材料力学-简单的超静定问题
材料力学-力法求解超静定结构
力法求解超静定结构时,可以根据计算结果优化结构设计,提高结构的强度和稳定性。
结论与总结
力法是求解超静定结构的有效方法,通过合理应用材料力学基础和力法的原理,我们能够准确求解反力分布并 分析结构的应力情况。
样例分析
结构:桥梁
使用力法求解桥梁上的悬臂梁,计算主梁的支座反 力和悬臂梁的应力分布。
结构:楼房
将力法应用于楼房结构,确定楼板的支座反力并分 析楼梯的受力情况。
实用提示和技巧
1 标定自由度
在应用力法时,正确标定结构的自由度是成功求解反力的重要步骤。
2 验证计算结果
对计算得到的反力进行验证,确保结果的准确性,避免错误的设计决策。
材料力学-力法求解超静 定结构
超静定结构的定义
超静定结构是指具有不止一个不可靠支持反力的结构。它们挑战了传统的结构分析方法,需要使用力法进行求 解。
材料力学基础
材料力学研究材料的受力和变形规律,包括弹性力学、塑性力学和损伤力学。 这些基础理论为力法求解超静定结构提供了必要的工具。
力法的原理
力法是一种基于平衡原理和支座反力法则的结构分析方法。它通过对超静定结构施加虚位移,建立受力平衡方 程,求解未知反力。
超静定结构应用力法求解的步骤
1
确定结构类型
了解结构是否为超静定结构,并确定不
计算反力
2
可靠支持反力的个数。
根据力法原理,建立并求解受力平衡方
程,计算未知反力。
3
验证平衡
通过检查受力平衡方程是否满足等式的
确定应力分布
4
要求,验证计算的反力是否正确。
பைடு நூலகம்
根据已知反力和结构的几何特性,计算 并绘制应力分布图。
材料力学 简单的超静定问题
FN 3 l 3 E 3 A3
FN1
FN3
a a A
A1 FN2
l3
FN 3l3 E 3 A3
(3)
(4)补充方程:由几何方程和物理方程得:
F N 1l1 E1 A1
2
cos a
(5)联解(1)、(2)、(3)式,得:
FN 1 FN 2 E1 A1 F cos a 2 E1 A1 cos a E 3 A3
第六章
简单的超静定问题
1
第六章
§6-1
§6-2
简单的超静定问题
超静定问题及其解法
拉压超静定问题
§6-3 §6-4
扭转超静定问题 简单超静定梁
2
§6-1
超静定问题及其解法
1.单纯依靠静力平衡方程能够确定全部未知力(支反 力、内力)的问题,称为静定问题。 相应的结构称为静定结构。
2.单纯依靠静力平衡方程不能确定全部未知力(支反 力、内力)的问题,称为超静定问题。 相应的结构称为超静定结构。
3
F N3 A3 9F 14 A [ ]
F
[F ]
14 9
14 9
[ ] A
[ ] A
11
[例6-2-4]木制短柱的四角用四个40404的等边角钢 加固,角钢和木材的许用应力分别为[]1=160MPa和 []2=12MPa,弹性模量分别为E1=200GPa 和 E2 =10GPa;求许可载荷P。 解:(1)以压头为研究对象, 设每 个角钢受力为FN1,木柱受力为FN2.
14
B
1
D
C
3 2
(2) 几何方程
l1 ( l 3 ) cos a
材料力学第六章静不定
FHale Waihona Puke 5、列补充方程将物理方程代入几何方程得补充方程
材料力学
.
6
FN2l2FN3l3FN1l1cos
E2A2 E3A3 E1A1
解得
FN1
1
F 2E2A2l1
cos2
E1 A1l2
FN2 FN3 2cosE F2A E21l1 Ac1lo2s
材料力学
.
7
OAB为刚性梁,写几何方程。
450
①
②
O
A
B
l
l1 l l2
l
OAB为刚性梁, ①、②两杆材料相同, 抗弯刚度相等,求两杆轴力之比。
F
①
F
O
B l1 C
bA
l2 sin 45o
2l1
②
l
l
l
EAsF in N 1 2 clos2EAsiF nN b2closb
FN1 sin 2 FN2 sin 2b
l1 2 l2
sin sin b
l1F E N A 1(co 2 sl), l2F E N A 2(colsb)
材料力学
.
8
OAB为刚性梁,①、②两杆材料相同,
EA2=2EA1。求②杆与①杆的应力之比。
解:变形协调关系
O
l2 sin 450
2l1
即 l2 2l1
450
①
②
a
A l1
a
l2
B
F
由物理关系建立补充方程,考虑对O取矩得平衡方程,联 立求出两杆轴力,再求应力后得结果。
小技巧
2
l2 l2
2l1 2l1
变形协调方程 。
材料力学——6简单的超静定问题
M
(x)
X
1
x
X1x, P(x
x l ), 2
l 2
x
l 2
B
l 0
M
(x)M EI
( x)dx
0
如果B处支撑为弹簧 (弹簧系数K) ?
例 P
A
l
l
2
2
BA
P
B
l
l
2
2
X1
解
M
(x)
X1
x
X1x, P(x
x l ), 2
l 2
x
静定基
l 2
x
B
l 0
M (x)M EI
(x)dx
X1 K
求解 线性方程
未知力
以一例说明解法
q
12 3
X1 X2 X3
• 静定基(含未知数)
1 0, 2 0, 3 0
• 位移协调条件
建立方程的过程
以1为例说明
X1 X2 X3
1
M (x)M1(x) dx EI
(M X1 M X2 M X3 M q )M1(x) dx EI
M X1M1 dx M X2 M1(x) dx M X3 M1(x) dx M qM1(x) dx
A
P0 =1 B
M (x) x
解: 协调条件——D截面转
角为零
A
静定基
D
/2
0
M
( )M
EI
()Rd
0
DX
P 2
二、装配应力
1、静定问题无装配应力
B
C
2、静不定问题存在装配应力
1
2
A
下图,3号杆的尺寸误差为,
《材料力学》第6章 简单超静定问题 习题解
第六章 简单超静定问题 习题解[习题6-1] 试作图示等直杆的轴力图解:把B 支座去掉,代之以约束反力B R (↓)。
设2F 作用点为C , F 作用点为D ,则:B BD R N = F R N B CD += F R N B AC 3+=变形谐调条件为:0=∆l02=⋅+⋅+⋅EA aN EA a N EA a N BD CD AC 02=++BD CD AC N N N03)(2=++++F R F R R B B B45FR B -=(实际方向与假设方向相反,即:↑) 故:45FN BD-= 445F F F N CD -=+-=47345FF F N AC=+-= 轴力图如图所示。
[习题6-2] 图示支架承受荷载kN F 10=,1,2,3各杆由同一种材料制成,其横截面面积分别为21100mm A =,22150mm A =,23200mm A =。
试求各杆的轴力。
解:以节点A 为研究对象,其受力图如图所示。
∑=0X030cos 30cos 01032=-+-N N N0332132=-+-N N N 0332132=+-N N N (1)∑=0Y030sin 30sin 0103=-+F N N2013=+N N (2)变形谐调条件:设A 节点的水平位移为x δ,竖向位移为y δ,则由变形协调图(b )可知:00130cos 30sin x y l δδ+=∆x l δ=∆200330cos 30sin x y l δδ-=∆03130cos 2x l l δ=∆-∆2313l l l ∆=∆-∆设l l l ==31,则l l 232=223311233EA l N EA lN EA l N ⋅⋅=- 22331123A N A N A N =- 15023200100231⨯=-N N N23122N N N =-21322N N N -= (3)(1)、(2)、(3)联立解得:kN N 45.81=;kN N 68.22=;kN N 54.111=(方向如图所示,为压力,故应写作:kN N 54.111-=)。
材料力学第十四章-超静定结构
欢迎来到材料力学第十四章的学习!本章将介绍超静定结构,我们将一起探 索它的特点、设计方法、力学分析以及应用领域。让我们开始学习吧!
超静定结构的定义
1 什么是超静定结构?
超静定结构是指具有多余约束的结构,其构件由多于所需的约束连接。
超静定结构的特点
1 多余约束的好处
超静定结构具有更高的稳定性和刚度,能够承受更大的荷载。
2 调整性能
通过改变约束条件,可以调整超静定结构的性能。
超静定结构的设计方法
1
力学方法
利用材料力学的知识和结构理论进行设计和分析。
2
优化设计
采用优化算法寻找最佳的结构设计。
3
经验和直觉
通过经验和直觉进行设计和改进。
超静定结构的力学分析
受力分析
通过受力分析了解超静定结构中力的传递和分布。
应力分析
通过应力分析研究超静定结构中的应力分布和变形。
超静定结构的应用领域
桥梁工程
超静定结构可以提高桥梁的稳定性和承载能力。
航空航天
超静定结构可以减轻飞行器的重量,提高性能。
建筑设计
超静定结构可以实现更大跨度和更复杂的建筑形 态。
机械设计
超静定结构可以提高机械设备的稳定性和准确性。
超静定结构的挑战与解决方案
1
挑战
超静定结构的设计和分析复杂,需要考虑多个因素。
2
解决方案
借助计算机辅助设计和模拟技术,提高设计和分析的效率。
3
创新思维
采用创新的方法和理念,寻找超静定结构的新应用。
总结与展望
通过本章的学习,我们了解了超静定结构的定义、特点、设计方法、力学分 析、应用领域以及面临的挑战。希望这些知识能够帮助您深入了解这一领域, 并为未来的设计和研究提供启示。
超静定问题——精选推荐
西南交通大学应用力学与工程系材料力学教研室第八章简单的超静定问题§8-1 概述静定结构: 仅靠静力平衡方程就可以求出结构的全部未知的约束反力或内力FAB2A F1BααC平面任意力系:3个平衡方程平面共点力系:2个平衡方程独立平衡方程数:超静定结构(静不定结构): 仅凭静力学平衡方程不能求解全部未知内力或反力的结构。
超静定结构的未知力的数目多于独立的平衡方程的数目;两者的差值称为超静定的次数。
BD C A 132FααF F CF B F A BC ABCADA FααF N1y xF N3F N2BD C A 132FααF F CF B F A BC AA FααF N1y xF N3F N2•习惯上把维持物体平衡并非必需的约束称为多余约束,相应的约束反力称为多余未知力。
•超静定的次数就等于多余约束或多余未知力的数目。
•注意:从提高结构的强度和刚度的角度来说,多余约束往往是必需的,并不是多余的。
超静定的求解:根据静力学平衡条件确定结构的超静定次数,列出独立的平衡方程;然后根据几何、物理关系列出需要的补充方程;则可求解超静定问题。
F F CF B F A BC A•补充方程的数目=多余未知力的数目=多余约束数。
•根据变形几何相容条件,建立变形几何相容方程,结合物理关系(胡克定律),则可列出需要的力的补充方程。
•补充方程的获得,体现了超静定问题的求解技巧与关键。
此处我们将以轴向拉压、扭转、弯曲的超静定问题进行说明。
BD C A 132FααF F CF B F A BC AA FααF N1yxF N3F N2§8.2 拉压超静定问题1拉压超静定问题解法例两端固定的等直杆AB ,在C 处承受轴向力F 如图,杆的拉压刚度为EA ,求杆的支反力.解:一次超静定问题=−+F F F B A F BA F AB ablFC (1) 由节点A 的平衡条件列出杆轴线方向的平衡方程(2)变形:补充方程(变形协调条件)可选取固定端B 为多余约束,予以解除,在该处的施加对应的约束反力F B ,得到一个作用有原荷载和多余未知力的静定结构--称为原超静定结构的基本静定系或相当系统注意原超静定结构的 B 端约束情况,相当系统要保持和原结构相等,则相当系统在B 点的位移为零。
材料力学(I)第六章
(2) 几何方程
L2
( L3 ) cos L1
材料力学(Ⅰ)电子教案
简单的超静定问题
15
(3)、物理方程及补充方程:
FN 1L1 FN 3 L3 ( ) cos E1 A1 E3 A3
(4) 、解平衡方程和补充方程,得:
FN1 FN 2
E1 A1 cos2 L3 1 2 cos3 E1 A1 / E3 A3
FN 1L FN 3 L 得: cos E1 A1 cos E3 A3
5)联立①、④求解:
FN ! F
④
E 3 A3 2 co s E1 A1 co s2
FN 3
F E1 A1 1 2 co s3 E A
材料力学(Ⅰ)电子教案
简单的超静定问题
[例2-19]刚性梁AD由1、2、3杆悬挂,已知三杆材料 相同,许用应力为[σ ],材料的弹性模量为 E,杆长 均为l,横截面面积均为A,试求各杆内力。
5
1.比较变形法 把超静定问题转化为静定问题解,但 必须满足原结构的变形约束条件。
[例2-16] 杆上段为铜,下段为钢杆,
E1 A1
A
1
上段长 1 , 截面积A1 , 弹性模量E1 下段长 2 , 截面积A2 , 弹性模量E2
杆的两端为固支,求两段的轴力。
C
E 2 A2
F
FB
B
2
(1)选取基本静定结构(静定基如图),B 解: 端解除多余约束,代之以约束反力RB
2E1 A1 cos3 FN 3 3 L3 1 2 cos E1 A1 / E3 A3
例2-22
材料力学(Ⅰ)电子教案
材料力学
5 Pa RD a RD a 6 EI 3EI 3EI
如何得到?
A D
P
B
自行完成
C D
RD
例题 6
图示结构AB梁的抗弯刚度为EI,CD杆的抗拉刚度为EA,
已知P、L、a。求CD杆所受的拉力。
D
a
A
C
L
2
L
B
2
P
解:变形协调条件为 wC lCD
D
a
C
FC
A
( P FC ) L wC 48EI FC L lCD EA
温度应力:
FB E t A
6 1 12 . 5 10 碳素钢线胀系数为 C0
温度应力:超静定结构中,由于温度变化,使构
件膨胀或收缩而产生的附加应力。
不容忽视!!!
路、桥、建筑物中的伸缩缝 高温管道间隔一定距离弯一个伸缩节
例题 11
图示阶梯形杆上端固定,下端与支座距离=1mm, 材料的弹性模量E=210GPa,上下两段杆的横截 面面积分别为600平方毫米和300平方毫米。试 作杆的轴力图。
C
A
FA
B
L2
FC
FA FB FC qL 0
L2
M
A
0
FB
变形协调方程
L qL2 FC FB L 0 2 2
3 FB qL 16
FA 3 qL 16
C q C FC 0
7.5kNm
5qL4 FC L3 5 0 FC qL 8 384 EI Z 48EI Z
由于超静定结构能有效降低结构的内力及变形,在 工程上(如桥梁等)应用非常广泛。
●超静定问题的解法:
材料力学第5版(孙训方编)
FAy
F
(b)
5. 将上述二个补充方程与由平衡条件ΣMA=0所得平衡方程
FN1a FN3
1 2
a
FN
2
(2a)
F
(3a)
0
联立求解得
FN3
3 2F 110 2
,FN1
2FN3
6 2F 110 2
,FN2
4FN3
12 2F 110 2
17
第六章 简单的超静定问题
Ⅱ. 装配应力和温度应力 (1) 装配应力
所以这仍然是一次超静定问题。
23
第六章 简单的超静定问题
2. 变形相容条件(图c)为 l1 l3 e
这里的l3是指杆3在装配后的缩短值,不带负号。 3. 利用物理关系得补充方程:
FN1l FN3l e EA E3 A3
24
第六章 简单的超静定问题
4. 将补充方程与平衡方程联立求解得:
FN1 FN2
MA
Me
MB
Me
Mea l
M eb l
34
第六章 简单的超静定问题 (a)
4. 杆的AC段横截面上的扭矩为
TAC
M A
M eb l
从而有
C
TAC a GI p
M eab lGI p
35
第六章 简单的超静定问题
例题6-6 由半径为a的铜杆和外半径为b的钢管经紧 配合而成的组合杆,受扭转力偶矩Me作用,如图a。试求 铜杆和钢管横截面上的扭矩Ta和Tb,并绘出它们横截面上 切应力沿半径的变化情况。
而杆1和杆2中的装配内力利用图b中右侧的图可知为
FN1
FN 2
FN3
2 c os
2
材料力学超静定全版
按几何特征分类
连续性
Hale Waihona Puke 结构在各个方向上都是连 续的。非连续性
结构在某些方向上存在间 断,如梁的弯曲变形。
平面性
结构在某个平面内发生变 形,如薄板弯曲。
按求解方法分类
解析法
01
近似法
02
03
实验法
通过数学解析的方法求解超静定 问题,需要建立复杂的数学模型。
THANKS FOR WATCHING
感谢您的观看
解决超静定问题的技术和方法在工程 实践中具有广泛的应用价值,为复杂 结构的分析和设计提供重要的理论支 持和技术指导。
02 超静定问题的分类
按支承情况分类
01
02
03
固定支承
结构与支承物的连接处不 能发生任何方向的位移, 只能发生转动。
弹性支承
结构与支承物的连接处既 有刚性位移,又有弹性位 移。
铰支承
机械装置超静定问题分析
总结词
保障机械运转稳定性
详细描述
机械装置在运转过程中会受到各种外力和内 力的作用,导致其发生变形和位移。超静定 问题分析能够评估机械装置在不同工况下的 稳定性,预防因变形和位移引起的故障,提 高机械运转的可靠性和效率。
05 超静定问题的未来研究方 向
新型材料的超静定问题研究
详细描述
复杂结构如高层建筑、大跨度桥梁、空间结构等,其 超静定问题涉及到多个自由度和多种非线性因素,需 要深入研究其静力、动力和稳定性等问题。
多场耦合的超静定问题研究
要点一
总结词
要点二
详细描述
多场耦合的超静定问题研究将成为一个重要方向。
孙训方《材料力学》(第6版)笔记和课后习题(含考研真题)详解-简单的超静定问题(圣才出品)
8 / 42
圣才电子书 十万种考研考证电子书、题库视频学习平台
Δl1=FN1l1/EA1=FN1l/(EA1cos30°) Δl2=FN2l2/EA2=FN2l/(EA2) Δl3=FN3l3/EA3=FN3l/(EA3cos30°) 代入式③可得补充方程: FN1l/(EA1sin30°·cos30°)=2FN2l/(EA2tan30°)+FN3l/(EA3sin30°·cos30°)④ (3)求解 联立式①②④,可得各杆轴力:FN1=8.45kN,FN2=2.68kN,FN3=11.55kN。
9 / 42
圣才电子书 十万种考研考证电子书、题库视频学习平台
MB = 0
FN2 Leabharlann 2 2a+
FN4
2 2
a
+
FN3
2a − F ( 2 a + e) = 0 2
②
根据结构的对称性可得 FN2=FN4③
(2)补充方程
如刚性板的位移图所示,根据几何关系可得:Δl1+Δl3=2Δl2④
由结构对称可知 Δl2=Δl4,其中,由胡克定律可得各杆伸长量:
Δl1=FN1l/EA,Δl2=FN2l/EA,Δl3=FN3l/EA
代入式④,整理可得补充方程:FN1+FN3=2FN2⑤
(3)求解
联立式①②③⑤,解得各杆轴力:
FN1
=
(1 4
−
e )F(压) 2a
FN2
=
FN4
=
F 4
材料力学-简单超静定
1
建立力学模型
根据实际情况,选择适当的力学模型来描述系统的行为。
2
应用适当的计算方法
使用强大的计算方法,如有限元分析或解析方法,来解决超静定问题。
3
验证和优化
通过验证和优化计算结果,确保超静定结构的设计合理和可靠性。
简单超静定的应用范围和意义
建筑和桥梁设计
通过应用简单超静定材料 力学理论,可以设计出更 加稳定和安全的建筑和桥 梁结构。
2 材料创新
将超静定理论与热力学、 电磁学等领域相结合, 探索多物理场耦合的复 杂问题。
研究新型材料的超静定 特性,推动材料创新和 应用领域的进步。
3 智能结构设计
结合超静定理论和智能 材料,开发具有适应性 和自修复能力的结构。
简单超静定的相关实例分析和工程应用
实例1:桥梁设计 实例2:机械零件 实例3:材料性能
分析简单超静定桥梁的受力特点和优化设计方 法。
研究简单超静定机械零件的强度和刚度,优化 设计方案。
通过简单超静定力学模型,改进材料的性能和 可靠性。
总结和展望材料力学-简单超静定的未来 研究方向
1 多物理场耦合
材料力学-简单超静定
材料力学-简单超静定为你揭示了材料力学中的重要概念、计算方法和工程应 用。通过分析简单超静定问题,你将深入了解超静定结构的力学特性和解决 步骤。
分析简单超静定问题的背景
1 需求的复杂性
2 对刚体的限制
现实世界中,材料力学 问题往往涉及多种约束 条件和复杂的外力情况。
刚体假设无法适用于所 有情况,因此需要超静 定理论来帮助分析。
机械工程
简单超静定分析对于设计 高精度机械零件和装置具 有重要作用。
材料研究
了解材料力学的超静定现 象有助于开发新型材料和 改进现有材料的性能。
材料力学-力法求解超静定结构
内超静定系统:支座反力可由平 衡方程求出,但杆件的内力却不
能全由平衡方程求出;
简单的超静定结构
1 超静定系统的几个基本概念
求解超静定系统的基本方法,是解除多余约束, 代之以多余约束反力,根据多余约束处的变形协 调条件建立补充方程进行求解。
解除多余约束后得到的静定结构,称为原超静定 系统的静定基本系统。
在求解超静定结构时,一般先解除多余约束, 代之以多余约束力,得到基本静定系。再根 据变形协调条件得到关于多余约束力的补充 方程。这种以“力”为未知量,由变形协调 条件为基本方程的方法,称为力法。
a
A
A
C
l
F
A
C
B 1F
B F
F 01 单击此处添加标题
X1
02 单击此处添加标题
A
C
B
1X1
1 1 F 1 X0
MP图
M10图
材料力学Ⅰ电子教案
补充:力法求解超静定结构
11
1 EI
a2 2
2a 3
a2
a
4a 3 3 EI
1P
1 EI
qa 2
3
a
qa 4 2 ቤተ መጻሕፍቲ ባይዱI
由 11 X 1 1P 0
得
X1
3qa 8
X B 0,
YB
3qa 8
X A 0,
YA
11qa 8
,
M
A
qa 2 8
正对称载荷:绕对称轴对折 后,结构在对称轴两边的载 荷的作用点和作用方向将重 合,而且每对力数值相等。
反对称载荷:绕对称轴对 折后,结构在对称轴两边 的载荷的数值相等,作用 点重合而作用方向相反。
材料力学第五版课件 主编 刘鸿文 第六章 简单的超静定问题
例题: 试判断下图结构是静定的还是超静定的?若是超静定, 则为几次超静定?
B
DE
A
C
FP
(a)静定。 未知内力数:3 平衡方程数:3
B
D
A
C
F
P
(b)超静定。 未知力数:5 平衡方程数:3 静不定次数=2
(c)静不定。
未知内力数:3
平衡方程数:2
FP
静不定次数=1
静不定问题的解法: (1)建立静力平衡方程; (2)由变形协调条件建立变形协调方程; (3)应用物理关系,代入变形协调方程,得到补充方程;
基本静定基的选取:
(1)解除B支座的约束,以约束反力
代替,即选择一端固定一端自由
的悬臂梁作为基本静定基。
(2)解除A端阻止转动的约束,以 约束反力代替,即选择两端简支 的梁作为基本静定基。
基本静定基选取可遵循的原则:
(1) 基本静定基必须能维持静力平衡,且为几何不变系统; (2) 基本静定基要便于计算,即要有利于建立变形协调条
E3 A3
F FN3 = 1+ 2E1 A1 cos3 a
E3 A3
(拉力) (拉力)
温度应力和装配应力
一、温度应力
在超静定结构中,由于温度变化引起的变形受到约束的限制, 因此在杆内将产生内力和应力,称为温度应力和热应力。
杆件的变形 ——
由温度变化引起的变形 温度内力引起的弹性变形
例:阶梯钢杆的上下两端在T1=5℃时被固 定,上下两段的面积为
=-
[13EI
32(1+
24
I Al
2
)
]
M
M
A
C
B D
l
材料力学第28讲 Chapter3-3第三章 能量法(超静定问题)
平衡方程数m<未知数目n
mpn
建立p个补充方程
4
以前求解超静定问题,都是等直杆、线弹性的问题。
对下列几种情形,用前述方法将很难进行求解。
复杂结构
复杂载荷
材料非线性
曲杆
P
P
F
A
B
EA
EA EA
l
l
R
A
B
P
O
5
例1: 图示超静定梁的各支座反力。
q
A
E I,l
B E I,l
C
6
解: 用以前的方法
q
选静定基
Fc
7 24
ql,
FA 254 ql,
FB
11 12
ql
11
例:求图示结构各杆的内力。
O
考虑以下两种情形:
1. 三杆均为线弹性材料, 2. 弹性模量为E;
A
AA
l l
2. 三杆均为非线性弹性材料,
有 K1n (n1) ;
K1n (n1) D
P
O
12
解:(1)线弹性问题
选静定基
利用能量法建立补充方程
材料力学 II (3)
Energy Method—Part 3
第廿八讲
1
§3–4 用能量法解超静定系统
求解超静定问题的基本方法
(1) 平衡方程(m个) (2) (equability (2) 变eq形ua协tio调n)方程
(compatibility equation)
(3) 本构方程 (constitutive equations)
F1
F2
O
卡氏第二定理
V 0 F2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MCl2 GI pBC
0
(2)
由(1)、(2)式有:
MA
D4l2
D4l2M (D4 d 4 )l1
,
MC
(D4 d 4 )l1 M D4l2 (D4 d 4 )l1
(1)最大切应力:
AB max
M
A
D 2
I pAB
16Dl2 M
[D4l2 (D4 d 4 )l1 ]
,
BC max
MC
D 2
I pBC
16Dl1 M
[D4l2 (D4 d 4 )l1 ]
(2)欲使许用力偶达到最大,有:
AB max BC max [ ]
l1 l2
1:1
§6-4 简单超静定梁
用“多余未知力”代替“多余”约束, 就得到一个形式上的静定梁,该梁称为原 静不定梁的相当系统,亦称基本静定系。
解: 1、分析A结点 一次超静定问题。
13
2
l
Fx 0,
FN1 FN 2
FN1 FN3 FN2
A F
A
F
Fy 0, (FN1 FN 2 )cos FN 3 F
2、考虑变形几何相容条件
由对称性知:
l1 l2
l1 l3 cos
3、物理关系
l1
FN 1l
E1A1 cos
13
2
l
A
A*
l3
l1 cos
FN1
F N3 F N2
A
l3
l1 l2
A
例 图示AB为刚性梁,1、2两杆的抗拉(压)刚度均 为EA,制造时1杆比原长l短,将1杆装到横梁后,求 两杆内力。
解: 装配后各杆变形
1杆伸长 l1
2杆缩短 l2
变形协调条件
A
2( l1) l2
1
l1
2
l2
B
解: 分析AB
A
FA
解:设A、C两端的约束反力偶
为MA、MC
MA M
MC
由平衡方程有:
M M A MC (1)
A l1
B l2
C
又 AC AB BC
AB
M Al1 GI pAB
,
BC
MCl2 GI pBC
其中
I pAB
32
D4
,
I pBC
(D4
32
d4)
AB
BC
M Al1 GI pAB
解超静定问题必须找出求解所有未知约束反 力所缺少的补充方程。 关键:变形协调条件(几何相容条件)
§6-2 拉压超静定问题
拉压变形时的胡克定律
l FN l
EA 综合考虑变形的协调条件、虎克定律和静力 学平衡条件求解拉压超静定问题。
例 已知1、2杆抗拉刚度为E1A1, 3杆抗拉刚度为E3A3, F的大小已知,求各杆内力。
l GI p
例: 两端固定的圆截面等直杆AB,在截面C受 外力偶矩m作用,求杆两端的支座反力偶矩。
m
A
C
a
B
b
解:
A
m
C
ɑ
m
B
b
mA
mB
静力平衡方程为: mA mB m
变形协调条件为: AB AC CB 0
即: mA a mB b 0 GIp GIp
mb mA l
mB
m l
a
例:图示两端固定的结构,其中AB段为实心圆轴,直 径为D,BC段为内径为d,外径为D的圆筒,受集中力 偶M的作用。试求: (1)AB段和BC段的最大切应力; (2)欲使许用力偶[M]达到最大值,两段长度应满足 什么条件?
综合考虑变形的几何方程、力和变形关 系可求解多余未知力。
超静定问题 A
基本静定系1 A
MA
基本静定系2 A
q
B
l
q
B FB
q
B
例:已知q、l,求图示静不定梁的支反力。
q
A
B
l
解法一:将支座B
看成多余约束,变形
协调条件为:
A
wB 0
FBl 3 ql 4 0 3EI 8EI
A
3ql FB 8
超静定次数:未知力个数与独立平衡方程数之 差,也等于多余约束数。
多余约束:在结构上加上的一个或几个约束, 对于维持平衡来说是不必要的约束称多余约束。 对应的约束力称多余约束反力。
由于超静定结构能有效降低结构的内力及变 形,在工程上应用非常广泛。
基本静定系:解除多余约束代之于未知力后的 结构。
●超静定问题的解法:综合考虑变形的几何相 容条件、物理关系和静力学平衡条件。
力图。
A
FA 85kN
1.2m
60kN
FB 15kN
2.4m
C
40kN
1.2m
B
温度应力:超静定结构中,由于温度变化,使 构件膨胀或收缩而产生的附加应力。
工程中不容忽视的温度应力!!! 高温管道间隔一定距离弯一个伸缩节。 路、桥、建筑物中的伸缩缝设置。
温度应力的计算:
温度由
A
l
t1 t2 , t t2 t1
aF1 2aF2 0
物理方程
l1
F1l EA
变形协调条件
B
F1
F2
l2
F2l EA
(缩短)
2( l1) l2
F1
4EA
5l
(拉力)
F2
2EA
5l
(压力)
思考:图示阶梯形杆上端固定,下端与支座距离 =
1mm,材料的弹性模量E=210GPa,上下两段杆的 横截面面积分别为600mm2和300mm2。试作杆的轴
q
B l
q
B FB
解法二:将支座A对截
q
面转动的约束看成多余
约束,变形协调条件为:A
B
A 0
M Al ql3 0 3EI 24 EI
MA
A
M
A
ql 2 8
l
q
B
例:为了提高悬臂梁AB的强度和刚度, 用短梁CD加固。设二梁EI相同,求 (1) 二梁接触处的作用力; (2)加固前后B点挠度的比值; (3)加固前后AB梁最大弯矩的比值。
P
A B
C
a
D
a
解:(1)基本静定系如图
A
X1
D1
C
DX1
变形协调条件为: wD wD1
l3
FN 3l E3 A34、联解方程 NhomakorabeaF
FN 1
2 cos
E3 A3
E1 A1 cos2
FN 3
1 2
F E1 A1
cos3
E3 A3
装配应力的计算:超静定结构中由于加工误 差, 装配产生的应力。
平衡方程:
FN1 FN 2
13
2
l
FN 3 (FN1 FN 2 )cos
A
变形协调条件:
平衡方程
FA FB 0
FA
A l
变形相容条件
lt lF 物理方程 lt l t
B
FB
lt
Lt FBl
EA
FB EAt
温度应力:
FB Et
A
碳素钢线膨胀系数为
12.5 10 6
1 C0
§6-3 扭转超静定问题
扭转变形计算公式
Tl
GI p
T ( x)dx
§6-1 超静定问题概述
静定问题:若未知力的个数等于独立的平衡 方程的个数,仅用静力平衡方程即可解出全部 未知力,这类问题称为静定问题,相应结构称 静定结构。
超静定问题:若未知力的个数多于独立的平 衡方程的个数,仅用静力平衡方程便无法确定 全部未知力,这类问题为超静定问题。相应结 构称为超静定结构。