2020届中考模拟广东省深圳市龙华新区中考数学一模试卷((含参考答案))
【附20套中考模拟试题】广东省深圳市龙华区新华中学2019-2020学年中考数学模拟试卷含解析
2.如图,已知 AB=AD,那么添加下列一个条件后,仍无法判定△ ABC≌△ADC 的是( )
A.CB=CD
B.∠BCA=∠DCA
C.∠BAC=∠DAC
D.∠B=∠D=90°
3.如图,A、B、C 三点在正方形网格线的交点处,若将△ ABC 绕着点 A 逆时针旋转得到△ AC′B′,则 tanB′
的值为( )
欢的项目是篮球的人数;小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为
1200× 27 =108”,请你判断这种说法是否正确,并说明理由. 300
23.(8 分)灞桥区教育局为了了解七年级学生参加社会实践活动情况,随机抽取了铁一中滨河学部分七
年级学生 2016﹣2017 学年第一学期参加实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出
广东省深圳市龙华区新华中学 2019-2020 学年中考数学模拟试卷
一、选择题(本大题共 12 个小题,每小题 4 分,共 48 分.在每小题给出的四个选项中,只有一项是符合 题目要求的.)
1.下列各组单项式中,不是同类项的一组是( )
A. x2 y 和 2xy2
B. 3xy 和 xy 2
C. 5x2 y 和 2 yx2 D. 32 和 3
15.已知二次函数 y1 ax2 bx c 与一次函数 y2 kx mk 0的图象相交于点 A2, 4 ,B8, 2. 如
图所示,则能使 y1 y2 成立的 x 的取值范围是______.
16.因式分解: x﹣ 3 2x2 y xy2 __________.
17.如图,10 块相同的长方形墙砖拼成一个长方形,设长方形墙砖的长为 x 厘米,则依题意列方程为 _________.
2020年广东省深圳市中考数学模拟试卷及答案解析
2020年广东省深圳市中考数学模拟试卷
一、选择题(共12小题,每小题3分,共36分,每小题给出4个选项,其中只有一个是正确的)
1.﹣5的倒数是()
A.﹣5B .C .﹣D.5
2.据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示应为()
A.0.3×106B.3×105C.3×106D.30×104
3.如图所示几何体的左视图是()
A .
B .
C .
D .
4.下列运算正确的是()
A.a2+2a=3a3B.(﹣2a3)2=4a5
C.(a+2)(a﹣1)=a2+a﹣2D .
5.下列全国各地地铁标志图中,既是轴对称图形又是中心对称图形的是()
A .
B .
C .
D .
6.如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1的度数是()
第1 页共32 页。
2020年3月广东省深圳市中考数学一模拟试题(附带详细解析)
……外…………○……装………学校:____姓名:________……内…………○……装………绝密★启用前 2020年3月广东省深圳市中考数学一模拟试题 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题) 请点击修改第I 卷的文字说明 一、单选题 1.一个数的相反数是-2020,则这个数是( ) A .2020 B .-2020 C .12020 D .12020 2.截至北京时间2020年3月22日14时30分,全球新冠肺炎确诊病例达305740例,超过30万,死亡病例累计12762人,将“305740”这个数字用科学记数法表示保留两位有效数字为( ) A .3.05740×105 B .3.05×105 C .3.0×105 D .3.1×105 3.如图,图中所示的几何体为一桶快餐面,其俯视图正确的是( ) A . B . C . D . 4.如图,四个图标分别是剑桥大学、北京大学、浙江大学和北京理工大学的校徽的重要组成部分,其中是轴对称图形但不是中心对称图形的是( )………外…………○…………装…………线…………○……※※※※不※※要※※在………内…………○…………装…………线…………○……A . B . C . D . 5.2020年3月,我市某区一周天气质量报告中某项污染指标的数据是:60、60、90、100、90、70、90,则下列关于这组数据表述正确的是( )A .众数是60B .中位数是100C .极差是40D .平均数是78 6.下列计算正确的是( )A =B .743m m -=C .538a a a ⋅=D .32911()39a a=7.直线y =kx 沿y 轴向下平移4个单位长度后与x 轴的交点坐标是(-3,0),以下各点在直线y =kx 上的是( )A .(-4,0)B .(0,3)C .(3,-4)D .(-4,3) 8.如图,在△ABC 中,∠ACB =90°,分别以点A ,点C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 、点N ,作直线MN 交AB 于点D ,交AC 于点D ,连接CD .若AE =3,BC =8,则CD 的长为( )A .4B .5C .6D .79.二次函数y=ax 2+bx+c 的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b 与反比例函数y=cx 在同一平面直角坐标系中的图象可能是( )…………○………………○…………线…………○……学校:____考号:___________…………○………………○…………线…………○……A . B . C .D . 10.下列命题中错误的是( ) A .既是矩形又是菱形的四边形是正方形 B .有一个角是直角的菱形是正方形 C .有一组邻边相等的矩形是正方形 D .对角线互相垂直平分的四边形是正方形 11.对任意四个有理数a ,b ,c ,d 定义新运算:a b ad bc c d =-,已知24181-=x x ,则x =( ) A .-1 B .2 C .3 D .4 12.如图,在四边形ABCD 中,∠BAD =130°,∠B =∠D =90°,点E ,F 分别是线段BC ,DC 上的动点.当△AEF 的周长最小时,则∠EAF 的度数为( ) A .90° B .80° C .70° D .60° 第II 卷(非选择题) 请点击修改第II 卷的文字说明 二、填空题○…………※○…………○…………线…………○……_○…………线…………○……根据以上信息,回答下列问题: (1) ①表中m 的值为__________; ②一分钟仰卧起坐成绩的中位数为__________; (2)若实心球成绩达到7.2米及以上时,成绩记为优秀. ①请估计全年级女生实心球成绩达到优秀的人数; ②该年级某班体育委员将本班在这次抽样测试中被抽取的8名女生的两项成绩的数据抄录如下: 其中有3名女生的一分钟仰卧起坐成绩未抄录完整,但老师说这8名女生中恰好有4人两项测试成绩都达到了优秀,于是体育委员推测女生E 的一分钟仰卧起坐成绩达到了优秀,你同意体育委员的说法吗?并说明你的理由. 20.如图是长沙九龙仓国际金融中心,位于长沙市黄兴路与解放路交会处的东北角,投资160亿元人民币,总建筑面积达98万平方米,中心主楼BC 高452m ,是目前湖南省第一高楼,大楼顶部有一发射塔AB ,已知和BC 处于同一水平面上有一高楼DE ,在楼DE 底端D 点测得A 的仰角为α,tanα=247,在顶端E 点测得A 的仰角为45°,AE =140m (1)求两楼之间的距离CD ; (2)求发射塔AB 的高度.…………外……………线…………○………………内……………线…………○…… 21.深圳天虹某商场从厂家批发电视机进行零售,批发价格与零售价格如下表:若商场购进甲、乙两种型号的电视机共50台,用去9万元.(1)求商场购进甲、乙型号的电视机各多少台?(2)迎“元旦”商场决定进行优惠促销:以零售价的七五折销售乙种型号电视机,两种电视机销售完毕,商场共获利8.5%,求甲种型号电视机打几折销售?22.如图①,在平面直角坐标系中,二次函数y =13 x 2+bx +c 的图象与坐标轴交于A ,B ,C 三点,其中点A 的坐标为(﹣3,0),点B 的坐标为(4,0),连接AC ,BC .动点P 从点A 出发,在线段AC 上以每秒1个单位长度的速度向点C 作匀速运动;同时,动点Q 从点O 出发,在线段OB 上以每秒1个单位长度的速度向点B 作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t 秒.连接PQ .(1)填空:b = ,c = ;(2)在点P ,Q 运动过程中,△APQ 可能是直角三角形吗?请说明理由;(3)点M 在抛物线上,且△AOM 的面积与△AOC 的面积相等,求出点M 的坐标。
2020年广东深圳市中考数学一模试卷及解析
2020年广东深圳市中考一模试卷数学试卷一、选择题(本大题共12小题,共36分)1.一种巧克力的质量标识为“100±0.25克”,则下列巧克力合格的是()A. 100.30克B. 100.70克C. 100.51克D. 99.80克2.下列图形中,既是中心对称图形,又是轴对称图形的是()A. B. C. D.3.下列运算正确的是()A. 2m×3m=6mB. (m3)2=m6C. (−2m)3=−2m3D. m2+m2=m44.2019年1月3日,经过26天的飞行,嫦娥4号月球探测器在月球背面的预定着陆区中顺利着陆,成为人类首颗成功软着陆月球背面的探测器地球与月球之间的平均距离大约为384000km,384000用科学记数法表示为()A. 3.84×103B. 3.84×104C. 3.84×105D. 3.84×1065.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字1−6)朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A. 16B. 13C. 12D. 236.某校年级(1)班在“迎中考日誓师”活动中打算制作一个带有正方体挂坠的倒计时牌挂在班级,正方体的每个面上分别书写“成功舍我其谁”六个字如图是该班同学设计的正方体挂坠的平面展开图,那么“谁”对面的字是()A. 成B. 功C. 其D. 我7.如图,在平行线l1、l2之间放置一块直角三角板,三角板的锐角顶点A,B分别在直线l1、l2上,若∠1=65°,则∠2的度数是()A. 25°B. 35°C. 45°D. 65°8.下列命题中,是假命题的是()A. 样本方差越大,数据波动越小B. 正十七边形的外角和等于360°C. 位似图形必定相似D. 方程x2+x+1=0无实数根9.如图,在平行四边形ABCD中,∠A=2∠B,⊙C的半径为3,则图中阴影部分的面积是()A. πB. 2πC. 3πD. 6π10.某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是()A. 12000x+100=120001.2xB. 12000x=120001.2x+100C. 12000x−100=120001.2xD. 12000x=120001.2x−10011.给出一种运算:对于函数y=x n,规定若函数y=x4,则有,已知函数y=x3,则方程的解是()A. x=2B. x=3C. x 1=0,x2=2D. x=−212.如图,在矩形ABCD中,∠ADC的平分线与AB交于E,点F在DE的延长线上,∠BFE=90°,连接AF、CF,CF与AB交于G.有以下结论:①AE=BC②AF=CF③BF2=FG⋅FC④EG⋅AE=BG⋅AB其中正确的个数是()A. 1B. 2C. 3D. 4二、填空题(本大题共4小题,共12.0分)13.因式分解:m2n−6mn+9n=______.14.某次射击训练中,一小组的成绩如表所示:已知该小组的平均成绩为8环,那么成9______环数789人数3415.如图,在▱ABCD中,AB=2√13cm,AD=4cm,AC⊥BC,则△DBC比△ABC的周长长______cm.16.如图,△OAC和△BAD都是等腰直角三角,∠ACO=∠ADB=90°,反比例函数y=8x的图象经过点B,则△OAC与△BAD的面积之差S△OAC−S△BAD=______.三、解答题(本大题共7小题,共52分)17.计算:4sin60°+|3−√12|−(12)−1+(π−2019)018.x取哪些整数值时,不等式5x+2>3(x−1)与12x≤2−32x都成立?19.某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为______;(2)请补全条形统计图;(3)该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×27=108”,请你判断这种说法是否正确,并说明理由.30020.在小水池旁有一盏路灯(如图),已知支架AB的长是0.8m,A端到B地面的距离AC是4m,支架AB与灯柱AC的夹角为65°小明在水池的外沿D测得支架B端的仰角是45°,在水池的内沿E测得支架A端的仰角是50°(点C,E,D在同一直线上),求小水池的宽DE.(结果精确到0.1.参考数据:sin65°≈0.9,cos65°≈0.4,tan50°≈1.2)21.一辆货车和一辆小轿车同时从甲地出发,货车匀速行驶至乙地,小轿车中途停车休整2h后提速行驶至乙地.设行驶时间为x(ℎ),货车的路程为y1(km),小轿车的路程为y2(km),图中的线段OA与折线OBCD分别表示y1,y2与x之间的函数关系.(1)甲乙两地相距______km,m=______;(2)求线段CD所在直线的函数表达式;(3)小轿车停车休整后还要提速行驶多少小时,与货车之间相距20km?22.如图,AB是⊙O的直径,M是OA的中点,弦CD⊥AB于点M,过点D作DE⊥CA交CA的延长线于点E.(1)连接AD,则∠OAD=______°;(2)求证:DE与⊙O相切;(3)点F在BC⏜上,∠CDF=45°,DF交AB于点N.若DE=3,求FN的长.23.如图,抛物线y=ax2+bx−5(a≠0)经过点A(4,−5),与x轴的负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为点D.(1)求这条抛物线的表达式;(2)连结AB、BC、CD、DA,求四边形ABCD的面积;(3)如果点E在y轴的正半轴上,且∠BEO=∠ABC,求点E的坐标.答案和解析1.【答案】D【解析】【分析】此题考查了正数和负数,解题的关键是:求出巧克力的质量标识的范围.计算巧克力的质量标识的范围:在100−0.25和100+0.25之间,即:从99.75克到100.25克之间.【解答】解:100−0.25=99.75(克),100+0.25=100.25(克),所以巧克力的质量标识范围是:在99.75克到100.25克之间.故选D.2.【答案】B【解析】解:A、不是中心对称图形,又不是轴对称图形,故此选项错误;B、是中心对称图形,又是轴对称图形,故此选项正确;C、不是中心对称图形,又不是轴对称图形,故此选项错误;D、不是中心对称图形,又不是轴对称图形,故此选项错误;故选:B.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【答案】B【解析】解:A、2m×3m=6m2,故原题计算错误;B、(m3)2=m6,故原题计算正确;C、(−2m)3=−8m3,故原题计算错误;D、m2+m2=2m2,故原题计算错误;故选:B.根据单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式;幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变进行计算即可.此题主要考查了单项式与单项式相乘、幂的乘方、积的乘方、合并同类项,关键是熟练掌握计算法则.4.【答案】C【解析】解:384000=3.84×105.故选:C.用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.5.【答案】B【解析】解:根据题意,得到的两位数有31、32、33、34、35、36这6种等可能结果,其中两位数是3的倍数的有33、36这2种结果,∴得到的两位数是3的倍数的概率等于26=13,故选:B.根据题意得出所有2位数,从中找到两位数是3的倍数的结果数,利用概率公式计算可得.此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.6.【答案】D【解析】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“谁”是相对面,故选:D.正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.7.【答案】A【解析】【分析】本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键,过点C作CD//l1,再由平行线的性质即可得出结论.【解答】解:如图,过点C作CD//l1,则∠1=∠ACD.∵l1//l2,∴CD//l2,∴∠2=∠DCB.∵∠ACD+∠DCB=90°,∴∠1+∠2=90°,又∵∠1=65°,∴∠2=25°.故选:A.8.【答案】A【解析】解:A、样本方差越大,数据波动越大,故原命题错误,是假命题;B、任意正多边形的外角和均为360°,故原命题正确,是真命题;C、位似图形必相似,正确,是真命题;D、方程x2+x+1=0无实数根,正确,是真命题,故选:A.利用方差的意义、正多边形的性质、位似图形的定义及一元二次方程根的判别式分别判断后即可确定正确的选项.考查了命题与定理的知识,解题的关键是了解方差的意义、正多边形的性质、位似图形的定义及一元二次方程根的判别式,难度不大.9.【答案】C【解析】解:∵在▱ABCD中,∠A=2∠B,∠A+∠B=180°,∴∠A=120°,∵∠C=∠A=120°,⊙C的半径为3,∴图中阴影部分的面积是:120⋅π×32360=3π,故选:C.根据平行四边形的性质可以求得∠C的度数,然后根据扇形面积公式即可求得阴影部分的面积.本题考查扇形面积的计算、平行四边形的性质,解答本题的关键是明确题意,利用扇形面积的计算公式解答.10.【答案】B【解析】解:设学校购买文学类图书平均每本书的价格是x元,可得:12000x =120001.2x+100,故选:B.首先设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为1.2x元,根据题意可得等量关系:学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,根据等量关系列出方程,此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.11.【答案】C【解析】解:由题意可知:y′=3x2,∴3x2=6x,∴x=0或x=2,故选:C.根据新定义运算法则以及一元二次方程的解法即可求出答案.本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.12.【答案】C【解析】解:①DE平分∠ADC,∠ADC为直角,∴∠ADE=12×90°=45°,∴△ADE为等腰直角三角形,∴AD=AE,又∵四边形ABCD矩形,∴AD=BC,∴AE=BC②∵∠BFE=90°,∠BFE=∠AED=45°,∴△BFE为等腰直角三角形,∴则有EF=BF又∵∠AEF=∠DFB+∠ABF=135°,∠CBF=∠ABC+∠ABF=135°,∴∠AEF=∠CBF在△AEF和△CBF中,AE=BC,∠AEF=∠CBF,EF=BF,∴△AEF≌△CBF(SAS)∴AF=CF③假设BF2=FG⋅FC,则△FBG∽△FCB,∴∠FBG=∠FCB=45°,∵∠ACF=45°,∴∠ACB=90°,显然不可能,故③错误,④∵∠BGF=180°−∠CGB,∠DAF=90°+∠EAF=90°+(90°−∠AGF)=180°−∠AGF,∠AGF=∠BGC,∴∠DAF=∠BGF,∵∠ADF=∠FBG=45°,∴△ADF∽△GBF,∴ADBG =DFBF=DFEF,∵EG//CD,∴EFDF =EGCD=EGAB,∴ADBG =ABGE,∵AD=AE,∴EG⋅AE=BG⋅AB,故④正确,故选:C.①只要证明△ADE为等腰直角三角形即可②只要证明△AEF≌△CBF(SAS)即可;③假设BF2=FG⋅FC,则△FBG∽△FCB,推出∠FBG=∠FCB=45°,由∠ACF=45°,推出∠ACB=90°,显然不可能,故③错误,④由△ADF∽△GBF,可得ADBG =DFBF=DFEF,由EG//CD,推出EFDF=EGCD=EGAB,推出ADBG=ABGE,由AD=AE,EG⋅AE=BG⋅AB,故④正确,本题考查相似三角形的判定和性质、矩形的性质、等腰直角三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.13.【答案】n(m−3)2【解析】解:m2n−6mn+9n=n(m2−6m+9)=n(m−3)2.故答案为:n(m−3)2.此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解.本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.14.【答案】3【解析】解:设成绩为9环的人数是x,根据题意得:(7×3+8×4+9⋅x)÷(3+4+x)=8,解得:x=3,则成绩为9环的人数是3;故答案为:3.先设成绩为9环的人数是x,根据加权平均数的计算公式列出方程,求出x的值即可.此题考查了加权平均数,关键是根据加权平均数的计算公式和已知条件列出方程,是一道基础题.15.【答案】4【解析】解:在▱ABCD中,∵AB=CD=2√13cm,AD=BC=4cm,AO=CO,BO=DO,∵AC⊥BC,∴AC =√AB 2−BC 2=6cm , ∴OC =3cm ,∴BO =√OC 2+BC 2=5cm , ∴BD =10cm ,∴△DBC 的周长−△ABC 的周长=BC +CD +BD −(AB +BC +AC)=BD −AC =10−6=4cm , 故答案为:4.根据平行四边形的性质得到AB =CD =2√13cm ,AD =BC =4cm ,AO =CO ,BO =DO ,根据勾股定理得到OC =3cm ,BD =10cm ,于是得到结论.本题考查了平行四边形的性质,勾股定理,熟练掌握平行四边形的性质是解题的关键. 16.【答案】4【解析】解:设△OAC 和△BAD 的直角边长分别为a 、b , 则点B 的坐标为(a +b,a −b).∵点B 在反比例函数y =8x 的第一象限图象上, ∴(a +b)×(a −b)=a 2−b 2=8.∴S △OAC −S △BAD =12a 2−12b 2=12(a 2−b 2)=12×8=4.故答案为:4.设△OAC 和△BAD 的直角边长分别为a 、b ,结合等腰直角三角形的性质及图象可得出点B 的坐标,根据三角形的面积公式结合反比例函数系数k 的几何意义以及点B 的坐标即可得出结论.本题考查了反比例函数系数k 的几何意义、等腰三角形的性质以及面积公式,解题的关键是找出a 2−b 2的值.本题属于基础题,难度不大,解决该题型题目时,设出等腰直角三角形的直角边,用其表示出反比例函数上点的坐标是关键.17.【答案】解:4sin60°+|3−√12|−(12)−1+(π−2019)0=4×√32+2√3−3−2+1 =2√3+2√3−4 =4√3−4【解析】首先计算乘方、开方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.【答案】解:根据题意解不等式组{5x +2>3(x −1)①12x ≤2−32x ②, 解不等式①,得:x >−52, 解不等式②,得:x ≤1, ∴−52<x ≤1,故满足条件的整数有−2、−1、0、1.【解析】根据题意分别求出每个不等式解集,根据口诀:大小小大中间找,确定两不等式解集的公共部分,即可得整数值.本题考查的是解一元一次不等式组的整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.【答案】(1)144°(2)“经常参加”的人数为:300×40%=120人,喜欢篮球的学生人数为:120−27−33−20=120−80=40人;补全统计图如图所示;(3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为:=160人;1200×40300(4)这个说法不正确.理由如下:小明得到的108人是全校经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于108人.【解析】解:(1)360°×(1−15%−45%)=360°×40%=144°;故答案为:144°;(2)见答案(3)见答案(4)见答案【分析】(1)用“经常参加”所占的百分比乘以360°计算即可得解;(2)先求出“经常参加”的人数,然后求出喜欢篮球的人数,再补全统计图即可;(3)用总人数乘以喜欢篮球的学生所占的百分比计算即可得解;(4)根据喜欢乒乓球的27人都是“经常参加”的学生,“偶尔参加”的学生中也会有喜欢乒乓球的考虑解答.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.【答案】解;作BF⊥AC于F,作BG⊥CD于G,如图所示:则CG=BF,BG=CF,,在Rt△ABF中,∠BAF=65°,AB=0.8,sin∠BAF=BFABcos ∠BAF =AF AB ,∴BF =AB ×sin65°≈0.8×0.9=0.72,AF =AB ×cos65°≈0.8×0.4=0.36, ∴BG =CF =AF +AC =0.36+4=4.36,CG =BF =0.72,在Rt △ACE 中,tan ∠CEA =AC CE ,∴CE =ACtan50∘≈41.2≈3.333,∵∠BDG =45°,∠BGD =90°,∴△BDG 是等腰直角三角形,∴DG =BG =4.36,∴CD =CG +DG =0.72+4.36=5.08,∴DE =CD −CE =5.08−3.333≈1.7(m);答:小水池的宽DE 约为1.7m .【解析】作BF ⊥AC 于F ,作BG ⊥CD 于G ,则CG =BF ,BG =CF ,在Rt △ABF 中,由三角函数得出BF =AB ×sin65°≈0.72,AF =AB ×cos65°≈0.36,得出BG =CF =AF +AC =0.36+4=4.36,CG =BF =0.72,在Rt △ACE 中,由三角函数得出CE =ACtan50∘≈3.333,证明△BDG 是等腰直角三角形,得出DG =BG =4.36,求出CD 的长,即可得出答案.本题考查了解直角三角形的应用−仰角俯角问题、等腰直角三角形的判定与性质;熟练掌握甲种直角三角形,作出辅助线构造直角三角形是解题的关键.21.【答案】(1)420;5(2)设直线CD 的解析式为y =kx +b ,把C(5,270),D(6.5,420)代入得到{5k +b =2706.5k +b =420, 解得{k =100b =−230, ∴直线CD 的解析式为y =100x −230.(3)设线段OA 所在的直线的解析式为y =k′x ,把点A(7,420)代入得到k′=60,∴y =60x ,由题意:60x −(100x −230)=20,解得x =214,x −5=14, 或(100x −230)−60x =20,解得x =254,x −5=54, 答:小轿车停车休整后还要提速行驶14或54小时,与货车之间相距20km.【解析】解:(1)观察图象可知:甲乙两地相距420km ,m =5,故答案为:420,5;(2)见答案;(3)见答案.【分析】(1)观察图象结合题意即可解决问题;(2)利用待定系数法即可解决问题;(3)首先确定直线OA 的解析式,分两种情形构建方程解决问题即可;本题考查一次函数的应用,解题的关键是理解题意,学会构建一次函数解决问题,学会用分类讨论的思想思考问题,属于中考常考题型.22.【答案】(1)60;(2)∵CD⊥AB,AB是⊙O的直径,∴CM=MD.∵M是OA的中点,∴AM=MO.又∵∠AMC=∠DMO,∴△AMC≌△OMD.∴∠ACM=∠ODM.∴CA//OD.∵DE⊥CA,∴∠E=90°.∴∠ODE=180°−∠E=90°.∴DE⊥OD.∴DE与⊙O相切.(3)如图2,连接CF,CN,∵OA⊥CD于M,∴M是CD中点.∴NC=ND.∵∠CDF=45°,∴∠NCD=∠NDC=45°.∴∠CND=90°.∴∠CNF=90°.由(1)可知∠AOD=60°.∴∠ACD=1∠AOD=30°.2在Rt△CDE中,∠E=90°,∠ECD=30°,DE=3,=6.∴CD=DEsin30∘在Rt△CND中,∠CND=90°,∠CDN=45°,CD=6,∴CN=CD⋅sin45°=3√2.由(1)知∠CAD=2∠OAD=120°,∴∠CFD=180°−∠CAD=60°.在Rt△CNF中,∠CNF=90°,∠CFN=60°,CN=3√2,=√6.∴FN=CNtan60∘【解析】解:(1)如图1,连接OD ,AD∵AB 是⊙O 的直径,CD ⊥AB∴AB 垂直平分CD∵M 是OA 的中点,∴OM =12OA =12OD ∴cos ∠DOM =OM OD =12∴∠DOM =60° 又:OA =OD∴△OAD 是等边三角形∴∠OAD =60°故答案为:60°(2)见答案;(3)见答案;【分析】(1)由CD ⊥AB 和M 是OA 的中点,利用三角函数可以得到∠DOM =60°,进而得到△OAD 是等边三角形,∠OAD =60°.(2)只需证明DE ⊥OD.便可以得到DE 与⊙O 相切.(3)利用圆的综合知识,可以证明,∠CND =90°,∠CFN =60°,根据特殊角的三角函数值可以得到FN 的数值.本题考查圆的综合运用,特别是垂径定理、切线的判定要求较高,同时对于特殊角的三角函数值的运用有所考察,需要学生能具有较强的推理和运算能力.23.【答案】解:(1)∵抛物线y =ax 2+bx −5与y 轴交于点C ,∴C(0,−5),∴OC =5.∵OC =5OB ,∴OB =1,又点B 在x 轴的负半轴上,∴B(−1,0).∵抛物线经过点A(4,−5)和点B(−1,0),∴{16a +4b −5=−5a −b −5=0,解得{a =1b =−4, ∴这条抛物线的表达式为y =x 2−4x −5.(2)由y=x2−4x−5,得顶点D的坐标为(2,−9).连接AC,∵点A的坐标是(4,−5),点C的坐标是(0,−5),又S△ABC=12×4×5=10,S△ACD=12×4×4=8,∴S四边形ABCD=S△ABC+S△ACD=18.(3)过点C作CH⊥AB,垂足为点H.∵S△ABC=12×AB×CH=10,AB=√(−1−4)2+(0+5)2=5√2,∴CH=2√2,在Rt△BCH中,∠BHC=90°,BC=√26,BH=√BC2−CH2=3√2,∴tan∠CBH=CHBH =23.∵在Rt△BOE中,∠BOE=90°,tan∠BEO=BOEO,∵∠BEO=∠ABC,∴BOEO =23,得EO=32,∴点E的坐标为(0,32).【解析】(1)先得出C点坐标,再由OC=5BO,得出B点坐标,将A、B两点坐标代入解析式求出a,b;(2)分别算出△ABC和△ACD的面积,相加即得四边形ABCD的面积;(3)由∠BEO=∠ABC可知,tan∠BEO=tan∠ABC,过C作AB边上的高CH,利用等面积法求出CH,从而算出tan∠ABC,而BO是已知的,从而利用tan∠BEO=tan∠ABC可求出EO长度,也就求出了E点坐标.本题为二次函数综合题,主要考查了待定系数法求二次函数解析式、三角形面积求法、等积变换、勾股定理、正切函数等知识点,难度适中.第(3)问,将角度相等转化为对应的正切函数值相等是解答关键.。
2020届深圳市中考数学模拟试卷有答案(word版)
广东省深圳市中考试卷数学试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.6的相反数是( )A .6-B .16-C .16D .6 2.260000000用科学计数法表示为( )A .90.2610⨯B .82.610⨯C .92.610⨯D .72610⨯3.图中立体图形的主视图是( )A .B .C .D .4.观察下列图形,是中心对称图形的是( )A .B . C.D .5.下列数据:75,80,85,85,85,则这组数据的众数和极差是( )A .85,10B .85,5 C.80,85 D .80,106.下列运算正确的是( )A .236a a a =gB .32a a a -= C. 842a a a ÷= D =7.把函数y x -向上平移3个单位,下列在该平移后的直线上的点是( )A .()2,2B .()2,3 C.()2,4 D .(2,5)8.如图,直线,a b 被,c d 所截,且//a b ,则下列结论中正确的是( )A .12∠=∠=B .34∠==∠ C.24180∠+∠=o D .14180∠+∠=o9.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .7086480x y x y +=⎧⎨+=⎩B .7068480x y x y +=⎧⎨+=⎩ C. 4806870x y x y +=⎧⎨+=⎩ D .4808670x y x y +=⎧⎨+=⎩10.如图,一把直尺,60︒的直角三角板和光盘如图摆放,A 为60︒角与直尺交点,3AB =,则光盘的直径是( )A .3B .6 D .11.二次函数2(0)y ax bx c a =++≠的图像如图所示,下列结论正确是( )A .0abc >B .20a b +< C.30a c +< D .230ax bx c ++-=有两个不相等的实数根12.如图,A B 、是函数12y x=上两点,P 为一动点,作//PB y 轴,//PA x 轴,下列说法正确的是( )①AOP BOP ∆≅∆;②AOP BOP S S ∆∆=;③若OA OB =,则OP 平分AOB ∠;④若4BOP S ∆=,则16ABP S ∆=A .①③B .②③ C.②④ D .③④第Ⅱ卷(共90分)二、填空题(每题3分,满分12分,将答案填在答题纸上)13.分解因式:29a -=.14.一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:.15.如图,四边形ABCD 是正方体,CEA ∠和ABF ∠都是直角且点,,E A B 三点共线,4AB =,则阴影部分的面积是.16.在Rt ABC ∆中,90?C ∠=,AD 平分CAB ∠,AD BE 、相交于点F ,且4,AF EF ==则AC =.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.计算:-1012sin )2π⎛⎫- ⎪⎝⎭. 18.先化简,再求值:2221111x x x x x ++⎛⎫-+ ⎪--⎝⎭,其中2x =. 19.某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:请根据上图完成下面题目:(1)总人数为__________人,a =__________,b =__________.(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?20.已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在CFE ∆中,6,12CF CE ==,45?FCE ∠=,以点C 为圆心,以任意长为半径作AD ,再分别以点A 和点D 为圆心,大于12AD 长为半径做弧,交EF 于点,//B AB CD . (1)求证:四边形ACDB 为FEC ∆的亲密菱形;(2)求四边形ACDB 的面积.21.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贯2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?22.如图在O e 中,2,BC AB AC ==,点D 为AC 上的动点,且cos B =. (1)求AB 的长度;(2)求AD AE ⋅的值;(3)过A 点作AH BD ⊥,求证:BH CD DH =+.23.已知顶点为A 抛物线2122y a x ⎛⎫=-- ⎪⎝⎭经过点3,22B ⎛⎫- ⎪⎝⎭,点5,22C ⎛⎫ ⎪⎝⎭. (1)求抛物线的解析式;(2)如图1,直线AB 与x 轴相交于点,M y 轴相交于点E ,抛物线与y 轴相交于点F ,在直线AB 上有一点P ,若OPM MAF ∠=∠,求POE ∆的面积;图1(3)如图2,点Q 是折线A B C --上一点,过点Q 作//QN y 轴,过点E 作//EN x 轴,直线QN 与直线EN 相交于点N ,连接QE ,将QEN ∆沿QE 翻折得到1QEN ∆,若点1N 落在x 轴上,请直接写出Q 点的坐标. 图2广东省深圳市中考试卷数学参考答案一、选择题1-5: ABBDA 6-10:BDBAD 11、12:CB二、填空题13.()()33a a +- 14.1215.8 三、解答题17.318.解:原式21(1)(1)11(1)1x x x x x x x -++-=⋅=-++ 把2x =代入得:原式13=19.解:(1)0.440100÷=(人)251000.25a =÷=,1000.1515b =⨯=(人), (2)如图:(3)6000.1590⨯=(人)20.解:(1)证明:由已知得:AC CD =,AB DB =由已知尺规作图痕迹得:BC 是FCE ∠的角平分线则:ACB DCB ∠=∠又//AB CD QABC DCB ∴∠=∠ACB ABC ∴∠=∠AC AB ∴=又,AC CD AB DB ==QAC CD DB BA ∴===∴四边形ACDB 是菱形ACD ∠Q 与FCE ∆中的FCE ∠重合,它的对角ABD ∠顶点在EF 上 ∴四边形ACDB 为FEC ∆的亲密菱形(2)解:设菱形ACDB 的边长为x可证:EAB FCE ∆∆∽ 则:FA AB FC CE =,即6126x x -= 解得:4x =过A 点作AH CD ⊥于H 点在Rt ACH ∆中,45?ACH ∠=AH ∴==∴四边形ACDB 的面积为:4⨯21.解:(1)设第一批饮料进货单价为x 元,则:1600600032x x ⋅=+ 解得:8x =经检验:8x =是分式方程的解答:第一批饮料进货单价为8元.(2)设销售单价为m 元,则: (8)200(10)6001200m m -⋅+-⋅≥化简得:2(8)6(10)12m m -+-≥解得:11m ≥答:销售单价至少为11元.22.解:(1)作AM BC ⊥,,2AB AC AM BC BC =⊥=Q112BM CM BC ===cos BM B AB ==Q Rt AMB ∆中,1BM =cos 1AB BM B ∴=÷==(2)连接DCAB AC =QACB ABC ∴∠=∠∵四边形ABCD 内接于圆O ,180ADC ABC ∴∠+∠=o ,180ACE ACB ∠+∠=o Q ,ADC ACE ∴∠=∠CAE ∠Q 公共EAC CAD ∴∆∆∽AC AE AD AC∴=2210AD AE AC ∴⋅===.(3)在BD 上取一点N ,使得BN CD =在ABN ∆和ACD ∆中31AB AC BN CD =⎧⎪∠=∠⎨⎪=⎩()ABN ACD SAS ∴∆≅∆AN AD ∴=,AN AD AH BD =⊥QNH HD ∴=,BN CD NH HD ==QBN NH CD HD BH ∴+=+=.23.解:(1)把点3,22B ⎛⎫- ⎪⎝⎭代入2122y a x ⎛⎫=-- ⎪⎝⎭,解得:1a =, ∴抛物线的解析式为:2122y x ⎛⎫=-- ⎪⎝⎭或274y x x =--; (2)设直线AB 解析式为:y kx b =+,代入点,A B 的坐标得: 122322k b k b ⎧-=+⎪⎪⎨⎪=-+⎪⎩,解得:21k b =-⎧⎨=-⎩,∴直线AB 的解析式为:21y x =--, 易求()0,1E ,70,4F ⎛⎫- ⎪⎝⎭,1,02M ⎛⎫- ⎪⎝⎭, 若OPM MAF ∠=∠,则当//OP AF 时,OPE EAE ∆∆∽,14334OP OE FA FE ===, 433OP FA ∴===, 设点(),21P t t --3= 解得1215t =-,223t =-, 由对称性知;当1215t =-时,也满足OPM MAF ∠=∠, 1215t ∴=-,223t =-都满足条件 POE ∆Q 的面积12OE l =⋅,POE ∴∆的面积为115或13.。
2020届深圳市中考模拟测试数学试卷含答案
2020届深圳市中考模拟测试数 学说明:1.试题卷共4页,答题卡共4页。
考试时间90分钟,满分100分。
2.请在答题卡上填涂学校.班级.姓名.考生号,不得在其它地方作任何标记。
3.本卷选择题1—12,每小题选出答案后,用2B 铅笔将答题卷选择题答题区内对应题目的答案标号涂黑;非选择题的答案(含作辅助线)必须用规定的笔,写在答题卷指定的答题区内,写在本卷或其他地方无效。
第一部分 选择题一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的) 1.﹣14的倒数是( ) A 、-4 B 、4 C 、14 D 、-142.如图是五个相同的小正方体搭成的几何体,这几个几何体的主视图是( )A 、B 、C 、D 、3. 下列计算正确的是( ) A 、2a 3+a 2=3a 5B 、(3a )2=6a 2C 、(a+b )2=a 2+b 2D 、2a 2•a 3=2a 54. 下列图形中既是轴对称图形又是中心对称图形的是( )A 、B 、C 、D 、5. 据测算,世博会召开时,上海使用清洁能源可减少二氧化碳排放约16万吨,将16万吨用科学记数法表示为( )A 、1.6×103吨 B 、1.6×104吨 C 、1.6×105吨 D 、1.6×106吨6. 如图,AB∥CD,∠ABE=60°,∠D=50°,则∠E 的度数为( ) A 、40°B 、30°C 、20°D 、10°7. 某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人( )A 、赚16元B 、赔16元C 、不赚不赔D 、无法确定8. 某班级第一小组7名同学积极捐出自己的零花钱支持地震灾区,他们捐款的数额分别是(单位:元)50,20,50,30,25,50,55,这组数据的众数和中位数分别是( ) A 、50元,20元 B 、50元,40元 C 、50元,50元 D 、55元,50元9.如图,观察二次函数y=ax2+bx+c的图象,下列结论:①a+b+c>0,②2a+b>0,③b2﹣4ac>0,④ac>0.其中正确的是()A、①②B、①④C、②③D、③④10. 如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为()A、2,π3B、2√3,πC、√3,2π3D、2√3,4π311. 如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A、4B、6C、8D、1012. 如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=12GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH,其中,正确的结论有()A、1个B、2个C、3个D、4个11题图12题图第二部分非选择题二、填空题(本题共有4小题,每小题3分,共12分)13. 因式分解:a3﹣4a= ________.14. 从﹣3、1、﹣2这三个数中任取两个不同的数,积为正数的概率是________15. 用同样大小的黑色五角星按图所示的方式摆图案,按照这样的规律摆下去,第99个图案需要的黑色五角星________ 个.16. 如图,△ABC 的内心在x 轴上,点B 的坐标是(2,0),点C 的坐标是(0,﹣2),点A 的坐标是(﹣3,b ),反比例函数y=kx (x <0)的图象经过点A ,则k= ________.三、解答题(本题共7小题,其中第17题6分,第18题6分,第19题7分,第20题8分,第21题8分,第22题8分,第23题9分,共52分) 17. 计算:√16+(﹣1)2013﹣(12)−2+(π﹣3)0﹣√83.18. 解不等式组{4(x +1)≤7x +10x −5<x−83并写出它的所有非负整数解.19. 丹东是个美丽的旅游城市,吸引了很多外地游客,某旅行社对今年五月接待的外地游客来丹东旅游的首选景点做了一次抽样调查,根据收集到的数据,绘制成如下统计图(不完整),请根据图中提供的信息,完成下列问题:(1)此次共调查了 人 (2)请将两幅统计图补充完整.(3)“凤凰山”部分的圆心角是 度。
2020年深圳市中考数学模拟试卷(一)
2020年中考数学模拟试卷(一)一、选择题(共12小题,每小题3分,共36分)1.实数2019的相反数是()A.2019B.﹣2019C .D .2.式子在实数范围内有意义,则x的取值范围是()A.x>0B.x≥﹣1C.x≥1D.x≤13.广州正稳步推进碧道建设,营造“水清岸绿、鱼翔浅底、水草丰美、白鹭成群”的生态廊道,使之成为老百姓美好生活的好去处.到今年底各区完成碧道试点建设的长度分别为(单位:千米):5,5.2,5,5,5,6.4,6,5,6.68,48.4,6.3,这组数据的众数是()A.5B.5.2C.6D.6.44.下列图形中是轴对称图形的是()A .B .C .D .5.如图是由5个相同的小正方体组成的几何体,该几何体的左视图是()A .B .C .D .6.下列运算正确的是()A.﹣3﹣2=﹣1B.3×(﹣)2=﹣C.x3•x5=x15D .•=a7.从1、2、3、4四个数中随机选取两个不同的数,分别记为a、c,则关于x的一元二次方程ax2+4x+c=0有实数解的概率为()A .B .C .D .8.下面命题正确的是()A.矩形对角线互相垂直B.方程x2=14x的解为x=14C.六边形内角和为540°D.一条斜边和一条直角边分别相等的两个直角三角形全等9.如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为()A.4B.4C.10D.8第9题10.已知反比例函数y =的图象分别位于第二、第四象限,A(x1,y1)、B(x2,y2)两点在该图象上,下列命题:①过点A作AC⊥x轴,C为垂足,连接OA.若△ACO的面积为3,则k=﹣6;②若x1<0<x2,则y1>y2;③若x1+x2=0,则y1+y2=0,其中真命题个数是()A.0B.1C.2D.311.观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2…已知按一定规律排列的一组数:250、251、252、…、299、2100.若250=a,用含a的式子表示这组数的和是()A.2a2﹣2a B.2a2﹣2a﹣2C.2a2﹣a D.2a2+a12.如图,正方形ABCD 的边长为a ,点E 在边AB 上运动(不与点A ,B 重合),∠DAM=45°,点F 在射线AM 上,且AF =BE ,CF 与AD 相交于点G ,连接EC ,EF ,EG ,则下列结论:①∠ECF =45°;②△AEG 的周长为(1+)a ;③BE 2+DG 2=EG 2;④△EAF 的面积的最大值a 2.其中正确的结论有( )个A.1个B.2个C.3个D.4个二、填空题(本大题共4个小题,每小题3分,共12分)13.分解因式:ab 2﹣a = . 14.袋子里有3个球,两个白球一个红球,从袋子中任意抽取两个球,两个球颜色相同的概率是15.如图,在▱ABCD 中,E 、F 是对角线AC 上两点,AE =EF =CD ,∠ADF =90°,∠BCD=63°,则∠ADE 的大小为 .16.如图,每一图中有若干个大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,如果第n 幅图中有2019个菱形,则n = .三、解答题(共6题,共52分)17.(5分)计算:()022020845sin 2121--+︒--⎪⎭⎫⎝⎛--π 18.(5分)12112-=+-x xx19.(8分)为弘扬中华传统文化,某校开展“双剧进课堂”的活动,该校童威随机抽取部分学生,按四个类别:A 表示“很喜欢”,B 表示“喜欢”,C 表示“一般”,D 表示“不喜欢”,调查他们对汉剧的喜爱情况,将结果绘制成如下两幅不完整的统计图,根据图中提供的信息,解决下列问题:(1)这次共抽取 名学生进行统计调查,扇形统计图中,D 类所对应的扇形圆心角的大小为 ;(2)将条形统计图补充完整;(3)该校共有1500名学生,估计该校表示“喜欢”的B 类的学生大约有 人第12题20.(8分)如图,某校教学楼AC与实验楼BD的水平间距CD=15米,在实验楼顶部B 点测得教学楼顶部A点的仰角是30°,底部C点的俯角是45°,则教学楼AC的高度是多少米(结果保留根号).21.(8分)如图,在△ABC中,AB=AC,∠BAC=120°,点D在BC边上,⊙D经过点A 和点B且与BC边相交于点E.(1)求证:AC是⊙D的切线;(2)若CE=2,求⊙D的半径.22.(9分)在△ABC中,∠ABC=90°,=n,M是BC上一点,连接AM.(1)如图1,若n=1,N是AB延长线上一点,CN与AM垂直,求证:BM=BN.(2)过点B作BP⊥AM,P为垂足,连接CP并延长交AB于点Q.①如图2,若n=1,求证:=.②如图3,若M是BC的中点,直接写出tan∠BPQ的值.(用含n的式子表示)23.(9分)如图,已知抛物线y=ax2+bx+c经过点A(﹣3,0)、B(9,0)和C(0,4),CD垂直于y轴,交抛物线于点D,DE垂直于x轴,垂足为E,直线l是该抛物线的对称轴,点F是抛物线的顶点.(1)求出该二次函数的表达式及点D的坐标;(2)若点M在对称轴上,当△ACM的周长最小时,点M的坐标;(3)若Rt△AOC沿x轴向右平移t个单位长度(0<t≤6)得到Rt△A2O2C2,Rt△A2O2C2与Rt△OED重叠部分图形的面积记为S,求S与t之间的函数表达式,并写出自变量t 的取值范围.。
2019-2020年深圳市初三中考数学一模模拟试卷
2019-2020年深圳市初三中考数学一模模拟试卷一、选择题(本题共有8小题,每小题5分,共40分.请选出一个正确的选项,将其代号填入题后的括号内,不选、多选、错选均不给分)1.已知a是方程x2﹣5x+1=0的一个根,那么a4+a﹣4的末位数字是()A.3B.5C.7D.92.某个一次函数的图象与直线y=x+3平行,与x轴,y轴的交点分别为A,B,并且过点(﹣2,﹣4),则在线段AB上(包括点A,B),横、纵坐标都是整数的点有()A.3个B.4个C.5个D.6个3.菱形的两条对角线之和为L,面积为S,则它的边长为()A.B.C.D.4.某商场出售甲、乙、丙三种型号的电动车,已知甲型车在第一季度的销售额占这三种车总销售额的56%,第二季度乙、丙两种型号的车的销售额比第一季度减少了a%,但该商场电动车的总销售额比第一季度增加了12%,且甲型车的销售额比第一季度增加了23%.则a的值为()A.8B.6C.3D.25.把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m,n,则二次函数y=x2+mx+n的图象与x轴有两个不同交点的概率是()A.B.C.D.6.如图,在梯形ABCD中,AB∥DC,AB⊥BC,E是AD的中点,AB+BC+CD=6,,则梯形ABCD的面积等于()A.13B.8C.D.47.如图,已知圆心为A,B,C的三个圆彼此相切,且均与直线l相切.若⊙A,⊙B,⊙C 的半径分别为a,b,c(0<c<a<b),则a,b,c一定满足的关系式为()A.2b=a+c B.=C.D.8.已知函数y=3﹣(x﹣m)(x﹣n),并且a,b是方程3﹣(x﹣m)(x﹣n)=0的两个根,则实数m,n,a,b的大小关系可能是()A.m<n<b<a B.m<a<n<b C.a<m<b<n D.a<m<n<b二、填空题(本题共7小题,每小题5分,共35分.将答案填在题中横线上)9.假期学校组织360名师生外出旅游,某客车出租公司有两种大客车可供选择:甲种客车每辆车有40个座,租金400元;乙种客车每辆车有50个座,租金480元.则租用该公司客车最少需用租金元.10.若a+x2=2010,b+x2=2011,c+x2=2012,且abc=24.则的值为.11.如下左图,小明设计了一个电子游戏:一电子跳蚤从横坐标为t(t>0)的P1点开始,按点的横坐标依次增加1的规律,在抛物线y=ax2(a>0)上向右跳动,得到点P2、P3,这时△P1P2P3的面积为.12.在直角梯形ABCD中,∠A为直角,AB∥CD,AB=7,CD=5,AD=2.一条动直线l 交AB于P,交CD于Q,且将梯形ABCD分为面积相等的两部分,则点A到动直线l的距离的最大值为.13.如图,把正方形ABCD沿着直线EF对折,使顶点C落在边AB的中点M,已知正方形的边长为4,那么折痕EF的长为.14.点D是△ABC的边AB上的一点,使得AB=3AD,P是△ABC外接圆上一点,使得∠ADP=∠ACB,则的值为.15.观察下列图形,根据图①、②、③的规律,若图①为第1次分割,图②为第2次分割,图③为第3次分割,按照这个规律一直分割下去,进行了n(n≥1)次分割,图中一共有个三角形(用含n的代数式表示).三、简答题(本题有4小题,共45分.务必写出解答过程)16.(9分)已知,一次函数(k是不为0的自然数,且是常数)的图象与两坐标轴所围成的图形的面积为S k(即k=1时,得S1,k=2时,得S2,…).试求S1+S2+S3+…+S2012的值.17.(12分)如图所示,正方形ABCD的边长为1,点M、N分别在BC、CD上,使得△CMN 的周长为2.求:(1)∠MAN的大小;(2)△MAN面积的最小值.18.(12分)若干个工人装卸一批货物,每个工人的装卸速度相同.如果这些工人同时工作,则需10小时装卸完毕.现改变装卸方式,开始一个人干,以后每隔t(整数)小时增加一个人干,每个参加装卸的人都一直干到装卸结束,且最后增加的一个人装卸的时间是第一个人装卸时间的.问:(1)按改变后的装卸方式,自始至终需要多长时间?(2)参加装卸的有多少名工人?19.(12分)对非负实数x,“四舍五入”到个位的值记为<x>,即:当n为非负整数时,如果,则<x>=n.试解决下列问题:(1)①当x≥0,m为非负整数时,求证:<x+m>=m+<x>;②举例说明<x+y>=<x>+<y>不恒成立;(2)求满足的所有非负实数x的值;(3)设n为常数,且为正整数,函数的自变量x在n≤x<n+1范围内取值时,函数值y为整数的个数记为a,满足的所有整数k的个数记为b.求证:a=b=2n.参考答案一、选择题(本题共有8小题,每小题5分,共40分.请选出一个正确的选项,将其代号填入题后的括号内,不选、多选、错选均不给分)1.【解答】解:根据韦达定理可得:方程x2﹣5x+1=0的两根之积为1,两根之和为5,∵a是方程x2﹣5x+1=0的一个根,∴另一个根为a﹣1,∴a+a﹣1=5,∴a4+a﹣4=(a2+a﹣2)2﹣2=[(a+a﹣1)2﹣2]2﹣2,∵232末位数字是9,∴a4+a﹣4末位数字为7.故选:C.2.【解答】解:根据题意,设一次函数的解析式为y=x+b,由点(﹣2,﹣4)在该函数图象上,得﹣4=×(﹣2)+b,解得b=﹣3.所以,y=x﹣3.可得点A(6,0),B(0,﹣3).由0≤x≤6,且x为整数,取x=0,2,4,6时,对应的y是整数.因此,在线段AB上(包括点A、B),横、纵坐标都是整数的点有4个.故选:B.3.【解答】解:设边长为m,一条对角线为2a,另外一条为2b,则a+b=L,2ab=S∵m2=a2+b2=(a+b)2﹣2ab=L2﹣S∴m=.故选:C.4.【解答】解:把第一季度的销售额看作单位1;则有56%×(1+23%)+(1﹣56%)•(1﹣a%)=1+12%,解可得:a=2;故选:D.5.【解答】解:掷骰子有6×6=36种情况.根据题意有:4n﹣m2<0,因此满足的点有:n=1,m=3,4,5,6,n=2,m=3,4,5,6,n=3,m=4,5,6,n=4,m=5,6,n=5,m=5,6,n=6,m=5,6,共有17种,故概率为:17÷36=.故选:C.6.【解答】解:如图,过点E作EF∥AB交BC于点F,则BF=BC,EF=(AB+CD)=(6﹣BC),又∵AB⊥BC,∴EF⊥BC,∴在Rt△BFE中,EF2+BF2=BE2.∴,即BC2﹣6BC+8=0,解得BC=2或BC=4,则EF=2或EF=1,∴S梯形ABCD=EF•BC=4.故选:D.7.【解答】解:过点A、B、C分别向直线l引垂线,垂足分别为A1、B1、C1,易得:A1B1==2,同理B1C1==2,A1C1==2;又有A1C1+B1C1=A1B1,可得=+,两边同除以可得:.故选:D.8.【解答】解:由3﹣(x﹣m)(x﹣n)=0变形得(x﹣m)(x﹣n)=3,∴x﹣m>0,x﹣n>0或x﹣m<0,x﹣n<0,∴x>m,x>n或x<m,x<n,∵a,b是方程的两个根,将a,b代入,得:a>m,a>n,b<m,b<n或a<m,a<n,b>m,b>n,观察选项可知:a<b,m<n,只有D可能成立.故选:D.二、填空题(本题共7小题,每小题5分,共35分.将答案填在题中横线上)9.【解答】解:若只租甲种客车需要360÷40=9辆.若只租乙种客车需要8辆,因而两种客车用共租8辆.设甲车有x辆,乙车有8﹣x辆,则40x+50(8﹣x)≥360,解得:x≤4,整数解为0、1、2、3、4.汽车的租金W=400x+480(8﹣x)即W=﹣80x+3840W的值随x的增大而减小,因而当x=4时,W最小.故取x=4,W的最小值是3520元.故答案为:3520.10.【解答】解:∵a+x2=2010,b+x2=2011,c+x2=2012,∴2010﹣a=2011﹣b=2012﹣c,∴b=a+1,c=a+2,又abc=24,则=﹣====.故答案为:.11.【解答】解:作P1A⊥x轴,P2B⊥x轴,P3C⊥x轴,垂足分别为A,B,C.由题意得A(t,0),B(t+1,0),C(t+2,0),P1(t,at2),P2[t+1,a(t+1)2],P3[t+2,a(t+2)2]==a.12.【解答】解:设M、N分别是AD,PQ的中点∵S梯形ABCD=(DC+AB)•AD=12若直线l将梯形ABCD分为面积相等的两部分,则S梯形AQPD=(DP+AQ)•AD=6,∴DP+AQ=6∴MN=3∴N是一个定点若要A到l的距离最大,则l⊥AN此时点A到动直线l的距离的最大值就是AN的长在Rt△AMN中,AM=1,MN=3∴AN==.13.【解答】解:过E点作EH⊥BC于H点,MD′交AD于G点,如图,∵把正方形ABCD沿着直线EF对折,使顶点C落在边AB的中点M,∴FC=FM,BM=AB=×4=2,ED=ED′,∠D′MF=∠C=90°,∠D′=∠D =90°,设MF=x,则BF=4﹣x,在Rt△BFM中,MF2=BF2+BM2,即x2=(4﹣x)2+22,∴x=,∴MF=FC=,BF=4﹣=,∵∠1+∠3=90°,∠1+∠2=90°,∴∠2=∠3,∴Rt△AGM∽Rt△BMF,∴==,即==,∴AG=,MG=,设DE=t,则D′E=t,GE=4﹣t﹣=﹣t,易证得Rt△D′GE∽Rt△AGM,∴=,即=,解得t=,∴HC=ED=,∴FH=4﹣﹣=2,在Rt△EFH中,EH=DC=4,FH=2,∴EF===2.故答案为2.14.【解答】解:连接AP,∵∠APB与∠ACB是所对的圆周角,∴∠APB=∠ACB,∵∠ADP=∠ACB,∴∠APB=∠ACB=∠ADP,∵∠DAP=∠DAP,∴△APB∽△ADP,∴==,∴AP2=AD•AB=AD•(3AD)=3AD2,∴===.故答案为:.15.【解答】解:依题意,n次分割,所得三角形个数为:5+3×4+3×3×4+…+3n﹣1×4个,设S=5+3×4+3×3×4+…+3n﹣1×4 ①则3S=15+3×3×4+…+3n﹣1×4+3n×4 ②②﹣①得,2S=3n×4+15﹣5﹣3×4=4×3n﹣2,S=2×3n﹣1.故答案为:2×3n﹣1.三、简答题(本题有4小题,共45分.务必写出解答过程)16.【解答】解:令x=0,得y=,y=0,得x=,∴S=××=(﹣),∴S1+S2+S3+…+S2012=(1﹣+﹣+﹣+…+﹣)=(1﹣)=.17.【解答】解:(1)如图,延长CB至L,使BL=DN,则Rt△ABL≌Rt△ADN,故AL=AN,∠1=∠2,∠NAL=∠DAB=90°又∵MN=2﹣CN﹣CM=DN+BM=BL+BM=ML∴△AMN≌△AML∴∠MAN=∠MAL=45°(2)设CM=x,CN=y,MN=z,则x2+y2=z2,∵x+y+z=2,则x=2﹣y﹣z于是(2﹣y﹣z)2+y2=z2整理得2y2+(2z﹣4)y+(4﹣4z)=0∴△=4(z﹣2)2﹣32(1﹣z)≥0即(z+2+)(z+2﹣)≥0又∵z>0∴z≥﹣2当且仅当x=y=2﹣时等号成立此时S△AMN=S△AML=ML•AB=z因此,当z=﹣2,x=y=2﹣时,S△AMN取到最小值为﹣1.18.【解答】解:(1)设装卸工作需x小时完成,则第一人干了x小时,最后一个人干了小时,两人共干活小时,平均每人干活小时,由题意知,第二人与倒数第二人,第三人与倒数第三人,平均每人干活的时间也是小时.根据题得,解得x=16(小时);(2)共有y人参加装卸工作,由于每隔t小时增加一人,因此最后一人比第一人少干(y ﹣1)t小时,按题意,得,即(y﹣1)t=12.解此不定方程得,,,,,即参加的人数y=2或3或4或5或7或13.19.【解答】解:(1)①证明:设<x>=n,则为非负整数;∴,且n+m为非负整数,∴<x+m>=n+m=m+<x>.②举反例:<0.6>+<0.7>=1+1=2,而<0.6+0.7>=<1.3>=1,∴<0.6>+<0.7>≠<0.6+0.7>,∴<x+y>=<x>+<y>不一定成立;(2)∵x≥0,为整数,设x=k,k为整数,则∴∴,∵O≤k≤2,∴k=0,1,2,∴x=0,,.(3)∵函数,n为整数,当n≤x<n+1时,y随x的增大而增大,∴,即,①∴,∵y为整数,∴y=n2﹣n+1,n2﹣n+2,n2﹣n+3,…,n2﹣n+2n,共2n个y,∴a=2n,②∵k>0,<>=n,则,∴,③比较①,②,③得:a=b=2n.中学数学一模模拟试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列图案中,不是中心对称图形的是()A.B.C.D.2.(3分)初步核算并经国家统计局核定,2017年广东全省实现地区生产总值约90000亿元,比上年增长7.5%.将90000亿元用科学记数法表示应为()元.A.9×1011B.9×104C.9×1012D.9×10103.(3分)下列说法正确的是()A.2的相反数是2B.2的绝对值是2C.2的倒数是2D.2的平方根是24.(3分)下列运算正确的是()A.a2+a3=a5B.(a2)3=a5C.a3÷a2=a D.(a﹣b)2=a2﹣b25.(3分)下列不等式组的解集中,能用如图所示的数轴表示的是()A.B.C.D.6.(3分)如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,∠2=115°,则∠1的度数是()A.75°B.85°C.60°D.65°7.(3分)如图,在⊙O中,OC∥AB,∠A=20°,则∠1等于()A.40°B.45°C.50°D.60°8.(3分)有三张正面分别写有数字﹣1,﹣2,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为()A.B.C.D.9.(3分)点A(t,2)在第二象限,OA与x轴所夹的锐角为α,tanα=,则t的值为()A.﹣B.﹣2C.2D.310.(3分)如图,矩形纸片ABCD中,AB=5,BC=3,点E在AD上,且AE=1,点P是线段AB上一动点,折叠纸片,使点P与点E重合,展开纸片得折痕MN,过点P作PQ ⊥AB,交MN所在的直线于点Q.设x=AP,y=PQ,则y关于x的函数图象大致为()A.B.C.D.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)方程x2=x的解是.12.(4分)因式分解:3x2+6x+3=.13.(4分)把抛物线y=2x2﹣1向上平移一个单位长度后,所得的函数解析式为.14.(4分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AC=14cm,BD =8cm,AD=6cm,则△OBC的周长是.15.(4分)在△ABC中BC=2,AB=2,AC=b,且关于x的方程x2﹣4x+b=0有两个相等的实数根,则AC边上的中线长为.16.(4分)如图,在平面直角坐标系xOy中,Rt△OA1C1,Rt△OA2C2,Rt△OA3C3,…的斜边都在坐标轴上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4=…=30°.若点A1的坐标为(3,0),OA1=OC2,OA2=OC3,OA3=OC4,…则依此规律,的值为.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.(6分)计算:﹣|﹣3|+﹣4cos30°18.(6分)先化简,后求值:(x﹣)÷,其中x=2.19.(6分)已知等腰△ABC的顶角∠A=36°(如图).(1)请用尺规作图法作底角∠ABC的平分线BD,交AC于点D(保留作图痕迹,不要求写作法);(2)证明:△ABC∽△BDC.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.(7分)在国务院办公厅发布《中国足球发展改革总体方案》之后,某校为了调查本校学生对足球知识的了解程度,随机抽取了部分学生进行一次问卷调查,并根据调查结果绘制了如图的统计图,请根据图中所给的信息,解答下列问题:(1)本次接受问卷调查的学生总人数是;(2)补全折线统计图.(3)扇形统计图中,“了解”所对应扇形的圆心角的度数为,m的值为;(4)若该校共有学生3000名,请根据上述调查结果估算该校学生对足球的了解程度为“不了解”的人数.21.(7分)某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程.在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)22.(7分)如图,在正方形ABCD中,边长AB=3,点E(与B,C不重合)是BC边上任意一点,把EA绕点E顺时针方向旋转90°到EF,连接CF.(1)求证:CF是正方形ABCD的外角平分线;(2)当∠BAE=30°时,求CF的长.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.(9分)如图,在平面直角坐标系中,直线AB:y=kx+b(b为常数)与反比例函数y=(x>0)交于点B,与x轴交于点A,与y轴交于点C,且OB=AB.(1)如图①,若点A的坐标为(6,0)时,求点B的坐标及直线AB的解析式;(2)如图①,若∠OBA=90°,求点A的坐标;(3)在(2)的条件下中,如图②,△P A1A是等腰直角三角形,点P在反比例函数y=(x>0)的图象上,斜边A1A都在x轴上,求点A1的坐标.24.(9分)如图,在菱形ABCD中,∠A=60°,以点D为圆心的⊙D与边AB相切于点E.(1)求证:BC是⊙D的切线;(2)设⊙D与BD相交于点H,与边CD相交于点F,连接HF,若AB=2,求图中阴影部分的面积;(3)假设圆的半径为r,⊙D上一动点M从点F出发,按逆时针方向运动,且∠FDM <90°,连接DM,MF,当S四边形DFHM:S四边形ABCD=3:4时,求动点M经过的弧长.25.(9分)如图①,已知抛物线y=ax2+x+c(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点A坐标为(﹣1,0),点C坐标为(0,),点D 是点C关于抛物线对称轴的对称点,连接CD,过点D作DH⊥x轴于点H,过点A作AE⊥AC交DH的延长线于点E.(1)求a,c的值;(2)求线段DE的长度;(3)如图②,试在线段AE上找一点F,在线段DE上找一点P,且点M为直线PF上方抛物线上的一点,求当△CPF的周长最小时,△MPF面积的最大值是多少?参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列图案中,不是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的定义和各图特点即可解答.【解答】解:只有选项C连接相应各点后是正三角形,绕中心旋转180度后所得的图形与原图形不会重合.故选:C.【点评】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合,和正奇边形有关的一定不是中心对称图形.2.(3分)初步核算并经国家统计局核定,2017年广东全省实现地区生产总值约90000亿元,比上年增长7.5%.将90000亿元用科学记数法表示应为()元.A.9×1011B.9×104C.9×1012D.9×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:90000亿=9×1012,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)下列说法正确的是()A.2的相反数是2B.2的绝对值是2C.2的倒数是2D.2的平方根是2【分析】根据有理数的绝对值、平方根、倒数和相反数解答即可.【解答】解:A、2的相反数是﹣2,错误;B、2的绝对值是2,正确;C、2的倒数是,错误;D、2的平方根是±,错误;故选:B.【点评】此题考查了实数的性质,关键是根据有理数的绝对值、平方根、倒数和相反数解答.4.(3分)下列运算正确的是()A.a2+a3=a5B.(a2)3=a5C.a3÷a2=a D.(a﹣b)2=a2﹣b2【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式不能合并,不符合题意;B、原式=a6,不符合题意;C、原式=a,符合题意;D、原式=a2﹣2ab+b2,不符合题意,故选:C.【点评】此题考查了同底数幂的除法,合并同类项,幂的乘方与积的乘方,以及完全平方公式,熟练掌握公式及法则是解本题的关键.5.(3分)下列不等式组的解集中,能用如图所示的数轴表示的是()A.B.C.D.【分析】先求出每个不等式的解集,再求出不等式组的解集,再根据数轴判断即可.【解答】解:由数轴可得:﹣2<x≤1,故选:D.【点评】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.6.(3分)如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,∠2=115°,则∠1的度数是()A.75°B.85°C.60°D.65°【分析】先根据平行线的性质,得出∠3的度数,再根据三角形外角性质进行计算即可.【解答】解:如图所示,∵DE∥BC,∴∠2=∠3=115°,又∵∠3是△ABC的外角,∴∠1=∠3﹣∠A=115°﹣30°=85°,故选:B.【点评】本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.7.(3分)如图,在⊙O中,OC∥AB,∠A=20°,则∠1等于()A.40°B.45°C.50°D.60°【分析】利用平行线的性质即可求得∠C的度数,根据圆周角定理:同弧所对的圆周角等于圆心角的一半求得∠O的度数,再利用三角形的外角的性质即可求解.【解答】解:∵OC∥AB,∴∠C=∠A=20°,又∵∠O=2∠A=40°,∴∠1=∠O+∠C=20°+40°=60°.故选:D.【点评】本题考查了圆周角定理与平行线的性质定理,正确利用圆周角定理求得∠O的度数是关键.8.(3分)有三张正面分别写有数字﹣1,﹣2,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为()A.B.C.D.【分析】画树状图得出所有等可能结果,再从中找到符合条件的结果数,继而利用概率公式可得答案.【解答】解:画树状图如下:由树状图知,共有6种等可能结果,其中点(a,b)在第二象限的有2种结果,所以点(a,b)在第二象限的概率为=,故选:B.【点评】本题主要考查列表法与树状图法,列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.9.(3分)点A(t,2)在第二象限,OA与x轴所夹的锐角为α,tanα=,则t的值为()A.﹣B.﹣2C.2D.3【分析】如图,作AE⊥x轴于E.根据tan∠AOE==,构建方程即可解决问题.【解答】解:如图,作AE⊥x轴于E.由题意:tan∠AOE==,∵A(t,2),∴AE=2,OE=﹣t,∴=,∴t=﹣,故选:A.【点评】本题考查解直角三角形的应用,坐标与图形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.(3分)如图,矩形纸片ABCD中,AB=5,BC=3,点E在AD上,且AE=1,点P是线段AB上一动点,折叠纸片,使点P与点E重合,展开纸片得折痕MN,过点P作PQ ⊥AB,交MN所在的直线于点Q.设x=AP,y=PQ,则y关于x的函数图象大致为()A.B.C.D.【分析】过点E作EF⊥QP,垂足为F,连接EQ.由翻折的性质可知QE=QP,从而可表示出QF、EF、EQ的长度,然后在△EFQ中利用勾股定理可得到函数的关系式.【解答】解:如图所示,过点E作EF⊥QP,垂足为F,连接EQ.由翻折的性质可知:EQ=QP=y.∵∠EAP=∠APF=∠PFE=90°,∴四边形EAPF是矩形.∴EF=AP=x,PF=EA=1.∴QF=QP﹣PF=y﹣1.在Rt△EFQ中,由勾股定理可知:EQ2=QF2+EF2,即y2=(y﹣1)2+x2.整理得:y=.故选:D.【点评】本题主要考查的是翻折的性质、矩形的性质和判定、勾股定理的应用,表示出QF、EF、EQ的长度,在△EFQ中利用勾股定理列出函数关系式是解题的关键.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)方程x2=x的解是x1=0,x2=1.【分析】将方程化为一般形式,提取公因式分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解即可得到原方程的解.【解答】解:x2=x,移项得:x2﹣x=0,分解因式得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为:x1=0,x2=1【点评】此题考查了解一元二次方程﹣因式分解法,利用此方法解方程时,首先将方程右边化为0,左边化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.12.(4分)因式分解:3x2+6x+3=3(x+1)2.【分析】原式提取3,再利用完全平方公式分解即可.【解答】解:原式=3(x2+2x+1)=3(x+1)2,故答案为:3(x+1)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.(4分)把抛物线y=2x2﹣1向上平移一个单位长度后,所得的函数解析式为y=2x2.【分析】直接运用平移规律“左加右减,上加下减”,在原式上加1即可得新函数解析式y=2x2.【解答】解:∵抛物线y=2x2﹣1向上平移一个单位长度,∴新抛物线为y=2x2.故答案为y=2x2.【点评】此题比较容易,主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.14.(4分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AC=14cm,BD =8cm,AD=6cm,则△OBC的周长是17cm.【分析】根据平行四边形的对边相等以及对角线互相平分进而求出即可.【解答】解:∵在平行四边形ABCD中,AC=14cm,BD=8cm,AD=6cm,∴CO=AC=7cm,BO=BD=4cm,BC=AD=6cm,∴△OBC的周长=BC+BO+CO=6+7+4=17(cm).故答案为:17cm.【点评】此题主要考查了平行四边形的性质,熟练根据平行四边形的性质得出BO,BC,CO的长是解题关键.15.(4分)在△ABC中BC=2,AB=2,AC=b,且关于x的方程x2﹣4x+b=0有两个相等的实数根,则AC边上的中线长为2.【分析】由根的判别式求出AC=b=4,由勾股定理的逆定理证出△ABC是直角三角形,再由直角三角形斜边上的中线性质即可得出结论.【解答】解:∵关于x的方程x2﹣4x+b=0有两个相等的实数根,∴△=16﹣4b=0,∴AC=b=4,∵BC=2,AB=2,∴BC2+AB2=AC2,∴△ABC是直角三角形,AC是斜边,∴AC边上的中线长=AC=2;故答案为:2.【点评】本题考查了根的判别式,勾股定理的逆定理,直角三角形斜边上的中线性质;证明△ABC是直角三角形是解决问题的关键.16.(4分)如图,在平面直角坐标系xOy中,Rt△OA1C1,Rt△OA2C2,Rt△OA3C3,…的斜边都在坐标轴上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4=…=30°.若点A1的坐标为(3,0),OA1=OC2,OA2=OC3,OA3=OC4,…则依此规律,的值为.【分析】根据含30度的直角三角形三边的关系得OA2====3×;OA3===3×()2;OA4===3×()3,…,于是可得到OA2016=3×()2015,OA2018=3×()2017,代入,化简即可.【解答】解:∵∠A2OC2=30°,OA1=OC2=3,∴OA2====3×;OA3===3×()2;OA4===3×()3,…,∴OA2016=3×()2015,OA2018=3×()2017,∴==()2=.故答案为.【点评】本题考查了规律型,点的坐标,坐标与图形性质,通过从一些特殊的点的坐标发现不变的因素或按规律变化的因素,然后推广到一般情况.也考查了含30度的直角三角形三边的关系及三角函数.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.(6分)计算:﹣|﹣3|+﹣4cos30°【分析】直接利用负指数幂的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案.【解答】解:原式=4﹣3+2018﹣4×=4﹣3+2018﹣2=2015+2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6分)先化简,后求值:(x﹣)÷,其中x=2.【分析】先计算括号内减法、同时将除法转化为乘法,再约分即可化简,最后代入求值即可.【解答】解:原式=×=×=,当x=2+时,原式===.【点评】本题主要考查分式的化简求值能力,熟练掌握分式的混合运算顺序是解题的关键.19.(6分)已知等腰△ABC的顶角∠A=36°(如图).(1)请用尺规作图法作底角∠ABC的平分线BD,交AC于点D(保留作图痕迹,不要求写作法);(2)证明:△ABC∽△BDC.【分析】(1)利用角平分线的作法作出线段BD即可;(2)先根据等腰三角形的性质得出∠ABC=∠C=72°,再由角平分线的性质得出∠ABD的度数,故可得出∠A=∠CBD=36°,∠C=∠C,据此可得出结论.【解答】解:(1)如图,线段BD为所求出;(2)∵∠A=36°,AB=AC,∴∠ABC=∠C=(180°﹣36°)=72°.∵BD平分∠ABC,∴∠ABD=∠DBC=72°÷2=36°.∵∠A=∠CBD=36°,∠C=∠C,∴△ABD∽△BDC.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.(7分)在国务院办公厅发布《中国足球发展改革总体方案》之后,某校为了调查本校学生对足球知识的了解程度,随机抽取了部分学生进行一次问卷调查,并根据调查结果绘制了如图的统计图,请根据图中所给的信息,解答下列问题:(1)本次接受问卷调查的学生总人数是120人;(2)补全折线统计图.(3)扇形统计图中,“了解”所对应扇形的圆心角的度数为30°,m的值为25;(4)若该校共有学生3000名,请根据上述调查结果估算该校学生对足球的了解程度为“不了解”的人数.【分析】(1)根据了解很少的人数以及百分比,求出总人数即可.(2)求出不了解的人数,画出折线图即可.(3)根据圆心角=360°×百分比计算即可.(4)利用样本估计总体的思想解决问题即可.【解答】解:(1)总人数=60÷50%=120(人).(2)不了解的人数=120﹣60﹣30﹣10=20(人),折线图如图所示:(3)了解的圆心角=×360°=30°,基本了解的百分比==25%,∴m=25.故答案为:30,25.(4)3000×=500(人),答:估算该校学生对足球的了解程度为“不了解”的人数为500人.【点评】本题考查折线统计图,样本估计总体,扇形统计图等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(7分)某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程.在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)【分析】(1)设甲队单独完成需要x个月,则乙队单独完成需要x﹣5个月,根据题意列出关系式,求出x的值即可;(2)设甲队施工y个月,则乙队施工y个月,根据工程款不超过1500万元,列出一元一次不等式,解不等式求最大值即可.【解答】解:(1)设甲队单独完成需要x个月,则乙队单独完成需要(x﹣5)个月,由题意得,x(x﹣5)=6(x+x﹣5),解得x1=15,x2=2(不合题意,舍去),则x﹣5=10.答:甲队单独完成这项工程需要15个月,则乙队单独完成这项工程需要10个月;(2)设甲队施工y个月,则乙队施工y个月,由题意得,100y+(100+50)≤1500,解不等式得y≤8.57,∵施工时间按月取整数,∴y≤8,答:完成这项工程,甲队最多施工8个月才能使工程款不超过1500万元.【点评】本题考查了一元二次方程的应用和一元一次不等式的应用,难度一般,解本题的关键是根据题意设出未知数列出方程及不等式求解.22.(7分)如图,在正方形ABCD中,边长AB=3,点E(与B,C不重合)是BC边上任意一点,把EA绕点E顺时针方向旋转90°到EF,连接CF.(1)求证:CF是正方形ABCD的外角平分线;(2)当∠BAE=30°时,求CF的长.。
2020年深圳中考数学调研模拟测试试卷(含答案)最新
2020年深圳中考数学模拟测试试卷一、选择题1.–23的绝对值是( ) A .–8B .–6C .8D .62.据报道,截至2020年3月末深圳市常住人口近13500000人,比上年增加41.22万人,则13500000人用科学记数法表示为( ) A .13.5×108人B .135×107人C .1.35×107人D .1.35×108人3.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .4.下列计算正确的是 A .623a a a ÷=B .44a a a ⋅=C .()437a a =D .()22124a a--=5.如图,直线AB ∥CD ,∠A =70°,∠C =40°,则∠E 等于 A .30°B .40°C .60°D .70°6.某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:尺码39 40 41 42 43 平均每天销售数量/件1012201212该店主决定本周进货时,增加一些41码的衬衫,影响该店主决策的统计量是 A .平均数B .方差C .众数D .中位数7.如图,有甲、乙两种地板样式,如果小球分别在上面自由滚动,设小球在甲种地板上最终停留在黑色区域的概率为P 1,在乙种地板上最终停留在黑色区域的概率为P 2,则A .P 1>P 2B .P 1<P 2C .P 1=P 2D .以上都有可能8.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,E 为AB 的中点,且OE =2,则菱形ABCD的周长为A.12 B.16 C.8 D.49.如图,O是边长为a的正方形ABCD的中心,将一块半径足够长、圆心为直角的扇形纸板的圆心放在O点处,并将纸板的圆心绕O旋转,则正方形ABCD被纸板覆盖部分的面积为A.13a2B.14a2C.12a2D.14a10.如图,将矩形MNPQ放置在矩形ABCD中,使点M,N分别在AB,AD边上滑动,若MN=6,PN=4,在滑动过程中,点A与点P的距离AP的最大值为A.4B.13C.7D.811.如图,∠DCE是圆内接四边形ABCD的一个外角,如果∠DCE=75°,那么∠BAD的度数是A.75°B.65°C.85°D.105°12.如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连结DF交BE的延长线于点H,连结OH交DC于点G,连结H C.则以下四个结论中:①OH∥BF,②GH=14BC,③OD=12BF,④∠CHF=45°.正确结论的个数为A.4个B.3个C.2个D.1个二、填空题13.分解因式:x2y–xy2=__________.14.一个多边形的内角和与其外角和加起来是2160°,则这个多边形是__________.15.在扇形纸片AOB中,∠AOB=90°,OA=4,将扇形纸片AOB按如图所示折叠,使对折后点A与点O重合,折痕为DE,则»BE的长度为__________.16.如图,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数1yx=和9yx=在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交1yx=的图象于点C,连接AC.若△ABC是等腰三角形,则k的值是__________.三、计算题17.计算:021π)6tan30()|12--︒++.18、先化简,再求值:(a2b+ab)÷2211a aa+++,其中a,b1.四、解答题19、宝安中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;(3)若海静中学共有1500名学生,请你估计该中学最喜爱律师职业的学生有多少名?20、如图,在△ABC中,∠BAC=90°,分别以AC和BC为边向外作正方形ACFG和正方形BCDE,过点D作FC的延长线的垂线,垂足为点H.(1)求证:△ABC≌△HDC(4分)(2)连接FD,交AC的延长线于点M,若AG=2tan3ABC∠=,求△FCM的面积。
2020年深圳市九年级中考数学模拟试卷含答案
2020年深圳市九年级中考数学模拟试卷一.选择题(每题3分,满分36分)1.﹣的相反数是()A .B .C.﹣3 D.32.宁波港处于“一带一路”和长江经济带交汇点,地理位置得天独厚.全年货物吞吐量达9.2亿吨,晋升为全球首个“9亿吨”大港,并连续8年蝉联世界第一宝座.其中9.2亿用科学记数法表示正确的是()A.9.2×108B.92×107C.0.92×109D.9.2×1073.下列图形中是轴对称图形的是()A .B .C .D .4.如图,图中所示的几何体为一桶快餐面,其俯视图正确的是()A .B .C .D .5.下列运算正确的是()A.x2+x3=x6B.2x+3y=5xy C.(x3)2=x6D.x6÷x3=x26.某车间需加工一批零件,车间20名工人每天加工零件数如表所示:4 5 6 7 8每天加工零件数人数 3 6 5 4 2 每天加工零件数的中位数和众数为()A.6,5 B.6,6 C.5,5 D.5,67.下列所示的四个图形中,∠1和∠2是同位角的是()A.①②B.②③C.①③D.②④8.如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,DH⊥BC于H交BE于G.下列结论:①BD=CD;②AD+CF=BD;③CE=BF;④AE =BG.其中正确的个数是()A.1个B.2个C.3个D.4个9.10年前,小明妈妈的年龄是小明的6倍,10年后,小明妈妈的年龄是小明的2倍,小明和他妈妈现在的年龄分别是多少岁?若设小明和他妈妈现在分别是x岁和y岁,根据题意可列方程组为()A. B.C. D.10.如图,在半径为6的⊙O中,点A,B,C都在⊙O上,四边形OABC是平行四边形,则图中阴影部分的面积为()A.6πB.3πC.2πD.2π11.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是()A.abc>0B.2a+b<0C.3a+c<0D.ax2+bx+c﹣3=0有两个不相等的实数根12.如图,CE是▱ABCD的边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点E.连接AC,BE,DO,DO与AC交于点F,则下列结论:①四边形ACBE是菱形;②∠ACD=∠BAE;③AF:BE=2:3;④S四边形AFOE :S△COD=2:3;以上四个结论中所有正确的结论是()A.①②B.①②③C.②④D.①②④二.填空题(满分12分,每小题3分)13.若4x2﹣(k﹣1)x+9能用完全平方公式因式分解,则k的值为.14.若二次根式有意义,则x的取值范围是.15.如图,若菱形ABCD的顶点A,B的坐标分别为(4,0),(﹣1,0),点D在y轴上,则点C的坐标是.16.如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,点A(5,0),sin∠COA =.若反比例函数y=(k≠0)经过点C,则k的值等于.三.解答题17.(5分)计算:()﹣2﹣+(﹣4)0﹣cos45°.18.(6分)先化简,再求值:(x﹣2+)÷,其中x=﹣.19.(7分)为了解学生的艺术特长发展情况,某校决定围绕“在舞蹈、乐器、声乐、戏曲、其它活动项目中,你最喜欢哪一项活动(每人只限一项)”的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)扇形统计图中“戏曲”部分对应的扇形的圆心角为度;(2)若在“舞蹈、乐器、声乐、戏曲”项目中任选两项成立课外兴趣小组,请用列举法求恰好选中“舞蹈、声乐”这两项的概率.20.(8分)为缓解交通压力,市郊某地正在修建地铁站,拟同步修建地下停车库.如图是停车库坡道入口的设计图,其中MN是水平线,MN∥AD,AD⊥DE,CF⊥AB,垂足分别为D,F,坡道AB的坡度=1:3,AD=9米,点C在DE上,CD=0.5米,CD是限高标志牌的高度(标志牌上写有:限高米).如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.1米,参考数据:≈1.41,≈1.73,≈3.16)21.(8分)有一段6000米的道路由甲乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队每天完成工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少用10天.(1)求甲、乙两工程队每天各完成多少米?(2)如果甲工程队每天需工程费7000元,乙工程队每天需工程费5000元,若甲队先单独工作若干天,再由甲乙两工程队合作完成剩余的任务,支付工程队总费用不超过79000元,则两工程队最多可以合作施工多少天?22.(9分)如图,AB为⊙O的直径,CD⊥AB于点G,E是CD上一点,且BE=DE,延长EB 至点P,连接CP,使PC=PE,延长BE与⊙O交于点F,连结BD,FD.(1)连结BC,求证:△BCD≌△DFB;(2)求证:PC是⊙O的切线;(3)若tan F=,AG﹣BG=,求ED的值.23.综合与探究如图1,抛物线y=ax2+bx﹣3与x轴交于A(﹣2,0),B(4,0)两点,与y轴交于点C.(1)求抛物线的表达式;(2)点N是抛物线上异于点C的动点,若△NAB的面积与△CAB的面积相等,求出点N 的坐标;(3)如图2,当P为OB的中点时,过点P作PD⊥x轴,交抛物线于点D.连接BD,将△PBD沿x轴向左平移m个单位长度(0<m≤2),将平移过程中△PBD与△OBC重叠部分的面积记为S,求S与m的函数关系式.参考答案一.选择题1.解:﹣的相反数是,故选:B.2.解:9.2亿=9.2×108.故选:A.3.解:A、不是轴对称图形,本选项错误;B、不是轴对称图形,本选项错误;C、是轴对称图形,本选项正确;D、不是轴对称图形,本选项错误.故选:C.4.解:从几何体的上面看可得,故选:C.5.解:A、原式不能合并,错误;B、原式不能合并,错误;C、原式=x6,正确;D、原式=x3,错误.故选:C.6.解:由表知数据5出现了6次,次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=6,故选:A.7.解:∠1和∠2是同位角的是①②,故选:A.8.解:∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.故①正确;在Rt△DFB和Rt△DAC中,∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.又∵∠BDF=∠CDA=90°,BD=CD,∴△DFB≌△DAC.∴BF=AC;DF=AD.∵CD=CF+DF,∴AD+CF=BD;故②正确;在Rt△BEA和Rt△BEC中∵BE平分∠ABC,∴∠ABE=∠CBE.又∵BE=BE,∠BEA=∠BEC=90°,∴Rt△BEA≌Rt△BEC.∴CE=AE=AC.又由(1),知BF=AC,∴CE=AC=BF;故③正确;连接CG.∵△BCD是等腰直角三角形,∴BD=CD又DH⊥BC,∴DH垂直平分BC.∴BG=CG在Rt△CEG中,∵CG是斜边,CE是直角边,∴CE<CG.∵CE=AE,∴AE<BG.故④错误.故选:C.9.解:设小明和他妈妈现在分别是x岁和y岁.由题意得,,故选:B.10.解:连接OB,∵四边形OABC是平行四边形,∴AB=OC,∴AB=OA=OB,∴△AOB是等边三角形,∴∠AOB=60°,∵OC∥AB,∴S△AOB =S△ABC,∴图中阴影部分的面积=S扇形AOB==6π,故选:A.11.解:∵抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣,得到b>0,由抛物线与y轴的交点位置得到c>0,A、abc<0,错误;B、2a+b=0,错误;C、把x=1时代入y=ax2+bx+c=a+b+c,结合图象可以得出y=3,即a+b+c=3,a+c=3﹣b,∵2a+b=0,b>0,∴3a+c=2a+a+c=a﹣b+c,应当x=﹣1时,y=a﹣b+c<0,3a+c=2a+a+c=﹣b+3﹣b=3﹣2b<0,所以c正确;D 、由图可知,抛物线y =ax 2+bx +c 与直线y =3有一个交点,而ax 2+bx +c ﹣3=0有一个的实数根,错误;故选:C .12.解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,∵EC 垂直平分AB ,∴OA =OB =AB =DC ,CD ⊥CE ,∵OA ∥DC , ∴===,∴AE =AD ,OE =OC ,∵OA =OB ,OE =OC ,∴四边形ACBE 是平行四边形,∵AB ⊥EC ,∴四边形ACBE 是菱形,故①正确,∵∠DCE =90°,DA =AE ,∴AC =AD =AE ,∴∠ACD =∠ADC =∠BAE ,故②正确,∵OA ∥CD , ∴==, ∴==,故③错误,设△AOF 的面积为a ,则△OFC 的面积为2a ,△CDF 的面积为4a ,△AOC 的面积=△AOE 的面积=3a ,∴四边形AFOE 的面积为4a ,△ODC 的面积为6a∴S 四边形AFOE :S △COD =2:3.故④正确,故选:D .二.填空题13.解:∵4x2﹣(k﹣1)x+9是一个完全平方式,∴k﹣1=±12,解得:k=13或k=﹣11,故选:13或﹣11.14.解:∵二次根式有意义,∴2x﹣1≥0,解得:x≥.故答案为:x≥.15.解:∵菱形ABCD的顶点A,B的坐标分别为(4,0),(﹣1,0),点D在y轴上,∴AB=AD=5=CD,∴DO===3,∵CD∥AB,∴点C的坐标是:(﹣5,3).故答案为(﹣5,3).16.解:如图,作CD⊥OA于D,∵点A(5,0),∴OA=5,∵四边形OABC为菱形,∴OC=OA=5,在Rt△OCD中,∵sin∠COD==.∴CD=4,∴OD==3,∴C(3,4),把C(3,4)代入y=得k=3×4=12.故答案为12.三.解答题17.解:原式=4﹣3+1﹣×=2﹣1=1.18.解:原式=(+)•=•=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=3.19.解:(1)抽查的人数=8÷16%=50(名);喜欢“戏曲”活动项目的人数=50﹣12﹣16﹣8﹣10=4(人);扇形统计图中“戏曲”部分对应的扇形的圆心角为360°×=28.8°;故答案为:28.8;(2)舞蹈、乐器、声乐、戏曲的序号依次用①②③④表示,画树状图:共有12种等可能的结果数,其中恰好选中“①舞蹈、③声乐”两项活动的有2种情况,所有故恰好选中“舞蹈、声乐”两项活动的概率==.20.解:据题意得tan B=,∵MN∥AD,∴∠A=∠B,∴tan A=,∵DE⊥AD,∴在Rt△ADE中,tan A=,∵AD=9,∴DE=3,又∵DC=0.5,∴CE=2.5,∵CF⊥AB,∴∠FCE+∠2=90°,∵DE⊥AD,∴∠A+∠CEF=90°,∴∠A=∠FCE,∴tan∠FCE=在Rt△CEF中,CE2=EF2+CF2设EF=x,CF=3x(x>0),CE=2.5,代入得()2=x2+(3x)2解得x=(如果前面没有“设x>0”,则此处应“x=±,舍负”),∴CF=3x=≈2.4,∴该停车库限高2.4米.故答案为2.4.21.解:(1)设乙工程队每天完成x米,则甲工程队每天完成2x米,依题意,得:﹣=10,解得:x=300,经检验,x=300是原方程的解,且符合题意,∴2x=600.答:甲工程队每天完成600米,乙工程队每天完成300米.(2)设甲队先单独工作y天,则甲乙两工程队还需合作=(﹣y)天,依题意,得:7000(y+﹣y)+5000(﹣y)≤79000,解得:y≥1,∴﹣y≤﹣=6.答:两工程队最多可以合作施工6天.22.解:(1)证明:因为BE=DE,所以∠FBD=∠CDB,在△BCD和△DFB中:∠BCD=∠DFB∠CDB=∠FBDBD=DB所以△BCD≌△DFB(AAS).(2)证明:连接OC.因为∠PEC=∠EDB+∠EBD=2∠EDB,∠COB=2∠EDB,所以∠COB=∠PEC,因为PE=PC,所以∠PEC=∠PCE,所以∠PCE=∠COB,因为AB⊥CD于G,所以∠COB+∠OCG=90°,所以∠OCG+∠PEC=90°,即∠OCP=90°,所以OC⊥PC,所以PC是圆O的切线.(3)因为直径AB⊥弦CD于G,所以BC=BD,CG=DG,所以∠BCD=∠BDC,因为∠F=∠BCD,tan F=,所以∠tan∠BCD==,设BG=2x,则CG=3x.连接AC,则∠ACB=90°,由射影定理可知:CG2=AG•BG,所以AG=,因为AG﹣BG=,所以,解得x=,所以BG=2x=,CG=3x=2,所以BC=,所以BD=BC=,因为∠EBD=∠EDB=∠BCD,所以△DEB∼△DBC,所以,因为CD=2CG=4,所以DE=.23.解:(1)如图1,把点A(﹣2,0)、B(4,0)分别代入y=ax2+bx﹣3(a≠0),得,解得,所以该抛物线的解析式为:y=x2﹣x﹣3;(2)将x=0代入y=x2﹣x﹣3,得y=﹣3,∴点C的坐标为(0,﹣3),∴OC=3.设N(x,y),∵S△NAB =S△CAB,∴|y|=OC=3,∴y=±3.当y=3时,x2﹣x﹣3=3,解得x=+1.当y =﹣3时,x 2﹣x ﹣3=﹣3,解得x 1=2,x 2=0(舍去).综上所述,点N 的坐标是(+1,3)或(﹣+1,3)或(2,﹣3);(3)如图2,由已知得,BB ′=m ,PB ′=2,设直线BC 的表达式为y =kx +b (k ≠0).∵直线y =kx +b 经过点B (4,0),C (0,﹣3), ∴, 解得,∴直线BC 的表达式为y =x ﹣3.当0<m ≤2时,由已知得P ′B =2+m .∵OP ′=2﹣m ,∴E (2﹣m ,﹣m ﹣).由OB =4得OP =2,把x =2代入y =x 2﹣x ﹣3中,得y =﹣3,∴D (2,﹣3),∴直线CD ∥x 轴.∵EP ′=m +,D ′P =3,∴ED ′=DP ′﹣EP ′=3﹣m ﹣=﹣m +.过点F 作FH ⊥PD ′于点H ,则∠D ′HF =∠D ′P ′B ′=90°. ∵∠HD ′F =∠P ′D ′B ′,∴△D ′HF ∽△D ′P ′B ′, ∴=.∵∠FCD ′=∠FBB ′,∠FD ′C =∠FB ′B ,∴△CD ′F ∽△BB ′F ,∴=.又∵CD ′=2﹣m , ∴=.设D ′F =k (2﹣m ),B ′F =km , ∴D ′B ′=2k , ∴=. ∴=.∵P ′B ′=2,∴HF =2﹣m .∴S △ED ′F =ED ′•HF =×(﹣m +)×(2﹣m ). ∵S △PB ′D ′=PB ′•PD ′=×3×2=3, ∴S =S △PB ′D ′﹣S △ED ′F =3﹣×(﹣m +)×(2﹣m )=﹣m 2+m +.。
2024年广东省深圳市龙华区新华中学中考一模数学试题(解析版)
2024年广东省深圳市龙华区新华中学中考数学一模试卷(3月份)一、选择题(每题3分,共10题,满分30分.每道题只有一个正确选项,请将答案填涂到答题卡相应的位置)1. 的值是()A. B. C. D.【答案】D【解析】【分析】直接利用特殊角的三角函数值求解即可.【详解】解:故选:D.【点睛】本题考查了特殊角的三角函数值,牢记特殊角的三角函数值是解题关键.2. 如图所示的几何体是由五个大小相同的小正方体搭成的.其俯视图是( )A. B.C. D.【答案】B【解析】【分析】三视图分为主视图,左视图和俯视图,俯视图是从上往下看,进而得出答案.【详解】解:俯视图从上往下看如下:故选:B.【点睛】本题主要考查了三视图,熟练地掌握主视图,左视图和俯视图是解决本题的关键.tan30︒12tan30︒=3. 据《龙华新闻》公众号报道:深圳从数字化转型、核心技术研究、创意设计能力建设、时尚消费环境等方面入手,推进现代时尚产业集群建设,目标是到2025年,形成“深圳设计”“深圳品牌”“深圳产品”的高端供给新格局.将420亿用科学记数法表示为( )A. B. C. D. 【答案】D【解析】【分析】用移动小数点的方法确定a 值,根据整数位数减一原则确定n 值,最后写成的形式即可.本题考查了科学记数法表示大数,熟练掌握把小数点点在左边第一个非零数字的后面确定a ,运用整数位数减去1确定n 值是解题的关键.【详解】∵亿,故选D .4. 下列式子计算正确的是( )A. B. C. D. 【答案】B【解析】【分析】根据同底数幂乘除法,幂的乘方和合并同类项等计算法则求解判断即可.【详解】解:A 、,原式计算错误,不符合题意;B 、,原式计算正确,符合题意;C 、,原式计算错误,不符合题意;D 、,原式计算错误,不符合题意;故选B .【点睛】本题主要考查了同底数幂乘除法,幂的乘方和合并同类项,熟知相关计算法则是解题的关键.5. 如图,点A 、B 、C 是上的三个点,若,则的度数是( )A. B. C.D. 94210⨯842010⨯110.4210⨯104.210⨯10n a ⨯4201042000000000 4.210==⨯623a a a ÷=426a a a ⋅=()325a a =336a a a +=624a a a ÷=426a a a ⋅=()326a a =3332a a a +=O 76AOB ∠=︒C ∠76︒38︒24︒33︒【答案】B【解析】【分析】此题考查了圆周角定理,熟练掌握圆周角定理是解答本题的关键,同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.根据圆周角定理求解即可.【详解】解:∵,,∴.故选B .6. 小红在“养成阅读习惯,快乐阅读,健康成长”读书大赛活动中,随机调查了本校初二年级7名同学,在近5个月内每人阅读课外书的数量,数据如下:14,15,13,13,18,15,15.请问阅读课外书数量的众数是( )( )A. 13B. 14C. 15D. 18【答案】C【解析】【分析】根据众数是一组数据中出现次数最多的数进行解答即可.本题考查了众数的概念,熟记概念是解决此题的关键.【详解】解:∵这组数据中15出现了3次,出现的次数最多,∴这组数据的众数是15.故选:C .7. 如图,O 为跷跷板AB 的中点.支柱OC 与地面MN 垂直,垂足为点C ,当跷跷板的一端B 着地时,跷跷板AB 与地面MN 的夹角为20°,测得AB =1.6m ,则OC 的长为( )A. B. C. D. 【答案】B【解析】【分析】根据正弦的定义计算,得到答案.AB AB =76AOB ∠=︒1382C AOB ∠=∠=︒0.8cos20︒0.8sin 20︒0.8sin 20︒0.8cos 20︒【详解】解:∵O 为AB 的中点,AB =1.6,∴OB=AB =0.8,在Rt △OCB 中,sin ∠OBC =,∴OC =OB •sin ∠OBC =08sin20°,故选:B .【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,熟记锐角三角函数的定义是解题的关键.8. 茅洲河的治理,实现了水清、岸绿、景美.某工程队承担茅洲河某段3000米河道的清淤任务,为了尽量减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加,,结果提前30天完成这一任务.设原计划每天完成x 米的清淤任务,则所列方程正确的是( )A. B. C. D. 【答案】D【解析】【分析】本题考查了分式方程的应用,找出等量关系是解答本题的关键.根据提前30天完成这一任务列方程即可.【详解】解:由题意,得.故选D .9. 一次函数的图像如图所示,则二次函数的图像大致是( ).12OC OB 25%()3000300030125%x x +=+()3000300030125%x x +=-()3000300030125%x x =+-()3000300030125%x x =++()3000300030125%x x =++y ax b =+2y ax bx =+A. B. C. D.【答案】A【解析】【分析】本题考查一次函数以及二次函数的图象综合判断,直接利用一次函数图像经过的象限得出、的符号,进而结合二次函数图像的性质得出答案.正确确定、的符号是解题关键.【详解】解:∵一次函数的图像经过二、三、四象限,∴,,∴,又∵当时,,∴二次函数的图像开口方向向下,图像经过原点,对称轴在轴左侧.故选:A .10. 如图,矩形中,,E 为边上一个动点,连接,取的中点G ,点G 绕点E 逆时针旋转得到点F ,连接,则面积的最小值是( )A. 4B. C. 3 D. 【答案】B【解析】【分析】过点F 作的垂线交的延长线于点H ,则,设,可得出面积与x 的函数关系式,再根据二次函数图象的性质求得最小值.本题通过构造K 形图,考查了相似三角形的判定与性质.建立面积与长度的函数关系式是解题的关键.【详解】过点F 作的垂线交的延长线于点H,a b a b y ax b =+a<00b <02b a-<0x =20y ax bx =+=2y ax bx =+y ABCD 42AB AD ==,AD BE BE 90︒CF CEF △154114AD AD FEH EBA ∽AE x =CEF △CEF △AE AD AD∵矩形中,,点G 绕点E 逆时针旋转得到点F ,∴,∴,,∴,∵的中点G ,∴,∴,设,,∴,,,∴故面积的最小值为,故选B .二、填空题(每题3分,共5题,满分15分)11. 已知,则___________.【答案】##0.2【解析】【分析】由比例的基本性质得:,把x 的代数式代入即可求得值.ABCD 42AB AD ==,90︒9090A GEF EHF AEB HEF HFE ∠=∠=∠=︒∠=︒-∠=∠,FEH EBA ∽EF EG =FE FH EH EB EA AB==BE 12EF EG BE ==12FH EH EA AB ==AE x =CEF S y = 1,22FH x EH ==2DE x =-DH x =CDE EHFFHDC y S S S =+- 四边形()11111424222222x x x x ⎛⎫=++-⨯-⨯⨯ ⎪⎝⎭()2115144x =-+CEF △15435x y =2x y y-=1535x y =【详解】解:由条件得:,则,故答案为:.【点睛】本题考查了比例的基本性质及求代数式的值,运用比例的基本性质是关键.12. 一个箱子里装有除颜色外都相同的2个白球,3个红球,1个蓝球,现添加若干个相同型号的篮球,使得从中随机摸取 1 个球,摸到蓝球的概率是,那么添加了_____个蓝球.【答案】4【解析】【分析】本题考查了概率公式,如果一个事件有 n 种可能,而且这些事件的可能性相同,其中事件 A 出现 m 种结果,那么事件 A 的概率 .设添加的蓝球的个数是 x ,根据概率公式列出算式,再进行求解即可.【详解】设添加了 x 个蓝球,根据题意,得:,解得:,经检验: 是原分式方程的解,即添加了 4 个蓝球,故答案为4.13. 如图,正五边形ABCDE 内接于⊙O ,则∠CAD= ______度.【答案】36【解析】【详解】∵五边形ABCDE 是正五边形,∴=72°,∴∠ADB=×72°=36°.故答案为36.考点:1.圆周角定理;2.正多边形和圆.14. 如图所示,将一副三角板如图放置在平面直角坐标系,斜边平行x 轴,点C 的坐35x y =322155y y x y y y ⨯--==1550%()m P A n =150%231x x+=+++4x =4x = AB BCCD DE EA ====12AB OA OB ==标为 _____.【答案】【解析】【分析】作于点D ,由勾股定理求出,再求出,求出,可得,由勾股定理求出,进而可求出点C 的坐标.【详解】解:如图,作于点D ,∵,,.∵斜边平行x 轴,∴,∴.∵,∴.∵,∴,1,12⎛⎝CD AB ⊥2AB =112BC AB ==30BCD ∠=︒1122BD BC ==CD =CD AB ⊥OA OB ==90AOB ∠=︒2AB ==AB OE AB ⊥112OE AE BE AB ====30,90BAC ACB ∠=︒∠=︒112BC AB ==60ABC ∠=︒30BCD ∠=︒∴,∴,,∴∴.故答案为:.【点睛】本题考查了坐标与图形的性质,直角三角形斜边的中线,含30度角的直角三角形的性质,勾股定理,正确作出辅助线是解答本题的关键.15. 如图,已知在中,,,点D在边上,连接.以为斜边作,,边的中点F 恰好落在边上.若,则____________________.【解析】【分析】过点A 作于点G ,根据,,得到,,结合,得到,,结合,利用勾股定理,三角函数计算即可.本题考查等腰三角形的性质,相似三角形的判定与性质,含30度角的直角三角形的性质,勾股定理,解直角三角形等,解题的关键是正确作出辅助线.【详解】过点A 作于点G ,∵,,∴,,∵,1122BD BC ==11122DE =-=CD ==1OE CD +=1,12D ⎛ ⎝1,12⎛+ ⎝ABC AB AC =120BAC ∠=︒BC AD AD Rt ADE △90,60E EAD ∠=︒∠=︒DE AC 4AE =BD =AG BC ⊥AB AC =120BAC ∠=︒30ABG ACG ︒∠=∠=60BAG CAG ∠=∠=︒90,60E EAD ∠=︒∠=︒60GAD DAF EAF ∠=︒-∠=∠30ADE ∠=︒4AE =AG BC ⊥AB AC =120BAC ∠=︒30ABG ACG ︒∠=∠=60BAG CAG ∠=∠=︒90,60E EAD ∠=︒∠=︒∴,,∵,∴,∵边的中点F 恰好落在边上.∴,∴设,∴,解得(舍去),∴,,∴,∴,.三、解答题16. 计算:.【解析】【分析】根据零次幂及特殊三角函数值可进行求解.【详解】解:原式60GADDAF EAF ∠=︒-∠=∠30ADE ∠=︒4AE =4AD DE ===,DE AC EF =tan tan GD EF GAD EAF AG AE ∠=∠===,2GD AG x ==)()22228x +=x x ==2AG x ==GD ==tan 30AG BG ==︒GD ==BD BG GD =+==()01232sin45π++--+︒2321+-+=【点睛】本题主要考查零次幂及特殊三角函数值,熟练掌握各个运算是解题的关键.17. 先化简,再求值:,其中【答案】;【解析】【分析】先对分式通分、因式分解、约分等化简,化成最简分式,后代入求值.本题考查了分式的化简求值,运用因式分解,通分,约分等技巧化简是解题的关键.【详解】解:,当时,原始.18. 某校校园文化节中组织全校学生进行知识竞赛,参赛学生均获奖.为了解本次竞赛获奖的分布情况,中随机抽取了部分学生的获奖结果进行统计分析,获奖结果分为四个等级:级为特等奖,级为一等奖,级为二等奖,级为三等奖,将统计结果绘制成了如图所示的两幅不完整的统计图,根据统计图中的信息解答下列问题:(1)本次被抽取的部分人数是______名,并把条形统计图补充完整;(2)扇形统计图中表示级的扇形圆心角的度数是______;(3)根据抽样结果,请估计该校1800名学生获得特等奖的人数是______名;(4)调查数据中有3名获特等奖的学生甲、乙、丙,要从中随机选择两名同学进行经验分享,利用列表=2211122x x x x-⎛⎫-÷⎪--⎝⎭x =1x x+2-2211122x x x x-⎛⎫-÷ ⎪--⎝⎭()()()21211x x x x x x --=⨯-+-1x x =+x =2==-A B C D B法或画树状图,求丙被选中的概率.【答案】(1)(2)(3)(4)【解析】【分析】(1)根据级的人数与占比求得总人数,进而求得级的人数,补全统计图;(2)根据级的占比乘以,即可求解;(3)用乘以等级的占比即可求解;(4)根据树状图求解概率即可;小问1详解】解:本次抽样测试的人数是(名),故答案为:;条形图中,级的人数为: (名),把条形统计图补充完整如图:【小问2详解】扇形统计图中表示B 级的扇形圆心角的度数是,故答案为:,【小问3详解】估计该校获得特等奖的人数为:(名)故答案为:,【小问4详解】画树状图如图:【60108︒9023C D B 360︒1800A 2440%60÷=60D 603182415---=1836010860⨯=︒︒108︒318009060⨯=90共有6个等可能结果,丙被选中的结果有4个,∴丙被选中的概率为:.【点睛】本题主要考查了用样本估计总体、扇形统计图与条形统计图、画树状图求概率,从统计图中获取信息是解题的关键.19. 如图,为的直径,点C 是弧的中点,过点C 作射线垂线,垂足为E .(1)求证:是切线;(2)若,求的长.【答案】(1)见解析(2)【解析】【分析】(1)连接,证明,即可证明是切线.(2)连接,证明,列出比例式,计算即可.本题考查了切线的证明,三角形相似的判定和性质,圆周角定理,熟练掌握切线的判定,三角形的相似是解题的关键.【小问1详解】连接,∵,∴;∵点C 是弧的中点,∴;∴;∴;的的的4263=AB O AD BD CE O 34BE AB ==,BC OC OC BE ∥CE O AC EBC CBA ∽EB BC BC BA=OC OC OB ==OCB OBC ∠∠AD AC CD==EBC OBC ∠∠=EBC OCB ∠∠∴,∵∴,∴是的切线.【小问2详解】连接,∵为的直径,∴;∵∴,∴,∵点C 是弧的中点,∴;∴;∴,∴,∵,∴(舍去),故.20. 如图所示,折线是一段登山石阶,其中,部分的坡角为,部分的坡角为,.OCBE ∥EC BD⊥EC OC ⊥CE O AC AB O90ACB ∠=︒EC BD⊥90CEB ∠=︒CEB ACB ∠=∠AD AC CD==EBC OBC ∠∠EBC CBA ∽EB BC BC BA=34BE AB ==,BC BC ==-BC =A B C --AB BC =AB 60︒BC 45︒30m AD =(1)求石阶路(折线)的长.(2)如果每级石阶的高不超过,那么这一段登山石阶至少有多少级台阶?(最后一级石阶的高度不足)【答案】(1)120米(2)472级【解析】【分析】(1)根据,可得,结合,计算即可.(2)先计算的长度,单位化成厘米后除以20,计算即可.本题考查了坡度的概念:斜坡的坡度等于斜坡的铅直高度与对应的水平距离的比值,即斜坡的坡度等于斜坡的坡角的正弦.也考查了含30度的直角三角形三边的关系和等腰直角三角形的性质.【小问1详解】∵,∴,∵,∵.【小问2详解】∵,∴,∵,∵,,A B C --20cm20cm 1.414≈ 1.732≈60,30m BAD AD ∠=︒=())60m ;tan 60m cos 60AD AB BD AD ===︒=︒AB BC =,BD CE 60,30m BAD AD ∠=︒=())60m ;tan 60m cos 60AD AB BD AD ===︒=︒AB BC =()120m AB BC +=60,30m BAD AD ∠=︒=())60m ;tan 60m cos 60AD AB BD AD ===︒=︒AB BC =()60m BC =45CBE ∠=︒∴,∴(级).答:这一段登山石阶至少有472级台阶.21. 【问题发现】船在航行过程中,船长常常通过测定角度来确定是否会遇到暗礁.如图1,A ,B 表示灯塔,B 两点的一个圆形区域内,优弧上任一点C 都是有触礁危险的临界点,它与两个灯塔的夹角与“危险角”有怎样的大小关系?【解决问题】(1)数学小组用已学知识判断与“危险角”的大小关系,步骤如下:如图2,与相交于点D ,连接,可知,∵是的外角,∴ _______(填“>”,“=”或“<”),∴______(填“>”,“=”或“<”);【问题探究】(2)如图3,已知线段与直线,在直线上取一点P ,作使其与直线相切,切点为P ,不妨在直线上另取一点Q ,连接,请你判断与的数量关系;并说明理由;【问题拓展】(3)一位足球左前锋球员在某场赛事中有一精彩进球,如图4,他在点P 处接到球后,沿着方向带球跑动,球门米,米,米,,.该球员在射门角度()最大时射门,球员在上的何处射门?(求出此时的长度.)【答案】(1)<,<(2) (3)15米【解析】【分析】(1)根据三角形外角性质,得即;)sin 60m CE BC CBE =∠==(10020472+⨯÷≈AB α∠ACB ∠α∠ACB ∠AP O BD ACB ADB ∠∠=ADB ∠BDP △APB ∠ADB ∠α∠ACB ∠AB l l O O AQ BQ 、APB ∠AQB ∠PQ 7AB =15.5BD =7.5DP =90ADC ∠︒=3tan =4QPC ∠AMB ∠PQ PM AQB APB ∠∠<APB ADB ∠∠<ACB α∠∠<(2)根据(1)的解答,可判定;(3)当经过点A ,点B 的与相切,切点为M ,此时切点位置即可射门位置.本题考查了圆周角定理,三角形外角性质,切线性质定理,熟练掌握圆周角定理,切线性质定理是解题的关键.【详解】(1)与相交于点D ,连接,可知,∵是的外角,∴,∴,故答案为:<,<.(2);理由如下:与相交于点D ,连接,可知,∵是的外角,∴,∴.(3)当经过点A ,点B 的与相切,切点为M ,此时切点位置即可射门位置过点O 作交于点H ,延长交于点E ,过点E 作交于点F ,∴四边形是矩形,∴,AQB APB ∠∠<O PQ AP O BD ACB ADB ∠∠=ADB ∠BDP △APB ADB ∠∠<ACB α∠∠<AQB APB ∠∠<AQ O BD APB ADB ∠∠=ADB ∠BDP △AQB ADB ∠∠<AQB APB ∠∠<O PQ OH AB ⊥AB HO PQ EF DC ⊥DC EHDF =EH DF EH DF ,∴,∵米,∴米,∵米∴米,∴米,∵,∴,解得,∴,,∵,,设,∴,解得,故,∴,∴,整理得:,解得:(不合题意,舍去)∴,,EH DF DH EF ==7AB =1 3.52AH GB AB ===15.5BD =19DH BD BH =+=19EF =3tan =4QPC ∠3tan =4EF QPC PF∠=76=3PF 953PE =197=6EH DF DP PF ==+=QPC OEP ∠∠3tan =4QPC ∠OM OB r ==3tan =4r OEP EM ∠=43EM r =53OE r ==197563OF EH OE r =-=-()2221975 3.563r r ⎛⎫-+= ⎪⎝⎭2321970196250r r -+=12.5,49.0625r r ==42550323EM =⨯=∴.答:的长度为15米.22. 在一节数学探究课中,同学们遇到这样的几何问题:如图1,等腰直角三角形和共顶点A ,且三点共线,,连接,点G 为的中点,连接和,请思考与具有怎样的数量和位置关系?【模型构建】小颖提出且并给出了自己思考,以G 是中点入手,如图2,通过延长与相交于点F ,证明,得到,随后通过得即,又,所以且.(1)请结合小颖的证明思路利用结论填空:当时,_____;______.【类比探究】(2)如图3,若将绕点A 逆时针旋转α度(),请分析此时上述结论是否成立?如果成立,如果不成立,请说明理由.【拓展延伸】(3)若将E 绕点A 逆时针旋转β度(),当时,请直接写出旋转角β的度数为_______.【答案】(1(2)见解析 (3)45°或225°【解析】【分析】(1)根据前面的结论,得到且,,得到,(2)延长到点F ,使,连接,证明,过点B 作,交于点M ,N ,再证明 .()955015m 33PM PE EM =-=-=PM ABC ADE ,,A C D 90ACB ADE ∠=∠=︒BE BE CG DG CG DG CG DG =CG DG ⊥BE CG DE BGC EGF ≌BC EF =AD BC DE EF -=-AD AC DE EF -=-CD FD =CG FG =CG DG ⊥CG DG =63AD BC ==,CG =BE =ADE V 045a <<°ADE V 0360β<<︒BG CG =CG DG ⊥CG DG =45CDG ∠=︒CG =BE ===CG CG GF =,,EF DE DC ()SAS BGE EGF ≌BM DE ∥,CG AD ()SAS CAD FED ≌(3)当共线时,根据(2)得到四边形是平行四边形,根据,,得到,得四边形是矩形,继而得到,此时旋转角等于的度数即;当共线时,且共线在的延长线上时,根据(2)得到四边形是平行四边形,根据,,得到,得四边形是矩形,继而得到,此时旋转角等于的度数即;计算即可.本题考查了等腰直角三角形的性质,矩形的判定和性质,三角形全等的判定和性质,旋转的性质,熟练掌握矩形的性质,旋转的性质,三角形全等的判定和性质是解题的关键.【详解】(1)根据前面的结论,得到且,,得到,∵,∴∴,∵,,∴,,∴,,.(2)延长到点F,使,连接,∵,∵∴,∴,,,,AE CE AC BCEF BC AC ⊥BC EF ∥EF AC ⊥BCEF BG CG =CAB ∠45β=︒,,AE CE AC CA BCEF BC AC ⊥BC EF ∥EF AC ⊥BCEF BG CG =180CAB ︒+∠18045225β=︒+︒=︒CG DG ⊥CG DG =45CDG ∠=︒CG =63AD BC ==,33AC BC CD AD AC ==-==,CG =63AD BC ==,45CAB CAE ∠=∠=︒AE AB ==90BAE ∠=︒BE ===CG CG GF =,,EF DF DC CGB FGE ∠=∠BG EG BGC EGFCG FG =⎧⎪∠=∠⎨⎪=⎩()SAS BGE EGF ≌CBG FEG ∠=∠EF CB CA ==过点B 作,交于点M ,N ,∴,,∴,设的交点为Q ,则,∴,∴,∴,∵∴,∴,,∵,,∴,∴,∴且.故结论仍然成立.(3)如图,当共线时,∵,,,∴四边形是矩形,BM DE ∥,CG AD DEB MBE ∠=∠90EDN BNA ∠=∠=︒FED CBM ∠=∠,CB AD BQN AQC ∠=∠9090BQN AQC ︒-∠=︒-∠CAD CBM ∠=∠FED CAD ∠=∠CA FE CAD FEDDA DE =⎧⎪∠=∠⎨⎪=⎩()SAS CAD FED ≌CD FD =ADC FDE ∠=∠CG FG =90ADC CDE ∠+∠=︒90FDE CDE ∠+∠=︒90CDF ∠=︒CG DG ⊥CG DG =,,AE CE AC BC AC ⊥BC EF ∥BC EF =BCEF∴,此时旋转角等于的度数即;当共线时,且共线在的延长线上时,根据(2)得到四边形是平行四边形,∵,,,∴四边形是矩形,∴,此时旋转角等于的度数即;故答案为:或.BG CG =CAB ∠45β=︒,,AE CE AC CA BCEF BC AC ⊥BC EF ∥BC EF =BCEF BG CG =180CAB ︒+∠18045225β=︒+︒=︒45︒225︒。
2019-2020深圳市数学中考一模试题(附答案)精选全文完整版
精选全文完整版2019-2020深圳市数学中考一模试题(附答案)一、选择题1.在Rt △ABC 中,∠C =90°,AB =4,AC =1,则cosB 的值为( ) A .154B .14C .1515D .417172.函数31x y x +=-中自变量x 的取值范围是( ) A .x ≥-3B .x ≥-3且1x ≠C .1x ≠D .3x ≠-且1x ≠3.下列图形是轴对称图形的有( )A .2个B .3个C .4个D .5个4.如图,在直角坐标系中,直线122y x =-与坐标轴交于A 、B 两点,与双曲线2k y x=(0x >)交于点C ,过点C 作CD ⊥x 轴,垂足为D ,且OA=AD ,则以下结论: ①ΔADB ΔADC S S =; ②当0<x <3时,12y y <; ③如图,当x=3时,EF=83;④当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小. 其中正确结论的个数是( )A .1B .2C .3D .45.如图,在△ABC 中,∠ACB=90°, ∠ABC=60°, BD 平分∠ABC ,P 点是BD 的中点,若AD=6, 则CP 的长为( )A .3.5B .3C .4D .4.56.如图,矩形纸片ABCD 中,4AB =,6BC =,将ABC 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F ,则DF 的长等于( )A .35B .53C .73D .547.如图,某小区规划在一个长16m ,宽9m 的矩形场地ABCD 上,修建同样宽的小路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草,如果使草坪部分的总面积为112m 2,设小路的宽为xm ,那么x 满足的方程是( )A .2x 2-25x+16=0B .x 2-25x+32=0C .x 2-17x+16=0D .x 2-17x-16=08.下列各曲线中表示y 是x 的函数的是( )A .B .C .D .9.如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠ABC=α,∠ADC=β,则竹竿AB 与AD 的长度之比为( )A .tan tan αβB .sin sin βαC .sin sin αβD .cos cos βα10.根据以下程序,当输入x =2时,输出结果为( )A .﹣1B .﹣4C .1D .1111.下列计算正确的是( ) A .()3473=a ba b B .()232482--=--b a bab bC .32242⋅+⋅=a a a a aD .22(5)25-=-a a12.下列各式化简后的结果为32 的是( ) A .6B .12C .18D .36二、填空题13.如图,∠MON=30°,点A 1,A 2,A 3,…在射线ON 上,点B 1,B 2,B 3,…在射线OM 上,△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4…均为等边三角形.若OA 1=1,则△A n B n A n+1的边长为______.14.如图,添加一个条件: ,使△ADE ∽△ACB ,(写出一个即可)15.如图,在平面直角坐标系中,菱形OABC 的面积为12,点B 在y 轴上,点C 在反比例函数y =kx的图象上,则k 的值为________.16.已知62x =+,那么222x x -的值是_____.17.若一个数的平方等于5,则这个数等于_____. 18.使分式的值为0,这时x=_____.19.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是 .20.二元一次方程组627x y x y +=⎧⎨+=⎩的解为_____.三、解答题21.计算:103212sin45(2π)-+--+-.22.在一个不透明的盒子中装有三张卡片,分别标有数字1,2,3,这些卡片除数字不同外其余均相同.小吉从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为奇数的概率. 23.某种蔬菜的销售单价y 1与销售月份x 之间的关系如图1所示,成本y 2与销售月份x 之间的关系如图2所示(图1的图象是线段,图2的图象是抛物线)(1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益=售价﹣成本)(2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元,且5月份的销售量比4月份的销售量多2万千克,求4、5两个月的销售量分别是多少万千克?24.小慧和小聪沿图①中的景区公路游览.小慧乘坐车速为30 km/h 的电动汽车,早上7:00从宾馆出发,游玩后中午12:00回到宾馆.小聪骑车从飞瀑出发前往宾馆,速度为20 km/h ,途中遇见小慧时,小慧恰好游完一景点后乘车前往下一景点.上午10:00小聪到达宾馆.图②中的图象分别表示两人离宾馆的路程s(km)与时间t(h)的函数关系.试结合图中信息回答:(1)小聪上午几点钟从飞瀑出发?(2)试求线段AB ,GH 的交点B 的坐标,并说明它的实际意义;(3)如果小聪到达宾馆后,立即以30 km/h 的速度按原路返回,那么返回途中他几点钟遇见小慧?25.如图,ABC ∆是边长为4cm 的等边三角形,边AB 在射线OM 上,且6OA cm =,点D 从点O 出发,沿OM 的方向以1cm/s 的速度运动,当D 不与点A 重合时,将ACD ∆绕点C逆时针方向旋转60°得到BCE∆,连接DE.(1)如图1,求证:CDE∆是等边三角形;(2)如图2,当6<t<10时,DE是否存在最小值?若存在,求出DE的最小值;若不存在,请说明理由.(3)当点D在射线OM上运动时,是否存在以D,E,B为顶点的三角形是直角三角形?若存在,求出此时t的值;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】∵在Rt△ABC中,∠C=90°,AB=4,AC=1,∴BC2241-15,则cos B=BCAB=154,故选A2.B解析:B【解析】分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.3x+≥0,∴x+3≥0,∴x≥-3,∵x-1≠0,∴x≠1,∴自变量x的取值范围是:x≥-3且x≠1.故选B.3.C解析:C【解析】试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断. 解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意; 图(3)有二条对称轴,是轴对称图形,符合题意; 图(3)有五条对称轴,是轴对称图形,符合题意; 图(3)有一条对称轴,是轴对称图形,符合题意. 故轴对称图形有4个. 故选C .考点:轴对称图形.4.C解析:C 【解析】试题分析:对于直线122y x =-,令x=0,得到y=2;令y=0,得到x=1,∴A (1,0),B (0,﹣2),即OA=1,OB=2,在△OBA 和△CDA 中,∵∠AOB=∠ADC=90°,∠OAB=∠DAC ,OA=AD ,∴△OBA ≌△CDA (AAS ),∴CD=OB=2,OA=AD=1,∴ΔADB ΔADC S S =(同底等高三角形面积相等),选项①正确;∴C (2,2),把C 坐标代入反比例解析式得:k=4,即24y x=,由函数图象得:当0<x <2时,12y y <,选项②错误; 当x=3时,14y =,243y =,即EF=443-=83,选项③正确; 当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小,选项④正确,故选C . 考点:反比例函数与一次函数的交点问题.5.B解析:B 【解析】 【分析】 【详解】解:∵∠ACB =90°,∠ABC =60°, ∴∠A =30°, ∵BD 平分∠ABC ,∴∠ABD =12∠ABC =30°, ∴∠A =∠ABD , ∴BD =AD =6,∵在Rt △BCD 中,P 点是BD 的中点,∴CP =12BD =3. 故选B .6.B解析:B 【解析】 【分析】由折叠的性质得到AE=AB ,∠E=∠B=90°,易证Rt △AEF ≌Rt △CDF ,即可得到结论EF=DF ;易得FC=FA ,设FA=x ,则FC=x ,FD=6-x ,在Rt △CDF 中利用勾股定理得到关于x 的方程x 2=42+(6-x )2,解方程求出x 即可. 【详解】∵矩形ABCD 沿对角线AC 对折,使△ABC 落在△ACE 的位置, ∴AE=AB ,∠E=∠B=90°, 又∵四边形ABCD 为矩形, ∴AB=CD , ∴AE=DC , 而∠AFE=∠DFC , ∵在△AEF 与△CDF 中,AFE CFD E DAE CD ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AEF ≌△CDF (AAS ), ∴EF=DF ;∵四边形ABCD 为矩形, ∴AD=BC=6,CD=AB=4, ∵Rt △AEF ≌Rt △CDF , ∴FC=FA ,设FA=x ,则FC=x ,FD=6-x ,在Rt △CDF 中,CF 2=CD 2+DF 2,即x 2=42+(6-x )2,解得x =133, 则FD =6-x=53. 故选B . 【点睛】考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等.也考查了矩形的性质和三角形全等的判定与性质以及勾股定理.7.C解析:C解:设小路的宽度为xm,那么草坪的总长度和总宽度应该为(16-2x)m,(9-x)m;根据题意即可得出方程为:(16-2x)(9-x)=112,整理得:x2-17x+16=0.故选C.点睛:本题考查了一元二次方程的运用,弄清“草坪的总长度和总宽度”是解决本题的关键.8.D解析:D【解析】根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.9.B解析:B【解析】【分析】在两个直角三角形中,分别求出AB、AD即可解决问题;【详解】在Rt△ABC中,AB=AC sinα,在Rt△ACD中,AD=AC sinβ,∴AB:AD=ACsinα:ACsinβ=sinsinβα,故选B.【点睛】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题.10.D解析:D【解析】【分析】根据流程图所示顺序,逐框分析代入求值即可.【详解】当x=2时,x2﹣5=22﹣5=﹣1,结果不大于1,代入x2﹣5=(﹣1)2﹣5=﹣4,结果不大于1,代入x2﹣5=(﹣4)2﹣5=11,故选D.【点睛】本题考查了代数式求值,正确代入求值是解题的关键.11.C【解析】 【分析】根据幂的乘方、单项式乘以单项式、合并同类项的运算法则及完全平方公式对各选项逐一计算即可得答案. 【详解】A.43123()a b a b =,故该选项计算错误,B.()232482b a bab b --=-+,故该选项计算错误,C.32242⋅+⋅=a a a a a ,故该选项计算正确,D.22(5)1025a a a -=-+,故该选项计算错误, 故选B. 【点睛】本题考查幂的乘方、单项式乘以单项式、合并同类项的运算法则及完全平方公式,熟练掌握运算法则是解题关键.12.C解析:C 【解析】A 、6不能化简;B 、12=23,故错误;C 、18=32,故正确;D 、36=6,故错误; 故选C .点睛:本题主要考查二次根式,熟练掌握二次根式的性质是解题的关键.二、填空题13.2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3以及A2B2=2B1A2得出A3B3=4B1A2=4A4B4=8B1A2=8A5B5=16B1A2…进而得解析:2n-1 【解析】 【分析】根据等腰三角形的性质以及平行线的性质得出A 1B 1∥A 2B 2∥A 3B 3,以及A 2B 2=2B 1A 2,得出A 3B 3=4B 1A 2=4,A 4B 4=8B 1A 2=8,A 5B 5=16B 1A 2…进而得出答案. 【详解】∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:△A n B n A n+1的边长为 2n-1.故答案是:2n-1.【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.14.∠ADE=∠ACB(答案不唯一)【解析】【分析】【详解】相似三角形的判定有三种方法:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;解析:∠ADE=∠ACB(答案不唯一)【解析】【分析】【详解】相似三角形的判定有三种方法:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;③两角法:有两组角对应相等的两个三角形相似.由此可得出可添加的条件:由题意得,∠A=∠A(公共角),则添加:∠ADE=∠ACB或∠AED=∠ABC,利用两角法可判定△ADE∽△ACB;添加:AD AEAC AB,利用两边及其夹角法可判定△ADE∽△ACB.15.-6【解析】因为四边形OABC 是菱形所以对角线互相垂直平分则点A 和点C 关于y 轴对称点C 在反比例函数上设点C 的坐标为(x)则点A 的坐标为(-x)点B 的坐标为(0)因此AC=-2xOB=根据菱形的面积等解析:-6【解析】因为四边形OABC 是菱形,所以对角线互相垂直平分,则点A 和点C 关于y 轴对称,点C 在反比例函数上,设点C 的坐标为(x ,k x ),则点A 的坐标为(-x ,k x ),点B 的坐标为(0,2k x ),因此AC=-2x,OB=2K X,根据菱形的面积等于对角线乘积的一半得: ()OABC 122122k S x x=⨯-⨯=菱形,解得 6.k =- 16.4【解析】【分析】将所给等式变形为然后两边分别平方利用完全平方公式即可求出答案【详解】∵∴∴∴∴故答案为:4【点睛】本题考查了二次根式的运算解题的关键是熟练运用二次根式的运算以及完全平方公式注意正确 解析:4【解析】【分析】将所给等式变形为x =【详解】∵x =,∴x -=∴(22x =,∴226x -+=,∴24x -=,故答案为:4【点睛】本题考查了二次根式的运算,解题的关键是熟练运用二次根式的运算以及完全平方公式.注意正确的变形可以使得运算简便.17.【解析】【分析】根据平方根的定义即可求解【详解】若一个数的平方等于5则这个数等于:故答案为:【点睛】此题主要考查平方根的定义解题的关键是熟知平方根的性质解析:【解析】【分析】根据平方根的定义即可求解.若一个数的平方等于5,则这个数等于:5±.故答案为:5±.【点睛】此题主要考查平方根的定义,解题的关键是熟知平方根的性质.18.1【解析】试题分析:根据题意可知这是分式方程x2-1x+1=0然后根据分式方程的解法分解因式后约分可得x-1=0解之得x=1经检验可知x=1是分式方程的解答案为1考点:分式方程的解法解析:1【解析】试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.答案为1.考点:分式方程的解法19.110°或70°【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时腰上的高在外部根据三角形的一个外角等于与它不相邻的两个内角的和即可求得顶角是90°+20°=110°;当等腰三角形的顶角解析:110°或70°.【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为110°或70°.考点:1.等腰三角形的性质;2.分类讨论.20.【解析】【分析】由加减消元法或代入消元法都可求解【详解】②﹣①得③将③代入①得∴故答案为:【点睛】本题考查的是二元一次方程组的基本解法本题属于基础题比较简单解析:15 xy=⎧⎨=⎩【解析】由加减消元法或代入消元法都可求解.【详解】627x y x y +=⎧⎨+=⎩①②, ②﹣①得1x =③将③代入①得5y =∴15x y =⎧⎨=⎩故答案为:15x y =⎧⎨=⎩【点睛】本题考查的是二元一次方程组的基本解法,本题属于基础题,比较简单.三、解答题21.13【解析】【分析】根据负指数幂的性质、绝对值的性质、特殊角的三角函数值及零指数幂的性质分别化简各项后,再合并即可解答.【详解】原式11213=+-=111313=. 【点睛】本题主要考查了实数运算,利用负指数幂的性质、绝对值的性质、特殊角的三角函数值及零指数幂的性质正确化简各数是解题关键.22.49. 【解析】【分析】 首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽取的卡片上数字之和是奇数的情况,再利用概率公式即可求得答案即可.【详解】解:画树状图得:∵共有9种等可能的结果,两次抽取的卡片上数字之和是奇数的有4种情况, ∴两次两次抽取的卡片上数字之和是奇数的概率为49. 【点睛】本题考查列表法与树状图法.23.(1)6月份出售这种蔬菜每千克的收益是2元.(2)5月份出售这种蔬菜,每千克的收益最大.(3)4月份的销售量为4万千克,5月份的销售量为6万千克.【解析】分析:(1)找出当x=6时,y 1、y 2的值,二者作差即可得出结论;(2)观察图象找出点的坐标,利用待定系数法即可求出y 1、y 2关于x 的函数关系式,二者作差后利用二次函数的性质即可解决最值问题;(3)求出当x=4时,y 1﹣y 2的值,设4月份的销售量为t 万千克,则5月份的销售量为(t+2)万千克,根据总利润=每千克利润×销售数量,即可得出关于t 的一元一次方程,解之即可得出结论.详解:(1)当x=6时,y 1=3,y 2=1,∵y 1﹣y 2=3﹣1=2,∴6月份出售这种蔬菜每千克的收益是2元.(2)设y 1=mx+n ,y 2=a (x ﹣6)2+1.将(3,5)、(6,3)代入y 1=mx+n , 3563m n m n +=⎧⎨+=⎩,解得:237m n ⎧=-⎪⎨⎪=⎩, ∴y 1=﹣23x+7; 将(3,4)代入y 2=a (x ﹣6)2+1,4=a (3﹣6)2+1,解得:a=13, ∴y 2=13(x ﹣6)2+1=13x 2﹣4x+13. ∴y 1﹣y 2=﹣23x+7﹣(13x 2﹣4x+13)=﹣13x 2+103x ﹣6=﹣13(x ﹣5)2+73. ∵﹣13<0,∴当x=5时,y 1﹣y 2取最大值,最大值为73, 即5月份出售这种蔬菜,每千克的收益最大. (3)当t=4时,y 1﹣y 2=﹣13x 2+103x ﹣6=2. 设4月份的销售量为t 万千克,则5月份的销售量为(t+2)万千克,根据题意得:2t+73(t+2)=22, 解得:t=4,∴t+2=6.答:4月份的销售量为4万千克,5月份的销售量为6万千克.点睛:本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质以及一元一次方程的应用,解题的关键是:(1)观察函数图象,找出当x=6时y 1﹣y 2的值;(2)根据点的坐标,利用待定系数法求出y 1、y 2关于x 的函数关系式;(3)找准等量关系,正确列出一元一次方程.24.(1)小聪上午7:30从飞瀑出发;(2)点B 的实际意义是当小慧出发1.5 h 时,小慧与小聪相遇,且离宾馆的路程为30 km.;(3)小聪到达宾馆后,立即以30 km/h 的速度按原路返回,那么返回途中他11:00遇见小慧.【解析】【分析】(1)由时间=路程÷速度,可得小聪骑车从飞瀑出发到宾馆所用时间为:50÷20=2.5(小时),从10点往前推2.5小时,即可解答;(2)先求GH 的解析式,当s=30时,求出t 的值,即可确定点B 的坐标;(3)根据50÷30=53(小时)=1小时40分钟,确定当小慧在D 点时,对应的时间点是10:20,而小聪到达宾馆返回的时间是10:00,设小聪返回x 小时后两人相遇,根据题意得:30x+30(x ﹣)=50,解得:x=1,10+1=11点,即可解答.【详解】(1)小聪骑车从飞瀑出发到宾馆所用时间为:50÷20=2.5(小时), ∵上午10:00小聪到达宾馆,∴小聪上午7点30分从飞瀑出发.(2)3﹣2.5=0.5,∴点G 的坐标为(0.5,50),设GH 的解析式为s kt b =+,把G (0.5,50),H (3,0)代入得;150{230k b k b +=+=,解得:20{60k b =-=, ∴s=﹣20t+60,当s=30时,t=1.5,∴B点的坐标为(1.5,30),点B的实际意义是当小慧出发1.5小时时,小慧与小聪相遇,且离宾馆的路程为30km;(3)50÷30=53(小时)=1小时40分钟,12﹣53=1103,∴当小慧在D点时,对应的时间点是10:20,而小聪到达宾馆返回的时间是10:00,设小聪返回x小时后两人相遇,根据题意得:30x+30(x﹣13)=50,解得:x=1,10+1=11=11点,∴小聪到达宾馆后,立即以30km/h的速度按原路返回,那么返回途中他11点遇见小慧.25.(1)详见解析;(2)存在,;(3)当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.【解析】试题分析:(1)由旋转的性质结合△ABC是等边三角形可得∠DCB=60°,CD=CE,从而可得△CDE 是等边三角形;(2)由(1)可知△CDE是等边三角形,由此可得DE=CD,因此当CD⊥AB时,CD最短,则DE最短,结合△ABC是等边三角形,AC=4即可求得此时DE=CD=(3)由题意需分0≤t<6,6<t<10和t>10三种情况讨论,①当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,由此可知:此时若△DBE是直角三角形,则∠BED=90°;②当6<t<10s时,由性质的性质可知∠DBE=120°>90°,由此可知:此时△DBE不可能是直角三角形;③当t>10s时,由旋转的性质可知,∠DBE=60°,结合∠CDE=60°可得∠BDE=∠CDE+∠BDC=60°+∠BDC>60°,由此可得∠BED<60°,由此可知此时若△BDE 是直角三角形,则只能是∠BDE=90°;这样结合已知条件即可分情况求出对应的t的值了.试题解析:(1)∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)存在,当6<t<10时,由(1)知,△CDE是等边三角形,∴DE=CD,由垂线段最短可知,当CD⊥AB时,CD最小,此时∠ADC=90°,又∵∠ACD=60°,∴∠ACD=30°,∴ AD=12AC=2,∴==∴cm);(3)存在,理由如下:①当0s≤t<6s时,由旋转可知,∠ABE=60°,∠BDE<60°,∴此时若△DBE是直角三角形,则∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEC=60°,∴∠CEB=∠BED-∠DEC=30°,∴∠CDA=∠CEB=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2÷1=2(s);②当6s<t<10s时,由性质的性质可知∠DBE=120°>90°,∴此时△DBE不可能是直角三角形;③当t>10s时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14cm,∴t=14÷1=14(s);综上所述:当t=2s或14s时,以D、E、B为顶点的三角形是直角三角形.点睛:(1)解第2小题的关键是:抓住点D在运动过程中,△DBE是等边三角形这一点得到DE=CD,从而可知当CD⊥AB时,CD最短,则DE最短,由此即可由已知条件解得DE的最小值;(2)解第3小题的关键是:根据点D的不同位置分为三段时间,结合已知条件首先分析出在每个时间段内△BDE中哪个角能够是直角,然后再结合已知条件进行解答即可求得对应的t的值了.。
深圳市龙华区2020年九年级数学考试(含答案)
19.解:解不等式①得:x≤1 …………………………………………………1 分 解不等式②得:x<4 …………………………………………………3 分 在数轴上分别表示出它们的解集得
–4 –3 –2 –1 0 1 2 3 4 5
………4 分
∴原不等式组的解集为 x≤1.………………………………………………5 分
接 EH.则下列结论中:
①∠EAF=30º;②△CHE≌△FEH;
3 ③CE= 5 ;④ S∆AEH
= 13 .其中正确的有 4
F
D
H
GC
E
A.1 个
B.2 个
C.3 个
D.4 个
A
图4
B
第一部分 非选择题
二.填空题(本题共有 4 小题,每小题 3 分,共 12 分)
13.因式分解: 2a3 − 8a =答案请填在答题表内.
=2 ……………………………………………5 分
18.(1)解:原式=
(a +1)(a −1) a(a +1)
÷
a2
− 2a a
+1
………………………1 分
=
(a −1) ×
a
a
(a −1)2
……………………………………2
分
1
=
………………………………………………3 分
a −1
∵a≠0、a≠±1,
∴a=2
A
下公路,那么地下公路的长为
A.3km C.6km
B.4km D.10km
B
C
图3
12.如图 4,已知矩形 ABCD 中,AB=4,E 是 BC 上一点,BE=2,将△ABE 沿直线 AE 折
2020年深圳市中考数学模拟试卷(6)
y= 12x﹣ 2 的图象分别交 x、 y 轴于点 A、 B,抛
物线 y=x2+bx+c 经过点 A、B,点 P 为第四象限内抛物线上的一个动点.
( 1)求此抛物线对应的函数表达式;
( 2)如图 1 所示, 过点 P 作 PM ∥ y 轴, 分别交直线 AB、x 轴于点 C、D,若以点 P、B、
C 为顶点的三角形与以点 A、C、 D 为顶点的三角形相似,求点 P 的坐标; ( 3)如图 2 所示,过点 P 作 PQ⊥ AB 于点 Q,连接 PB,当△ PBQ 中有某个角的度数等 于∠ OAB 度数的 2 倍时,请直接写出点 P 的横坐标.
∴∠ BHQ=∠ QHG ﹣∠ BHG =107°﹣ 73°= 34°.
故选: B.
7.( 3 分)已知关于
x, y 的方程组
2??+ 3??= 0.5?? {??+ 2??= -2?? +
3 2
的解
x 和 y 互为相反数,则
m 的值
为( )
A .2
B.3
C. 4
D.5
【解答】 解:解方程组
{
2??+ 3??= 0.5?? ??+ 2??= -2?? +
√5 5a
则上述结论正确的是(
)
第 2页(共 24页)
A .①②
B .①③
C. ②③
D. ①②③
二.填空题(共 4 小题,满分 12 分,每小题 3 分)
13.( 3 分)因式分解:﹣ 2xm2+12xm﹣ 18x=
.
14.( 3 分)数据 3000, 2998, 3002,2999 , 3001 的方差为
故选: A.
广东省深圳龙华区七校联考2020届数学中考模拟试卷
广东省深圳龙华区七校联考2020届数学中考模拟试卷一、选择题1.若k >0,点P (﹣k ,k )在第( )象限. A .第一象限B .第二象限C .第三象限D .第四象限2.如图,△ABC 中,∠BAC=90°,AB=3,AC=4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( )A .2B .75C .53D .543.将抛物线221y x x =--向上平移1个单位,平移后所得抛物线的表达式是( ) A .22y x x =-B .222y x x =--C .21y x x =--D .231y x x =--.4.如图,矩形ABCD 中,E 为CD 的中点,连接AE 并延长交BC 的延长线于点F ,连接BD 交AF 于H ,tan ∠EFC=,那么AH 的长为( )AB.C .10 D .55.如图,在▱ABCD 中,∠BAD =120°,连接BD ,作AE ∥BD 交CD 延长线于点E ,过点E 作EF ⊥BC 交BC 的延长线于点F ,且CF =1,则AB 的长是( )A .2B .1CD6.如图,幼儿园计划用30m 的围栏靠墙围成一个面积为100m 2的矩形小花园(墙长为15m ),则与墙垂直的边x 为( )A .10m 或5mB .5m 或8mC .10mD .5m7.在平面直角坐标内A ,B 两点满足:①点A ,B 都在函数()y f x =的图象上;②点A 、B 关于原点对称,则称A 和B 为函数()y f x =的一个“黄金点对”.则函数4(0)()1(0)x x f x x x ⎧+≤⎪=⎨->⎪⎩的“黄金点对”的个数为( )A .0个B .1个C .2个D .3个8.如图,AB ⊥CD ,且AB =CD ,E 、F 是AD 上两点,CE ⊥AD ,BF ⊥AD .若CE =8,BF =6,AD =10,则EF的长为( )A .4B .72C .3D .529)的值估计在( ) A .1.6与1.7之间 B .1.7与1.8之间 C .1.8与1.9之间D .1.9与2.0之间10.如图,二次函数2(0)y ax bx c a =++>的图象经过点(1,0),(3,0)A B -.有下列结论:①20a b c ++<; ②当1x >时,随x 的增大而增大;③当0y >时,13x -<<;④当2m x m <<+时,若二次函数的最小值为4a -,则m 的取值范围是11m -<<。
广东省深圳市龙华实验学校2019-2020学年中考数学模拟试卷
广东省深圳市龙华实验学校2019-2020学年中考数学模拟试卷一、选择题1.下列各式中,不相等的是 ( ) A.32-和 3-2B.()23-和 23C.()32-和 32-D.()23-和 23-2.如图,在菱形ABCD 中,E 是AB 边上一点,若AE :AD =1:3,则S △AEF :S △CDF =( )A .1:2B .1:3C .1:4D .1:93.如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连接AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG ∥CF ;④S △FGC =3.其中正确结论的个数是( )A.1B.2C.3D.44.改革开放40年以来,城乡居民生活水平持续快速提升,居民教育、文化和娱乐消费支出持续增长,已经成为居民各项消费支出中仅次于居住、食品烟酒、交通通信后的第四大消费支出,如图为北京市统计局发布的2017年和2018年我市居民人均教育、文化和娱乐消费支出的折线图.说明:在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2018年第二季度与2017年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2018年第二季度与2018年第一季度相比较.根据上述信息,下列结论中错误的是( ) A.2017年第二季度环比有所提高 B.2017年第三季度环比有所提高 C.2018年第一季度同比有所提高 D.2018年第四季度同比有所提高5.如图所示的几何体是一个圆锥,下面有关它的三视图的结论中,正确的是( )A .主视图是中心对称图形B .左视图是中心对称图形C .俯视图既是中心对称图形又是轴对称图形D .主视图既是中心对称图形又是轴对称图形6.某颗人造地球卫星绕地球运行的速度是7.9×103 m /s ,那么这颗卫星绕地球运行一年(一年以3.2×107s 计算)走过的路程约是( ) A .1.1×1010mB .7.9×1010mC .2.5×1010mD .2.5×1011m7.如图,在ABC ∆中,//AD BC ,点E 在AB 边上,//EF BC ,交AC 边于点F ,DE 交AC 边于点G ,则下列结论中错误的是( )A.AE AFBE CF= B.AG DGGF EG= C.AG AEGF EB= D.AE AFAB AC= 8.如图,△ABC 是等边三角形,AB =4,D 为AB 的中点,点E ,F 分别在线段AD ,BC 上,且BF =2AE ,连结EF 交中线AD 于点G ,连结BG ,设AE =x (0<x <2),△BEG 的面积为y ,则y 关于x 的函数表达式是( )A .y =x 2xB .2y x =C .2y x =+ D .2y =+9.如图,是反比例函数在第一象限内的图像上的两点,且两点的横坐标分别是2和4,则的面积是( )A. B. C. D.10.江西省足协2019年第三次主席办公会在南昌召开,某学校为了激发学生对体育的热情,选拔了23名学生作为校足球队成员,其中足球队23名队员的年龄情况如表:A.13,14 B.13,13 C.14.13.5 D.16,1411.电影《流浪地球》中有一个名词“洛希极限”,它是指两大星体之间可以保持平稳运行的最小距离,其中地球与木星之间的洛希极限约为10.9万公里,数据“10.9万”用科学记数法表示正确的是()A.10.9×104B.1.09×104C.10.9×105D.1.09×10512.不等式12x-≥1的解集在数轴上表示正确的是()A.B.C.D.二、填空题13.如图,根据函数图象回答问题:方程组y kx3y ax b=+⎧=+⎨⎩的解为______.14.某商店为尽快清空往季商品,采取如下销售方案:将原来商品每件m元,加价50%,再做降价40%.经过调整后的实际价格为_____元.(结果用含m的代数式表示)15.若2y=+,则x=_______ ,y=___________ .16.不透明袋子中装有17个球,其中有8个红球、6个黄球,3个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率是____________.17.计算73x x÷的结果等于_____.18.一组数据:16,5,11,9,5的中位数是_____.三、解答题19.如图,过△DBE点D作直线l∥BE,以点B为圆心,BD为半径作弧交直线l于点A.(1)求证:∠BAD=∠DBE;(2)在AD上截取AC=BE,求证:四边形BEDC是等腰梯形.20.如图,在平行四边形ABCD中,AB=BC=8,∠B=60°,将平行四边形ABCD沿EF折叠,点D 恰好落在边AB的中点D′处,折叠后点C的对应点为C′,D′C′交BC于点G,∠BGD′=32°.(1)求∠D′EF的度数;(2)求线段AE的长.21.已知二次函数y=ax2+bx+8,经过点(1,9)和(6,−16).(1)求该二次函数的解析式;(2)设该二次函数的图象与x轴的交点为A.B,与y轴的交点为C,求△ABC的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东省深圳市龙华新区中考数学一模试卷一.选择题(共12小题,满分36分,每小题3分)1.3倒数等于()A.3 B.C.﹣3 D.﹣2.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.3.下列计算正确的是()A.4x3•2x2=8x6B.a4+a3=a7C.(﹣x2)5=﹣x10D.(a﹣b)2=a2﹣b24.下图中是中心对称图形而不是轴对称图形的共有()A.1个B.2个C.3个D.4个5.我县人口约为530060人,用科学记数法可表示为()A.53006×10人B.5.3006×105人C.53×104人D.0.53×106人6.如图,已知AB∥DE,∠ABC=75°,∠CDE=145°,则∠BCD的值为()A.20°B.30°C.40°D.70°7.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中()A.亏了10元钱B.赚了10钱C.赚了20元钱D.亏了20元钱8.在趣味运动会“定点投篮”项目中,我校七年级八个班的投篮成绩(单位:个)分别为:24,20,19,20,22,23,20,22.则这组数据中的众数和中位数分别是()A.22个、20个B.22个、21个C.20个、21个D.20个、22个9.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是()A .③④B .②③C .①④D .①②③10.如图,正六边形ABCDEF 内接于⊙O ,⊙O 的半径为4,则这个正六边形的边心距OM 和的长分别为( )A .2,B .,πC .2,D .2,11.如图,在▱ABCD 中,用直尺和圆规作∠BAD 的平分线AG 交BC 于点E ,若BF =6,AB =5,则AE 的长为( )A .4B .6C .8D .1012.如图,正方形ABCD 的对角线交于点O ,点O 又是正方形A 1B 1C 1O 的一个顶点,而且这两个正方形的边长相等.无论正方形A 1B 1C 1O 绕点O 怎样转动,两个正方形重叠部分的面积,总等于一个正方形面积的( )A .B .C .D .二.填空题(共4小题,满分12分,每小题3分) 13.分解因式:a 3﹣a = .14.经过某十字路口的汽车,它可能继续直行,也可能向左或向右转,若这三种的可能性相同,则两辆汽车经过十字路口全部继续直行的概率为 .15.按照如图所示的方法排列黑色小正方形地砖,则第14个图案中黑色小正方形地砖的块数是 .16.如图,已知⊙O是△ABC的内切圆,且∠ABC=60°,∠ACB=80°,则∠BOC的度数为.三.解答题(共7小题,满分52分)17.(6分)计算:cos45°﹣2sin30°+(﹣2)0.18.(6分)解不等式组并写出它的整数解.19.(7分)某校为了解学生对“第二十届中国哈尔滨冰雪大世界”主题景观的了解情况,在全体学生中随机抽取了部分学生进行调查,并把调查结果绘制成如图的不完整的两幅统计图:(1)本次调查共抽取了多少名学生;(2)通过计算补全条形图;(3)若该学校共有750名学生,请你估计该学校选择“比较了解”项目的学生有多少名?20.(8分)如图1,2分别是某款篮球架的实物图与示意图,已知AB⊥BC于点B,底座BC的长为1米,底座BC与支架AC所成的角∠ACB=60°,点H在支架AF上,篮板底部支架EH∥BC,EF⊥EH于点E,已知AH长米,HF长米,HE长1米.(1)求篮板底部支架HE与支架AF所成的角∠FHE的度数.(2)求篮板底部点E到地面的距离.(结果保留根号)21.(8分)某书店老板去图书批发市场购买某种图书,第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书的数量比第一次多10本,当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.(1)第一次购书的进价是多少元?(2)试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其他因素)?若赔钱,赔多少;若赚钱,赚多少?22.(8分)如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.23.(9分)如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.广东省深圳市龙华新区中考数学一模试卷参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.【分析】根据乘积是1的两数互为倒数可得答案.【解答】解:3倒数等于,故选:B.【点评】此题主要考查了倒数,关键是掌握倒数定义.2.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选:B.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3.【分析】A、原式利用单项式乘单项式法则计算得到结果,即可做出判断;B、原式不能合并,错误;C、原式利用幂的乘方与积的乘方运算法则计算得到结果,即可做出判断;D、原式利用完全平方公式化简得到结果,即可做出判断.【解答】解:A、原式=8x5,错误;B、原式不能合并,错误;C、原式=﹣x10,正确;D、原式=a2﹣2ab+b2,错误,故选:C.【点评】此题考查了单项式乘单项式,合并同类项,幂的乘方与积的乘方,以及完全平方公式,熟练掌握公式及法则是解本题的关键.4.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:第一个图形,既是中心对称图形,又是轴对称图形,故错误;第二个图形,是轴对称图形,不是中心对称图形,故错误;第三个图形,是轴对称图形,不是中心对称图形,故错误;第四、五个是中心对称图形而不是轴对称图形,故正确.故选:B.【点评】掌握好中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180度后与原图重合.5.【分析】根据科学记数法的定义及表示方法进行解答即可.【解答】解:∵530060是6位数,∴10的指数应是5,故选:B.【点评】本题考查的是科学记数法的定义及表示方法,熟知以上知识是解答此题的关键.6.【分析】延长ED交BC于F,根据平行线的性质求出∠MFC=∠B=75°,求出∠FDC=35°,根据三角形外角性质得出∠C=∠MFC﹣∠MDC,代入求出即可.【解答】解:延长ED交BC于F,如图所示:∵AB∥DE,∠ABC=75°,∴∠MFC=∠B=75°,∵∠CDE=145°,∴∠FDC=180°﹣145°=35°,∴∠C=∠MFC﹣∠MDC=75°﹣35°=40°,故选:C.【点评】本题考查了三角形外角性质,平行线的性质的应用,解此题的关键是求出∠MFC的度数,注意:两直线平行,同位角相等.7.【分析】根据题意可以列出相应的方程,求出两件商品的进价,然后用总的售价减去总的进价即可解答本题.【解答】解:设一件的进件为x元,另一件的进价为y元,则x(1+25%)=200,y(1﹣20%)=200,解得,x=160,y=250,∴(200+200)﹣(160+250)=﹣10,∴这家商店这次交易亏了10元,故选:A.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,列出形应的方程.8.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:在这一组数据中20出现了3次,次数最多,故众数是20;把数据按从小到大的顺序排列:19,20,20,20,22,22,23,24,处于这组数据中间位置的数20和22,那么由中位数的定义可知,这组数据的中位数是21.故选:C.【点评】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.9.【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①当x=1时,结合图象y=a+b+c<0,故此选项正确;②当x=﹣1时,图象与x轴交点负半轴明显小于﹣1,∴y=a﹣b+c>0,故本选项错误;③由抛物线的开口向上知a>0,∵对称轴为0<x=﹣<1,∴2a>﹣b,即2a+b>0,故本选项错误;④对称轴为x=﹣>0,∴a、b异号,即b<0,图象与坐标相交于y轴负半轴,∴c<0,∴abc>0,故本选项正确;∴正确结论的序号为①④.故选:C.【点评】此题主要考查了二次函数图象与系数关系,同学们应掌握二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0;(2)b由对称轴和a的符号确定:由对称轴公式x=﹣判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0;(4)当x=1时,可以确定y=a+b+C的值;当x=﹣1时,可以确定y=a﹣b+c的值.10.【分析】连接OC、OB,证出△BOC是等边三角形,根据锐角三角函数的定义求出OM,再由弧长公式求出弧BC的长即可.【解答】解:如图所示,连接OC、OB,∵多边形ABCDEF是正六边形,∴∠BOC=60°,∵OA=OB,∴△BOC是等边三角形,∴∠OBM=60°,∴OM=OB sin∠OBM=4×=2,的长==;故选:D .【点评】本题考查的是正六边形的性质、等边三角形的判定与性质、三角函数;熟练掌握正六边形的性质,由三角函数求出OM 是解决问题的关键.11.【分析】由基本作图得到AB =AF ,加上AO 平分∠BAD ,则根据等腰三角形的性质得到AO ⊥BF ,BO =FO =BF =3,再根据平行四边形的性质得AF ∥BE ,得出∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB =EB ,然后再根据等腰三角形的性质得到AO =OE ,最后利用勾股定理计算出AO ,从而得到AE 的长.【解答】解:连结EF ,AE 与BF 交于点O ,如图 ∵AB =AF ,AO 平分∠BAD , ∴AO ⊥BF ,BO =FO =BF =3, ∵四边形ABCD 为平行四边形, ∴AF ∥BE , ∴∠1=∠3, ∴∠2=∠3, ∴AB =EB , 而BO ⊥AE , ∴AO =OE , 在Rt △AOB 中,AO ===4,∴AE =2AO =8. 故选:C .【点评】本题考查了平行四边形的性质、勾股定理、平行线的性质、等腰三角形的判定;熟练掌握平行四边形的性质,由勾股定理求出AO 是解决问题的关键.12.【分析】分两种情况探讨:(1)当正方形A 1B 1C 1O 边与正方形ABCD 的对角线重合时;(2)当转到一般位置时,由题求证△AEO ≌△BOF ,故两个正方形重叠部分的面积等于三角形ABO 的面积,得出结论. 【解答】解:(1)当正方形绕点OA 1B 1C 1O 绕点O 转动到其边OA 1,OC 1分别于正方形ABCD 的两条对角线重合这一特殊位置时,显然S 两个正方形重叠部分=S 正方形ABCD ,(2)当正方形绕点OA 1B 1C 1O 绕点O 转动到如图位置时. ∵四边形ABCD 为正方形, ∴∠OAB =∠OBF =45°,OA =OBBO ⊥AC ,即∠AOE +∠EOB =90°,又∵四边形A ′B ′C ′O 为正方形,∴∠A ′OC ′=90°,即∠BOF +∠EOB =90°, ∴∠AOE =∠BOF , 在△AOE 和△BOF 中,∴△AOE ≌△BOF (ASA ), ∵S 两个正方形重叠部分=S △BOE +S △BOF , 又S △AOE =S △BOF ,∴S 两个正方形重叠部分=S △ABO =S 正方形ABCD .综上所知,无论正方形A 1B 1C 1O 绕点O 怎样转动,两个正方形重叠部分的面积,总等于一个正方形面积的. 故选:C .【点评】此题考查正方形的性质,三角形全等的判定与性质,三角形的面积等知识点,正确的识别图形是解题的关键.二.填空题(共4小题,满分12分,每小题3分)13.【分析】先提取公因式a ,再对余下的多项式利用平方差公式继续分解. 【解答】解:a 3﹣a , =a (a 2﹣1), =a (a +1)(a ﹣1). 故答案为:a (a +1)(a ﹣1).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意要分解彻底.14.【分析】画出树状图,然后根据概率公式解答即可. 【解答】解:根据题意,画出树状图如下:一共有9种情况,两辆汽车经过十字路口全部继续直行的有1种情况,所以,P(两辆汽车经过十字路口全部继续直行)=.故答案为:.【点评】本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.15.【分析】观察图形可知,黑色与白色的地砖的个数的和是连续奇数的平方,而黑色地砖比白色地砖多1个,求出第n个图案中的黑色与白色地砖的和,然后求出黑色地砖的块数,再把n=14代入进行计算即可.【解答】解:第1个图案只有1块黑色地砖,第2个图案有黑色与白色地砖共32=9,其中黑色的有5块,第3个图案有黑色与白色地砖共52=25,其中黑色的有13块,…第n个图案有黑色与白色地砖共(2n﹣1)2,其中黑色的有 [(2n﹣1)2+1],当n=14时,黑色地砖的块数有 [(2×14﹣1)2+1]=×730=365.故答案为:365.【点评】本题是对图形变化规律的考查,观察图形找出黑色与白色地砖的总块数与图案序号之间的关系是解题的关键.16.【分析】根据三角形的内心的概念得到∠OBC=∠ABC=30°,∠OCB=∠ACB=40°,根据三角形内角和定理计算即可.【解答】解:∵⊙O是△ABC的内切圆,∴∠OBC=∠ABC=30°,∠OCB=∠ACB=40°,∴∠BOC=180°﹣∠OBC﹣∠OCB=110°,故答案为:110°.【点评】本题考查的是三角形的内切圆与内心,三角形内角和定理,掌握三角形的内心是三角形三个内角角平分线的交点是解题的关键.三.解答题(共7小题,满分52分)17.【分析】原式利用特殊角的三角函数值,以及零指数幂法则计算即可求出值.【解答】解:原式=﹣2×+1=﹣1+1=.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.【分析】分别求出各不等式的解集,再求出其公共解集,再其公共解集内找出符合条件的x的整数解即可.【解答】解:,由①得x>2,由②得x≤6,故不等式组的整数解为:2<x≤6,它的整数解有3,4,5,6.【点评】本题考查的是解一元一次不等式组,熟知同大取大;同小取小;大小小大中间找;大大小小找不到的原则是解答此题的关键.19.【分析】(1)用非常了解的人数除以所占的百分比即可求出本次调查共抽取的总人数;(2)用总人数减去其它了解程度的人数求出不大了解的人数,从而补全统计图;(3)用该学校的总人数乘以比较了解的人数所占的百分比,即可得出答案.【解答】解:(1)本次调查共抽取的学生数是:16÷32%=50(名);(2)不大了解的人数有50﹣16﹣18﹣10=6(名),补图如下:(3)根据题意得:750×=270(名),答:该学校选择“比较了解”项目的学生有270名.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.20.【分析】(1)由cos∠FHE==可得答案;(2)延长FE交CB的延长线于M,过点A作AG⊥FM于G,过点H作HN⊥AG于N,据此知GM=AB,HN=EG,Rt△ABC中,求得AB=BC tan60°=;Rt△ANH中,求得HN=AH sin45°=;根据EM=EG+GM可得答案.【解答】解:(1)在Rt△EFH中,cos∠FHE==,∴∠FHE=45°,答:篮板底部支架HE与支架AF所成的角∠FHE的度数为45°;(2)延长FE交CB的延长线于M,过点A作AG⊥FM于G,过点H作HN⊥AG于N,则四边形ABMG和四边形HNGE是矩形,∴GM=AB,HN=EG,在Rt△ABC中,∵tan∠ACB=,∴AB=BC tan60°=1×=,∴GM=AB=,在Rt△ANH中,∠FAN=∠FHE=45°,∴HN=AH sin45°=×=,∴EM=EG+GM=+,答:篮板底部点E到地面的距离是(+)米.【点评】本题考查解直角三角形、锐角三角函数、解题的关键是添加辅助线,构造直角三角形,记住锐角三角函数的定义,属于中考常考题型.21.【分析】(1)设第一次购书的单价为x元,根据第一次用1200元购书若干本,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书的数量比第一次多10本,列出方程,求出x 的值即可得出答案;(2)根据(1)先求出第一次和第二次购书数目,再根据卖书数目×(实际售价﹣当次进价)求出二次赚的钱数,再分别相加即可得出答案.【解答】解:(1)设第一次购书的单价为x元,根据题意得:+10=.解得:x=5.经检验,x=5是原方程的解,答:第一次购书的进价是5元;(2)第一次购书为1200÷5=240(本),第二次购书为240+10=250(本),第一次赚钱为240×(7﹣5)=480(元),第二次赚钱为200×(7﹣5×1.2)+50×(7×0.4﹣5×1.2)=40(元),所以两次共赚钱480+40=520(元),答:该老板两次售书总体上是赚钱了,共赚了520元.【点评】此题考查了分式方程的应用,掌握这次活动的流程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.22.【分析】(1)在Rt△ABN中,求出AN、AB即可解决问题;(2)连接MC,NC.只要证明∠MCD=90°即可;【解答】解:(1)∵A的坐标为(0,6),N(0,2),∴AN=4,∵∠ABN=30°,∠ANB=90°,∴AB=2AN=8,∴由勾股定理可知:NB=,∴B(,2).(2)连接MC,NC∵AN是⊙M的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt△NCB中,D为NB的中点,∴CD=NB=ND,∴∠CND=∠NCD,∵MC=MN,∴∠MCN=∠MNC,∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC⊥CD.∴直线CD是⊙M的切线.【点评】本题考查圆的切线的判定、坐标与图形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.【分析】(1)根据点A,C的坐标,利用待定系数法即可求出抛物线及直线AC的函数关系式;(2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,设点P的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1),进而可得出PF的值,由点C的坐标可得出点Q的坐标,进而可得出AQ的值,利用三角形的面积公式可得出S=﹣x2﹣x+3,再利用二次函数的性质,即可解决最值问题;△APC(3)利用二次函数图象上点的坐标特征可得出点N的坐标,利用配方法可找出抛物线的对称轴,由点C,N的坐标可得出点C,N关于抛物线的对称轴对称,令直线AC与抛物线的对称轴的交点为点M,则此时△ANM周长取最小值,再利用一次函数图象上点的坐标特征求出点M的坐标,以及利用两点间的距离公式结合三角形的周长公式求出△ANM周长的最小值即可得出结论.【解答】解:(1)将A(1,0),C(﹣2,3)代入y=﹣x2+bx+c,得:,解得:,∴抛物线的函数关系式为y=﹣x2﹣2x+3;设直线AC的函数关系式为y=mx+n(m≠0),将A(1,0),C(﹣2,3)代入y=mx+n,得:,解得:,∴直线AC的函数关系式为y=﹣x+1.(2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,如图1所示.设点P的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1),∴PE=﹣x2﹣2x+3,EF=﹣x+1,EF=PE﹣EF=﹣x2﹣2x+3﹣(﹣x+1)=﹣x2﹣x+2.∵点C的坐标为(﹣2,3),∴点Q的坐标为(﹣2,0),∴AQ=1﹣(﹣2)=3,∴S=AQ•PF=﹣x2﹣x+3=﹣(x+)2+.△APC∵﹣<0,∴当x=﹣时,△APC的面积取最大值,最大值为,此时点P的坐标为(﹣,).(3)当x=0时,y=﹣x2﹣2x+3=3,∴点N的坐标为(0,3).∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴抛物线的对称轴为直线x=﹣1.∵点C的坐标为(﹣2,3),∴点C,N关于抛物线的对称轴对称.令直线AC与抛物线的对称轴的交点为点M,如图2所示.∵点C,N关于抛物线的对称轴对称,∴MN=CM,∴AM+MN=AM+MC=AC,∴此时△ANM周长取最小值.当x=﹣1时,y=﹣x+1=2,∴此时点M的坐标为(﹣1,2).∵点A的坐标为(1,0),点C的坐标为(﹣2,3),点N的坐标为(0,3),∴AC==3,AN==,∴C=AM+MN+AN=AC+AN=3+.△ANM∴在对称轴上存在一点M(﹣1,2),使△ANM的周长最小,△ANM周长的最小值为3+.【点评】本题考查了待定系数法求一次函数解析式、待定系数法求二次函数解析式、二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、二次函数的性质、三角形的面积以及周长,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线及直线AC 的函数关系式;(2)利用三角形的面积公式找出S △APC =﹣x 2﹣x +3;(3)利用二次函数图象的对称性结合两点之间线段最短找出点M 的位置.。