,∵CD:AD=1:3,∴CD=1,∵∠BCE=∠A,∠ACB=∠CFE=90°,∴△ABC∽△CEF,∴===2,∴设EF为a,则CF为2a,BF为2﹣2a,∵∠ACB=∠BFE=90°,∠CBD=∠FBE,∴△BFE∽△BCD,∴=,∴=,∴a=,∴EF=,CF=1,∴CE===,故答案为:.2、(2022杨浦一模17)新定义:已知三条平行直线,相邻两条平行线间的距离相等,我们把三个顶点分别在这样的三条平行线上的三角形称为格线三角形.如图,已知等腰Rt△ABC为“格线三角形”,且∠BAC=90°,那么直线BC与直线c的夹角α的余切值为.【解答】解:过B 作BE ⊥直线a 于E ,延长EB 交直线c 于F ,过C 作CD ⊥直线a 于D ,则∠CDA =∠AEB =90°,∵直线a ∥直线b ∥直线c ,相邻两条平行线间的距离相等(设为d ),∴BF ⊥直线c ,CD =2d ,∴BE =BF =d ,∵∠CAB =90°,∠CDA =90°,∴∠DCA +∠DAC =90°,∠EAB +∠DAC =90°,∴∠DCA =∠EAB ,在△CDA 和△AEB 中,,∴△CDA ≌△AEB (AAS ),∴AE =CD =2d ,AD =BE =d ,∴CF =DE =AE +AD =2d +d =3d ,∵BF =d ,∴cotα===3,故答案为:3.3.(2022长宁一模17)定义:在△A 中,点D 和点E 分别在AB 边、AC 边上,且DE //BC ,点D 、点E 之间距离与直线DE 与直线BC 间的距离之比称为DE 关于BC 的横纵比.已知,在△A 中,4,BC BC =上的高长为3,DE 关于BC 的横纵比为2:3,则DE =_______.【详解】如图,AF BC ⊥于F ,交DE 于点G ,//DE BC ,ADE ABC ∴△△∽,AG DE ⊥,DE AGBC AF∴=,3AF = DE 关于BC 的横纵比为2:3,4BC =,23DE GF ∴=设2DE a =,则3GF a =,33AG AF GF a∴=-=-23343a a -∴=,解得23a =,43DE ∴=,故答案为:434.(2022虹口一模17)在网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形称为“格点三角形”.如图,在4×4的网格中,△ABC 是一个格点三角形,如果△DEF 也是该网格中的一个格点三角形,它与△ABC 相似且面积最大,那么△DEF 与△ABC 相似比的值是.【解答】解:由表格可得:AB =,BC =2,AC =,如图所示:作△DEF ,DE =,DF =,EF =5,∵===,∴△DEF ∽△ABC ,则△DEF 与△ABC 相似比的值是.故答案为:.5.(2020松江二模)如果一个三角形中有一个内角的度数是另外两个内角度数差的2倍,我们就称这个三角形为“奇巧三角形”.已知一个直角三角形是“奇巧三角形”,那么该三角形的最小内角等于度.【分析】设直角三角形的最小内角为x ,另一个内角为y ,根据三角形的内角和列方程组即可得到结论.【解答】解:设直角三角形的最小内角为x ,另一个内角为y ,由题意得,,解得:,答:该三角形的最小内角等于22.5°,故答案为:22.5.6.(2020嘉定二模)定义:如果三角形的两个内角∠α与∠β满足∠α=2∠β,那么,我们将这样的三角形称为“倍角三角形”,如果一个等腰三角形是“倍角三角形”,那么这个等腰三角形的腰长与底边长的比值为【考查内容】新定义题型,黄金三角形【评析】中等【解析】当∠α为底角时,用内角和公式求得∠β= 36,此时为黄金三角形,腰长与底边长的比值215+;当当∠α为顶角时,用内角和公式求得∠β= 45,此时为等腰直角三角形,腰长与底边长的比值22。
中考数学复习《新定义新概念问题》
中考数学复习新定义问题所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力.解决“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其解决问题的思想方法;二是根据问题情境的变化,通过认真思考,合理进行思想方法的迁移.类型1 新法则、新运算型例题:(2017甘肃天水)定义一种新的运算:x*y=,如:3*1==,则(2*3)*2= 2 .【考点】1G:有理数的混合运算.【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:(2*3)*2=()*2=4*2==2,故答案为:2同步训练:定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC,∠ABC=90°,①若AB=CD=1,AB∥CD,求对角线BD的长.②若AC⊥BD,求证:AD=CD,(2)如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P 作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形,求AE的长.【考点】LO:四边形综合题.【分析】(1)①只要证明四边形ABCD是正方形即可解决问题;②只要证明△ABD≌△CBD,即可解决问题;(2)若EF⊥BC,则AE≠EF,BF≠EF,推出四边形ABFE表示等腰直角四边形,不符合条件.若EF与BC不垂直,①当AE=AB时,如图2中,此时四边形ABFE是等腰直角四边形,②当BF=AB 时,如图3中,此时四边形ABFE是等腰直角四边形,分别求解即可;【解答】解:(1)①∵AB=AC=1,AB∥CD,∴S四边形ABCD是平行四边形,∵AB=BC,∴四边形ABCD是菱形,∵∠ABC=90°,∴四边形ABCD是正方形,∴BD=AC==.(2)如图1中,连接AC、BD.∵AB=BC,AC⊥BD,∴∠ABD=∠CBD,∵BD=BD,∴△ABD≌△CBD,∴AD=CD.(2)若EF⊥BC,则AE≠EF,BF≠EF,∴四边形ABFE表示等腰直角四边形,不符合条件.若EF与BC不垂直,①当AE=AB时,如图2中,此时四边形ABFE是等腰直角四边形,∴AE=AB=5.②当BF=AB时,如图3中,此时四边形ABFE是等腰直角四边形,∴BF=AB=5,∵DE∥BF,∴DE:BF=PD:PB=1:2,∴DE=2.5,∴AE=9﹣2.5=6.5,综上所述,满足条件的AE的长为5或6.5.解题方法点析此类问题在于读懂新定义,然后仿照范例进行运算,细心研读定义,细致观察范例是解题的关键.类型2 新定义几何概念型例题:(2017日照)阅读材料:在平面直角坐标系xOy中,点P(x0,y)到直线Ax+By+C=0的距离公式为:d=.例如:求点P(0,0)到直线4x+3y﹣3=0的距离.解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,∴点P(0,0)到直线4x+3y﹣3=0的距离为d==.根据以上材料,解决下列问题:问题1:点P1(3,4)到直线y=﹣x+的距离为 4 ;问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣x+b相切,求实数b的值;问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S△ABP的最大值和最小值.【考点】FI:一次函数综合题.【分析】(1)根据点到直线的距离公式就是即可;(2)根据点到直线的距离公式,列出方程即可解决问题.(3)求出圆心C到直线3x+4y+5=0的距离,求出⊙C上点P到直线3x+4y+5=0的距离的最大值以及最小值即可解决问题.【解答】解:(1)点P1(3,4)到直线3x+4y﹣5=0的距离d==4,故答案为4.(2)∵⊙C与直线y=﹣x+b相切,⊙C的半径为1,∴C(2,1)到直线3x+4y﹣b=0的距离d=1,∴=1,解得b=5或15.(3)点C(2,1)到直线3x+4y+5=0的距离d==3,∴⊙C上点P到直线3x+4y+5=0的距离的最大值为4,最小值为2,∴S△ABP 的最大值=×2×4=4,S△ABP的最小值=×2×2=2.同步训练:(2017湖北随州)在平面直角坐标系中,我们定义直线y=ax﹣a为抛物线y=ax2+bx+c(a、b、c为常数,a≠0)的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“梦想三角形”.已知抛物线y=﹣x2﹣x+2与其“梦想直线”交于A、B两点(点A在点B的左侧),与x轴负半轴交于点C.(1)填空:该抛物线的“梦想直线”的解析式为y=﹣x+,点A的坐标为(﹣2,2),点B的坐标为(1,0);(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“梦想三角形”,求点N的坐标;(3)当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)由梦想直线的定义可求得其解析式,联立梦想直线与抛物线解析式可求得A、B 的坐标;(2)过A作AD⊥y轴于点D,则可知AN=AC,结合A点坐标,则可求得ON的长,可求得N 点坐标;(3)当AC为平行四边形的一边时,过F作对称轴的垂线FH,过A作AK⊥x轴于点K,可证△EFH≌△ACK,可求得DF的长,则可求得F点的横坐标,从而可求得F点坐标,由HE的长可求得E点坐标;当AC为平行四边形的对角线时,设E(﹣1,t),由A、C的坐标可表示出AC 中点,从而可表示出F点的坐标,代入直线AB的解析式可求得t的值,可求得E、F的坐标.【解答】解:(1)∵抛物线y=﹣x2﹣x+2,∴其梦想直线的解析式为y=﹣x+,联立梦想直线与抛物线解析式可得,解得或,∴A(﹣2,2),B(1,0),故答案为:y=﹣x+;(﹣2,2);(1,0);(2)如图1,过A作AD⊥y轴于点D,在y=﹣x2﹣x+2中,令y=0可求得x=﹣3或x=1,∴C(﹣3,0),且A(﹣2,2),∴AC==,由翻折的性质可知AN=AC=,∵△AMN为梦想三角形,∴N点在y轴上,且AD=2,在Rt△AND中,由勾股定理可得DN===3,∵OD=2,∴ON=2﹣3或ON=2+3,∴N点坐标为(0,2﹣3)或(0,2+3);(3)①当AC为平行四边形的边时,如图2,过F作对称轴的垂线FH,过A作AK⊥x轴于点K,则有AC∥EF且AC=EF,∴∠ACK=∠EFH,在△ACK和△EFH中∴△ACK≌△EFH(AAS),∴FH=CK=1,HE=AK=2,∵抛物线对称轴为x=﹣1,∴F点的横坐标为0或﹣2,∵点F在直线AB上,∴当F点横坐标为0时,则F(0,),此时点E在直线AB下方,∴E到y轴的距离为EH﹣OF=2﹣=,即E点纵坐标为﹣,∴E(﹣1,﹣);当F点的横坐标为﹣2时,则F与A重合,不合题意,舍去;②当AC为平行四边形的对角线时,∵C(﹣3,0),且A(﹣2,2),∴线段AC的中点坐标为(﹣2.5,),设E(﹣1,t),F(x,y),则x﹣1=2×(﹣2.5),y+t=2,∴x=﹣4,y=2﹣t,代入直线AB解析式可得2﹣t=﹣×(﹣4)+,解得t=﹣,∴E(﹣1,﹣),F(﹣4,);综上可知存在满足条件的点F,此时E(﹣1,﹣)、F(0,)或E(﹣1,﹣)、F(﹣4,).解题方法点析解决此类问题的关键在于仔细研读几何新概念,将新的几何问题转化为已知的三角形、四边形或圆的问题,从而解决问题.对于几何新概念弄清楚条件和结论是至关重要的.类型3 新内容理解把握例题:(2017湖南岳阳)已知点A在函数y1=﹣(x>0)的图象上,点B在直线y2=kx+1+k(k为常数,且k≥0)上.若A,B两点关于原点对称,则称点A,B为函数y1,y2图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为()A.有1对或2对 B.只有1对C.只有2对D.有2对或3对【分析】根据“友好点”的定义知,函数y1图象上点A(a,﹣)关于原点的对称点B(a,﹣)一定位于直线y2上,即方程ka2﹣(k+1)a+1=0 有解,整理方程得(a﹣1)(ka﹣1)=0,据此可得答案.【解答】解:设A(a,﹣),由题意知,点A关于原点的对称点B((a,﹣),)在直线y2=kx+1+k上,则=﹣ak+1+k,整理,得:ka2﹣(k+1)a+1=0 ①,即(a﹣1)(ka﹣1)=0,∴a﹣1=0或ka﹣1=0,则a=1或ka﹣1=0,若k=0,则a=1,此时方程①只有1个实数根,即两个函数图象上的“友好点”只有1对;若k≠0,则a=,此时方程①有2个实数根,即两个函数图象上的“友好点”有2对,综上,这两个函数图象上的“友好点”对数情况为1对或2对,故选:A.【点评】本题主要考查直线和双曲线上点的坐标特征及关于原点对称的点的坐标,将“友好点”的定义,根据关于原点对称的点的坐标特征转化为方程的问题求解是解题的关键.同步训练:(2017湖南株洲)如图示,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点.三角形的布洛卡点(Brocard point)是法国数学家和数学教育家克洛尔(A.L.Crelle 1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard 1845﹣1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF中,∠EDF=90°,若点Q为△DEF的布洛卡点,DQ=1,则EQ+FQ=()A.5 B.4 C.D.【考点】R2:旋转的性质;JB:平行线的判定与性质;KW:等腰直角三角形.【分析】由△DQF∽△FQE,推出===,由此求出EQ、FQ即可解决问题.【解答】解:如图,在等腰直角三角形△DEF中,∠EDF=90°,DE=DF,∠1=∠2=∠3,∵∠1+∠QEF=∠3+∠DFQ=45°,∴∠QEF=∠DFQ,∵∠2=∠3,∴△DQF∽△FQE,∴===,∵DQ=1,∴FQ=,EQ=2,∴EQ+FQ=2+,故选D专题训练1.(2017深圳)阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=﹣1,那么(1+i)•(1﹣i)= 2 .【考点】4F:平方差公式;2C:实数的运算.【分析】根据定义即可求出答案.【解答】解:由题意可知:原式=1﹣i2=1﹣(﹣1)=2故答案为:22. (2017浙江湖州)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a﹣b.例如:5⊗2=2×5﹣2=8,(﹣3)⊗4=2×(﹣3)﹣4=﹣10.(1)若3⊗x=﹣2011,求x的值;(2)若x⊗3<5,求x的取值范围.【考点】C6:解一元一次不等式;2C:实数的运算;86:解一元一次方程.【分析】(1)根据新定义列出关于x的方程,解之可得;(2)根据新定义列出关于x的一元一次不等式,解之可得.【解答】解:(1)根据题意,得:2×3﹣x=﹣2011,解得:x=2017;(2)根据题意,得:2x﹣3<5,解得:x<4.3. (2017湖北宜昌)阅读:能够成为直角三角形三条边长的三个正整数a,b,c,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为:其中m>n>0,m,n是互质的奇数.应用:当n=1时,求有一边长为5的直角三角形的另外两条边长.【考点】KT:勾股数;KQ:勾股定理.【分析】由n=1,得到a=(m2﹣1)①,b=m②,c=(m2+1)③,根据直角三角形有一边长为5,列方程即可得到结论.【解答】解:当n=1,a=(m2﹣1)①,b=m②,c=(m2+1)③,∵直角三角形有一边长为5,∴Ⅰ、当a=5时,(m2﹣1)=5,解得:m=(舍去),Ⅱ、当b=5时,即m=5,代入①③得,a=12,c=13,Ⅲ、当c=5时,(m2+1)=5,解得:m=±3,∵m>0,∴m=3,代入①②得,a=4,b=3,综上所述,直角三角形的另外两条边长分别为12,13或3,4.4. (2017广西百色)阅读理解:用“十字相乘法”分解因式2x2﹣x﹣3的方法.(1)二次项系数2=1×2;(2)常数项﹣3=﹣1×3=1×(﹣3),验算:“交叉相乘之和”;1×3+2×(﹣1)=1 1×(﹣1)+2×3=5 1×(﹣3)+2×1=﹣1 1×1+2×(﹣3)=﹣5(3)发现第③个“交叉相乘之和”的结果1×(﹣3)+2×1=﹣1,等于一次项系数﹣1.即:(x+1)(2x﹣3)=2x2﹣3x+2x﹣3=2x2﹣x﹣3,则2x2﹣x﹣3=(x+1)(2x﹣3).像这样,通过十字交叉线帮助,把二次三项式分解因式的方法,叫做十字相乘法.仿照以上方法,分解因式:3x2+5x﹣12= (x+3)(3x﹣4).【考点】57:因式分解﹣十字相乘法等.【分析】根据“十字相乘法”分解因式得出3x2+5x﹣12=(x+3)(3x﹣4)即可.【解答】解:3x2+5x﹣12=(x+3)(3x﹣4).故答案为:(x+3)(3x﹣4)5. (2017湖北咸宁)定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”.理解:(1)如图1,已知A、B是⊙O上两点,请在圆上找出满足条件的点C,使△ABC为“智慧三角形”(画出点C的位置,保留作图痕迹);(2)如图2,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=CD,试判断△AEF 是否为“智慧三角形”,并说明理由;运用:(3)如图3,在平面直角坐标系xOy中,⊙O的半径为1,点Q是直线y=3上的一点,若在⊙O上存在一点P,使得△OPQ为“智慧三角形”,当其面积取得最小值时,直接写出此时点P 的坐标.【考点】MR:圆的综合题.【分析】(1)连结AO并且延长交圆于C1,连结BO并且延长交圆于C2,即可求解;(2)设正方形的边长为4a,表示出DF=CF以及EC、BE的长,然后根据勾股定理列式表示出AF2、EF2、AE2,再根据勾股定理逆定理判定△AEF是直角三角形,由直角三角形的性质可得△AEF为“智慧三角形”;(3)根据“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,根据勾股定理可求另一条直角边,再根据三角形面积可求斜边的高,即点P的横坐标,再根据勾股定理可求点P的纵坐标,从而求解.【解答】解:(1)如图1所示:(2)△AEF是否为“智慧三角形”,理由如下:设正方形的边长为4a,∵E是DC的中点,∴DE=CE=2a,∵BC:FC=4:1,∴FC=a,BF=4a﹣a=3a,在Rt△ADE中,AE2=(4a)2+(2a)2=20a2,在Rt△ECF中,EF2=(2a)2+a2=5a2,在Rt△ABF中,AF2=(4a)2+(3a)2=25a2,∴AE2+EF2=AF2,∴△AEF是直角三角形,∵斜边AF上的中线等于AF的一半,∴△AEF为“智慧三角形”;(3)如图3所示:由“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,由勾股定理可得PQ==2,PM=1×2÷3=,由勾股定理可求得OM==,故点P的坐标(﹣,),(,).6.(2017•益阳)在平面直角坐标系中,将一点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这一点的“互换点”,如(﹣3,5)与(5,﹣3)是一对“互换点”.(1)任意一对“互换点”能否都在一个反比例函数的图象上?为什么?(2)M、N是一对“互换点”,若点M的坐标为(m,n),求直线MN的表达式(用含m、n 的代数式表示);(3)在抛物线y=x2+bx+c的图象上有一对“互换点”A、B,其中点A在反比例函数y=﹣的图象上,直线AB经过点P(,),求此抛物线的表达式.【考点】G6:反比例函数图象上点的坐标特征;FA:待定系数法求一次函数解析式;H8:待定系数法求二次函数解析式.【分析】(1)设这一对“互换点”的坐标为(a,b)和(b,a).①当ab=0时,它们不可能在反比例函数的图象上,②当ab≠0时,由可得,于是得到结论;(2)把M(m,n),N(n,m)代入y=cx+d,即可得到结论;(3)设点A(p,q),则,由直线AB经过点P(,),得到p+q=1,得到q=﹣1或q=2,将这一对“互换点”代入y=x2+bx+c得,于是得到结论.【解答】解:(1)不一定,设这一对“互换点”的坐标为(a,b)和(b,a).①当ab=0时,它们不可能在反比例函数的图象上,②当ab≠0时,由可得,即(a,b)和(b,a)都在反比例函数(k≠0)的图象上;(2)由M(m,n)得N(n,m),设直线MN的表达式为y=cx+d(c≠0).则有解得,∴直线MN的表达式为y=﹣x+m+n;(3)设点A(p,q),则,∵直线AB经过点P(,),由(2)得,∴p+q=1,∴,解并检验得:p=2或p=﹣1,∴q=﹣1或q=2,∴这一对“互换点”是(2,﹣1)和(﹣1,2),将这一对“互换点”代入y=x2+bx+c得,∴解得,∴此抛物线的表达式为y=x2﹣2x﹣1.【点评】本题考查了反比例函数图象上点的坐标特征,待定系数法求函数的解析式,正确的理解题意是解题的关键.。
专题71 函数中的新定义问题(解析版)-2023年中考数学重难点解题大招复习讲义-新定义问题
例题精讲考点1一次函数新定义问题【例1】.定义:我们把一次函数y=kx+b(k≠0)与正比例函数y=x的交点称为一次函数y=kx+b(k≠0)的“不动点”.例如求y=2x﹣1的“不动点”:联立方程,解得,则y=2x﹣1的“不动点”为(1,1).(1)由定义可知,一次函数y=3x+2的“不动点”为(﹣1,﹣1);(2)若一次函数y=mx+n的“不动点”为(2,n﹣1),求m、n的值;(3)若直线y=kx﹣3(k≠0)与x轴交于点A,与y轴交于点B,且直线y=kx﹣3上没=3S△ABO,求满足条件的P点坐标.有“不动点”,若P点为x轴上一个动点,使得S△ABP解:(1)联立,解得,∴一次函数y=3x+2的“不动点”为(﹣1,﹣1),故答案为:(﹣1,﹣1);(2)∵一次函数y=mx+n的“不动点”为(2,n﹣1),∴n﹣1=2,∴n=3,∴“不动点”为(2,2),∴2=2m+3,解得m=﹣;(3)∵直线y=kx﹣3上没有“不动点”,∴直线y=kx﹣3与直线y=x平行,∴k=1,∴y=x﹣3,∴A(3,0),B(0,﹣3),设P(t,0),∴AP=|3﹣t|,=×|t﹣3|×3,∴S△ABPS△ABO=×3×3,=3S△ABO,∵S△ABP∴|t﹣3|=9,∴t=12或t=﹣6,∴P(﹣6,0)或P(12,0).变式训练【变1-1】.在初中阶段的函数学习中,我们经历了“确定函数的表达式一一利用函数图象研究其性质一一运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义.结合上面经历的学习过程,现在来解决下面的问题:在函数y=|kx﹣3|+b中,当x=2时,y=﹣4;当x=0时,y=﹣1.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象,并写出这个函数的一条性质;(3)已知函数的图象如图所示,结合你所画的函数图象,直接写出不等式的解集.(4)若方程|x2﹣6x|﹣a=0有四个不相等的实数根,则实数a的取值范围是0<a<9.解:(1)∵在函数y=|kx﹣3|+b中,当x=2时,y=﹣4;当x=0时,y=﹣1,∴,解得,∴这个函数的表达式是y=|﹣3|﹣4;(2)∵y=|﹣3|﹣4,∴,∴函数y=x﹣7过点(2,﹣4)和点(4,﹣1);函数y=﹣x﹣1过点(0,﹣1)和点(﹣2,2),该函数的图象如图所示,性质:当x>2时,y的值随x的增大而增大;(3)由函数的图象可得,不等式的解集是:1≤x≤4;(4)由|x2﹣6x|﹣a=0得a=|x2﹣6x|,作出y=|x2﹣6x|的图象,由图象可知,要使方程|x2﹣6x|﹣a=0有四个不相等实数根,则0<a<9,故答案为:0<a<9.考点2反比例函数新定义问题【例2】.探究函数性质时,我们经历了列表、描点、连线画函数图象,观察分析图象特征,概括函数性质的过程,以下是我们研究函数y=x+|﹣2x+6|+m性质及其应用的部分过程,请按要求完成下列各小题.x…﹣2﹣1012345…y…654a21b7…(1)写出函数关系式中m及表格中a,b的值;m=﹣2,a=3,b=4;(2)根据表格中的数据在所给的平面直角坐标系中画出该函数的图象;(3)已知函数y=﹣(x﹣2)2+8的图象如图所示,结合你所画的函数图象,不等式x+|﹣2x+6|+m>﹣(x﹣2)2+8的解集为x<0或x>4..解:(1)由表格可知,点(3,1)在该函数图象上,∴将点(3,1)代入函数解析式可得:1=3+|﹣2×3+6|+m,解得:m=﹣2,∴原函数的解析式为:y=x+|﹣2x+6|﹣2;当x=1时,y=3;当x=4时,y=4;∴m=﹣2,a=3,b=4,故答案为:﹣2,3,4;(2)通过列表—描点—连线的方法作图,如图所示;(3)要求不等式x+|﹣2x+6|+m>﹣(x﹣2)2+8的解集,实际上求出函数y=x+|﹣2x+6|+m的图象位于函数y=﹣(x﹣2)2+8图象上方的自变量的范围,∴由图象可知,当x<0或x>4时,满足条件,故答案为:x<0或x>4.变式训练【定义】在平面内,把一个图形上任意一点与另一个图形上任意一点之间的距离的最小值,称为这两个图形之间的距离,即A,B分别是图形M和图形N上任意一点,当AB的长最小时,称这个最小值为图形M与图形N之间的距离.例如,如图1,AB⊥l1,线段AB的长度称为点A与直线l1之间的距离,当l2∥l1时,线段AB的长度也是l1与l2之间的距离.【应用】(1)如图2,在等腰Rt△BAC中,∠A=90°,AB=AC,点D为AB边上一点,过点D作DE∥BC交AC于点E.若AB=6,AD=4,则DE与BC之间的距离是;(2)如图3,已知直线l3:y=﹣x+4与双曲线C1:y=(x>0)交于A(1,m)与B两点,点A与点B之间的距离是2,点O与双曲线C1之间的距离是;【拓展】(3)按规定,住宅小区的外延到高速路的距离不超过80m时,需要在高速路旁修建与高速路相同走向的隔音屏障(如图4).有一条“东南﹣西北”走向的笔直高速路,路旁某住宅小区建筑外延呈双曲线的形状,它们之间的距离小于80m.现以高速路上某一合适位置为坐标原点,建立如图5所示的直角坐标系,此时高速路所在直线l4的函数表达式为y=﹣x,小区外延所在双曲线C2的函数表达式为y=(x>0),那么需要在高速路旁修建隔音屏障的长度是多少?解:(1)如图,过点D作DH⊥BC于点H,∵∠A=90°,AB=AC,∴∠B=45°,∵DH⊥BC,∴△BDH是等腰直角三角形,∴DH=BD,∵AB=6,AD=4,∴BD=AB﹣AD=6﹣4=2,∴DH=×2=;故答案为:;(2)把A(1,m)代入y=﹣x+4中,得:m=﹣1+4=3,∴A(1,3),把A(1,3)代入y=,得:3=,∴k=3,∴双曲线C1的解析式为y=,联立,得:﹣x+4=,即x2﹣4x+3=0,解得:x1=1,x2=3,∴B(3,1),∴AB==2;如图,作FG∥AB,且FG与双曲线y=只有一个交点,设直线FG的解析式为y=﹣x+b,则﹣x+b=,整理得:x2﹣bx+3=0,∴Δ=(﹣b)2﹣4×1×3=b2﹣12=0,∴b=2或b=﹣2(不符合题意,舍去),∴直线FG的解析式为y=﹣x+2,由﹣x+2=,解得:x1=x2=,∴K(,),∴OK==;故答案为:2,;(3)如图,设点S(a,b)是双曲线y=(x>0)上任意一点,且a<b,以点S为圆心,80为半径作⊙S交l4于E,过点S作SF⊥直线l4于F,交y轴于W,SH⊥x轴于H,SG⊥y轴于G,则SG=a,SH=b,ab=2400,∵直线y=﹣x平分第二、四象限角,∴∠FOW=45°,∵∠OFW=∠SGW=90°,∴∠OWF=90°﹣45°=45°,∴∠SWG=∠OWF=45°,∴△WOF和△SWG是等腰直角三角形,∴SW=SG,WF=OW,∴SF=SW+WF=SG+OW=a+(b﹣a)=(a+b),∵EF====,∵OF=OW=(b﹣a),∴OE=(b﹣a)+,设b﹣a=m(m>0),则OE=m+≤=40,∴需要在高速路旁修建隔音屏障的长度=2OE=2×40=80,答:需要在高速路旁修建隔音屏障的长度是80米.考点3二次函数新定义问题【例3】.小爱同学学习二次函数后,对函数y=﹣(|x|﹣1)2进行了探究.在经历列表、描点、连线步骤后,得到如图的函数图象.请根据函数图象,回答下列问题:(1)观察探究:①写出该函数的一条性质:函数图象关于y轴对称;②方程﹣(|x|﹣1)2=﹣1的解为:x=﹣2或x=0或x=2;③若方程﹣(|x|﹣1)2=m有四个实数根,则m的取值范围是﹣1<m<0.(2)延伸思考:将函数y=﹣(|x|﹣1)2的图象经过怎样的平移可得到函数y1=﹣(|x﹣1|﹣1)2+2的图象?写出平移过程,并直接写出当1<y1≤2时,自变量x的取值范围.解:(1)观察探究:①该函数的一条性质为:函数图象关于y轴对称;②方程﹣(|x|﹣1)2=﹣1的解为:x=﹣2或x=0或x=2;③若方程﹣(|x|﹣1)2=m有四个实数根,则a的取值范围是﹣1<m<0.故答案为:函数图象关于y轴对称;x=﹣2或x=0或x=2;﹣1<m<0.(2)将函数y=﹣(|x|﹣1)2的图象向右平移1个单位,向上平移2个单位可得到函数y1=﹣(|x﹣1|﹣1)2+2的图象,当1<y1≤2时,自变量x的取值范围是﹣1<x<3且x≠1,变式训练【变3-1】.我们定义一种新函数:形如y=|ax2+bx+c|(a≠0,b2﹣4ac>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|ax2+bx+c|的图象(如图所示),下列结论正确的是()A.图象具有对称性,对称轴是直线x=1.5B.有且只有﹣1≤x≤1时,函数值y随x值的增大而增大C.若a<0,则8a+c>0D.若a<0,则a+b≥m(am+b)(m为任意实数)解:由图象可得,图象具有对称性,对称轴是直线x==1,故选项A错误,不符合题意;当﹣1≤x≤1或x>3时,函数值y随x值的增大而增大,故选项B错误,不符合题意;∵﹣=1,∴b=﹣2a,当x=﹣2时,y=4a﹣2b+c<0,∴4a﹣2b+c=4a﹣2×(﹣2a)+c=4a+4a+c=8a+c<0,故选项C错误,不符合题意;∵y=ax2+bx+c开口向下,对称轴为直线x=1,∴a+b+c≥am2+bm+c(m为任意实数),∴a+b≥m(am+b)+c,故选项D正确,符合题意;故选:D.【变3-2】.已知抛物线y=ax2+c过点A(﹣2,0)和D(﹣1,3)两点,交x轴于另一点B.(1)求抛物线解析式;(2)如图1,点P是BD上方抛物线上一点,连接AD,BD,PD,当BD平分∠ADP时,求P点坐标;(3)将抛物线图象绕原点O顺时针旋转90°形成如图2的“心形”图案,其中点M,N 分别是旋转前后抛物线的顶点,点E、F是旋转前后抛物线的交点.①直线EF的解析式是y=x;②点G、H是“心形”图案上两点且关于EF对称,则线段GH的最大值是.解:(1)∵抛物线y=ax2+c过点A(﹣2,0)和D(﹣1,3)两点,∴,解得,∴抛物线解析式为y=﹣x2+4;(2)过点B作BE⊥x轴交DP延长线于点E,过D作DF⊥x于点F,由y=﹣x2+4,令y=0,则﹣x2+4=0,解得:x1=﹣2,x2=2,则B(2,0),∵DF=3,BF=2﹣(﹣1)=3,∴DF=BF,∴∠DBF=45°,∴∠DBE=45°,又∵DB=DB,BD平分∠ADP,∴△DAB≌△DEB(ASA),∴BA=BE,∵B(2,0),∴E(2,4),设直线DE的解析式为y=kx+b,则,解得,∴直线DE的解析式为y=x+,联立,解得或,则P(,);(3)①∵抛物线关于y轴对称,所以旋转后图形关于x轴对称,∴对于抛物线上任意一点P(a,b)关于原点旋转90°后对应点为P1(b,﹣a)在旋转后图形上,P1(b,﹣a)关于x轴对称的点P2(b,a)在旋转后图形上,∵P(a,b)与P2(b,a)关于y=x对称,∴图形2关于y=x对称,∴直线EF的解析式为y=x,故答案为:y=x;②如图,连接GH,交EF与点K,则GH=2GK,过点G作x轴的垂线,交EF于点I,∴当GK最大时,△GFE面积最大,=GI•(x E﹣x F),又∵S△GFE设G(m,﹣m2+4),则I(m,m),∴GI=y G﹣y I=﹣m2+4﹣m=﹣(m+)2+,∴当m=﹣时,△GFE面积最大,∴G(﹣,),由①可知G(﹣,)关于y=x的对称点H(,﹣),∴K(,),∴GK==,∴GH=2GK=,∴GH的最大值为,故答案为:.1.对于实数a,b,定义符号max|a,b|,其意义为:当a≥b时,max|a,b|=a,当a<b时,max|a,b|=b.例如max|2,﹣1|=2,若关于x的函数y=max|2x﹣1,﹣x+5|,则该函数的最小值为()A.B.1C.D.3解:当2x﹣1≥﹣x+5时,即x≥2,y=max|2x﹣1,﹣x+5|=2x﹣1,此时x=2时,y有最小值,最小值为2×2﹣1=3;当2x﹣1≤﹣x+5时,即x≤2,y=max|2x﹣1,﹣x+5|=﹣x+5,此时x=2时,y有最小值,最小值为﹣2+5=3;综上所述,该函数的最小值为3.故选:D.2.在平面直角坐标系xOy中,对于点P(a,b),若点P′的坐标为(ka+b,a+)(其中k为常数且k≠0),则称点P′为点P的“k关联点”.已知点A在反比例函数y=的图象上运动,且点A是点B的“关联点”,当线段OB最短时,点B的坐标为(,)或(﹣,﹣).解:设B(x,y),∵点A是点B的“关联点”,∴A(x+y,x+)∵点A在函数y=(x>0)的图象上,∴(x+y)(x+)=,即:x+y=或x+y=﹣,当点B在直线y=﹣x+上时,设直线y=﹣x+与x轴、y轴相交于点M、N,则M(1,0)、N(0,),当OB⊥MN时,线段OB最短,此时OB==,由∠NMO=60°,可得点B(,);设直线y=﹣x﹣时,同理可得点B(﹣,﹣);故答案为:(,)或(﹣,﹣).3.定义:由a,b构造的二次函数y=ax2+(a+b)x+b叫做一次函数y=ax+b的“滋生函数”,一次函数y=ax+b叫做二次函数y=ax2+(a+b)x+b的“本源函数”(a,b为常数,且a ≠0).若一次函数y=ax+b的“滋生函数”是y=ax2﹣3x+a+1,那么二次函数y=ax2﹣3x+a+1的“本源函数”是y=﹣2x﹣1.解:∵y=ax+b的“滋生函数”是y=ax2﹣3x+a+1,∴ax2﹣3x+a+1=ax2+(a+b)x+b,即,解得,∴y=ax2﹣3x+a+1的“本源函数”是y=﹣2x﹣1,故答案为:y=﹣2x﹣1.4.在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“不动点”.例如(﹣3,﹣3)、(1,1)、(2023,2023)都是“不动点”.已知双曲线.(1)下列说法不正确的是C.A.直线y=x的图象上有无数个“不动点”B.函数的图象上没有“不动点”C.直线y=x+1的图象上有无数个“不动点”D.函数y=x2的图象上有两个“不动点”(2)求双曲线上的“不动点”;(3)若抛物线y=ax2﹣3x+c(a、c为常数)上有且只有一个“不动点”,①当a>1时,求c的取值范围.②如果a=1,过双曲线图象上第一象限的“不动点”做平行于x轴的直线l,若抛物线上有四个点到l的距离为m,直接写出m的取值范围.解:(1)设坐标平面内任意一个“不动点”的坐标为(n,n),直线y=x,当x=n时,则y=n,∴点(n,n)在直线y=x上,∴直线y=x上有无数个“不动点”,故A正确;将(n,n)代入y=,得n=,此方程无解,∴函数y=的图象上没有“不动点”,故B正确;将(n,n)代入y=x+1,得n=n+1,此方程无解,∴直线y=x+1上没有“不动点”,故C错误;将(n,n)代入y=x2,得n=n2,解得n1=0,n2=1,∴函数y=x2的图象上有两个“不动点”(0,0)和(1,1),故D正确,故选:C.(2)设双曲线上的“不动点”为(x,x),则x=,解得x1=﹣3,x2=3,∴双曲线上的“不动点”为(﹣3,﹣3)和(3,3).(3)①设抛物线y=ax2﹣3x+c上的“不动点”为(x,x),则x=ax2﹣3x+c,即ax2﹣4x+c=0,∵该抛物线上有且只有一个“不动点”,∴关于x的一元二次方程ax2﹣4x+c=0有两个相等的实数根,∴(﹣4)2﹣4ac=0,∴a=,∵a>1,∴>1,∴0<c<4.②∵当a=1时,则=1,∴c=4,∴抛物线为y=x2﹣3x+4,由(2)得,双曲线在第一象限的不动点为(3,3),∴直线l即直线y=3,如图,∵y=x2﹣3x+4=(x﹣)2+,∴该抛物线的顶点B(,),对称轴为直线x=,设直线r在直线l下方且到直线l的距离为m,直线x=交直线l于点A,交直线r于点C,∴AC=m,A(,3),∴AB=3﹣=,设直线t与直线r关于直线l对称,∵当点C在点B的上方时,抛物线上有四个点到l的距离为m,∴0<m<.5.在并联电路中,电源电压为U总=6V,小亮根据“并联电路分流不分压”的原理知道:I总=I1+I2(I1=,I2=),已知R1为定值电阻,当R变化时,干路电流I总也会发生变化,且干路电流I总与R之间满足如下关系:I总=1+.(1)定值电阻R1的阻值为6Ω;(2)小亮根据学习函数的经验,参照研究函数的过程与方法,对比反比例函数I2=来探究函数I=1+的图象与性质.总①列表:如表列出I总与R的几组对应值,请写出m,n的值:m= 2.5,n=2;R…3456…I2=…2 1.5 1.21…I总=1+…3m 2.2n…②描点、连线:在平面直角坐标系中,以①给出的R的取值为横坐标,以I总相对应的值为纵坐标,描出相应的点,并将各点用光滑曲线顺次连接起来;(3)观察图象并分析表格,回答下列问题:①I总随R的增大而减小;(填“增大”或“减小”)②函数I总=1+的图象是由I2=的图象向上平移1个单位而得到.解:(1)∵I1==1,∴R1=6,故答案为:6;(2)①当R=4时,m=1+1.5=2.5,当R=6时,n=1+1=2,故答案为:2.5,2;②图象如下:(3)①根据图象可知,I随R的增大而减小,总故答案为:减小;②函数I总=1+的图象是由I2=的图象向上平移1个单位得到,故答案为:上,1.6.小欣研究了函数的图象与性质.其研究过程如下:(1)绘制函数图象①列表:下表是x与y的几组对应值,其中m=1;x…﹣4﹣3﹣2012…y…﹣1﹣2﹣332m…﹣﹣②描点:根据表中的数值描点(x,y);③连线:用平滑的曲线顺次连接各点,请把图象补充完整.(2)探究函数性质:下列说法不正确的是AA.函数值y随x的增大而减小B.函数图象不经过第四象限C.函数图象与直线x=﹣1没有交点D.函数图象对称中心(﹣1,0)(3)如果点A(x1,y1)、B(x2,y2)在函数图象上,如果x1+x2=﹣2,则y1+y2=0.解:(1)把x=0代入到中可得:y=1,即m=1,图象如下所示:故答案为:1,图象如上所示;(2)A.当x<﹣1或x>﹣1时,函数值y随x的增大而减小,故选项A不正确;B.根据图象可得,函数图象不经过第四象限,故选项B正确;C.根据函数表示可得:x≠﹣1,所以函数图象与直线x=﹣1没有交点,故选项C正确;D.根据图象可知,函数图象对称中心(﹣1,0),故选项D正确;故选:A;(3)∵x1+x2=﹣2,∴y1+y2====0;故答案为:0.7.九年级某数学兴趣小组在学习了反比例函数的图象与性质后,进一步研究了函数的图象与性质,其探究过程如下:(1)绘制函数图象,列表:下表是x与y的几组对应值,其中m=.x…﹣3﹣2﹣1123…y…124421m…描点:根据表中各组对应值(x,y),在平面直角坐标系中描出各点,请你描出剩下的点;连线:用平滑的曲线顺次连接各点,已经画出了部分图象,请你把图象补充完整;(2)通过观察图象,下列关于该函数的性质表述正确的是:②;(填写代号)①函数值y随x的增大而增大;②关于y轴对称;③关于原点对称;(3)在上图中,若直线y=2交函数的图象于A,B两点(A在B左边),连接OA.过点B作BC∥OA交x轴于C.则S四边形OABC=4.解:(1)将x=3代入得y=,故答案为:.(2)由(1)中的图象可知,在第一象限内,y随x的增大而减小;在第二象限内,y随x的增大而增大;函数图象关于y轴对称,故②正确;故答案为:②.(3)将y=2代入得x=1或x=﹣1,∴AB=1﹣(﹣1)=2,∵AB在直线y=2上,OC在x轴上,∴AB∥OC,又∵BC∥OA,∴四边形OABC为平行四边形,=AB•y A=2×2=4.∴S四边形OABC故答案为:4.8.【定义】从一个已知图形的外一点引两条射线分别经过该已知图形的两点,则这两条射线所成的最大角称为该点对已知图形的视角,如图①,∠APB是点P对线段AB的视角.【应用】(1)如图②,在直角坐标系中,已知点A(2,),B(2,2),C(3,),则原点O对三角形ABC的视角为30°;(2)如图③,在直角坐标系中,以原点O,半径为2画圆O1,以原点O,半径为4画圆O2,证明:圆O2上任意一点P对圆O1的视角是定值;【拓展应用】(3)很多摄影爱好者喜欢在天桥上对城市的标志性建筑拍照,如图④.现在有一条笔直的天桥,标志性建筑外延呈正方形,摄影师想在天桥上找到对建筑视角为45°的位置拍摄.现以建筑的中心为原点建立如图⑤的坐标系,此时天桥所在的直线的表达式为x =﹣5,正方形建筑的边长为4,请直接写出直线上满足条件的位置坐标.解:(1)延长BA交x轴于点D,过点C作CE⊥x轴于点E,∵点,,,∴AB∥y轴,,OE=3,∴AB⊥x轴,∴,OD=2,∴,,∴∠BOD=60°,∠COE=30°,∴∠BOC=∠BOD﹣∠COE=30°,即原点O对三角形ABC的视角为30°过答案为:30°(2)证明:如图,过圆O2上任一点P作圆O1的两条切线交圆O1于A,B,连接OA,OB,OP,则有OA⊥PA,OB⊥PB,在中,OA=2,OP=4,∴,∴∠OPA=30°,同理可求得:∠OPB=30°,∴∠APB=60°,即圆O2上任意一点P对圆O1的视角是60°,∴圆O2上任意一点P对圆O1的视角是定值.(3)当在直线AB与直线CD之间时,视角是∠APD,此时以E(﹣4,0)为圆心,EA 半径画圆,交直线于P3,P6,∵∠DP3B>∠DP3A=45°,∠AP6C>∠DP6C=45°,不符合视角的定义,P3,P6舍去.同理,当在直线AB上方时,视角是∠BPD,此时以A(﹣2,2)为圆心,AB半径画圆,交直线于P1,P5,P5不满足;过点P1作P1M⊥AD交DA延长线于点M,则AP1=4,P1M=5﹣2=3,∴,∴当在直线CD下方时,视角是∠APC,此时以D(﹣2,﹣2)为圆心,DC半径画圆,交直线于P2,P4,P4不满足;同理得:;综上所述,直线上满足条件的位置坐标或.9.小明在学习函数的过程中遇到这样一个函数:y=[x],若x≥0时,[x]=x2﹣1;若x<0时,[x]=﹣x﹣1.小明根据学习函数的经验,对该函数进行了探究.(1)①列表:下表列出y与x的几组对应值,请写出m,n的值m=0;n=3;x…﹣2﹣1012…y…1m00n…②描点:在平面直角坐标系中,以①给出的自变量x的取值为横坐标,以相应的函数值为纵坐标,描出相应的点并连线,作出函数图象;(2)下列关于该函数图象的性质正确的是③;(填序号)①y随x的增大而增大;②该函数图象关于y轴对称;③当x=0时,函数有最小值为﹣1;④该函数图象不经过第三象限.(3)若函数值y=8,则x=3或﹣9;(4)若关于x的方程2x+c=[x]有两个不相等的实数根,请结合函数图象,直接写出c 的取值范围是c>﹣2.解:(1)①m=﹣(﹣1)﹣1=0;n=22﹣1=3;故答案为:0,3;②描点,连线,作出函数图象如下:(2)从图象可知:下列关于该函数图象的性质正确的是③;故答案为:③;(3)若x≥0时,x2﹣1=8,解得x=3或x=﹣3,∴x=3;若x<0时,﹣x﹣1=8,解得x=﹣9,故答案为:3或﹣9;(4)由图象可知:关于x的方程2x+c=[x]有两个不相等的实数根,则c>﹣2,故答案为:c>﹣2.10.某公园内人工湖上有一座拱桥(横截面如图所示),跨度AB为4米.在距点A水平距离为d米的地点,拱桥距离水面的高度为h米.小红根据学习函数的经验,对d和h之间的关系进行了探究.下面是小红的探究过程,请补充完整:(1)经过测量,得出了d和h的几组对应值,如表.d/米00.61 1.8 2.43 3.64h/米0.88 1.90 2.38 2.86 2.80 2.38 1.600.88在d和h这两个变量中,d是自变量,h是这个变量的函数;(2)在下面的平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合表格数据和函数图象,解决问题:①桥墩露出水面的高度AE为0.88米;②公园欲开设游船项目,现有长为3.5米,宽为1.5米,露出水面高度为2米的游船.为安全起见,公园要在水面上的C,D两处设置警戒线,并且CE=DF,要求游船能从C,D两点之间安全通过,则C处距桥墩的距离CE至少为0.7米.(精确到0.1米)解:(1)d是自变量,h是这个变量的函数,故答案为:d,h;(2)如图,(3)①当x=0时,y=0.88,∴桥墩露出水面的高度AE为0.88米,故答案为:0.88;②设y=ax2+bx+c,把(0,0.88)、(1,2.38)、(3,2.38)代入得,,解得,∴y=﹣0.5x2+2x+0.88,对称轴为直线x=2,令y=2,则2=﹣0.5x2+2x+0.88,解得x≈3.3(舍去)或0.7.故答案为:0.7.11.小明为了探究函数M:y=﹣x2+4|x|﹣3的性质,他想先画出它的图象,然后再观察、归纳得到,并运用性质解决问题.(1)完成函数图象的作图,并完成填空.①列出y与x的几组对应值如表:x…﹣5﹣4﹣3﹣2﹣1012345…y…﹣8﹣3010﹣3010a﹣8…表格中,a=﹣3;②结合上表,在下图所示的平面直角坐标系xOy中,画出当x>0时函数M的图象;③观察图象,当x=﹣2或2时,y有最大值为1;(2)求函数M:y=﹣x2+4|x|﹣3与直线l:y=2x﹣3的交点坐标;(3)已知P(m,y1),Q(m+1,y2)两点在函数M的图象上,当y1<y2时,请直接写出m的取值范围.解:(1)①把x=4代入y=﹣x2+4|x|﹣3得:y=﹣16+16﹣3=﹣3,∴a=﹣3,故答案为:﹣3;②画出当x>0时函数M的图象如下:③观察图象,当x=﹣2或2时,y有最大值为1;故答案为:﹣2或2,1;(2)由解得或,由解得或,∴函数M:y=﹣x2+4|x|﹣3与直线l:y=2x﹣3的交点坐标为(﹣6,﹣15)、(0,﹣3)、(2,1);(3)∵P(m,y1),Q(m+1,y2)两点在函数M的图象上,且y1<y2,∴m的取值范围m<﹣2.5或﹣0.5<m<1.5.12.定义:平面直角坐标系xOy中,若点M绕原点顺时针旋转90°,恰好落在函数图象W 上,则称点M为函数图象W的“直旋点”.例如,点是函数y=x图象的“直旋点”.(1)在①(3,0),②(﹣1,0),③(0,3)三点中,是一次函数图象的“直旋点”的有②③(填序号);(2)若点N(3,1)为反比例函数图象的“直旋点”,求k的值;(3)二次函数y=﹣x2+2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C,点D是二次函数y=﹣x2+2x+3图象的“直旋点”且在直线AC上,求D点坐标.解:(1)①点(3,0)绕原点顺时针旋转90°得点(0,﹣3),当x=0时,y=1,∴点(3,0)不是一次函数图象的“直旋点”;②点(﹣1,0)绕原点顺时针旋转90°得点(0,1),当x=0时,y=1,∴点(﹣1,0)是一次函数图象的“直旋点”;③点(0,3)绕原点顺时针旋转90°得(3,0),当x=3时,y==0,∴点(0,3)是一次函数图象的“直旋点”;∴是一次函数图象的“直旋点”的有②③;故答案为:②③;(2)点N(3,1)绕原点顺时针旋转90°得点(1,﹣3),∵点N(3,1)为反比例函数图象的“直旋点”,∴,∴k=﹣3;(3)∵二次函数y=﹣x2+2x+3与x轴交于A,B两点(A在B的左侧),令y=0,则﹣x2+2x+3=0,解得:x1=3,x2=﹣1,∴A(﹣1,0),B(3,0),∵二次函数y=﹣x2+2x+3与y轴交于点C,令x=0,则y=3,∴C(0,3),设直线AC的解析式为y=kx+b,,解得:,∴直线AC的解析式为y=3x+3,设点D(a,3a+3),则D(a,3a+3)绕原点顺时针旋转90°得点(3a+3,﹣a),∵点D是二次函数y=﹣x2+2x+3图象的“直旋点”,∴﹣(3a+3)2+2(3a+3)+3=﹣a,解得:a=0或a,∴点D的坐标为(0,3)或.13.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y ≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,图中的函数是有界函数,其边界是1.(1)直接判断函数y=(x>0)和y=﹣2x+1(﹣4<x≤2)是不是有界函数?若是有界函数,直接写出其边界值;(2)若一次函数y=kx+b(﹣2≤x≤1)的边界值是3,且这个函数的最大值是2,求这个一次函数的解析式;(3)将二次函数y=﹣x2(﹣1≤x≤m,m≥0)的图象向上平移m个单位,得到的函数的边界值是n,当m在什么范围时,满足≤n≤1.解:(1)y=(x>0)不是有界函数;y=﹣2x+1(﹣4<x≤2)是有界函数,当x=﹣4时,y=9,当x=2时,y=﹣3,∴对于﹣4<x≤2时,任意函数值都满足﹣9<y≤9,∴边界值为9.(2)当k>0时,由有界函数的定义得函数过(1,2),(﹣2,﹣3)两点,设y=kx+b,将(1,2)(﹣2,﹣3)代入上式得,解得:,所以:y=x+,当k<0时,由有界函数的定义得函数过(﹣2,2),(1,﹣3)两点,设y=kx+b,将(﹣2,2),(1,﹣3)代入上式得,即得,函数解析式为y=﹣x﹣.(3)若m>1,函数向上平移m个单位后,x=0时,y=m,此时边界值t≥1,与题意不符,故m≤1,函数y=﹣x2过点(﹣1,﹣1),(0,0);向上平移m个单位后,平移图象经过(﹣1,﹣1+m);(0,m).∴﹣1≤﹣1+m≤﹣或≤m≤1,即0≤m≤或≤m≤1.14.在平面直角坐标系中,由两条与x轴有着相同的交点,并且开口方向相同的抛物线所围成的封闭曲线称为“月牙线”.如图所示,抛物线C1与抛物线C2:y=mx2+4mx﹣12m(m >0)的部分图象组成一个“月牙线”,相同的交点分别为M,N(点M在点N的左侧),与y轴的交点分别为A,B,且点A的坐标为(0,﹣1).(1)求M,N两点的坐标及抛物线C1的解析式;(2)若抛物线C2的顶点为D,当m=时,试判断三角形MND的形状,并说明理由;(3)在(2)的条件下,点P(t,﹣)是抛物线C1上一点,抛物线C2第三象限上是=S△ONQ,若存在,请直接写出点Q的坐标;若不存在,说否存在一点Q,使得S△APM明理由.解:(1)令y=0,则mx2+4mx﹣12m=0,解得x=2或x=﹣6,∴M(﹣6,0),N(2,0),设抛物线C1的解析式为y=a(x+6)(x﹣2),将点A(0,﹣1)代入,得﹣12a=﹣1,解得a=,∴y=(x2+4x﹣12);(2)∵m=,∴y=x2+3x﹣9=(x+2)2﹣12,∴D(﹣2,﹣12),∴MD=4,ND=4,MN=8,∴MD=ND,∴△MND是等腰三角形;=S△ONQ,理由如下:(3)∵存在一点Q,使得S△APM∵点P(t,﹣)是抛物线C1上一点,∴﹣=(t2+4t﹣12),解得t=﹣1或t=﹣3,∴P(﹣1,﹣)或P(﹣3,﹣),设直线AM的解析式为y=kx+b,∴,解得,∴y=﹣x﹣1,过点P作PG∥y轴交AM于点G,当P(﹣1,﹣)时,G(﹣1,﹣),∴PG=,=6×=,∴S△APM=S△ONQ,∵S△APM∴××2×|y Q|=,解得y Q=﹣,∴Q(﹣﹣2,﹣);当P(﹣3,﹣)时,G(﹣3,﹣),∴PG=,=6×=,∴S△APM=S△ONQ,∵S△APM∴××2×|y Q|=,解得y Q=﹣,∴Q(﹣﹣2,﹣);综上所述:Q点坐标为(﹣﹣2,﹣)或(﹣﹣2,﹣).15.阅读材料:一般地,对于某个函数,如果自变量x在取值范围内任取x=a与x=﹣a时,函数值相等,那么这个函数是“对称函数”.例如:y=x2,在实数范围内任取x=a时,y =a2;当x=﹣a时,y=(﹣a)2=a2,所以y=x2是“对称函数”.(1)函数y=2|x|+1是对称函数(填“是”或“不是”).当x≥0时,y=2|x|+1的图象如图1所示,请在图1中画出x<0时,y=2|x|+1的图象.(2)函数y=x2﹣2|x|+1的图象如图2所示,当它与直线y=﹣x+n恰有3个交点时,求n的值.(3)如图3,在平面直角坐标系中,矩形ABCD的顶点坐标分别是A(﹣3,0),B(2,0),C(2,﹣3),D(﹣3,﹣3),当二次函数y=x2﹣b|x|+1(b>0)的图象与矩形的边恰有4个交点时,求b的取值范围.解:(1)∵在实数范围内任取x=a时,y=2|a|+1,当x=﹣a时,y=2|﹣a|+1=2|a|+1,∴y=2|x|+1是“对称函数”.故答案为:是;y=2|x|+1的图象如图1所示,(2)①当直线y=﹣x+n经过点(0,1)时,函数y=x2﹣2|x|+1的图象与直线y=﹣x+n恰有3个交点,∴n=1;②当直线y=﹣x+n与函数y=x2﹣2|x|+1的图象的右半侧相切时,函数y=x2﹣2|x|+1的图象与直线y=﹣x+n恰有3个交点,即方程组有一个解,∴方程x2﹣x+1﹣n=0有两个相等的实数根.∴Δ=(﹣1)2﹣4×1×(1﹣n)=0,解得:n=.综上,函数y=x2﹣2|x|+1的图象与直线y=﹣x+n恰有3个交点,则n的值为1或;(3)当x>0时,函数y=x2﹣bx+1的图象与x轴相切时,方程x2﹣bx+1=0有两个相等的实数根,∴Δ=(﹣b)2﹣4×1×1=0,∵b>0,∴b=2;当x>0时,函数y=x2﹣bx+1的图象与直线DC相切时,方程x2﹣bx+1=﹣3有两个相等的实数根,∴Δ=(﹣b)2﹣4×1×4,∵b>0,∴b=4;当x<0时,函数y=x2+bx+1的图象经过点(﹣3,﹣3)时,﹣3=(﹣3)2﹣3b+1,解得:b=.综上,当2<b<4或b>时,二次函数y=x2﹣b|x|+1(b>0)的图象与矩形的边恰有4个交点.16.定义:把一个半圆与抛物线的一部分合成封闭图形,我们把这个封闭图形称为“蛋圆”.如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,A,B,C,D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,8),AB为半圆的直径,半圆的圆心M的坐标为(1,0),半圆半径为3.(1)请你直接写出“蛋圆”抛物线部分的解析式y=﹣x2+4x+8,自变量的取值范围是﹣2≤x≤4;(2)请你求出过点C的“蛋圆”切线与x轴的交点坐标;(3)求经过点D的“蛋圆”切线的解析式.解:(1)∵半圆的圆心M的坐标为(1,0),半圆半径为3,∴A(﹣2,0),B(4,0),设抛物线解析式为y=ax2+bx+c,则,解得,∴“蛋圆”抛物线部分的解析式y=﹣x2+2x+8(﹣2≤x≤4);故答案为:=﹣x2+2x+8;﹣2≤x≤4.(2)如图,设过点C的切线与x轴相交于E,连接CM,∵CE与半圆相切,∴CE⊥CM,∴∠OCE+∠MCO=90°,∵∠CEO+∠ECO=90°,∴∠CEO=∠MCO,又∵∠COE=∠MOC=90°,∴△COE∽△MOC,∴=,由勾股定理得,OC==2,∴OE===8,∴过点C的“蛋圆”切线与x轴的交点坐标为(﹣8,0);(3)设过点D的“蛋圆”切线解析式为y=kx+8,联立,消掉y得,x2+(k﹣2)x=0,∵直线与“蛋圆”抛物线相切,∴△=(k﹣2)2=0,解得k=2,∴过点D的“蛋圆”切线的解析式为y=2x+8.17.规定:如果两个函数图象上至少存在一组点是关于原点对称的,我们则称这两个函数互为“O—函数”.这组点称为“XC点”.例如:点P(1,1)在函数y=x2上,点Q(﹣1,﹣1)在函数y=﹣x﹣2上,点P与点Q关于原点对称,此时函数y=x2和y=﹣x﹣2互为“O—函数”,点P与点Q则为一组“XC点”.(1)已知函数y=﹣2x﹣1和y=﹣互为“O—函数”,请求出它们的“XC点”;(2)已知函数y=x2+2x+4和y=4x+n﹣2022互为“O—函数”,求n的最大值并写出“XC 点”;(3)已知二次函数y=ax2+bx+c(a>0)与y=2bx+1互为“O—函数”有且仅存在一组“XC点”,如图,若二次函数的顶点为M,与x轴交于A(x1,0),B(x2,0)其中0<x1<x2,AB=,过顶点M作x轴的平行线l,点P在直线l上,记P的横坐标为﹣,连接OP,AP,BP.若∠OPA=∠OBP,求t的最小值.解:(1)设P(a,b)在y=﹣2x﹣1上,则Q(﹣a,﹣b)在y=﹣上,∴,解得或,∴“XC点”为(﹣2,3)与(2,﹣3)或(,﹣4)与(﹣,4);(2)设P(s,t)在y=x2+2x+4上,则Q(﹣s,﹣t)在y=4x+n﹣2022上,∴,∴n=﹣t+4s+2022=﹣s2+2s+2018=﹣(s﹣1)2+2019,当s=1时,n有最大值2019,此时“XC点”为(1,7)与(﹣1,﹣7);(3)设P(x,y)在y=ax2+bx+c上,则Q(﹣x,﹣y)在y=2bx+1上,∴,整理得ax2﹣bx+c+1=0,∵有且仅存在一组“XC点”,∴Δ=b2﹣4a(c+1)=0,即=﹣1,∴顶点M的纵坐标为﹣1,∵ax2+bx+c=0,∴x1+x2=﹣,x1•x2=,∴AB==,∵AB=,∴=,∴=,∵∠OPA=∠OBP,∠AOP=∠POB,∴△POA∽△BOP,∴OP2=OB•OA=x1•x2,∵P的横坐标为﹣,∴P(﹣,﹣1),∴t+1===(c﹣1)2+,∴当c=1时,t有最小值.18.如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“CJ三角形”.(1)判断下列三角形是否为“CJ三角形”?如果是,请在对应横线上画“√”,如果不是,请在对应横线上画“×”;①其中有两内角分别为30°,60°的三角形×;②其中有两内角分别为50°,60°的三角形×;③其中有两内角分别为70°,100°的三角形√;(2)如图1,点A在双曲线y=(k>0)上且横坐标为1,点B(4,0),C为OB中点,D为y轴负半轴上一点,若∠OAB=90°.①求k的值,并求证:△ABC为“CJ三角形”;②若△OAB与△OBD相似,直接写出D的坐标;(3)如图2,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,E为BC边上一点,BE >CE且△ABE是“CJ三角形”,已知A(﹣6,0),记BE=t,过A,E作抛物线y=ax2+bx+c(a>0),B在A右侧,且在x轴上,点Q在抛物线上,使得tan∠ABQ=,若符合条件的Q点个数为3个,求抛物线y=ax2+bx+c的解析式.。
九年级数学中考复习新定义专题练习
九年级数学中考复习新定义专题练习1.用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆b = ab 2 + a .如:1☆3=1×32+1=10.则(-2)☆3的值为 .2.(2019•德州)已知:[x ]表示不超过x 的最大整数.例:[4.8]=4,[﹣0.8]=﹣1.现定义:{x }=x ﹣[x ],例:{1.5}=1.5﹣[1.5]=0.5,则{3.9}+{﹣1.8}﹣{1}= .3. 用“△”定义新运算:对于任意有理数a ,b ,当a ≤b 时,都有2a b a b ∆=;当a >b 时,都有2a b ab ∆=.那么,2△6 = ,2()3-△(3)-= . 4. 如图,在平面内,两条直线l 1,l 2相交于点O ,对于平面内任意一点M ,若p 、q 分别是点M 到直线l 1,l 2的距离,则称(p ,q )为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有______个.5. 定义:圆中有公共端点的两条弦组成的折线称为圆的一条折弦.阿基米德折弦定理:如图1,AB 和BC 组成圆的折弦,AB BC >,M 是弧ABC 的中点,MF AB ⊥于F ,则AF FB BC =+.如图2,△ABC 中,60ABC ∠=︒,8AB =,6BC =,D 是AB 上一点,1BD =,作DE AB ⊥交△ABC 的外接圆于E ,连接EA ,则EAC ∠=________°6.(2019•枣庄)对于实数a 、b ,定义关于“⊗”的一种运算:a ⊗b =2a +b ,例如3⊗4=2×3+4=10.(1)求4⊗(﹣3)的值;(2)若x ⊗(﹣y )=2,(2y )⊗x =﹣1,求x +y 的值.7. 阅读材料:规定一种新的运算:a c =b ad bc d -.例如:1214-23=-2.34××= (1)按照这个规定,请你计算5624的值.(2)按照这个规定,当5212242=-+-x x 时求x 的值.8. 对于平面直角坐标系xOy 中的点M 和图形G ,若在图形G 上存在一点N ,使M ,N 两点间的距离等于1,则称M 为图形G 的和睦点.(1)当⊙O 的半径为3时,在点P 1(1,0),P 2,1),P 3(72,0),P 4(5,0)中,⊙O 的和睦点是________;(2)若点P (4,3)为⊙O 的和睦点,求⊙O 的半径r 的取值范围;(3)点A 在直线y =﹣1上,将点A 向上平移4个单位长度得到点B ,以AB 为边构造正方形ABCD ,且C ,D 两点都在AB 右侧.已知点E,若线段OE 上的所有点都是正方形ABCD 的和睦点,直接写出点A 的横坐标A x 的取值范围.9. 对于任意四个有理数a ,b ,c ,d ,可以组成两个有理数对(a ,b )与(c ,d ).我们规定:(a ,b )★(c ,d )=bc -ad .例如:(1,2)★(3,4)=2×3-1×4=2.根据上述规定解决下列问题:(1)有理数对(2,-3)★(3,-2)= ;(2)若有理数对(-3,2x -1)★(1,x +1)=7,则x = ;(3)当满足等式(-3,2x -1)★(k ,x +k )=5+2k 的x 是整数时,求整数k 的值.10. 对于任意有理数a ,b ,定义运算:a ⊙b =()1a a b +-,等式右边是通常的加法、减法、乘法运算,例如,2⊙5=2×(2+5)-1=13;(3)-⊙(5)-=-3×(-3-5)-1=23.(1)求(-2)⊙312的值; (2)对于任意有理数m ,n ,请你重新定义一种运算“⊕”,使得5⊕3=20,写出你定义的运算:m ⊕n =(用含m ,n 的式子表示).11. (2019•衢州)定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满足x =,y =那么称点T 是点A ,B 的融合点.例如:A (﹣1,8),B (4,﹣2),当点T (x ,y )满足x ==1,y ==2时,则点T (1,2)是点A ,B 的融合点.(1)已知点A (﹣1,5),B (7,7),C (2,4),请说明其中一个点是另外两个点的融合点.(2)如图,点D (3,0),点E (t ,2t +3)是直线l 上任意一点,点T (x ,y )是点D ,E 的融合点.①试确定y 与x 的关系式.②若直线ET 交x 轴于点H .当△DTH 为直角三角形时,求点E 的坐标.12. 已知在平面直角坐标系xOy 中的点P 和图形G,给出如下的定义:若在图形G 上存在一点Q ,使得Q P 、之间的距离等于1,则称P 为图形G 的关联点.(1)当圆O 的半径为1时,①点11(,0)2P ,2P,3(0,3)P 中,圆O 的关联点有_____________________. ②直线经过(0,1)点,且与y 轴垂直,点P 在直线上.若P 是圆O 的关联点,求点P 的横坐标x 的取值范围.(2)已知正方形ABCD 的边长为4,中心为原点,正方形各边都与坐标轴垂直.若正方形各边上的点都是某个圆的关联点,求圆的半径r 的取值范围.备用图 备用图参考答案:1. -202. 1.13. 24 -64. 45. 60°6. (1) 5 (2) 137. (1)8 (2)x=18. (1)P2,P3;(2)4≤r≤6(3) -5+√2≤x A≤3 或√2-1≤x A≤19. (1)﹣5 (2)1 (3)k=1,﹣1,﹣2,﹣410. (1)-4(2)答案不唯一,例如:m⊕n=m(n+1)11. (1)x=(﹣1+7)=2,y=(5+7)=4,故点C是点A、B的融合点;(2)①y=2x﹣1;②点E(,6)或(6,15).12. (1)P1 P2(2)-√3≤x≤√3(3)2√2-1≤r≤3。
专题八 新定义问题__2023届中考数学热点题型突破(含答案)
专题八新定义问题——2023届中考数学热点题型突破1.对任意两个实数a,b定义两种运算:并且定义运算顺序仍然是先做括号内的,例如,,,那么等于( )A. B.3 C.6 D.2.我们知道, 如果直角三角形的三边的长都是正整数, 这样的三个正整数就叫做一组勾股数. 定义: 如果一个正整数m能表示为两个正整数a,b的平方和, 即, 那么称m 为广义勾股数. 下面的结论:① 7 不是广义勾股数;②13 是广义勾股数;③两个广义勾股数的和是广义勾股数;④两个广义勾股数的积是广义勾股数;⑤若,,, 其中x,y,z,m,n 均为正整数, 则x,y,z 为一组勾股数;⑥一个正奇数 (除 1 外) 与两个和等于此正奇数的平方的连续正整数是一组勾股数.正确的是( )A.①②⑤⑥B.①③④⑤C.②④⑥D.②④⑤⑥3.对x,y定义一种新运算T,规定:(其中a,b均为非零常数),这里等式右边是通常的四则运算,例如:,若,,则结论正确的个数为( )(1),;(2)若,则;(3)若,m,n均取整数,则或或;(4)若,当n取s,t时,m对应的值为c,d,当时,;(5)若对任意有理数x,y都成立(这里和T均有意义),则A.2个B.3个C.4个D.5个4.阅读材料:定义:如果一个数的平方等于,记为,这个数i叫做虚数单位,把形如为实数)的数叫做复数,其中a叫这个复数的实部,b叫这个复数的虚部.它的加、减、乘法运算与整式的加、减、乘法运算类似:例如计算:;;;.根据以上信息,完成下面的计算:__________.5.定义:在平面直角坐标系xOy中,如果将点绕点旋转得到点Q,那么称线段PQ为“拓展带”,点Q为点P的“拓展带”.(1)当时,点的“拓展带”坐标为__________.(2)如果,当点的“拓展带”N在函数的图象上时,t的值为__________.6.新定义:在平面直角坐标系中,对于点和点,若满足时,;时,,则称点是点的限变点.例如:点的限变点是,则点的限变点是____________.若点在二次函数的图象上,则当时,其限变点的纵坐标的取值范围是____________.7.阅读以下材料:指数与对数之间有密切的联系,它们之间可以互化.对数的定义:一般地,若(且),那么x叫做以a为底N的对数,记作,比如指数式可以转化为对数式,对数式,可以转化为指数式.我们根据对数的定义可得到对数的一个性质:(,,,),理由如下:设,,则,,,由对数的定义得又,.请解决以下问题:(1)将指数式转化为对数式__________;(2)求证:(,,,);(3)拓展运用:计算__________.8.定义如果一个正整数等于两个连续偶数的平方差, 那么称这个正整数为 “奇巧数”.发现数28,32,36 中, 是 “奇巧数” 的是探究已知正奇数的 4 倍一定是 “奇巧数”, 设一个正奇数为 (n为正整数), 请你论证这个结论.9.已知一个三位自然数N, 若满足十位数字与个位数字之和减去百位数字为 0 , 则称这个数为“雪花数”, 并把其十位数字与个位数字的乘积记为. 定义为 “雪花数”, m,n为常数),已知,. 例如: 945,,945是 “雪花数”, ,634,,634不是 “雪花数”.(1)请填空: 817 _______“雪花数”, 527______ “雪花数” (填“是”或“不是”);(2)求出常数m,n的值;(3)已知s 是个位数字不为 1 的 “雪花数”, 其十位数字为, 个位数字为b, 将s的个位数字移到十位上,十位数字移到百位上, 百位数字移到个位上, 得到一个新数, 若s 与的差能被17整除, 求出所有满足条件的s及由这些s两两组合形成的P 的值.答案以及解析1.答案:A解析:,故选A.2.答案:A解析:7 不能表示为两个正整数的平方和, 7不是广义勾股数,故结论①正确., 13是广义勾股数,故结论②正确. 两个广义勾股数的和不一定是广义勾股数, 如 5 和 10 是广义勾股数, 但是它们的和 15 不是广义勾股数, 故结论③错误 . 两个广义勾股数的积不一定是广义勾股数, 如 2 和 2 是广义勾股数, 但,4 不是广义勾股数, 故结论④错误. , 即. 又x,y,z均为正整数, 故结论⑤正确. 设正奇数为 (k为正整数), 2 个连续正整数为p,, 由题意得,,,. 又,p,都是正整数, 结论⑥正确. 综上, 正确结论有①②⑤⑥.故选 A.3.答案:C解析:由题意可知,,,即,解得,故(1)正确;,;,,则;故(2)正确m,n均取整数,,的取值为,,,1,2,4;当,即时,;当,即时,;当,即时,;当,即时,;当,即时,;当,即时,;故(3)不正确,,,,当时,;故(4)正确;,,,,,,对任意有理数x,y都成立(这里和均有意义),则故(5)正确故选C4.答案:解析:.5.答案:①.②.2解析:(1)根据“拓展带”的定义,互为“拓展带”的两点关于点成中心对称,互为“拓展带”的两点的横坐标互为相反数,纵坐标的平均数等于t,点的“拓展带”坐标为.(2)根据“拓展带”的定义,点M和点N关于点成中心对称,设N点坐标为,则,,解得,,在函数的图象上,,解得.6.答案:①.②.解析:,,,点的限变点是,点在二次函数的图象上,当时,,,当时,,当时,,综上,当时,其限变点的纵坐标n'的取值范围是,故答案为:,.7.答案:(1)(2)证明见解析(3)2解析:(1)解:根据指数与对数关系得:.故答案为:;(2)解:设,,则,,,..(3)解:.故答案为:2.8.答案:见解析解析:发现 28,36,,32不是两个连续偶数的平方差,28,36 是“奇巧数”.探究正奇数的 4 倍为.总能表示为两个连续偶数的平方差,正奇数的 4 倍一定是“奇巧数”.9.答案: (1) 是,不是(2)(3)见解析解析:817,, 817 是“雪花数”;527,,527不是 “雪花数”.(2),,,①,,,,②联立①②得解得(3) 由 “雪花数” 的定义可知, 由题意可知, s与的差能被 17 整除,能被 17 整除,为 17 的倍数.s为“雪花数”, 且个位数字不为 1 ,,且,,34,51,68 或 85 .若, 则不符合题意;若, 则符合题意;若, 则符合题意;若, 则此时, 不符合题意;若, 则此时, 不符合题意.综上可得或 615 .。
中考数学新定义问题
新定义问题1.对于平面直角坐标系xOy中的定点P和图形F,给出如下定义:若在图形F上存在一点N,使得点Q,点P关于直线ON对称,则称点Q是点P关于图形F的定向对称点.(1)如图,,,,①点P关于点B的定向对称点的坐标是;②在点,,中,是点P关于线段AB的定向对称点.(2)直线分别与x轴,y轴交于点G,H,⊙M是以点为圆心,为半径的圆.①当时,若⊙M上存在点K,使得它关于线段GH的定向对称点在线段GH上,求的取值范围;②对于,当时,若线段GH上存在点J,使得它关于⊙M的定向对称点在⊙M上,直接写出b的取值范围.2.在平面内,对于给定的△ABC,如果存在一个半圆或优弧与△ABC的两边相切,且该弧上的所有点都在△ABC的内部或边上,则称这样的弧为△ABC的内切弧.当内切弧的半径为最大时,称该内切弧为△ABC的完美内切弧.(注:弧的半径指该弧所在圆的半径)在平面直角坐标系xOy中,A(8,0),B(0,6).(1)如图1,在弧G1,弧G2,弧G3中,是△OAB的内切弧的是;(2)如图2,若弧G为△OAB的内切弧,且弧G与边AB,OB相切,求弧G的半径的最大值;(3)如图3,动点M(m,3),连接OM,AM.①直接写出△OAM的完美内切弧半径的最大值;②记①中得到的半径最大时的完美内切弧为弧T.点P为弧T上的一个动点,过点P作x轴的垂线,分别交x轴和直线AB于点D,E,点F为线段PE的中点,直接写出线段DF长度的取值范围.3.对于平面直角坐标系xOy内任意一点P,过P点作PM⊥x轴于点M,PN⊥y轴于点N,连接MN,则称MN的长度为点P的垂点距离,记为h.特别地,点P与原点重合时,垂点距离为0.(1)点A(2,0),B(4,4),C(-2,2)的垂点距离分别为_______,________,________;(2)点P在以Q(3,1)为圆心,半径为3的⊙M上运动,直接写出点P的垂点距离h的取值范围;(3)点T为直线l:y=3x+6位于第二象限内的一点,对于点T的垂点距离h的每个值有且仅有一个点T与之对应,求点T的横坐标t的取值范围.4.过直线外一点且与这条直线相切的圆称为这个点和这条直线的点线圆,特别地,半径最小..的点线圆称为这个点和这条直线的最小点线圆.在平面直角坐标系xOy中,点P(0,2).(1)已知点A(0,1),B(1,1),C(2,2),分别以A,B为圆心,1为半径作⊙A,⊙B,以C为圆心,2为半径作⊙C,其中是点P与x轴的点线圆的是;(2)记点P和x轴的点线圆为⊙D,如果⊙D与直线y=无公共点,求⊙D的半径的r取值范围;(3)直接写出点P和直线y=kx(k≠0)的最小点线圆的圆心的横坐标t的取值范围.5.对于平面直角坐标系xOy中的点P和图形M,给出如下定义:Q为图形M上任意一点,如果P,Q两点间的距离有最大值,那么称这个最大值为点P与图形M间的开距离,记作d(P,M).已知直线(b≠0)与x轴交于点A,与y轴交于点B,⊙O的半径为1.(1)若b=2,①求d(B,⊙O)的值;②若点C在直线AB上,求d(C,⊙O)的最小值;(2)以点A为中心,将线段AB顺时针旋转120°得到AD,点E在线段AB,AD组成的图形上,若对于任意点E,总有2≤d(E,⊙O)<6,直接写出b的取值范围.6.在平面直角坐标系xOy中,点A的坐标为(x1,y1),点B的坐标为(x2,y2),且x1x2,y1=y2.给出如下定义:若平面上存在一点P,使△APB是以线段AB为斜边的直角三角形,则称点P为点A、点B的“直角点”.(1)已知点A的坐标为(1,0).①若点B的坐标为(5,0),在点P1(4,3)、P2(3,-2)和P3(2,)中,是点A、点B的“直角点”的是;②点B在x轴的正半轴上,且AB=22,当直线y=-x+b上存在点A、点B的“直角点”时,求b的取值范围;(2)⊙O的半径为r,点D(1,4)为点E(0,2)、点F(m,n)的“直角点”,若使得△DEF与⊙O有交点,直接写出半径r的取值范围.7.如图1,点P 是平面内任意一点,点A ,B 是⊙C 上不重合的两个点,连结PA ,PB .当∠APB =60°时,我们称点P 为⊙C 的“关于AB的关联点”.图2(1)如图2,当点P 在⊙C 上时,点P 是⊙C 的“关于AB 的关联点”时,画出一个满足条件的∠APB ,并直接写出∠ACB 的度数;(2)在平面直角坐标系中,点,点M 关于y 轴的对称点为点N.①以点O 为圆心,OM 为半径画⊙O ,在y 轴上存在一点P ,使点P 为⊙O “关于MN 的关联点”,直接写出点P 的坐标;②点D (m,0)是x 轴上一动点,当⊙D 的半径为1时,线段MN 上至少存在一个点是⊙D 的“关于某两个点的关联点”,求m 的取值范围.图18.对于平面直角坐标系中的点P和图形,给出如下定义:若图形上存在两个点A,B,使得△PAB是边长为2的等边三角形,则称点P是图形的一个“和谐点”.已知直线l:与x轴交于点M,与y轴交于点N,⊙O的半径为r.(1)若n=0,在点(2,0),(0,2),(4,1)中,直线l的和谐点是;(2)若r= ,⊙O上恰好存在2个直线l的和谐点,求n的取值范围;(3)若n=3,线段MN上存在⊙O的和谐点,直接写出r的取值范围.9.已知:如图,⊙O的半径为r,在射线OM上任取一点P(不与点O重合),如果射线OM上的点P',满足OP·OP'=r2,则称点P'为点P关于⊙O的反演点.在平面直角坐标系xOy中,已知⊙O的半径为2.(1)已知点A(4,0),求点A关于⊙O的反演点A'的坐标;(2)若点B关于⊙O的反演点B'恰好为直线与直线x=4的交点,求点B的坐标;(3)若点C为直线上一动点,且点C关于⊙O的反演点C'在⊙O的内部,求点C的横坐标m的范围;(4)若点D为直线x=4上一动点,直接写出点D关于⊙O的反演点D'的横坐标t的范围.28.10.过三角形的任意两个顶点画一条弧,若弧上的所有点都在该三角形的内部或边上,则称该弧为三角形的“形内弧”.(1)如图,在等腰中,,.1在下图中画出一条的形内弧;2在中,其形内弧的长度最长为____________.(2)在平面直角坐标系中,点,,,点为形内弧所在圆的圆心.求点纵坐标的取值范围;(3)在平面直角坐标系中,点,点为轴上一点.点为最长形内弧所在圆的圆心,求点纵坐标的取值范围.。
初中 数学 新定义
初中数学中的“新定义”问题,通常是指定义了一些初中数学中未涉及的新概念、新运算或新符号,要求学生结合已有知识进行理解,并运用这些新定义进行运算、推理或迁移。
这类问题旨在考查学生的阅读理解能力、数学应用能力和思维灵活性。
具体来说,初中数学中的“新定义”问题可以分为以下几种类型:
定义新运算:例如绝对值运算、取整运算、取余运算和阶乘运算等。
定义初、高中知识衔接的“新知识”:例如将一些能与初中知识相衔接的高中数学知识,通过阅读材料呈现给初中学生,让他们将这些新知识与已学知识联系起来,通过类比、猜想、迁移来运用新知识解决实际问题。
定义新概念:例如将某个特征的图形或运算方式、代数式等数学元素赋予一个新的名字,形成新的概念。
解决这类问题时,学生需要将新定义的知识与已学知识联系起来,利用已有的知识经验来解决问题。
同时,还需要具备良好的阅读理解能力和思维灵活性,能够理解并运用这些新定义进行运算和推理。
中考数学压轴选择填空专题——新定义问题(有答案)
新定义问题例题精讲例 1.割圆术是我国古代数学家刘徽创造的一种求周长和面积的方法:随着圆内接正多边形边数的增加,它的周长和面积越来越接近圆周长和圆面积,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”.刘徽就是大胆地应用了以直代曲、无限趋近的思想方法求出了圆周率.请你也用这个方法求出二次函数 y=14(x −4)2的图象与两坐标轴所围成的图形最接近的面积是( ) A. 5 B. 225 C. 4 D. 17﹣4π 【答案】 A【解析】【解答】解:如图,设抛物线与坐标轴的交点为A 、B ,则有: A (4,0),B (0,4);作直线l∥AB ,易求得直线AB :y=﹣x+4,所以设直线l :y=﹣x+h ,当直线l 与抛物线只有一个交点(相切)时,有: ﹣x+h=14(x ﹣4)2 ,整理得:14x 2﹣x+4﹣h=0, ∥=1﹣4×14(4﹣h )=0,即h=3;所以直线l :y=﹣x+3;设直线l 与坐标轴的交点为C 、D ,则C (3,0)、D (0,3),因抛物线的图象与两坐标轴所围成的图形面积大于S ∥OCD 小于S ∥OAB S ∥OCD =12×3×3=4.5. S ∥OAB =12×4×4=8, 故抛物线的图象与两坐标轴所围成的图形面积在4.5<S <8的范围内,选项中符合的只有A , 故选A .例2.定义一种对正整数n 的“F”运算: ①当n 为奇数时,结果为3n+5;②当n 为偶数时,结果为 n2k (其中k 是使 n2k 为奇数的正整数),并且运算重复进行. 例如,取n=26,那么当n=26时,第2016次“F 运算”的结果是________.【答案】 62【解析】【解答】解:根据题意,得 当n=26时,第1次的计算结果是262=13,第2次的计算结果是13×3+5=44, 第3次的计算结果是 4422 =11, 第4次的计算结果是11×3+5=38, 第5次的计算结果是382 =19,第6次的计算结果是19×3+5=62, 第7次的计算结果是622=31,第8次的计算结果是31×3+5=98, 第9次的计算结果是982=49,第10次的计算结果是49×3+5=152, 第11次的计算结果是15223=19,以下每6次运算一循环,∥(2016﹣4)÷6=335…2,∥第2016次“F 运算”的结果与第6次的计算结果相同,为62, 故答案为:62.例3.观察下列运算过程:S=1+3+32+33+…+32017+32018 ①, ①×3得3S=3+32+33+…+32018+32019 ②, ②﹣①得2S=32019﹣1,S=32019−12.运用上面计算方法计算:1+5+52+53+…+52018=________. 【答案】52019−14【解析】【解答】设S=1+5+52+53+…+52018 ①, 则5S=5+52+53+54…+52019②, ②﹣①得:4S=52019﹣1,所以S= 52019−14,故答案为:52019−14.例4.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a ,b ,c ,则该三角形的面积为S= √14[a 2b 2−(a 2+b 2−c 22)2] .现已知∥ABC 的三边长分别为1,2, √5 ,则∥ABC 的面积为________. 【答案】1【解析】【解答】解:∥S= √14[a 2b 2−(a 2+b 2−c 22)2] ,∥∥ABC 的三边长分别为1,2, √5 ,则∥ABC 的面积为: S= √14(12+22−(√5)22)=1,故答案为:1.例5.设双曲线 y =kx (k >0) 与直线 y =x 交于 A , B 两点(点 A 在第三象限),将双曲线在第一象限的一支沿射线 BA 的方向平移,使其经过点 A ,将双曲线在第三象限的一支沿射线 AB 的方向平移,使其经过点 B ,平移后的两条曲线相交于点 P , Q 两点,此时我称平移后的两条曲线所围部分(如图中(k>0)的眸径为6时,k的值为阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径”当双曲线y=kx________.【答案】【解析】【解答】解:∥双曲线是关于原点成中心对称,点P、Q关于原点对称和直线AB对称∥四边形PAQB是菱形∥PQ=6∥PO=3根据题意可得出∥APB是等边三角形∥在Rt∥POB中,OB=tan30°×PO=√3×3= √33设点B的坐标为(x,x)∥2x2=3x2= 3=k2故答案为:32习题练习一、单选题1.在平面直角坐标系中,对于平面内任意一点(x,y),若规定以下两种变换:①f(x,y)=(y,x).如f(2,3)=(3,2);②g(x,y)=(﹣x,﹣y),如g(2,3)=(﹣2,﹣3).按照以上变换有:f(g(2,3))=f(﹣2,﹣3)=(﹣3,﹣2),那么g(f(﹣6,7))等于()A.(7,6)B.(7,﹣6)C.(﹣7,6)D.(﹣7,﹣6)2.定义符号min{a,b}的含义为:当a≥b时min{a,b}=b;当a<b时min{a,b}=a.如:min{1,﹣3}=﹣3,min{﹣4,﹣2}=﹣4.则min{﹣x2+1,﹣x}的最大值是()A.√5−12B.√5+12C.1D.03.张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x+ 1x(x>0)的最小值是2”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x,则另一边长是1x,矩形的周长是2(x+ 1x );当矩形成为正方形时,就有x= 1x(0>0),解得x=1,这时矩形的周长2(x+ 1x)=4最小,因此x+ 1x (x>0)的最小值是2.模仿张华的推导,你求得式子x2+9x(x>0)的最小值是()A.2B.1C.6D.104.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是()A.1,2,3B.1,1,√2C.1,1,√3D.1,2,√35.在求1+6+62+63+64+65+66+67+68+69的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:S=1+6+62+63+64+65+66+67+68+69①然后在①式的两边都乘以6,得:6S=6+62+63+64+65+66+67+68+69+610②②﹣①得6S﹣S=610﹣1,即5S=610﹣1,所以S= 610−15,得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a”(a≠0且a≠1),能否求出1+a+a2+a3+a4+…+a2014的值?你的答案是()A.a2014−1a−1B.a2015−1a−1C.a2014−1aD.a2014﹣16.阅读理解:如图1,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M的位置可由∥MOx的度数θ与OM的长度m确定,有序数对(θ,m)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”.应用:在图2的极坐标系下,如果正六边形的边长为2,有一边OA在射线Ox上,则正六边形的顶点C的极坐标应记为()A.(60°,4)B.(45°,4)C.(60°,2 √2)D.(50°,2 √2)7.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为()A.3B.4C.5D.68.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC∥BD;②AO=CO= 12AC;③∥ABD∥∥CBD,其中正确的结论有()A.0个B.1个C.2个D.3个9.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数,如796就是一个“中高数”.若十位上数字为7,则从3、4、5、6、8、9中任选两数,与7组成“中高数”的概率是()A.12B.23C.25D.3510.对于两个不相等的实数a、b ,我们规定符号Max{a ,b}表示a、b中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{x,﹣x} =2x+1x的解为().A.1﹣√2B.2﹣√2C.1+ √2或1﹣√2D.1+ √2或﹣111.设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:①若a@b=0,则a=0或b=0②a@(b+c)=a@b+a@c③不存在实数a,b,满足a@b=a2+5b2④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是()A.②③④B.①③④C.①②④D.①②③12.宽与长的比是√5−12(约0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD,分别取AD、BC的中点E、F,连接EF:以点F为圆心,以FD为半径画弧,交BC的延长线于点G;作GH∥AD,交AD的延长线于点H,则图中下列矩形是黄金矩形的是()A.矩形ABFEB.矩形EFCDC.矩形EFGHD.矩形DCGH13.对于实数a,b,定义符号min{a,b},其意义为:当a≥b时,min{a,b}=b;当a<b时,min{a,b}=a.例如:min={2,﹣1}=﹣1,若关于x的函数y=min{2x﹣1,﹣x+3},则该函数的最大值为()A.23B.1 C.43D.5314.已知点A在函数y1=−1x(x>0)的图象上,点B在直线y2=kx+1+k(k为常数,且k≥0)上,若A,B两点关于原点对称,则称点A,B为函数y1,y2图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为()A.只有1对或2对B.只有1对C.只有2对D.只有2对或3对15.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.从一个格点移动到与之相距√5的另一个格点的运动称为一次跳马变换.例如,在4×4的正方形网格图形中(如图1),从点A经过一次跳马变换可以到达点B,C,D,E等处.现有20×20的正方形网格图形(如图2),则从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是()A.13B.14C.15D.1616.定义[x]表示不超过实数x的最大整数,如[1.8]=1,[﹣1.4]=﹣2,[﹣3]=﹣3.函数y=[x]的图象如图所示,则方程[x]= 12x2的解为()#N.A. 0或 √2B. 0或2C. 1或 −√2D. √2 或﹣ √2 二、填空题17.对非负实数x“四舍五入”到个位的值记为(x ).即当n 为非负整数时,若n ﹣ 12 ≤x <n+ 12 ,则(x )=n .如(0.46)=0,(3.67)=4. 给出下列关于(x )的结论:①(1.493)=1;②(2x )=2(x );③若( 12x −1 )=4,则实数x 的取值范围是9≤x <11;④当x≥0,m 为非负整数时,有(m+2013x )=m+(2013x );⑤(x+y )=(x )+(y );其中,正确的结论有________(填写所有正确的序号).18.若x 是不等于1的实数,我们把11−x称为x 的差倒数,如2的差倒数是11−2=﹣1,﹣1的差倒数为11−(−1)=12,现已知x 1=﹣ 13,x 2是x 1的差倒数,x 3是x 2的差倒数,x 4是x 3的差倒数,…,依此类推,则x 2017=________.19.在∥ABC 中,P 是AB 上的动点(P 异于A 、B ),过点P 的直线截∥ABC ,使截得的三角形与∥ABC 相似,我们不妨称这种直线为过点P 的∥ABC 的相似线,简记为P (l x )(x 为自然数).(1)如图①,∥A=90°,∥B=∥C ,当BP=2PA 时,P (l 1)、P (l 2)都是过点P 的∥ABC 的相似线(其中l 1∥BC ,l 2∥AC ),此外,还有________条;(2)如图②,∥C=90°,∥B=30°,当BPBA =________时,P (l x )截得的三角形面积为∥ABC 面积的14 .20.规定:[x]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x≠n+0.5,n 为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.则下列说法正确的是________.(写出所有正确说法的序号) ①当x=1.7时,[x]+(x )+[x )=6; ②当x=﹣2.1时,[x]+(x )+[x )=﹣7;③方程4[x]+3(x )+[x )=11的解为1<x <1.5;④当﹣1<x <1时,函数y=[x]+(x )+x 的图象与正比例函数y=4x 的图象有两个交点.21.阅读理解:如图1,∥O 与直线a 、b 都相切,不论∥O 如何转动,直线a 、b 之间的距离始终保持不变(等于∥O 的直径),我们把具有这一特性的图形成为“等宽曲线”,图2是利用圆的这一特性的例子,将等直径的圆棍放在物体下面,通过圆棍滚动,用较小的力既可以推动物体前进,据说,古埃及人就是利用这样的方法将巨石推到金字塔顶的.拓展应用:如图3所示的弧三角形(也称为莱洛三角形)也是“等宽曲线”,如图4,夹在平行线c ,d 之间的莱洛三角形无论怎么滚动,平行线间的距离始终不变,若直线c ,d 之间的距离等于2cm ,则莱洛三角形的周长为________cm .22.经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是∥ABC 的“和谐分割线”,∥ACD为等腰三角形∥CBD和∥ABC相似,∥A =46°,则∥ACB的度数为________.答案解析部分一、单选题1.【答案】C【解析】【解答】解:∥f(﹣6,7)=(7,﹣6),∥g(f(﹣6,7))=g(7,﹣6)=(﹣7,6).故选C.2.【答案】A【解析】【解答】解:在同一坐标系xOy中,画出函数二次函数y=﹣x2+1与正比例函数y=﹣x的图象,如图所示.设它们交于点A、B.令﹣x2+1=﹣x,即x2﹣x﹣1=0,解得:x= 1+√52或1−√52,∥A(1−√52,√5−12),B(1+√52,−1−√52).观察图象可知:①当x≤ 1−√52时,min{﹣x2+1,﹣x}=﹣x2+1,函数值随x的增大而增大,其最大值为√5−12;②当1−√52<x<1+√52时,min{﹣x2+1,﹣x}=﹣x,函数值随x的增大而减小,其最大值为√5−12;③当x≥ 1+√52时,min{﹣x2+1,﹣x}=﹣x2+1,函数值随x的增大而减小,最大值为−1−√52.综上所示,min{﹣x2+1,﹣x}的最大值是√5−12.故选:A.3.【答案】C【解析】【解答】解:∥x>0,∥在原式中分母分子同除以x,即x 2+9x=x+ 9x,在面积是9的矩形中设矩形的一边长为x,则另一边长是9x,矩形的周长是2(x+ 9x);当矩形成为正方形时,就有x= 9x,(x>0),解得x=3,这时矩形的周长2(x+ 9x)=12最小,因此x+ 9x(x >0)的最小值是6.故答案为:C 4.【答案】D【解析】【解答】解:A 、∥1+2=3,不能构成三角形,故选项错误; B 、∥12+12=( √2 )2 , 是等腰直角三角形,故选项错误;C 、底边上的高是 (√32) = 12 ,可知是顶角120°,底角30°的等腰三角形,故选项错误;D 、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确. 故选:D . 5.【答案】B【解析】【解答】解:设S=1+a+a 2+a 3+a 4+…+a 2014 , ① 则aS=a+a 2+a 3+a 4+…+a 2014+a 2015 , ②, ②﹣①得:(a ﹣1)S=a 2015﹣1, ∥S= a 2015−1a−1,即1+a+a 2+a 3+a 4+…+a 2014= a 2015−1a−1.故答案为:B . 6.【答案】 A【解析】【解答】解:如图,设正六边形的中心为D ,连接AD ,∥∥ADO=360°÷6=60°,OD=AD , ∥∥AOD 是等边三角形, ∥OD=OA=2,∥AOD=60°, ∥OC=2OD=2×2=4,∥正六边形的顶点C 的极坐标应记为(60°,4). 故选:A .7.【答案】 C【解析】【解答】如图所示,∥ (a +b)2=21 ,∥ a 2+2ab +b 2 =21,∥大正方形的面积为13,2ab=21﹣13=8,∥小正方形的面积为13﹣8=5.故答案为:C . 8.【答案】 D【解析】【解答】解:在∥ABD 与∥CBD 中, {AD =CD AB =BC DB =DB, ∥∥ABD∥∥CBD (SSS ), 故③正确; ∥∥ADB=∥CDB ,在∥AOD 与∥COD 中,{AD =CD∠ADB =∠CDB OD =OD,∥∥AOD∥∥COD (SAS ),∥∥AOD=∥COD=90°,AO=OC , ∥AC∥DB ,故①②正确; 故选D9.【答案】 C【解析】【解答】解:列表得:∥与7组成“中高数”的概率是:1230=25 .故选C .10.【答案】 D【解析】【分析】根据x 与﹣x 的大小关系,取x 与﹣x 中的最大值化简所求方程,求出解即可.【解答】当x <﹣x , 即x <0时,所求方程变形得:﹣x= ,去分母得:x 2+2x+1=0,即x=﹣1;当x >﹣x , 即x >0时,所求方程变形得:x= ,即x 2﹣2x=1,解得:x=1+或x=1﹣(舍去), 经检验x=﹣1与x=1+都为分式方程的解.故选:D .11.【答案】C【解析】【解答】解:①根据题意得:a@b=(a+b )2﹣(a ﹣b )2 ∥(a+b )2﹣(a ﹣b )2=0,整理得:(a+b+a ﹣b )(a+b ﹣a+b )=0,即4ab=0, 解得:a=0或b=0,正确;②∥a@(b+c )=(a+b+c )2﹣(a ﹣b ﹣c )2=4ab+4aca@b+a@c=(a+b )2﹣(a ﹣b )2+(a+c )2﹣(a ﹣c )2=4ab+4ac , ∥a@(b+c )=a@b+a@c 正确;③a@b=a2+5b2,a@b=(a+b)2﹣(a﹣b)2,令a2+5b2=(a+b)2﹣(a﹣b)2,解得,a=0,b=0,故错误;④∥a@b=(a+b)2﹣(a﹣b)2=4ab,(a﹣b)2≥0,则a2﹣2ab+b2≥0,即a2+b2≥2ab,∥a2+b2+2ab≥4ab,∥4ab的最大值是a2+b2+2ab,此时a2+b2+2ab=4ab,解得,a=b,∥a@b最大时,a=b,故④正确,故选C.12.【答案】D【解析】【解答】解:设正方形的边长为2,则CD=2,CF=1 在直角三角形DCF中,DF= √12+22= √5∥FG= √5∥CG= √5﹣1∥ CGCD = √5−12∥矩形DCGH为黄金矩形故选D.13.【答案】D【解析】【解答】解:由题意得:{y=2x−1y=−x+3,解得:{x=43y=53,当2x﹣1≥﹣x+3时,x≥ 43,∥当x≥ 43时,y=min{2x﹣1,﹣x+3}=﹣x+3,由图象可知:此时该函数的最大值为53;当2x﹣1<﹣x+3时,x<43,∥当x<43时,y=min{2x﹣1,﹣x+3}=2x﹣1,由图象可知:此时该函数的最大值为53;综上所述,y=min{2x﹣1,﹣x+3}的最大值是当x= 43所对应的y的值,如图所示,当x= 43时,y= 53,故答案为:D.14.【答案】A【解析】【解答】解:设A(a,−1a ),根据题意点A关于坐标原点对称的点B(-a,1a)在直线y 2 = k x + 1 + k上,∥1a=-ak+1+k,整理得:ka2-(k+1)a+1=0 ①,即(a-1)(ka-1)=0,∥a-1=0或ka-1=0,则a=1或ka-1=0,若k=0,则a=1,此时方程①只有1个实数根,即两个函数图象上的“友好点”只有1对;若k≠0,则a=1k,此时方程①有2个实数根,即两个函数图象上的“友好点”有2对,综上所述,这两个函数图象上的“友好点”对数情况为1对或2对,故选:A.15.【答案】B【解析】【解答】解:如图1,连接AC,CF,则AF=3 √2,∥两次变换相当于向右移动3格,向上移动3格,又∥MN=20 √2,∥20 √2÷3 √2= 203,(不是整数)∥按A﹣C﹣F的方向连续变换10次后,相当于向右移动了10÷2×3=15格,向上移动了10÷2×3=15格,此时M位于如图所示的5×5的正方形网格的点G处,再按如图所示的方式变换4次即可到达点N处,∥从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是14次,故选:B.16.【答案】A【解析】【解答】解:当1≤x<2时,12x2=1,解得x1= √2,x2=﹣√2;当x=0,12x2=0,x=0;当﹣1≤x <0时, 12x 2=﹣1,方程没有实数解;当﹣2≤x <﹣1时, 12 x 2=﹣1,方程没有实数解; 所以方程[x]= 12 x 2的解为0或 √2 .二、填空题17.【答案】 ①③④【解析】【解答】解:①(1.493)=1,正确;②(2x )≠2(x ),例如当x=0.3时,(2x )=1,2(x )=0,故②错误; ③若( 12x −1 )=4,则4﹣ 12 ≤ 12 x ﹣1<4+ 12 ,解得:9≤x <11,故③正确;④m 为整数,故(m+2013x )=m+(2013x ),故④正确;⑤(x+y )≠(x )+(y ),例如x=0.3,y=0.4时,(x+y )=1,(x )+(y )=0,故⑤错误; 综上可得①③正确. 故答案为:①③④ 18.【答案】−13【解析】【解答】解:由题意可得, x 1=﹣ 13 ,x 2= 11−(−13)=34 ,x 3=11−34=4 ,x 4= 11−4=−13 , 2017÷3=672…1, ∥x 2017= −13 , 故答案为: −13 . 19.【答案】 1 ;12或34或√34【解析】【解答】(1)存在另外 1 条相似线.如图1所示,过点P 作l 3∥BC 交AC 于Q ,则∥APQ∥∥ABC ; 故答案为:1;(2)设P (l x )截得的三角形面积为S ,S=14S ∥ABC , 则相似比为1:2.如图2所示,共有4条相似线:①第1条l 1 , 此时P 为斜边AB 中点,l 1∥AC ,∥BP BA =12;②第2条l 2 , 此时P 为斜边AB 中点,l 2∥BC ,∥BP BA =12;③第3条l 3 , 此时BP 与BC 为对应边,且BP BA =12, ∥BP BA=BPBC COS30o=√34;④第4条l 4 , 此时AP 与AC 为对应边,且AP AC =12, ∥AP AB=APAC sin30o=14, ∥BP BA =34.故答案为:12或12或√34.20.【答案】②③【解析】【解答】解:①当x=1.7时, [x]+(x )+[x )=[1.7]+(1.7)+[1.7)=1+2+2=5,故①错误;②当x=﹣2.1时, [x]+(x )+[x )=[﹣2.1]+(﹣2.1)+[﹣2.1)=(﹣3)+(﹣2)+(﹣2)=﹣7,故②正确;③当1<x <1.5时, 4[x]+3(x )+[x ) =4×1+3×2+1 =4+6+1=11,故③正确;④∥﹣1<x <1时,∥当﹣1<x <﹣0.5时,y=[x]+(x )+x=﹣1+0+x=x ﹣1, 当﹣0.5<x <0时,y=[x]+(x )+x=﹣1+0+x=x ﹣1, 当x=0时,y=[x]+(x )+x=0+0+0=0,当0<x <0.5时,y=[x]+(x )+x=0+1+x=x+1,当0.5<x <1时,y=[x]+(x )+x=0+1+x=x+1,∥y=4x ,则x ﹣1=4x 时,得x= −13;x+1=4x 时,得x= 13;当x=0时,y=4x=0,∥当﹣1<x <1时,函数y=[x]+(x )+x 的图象与正比例函数y=4x 的图象有三个交点,故④错误, 故答案为:②③. 21.【答案】2π【解析】【解答】解:如图3,由题意知AB=BC=AC=2cm , ∥∥BAC=∥ABC=∥ACB=60°,∥ AB̂ 在以点C 为圆心、2为半径的圆上, ∥ AB̂ 的长为 60⋅π⋅2180= 2π3, 则莱洛三角形的周长为2π3×3=2π,故答案为:2π.22.【答案】113°或92°.【解析】【解答】∥△BCD ∼△BAC , ∥∥BCD=∥A=46°,∥△ACD 为等腰三角形,∥ADC>∥BCD , ∥∥ADC>∥A , ∥AC ≠CD ,①当AC=AD 时,∥ACD=∥ADC=12(180°-46°)=67°, ∥∥ACB=67°+46°=113°.②当DA=DC 时,∥ACD=∥A=46°,。
2024七年级数学上册第二部分中考命题新趋势新趋势2新定义运算问题习题课件新版苏科版
“不是”)射线 PR , PT 的“双倍和谐线”;射线
PT
是
(选填“是”或“不是”)射线 PS , PR 的“双
倍和谐线”;
1
2
3
4
5
6
7
8
9
(2)类似的,在一条直线同侧的三条具有公共端点的射线之间
若满足以下关系,其中一条射线分别与另外两条射线组成
的角恰好满足3倍的数量关系,则称该射线是另外两条射
−(−)
“哈利数”, a4是 a3的“哈利数”,…,依此类推,则
a2 024=(
A. 3
D )
B. -2
1
2
3
C.
4
5
6
7
8
D.
9
3. [2024苏州姑苏区校级期中]在数学中,为了书写简便,18
世纪数学家欧拉就引进了求和符号“∑”.如记 ∑ k =1
=
+2+3+…+( n -1)+ n ; ∑ ( x + k )=( x +3)+( x +4)
处便可安装摄像头,而如图②, P2不是“完美观测点”.
如图③,以下各点是“完美观测点”的是( D )
A. M1
B. M2
C. M3
D. M4
1
2
3
4
5
6
7
8
9
2. a 是不为2的有理数,我们把
称为 a 的“哈利数”,例
−
如:3的“哈利数”是
=-2,-2的“哈利数”是
−
= .已知 a1=3, a2是 a1的“哈利数”, a3是 a2的
的值.
中考数学复习《新定义问题》
【解析】根据题意可知,S1中2有2的倍数个,3有3的倍数个,据此即可作出
选择.A.∵2有3个,∴不可以作为S1,故选项错误;B.∵2有3个,∴不可以
作为S1,故选项错误;C.3只有1个,∴不可以作为S1,故选项错误;D.符合 定义的一种变换,故选项正确.故选D.
13.对于钝角α,定义它的三角函数值如下: sinα=sin(180°-α),cosα=-cos(180°-α).
11.任意一个正整数 n 都可以分解:n=p×q(p,q 是正整数,且 p≤q), 在 n 的所有这种分解中,如果|p-q|最小,则称 p×q 是 n 的最佳分解. p 并规定:F(n)=q.
(1)求F(12);
(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换 其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为
15.定义:点 P 是△ABC 内部或边上的点(顶点除外),在△PAB,△PBC, △PCA 中,若至少有一个三角形与△ABC 相似,则称点 P 是△ABC 的自相似 3 3 点.在平面直角坐标系中,点 M 是曲线 y= x (x>0)上的任意一点,点 N 在 x 轴正半轴上. (1)如图 1,MN⊥x 轴,点 N( 3,0), 若 OM 上点 P 是△MON 的自相似点,求点 P 的坐标; (2)如图 2,当点 M(3, 3),点 N(2,0)时,求△MON 的自相似点的坐标.
3.定义[a,b,c]为函数 y=ax2+bx+c 的特征数, 下面给出特征数为[2m,1-m ,-1-m]的函数的一些结论: 1 8 ①当 m=-3 时,函数图象的顶点坐标是(3,3); 3 ②当 m>0 时,函数图象截 x 轴所得的线段长度大于2; 1 ③当 m<0 时,函数在 x>4时,y 随 x 的增大而减小; ④当 m≠0 时,函数图象经过同一个点.其中正确的结论有( B ) A.①②③④ B.①②④ C.①③④ D.②④
中考数学难题突破专题--新定义问题
中考数学难题突破专题--新定义问题所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近 年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力.解决“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其解决问题的思想方法;二是根据问题情境的变化,通过认真思考,合理进行思想方法的迁移.类型1 新法则、新运算型例题1、 我们知道,任意一个正整数n 都可以进行这样的分解:n =p ×q (p ,q 是正整数,且p ≤q ).在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p ×q 是n 的最佳分解.并规定:F (n )=p q.例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所以3×4是12的最佳分解,所以F (12)=34. (1)如果一个正整数m 是另外一个正整数n 的平方,我们称正整数m 是完全平方数,求证:对任意一个完全平方数m ,总有F (m )=1;(2)如果一个两位正整数t ,t =10x +y (1≤x ≤y ≤9,x ,y 为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t 为“吉祥数”,求所有“吉祥数”;(3)在(2)所得的“吉祥数”中,求F (t )的最大值. 例题分层分析(1)对任意一个完全平方数m ,设m =n 2(n 为正整数),找出m 的最佳分解为________,所以F (m )=________=________;(2)设交换t 的个位上的数与十位上的数得到的新数为t ′,则t ′=________,根据“吉祥数”的定义确定出x 与y 的关系式为________,进而求出所求即可;(3)利用“吉祥数”的定义分别求出各自的值,进而确定出F (t )的最大值即可.解题方法点析此类问题在于读懂新定义,然后仿照范例进行运算,细心研读定义,细致观察范例是解题的关键. 类型2 新定义几何概念型例题2、如图Z3-1,将△ABC纸片沿中位线EH折叠,使点A的对称点D落在BC边上,再将纸片分别沿等腰△BED 和等腰△DHC的底边上的高线EF,HG折叠,折叠后的三个三角形拼合形成一个矩形.类似地,对多边形进行折叠,若翻折后的图形恰能拼成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.图Z3-1(1)将▱ABCD纸片按图Z3-2①的方式折叠成一个叠合矩形AEFG,则操作形成的折痕分别是线段________,________;S矩形AEFG∶S▱ABCD=________.(2)▱ABCD纸片还可以按图Z3-2②的方式折叠成一个叠合矩形EFGH,若EF=5,EH=12,求AD的长.(3)如图Z3-2③,四边形ABCD纸片满足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10.小明把该纸片折叠,得到叠合正方形....请你帮助画出叠合正方形的示意图,并求出AD,BC的长.图Z3-2例题分层分析(1)观察图形直接得到操作形成的折痕,根据矩形和平行四边形的面积公式与折叠的轴对称性质可得S矩形AEFG∶S▱ABCD =________;(2)由矩形的性质和勾股定理可求得FH=________,再由折叠的轴对称性质可知HD=________,FC=______,∠AHE=12______,∠CFG=12________,从而可得∠________=∠________,再证得△AEH≌△CGF,可得________,进而求得AD的长;(3)根据叠合矩形定义,画出叠合正方形,然后再求AD,BC的长.解题方法点析解决此类问题的关键在于仔细研读几何新概念,将新的几何问题转化为已知的三角形、四边形或圆的问题,从而解决问题.对于几何新概念弄清楚条件和结论是至关重要的.专 题 训 练1. 定义[x ]表示不超过实数x 的最大整数,如[1.8]=1,[-1.4]=-2,[-3]=-3.函数y =[x ]的图象如图Z 3-3所示,则方程[x ]=12x 2的解为( )图Z 3-3A .0或 2B .0或2C .1或- 2D .2或- 22. 对于实数a ,b ,定义符号min{a ,b },其意义为:当a ≥b 时,min{a ,b }=b :当a <b 时,min{a ,b }=a .例如min{2,-1}=-1.若关于x 的函数y =min{2x -1,-x +3},则该函数的最大值为( )A.23 B .1 C.43 D .533. 在平面直角坐标系xOy 中,对于不在坐标轴上的任意一点P (x ,y ),我们把点P ′(1x ,1y )称为点P 的“倒影点”.直线y =-x +1上有两点A ,B ,它们的倒影点A ′,B ′均在反比例函数y =kx的图象上.若AB =2 2,则k =________.4. 经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图Z 3-4,线段CD 是△ABC 的“和谐分割线”,△ACD 为等腰三角形,△CBD 和△ABC 相似,∠A =46°,则∠ACB 的度数为________.图Z 3-45. 对于任意实数a ,b ,定义关于“⊗”的一种运算如下:a ⊗b =2a -b .例如:5⊗2=2×5-2=8,(-3)⊗4=2×(-3)-4=-10.(1)若3⊗x =-2011,求x 的值; (2)若x ⊗3<5,求x 的取值范围.6. 定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形. (1)如图Z 3-5①,等腰直角四边形ABCD 中,AB =BC ,∠ABC =90°. ①若AB =CD =1,AB ∥CD ,求对角线BD 的长. ②若AC ⊥BD ,求证:AD =CD .(2)如图Z 3-5②,在矩形ABCD 中,AB =5,BC =9,点P 是对角线BD 上一点,且BP =2PD ,过点P 作直线分别交边AD ,BC 于点E ,F ,使四边形ABFE 是等腰直角四边形.求AE 的长.图Z 3-57. 有两个内角分别是它们对角的一半的四边形叫做半对角四边形.(1)如图Z 3-6①,在半对角四边形ABCD 中,∠B =12∠D ,∠C =12∠A ,求∠B 与∠C 的度数之和;(2)如图Z 3-6②,锐角三角形ABC 内接于⊙O ,若边AB 上存在一点D ,使得BD =BO ,∠OBA 的平分线交OA 于点E ,连结DE 并延长交AC 于点F ,∠AFE =2∠EAF ,求证:四边形DBCF 是半对角四边形;(3)如图Z 3-6③,在(2)的条件下,过点D 作DG ⊥OB 于点H ,交BC 于点G ,当DH =BG 时,求△BGH 与△ABC 的面积之比.图Z 3-6参考答案类型1 新法则、新运算型 例1 【例题分层分析】 (1)m =n ×n nn 1(2)10y +x y =x +4解:(1)证明:对任意一个完全平方数m , 设m =n 2(n 为正整数),∵|n -n |=0,∴n ×n 是m 的最佳分解, ∴对任意一个完全平方数m ,总有F (m )=nn=1.(2)设交换t 的个位上的数与十位上的数得到的新数为t ′,则t ′=10y +x , ∵t 是“吉祥数”,∴t ′-t =(10y +x )-(10x +y )=9(y -x )=36, ∴y =x +4,∵1≤x ≤y ≤9,x ,y 为自然数,∴满足“吉祥数”的为15,26,37,48,59.(3)F (15)=35,F (26)=213,F (37)=137,F (48)=68=34,F (59)=159.∵34>35>213>137>159,∴所有“吉祥数”中,F (t )的最大值是34.类型2 新定义几何概念型 例2 【例题分层分析】 (1)1∶2(2)13 HN FN ∠AHF ∠CFH AHE CFG FC =AH 解:(1)AE ,GF ;1∶2.提示:由折叠的性质,得AD =2AG . ∵S 矩形AEFG =AE ·AG ,S ▱ABCD =AE ·AD , ∴S 矩形AEFG ∶S ▱ABCD =AE·AGAE·AD=1∶2.(2)∵四边形EFGH 是叠合矩形,∴∠FEH =90°, ∴FH =EF 2+EH 2=52+122=13.由折叠的性质可知,HD =HN ,FC =FN ,∠AHE =12∠AHF ,∠CFG =12∠CFH .∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∠A =∠C ,∴∠AHF =∠CFH ,∴∠AHE =∠CFG . ∵EH =FG ,∴△AEH ≌△CGF ,∴FC =AH , ∴AD =AH +HD =FC +HN =FN +HN =FH =13. (3)本题有以下两种基本折法,如图①,图②.①按图①的折法的解法:由折叠的性质可知,AD =BF ,BE =AE =4,CH =DH =5,FG =CG . ∵四边形EBGH 是叠合正方形,∴HG =BG =4, ∴CG =3,∴FG =CG =3,∴BF =BG -FG =1,BC =BG +CG =4+3=7, ∴AD =1,BC =7. ②按图②的折法的解法: 设AD =x .由折叠的性质可知,AE =EM =BE =4,MH =AD =x ,DN =HN ,HG =CG ,FC =FH . 由DN =HN ,HG =CG ,则GN =12CD =5.∵四边形EFGN 是叠合正方形, ∴EF =FG =GN =5,∴MF =BF =3, ∴FC =FH =x +3.∵∠B =∠EFG =∠CGF =90°,∴∠BEF +∠BFE =∠BFE +∠CFG =90°, ∴∠BEF =∠CFG ,∴△GFC ∽△BEF , ∴FG BE =FC EF ,即54=x +35,解得x =134, ∴AD =134,BC =BF +FC =3+134+3=374.专题训练1.A [解析] 由函数图象可知,当-2≤x <-1时,y =-2,即有[x ]=-2,此时方程无解;当-1≤x <0时,y =-1,即有[x ]=-1,此时方程无解;当0≤x <1时,y =0,即有[x ]=0,此时方程为0=12x 2,解得x =0;当1≤x<2时,y =1,即有[x ]=1,此时方程为1=12x 2,解得x =2或x =-2(不在x 的取值范围内,舍去).综上可知,方程[x ]=12x 2的解为0或 2.2.D [解析] 当2x -1≥-x +3时,x ≥43,y =min {2x -1,-x +3}=-x +3,最大值为53.当2x -1<-x +3时,x <43,y =min {2x -1,-x +3}=2x -1,y 的值都小于53.综上,该函数的最大值为53.3.-43 [解析] A ,B 两点在直线y =-x +1上,设A (a ,-a +1),B (b ,-b +1),∴AB 2=(a -b )2+(-a +1+b -1)2=2(a -b )2=(2 2)2,∴(a -b )2=4,∴a -b =±2.A ,B 两点的“倒影点”分别为A ′(1a ,11-a ),B ′(1b ,11-b). ∵点A ′,B ′均在反比例函数y =k x 的图象上,∴1a ·11-a =k =1b ·11-b ,∴a (1-a )=b (1-b ),变形得(a -b )(1-a -b )=0,∵a -b =±2,∴1-a -b =0.由⎩⎪⎨⎪⎧a -b =2,1-a -b =0解得⎩⎪⎨⎪⎧a =32,b =-12,∴k =1a ·11-a =23×(-2)=-43;由⎩⎪⎨⎪⎧a -b =-2,1-a -b =0解得⎩⎪⎨⎪⎧a =-12,b =32,∴k =1a ·11-a =(-2)×23=-43.综上,k =-43.4.113°或92° [解析] ∵△CBD 和△ABC 相似, ∴∠BCD =∠A =46°.设∠ACB =x ,则∠ACD =x -46°.∵△ACD 是等腰三角形,又∠ADC >∠BCD ,∴∠ADC >∠A ,即AC ≠CD . ①若AC =AD ,则∠ACD =∠ADC =x -46°, ∵46°+x -46°+x -46°=180°, ∴x =113°.②若AD =CD ,则∠ACD =∠A , 即46°=x -46°, ∴x =92°.综上所述,∠ACB 的度数为113°或92°. 5.解:(1)根据题意,得2×3-x =-2011, 解这个方程,得x =2017. (2)根据题意,得2x -3<5, 解得x <4,即x 的取值范围是x <4.6.解:(1)①∵AB =CD =1且AB ∥CD ,∴四边形ABCD 是平行四边形, 又∵AB =BC ,∴四边形ABCD 是菱形. ∵∠ABC =90°,∴四边形ABCD 是正方形, ∴BD =AC =12+12= 2. ②证明:如图①中,连结AC ,BD . ∵AB =BC ,AC ⊥BD ,∴∠ABD =∠CBD , ∵BD =BD ,∴△ABD ≌△CBD ,∴AD =CD .(2)若EF ⊥BC ,则AE ≠EF ,BF ≠EF ,∴四边形ABFE 不表示等腰直角四边形,故不符合条件. 若EF 与BC 不垂直,①当AE =AB 时,如图②,此时四边形ABFE 是等腰直角四边形,∴AE =AB =5.②当BF =AB 时,如图③,此时四边形ABFE 是等腰直角四边形,∴BF =AB =5,∵DE ∥BF ,BP =2PD ,∴BF ∶DE =2∶1,∴DE =2.5,∴AE =9-2.5=6.5.综上所述,满足条件的AE 的长为5或6.5.7.解:(1)在半对角四边形ABCD 中,∠B =12∠D ,∠C =12∠A ,∵∠A +∠B +∠C +∠D =360°,∴3∠B +3∠C =360°,∴∠B +∠C =120°, 即∠B 与∠C 的度数之和为120°. (2)证明:在△BED 和△BEO 中, ⎩⎪⎨⎪⎧BD =BO ,∠EBD =∠EBO,BE =BE ,∴△BED ≌△BEO (SAS ), ∴∠BDE =∠BOE .又∵∠BCF =12∠BOE ,∴∠BCF =12∠BDE .如图,连结OC ,设∠EAF =α,则∠AFE =2α,∴∠EFC =180°-∠AFE =180°-2α. ∵OA =OC ,∴∠OAC =∠OCA =α, ∴∠AOC =180°-2α, ∴∠ABC =12∠AOC =12∠EFC ,∴四边形DBCF 是半对角四边形. (3)如图,作OM ⊥BC 交BC 于点M . ∵四边形DBCF 是半对角四边形,∴∠ABC +∠ACB =120°,∴∠BAC =60°,∴∠BOC =2∠BAC =120°. ∵OB =OC ,∴∠OBC =∠OCB =30°, ∴BC =2BM =3BO =3BD . ∵DG ⊥OB ,∴∠HGB =∠BAC =60°.∵∠DBG =∠CBA ,∴△DBG ∽△CBA , ∴△DBG的面积△ABC的面积=(BD BC )2=13.∵DH =BG ,BG =2HG , ∴DG =3HG , ∴△BHG的面积△BDG的面积=13,∴△BHG的面积△ABC的面积=19.。
中考数学专题复习新定义问题【含解析】
新定义问题【专题点拨】新定义运算、新概念问题一般是介绍新定义、新概念,然后利用新定义、新概念解题,其解题步骤一般都可分为以下几步:1.阅读定义或概念,并理解;2.总结信息,建立数模;3.解决数模,回顾检查.“新概念”试题,其设计新颖,构思独特,思维容量大,既能考查学生的阅读、分析、推理、概括等能力,又能考查学生知识迁移的能力和数学素养,同时还兼具了区分选拔的功能 .【解题策略】具体分析新颖问题→弄清问题题意→向已知知识点转化→利用相关联知识查验→转化问题思路解决【典例解析】类型一:规律题型中的新定义例题1:(2015•永州,第10题3分)定义[x]为不超过x的最大整数,如[3.6]=3,[0.6]=0,[﹣3.6]=﹣4.对于任意实数x,下列式子中错误的是()A.[x]=x(x为整数) B.0≤x﹣[x]<1C.[x+y]≤[x]+[y]D.[n+x]=n+[x](n为整数)【解析】:根据“定义[x]为不超过x的最大整数”进行计算【解答】:解:A、∵[x]为不超过x的最大整数,∴当x是整数时,[x]=x,成立;B、∵[x]为不超过x的最大整数,∴0≤x﹣[x]<1,成立;C、例如,[﹣5.4﹣3.2]=[﹣8.6]=﹣9,[﹣5.4]+[﹣3.2]=﹣6+(﹣4)=﹣10,∵﹣9>﹣10,∴[﹣5.4﹣3.2]>[﹣5.4]+[﹣3.2],∴[x+y]≤[x]+[y]不成立,D、[n+x]=n+[x](n为整数),成立;故选:C.【点评】本题考查了一元一次不等式组的应用,解决本题的关键是理解新定义.新定义解题是近几年中考常考的题型.变式训练1:(2015•山东潍坊,第12题3分)如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为( )A.(—2012,2) B.(一2012,一2)C. (—2013,—2)D. (—2013,2)类型二:运算题型中的新定义例题2:(2016·四川宜宾)规定:log a b(a>0,a≠1,b>0)表示a,b之间的一种运算.现有如下的运算法则:log n a n=n.log N M=(a>0,a≠1,N>0,N≠1,M>0).例如:log223=3,log25=,则log1001000= .【解析】实数的运算.先根据log N M=(a>0,a≠1,N>0,N≠1,M>0)将所求式子化成以10为底的对数形式,再利用公式进行计算.【解答】解:log1001000===.故答案为:.变式训练2:(2016四川省乐山市第16题)在直角坐标系xOy 中,对于点P (x ,y )和Q (x ,y′),给出如下定义:若(0)(0)y x y y x ≥⎧'=⎨-<⎩,则称点Q 为点P 的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)若点(﹣1,﹣2)是一次函数3y x =+图象上点M 的“可控变点”,则点M 的坐标为 ;(2)若点P 在函数216y x =-+(5x a -≤≤)的图象上,其“可控变点”Q 的纵坐标y′的取值范围是1616y '-≤≤,则实数a 的取值范围是 .类型三: 探索题型中的新定义例题3:(2016山西省第10题)宽与长的比是21-5(约为0.618)的矩形叫做黄金矩形.黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD ,分别取AD ,BC 的中点E ,F ,连接EF ;以点F 为圆心,以FD 为半径画弧,交BC 的延长线与点G ;作AD GH ⊥,交AD 的延长线于点H .则图中下列矩形是黄金矩形的是( )A .矩形ABFEB .矩形EFCDC .矩形EFGHD .矩形DCGH【解析】考点:黄金分割的识别【解答】:由作图方法可知DF=5CF ,所以CG=CF )15(-,且GH=CD=2CF ,从而得出黄金矩形CG=CF )15(-,GH=2CF ∴2152)15(-=-=CF CF GH CG ∴矩形DCGH 是黄金矩形。
中考数学新定义及探究题专题-《二次函数及新定义》-(含解析)
中考数学新定义及探究题专题《二次函数及新定义》(学生版)【类型1 二次函数问题中的新定义问题】1.(2023春·山东济南·九年级统考期末)新定义:若一个点的纵坐标是横坐标的2倍,则称这个点为二倍点.若二次函数(c为常数)在的图象上存在两个二倍点,则c的取值范围是()A.B.C.D.2.(2023春·湖北咸宁·九年级统考期中)定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.若互异二次函数的对称轴为直线x=1且图象经过点(﹣1,0),则这个互异二次函数的二次项系数是()A.B.C.1D.﹣13.(2023春·广西南宁·九年级统考期中)新定义:在平面直角坐标系中,对于点P(m,n)和点P′(m,n′),若满足m≥0时,n′=n-4;m<0时,n′=-n,则称点P′(m,n′)是点P (m,n)的限变点.例如:点P1(2,5)的限变点是P1′(2,1),点P2(-2,3)的限变点是P2′(-2,-3).若点P(m,n)在二次函数y=-x2+4x+2的图象上,则当-1≤m≤3时,其限变点P′的纵坐标n'的取值范围是()A.B.C.D.4.(2023春·湖南长沙·九年级长沙市开福区青竹湖湘一外国语学校校考期末)定义:我们不妨把纵坐标是横坐标2倍的点称为“青竹点”.例如:点、……都是“青竹点”.显然,函数的图象上有两个“青竹点”:和.(1)下列函数中,函数图象上存在“青竹点”的,请在横线上打“√”,不存在“青竹点”的,请打“×”.①________;②________;③________.(2)若抛物线(m为常数)上存在两个不同的“青竹点”,求m的取值范围;(3)若函数的图象上存在唯一的一个“青竹点”,且当时,a的最小值为c,求c的值.5.(2023春·江苏泰州·九年级统考期中)定义:两个二次项系数之和为,对称轴相同,且图像与轴交点也相同的二次函数互为友好同轴二次函数.例如:的友好同轴二次函数为.(1)函数的友好同轴二次函数为.(2)当时,函数的友好同轴二次函数有最大值为,求的值.(3)已知点分别在二次函数及其友好同轴二次函数的图像上,比较的大小,并说明理由.6.(2023春·浙江金华·九年级校考期中)定义:若抛物线y=ax2+bx+c与x轴两交点间的距离为4,称此抛物线为定弦抛物线.(1)判断抛物线y=x2+2x﹣3是否是定弦抛物线,请说明理由;(2)当一定弦抛物线的对称轴为直线x=1,且它的图像与坐标轴的交点间的连线所围成的图形是直角三角形,求该抛物线的表达式;(3)若定弦抛物线y=x2+bx+c(b<0)与x轴交于A、B两点(A在B左边),当2≤x≤4时,该抛物线的最大值与最小值之差等于OB之间的距离,求b的值.7.(2023春·浙江·九年级期末)定义:若抛物线与抛物线.同时满足且,则称这两条抛物线是一对“共轭抛物线”.(1)已知抛物线与是一对共轭抛物线,求的解析式;(2)如图1,将一副边长为的正方形七巧板拼成图2的形式,若以BC中点为原点,直线BC 为x轴建立平面直角坐标系,设经过点A,E,D的抛物线为,经过A、B、C的抛物线为,请立接写出、的解析式并判断它们是否为一对共轭抛物线.8.(2023春·湖南长沙·九年级校联考期末)定义:如果抛物线与轴交于点,,那么我们把线段叫做雅礼弦,两点之间的距离称为抛物线的雅礼弦长.(1)求抛物线的雅礼弦长;(2)求抛物线的雅礼弦长的取值范围;(3)设,为正整数,且,抛物线的雅礼弦长为,抛物线的雅礼弦长为,,试求出与之间的函数关系式,若不论为何值,恒成立,求,的值.9.(2023春·河南濮阳·九年级统考期中)小明在课外学习时遇到这样一个问题:定义:如果二次函数y=a1x2+b1x+c1(a1≠0)与y=a2x2+b2x+c2(a2≠0)满足a1+a2=0,b1=b2,c1+c2=0,则称这两个函数互为“旋转函数”.求函数y=x2-3x-2的“旋转函数”.小明是这样思考的:由函数y=x2-3x-2可知,a1=1,b1=-3,c1=-2,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2,就能确定这个函数的“旋转函数”.请参考小明的方法解决下面问题:(1)直接写出函数y=x2-3x-2的“旋转函数” ;(2)若函数与y=x2-2nx+n互为“旋转函数”,求(m+n)2020的值;(3)已知函数的图象与x轴交于点A、B两点(A在B的左边),与y轴交于点C,点A、B、C关于原点的对称点分别是A1,B1,C1,试证明经过点A1,B1,C1的二次函数与函数互为“旋转函数”10.(2023春·山西大同·九年级统考期中)请阅读下列材料,并完成相应的任务:定义:我们把自变量为的二次函数与(,)称为一对“亲密函数”,如的“亲密函数”是.任务:(1)写出二次函数的“亲密函数”:______;(2)二次函数的图像与轴交点的横坐标为1和,它的“亲密函数”的图像与轴交点的横坐标为______,猜想二次函数()的图像与轴交点的横坐标与其“亲密函数”的图像与轴交点的横坐标之间的关系是______;(3)二次函数的图像与轴交点的横坐标为1和,请利用(2)中的结论直接写出二次函数的图像与轴交点的横坐标.【类型2 二次函数与一次函数综合问题中的新定义问题】1.(2023春·九年级课时练习)定义:由a,b构造的二次函数叫做一次函数y=ax+b的“滋生函数”,一次函数y=ax+b叫做二次函数的“本源函数”(a,b为常数,且).若一次函数y=ax+b的“滋生函数”是,那么二次函数的“本源函数”是.2.(2023春·浙江湖州·九年级统考期中)定义:如果函数图象上存在横、纵坐标相等的点,则称该点为函数的不动点.例如,点是函数的不动点.已知二次函数(是实数).(1)若点是该二次函数的一个不动点,求的值;(2)若该二次函数始终存在不动点,求的取值范围.3.(2023·安徽·模拟预测)已知函数与函数,定义“和函数”.(1)若,则“和函数”;(2)若“和函数”为,则,;(3)若该“和函数”的顶点在直线上,求.4.(2023·北京·模拟预测)城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系,对两点和,用以下方式定义两点间距离:.(1)①已知点,则______.②函数的图象如图①所示,是图象上一点,,求点的坐标.(2)函数的图象如图②所示,是图象上一点,求的最小值及对应的点的坐标.5.(2023春·上海·九年级上海市民办新复兴初级中学校考期中)我们定义【,,】为函数的“特征数”,如:函数的“特征数”是【2,,5】,函数的“特征数”是【0,1,2】(1)若一个函数的“特征数”是【1,,1】,将此函数图像先向左平移2个单位,再向上平移1个单位,得到一个图像对应的函数“特征数”是______;(2)将“特征数”是【0,,】的图像向上平移2个单位,得到一个新函数,这个函数的解析式是______;(3)在(2)中,平移前后的两个函数图像分别与轴交于A、两点,与直线分别交于、两点,在给出的平面直角坐标系中画出图形,并求出以A、、、四点为顶点的四边形的面积;(4)若(3)中的四边形与“特征数”是【1,,】的函数图像有交点,求满足条件的实数的取值范围.6.(2023春·福建龙岩·九年级校考期末)定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数;当x≥0时,它们对应的函数值相等.我们称这样的两个函数互为相关函数.例如:一次函数,它的相关函数为(1)已知点A(-2,1)在一次函数的相关函数的图象上时,求a的值.(2)已知二次函数.当点B(m,)在这个函数的相关函数的图象上时,求m的值.7.(2023春·江苏南通·九年级统考期末)定义:若图形与图形有且只有两个公共点,则称图形与图形互为“双联图形”,即图形是图形的“双联图形”,图形是图形的“双联图形”.(1)若直线与抛物线互为“双联图形”,且直线不是双曲线的“双联图形”,求实数的取值范围;(2)如图2,已知,,三点.若二次函数的图象与互为“双联图形”,直接写出的取值范围.8.(2023春·北京·九年级北京市第三中学校考期中)定义:在平面直角坐标系中,图形G 上点P(x,y)的纵坐标y与其横坐标x的差y﹣x称为P点的“坐标差”,而图形G上所有点的“坐标差”中的最大值称为图形G的“特征值”.(1)①点A(1,3)的“坐标差”为 ;②抛物线y=﹣x2+3x+3的“特征值”为 ;(2)某二次函数y=﹣x2+bx+c(c≠0)的“特征值”为1,点B(m,0)与点C分别是此二次函数的图象与x轴和y轴的交点,且点B与点C的“坐标差”相等.①直接写出m= ;(用含c的式子表示)②求b的值.9.(2023春·北京·九年级人大附中校考期中)对某一个函数给出如下定义:若存在实数,对于任意的函数值,都满足,则称这个函数是有界函数,在所有满足条件的中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是.(1)直接写出有界函数的边界值;(2)已知函数是有界函数,且边界值为3,直接写出的最大值;(3)将函数的图象向下平移个单位,得到的函数的边界值是,直接写出的取值范围,使得.10.(2023春·湖南长沙·九年级校考期中)若定义:若一个函数图像上存在纵坐标是横坐标2倍的点,则把该函数称为“明德函数”,该点称为“明德点”,例如:“明德函数”,其“明德点”为(1,2).(1)①判断:函数__________ “明德函数”(填“是”或“不是”);②函数的图像上的明德点是___________;(2)若抛物线上有两个“明德点”,求m的取值范围;(3)若函数的图像上存在唯一的一个“明德点”,且当时,的最小值为,求的值.【类型3 二次函数与几何图形综合问题中的新定义问题】1.(2023春·四川绵阳·九年级统考期末)定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.如图,在正方形中,点,点,则互异二次函数与正方形有交点时的最大值和最小值分别是()A.4,-1B.,-1C.4,0D.,-1 2.(2023春·山东济南·九年级统考期末)定义:关于x轴对称且对称轴相同的两条抛物线叫作“同轴对称抛物线”.例如:y1=(x﹣1)2﹣2的“同轴对称抛物线”为y2=﹣(x﹣1)2+2.(1)请写出抛物线y1=(x﹣1)2﹣2的顶点坐标;及其“同轴对称抛物线”y2=﹣(x﹣1)2+2的顶点坐标;(2)求抛物线y=﹣2x2+4x+3的“同轴对称抛物线”的解析式.(3)如图,在平面直角坐标系中,点B是抛物线L:y=ax2﹣4ax+1上一点,点B的横坐标为1,过点B作x轴的垂线,交抛物线L的“同轴对称抛物线”于点C,分别作点B、C关于抛物线对称轴对称的点、,连接BC、、、.①当四边形为正方形时,求a的值.②当抛物线L与其“同轴对称抛物线”围成的封闭区域内(不包括边界)共有11个横、纵坐标均为整数的点时,直接写出a的取值范围.3.(2023春·北京门头沟·九年级大峪中学校考期中)定义:对于平面直角坐标系上的点和抛物线,我们称是抛物线的相伴点,抛物线是点的相伴抛物线.如图,已知点,,.(1)点的相伴抛物线的解析式为______;过,两点的抛物线的相伴点坐标为______;(2)设点在直线上运动:①点的相伴抛物线的顶点都在同一条抛物线上,求抛物线的解析式.②当点的相伴抛物线的顶点落在内部时,请直接写出的取值范围.4.(2023春·浙江绍兴·九年级校联考期中)定义:如图1,抛物线与x轴交于A,B两点,点P在该抛物线上(P点与A.B两点不重合),如果△ABP中PA 与PB两条边的三边满足其中一边是另一边倍,则称点P为抛物线的“好”点.(1)命题:P(0,3)是抛物线的“好”点.该命题是_____(真或假)命题.(2)如图2,已知抛物线C:与轴交于A,B两点,点P(1,2)是抛物线C的“好”点,求抛物线C的函数表达式.(3)在(2)的条件下,点Q在抛物线C上,求满足条件S△ABQ=S△AB P的Q点(异于点P)的坐标.5.(2023·安徽安庆·九年级统考期末)在平面直角坐标系中,我们定义直线y=ax-a为抛物线y=ax2+bx+c(a、b、c为常数,a≠0)的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“梦想三角形”.已知抛物线y=-与其“梦想直线”交于A、B两点(点A在点B的左侧),与x轴负半轴交于点C.(1)填空:该抛物线的“梦想直线”的解析式为______,点A的坐标为______,点B的坐标为______.(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“梦想三角形”,求点M的坐标.6.(2023春·湖南长沙·九年级统考期中)定义:在线段MN上存在点P、Q将线段MN分为相等的三部分,则称P、Q为线段MN的三等分点.已知一次函数y=﹣x+3的图象与x、y轴分别交于点M、N,且A、C为线段MN的三等分点(点A在点C的左边).(1)直接写出点A、C的坐标;(2)①二次函数的图象恰好经过点O、A、C,试求此二次函数的解析式;②过点A、C分别作AB、CD垂直x轴于B、D两点,在此抛物线O、C之间取一点P(点P不与O、C重合)作PF⊥x轴于点F,PF交OC于点E,是否存在点P使得AP=BE?若存在,求出点P的坐标?若不存在,试说明理由;(3)在(2)的条件下,将△OAB沿AC方向移动到△O'A'B'(点A'在线段AC上,且不与C重合),△O'A'B'与△OCD重叠部分的面积为S,试求当S=时点A'的坐标.7.(2023春·安徽合肥·九年级统考期中)定义:在平面直角坐标系中,图形G上点P(x,y)的纵坐标y与其横坐标x的差y﹣x称为点P的“坐标差”,而图形G上所有点的“坐标差”中的最大值称为图形G的“特征值”.(1)求点A(2,1)的“坐标差”和抛物线y=﹣x2+3x+4的“特征值”.(2)某二次函数=﹣x2+bx+c(c≠0)的“特征值”为﹣1,点B与点C分别是此二次函数的图象与x轴和y轴的交点,且点B与点C的“坐标差”相等,求此二次函数的解析式.(3)如图所示,二次函数y=﹣x2+px+q的图象顶点在“坐标差”为2的一次函数的图象上,四边形DEFO是矩形,点E的坐标为(7,3),点O为坐标原点,点D在x轴上,当二次函数y=﹣x2+px+q的图象与矩形的边有四个交点时,求p的取值范围.8.(2023·浙江杭州·九年级统考期中)新定义:我们把两个面积相等但不全等的三角形叫做偏等积三角形.(1)初步尝试如图1,已知等腰直角△ABC,∠ACB=90°,请将它分成两个三角形,使它们成为偏等积三角形.(2)理解运用如图2,已知△ACD为直角三角形,∠ADC=90°,以AC,AD为边向外作正方向ACFB和正方形ADGE,连接BE,求证:△ACD与△ABE为偏等积三角形.(3)综合探究如图3,二次函数y=x2–x–5的图象与x轴交于A,B两点,与y轴交于点C,在二次函数的图象上是否存在一点D,使△ABC与△ABD是偏等积三角形?若存在,请求出点D的坐标;若不存在,请说明理由.9.(2023春·江西赣州·九年级统考期末)我们给出如下定义:在平面直角坐标系xOy中,如果一条抛物线平移后得到的抛物线经过原抛物线的顶点,那么这条抛物线叫做原抛物线的过顶抛物线.如下图,抛物线F2都是抛物线F1的过顶抛物线,设F1的顶点为A,F2的对称轴分别交F1、F2于点D、B,点C是点A关于直线BD的对称点.(1)如图1,如果抛物线y=x2的过顶抛物线为y=ax2+bx,C(2,0),那么①a= ,b= .②如果顺次连接A、B、C、D四点,那么四边形ABCD为()A.平行四边形B.矩形C.菱形D.正方形(2)如图2,抛物线y=ax2+c的过顶抛物线为F2,B(2,c-1).求四边形ABCD的面积.(3)如果抛物线的过顶抛物线是F2,四边形ABCD的面积为,请直接写出点B的坐标.10.(2023春·江西赣州·九年级校考期末)定义:在平面直角坐标系中,抛物线y=a+bx+c (a≠0)与直线y=m交于点A、C(点C在点A右边)将抛物线y=a+bx+c沿直线y=m 翻折,翻折前后两抛物线的顶点分别为点B、D.我们将两抛物线之间形成的封闭图形称为惊喜线,四边形ABCD称为惊喜四边形,对角线BD与AC之比称为惊喜度(Degreeofsurprise),记作|D|=.(1)图①是抛物线y=﹣2x﹣3沿直线y=0翻折后得到惊喜线.则点A坐标 ,点B 坐标 ,惊喜四边形ABCD属于所学过的哪种特殊平行四边形 ,|D|为 .(2)如果抛物线y=m﹣6m(m>0)沿直线y=m翻折后所得惊喜线的惊喜度为1,求m的值.(3)如果抛物线y=﹣6m沿直线y=m翻折后所得的惊喜线在m﹣1≤x≤m+3时,其最高点的纵坐标为16,求m的值并直接写出惊喜度|D|中考数学新定义及探究题专题《二次函数及新定义》(解析版)【类型1 二次函数问题中的新定义问题】1.(2023春·山东济南·九年级统考期末)新定义:若一个点的纵坐标是横坐标的2倍,则称这个点为二倍点.若二次函数(c为常数)在的图象上存在两个二倍点,则c的取值范围是()A.B.C.D.【答案】D【分析】由点的纵坐标是横坐标的2倍可得二倍点在直线上,由可得二倍点所在线段的端点坐标,结合图象,通过求抛物线与线段的交点求解.【详解】解:由题意可得二倍点所在直线为,将代入得,将代入得,设,,如图,联立与,得方程,即抛物线与直线有两个交点,,解得,当直线和直线与抛物线交点在点A,上方时,抛物线与线段有两个交点,把代入,得,把代入得,,解得,.故选D.【点睛】本题考查二次函数图象与正比例函数图象的交点问题,解题关键掌握函数与方程及不等式的关系,将代数问题转化为图形问题求解.2.(2023春·湖北咸宁·九年级统考期中)定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.若互异二次函数的对称轴为直线x=1且图象经过点(﹣1,0),则这个互异二次函数的二次项系数是()A.B.C.1D.﹣1【答案】B【分析】根据函数的对称轴和互异二次函数的特点计算即可;【详解】由题可知:此函数的横坐标与纵坐标互为相反数,且对称轴为直线x=1且图象经过点(﹣1,0),设此函数为,∴,解得:,∴此函数的二次项系数为;故选B.【点睛】本题主要考查了二次函数的性质,准确计算是解题的关键.3.(2023春·广西南宁·九年级统考期中)新定义:在平面直角坐标系中,对于点P(m,n)和点P′(m,n′),若满足m≥0时,n′=n-4;m<0时,n′=-n,则称点P′(m,n′)是点P (m,n)的限变点.例如:点P1(2,5)的限变点是P1′(2,1),点P2(-2,3)的限变点是P2′(-2,-3).若点P(m,n)在二次函数y=-x2+4x+2的图象上,则当-1≤m≤3时,其限变点P′的纵坐标n'的取值范围是()A.B.C.D.【答案】D【分析】根据新定义得到当m≥0时,n′=-m2+4m+2-4=-(m-2)2+2,在0≤m≤3时,得到-2≤n′≤2;当m<0时,n′=m2-4m-2=(m-2)2-6,在-1≤m<0时,得到-2≤n′≤3,即可得到限变点P′的纵坐标n'的取值范围是-2≤n′≤3.【详解】解:由题意可知,当m≥0时,n′=-m2+4m+2-4=-(m-2)2+2,∴当0≤m≤3时,-2≤n′≤2,当m<0时,n′=m2-4m-2=(m-2)2-6,∴当-1≤m<0时,-2<n′≤3,综上,当-1≤m≤3时,其限变点P′的纵坐标n'的取值范围是-2≤n′≤3,故选:D.【点睛】本题主要考查了二次函数图象上点的坐标特征,解题的关键是根据限变点的定义得到n′关于m的函数.4.(2023春·湖南长沙·九年级长沙市开福区青竹湖湘一外国语学校校考期末)定义:我们不妨把纵坐标是横坐标2倍的点称为“青竹点”.例如:点、……都是“青竹点”.显然,函数的图象上有两个“青竹点”:和.(1)下列函数中,函数图象上存在“青竹点”的,请在横线上打“√”,不存在“青竹点”的,请打“×”.①________;②________;③________.(2)若抛物线(m为常数)上存在两个不同的“青竹点”,求m的取值范围;(3)若函数的图象上存在唯一的一个“青竹点”,且当时,a的最小值为c,求c的值.【答案】(1)×;√;×(2)(3)【分析】(1)根据“青一函数”的定义直接判断即可;(2)根据题意得出关于的一元二次方程,再根据根的判别式得出关于m的不等式,即可求解;(3)根据题意得出关于的一元二次方程,再根据根的判别式得出关于a的二次函数,利用二次函数最值求解即可.【详解】(1)解:①令,方程无解,∴函数图像上不存在“青竹点”,故答案为:×;②令,解得:,,∴函数图像上存在“青竹点”和,故答案为:√;③令,方程无解,∴函数图像上不存在“青竹点”,故答案为:×;(2)解:由题意得,整理,得,∵抛物线(m为常数)上存在两个不同的“青竹点”,∴,解得;(3)解:由题意得整理,得∵函数的图像上存在唯一的一个“青竹点”,∴整理,得∴当时,a的最小值为,∵当时,a的最小值为c,∴∴,【点睛】本题属于函数背景下新定义问题,主要考查二次函数的性质,二次函数与一元二次方程的关系,解题关键是掌握二次函数图象与系数的关系,掌握二次函数与方程的关系,一元二次方程根的判别式.5.(2023春·江苏泰州·九年级统考期中)定义:两个二次项系数之和为,对称轴相同,且图像与轴交点也相同的二次函数互为友好同轴二次函数.例如:的友好同轴二次函数为.(1)函数的友好同轴二次函数为.(2)当时,函数的友好同轴二次函数有最大值为,求的值.(3)已知点分别在二次函数及其友好同轴二次函数的图像上,比较的大小,并说明理由.【答案】(1);(2);(3)当时,;当时,;当时,【分析】(1)根据友好同轴二次函数的定义,找出的友好同轴二次函数即可;(2)根据友好同轴二次函数的定义,找出的友好同轴二次函数,判断函数图像开口方向,利用函数的对称轴和自变量范围进行最大值讨论;(3)先根据友好同轴二次函数的定义,找出的友好同轴二次函数,再把两点代入,作差后比较大小,为含参数的二次不等式,求解的范围即可.【详解】(1)设友好同轴二次函数为,由函数可知,对称轴为直线,与轴交点为,,,对称轴为直线,,友好同轴二次函数为;(2)由函数可求得,该函数的友好同轴二次函数为;①当时,时,,解得:;②当时,时,,解得:;综上所述,;(3)由函数可求得,该函数的友好同轴二次函数为,把分别代入可得,,,则,,,①当时,,即,,解得:;②当时,,即,,解得:;③当时,,即,,解得:;综上所述,当时,;当时,;当时,.【点睛】本题考查二次函数的性质以及新定义问题,掌握二次函数的基本性质以及研究手段,准确根据题意求出符合要求的友好同轴二次函数是解题关键.6.(2023春·浙江金华·九年级校考期中)定义:若抛物线y=ax2+bx+c与x轴两交点间的距离为4,称此抛物线为定弦抛物线.(1)判断抛物线y=x2+2x﹣3是否是定弦抛物线,请说明理由;(2)当一定弦抛物线的对称轴为直线x=1,且它的图像与坐标轴的交点间的连线所围成的图形是直角三角形,求该抛物线的表达式;(3)若定弦抛物线y=x2+bx+c(b<0)与x轴交于A、B两点(A在B左边),当2≤x≤4时,该抛物线的最大值与最小值之差等于OB之间的距离,求b的值.【答案】(1)是定弦抛物线,理由见解析(2)或(3)b=﹣4或【分析】(1)令y=0,求出与x轴的交点坐标,可判断;(2)分开口向上向下讨论,利用定弦抛物线的定义和对称轴可求出与x轴交点坐标,用相似求出与y轴交点坐标,代入可得答案;(3)根据对称轴和所给范围分情况讨论即可.【详解】(1)解:当y=0时,x2+2x﹣3=0,解得:x1=1,x2=﹣3,则|x1 -x2|=4,即该抛物线是定弦抛物线;(2):当该抛物线开口向下时,如图所示.∵该定弦抛物线的对称轴为直线x=1,设则解得:∴C(﹣1,0),D(3,0),∵△CED为直角三角形∴由题意可得∠CED=90°,∵EO⊥CD,∴△CEO∽△EDO,∴OE2=OC·OD=3,∴E(0,)设该定弦抛物线表达式为,把E(0,)代入求得∴该定弦抛物线表达式为,当该抛物线开口向上时,同理可得该定弦抛物线表达式为,∴综上所述,该定弦抛物线表达式为或;(3)解:若≤ 2,则在2≤x ≤4中,当x=4时该定弦抛物线取最大值,当x=2时该定弦抛物线取最小值.∴l6+4b+c-(4+2b+c)=+2,解得:b=﹣4,∵≤ 2,∴b≥﹣4,即b=﹣4,若≤ 3,则在2≤x≤4中,当x=4时该定弦抛物线取最大值,当x=时该定弦抛物线取最小值.∴16+4b+c﹣=+2,解得:b1=﹣4,b2=﹣14,∵2≤≤3,∴﹣6≤b≤﹣4,∴b1=﹣4,b2=﹣14(舍去),若≤ 4,则在2≤x ≤4中,当x=2时该定弦抛物线取最大值,当x=时该定弦抛物线取最小值.∴4+2b+c﹣=+2,解得:b=﹣5,∵≤4,∴﹣8≤b<﹣6,∴b=﹣5不合题意,舍去,若>4,则在2≤x≤ 4中,当x=2时该定弦抛物线取最大值,当x=4时该定弦抛物线取最小值.∴4+2b+c-(16+4b+c)=+2,解得:b=-,∵>4,∴b<﹣8,∴b=﹣,∴综上所述b=﹣4或.【点睛】本题考查了二次函数的综合性质,包括与x轴交点问题,最值问题,以及和相似的结合,准确地理解定弦抛物线的定义以及分类讨论是解决本题的关键.7.(2023春·浙江·九年级期末)定义:若抛物线与抛物线.同时满足且,则称这两条抛物线是一对“共轭抛物线”.(1)已知抛物线与是一对共轭抛物线,求的解析式;(2)如图1,将一副边长为的正方形七巧板拼成图2的形式,若以BC中点为原点,直线BC 为x轴建立平面直角坐标系,设经过点A,E,D的抛物线为,经过A、B、C的抛物线为,请立接写出、的解析式并判断它们是否为一对共轭抛物线.【答案】(1)(2),,、是一对共轭抛物线【分析】(1)将化作顶点式,可求出,和的值,根据“共轭抛物线”的定义可求出,和的值,进而求出的解析式;(2)根据七巧板各个图形之间的关系可求出各个图形的边长,进而可表示点,,,,的坐标,分别求出和的解析式,再根据“共轭抛物线”的定义可求解.【详解】(1)解:,∴,,,∵抛物线与是一对共轭抛物线,∴,且,.(2)解:如图,由题意得,,则,,,,,∵点为的中点,∴,∴,,,,,∴可设抛物线,与抛物线,∴,,解得:,,∴抛物线,抛物线,∴,,,,,,∵,,∴满足且,∴、是一对共轭抛物线.【点睛】本题属于二次函数的新定义类问题,主要考查利用待定系数法求函数表达式,二次函数的顶点式,一般式及交点式三种方式的变换,熟知相关运算是解题关键.8.(2023春·湖南长沙·九年级校联考期末)定义:如果抛物线与轴。
中考数学专题复习——新定义型问题
任课教师授课年级初三授课日期教学课题中考数学专题复习——新定义型问题教学目标1.通过阅读理解掌握问题原型的特点,把文字语言转化为符号语言;2.合理进行思想方法的迁移运用所学知识去解决问题;3.培养学生阅读理解,合作交流、自主探索、敢于表达的学习精神,增强学习自信心。
教学方法讲授式启发式小组合作交流式教学重点渗透新定义问题的基本解题策略教学难点文字语言和图形语言、符号语言的相互转化教具准备学案教学过程教学内容学生活动教学意图一、活动一1、复习∣a∣的意义绝对值是指一个数在数轴上所对应的点到原点的距离叫做这个数的绝对值2、在平面直角坐标系中已知,A(-2,0)和B(4,0)A(x1, 0)B(x2, 0)那么AB= 那么AB=3、C(0,5)和D(0,-3)C(0, y1)D(0,y2)那么CD= 那么CD=4、已知点M(1,4)和点N(3,1),思考这两个点横坐标之差的绝对值与纵坐标之差的绝对值表示的意义5、已知,点M(x1 ,y1)N(x2 ,y2)∣x1-x2∣∣y1-y2∣的几何意义回答问题描点画图体会绝对值符号的几何意义为本节课做铺垫y x y=34x+3–1–2–3–41234–1–2–3–4–5123O D教学过程学生活动 设计意图活动二、探究解决问题(一)阅读理解在平面直角坐标系xOy 中,对于任意两点 111()P x y ,与222()P x y ,的“非常距离”, 给出如下定义: 若1212||||x x y y --≥,则点1P 与点2P 的“非常距离”为12||x x -; 若1212||||x x y y -<-,则点1P 与点2P 的“非常距离”为12||y y - (1)阅读理解(2)在平面直角坐标系中画图举例说明(二)解决问题1、已知点1(0)2A -,,B 为y 轴上的一个动点, ①若点A 与点B 的“非常距离”为2,写出一个满足条件的点B 的坐标; ②直接写出点A 与点B 的“非常距离”的最小值;2、已知C 是直线334y x =+上的一个动点, ① 如图2,点D 的坐标是(0,1),求点C 与点D 的“非常距离”的最小值及相应的点C 的坐标;(3)小结,解决新定义问题关注哪些方面阅读理解分析理解 ①学生画图分析讲解②学生举例说明,并总结什么情况下非常距离最小学生思考探究 讲解学生各抒己见使学生掌握审题的方法,提高学生阅读理解的能力培养学生阅读理解能力渗透把符号语言转化为图形语言锻炼学生的语言表达能力总结归纳新定义问题的解题关键教 学 内 容学生活动 教学意图活动三、牛刀小试,在平面直角坐标系xOy 中,图形W 在坐标轴上的投影长度定义如下:设点),(11y x P ,),(22y x Q 是图形W 上的任意两点.若21x x -的最大值为m , 则图形W 在x 轴上的投影长度m l x =; 若21y y -的最大值为n , 则图形W 在y 轴上的投影长度n l y =.如右图,图形W 在x 轴上的投影长度213=-=x l ;在y 轴上的投影长度404=-=y l .(1) 已知点)3,3(A ,)1,4(B .如图1所示,若图形W 为△OAB ,则=x l ,=y l .(2)已知点)0,4(C ,点D 在直线26y x =-+上,若图形W 为△OCD .当y x l l =时,求点D 的坐标. (3)若图形W 为函数2x y =)(b x a ≤≤的图象,其中0a b ≤<.当该图形满足1≤=y x l l 时,请直接写出a 的取值范围.活动四、总结 1、学生谈新定义的解题思路2、提升:符号语言,文字语言,图形语言 作业:12年中考“非常距离” 最后一问学生读题画图分析理解 读题理解 画图分析展示读题分析理解展示自画图形学生解决问题学生总结归纳培养学生阅读理解能力渗透把文字符号语言转化为图形语言强调新定义问题中举例至关重要培养学生分析问题与解决问题的能力培养学生总结归纳能力x y O B A1234123xyO 1231234图1。
中考数学新定义问题
例3、图1,已知四边形ABCD ,点P 为平面内一动点. 如果∠PAD =∠PBC ,则我们称点P 为四边形ABCD 关于A 、B 的等角点. 如图2,以点B 为坐标原点,BC 所在直线为x 轴建立平面直角坐标系,点C 的横坐标为6.(1)若A 、D 两点的坐标分别为A (0,4)、D (6,4),当四边形ABCD 关于A 、B 的等角点P 在DC 边上时,则点P 的坐标为______;(2)若A 、D 两点的坐标分别为A (2,4)、D (6,4),当四边形ABCD 关于A 、B 的等角点P 在DC 边上时,求点P 的坐标;(3)若A 、D 两点的坐标分别为A (2,4)、D (10,4),点P (x ,y )为四边形ABCD 关于A 、B 的等角点,其中x >2,y >0,求y 与x 之间的关系式.练习3:定义:平面内的直线1l 与2l 相较于点O ,对于该平面内任意一点M ,点M 到直线1l ,2l 的距离分别为a 、b ,则称有序非负实数对(a,b )是点M 的“距离坐标”。
根据上述定义,距离坐标为(2,3)的点的个数是_______。
例4.如果三角形有一边上的中线长恰好等于这边的长,则称这个三角形为“好玩三角形”.(1)请用直尺和圆规画一个“好玩三角形”;(2)如图在Rt△ABC中,∠C=90°,tanA=32,求证:△ABC是“好玩三角形”;(3)如图2,已知菱形ABCD的边长为a,∠ABC=2β,点P,Q从点A同时出发,以相同速度分别沿折线AB-BC 和AD-DC向终点C运动,记点P经过的路程为s.①当β=45°时,若△APQ是“好玩三角形”,试求as的值;②当tanβ的取值在什么范围内,点P,Q在运动过程中,有且只有一个△APQ能成为“好玩三角形”.请直接写出tanβ的取值范围.练习4:若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.(1)如图1,在梯形ABCD中,AD∥BC,∠BAD=120°,∠C=75°,BD平分∠ABC.求证:BD是梯形ABCD的和谐线;(2)如图2,在12×16的网格图上(每个小正方形的边长为1)有一个扇形BAC,点A.B.C 均在格点上,请在答题卷给出的两个网格图上各找一个点D ,使得以A 、B 、C 、D 为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形;(3)四边形ABCD 中,AB=AD=BC ,∠BAD=90°,AC 是四边形ABCD 的和谐线,求∠BCD 的度数例5、如图,A 、B 是⊙O 上的两个定点,P 是⊙O 上的动点(P 不与A,B 重合),我们称∠APB 是⊙O 上关于A 、B 的滑动角.(1)已知∠APB 是⊙O 上关于A 、B 的滑动角.①若AB 是⊙O 的直径,则∠APB =____; ②若⊙O 的半径是1,AB=2,求∠APB 的度数.(2)已知O 2是⊙O 1外一点,以O 2为圆心做一个圆与⊙O 1相交于A 、B 两点,∠APB 是⊙O 1上关于A 、B 的滑动角,直线PA 、PB 分别交⊙O 2于点M 、N (点M 与点A 、点N 与点B 均不重合),连接AN ,试探索∠APB 与∠MAN 、∠ANB 之间的数量关系.BA0P几何新定义练习5:阅读下面的情景对话,然后解答问题:(1)根据“奇异三角形”的定义,请你判断小华提出的命题:“等边三角形一定是奇异三角形”是真命题还是假命题?(2)在Rt△ABC中,∠ACB=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,求a:b:c.(3)如图,AB是⊙O的直径,C是⊙O上一点(不与点A、B重合),D是半圆的中点,C、D在直径AB的两侧,若在⊙O内存在点E,使得AE=AD,CB=CE.①求证:△ACE是奇异三角形.②当△ACE是直角三角形时,求∠AOC的度数.课堂练习1.若圆锥的轴截图为等边三角形,则称此圆锥为正圆锥,则正圆锥的侧面展开图的圆心角是()A.90°B.120°C.150°D.180°2.对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3,若[410x+]=5,则x的取值可以是()A.40 B.45 C.51 D.563.对平面上任意一点(a,b),定义f,g两种变换:f(a,b)=(a,-b).如f(1,2)=(1,-2);g(a,b)=(b,a).如g(1,2)=(2,1).据此得g(f(5,-9))=()A.(5,-9)B.(-9,-5)C.(5,9)D.(9,5)4.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,则这个“特征三角形”的最小内角的度数为.5.如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,则曲线CDEF的长是.6.我们把由不平行于底的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”.如图1,四边形ABCD即为“准等腰梯形”.其中∠B=∠C.(1)在图1所示的“准等腰梯形”ABCD中,选择合适的一个顶点引一条直线将四边形ABCD分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形(画出一种示意图即可);(2)如图2,在“准等腰梯形”ABCD中∠B=∠C.E为边BC上一点,若AB∥DE,AE∥DC,求证:AB BEDC EC=;(3)在由不平行于BC的直线AD截△PBC所得的四边形ABCD中,∠BAD与∠ADC的平分线交于点E.若EB=EC,请问当点E在四边形ABCD内部时(即图3所示情形),四边形ABCD是不是“准等腰梯形”,为什么?若点E不在四边形ABCD内部时,情况又将如何?写出你的结论.(不必说明理由)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例2. 定义:对于实数a ,符号[a]表示不大于a 的最大整数.例如:[5.7]=5,[5]=5,[-π]=-4.
(1)如果[a]=-2,那么a 的取值范围是 .
(2)如果[1
2
x +]=3,求满足条件的所有正整数x .
练习2:新定义:[a ,b ]为一次函数y =ax +b (a ≠0,a ,b 为实数)的“关联数”.
若“关联数”[1,m -2]的一次函数是正比例函数,则关于x 的方程
11x -+1
m
=1的解为____.
例3、图1,已知四边形ABCD ,点P 为平面内一动点. 如果∠P AD =∠PBC ,那么我们称点P 为四边形ABCD 关于A 、B 的等角点. 如图2,以点B 为坐标原点,BC 所在直线为x 轴建立平面直角坐标系,点C 的横坐标为6.
(1)若A 、D 两点的坐标分别为A (0,4)、D (6,4),当四边形ABCD 关于A 、B 的等角点P 在DC 边上时,则点P 的坐标为______;
(2)若A 、D 两点的坐标分别为A (2,4)、D (6,4),当四边形ABCD 关于A 、B 的等角点P 在DC 边上时,求点P 的坐标;
(3)若A 、D 两点的坐标分别为A (2,4)、D (10,4),点P (x ,y )为四边形ABCD 关于A 、B 的等角点,其中x >2,y >0,求y 与x 之间的关系式.
练习3:定义:平面内的直线1l 与2l 相较于点O ,对于该平面内任意一点M ,点M 到直线1l ,2l 的距离分别为a 、b , 则称有序非负实数对(a,b )是点M 的“距离坐标”。
根据上述定义,距离坐标为(2,3)的点的个数是_______。
规则新定义
例4.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”.(1)请用直尺和圆规画一个“好玩三角形”;
(2)如图在Rt△ABC中,∠C=90°,tanA=
3
2
,求证:△ABC是“好玩三角形”;
(3)如图2,已知菱形ABCD的边长为a,∠ABC=2β,点P,Q从点A同时出发,以相同速度分别沿折线AB-BC 和AD-DC向终点C运动,记点P经过的路程为s.
①当β=45°时,若△APQ是“好玩三角形”,试求a
s
的值;
②当tanβ的取值在什么范围内,点P,Q在运动过程中,有且只有一个△APQ能成为“好玩三角形”.
请直接写出tanβ的取值范围.
练习4:若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.
(1)如图1,在梯形ABCD中,AD∥BC,∠BAD=120°,∠C=75°,BD平分∠ABC.
求证:BD是梯形ABCD的和谐线;
(2)如图2,在12×16的网格图上(每个小正方形的边长为1)有一个扇形BAC,点A.B.C均在格点上,请在答题卷给出的两个网格图上各找一个点D,使得以A、B、C、D为顶点的四边形的两条对角线
都是和谐线,并画出相应的和谐四边形;
(3)四边形ABCD中,AB=AD=BC,∠BAD=90°,AC是四边形ABCD的和谐线,求∠BCD的度数
例5、如图,A 、B 是⊙O 上的两个定点,P 是⊙O 上的动点(P 不与A,B 重合),我们称∠APB 是⊙O 上关于A 、B 的滑动角.
(1)已知∠APB 是⊙O 上关于A 、B 的滑动角.
①若AB 是⊙O 的直径,则∠APB =____;
②若⊙O 的半径是1,AB=2,求∠APB 的度数.
(2)已知O 2是⊙O 1外一点,以O 2为圆心做一个圆与⊙O 1相交于A 、B 两点,∠APB 是⊙O 1上关于A 、B 的滑动角,直线PA 、PB 分别交⊙O 2于点M 、N (点M 与点A 、点N 与点B 均不重合),连接AN ,试探索∠APB 与∠MAN 、∠ANB 之间的数量关系.
B
A
0P
练习5:阅读下面的情景对话,然后解答问题:
(1)根据“奇异三角形”的定义,请你判断小华提出的命题:“等边三角形一定是奇异三角形”是真命题还是假命题? (2)在Rt △ABC 中,∠ACB =90°,AB =c ,AC =b ,BC =a ,且b >a ,若Rt △ABC 是奇异三角形,求a :b :c. (3)如图,AB 是⊙O 的直径,C 是⊙O 上一点(不与点A 、B 重合),D 是半圆
的中点,
C 、
D 在直径AB 的两侧,若在⊙O 内存在点
E ,使得AE =AD ,CB =CE. ①求证:△ACE 是奇异三角形.
②当△ACE 是直角三角形时,求∠AOC 的度数.
1.若圆锥的轴截图为等边三角形,则称此圆锥为正圆锥,则正圆锥的侧面展开图的圆心角是()A.90°B.120°C.150°D.180°
2.对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3,若[
4
10
x+
]=5,则x的取值可以
是()
A.40 B.45 C.51 D.56
3.对平面上任意一点(a,b),定义f,g两种变换:f(a,b)=(a,-b).如f(1,2)=(1,-2);
g(a,b)=(b,a).如g(1,2)=(2,1).据此得g(f(5,-9))=()
A.(5,-9)B.(-9,-5)C.(5,9)D.(9,5)
4.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为.
5.如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是.
6.我们把由不平行于底的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”.
如图1,四边形ABCD即为“准等腰梯形”.其中∠B=∠C.
(1)在图1所示的“准等腰梯形”ABCD中,选择合适的一个顶点引一条直线将四边形ABCD分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形(画出一种示意图即可);
(2)如图2,在“准等腰梯形”ABCD中∠B=∠C.E为边BC上一点,若AB∥DE,AE∥DC,求证:AB BE DC EC
=;
(3)在由不平行于BC的直线AD截△PBC所得的四边形ABCD中,∠BAD与∠ADC的平分线交于点E.若EB=EC,请问当点E在四边形ABCD内部时(即图3所示情形),四边形ABCD是不是“准等腰梯形”,为什么?若点E不在四边形ABCD内部时,情况又将如何?写出你的结论.(不必说明理由)
课堂练习。