农大专升本09数学真题
2009级高等数学(下)考试试题及参考答案_A_

扬州大学2009级《高等数学I (2)》统考试题(A)卷班级班级 学号学号 姓名姓名 得分得分一、单项选择题(每小题3分,共18分) 1.设函数),(y x f 在),(00y x 处不连续,则【处不连续,则【 】(A)),(y x f 在),(00y x 处必不可微处必不可微 (B)),(lim ),(),(00y x f y x y x ®必不存在必不存在 (C)),(0y x f 必不存在必不存在 (D)),(0y x f x¢与),(00y x f y¢必不存在必不存在2.设函数),(y x f z =在点)0 ,0(处具有偏导数,且3)0 ,0(=¢xf ,1)0 ,0(=¢yf ,则【则【 】(A) yx z d d 3d )0,0(+=(B) 曲面),(y x f z =在点))0 ,0(,0,0(f 的法向量为)1 ,1 ,3( (C) 曲线îíì==0),(y y x f z 在点))0 ,0(,0 ,0(f 的切向量为)3 ,0 ,1( (D) 曲线îíì==0),(y y x f z 在点))0 ,0(,0 ,0(f 的切向量为)1 ,0 ,3( 3.设L 是2y x =上从)0,0(O 到)1,1(A 的一段弧,则22d d Lxy x x y +=ò【 】(A) 2 (B) 1- (C) 0 (D) 1 4.设函数),(y x f 连续,且y x y x f xy yx f Ddd ),(),(òò+=,其中D 是由是由 2 ,1 ,0x y x y ===所围成的闭区域,则=),(y x f 【 】(A) 81+xy (B) xy (C) xy 2 (D)1+xy 5.下列级数中,发散的是【.下列级数中,发散的是【 】(A) å¥=+1)11ln(1n nn (B) å¥=++112 2n nn n n (C) å¥=12sin n nn (D) å¥=1!n nn n 6.若幂级数nn n x a )1(1+å¥=的收敛半径为R ,则nn n x a 21å¥=的收敛半径为【的收敛半径为【 】 (A) R (B) 2R (C) 1-R (D) R题号题号 选择题选择题 填空题填空题 13~14 15~16 17~19 20~21 22~23 扣分扣分扣分2-e xy-..被三坐标面割下的面积为..处取得极大值.处取得极大值.的收敛区间为.,yxxyz15.计算y x y x Dd d )cos(òò+,其中D 是由直线x y =,0=y 及2p=x 所围成的闭区域.所围成的闭区域.16.计算曲线积分s e Ly xd22ò+,其中L 为圆周222a y x =+, 直线x y =及x 轴在第一象限内所围成的扇形的整个边界.轴在第一象限内所围成的扇形的整个边界.扣分扣分17. 求半球面223y x z --=与旋转抛物面)(2122y x z +=所围立体的体积.所围立体的体积.18.计算曲面积分S z xòòSd 2,其中S 为球面4222=++z y x被平面1=z 截出的顶部.截出的顶部.19. 计算曲面积分y x z z x z y z y x d )d 3( d d 2 d d 2-++òòS, 其中S 是锥面22y x z +=位于平面1=z 下方部分的下侧.下方部分的下侧.扣分扣分扣分20.求幂级数å¥=----112112)1(n n n n x 的收敛域及和函数,并求å¥=----1113 )12()1(n n n n .21.将函数2234)(x x x f -+=展开成)2(-x 的幂级数,并指出展开式的成立范围.扣分扣分( -nnz z 6¶¶222000z y x 0z y x 000z y x xyz z y x z y x 222z y x z y x l l l15.原式y x y x D d d )cos(1òò+=y x y x D d d )cos(2òò+-+…………………………………………………………(2(2分) 其中}40 ,2|),{(1pp££-££=y y x y y x D }24 ,2|),{(2pp p££££-=x x y x y x D x y x y yy d )cos(d 240òò-+=p py y x xx xd )cos(d 224òò--+-p p p ……………………………………(4(4分))421()214(pp---=12-=p ……………………………………………………………………………………(6(6分)16.s e Ly x d22ò+s e s e s e L y x L y x Ly x d d d 322222122òòò+++++=………………………………(1(1分)其中其中 )0( 0 :1a x y L ££=,)40( sin ,cos :2p ££==t t a y t a x L ,)220( :3a x x y L ££= 且 1d d 1d 002122-==×=òòò++aax ax L y x e x e x es ea a Lyxae t a e s e 4d d 42220p p=×=òò+1d 2d 22022322-=×=òò++aa x x L y x e x es e…………………………………………………………(5(5分) 故 s e Ly xd22ò+aaa a aae e e ae e 4)1(2141pp+-=-++-= ……………………(6(6分)17.所围立体W 在xOy 面上的投影区域2:2222£+y x Dxy.òòòW =V V d …………………………………………………………………………………………………………………………………………(1(1分)z d d d 222132020òòò-=r r pr r q ………………………………………………………………………………………………(4(4分) r r r r p )d 21-3(22220-=òp )3532(-=……………………………………………………(6(6分)18.原式y x y x y x x xyD d d 42422222----=òòy x x y x d d 23222òò£+=……………………(3(3分)òò×=302220d cos d 2r r q r q pp 29=…………………………………………………………………………(6(6分) 19.设1S 为平面) 1 ( 122£+=y x z 的上侧,W 为S 和1S 所围成的空间闭区域,所围成的空间闭区域,则y x z z x z y z y x d )d 3( dd 2 d d 21-++òòS +S v z d 2òòòW=y x z z zD d d 2 d 1òòò=ò×=102d 2 z z z p 2p= ……………………………………(3(3分)又y x z z x z y z y x d )d 3( d d 2 d d 21-++òòS y x y x d d 2122òò£+-=p 2-=故原式)2(2p p--=p 25=……………………………………………………………………………………………………(6(6分)20.nn n u u1lim+¥®12)1(12)1(lim 12112--+-=--+¥®n x nx n nn n n =2x 当12<x 即1<x 时,幂级数绝对收敛;当12>x 即1>x 时,幂级数发散;时,幂级数发散;所以收敛半径1=R ,收敛区间)1 ,1(-. 当1=x 时,原级数为å¥=---1112)1(n nn ,收敛;,收敛; 当1-=x 时,原级数为å¥=--112)1(n nn ,收敛;,收敛;故原级数的收敛域为]1 ,1[- ……………………………………………………………………………………………………(3(3分)设 å¥=----=112112)1()(n n n n x x S ,)1 ,1(-Îx , 则 å¥=---=¢1221)1()(n n nxx S 211x +=, x x S a r c t an )(=Þå¥=----=112112)1(n n n n x ,)1 ,1(-Îx ……………………………………(5(5分) 在上式中,令31=x 得 6)31()31(121)1(1211p==---¥=-åS n n n n 故 å¥=----1113 )12()1(n n nn p 63=……………………………………………………………………………………………………(6(6分)3x (32-)p d )(4òxy p 214ò=21tan ò21ò=å--11)1(nn å11n 发散;发散; å-1)1(n 为一交错级数,收敛;为一交错级数,收敛; nn+. 。
高等数学试卷-00023 2009年10月真题及答案

全国2009年10月高等教育自学考试高等数学(工本)试题课程代码:00023一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1. 向量a ={-1,-3,4}与x 轴正向的夹角α满足( )A. 0<1<α<2πB. α=2π C. 2π<α<π D. α=π2. 设函数f (x , y )=x +y, 则点(0,0)是f (x ,y )的( )A. 极值点B. 连续点C. 间断点D. 驻点3. 设积分区域D :x 2+y 2≤1, x ≥0, 则二重积分⎰⎰D ydxdy 的值( ) A. 小于零B. 等于零C. 大于零D. 不是常数 4. 微分方程xy ′+y =x +3是( )A. 可分离变量的微分方程B. 齐次微分方程C. 一阶线性齐次微分方程D. 一阶线性非齐次微分方程 5. 设无穷级数∑∞=1n p n收敛,则在下列数值中p 的取值为( )A. -2B. -1C. 1D. 2二、填空题(本大题共5小题,每小题2分,共10分)请在每小题的空格中填上正确答案。
错填、不填均无分。
6. 已知向量a ={3,0,-1}和b ={1,-2,1} 则a -3b =___________.7. 设函数z =2x 2+y 2,则全微分dz=___________.8. 设积分区域D 由y =x , x =1及y =0所围成,将二重积分⎰⎰Ddxdy y x f ),(化为直角坐标下的二次积分为___________. 9. 微分方程y ″+3y =6x 的一个特解y *=___________.10. 无穷级数14332232323232+++++n nΛ+…的和为___________. 三、计算题(本大题共12小题,每小题5分,共60分)11. 求过点(-1,-2,3)并且与直线223-=-=z y x 垂直的平面方程. 12. 求曲线x =t , y =t 2, z =t 3在点(1,1,1)处的切线方程.13. 求函数f (x , y , z )=xy 2+yz 2+zx 2在点P (1,2,1)处的梯度.14. 设方程e z -x 2y +z =3确定函数z =z (x , y ), 求xz ∂∂. 15. 计算二重积分⎰⎰--Dy x dxdy e 22,其中积分区域D :x 2+y 2≤2. 16. 计算三重积分⎰⎰⎰Ωxdxdydz ,其中积分区域Ω是由x =0, y =0, z =0及x +y +z =1所围成.17. 计算对坐标的曲线积分⎰++C dy x y xdx )(, 其中C 为从点(1,0)到点(2,1)的直线段.18. 计算对面积的曲面积分⎰⎰∑xyzdS ,其中∑为球面x 2+y 2+z 2=a 2(a >0). 19. 求微分方程(1+x )dx -(1+y )dy =0的通解.20. 求微分方程y ″+ y ′-12y =0的通解.21. 判断级数∑∞=+⋅13)1(2n n n n 的敛散性. 22. 求幂级数∑∞=12n n n x 的收敛区间. 四、综合题(本大题共3小题,每小题5分,共15分)23. 求函数f (x , y )=x 3+3xy 2-15x -12y 的极值点.24. 求曲面z=22y x +(0≤z ≤1)的面积.25. 将函数f (x )=ln(1+x )展开为x 的幂级数.。
2009专转本高数试卷

11.若幂级数的收敛半径为,则常数
12.微分方程的通解为_______
得 评卷 复评
3. 计算题(本大题共8小题,每小题8
分人 人
分,满分64分)
13.求极限
14.设函数由参数方程所确定,求
15.求不定积分 16.求定积分 17.求通过直线且垂直于平面的平面方程。
18.计算二重积分,其中
19.设函数,其中具有二阶连续偏导数,求 20.求微分方程的通解。
选择题(本大题共6小题,每小题4分,满分24 分,在每小题给出的四个选项中,只有一项符合 题目要求,请将其字母填在题后的括号内)
1.已知,则常数的取值分别为
()
A.
B.
C.
D.
2.已知函数,则为的
()
A.跳跃间断点 B.可去间断点 C.无穷间断点 D.振荡间断点
3.设函数在点处可导,则常数的取值范围为( )
得 评卷 复评 分人 人
4. 综合题(本大题共2小题,每小题10 分,满分20分)
21.已知函数,试求: (1)函数的单调区间与极值; (2)曲线的凹凸区间与拐点; (3)函数在闭区间[—2,3]上的最大值与最小值。
22.设是由抛物线和直线所围成的平面区域,是由抛物线和直线及所围 成的平面区域,其中,试求: (1)绕轴旋转所成的旋转体的体积,以及绕轴旋转所成的旋转体的体 积; (2)常数的值,使得的面积与的面积相等。
得 评卷 复评 分人 人
5. 证明题(本大题共2小题,每小题9 分,满分18分)
23.已知函数证明:函数在点处连续但不可导。
24.证明:当时,
合计得 分
题号 一
二
三
四
五
复查人
得分
农科数学2009真题

2009年全国硕士研究生入学统一考试农学门类联考数学试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内. (1)在(,)ππ-内,函数tan xy x=的可去间断点的个数为( ) ()A .0()B . 1 ()C .2()D .3【答案】()D 【解析】tan x y x =0x =,0lim 1tan x xx→=,0x =为可去间断点;2x π=±,2lim0tan x xxπ→±=,2x π=±为可去间断点。
故共3个,选()D(2)函数2ln(1)y x =+的单调增加图形为凹的区间是( )()A .(,1)-∞-()B .(1,0)- ()C .(0,1)()D .(1,)+∞【答案】C【解析】()()()()222222220012121201111xy x xx y x x x x x x '=>⇒>+-''=⋅+-⋅=>⇒-<<++取交集得:()0,1x ∈,选C 。
(3)函数22()x x t f x e dt --=⎰的极值点为x =( )()A .12()B .14 ()C .14-()D .12-【答案】A【解析】因()()()()()2222''212x x x x f x ex x x e ----=⋅-=-令()'0f x =,得12x =,又()()()()()()222222'2''22221222(12)(x x x x x x fx ex ex x x x x e ------⎡⎤⎡⎤=-+-⋅⋅--=-+-⋅-⎣⎦⎢⎥⎣⎦得''102f ⎛⎫≠ ⎪⎝⎭,故12x =为极值点,应选A 。
(4)设区域{}22(,)2,0D x y x x y x y =≤+≤≥,则在极坐标下二重积分xydxdy =⎰⎰( )()A 2cos 220cos cos sin d r dr πθθθθθ⎰⎰()B 2cos 320cos cos sin d r dr πθθθθθ⎰⎰ ()C 2c o s 20c o sc o s s i nd r d rπθθθθθ⎰⎰()D 2cos 30cos cos sin d r dr πθθθθθ⎰⎰【答案】B【解析】原积分32cos 2cos cos sin cos sin 22cos cos 00d r r rdr d r dr ππθθθθθθθθθθ=⋅⋅=⎰⎰⎰⎰(5)设矩阵121242242A ab a ⎛⎫ ⎪=+ ⎪ ⎪+⎝⎭的秩为2,则( ) ()A .0,0a b == ()B . 0,0a b =≠ ()C .0,0a b ≠=()D .0,0a b ≠≠【答案】()C【解析】1211002422024220A ab ab a a ⎛⎫⎛⎫ ⎪ ⎪=+→ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭ 因为0a =时,()1r A =,所以0a ≠,1000000A ab a ⎛⎫⎪→ ⎪ ⎪⎝⎭因为()2r A =,所以0b =,综上0,0a b ≠=。
2009年专升本高数二试卷及答案

------------------------2009年浙江省普通高校“专升本”联考《高等数学(二)》试卷--------------------2009年浙江省普通高校“专升本”联考《高等数学(二)》试卷考试说明:1、考试时间为150分钟;2、满分为150分;3、答案请写在试卷纸上,用蓝色或黑色墨水的钢笔、圆珠笔答卷,否则无效;4、密封线左边各项要求填写清楚完整。
一. 选择题(每个小题给出的选项中,只有一项符合要求.本题共有5个小题,每小题4分,共20分) 1. 设()f x 的定义域为[]0,1,则函数1144f x f x ⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭的定义域是( ).A []0,1 .B 15,44⎡⎤-⎢⎥⎣⎦.C 11,44⎡⎤-⎢⎥⎣⎦.D 13,44⎡⎤⎢⎥⎣⎦.2. 下列极限存在的是 ( ).A limsin x xx →∞ .B 1lim 2x x →∞.C 21lim 1n n n →∞⎛⎫+ ⎪⎝⎭.D 01lim 21x x →-. 3.()1cos d x -=⎰ ( ) .A 1cos x - .B sin x x c -+.C cos x c -+ .D sin x c +.4.下列积分中不能直接使用牛顿-莱布尼兹公式的是 ( ).A 4 0cot xdx π⎰ .B 1 011x dx e +⎰.C 4 0tan xdx π⎰ .D 1201x dx x +⎰.5.下列级数中发散的是( ).A ()1111n n n ∞-=-∑ .B ()111111n n n n ∞-=⎛⎫-+ ⎪+⎝⎭∑.C ()11n n ∞-=-∑ .D 11n n ∞=⎛⎫- ⎪⎝⎭∑.报考学校:______________________报考专业:______________________姓名: 准考证号: ------------------------------------------------------------------------------------------密封线---------------------------------------------------------------------------------------------------二.填空题(只须在横线上直接写出答案,不必写出计算过程, 本题共有10个小题,每小题4分,共40分)1.若lim (n n a k k →∞=为常数),则2lim _______________.n n a →∞=2. 设函数(),,x e f x a x ⎧=⎨+⎩ 00x x ≤>在点0x =处连续,则________________a =.3.曲线arctan y x =在横坐标为1的点处的切线斜率为_______________________.4. 设函数x y xe =,则()''0__________________y =.5. 函数sin y x x =-在区间[]0,π上的最大值是_____________________.6.若2x为()f x 的一个原函数,则()f x =__________________________. 7. sin 1_______________________.4dx π⎛⎫+= ⎪⎝⎭⎰ 8.()() ____________________________.aax f x f x dx -+-=⎡⎤⎣⎦⎰9.设()() xa x F x f t dt x a=-⎰,其中()f t 是连续函数,则()lim _________________.x a F x +→=10.微分方程'cot 2sin y y x x x -=的通解是________________________________.三.计算题( 本题共有10个小题,每小题6分,共60分)1.计算202lim .x x x e e x-→+- 解.2.设曲线()y f x =在原点与曲线sin y x =相切,求n . 解.3.设函数y =求.dy解.4.设()y y x =arctany xe =确定的隐函数,求dy dx. 解.5.计算1xxe dx e+⎰. 解.6.设 2 02sin cos tx u du y t⎧=⎪⎨⎪=⎩⎰,求.dy dx 解.7.计算2.22dxx x +∞-∞++⎰解.------------------------2009年浙江省普通高校“专升本”联考《高等数学(二)》试卷--------------------8.设(),1,x e f x x -⎧=⎨+⎩1001x x -≤<≤≤ , 求()() 1x x f t dt -Φ=⎰在[]1,1-上的表达式.解.9.求微分方程'tan 3y x y +=-满足初值条件02y π⎛⎫=⎪⎝⎭的特解. 解.10.求幂级数21113n n n x ∞-=∑的收敛域. 解.报考学校:______________________报考专业:______________________姓名: 准考证号: ------------------------------------------------------------------------------------------密封线---------------------------------------------------------------------------------------------------四.综合题(本题有3个小题,共30分,其中第1题14分,第2题8分,第3题8分) 1.求函数21x y x+=的单调区间,极值及其图形的凹凸区间. (本题14分)2.已知()() 01cos xx t f t dt x -=-⎰,证明:()2 01f x dx π=⎰. (本题8分)3.设曲线22y x x =-++与y 轴交于点P ,过P 点作该曲线的切线,求切线与该曲线及x 轴围成的区域绕x 轴旋转生成的旋转体的体积. (本题8分)2009年浙江省普通高校“专升本”联考《高等数学(二)》参考答案及评分标准一.选择题 (每小题4分,共20分)1.D ,2.B ,3.C ,4.A ,5.D . 二.填空题(每小题4分,共40分) 1.k , 2.1, 3.12, 4.2, 5.0, 6.2ln 2x, 7.sin14x c π⎛⎫++ ⎪⎝⎭, 8.0, 9.()af a , 10.()2sin x c x +. 三.计算题(每小题6分,共60分) 1.解.原式=0lim 2x x x e e x-→- 3分=0lim 1.2x x x e e -→+= 6分2.解.由条件推得()()'00,11f f ==,2分于是()1220lim lim 220n n f f n n →∞→∞⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎢⎥=⎢⎥-⎢⎥⎣⎦5分=6分注:若按下述方法:原式()()112200'lim 1f x f x x ++→→⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭解答者,只给4分.3.解.()3221'1y x ==+,5分()3221+dx dy x =.6分4.解.取对数()221ln arctan 2y x y x+=,2分两边求导数2222122'1'21x y y y x yx y x y x +-⋅=⋅+⎛⎫+ ⎪⎝⎭, 5分整理得'.x yy x y+=- 6分(第1页,共3页)5.解.原式=()11x xd e e++⎰3分()ln 1.x e c =++6分6.解法1.解法1.dy dy dtdxdx dt=3分222sin 2.sin t t t t -==-6分解法2.因为22sin ,2sin dx t dt dy t t dt ==-4分故2.dyt dx=- 6分7.解.原式()()2111d x x +∞-∞+=++⎰3分=()tan 1arc x +∞-∞+5分=.π6分8解.当10x -≤<时,() 1;xt x x e dt e e ---Φ==-⎰2分当01x ≤≤时,()()() 0211311.22xt x e dt t dt x e --Φ=++=++-⎰⎰ 5分故()()2,131,22x e e x x e -⎧-⎪Φ=⎨++-⎪⎩100 1.x x -≤<≤≤6分9.解法1. 分离变量,得到c o t .3dyxdx y =-+ 2分积分得到ln 3ln sin y x c +=-+或()3 sin cy c x=-∈R ,4分代入初值条件02y π⎛⎫=⎪⎝⎭,得到3c =.于是特解为 33.sin y x=- 6分解法 2. 解法 2.由()()(),p x dx p x dx y e q x e dx c -⎡⎤⎰⎰=+⎢⎥⎣⎦⎰其中()()13,tan tan p x q x x x ==-,得到()3 sin cy c x=-∈R 4分代入初值条件02y π⎛⎫= ⎪⎝⎭,得到3c =.于是特解为3 3.sin y x =- 6分(第2页,共3页)10. 解.由121121321131lim lim3n nn n n n n nx ax a x +++-→∞→∞==,可知 收敛半径R ,4分又当x =,对应数项级数的一般项为级数均发散, 故该级数的收敛域为(.6分四.综合题(第1小题14分,第2、3小题各8分, 共30分) 1.解.定义域(),0-∞及()0,+∞ ()34232',",x x y y x x ++=-= 令'0,y =得驻点12x =-,5分 令"0,y =得23x =-,10分函数的单调增加区间为()2,0,-单调减少区间为(),2-∞-与()0,.+∞在2x =-处,有极小值14-.其图形的凹区间为()3,0-及()0,+∞,凸区间为(),3.-∞- 14分2.证明.两边对x 求导,得() 0sin ,xf t dt x =⎰4分再对x求导,得()c o s ,f x x =6分从而证得()22 0cos 1.f t dt xdx ππ==⎰⎰8分3.解.P 点处该曲线的切线方程为2y x =+,且与x轴的交于点()2,0A -2分曲线与x 轴交点()1,0B -和()2,0C ,因此区域由直线PA 和AB 及曲线弧 PB 所围成. 4分该区域绕x 旋转生成的旋转体的体积() 02218292330V x x dx πππ-=--++=⎰.8分注:若计算由直线PA 与AC 及曲线弧 PC所围成 ,从而 () 222 081362315V x x dx πππ=+-++=⎰者得6分.(第3页,共3页)。
农大专升本真题及答案大全

农大专升本真题及答案大全一、选择题(每题2分,共20分)1. 植物细胞的细胞壁主要由以下哪种物质构成?A. 纤维素B. 蛋白质C. 脂肪D. 淀粉2. 下列哪种不是动物的生殖方式?A. 卵生B. 胎生C. 孢子生殖D. 卵胎生3. 以下哪个选项是基因工程中常用的载体?A. 质粒B. 病毒C. 细菌D. 噬菌体4. 土壤中氮的固定方式主要包括?A. 化学固定B. 生物固定C. 物理固定D. 以上都是5. 以下哪种不是植物的光合作用产物?A. 葡萄糖B. 氧气C. 二氧化碳D. 水二、填空题(每空2分,共20分)6. 植物的光合作用主要发生在_________。
7. 动物的呼吸作用主要发生在_________。
8. 植物的根吸收水分和无机盐的主要部位是_________。
9. 植物的茎主要起到_________和支持作用。
10. 动物的心脏主要由_________组织构成。
三、简答题(每题10分,共30分)11. 简述植物的光合作用过程。
12. 简述动物的呼吸作用过程。
13. 简述植物对环境的适应性。
四、论述题(每题15分,共30分)14. 论述基因工程在农业生产中的应用及其意义。
15. 论述土壤肥力对农作物生长的影响及其改善措施。
五、实验题(共30分)16. 设计一个实验来验证植物的光合作用需要光照。
(10分)17. 设计一个实验来探究不同光照强度对植物光合作用的影响。
(10分)18. 根据实验结果,分析光照强度对植物光合作用的影响。
(10分)六、案例分析题(共20分)19. 某农场发现农作物生长不良,叶片发黄,分析可能的原因,并提出相应的解决方案。
(20分)七、计算题(共10分)20. 已知某植物在光合作用中,每分钟吸收10毫克的二氧化碳,释放8毫克的氧气,计算该植物每分钟光合作用产生的葡萄糖的摩尔数。
(10分)八、附加题(共10分,选做)21. 论述转基因技术在食品安全和伦理方面的争议及其应对策略。
2009年成人高考专升本高等数学二考试真题及参考答案

一、选择题:每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求。
第1题
参考答案:B
第2题
参考答案:B
第3题
参考答案:C
第4题
参考答案:B
第5题
参考答案:A 第6题
参考答案:D 第7题
参考答案:A 第8题
参考答案:C 第9题
参考答案:D
第10题
参考答案:A
二、填空题:本大题共10个小题,每小题4分,共40分,把答案填写在题中横线上。
第11题
参考答案:2/3
第12题
参考答案:
第13题
参考答案:8
第14题
参考答案:2/3
第15题
参考答案:2cosx-xsinx 第16题
参考答案:(1,-1)
第17题
参考答案:
第18题
参考答案:
第19题
参考答案:1/2
第20题
参考答案:
三、解答题:共70分。
解答应写出推理、演算步骤。
第21题
第22题
第23题
第24题
第25题有10件产品,其中8件是正品,2件是次品,甲、乙两人先后各抽取一件产品,求甲先抽到正品的条件下,乙抽到正品的概率.
第26题
第27题(1)求在区间[0,π]上的曲线y=sinx与x轴所围成图形的面积S;
(2)求(1)中的平面图形绕x轴旋转一周所得旋转体的体积V
第28题。
2009年数学试题及解答

2009年全国硕士研究生入学统一考试数学一试题一、选择题:1~8小题,每小题8分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内。
(1)当0x →时,()sin f x x ax =-与2()ln(1)g x x bx =-等价无穷小,则() (A )11,6a b ==-(B )11,6a b ==(C )11,6a b =-=- (D )11,6a b =-=【解析与点评】考点:无穷小量比阶的概念与极限运算法则。
【答案】A2222sin sin 1cos sin limlimlimlimln(1)()36x x x x x ax x ax a x a ax x bx x bx bxbx→→→→---===----23sin lim166.x a ax ab baxa →==-=-36a b =-意味选项B ,C 错误。
再由21cos lim 3x a ax bx→-=-存在,故有1cos 0(0)a ax x -→→,故a=1,D 错误,所以选A 。
(2)如图,正方形{(,)|||1,||1}x y x y ≤≤被其对角线划分为四个区域,(1,2,3,4),cos KK K D D k I y xdxdy ==⎰⎰,则14max{}KK I≤≤=()【解析与点评】本题利用二重积分区域的对称性及被积函数的奇偶性。
24,D D 关于x 轴对称,而cos y x -即被积函数是关于y 的奇函数,所以2413;,I I D D =两区域关于y 轴对称,cos()cos y x y x -=即被积函数是关于x 的偶函数,由积分的保号性,13{(,)|,01}{(,)|,01}2cos 0,2cos 0x y y x x x y y x x I y xdxdy I y xdxdy ≥≤≤≤-≤≤=>=<⎰⎰⎰⎰,所以正确答案为A 。
(3)设函数()y f x =在区间[-1,3]上的图形为则函数0()()x F x f t dt =⎰为()【解析与点评】考点:函数与其变限积分函数的关系、函数与其导函数之间的关系,变限积 分函数的性质(两个基本定理),定积分的几何意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009年江西农业大学专升本考试数学试题
一、填空题(每小题3分,共18分)
1.如果函数()f x 在点0x 处连续,则0
lim ()x x f x →= 。
2.曲线x y e =在点(0,1)处的切线方程为 。
3.函数)1ln(+-=x x y 在区间________________单调下降。
4.设2()f x dx x c =+⎰,则()f x = 。
5.设积分区域D 为:221x y +≤,则D
dxdy =⎰⎰ 。
6.设B A ,为同阶可逆方阵,则()2
22AB A B =的充要条件是 。
二、单项选择题(每小题3分,共15分) 1 . 下列函数中0x →时是无穷小的 ( )
(A )x e -; (B )cos x ; (C )ln x ; (D )1sin x x。
2 . ()ln cos 'x =( ) 。
(A) tan x (B) tan x - (C) cot x (D) cot x - 3 .
dx
x
x ⎰
-1
2
1arccos =( )。
(A) 2- (B) 2 (C)
8
2
π
(D) 8
2
π
-
4 . 函数2
2
2
2
(,)2x y x f x y x x y
+-=--的定义域是( )。
(A )222x x y x <+≤; (B )222x x y x ≤+<; (C )222x x y x ≤+≤;
(D )222x x y x <+<。
5.对线性方程组A X =0,则下列结论一定正确的是( )。
(A) 可能无解 (B) 只有零解 (C) 有非零解 (D) 一定有解
三、极限计算题(每小题5分,共10分) 1 . 2
1
21lim 1
x x x x →-+-
2 . 0
1cos lim
tan x x x x
→-
四、计算题(每小题5分,共30分) 1 . 求函数sin ()(1)
x f x x x =-的间断点,并确定其类型。
2 . 若x y x y +--=
,求
dx
dy 。
3 . 计算 d x x
x ⎰ln
1。
4 . 计算⎰21
2arcsin xdx 。
5 . 设2
2
3x y xy
z e +=,求
z x
∂∂,
z y
∂∂。
6 . 计算二重积分:xy D
xe dxdy ⎰⎰,D 为01,10x y ≤≤-≤≤。
五、设矩阵2101
2101
2A ⎛⎫
⎪= ⎪ ⎪⎝
⎭,123421B ⎛⎫
⎪
= ⎪ ⎪⎝
⎭
,若AX X B =+,求矩阵X 。
(8分)
六、要制作一个圆柱形罐头,问高度H 与半径R 应怎样配,使同样容积下材 料最省?(8分)
七、求曲线2,,1==
=y x y x
y 所围成的图形的面积(7分)。
八、如果1
lim ()x f x →存在,且2
3
1
21()2lim ()1
x x f x x f x x →+=+
++,求()f x .(4分)。