人教A版高中数学必修四 第二章 平面向量 2.4.2《平面向量的数量积》的坐标表示 模 夹角导学案
人教A版数学必修四课件:第二章 平面向量 2.4.2 平面向量数量积的坐标表示、模、夹角
注意反向时系数 为负数,正向时
系数为正数
数量 积的 坐标 表示
1.知识结构 向量数量积公式
两点间距离公式
向量的模、夹角、垂直公式
2.三个重要公式 向量模公式:设 a (x1, y1), 则 a x12 y12
三
两点间距离公式:若 A(x1, y1), B(x2, y2 ),
(2)∵ a 与 b 的夹角为锐角,
∴cos θ>0,且 cos θ≠1,∴ a ·b >0 且 a 与 b 不同向. 因此 1+2λ>0,∴λ>-12.又 a 与 b 共线且同向时,λ=2. ∴ a 与 b 的夹角为锐角时,λ 的取值范围为-21,2∪(2,
+∞).
【方法规律】 1.两非零向量夹角 θ 的范围满足 0°≤θ≤180°,
【即时训练】
已知向量 , , BA
=
1 2
,
3
2
BC
=
3 2
,
1 2
则∠ABC= ( A )
A.30° B.45° C.60° D.120°
例 2 . 设 a ( 5 , 7 ) ,b ( 6 , 4 ) ,求 a b , a 与 b 间 的 夹 角
法;因式分解法等,掌握各个科目的方法是大家应该学习的核心所在。
优等生经验谈:听课时应注意学习老师解决问题的思考方法。同学们如果理解了老师的思路和过程,那么后面的结论自然就出现了,学习起来才能够举 一反三,事半功倍。
2019/7/8
最新中小学教学课件
高中数学第二章平面向量2.4平面向量的数量积2课件新人教A版必修4
|c+td|= (2������ + 4)2 + (������-3)2 = 5������2 + 10������ + 25,
.
分析可利用向量分解的方法,将������������, ������������用基底表示,然后利用运 算律计算求解,也可建立平面直角坐标系,利用坐标运算求解.
探究一
探究二
探究三
思维辨析
解析(方法 1)������������ ·������������ =
������������
+
1 3
������������
解(1)因为a∥b,所以3x=4×9,即x=12. 因为a⊥c,所以3×4+4y=0,所以y=-3.故b=(9,12),c=(4,-3).
(2)m=2a-b=(6,8)-(9,12)=(-3,-4),n=a+c=(3,4)+(4,-3)=(7,1). 设m,n的夹角为θ,
则 cos θ=|������������|·|������������| =
()
答案(1) (2)× (3)× (4) (5)× (6)
探究一
探究二
探究三
思维辨析
数量积的坐标运算 角度1 数量积的基础坐标运算 【例1】 已知向量a=(-1,2),b=(3,2). (1)求a·(a-b); (2)求(a+b)·(2a-b); (3)若c=(2,1),求(a·b)c,a(b·c). 分析根据坐标运算法则,结合数量积的运算律进行计算.
-3×7+(-4)×1 (-3)2+(-4)2 72+12
=
2-5252=-
22.
因为 θ∈[0,π],所以 θ=34π,即 m,n 的夹角为34π.
人教A版高中数学高一必修4第二章2.4.2平面向量数量积的坐标表示、模、夹角
量为 ( 1 , 1 )或(- 1 , - 1 )
55
55
7、RtABC 中,AB (2,3) ,AC (1,k ) ,则k的
值为 ① A = 90o时k = - 2 3
② B = 90o时k = 11
3
③C = 90o时k = 3 13
2
8、以原点和A(5,2)为两个顶点作等腰 直角三角形OAB,B=90,求点B的坐标.
a b ab = 0
设a =(x1 , y1 ), b = (x2 , y 2 ), 则 a b x1x2 + y1y2 = 0
(2)平行
若a =(x1 , y1 ), b = (x2 , y 2 ), 则 a//b x1y2 - x2y1 = 0.
4、两向量夹角公式的坐标运算
设a与b的夹角为θ(0o θ 180o),
AB AC = 1(-3) + 1 3 = 0
AB AC
∴△ABC是直角三角形.
例4:求a = ( 3 - 1, 3 + 1)与向量的夹角为45°的
单位向量.
解: 设所求向量为 b = (cosα,sinα)
∵ a 与 b 成45° ∴ a b = 2 8 = 2 2
另一方面 ( 3 1)cos ( 3 1)sin 2
(2)已知a = (2, 3),b = (-2, 4),求(a + b)( a - b).
解: 法一:a + b = (0, 7),a - b = (4, -1) (a + b)( a - b)= 0 4 + 7 (-1) = -7.
法二
:
(a
+
b)( a
-
b)=
2
高中数学第二章平面向量2.4平面向量的数量积(2)课件新人教A版必修4
(2) 若 点
A(x1
,
y1)
,
B(x2
,
y2)
,
则
→ AB
=
(x2
-
x1
,
y2
-
y1)
,
所
以
|
→ AB
|
=
(x2-x1)2+(y2-y1)2,即|A→B|的实质是 A,B 两点间的距离或线段 AB 的长
(2)坐标表示下的运算,若 a=(x,y),则|a|= x2+y2.
第二十一页,共37页。
2.(1)已知向量 a=(1,2),b=(-3,2),则|a+b|=________,|a-b|=________;
(2)设平面向量 a=(1,2),b=(-2,y),若 a∥b,则|2a-b|等于( )
A.4
第二十六页,共37页。
[归纳升华] 用坐标求两个向量夹角与垂直问题的步骤
(1)用坐标求两个向量夹角的四个步骤: ①求 a·b 的值; ②求|a||b|的值; ③根据向量夹角的余弦公式求出两向量夹角的余弦; ④由向量夹角的范围及两向量夹角的余弦值求出夹角.
第二十七页,共37页。
(2)利用向量解决垂直问题的四个步骤: ①建立平面直角坐标系,将相关的向量用坐标表示出来; ②找到解决问题所需的垂直关系的向量; ③利用向量垂直的相关公式列出参数满足的等式,解出参数值; ④还原到所要解决的几何问题中.
答案:
(1)-15
3 (2)2
第三十页,共37页。
[变式练]☆ 2.已知平面向量 a=(3,4),b=(9,x),c=(4,y),且 a∥b,a⊥c. (1)求 b 与 c; (2)若 m=2a-b,n=a+c,求向量 m,n 的夹角的大小.
人教A版高中数学必修4第二章 平面向量2.4 平面向量的数量积教案
θab数学学科必修4模块第二单元教学设计方案 第七学时~第八学时:第二方案2.4.1 平面向量数量积的物理背景及定义一、教学目标1.知识与技能:掌握平面向量的数量积的定义、运算率及其物理意义 2.过程与方法:(1)通过向量数量积物力背景的了解,体会物理学和数学的关系 (2)通过向量数量积定义的给出,体会简单归纳与严谨定义的区别(3)通过向量数量积分配率的学习,体会类比,猜想,证明的探索式学习方法 3.情感、态度与价值观:通过本节探究性学习,让学生尝试数学研究的过程。
二、教学重点、难点重点:平面向量数量积的定义 难点:数量积的性质及运算率三、教学方法:探究性设计方法,提出问题,创设情境,引导学生参与教学过程四、教学过程教学环节 教学内容师生互动 设计意图 引入以物理学中的做功为背景引入问题:观察讨论做功的公式中左右两端的量分别是什么量?什么影响了功的大小?如何精确的给出数学中的定义?力做的功:W = |F |⋅|s |cos θ,θ是F 与s 的夹角教师提出问题,学生思考由旧知识引出新内容;同时联系物理学和数学,理解具体和一般的关系定义形成 问题:给θ一个精确定义 问题:定义向量的一种乘积运算,使得做功公式符合这种运算一、两个非零向量夹角的概念已知非零向量a 与b ,作=a ,=b ,则∠AOB=θ(0≤θ≤π)叫a 与b 的夹角说明:(1)当θ=0时,a 与b 同向; (2)当θ=π时,a 与b 反向;教师引导学生, 注意: 1.两向量必须同起点; 2.θ的取值范围; 3.数量积的定义公式形式; 4.注意特殊向量零让学生自己体会数学的概括性、严谨性及可操作性(3)当θ=2π时,a 与b 垂直,记a ⊥b ; (4)注意在两向量的夹角定义,两向量必须是同起点的范围0︒≤θ≤180︒二、平面向量数量积(内积)的定义:已知两个非零向量a 与b ,它们的夹角是θ,则数量|a ||b |cos θ叫a 与b 的数量积,记作a ⋅b ,即有a ⋅b = |a ||b |cos θ,(0≤θ≤π)0与任何向量的数量积为向量定义深化 问题:根据向量数量积的定义进行变形分析,总结性质(考虑特殊情况)结论:两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量1、e ⋅a = a ⋅e =|a |cos θ2、a ⊥b ⇔a ⋅b = 03、 a ⋅a = |a |2或||a a a =4、cos θ =||||a ba b5、|a ⋅b | ≤ |a ||b |问题:在以往接触的实数运算中,有很多运算率,结合实数乘法的运算率谈谈平面向量数量积的运算率问题:数量积满足乘法交换率、分配率、结合率、消去率吗? 如何验证。
人教A版高中数学必修4第二章 平面向量2.4 平面向量的数量积习题(1)
高中数学教案学案平面向量的数量积及其应用学习目标: 1.理解平面向量数量积的含义及其物理意义.2.了解平面向量的数量积与向量投影的关系.3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.会用向量方法解决某些简单的平面几何问题.6.会用向量方法解决简单的力学问题与其他一些实际问题.1.向量数量积的定义(1)向量数量积的定义:____________________________________________,其中|a |cos 〈a ,b 〉叫做向量a 在b 方向上的投影.(2)向量数量积的性质:①如果e 是单位向量,则a·e =e·a =__________________; ②非零向量a ,b ,a ⊥b ⇔________________; ③a·a =________________或|a |=________________; ④cos 〈a ,b 〉=________; ⑤|a·b |____|a||b |.2.向量数量积的运算律 (1)交换律:a·b =________; (2)分配律:(a +b )·c =________________; (3)数乘向量结合律:(λa )·b =________________. 3.向量数量积的坐标运算与度量公式(1)两个向量的数量积等于它们对应坐标乘积的和,即若a =(a 1,a 2),b =(b 1,b 2),则a·b =________________________;(2)设a =(a 1,a 2),b =(b 1,b 2),则a ⊥b ⇔________________________; (3)设向量a =(a 1,a 2),b =(b 1,b 2),则|a |=________________,cos 〈a ,b 〉=____________________________.(4)若A (x 1,y 1),B (x 2,y 2),则|AB →=________________________,所以|AB →|=_____________________.1.(2010·湖南)在Rt △ABC 中,∠C =90°,AC =4,则AB →·AC →等于 ( ) A .-16 B .-8 C .8 D .16 2.(2010·重庆)已知向量a ,b 满足a·b =0,|a |=1,|b |=2,则|2a -b |= ( ) A .0 B .2 2 C .4 D .8 3.(2011·福州月考)已知a =(1,0),b =(1,1),(a +λb )⊥b ,则λ等于 ( )A .-2B .2 C.12 D .-124.平面上有三个点A (-2,y ),B (0,2y ),C (x ,y ),若A B →⊥BC →,则动点C 的轨迹方程为________________.5.(2009·天津)若等边△ABC 的边长为M 满足CM →=16CB →+23CA →,则MA →·MB →=________.考点一 向量的模及夹角问题 例1 (2011·马鞍山月考)已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61. (1)求a 与b 的夹角θ;(2)求|a +b |;(3)若AB →=a ,BC →=b ,求△ABC 的面积.举一反三1 (1)已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是 ( )A .1B .2C. 2D.22(2)已知i ,j 为互相垂直的单位向量,a =i -2j ,b =i +λj ,且a 与b 的夹角为锐角,实数λ的取值范围为________.考点二 两向量的平行与垂直问题 例2 已知a =(cos α,sin α),b =(cos β,sin β),且k a +b 的长度是a -k b 的长度的3倍(k >0).(1)求证:a +b 与a -b 垂直; (2)用k 表示a ·b ; (3)求a ·b 的最小值以及此时a 与b 的夹角θ.举一反三2 (2009·江苏)设向量a =(4cos α,sin α),b =(sin β,4cos β),c =(cos β,-4sin β).(1)若a 与b -2c 垂直,求tan(α+β)的值; (2)求|b +c |的最大值;(3)若tan αtan β=16,求证:a ∥b .考点三 向量的数量积在三角函数中的应用例3 已知向量a =⎝⎛⎭⎫cos 32x ,sin 32x , b =⎝⎛⎭⎫cos x 2,-sin x 2,且x ∈⎣⎡⎦⎤-π3,π4. (1)求a·b 及|a +b |; (2)若f (x )=a·b -|a +b |,求f (x )的最大值和最小值.举一反三3 (2010·四川)已知△ABC 的面积S =12AB →·AC →·=3,且cos B =35,求cos C .1.一些常见的错误结论:(1)若|a |=|b |,则a =b ;(2)若a 2=b 2,则a =b ;(3)若a ∥b ,b ∥c ,则a ∥c ;(4)若a·b =0,则a =0或b =0;(5)|a·b |=|a |·|b |;(6)(a·b )c =a (b·c );(7)若a·b =a·c ,则b =c .以上结论都是错误的,应用时要注意.2.平面向量的坐标表示与向量表示的比较:(1)要证AB =CD ,可转化证明AB →2=CD →2或|AB →|=|CD →|.(2)要证两线段AB ∥CD ,只要证存在唯一实数λ≠0,使等式AB →=λCD →成立即可.(3)要证两线段AB ⊥CD ,只需证AB →·CD →=0.一、选择题(每小题5分,共25分) 1.(2010·重庆)若向量a =(3,m ),b =(2,-1),a·b =0,则实数m 的值为 ( )A .-32 B.32C .2D .62.已知非零向量a ,b ,若|a |=|b |=1,且a ⊥b ,又知(2a +3b )⊥(k a -4b ),则实数k 的值为 ( )A .-6B .-3C .3D .63.已知△ABC 中,AB →=a ,AC →=b ,a·b <0,S △ABC =154,|a |=3,|b |=5,则∠BAC 等于 ( )A .30°B .-150°C .150°D .30°或150° 4.(2010·湖南)若非零向量a ,b 满足|a |=|b |,(2a +b )·b =0,则a 与b 的夹角为 ( ) A .30° B .60° C .120° D .150° 5.已知a =(2,3),b =(-4,7),则a 在b 上的投影为 ( )A.135B.655C.65D.136.(2010·湖南长沙一中月考)设a =(cos 2α,sin α),b =(1,2sin α-1),α∈⎝⎛⎭⎫π2,π,若a·b =25,则sin α=________. 7.(2010·广东金山中学高三第二次月考)若|a |=1,|b |=2,c =a +b ,且c ⊥a ,则向量a 与b 的夹角为________.8.已知向量m =(1,1),向量n 与向量m 夹角为3π4,且m·n =-1,则向量n =__________________.三、解答题(共38分)9.(12分)已知OA →=(2,5),OB →=(3,1),OC →=(6,3),在线段OC 上是否存在点M ,使MA →⊥MB →,若存在,求出点M 的坐标;若不存在,请说明理由.10.(12分)(2011·杭州调研)已知向量a =(cos(-θ),sin(-θ)),b =(cos ⎝⎛⎭⎫π2-θ,sin ⎝⎛⎭⎫π2-θ). (1)求证:a ⊥b ;(2)若存在不等于0的实数k 和t ,使x =a +(t 2+3)b ,y =-k a +t b ,满足x ⊥y ,试求此时k +t 2t 的最小值.11.(14分)(2011·济南模拟)已知a =(1,2sin x ),b =⎝⎛⎭⎫2cos ⎝⎛⎭⎫x +π6,1,函数f (x )=a·b (x ∈R ).(1)求函数f (x )的单调递减区间;(2)若f (x )=85,求cos ⎝⎛⎭⎫2x -π3的值.答案1.(1)a·b =|a ||b |cos 〈a ,b 〉 (2)①|a |cos 〈a ,e 〉 ②a·b =0 ③|a |2 a·a ④a·b|a||b |⑤≤ 2.(1)b·a(2)a·c +b·c (3)λ(a ·b ) 3.(1)a 1b 1+a 2b 2 (2)a 1b 1+a 2b 2=0 (3)a 21+a 22 a 1b 1+a 2b 2a 21+a 22b 21+b 22(4)(x 2-x 1,y 2-y 1) (x 2-x 1)2+(y 2-y 1)22.B [|2a -b |=(2a -b )2=4a 2-4a·b +b 2=8=2 2.] 3.D [由(a +λb )·b =0得a·b +λ|b |2=0,∴1+2λ=0,∴λ=-12.]4.y 2=8x (x ≠0)解析 由题意得AB →=⎝⎛⎭⎫2,-y 2, BC →=⎝⎛⎭⎫x ,y 2,又AB →⊥BC →,∴AB →·BC →=0, 即⎝⎛⎭⎫2,-y 2·⎝⎛⎭⎫x ,y 2=0,化简得y 2=8x (x ≠0). 5.-2解析 合理建立直角坐标系,因为三角形是正三角形,故设C (0,0),A (23,0),B (3,3),这样利用向量关系式,求得MA →=⎝⎛⎭⎫32,-12,MB →=⎝⎛⎭⎫32,-12,MB →=⎝⎛⎭⎫-32,52,所以MA →·MB →=-2.课堂活动区例1 解 (1)∵(2a -3b )·(2a +b )=61, ∴4|a |2-4a·b -3|b |2=61. 又|a |=4,|b |=3,∴64-4a·b -27=61, ∴a·b =-6.∴cos θ=a·b|a||b |=-64×3=-12.又0≤θ≤π,∴θ=2π3.(2)|a +b |=(a +b )2 =|a |2+2a·b +|b |2=16+2×(-6)+9=13.(3)∵AB →与BC →的夹角θ=2π3,∴∠ABC =π-2π3=π3.又|AB →|=|a |=4,|BC →|=|b |=3,∴S △ABC =12|AB →||BC →|sin ∠ABC=12×4×3×32=3 3. 举一反三1 (1)C [∵|a |=|b |=1,a·b =0,展开(a -c )·(b -c )=0⇒|c |2=c·(a +b ) =|c |·|a +b |cos θ,∴|c |=|a +b |cos θ=2cos θ, ∴|c |的最大值是 2.](2)λ<12且λ≠-2解析 ∵〈a ,b 〉∈(0,π2),∴a ·b >0且a ·b 不同向.即|i |2-2λ|j |2>0,∴λ<12.当a ·b 同向时,由a =k b (k >0)得λ=-2.∴λ<12且λ≠-2.例2 解题思路 1.非零向量a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0.2.当向量a 与b 是非坐标形式时,要把a 、b 用已知的不共线的向量表示.但要注意运算技巧,有时把向量都用坐标表示,并不一定都能够简化运算,要因题而异.解 (1)由题意得,|a |=|b |=1, ∴(a +b )·(a -b )=a 2-b 2=0, ∴a +b 与a -b 垂直. (2)|k a +b |2=k 2a 2+2k a ·b +b 2=k 2+2k a ·b +1, (3|a -k b |)2=3(1+k 2)-6k a ·b . 由条件知,k 2+2k a ·b +1=3(1+k 2)-6k a ·b ,从而有,a ·b =1+k24k(k >0).(3)由(2)知a ·b =1+k 24k =14(k +1k )≥12,当k =1k时,等号成立,即k =±1.∵k >0,∴k =1.此时cos θ=a ·b |a ||b |=12,而θ∈[0,π],∴θ=π3.故a ·b 的最小值为12,此时θ=π3.举一反三2 (1)解 因为a 与b -2c 垂直, 所以a ·(b -2c )=4cos αsin β-8cos αcos β+4sin αcos β+8sin αsin β =4sin(α+β)-8cos(α+β)=0. 因此tan(α+β)=2.(2)解 由b +c =(sin β+cos β,4cos β-4sin β), 得|b +c |=(sin β+cos β)2+(4cos β-4sin β)2 =17-15sin 2β≤4 2.又当β=-π4时,等号成立,所以|b +c |的最大值为4 2.(3)证明 由tan αtan β=16得4cos αsin β=sin α4cos β,所以a ∥b .例3 解题思路 与三角函数相结合考查向量的数量积的坐标运算及其应用是高考热点题型.解答此类问题,除了要熟练掌握向量数量积的坐标运算公式,向量模、夹角的坐标运算公式外,还应掌握三角恒等变换的相关知识.解 (1)a·b =cos 32x cos x 2-sin 32x sin x2=cos 2x ,|a +b |=⎝⎛⎭⎫cos 32x +cos x 22+⎝⎛⎭⎫sin 32x -sin x 22 =2+2cos 2x =2|cos x |,∵x ∈⎣⎡⎦⎤-π3,π4,∴cos x >0, ∴|a +b |=2cos x .(2)f (x )=cos 2x -2cos x =2cos 2x -2cos x -1=2⎝⎛⎭⎫cos x -122-32. ∵x ∈⎣⎡⎦⎤-π3,π4,∴12≤cos x ≤1, ∴当cos x =12时,f (x )取得最小值-32;当cos x =1时,f (x )取得最大值-1.举一反三3 解 由题意,设△ABC 的角B 、C 的对边分别为b 、c ,则S =12bc sin A =12.AB →·AC →=bc cos A =3>0,∴A ∈⎝⎛⎭⎫0,π2,cos A =3sin A . 又sin 2A +cos 2A =1,∴sin A =1010,cos A =31010.由题意cos B =35,得sin B =45.∴cos(A +B )=cos A cos B -sin A sin B =1010.∴cos C =cos [π-(A +B )]=-1010.课后练习区 1.D [因为a·b =6-m =0,所以m =6.] 2.D [由(2a +3b )·(k a -4b )=0得2k -12=0,∴k =6.]3.C [∵S △ABC =12|a ||b |sin ∠BAC =154,∴sin ∠BAC =12.又a·b <0,∴∠BAC 为钝角.∴∠BAC =150°.] 4.C [由(2a +b )·b =0,得2a·b =-|b |2.cos 〈a ,b 〉=a·b|a||b |=-12|b |2|b |2=-12. ∵〈a ,b 〉∈[0°,180°],∴〈a ,b 〉=120°.] 5.B [因为a·b =|a|·|b |·cos 〈a ,b 〉, 所以,a 在b 上的投影为|a |·cos 〈a ,b 〉=a·b |b |=21-842+72=1365=655.] 6.35解析 ∵a·b =cos 2α+2sin 2α-sin α=25,∴1-2sin 2α+2sin 2α-sin α=25,∴sin α=35.7.120°解析 设a 与b 的夹角为θ,∵c =a +b ,c ⊥a , ∴c·a =0,即(a +b )·a =0.∴a 2+a·b =0. 又|a |=1,|b |=2,∴1+2cos θ=0.∴cos θ=-12,θ∈[0°,180°]即θ=120°.8.(-1,0)或(0,-1)解析 设n =(x ,y ),由m·n =-1, 有x +y =-1.①由m 与n 夹角为3π4,有m·n =|m|·|n |cos 3π4,∴|n |=1,则x 2+y 2=1.②由①②解得⎩⎪⎨⎪⎧ x =-1y =0或⎩⎪⎨⎪⎧x =0y =-1,∴n =(-1,0)或n =(0,-1).9.解 设存在点M ,且OM →=λOC →=(6λ,3λ) (0≤λ≤1), MA →=(2-6λ,5-3λ),MB →=(3-6λ,1-3λ).…………………………………………(4分) ∵MA →⊥MB →,∴(2-6λ)(3-6λ)+(5-3λ)(1-3λ)=0,………………………………………………(8分)即45λ2-48λ+11=0,解得λ=13或λ=1115.∴M 点坐标为(2,1)或⎝⎛⎭⎫225,115.故在线段OC 上存在点M ,使MA →⊥MB →,且点M 的坐标为(2,1)或(225,115).………(12分)10.(1)证明 ∵a·b =cos(-θ)·cos ⎝⎛⎭⎫π2-θ+sin ()-θ·sin ⎝⎛⎭⎫π2-θ =sin θcos θ-sin θcos θ=0.∴a ⊥b .……………………………………………………(4分) (2)解 由x ⊥y 得,x·y =0,即[a +(t 2+3)b ]·(-k a +t b )=0, ∴-k a 2+(t 3+3t )b 2+[t -k (t 2+3)]a·b =0,∴-k |a |2+(t 3+3t )|b |2=0.………………………………………………………………(6分) 又|a |2=1,|b |2=1,∴-k +t 3+3t =0,∴k =t 3+3t .…………………………………………………………(8分) ∴k +t 2t =t 3+t 2+3t t =t 2+t +3=⎝⎛⎭⎫t +122+114.……………………………………………………………………………(10分) 故当t =-12时,k +t 2t 有最小值114.………………………………………………………(12分)11.解 (1)f (x )=a·b =2cos ⎝⎛⎭⎫x +π6+2sin x =2cos x cos π6-2sin x sin π6+2sin x=3cos x +sin x =2sin ⎝⎛⎭⎫x +π3.…………………………………………………………(5分) 由π2+2k π≤x +π3≤3π2+2k π,k ∈Z , 得π6+2k π≤x ≤7π6+2k π,k ∈Z . 所以f (x )的单调递减区间是⎣⎡⎦⎤π6+2k π,7π6+2k π (k ∈Z ).……………………………………………………………(8分)(2)由(1)知f (x )=2sin ⎝⎛⎭⎫x +π3. 又因为2sin ⎝⎛⎭⎫x +π3=85, 所以sin ⎝⎛⎭⎫x +π3=45,……………………………………………………………………(11分) 即sin ⎝⎛⎭⎫x +π3=cos ⎝⎛⎭⎫π6-x =cos ⎝⎛⎭⎫x -π6=45. 所以cos ⎝⎛⎭⎫2x -π3=2cos 2⎝⎛⎭⎫x -π6-1=725.………………………………………………(14分)。
人教版高一数学必修四第二章平面向量数量积的坐标表示、模、夹角
2.4.2平面向量数量积的坐标表示、模、夹角考点学习目标核心素养向量数量积的坐标表示掌握平面向量数量积的坐标表示,会用向量的坐标形式求数量积数学运算平面向量的模与夹角的坐标表示能根据向量的坐标计算向量的模、夹角及判定两个向量垂直数学运算、逻辑推理问题导学预习教材P106-P107,并思考下列问题:1.平面向量数量积的坐标表示是什么?2.如何用坐标表示向量的模、夹角和垂直?1.两向量的数量积与两向量垂直的坐标表示设两个非零向量a=(x1,y1),b=(x2,y2).数量积两个向量的数量积等于它们对应坐标的乘积的和,即a·b=x1x2+y1y2两个向量垂直a⊥b⇔x1x2+y1y2=0公式a·b=|a||b|cos〈a,b〉与a·b=x1x2+y1y2都是用来求两向量的数量积的,没有本质区别,只是书写形式上的差异,两者可以相互推导.2.三个重要公式判断(正确的打“√”,错误的打“×”) (1)向量的模等于向量坐标的平方和.( )(2)|AB →|的计算公式与A ,B 两点间的距离公式是一致的.( ) 答案:(1)× (2)√已知a =(-3,4),b =(5,2),则a ·b 的值是( ) A .23 B .7 C .-23 D .-7 答案:D已知向量a =(1,-2),b =(x ,2),若a ⊥b ,则x =( ) A .1 B .2 C .4 D .-4答案:C已知a =(3,1),b =(-3,1),则向量a ,b 的夹角θ=______. 答案:120°数量积的坐标运算向量a =(1,-1),b =(-1,2),则(2a +b )·a =( ) A .-1 B .0 C .1D .2 【解析】 因为a =(1,-1),b =(-1,2), 所以(2a +b )·a =(1,0)·(1,-1)=1. 【答案】 C数量积坐标运算的两个途径一是先将各向量用坐标表示,直接进行数量积运算;二是先利用数量积的运算律将原式展开,再依据已知计算.1.设向量a =(1,-2),向量b =(-3,4),向量c =(3,2),则向量(a +2b )·c =( ) A .(-15,12) B .0 C .-3 D .-11 解析:选C.依题意可知,a +2b =(1,-2)+2(-3,4)=(-5,6),所以(a +2b )·c =(-5,6)·(3,2)=-5×3+6×2=-3.2.已知正方形ABCD 的边长为2,E 为CD 的中点,点F 在AD 上,AF →=2FD →,则BE →·CF →=________.解析:建立平面直角坐标系如图所示,则A (0,2),E (2,1),D (2,2),B (0,0),C (2,0),因为AF →=2FD →,所以F (43,2).所以BE →=(2,1),CF →=(43,2)-(2,0)=(-23,2),所以BE →·CF →=(2,1)·(-23,2)=2×(-23)+1×2=23.答案:23平面向量的模(1)已知点A (0,1),B (1,-2),向量AC →=(4,-1),则|BC →|=________. (2)(2019·山东枣庄三中期中检测)已知平面向量a =(2m -1,2),b =(-2,3m -2),且|a +b |=|a -b |,则5a -3b 在向量a 方向上的投影为________.【解析】 (1)设C (x ,y ),因为点A (0,1),向量AC →=(4,-1),所以AC →=(x ,y -1)=(4,-1),所以{x =4,y -1=-1,解得x =4,y =0,所以C (4,0),所以BC →=(3,2),|BC →|=9+4=13.(2)由|a +b |=|a -b |得a ·b =0,所以-2(2m -1)+2(3m -2)=0,解得m =1,所以a =(1,2),b =(-2,1),5a -3b =(11,7),由投影公式可得所求投影为a ·(5a -3b )|a |=255=5 5.【答案】 (1)13 (2)55求向量的模的两种基本策略(1)字母表示下的运算利用|a|2=a2,将向量的模的运算转化为向量与向量的数量积的问题.(2)坐标表示下的运算若a=(x,y),则a·a=a2=|a|2=x2+y2,于是有|a|=x2+y2.已知向量a=(cos θ,sin θ),向量b=(3,0),则|2a-b|的最大值和最小值分别是()A.42,0 B.4,2 2C.25,1 D.5,1解析:选D.因为2a-b=2(cos θ,sin θ)-(3,0)=(2cos θ-3,2sin θ),所以|2a-b|2=(2cos θ-3)2+(2sin θ)2=13-12cos θ,又cos θ∈[-1,1],所以|2a-b|2∈[1,25],所以|2a-b|∈[1,5],故|2a-b|的最大值和最小值分别是5,1,故选D.平面向量的夹角(垂直)已知a=(4,3),b=(-1,2).(1)求a与b夹角的余弦值;(2)若(a-λb)⊥(2a+b),求实数λ的值.【解】(1)因为a·b=4×(-1)+3×2=2,|a|=42+32=5,|b|=(-1)2+22=5,设a与b的夹角为θ,所以cos θ=a·b|a||b|=255=2525.(2)因为a-λb=(4+λ,3-2λ),2a+b=(7,8),又(a-λb)⊥(2a+b),所以7(4+λ)+8(3-2λ)=0,所以λ=529.利用数量积求两向量夹角的步骤1.已知向量a =(1,3),b =(3,m ).若向量a ,b 的夹角为π6,则实数m =( )A .23 B. 3 C .0D .- 3解析:选B.因为a =(1,3),b =(3,m ).所以|a |=2,|b |=9+m 2,a ·b =3+3m ,又a ,b 的夹角为π6,所以a ·b |a |·|b |=cos π6,即3+3m 29+m 2=32,所以3+m =9+m 2,解得m = 3.2.已知A (-2,1),B (6,-3),C (0,5),则△ABC 的形状是( ) A .直角三角形 B .锐角三角形 C .钝角三角形D .等边三角形解析:选A.由题设知AB →=(8,-4),AC →=(2,4),BC →=(-6,8),所以AB →·AC →=2×8+(-4)×4=0,即AB →⊥AC →.所以∠BAC =90°,故△ABC 是直角三角形.规范解答平面向量的夹角和垂直问题(本题满分12分)已知三个点A (2,1),B (3,2),D (-1,4). (1)求证:AB ⊥AD ;(2)要使四边形ABCD 为矩形,求点C 的坐标,并求矩形ABCD 两条对角线所夹的锐角的余弦值.【解】 (1)证明:因为A (2,1),B (3,2),D (-1,4),所以AB →=(1,1),AD →=(-3,3).(2分)AB →·AD →=1×(-3)+1×3=0,利用数量积为0,证明向量垂直所以AB →⊥AD →,所以AB ⊥AD . (4分)(2)因为AB →⊥AD →,四边形ABCD 为矩形, 所以AB →=DC →.(5分)设点C 的坐标为(x ,y ),则DC →=(x +1,y -4).又因为AB →=(1,1),所以⎩⎪⎨⎪⎧x +1=1,y -4=1,解得⎩⎪⎨⎪⎧x =0,y =5.(7分)所以点C 的坐标为(0,5).所以AC →=(-2,4). 又BD →=(-4,2),所以|AC →|=25,|BD →|=25, AC →·BD →=8+8=16.(9分)正确求出这三个量是求两向量夹角的关键设AC →与BD →的夹角为θ,则cos θ=AC →·BD →|AC →||BD →|=1625×25=45.(11分)故矩形ABCD 的两条对角线所夹的锐角的余弦值为45.(12分)(1)解答两向量的夹角的步骤:求数量积、求模、求余弦值、求角.(2)利用cos θ=a ·b|a ||b |判断θ的值时,要注意cos θ<0时,有两种情况:一是θ是钝角,二是θ为180°;cos θ>0时,也有两种情况:一是θ是锐角,二是θ为0°.1.已知向量a =(2,0),a -b =(3,1),则下列结论正确的是( ) A .a ·b =2 B .a ∥b C .b ⊥(a +b ) D .|a |=|b |解析:选C.因为向量a =(2,0),a -b =(3,1),设b =(x ,y ),则⎩⎪⎨⎪⎧2-x =3,0-y =1,解得⎩⎪⎨⎪⎧x =-1,y =-1,所以b =(-1,-1),a +b =(1,-1),b ·(a +b )=-1×1+(-1)×(-1)=0,所以b ⊥(a +b ).2.在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,AB →=(1,-2),AD →=(2,1),则AD →·AC →=________.解析:由四边形ABCD 为平行四边形,知AC →=AB →+AD →=(3,-1),故AD →·AC →=(2,1)·(3,-1)=5.答案:53.已知a =(1,3),b =(2,m ). (1)当3a -2b 与a 垂直时,求m 的值; (2)当a 与b 的夹角为120°时,求m 的值. 解:(1)由题意得3a -2b =(-1,33-2m ), 由3a -2b 与a 垂直,得-1+9-23m =0, 所以m =433.(2)由题意得|a |=2,|b |=m 2+4,a ·b =2+3m ,所以cos 120°=a ·b |a |·|b |=2+3m 2m 2+4=-12,整理得2+3m +m 2+4=0,化简得m 2+23m =0, 解得m =-23或m =0(舍去). 所以m =-2 3.[A 基础达标]1.已知向量a =(2,1),b =(-1,k ),a ·(2a -b )=0,则k =( ) A .-12 B .-6 C .6D .12解析:选D.2a -b =(4,2)-(-1,k )=(5,2-k ),由a ·(2a -b )=0,得(2,1)·(5,2-k )=0,所以10+2-k =0,解得k =12.2.已知向量a =(1,n ),b =(-1,n ),若2a -b 与b 垂直,则|a |等于( ) A .0 B .1 C .-2D .2解析:选D.2a -b =(3,n ),由2a -b 与b 垂直可得(3,n )·(-1,n )=-3+n 2=0,所以n 2=3,所以|a |=2.3.已知平面向量a =(2,4),b =(-1,2),若c =a -(a ·b )b ,则|c |等于( ) A .4 2 B .2 5 C .8D .8 2解析:选D.易得a ·b =2×(-1)+4×2=6,所以c =(2,4)-6(-1,2)=(8,-8),所以|c |=82+(-8)2=8 2.4.(2019·河北衡水中学检测)设向量a =(3,1),b =(x ,-3),c =(1,-3),若b ∥c ,则a -b 与b 的夹角为( )A .30°B .60°C .120°D .150°解析:选D.因为b ∥c ,所以-3x =(-3)×1,所以x =3,所以b =(3,-3),a -b =(0,4).所以a -b 与b 的夹角的余弦值为b ·(a -b )|a -b ||b |=-124×23=-32,所以a -b 与b的夹角为150°.5.已知O 为坐标原点,向量OA →=(2,2),OB →=(4,1),在x 轴上有一点P 使得AP →·BP →有最小值,则点P 的坐标是( )A .(-3,0)B .(2,0)C .(3,0)D .(4,0)解析:选C.设点P 的坐标为(x ,0),则AP →=(x -2,-2),BP →=(x -4,-1). AP →·BP →=(x -2)(x -4)+(-2)×(-1) =x 2-6x +10=(x -3)2+1, 所以当x =3时,AP →·BP →有最小值1. 此时点P 的坐标为(3,0).6.设a =(m +1,-3),b =(1,m -1),若(a +b )⊥(a -b ),则m =________. 解析:a +b =(m +1,-3)+(1,m -1)=(m +2,m -4), a -b =(m +1,-3)-(1,m -1)=(m ,-2-m ), 因为(a +b )⊥(a -b ),所以(a +b )·(a -b )=0, 即(m +2,m -4)·(m ,-m -2)=0, 所以m 2+2m -m 2+2m +8=0,解得m =-2. 答案:-27.(2019·陕西咸阳检测)已知向量a =(-2,1),b =(λ,12),且|λa +b |=132,则λ=________.解析:由已知易得λa +b =⎝⎛⎭⎫-λ,λ+12,则(-λ)2+⎝⎛⎭⎫λ+122=134,解得λ=1或λ=-32. 答案:1或-328.已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量AB →在CD →方向上的投影为________.解析:由题意得AB →=(2,1),CD →=(5,5),所以AB →·CD →=15,所以向量AB →在CD →方向上的投影为|AB →|cos 〈AB →,CD →〉=AB →·CD →|CD →|=1552=322.答案:3229.已知a =(1,2),b =(-3,2). (1)求a -b 及|a -b |;(2)若k a +b 与a -b 垂直,求实数k 的值. 解:(1)a -b =(4,0),|a -b |=42+02=4.(2)k a +b =(k -3,2k +2),a -b =(4,0), 因为k a +b 与a -b 垂直,所以(k a +b )·(a -b )=4(k -3)+(2k +2)·0=0, 解得k =3.10.(2019·重庆第一中学第一次月考)已知向量a ,b ,c 是同一平面内的三个向量,其中a =(1,-1).(1)若|c |=32,且c ∥a ,求向量c 的坐标;(2)若b 是单位向量,且a ⊥(a -2b ),求a 与b 的夹角θ.解:(1)设c =(x ,y ),由|c |=32,c ∥a 可得⎩⎪⎨⎪⎧y +x =0,x 2+y 2=18,所以⎩⎪⎨⎪⎧x =-3,y =3,或⎩⎪⎨⎪⎧x =3,y =-3,故c =(-3,3)或c =(3,-3).(2)因为|a |=2,且a ⊥(a -2b ),所以a ·(a -2b )=0,即a 2-2a ·b =0,所以a ·b =1,故cos θ=a ·b |a |·|b |=22,所以θ=π4.[B 能力提升]11.已知向量a =(1,2),b =(-2,-4),|c |=5,若(a +b )·c =52,则a 与c 的夹角大小为( )A .30°B .60°C .120°D .150°解析:选C.设a 与c 的夹角为θ,依题意,得 a +b =(-1,-2),|a |= 5.设c =(x ,y ),因为(a +b )·c =52, 所以x +2y =-52.又a ·c =x +2y , 所以cos θ=a ·c |a ||c |=x +2y 5×5=-525=-12, 所以a 与c 的夹角为120°.12.在边长为1的正方形ABCD 中,M 为BC 的中点,点E 在线段AB 上运动,则EM →·EC→的取值范围是( ) A.⎣⎡⎦⎤12,2 B.⎣⎡⎦⎤0,32 C.⎣⎡⎦⎤12,32D.[]0,1解析:选C.以A 为坐标原点建立如图所示的平面直角坐标系,设E (x ,0),0≤x ≤1.因为M ⎝⎛⎭⎫1,12,C (1,1),所以EM →=⎝⎛⎭⎫1-x ,12,EC →=(1-x ,1),所以EM →·EC →=⎝⎛⎭⎫1-x ,12·(1-x ,1) =(1-x )2+12.因为0≤x ≤1,所以12≤(1-x )2+12≤32,即EM →·EC →的取值范围是⎣⎡⎦⎤12,32. 13.已知向量a =(1,3),b =(-2,0).(1)求a -b 的坐标以及a -b 与a 之间的夹角;(2)当t ∈[-1,1]时,求|a -t b |的取值范围.解:(1)因为向量a =(1,3),b =(-2,0),所以a -b =(1,3)-(-2,0)=(3,3),所以cos 〈a -b ,a 〉=(a -b )·a |a -b |·|a |=643=32. 因为〈a -b ,a 〉∈[0,π],所以向量a -b 与a 的夹角为π6.(2)|a -t b |2=a 2-2t a ·b +t 2b 2=4t 2+4t +4=4⎝⎛⎭⎫t +122+3.易知当t ∈[-1,1]时,|a -t b |2∈[3,12],所以|a -t b |的取值范围是[3,2 3 ].14.(选做题)已知OA →=(4,0),OB →=(2,23),OC →=(1-λ)·OA →+λOB →(λ2≠λ).(1)求OA →·OB →及OA →在OB →上的投影;(2)证明A ,B ,C 三点共线,并在AB →=BC →时,求λ的值;(3)求|OC →|的最小值.解:(1)OA →·OB →=8,设OA →与OB →的夹角为θ,则cos θ=OA →·OB →|OA →||OB →|=84×4=12, 所以OA →在OB →上的投影为|OA →|cos θ=4×12=2. (2)AB →=OB →-OA →=(-2,23),BC →=OC →-OB →=(1-λ)OA →-(1-λ)OB →=(λ-1)AB →,因为AB →与BC →有公共点B ,所以A ,B ,C 三点共线.当AB →=BC →时,λ-1=1,所以λ=2.(3)|OC →|2=(1-λ)2OA →2+2λ(1-λ)OA →·OB →+λ2OB →2=16λ2-16λ+16=16⎝⎛⎭⎫λ-122+12. 所以当λ=12时,|OC →|取到最小值2 3.。
高一数学人教A版必修4第二章2.4平面向量的数量积2课时课件
F
W = | F |·| s | cosq, 其中 q 是 F 与 s 的夹角.
q
s
功W是一个标量, 它是由矢量 F 与 s 的运算结果. 为解决类似由矢量计算标量的问题, 数学中引入 了向量的 “数量积” 概念.
(二) 向量的数量积
定义: 已知两个非零向量 a 和 b, 它们的夹角为q. 我们把数量 |a| |b|cosq 叫做 a 与 b 的数量积 (或内积),
= x1x2i 2 i 2= |i|2=1,
+x1 y2i j + y1x2 j 2 = | j |2=1,
j
i
+
y1
y2
j
2
又 i j , 得 i j = 0.
∴上式= x1x2 + y1 y2.
结论: 两个向量的数量积等于它们对应坐标的乘积的和. 即 (x1, y1)·(x2, y2) =x1x2+y1y2.
2. 已知△ABC中, AB=a, AC =b, 当 a·b<0 或 a·b=解0 时: 当, aa试bb=判|a断0|时|△b,|AcoBcsoCAs的,A<形0状, .
则角A为钝角,
∴ 当△abA =B0C为 时钝, c角os三A角= 0形, .
则角A为直角,
∴△ABC为直角三角形.
两非零向量垂直数量积为0.
2, 2
求a与b
的夹角q.
cosq = 54 2
又|a
|=
|a ||b | 12, |b |= 9,
cosq
=
54 2 129
=
2 2
,
得 q =135º.
注意
cosq = a b 的应用.
高中数学第二章平面向量2-4平面向量的数量积第2课时教学课件新人教A版必修4
(2)坐标表示下的运算.
若 a=(x,y),则 a·a=a2=|a|2=x2+y2,于是有|a|= x2+y2.
【互动探究】 本例中将“a∥b”改为“a·b=10”,求a的坐 标.解:设 a 的坐标为(x,y),由题意得x+x22+y=y2=101,0,
1.已知向量a与b同向,b=(1,2),a·b=10, 求:
(1)向量a的坐标; (2)若c=(2,-1),求(a·c)·b.
解:(1)∵a与b同向,且b=(1,2), ∴a=λb=(λ,2λ)(λ>0). 又∵a·b=10,∴λ+4λ=10.∴λ=2.∴a= (2,4). (2)∵a·c=2×2+(-1)×4=0,
与向量模有关的问题
已知|a|=10,b=(1,2),且a∥b,求a 的坐标.
思路点拨:
解:设 a 的坐标为(x,y),由题意得2xx-2+y=y2=0,10, 解得
x=2 y=4
5, 5
或xy= =- -24
5, 5,
所以 a=(2 5,4 5)或 a=(-2 5,-4 5).
求向量的模的两种基本策略
思路点拨:(1)按求向量夹角的步骤求解; (2)利用两向量垂直数量积为零来证明.
(1)解:由题意知,|a|=1,|b|=1,a·b=-12cos
α+
3 2 sin
α.
则
cos
θ
= |aa|·|bb|
=
-12cos α+ 1×1
3 2+
3 2 sin
α=
cos(120°-α). ∵0°≤α≤90°,∴30°≤120°-α≤120°.
(3)(a·b)·c. 思路点拨:首先求解相关向量的坐标,再代入 坐标运算表达式求解.
高中数学 人教A版必修4 第2章 2.4.1平面向量数量积的物理背景及含义(一)
其中 θ 是 a 与 b 的夹角. (2)规定:零向量与任一向量的数量积为 0 . (3)投影:设两个非零向量 a、b 的夹角为 θ,则向量 a 在 b
|a|cos θ , |b|cos θ 方向的投影是_______ 向量 b 在 a 方向上的投影是_______.
3.数量积的几何意义 a· b 的几何意义是数量积 a· b 等于 a 的长度|a|与 b 在 a 的方
|b|cos θ 的乘积. 向上的投影_______
研一研·问题探究、课堂更高效
2.4.1(一)
探究点一
本 课 时 栏 目 开 关
平面向量数量积的含义
已知两个非零向量 a 与 b,我们把数量|a||b|cos θ 叫做 a 与 b 的 数量积(或内积),记作 a· b,即 a· b=|a||b|cos θ,其中 θ 是 a 与 b 的夹角,θ∈[0,π].规定:零向量与任一向量的数量积为 0. 问题 1 如果一个物体在力 F 的作用下产生位移 s,那么力 F 所
∴a· b=|a|· |b|cos 180° =4×5×(-1)=-20. (2)当 a⊥b 时,θ=90° ,∴a· b=|a|· |b|cos 90° =0. (3)当 a 与 b 的夹角为 30° 时,a· b=|a|· |b|cos 30°
2.4.1(一)
【学法指导】 1.向量的数量积是一种新的乘法,和向量的线性运算有着显著的 区别,两个向量的数量积,其结果是数量,而不是向量.学习 本 课 时必须透彻理解数量积概念的内涵. 时 栏 目 2.向量的数量积与实数的乘积既有区别又有联系,概念内涵更丰 开 关 富,计算更复杂,实数乘法中的一些运算律在向量的数量积中 已经不再成立,不宜作简单类比,照搬照抄.书写格式也要严 格区分,a· b 中的“· ”不能省略.
人教a版必修4学案:2.4.2平面向量数量积的坐标表示、模、夹角(含答案)
1.向量的坐标表示简化了向量数量积的运算.为利用向量法解决平面几何问题以及解析几何问题提供了完美的理论依据和有力的工具支持.
2.应用数量积运算可以解决两向量的垂直、平行、夹角以及长度等几何问题,在学习中要不断地提高利用向量工具解决数学问题的能力.
所以a·b=0,所以1+2λ=0,所以λ=-.
(2)因为a与b的夹角为钝角,所以cosθ<0且cosθ≠-1,
所以a·b<0且a与b不反向.
由a·b<0得1+2λ<0,故λ<-,
A.B.2C.4D.12
4.若向量a与b不共线,a·b≠0,且c=a-b,则向量a与c的夹角为()
A.0B.C.D.
5.已知向量a=(1,2),b=(2,-3).若向量c满足(c+a)∥b,c⊥(a+b),则c=()
A.B.
C.D.
二、填空题
6.若平面向量a=(1,-2)与b的夹角是180°,且|b|=4,
(2)两点间距离公式:若A(x1,y1),B(x2,y2),则||=________________.
4.向量的夹角公式
设两非零向量a=(x1,y1),b=(x2,y2),a与b的夹角为θ,则cosθ=__________=
_____________.
自主探究
已知两个非零向量a=(x1,y1),b=(x2,y2),怎样用a与b的坐标表示a·b及|a|.
4.
自主探究
解设i,j为相互垂直的两单位向量,
a=x1i+y1j,b=x2i+y2j.
∴a·b=(x1i+y1j)·(x2i+y2j)
=x1x2i2+x1y2i·j+x2y1i·j+y1y2j2
人教A版高中数学必修4第二章平面向量数量积的坐标表示课件
B.1 D.-2
()
解析:
cos34π=|mm
·n =
||n |
-1 =- 2|n |
22,|n |=1.故选
B.
答案:B
4.已知向量―A→ B =(4,0),―A→ C =(2,2),则―A→ C 与―B→ C 的夹角的
大小为________.
解析:―B→C =―A→C -―A→B =(2,2)-(4,0)=(-2,2),所以
人 教 A 版 高中 数学必 修4第 二章平 面向量 数量积 的坐标 表示课 件【精 品】
人 教 A 版 高中 数学必 修4第 二章平 面向量 数量积 的坐标 表示课 件【精 品】
Thank You!
人 教 A 版 高中 数学必 修4第 二章平 面向量 数量积 的坐标 表示课 件【精 品】
―→ AC
―→ ·BC
=
2×(
-
2)
+
2×2
=
0.
所
以
―→ AC
⊥
―→ BC
.
即
―A→C 与―B→C 的夹角为 90°.
答案:90°
5.已知向量 a =(1,k),b =(2,2),且 a +b 与 a 共线,那么 a ·b =________.
解析:依题意得 a +b =(3, k+2),由 a +b 与 a 共线,得 3×k-1×(k+2)=0,解得 k=1,所以 a ·b =2+2k=4. 答案:4
人 教 A 版 高中 数学必 修4第 二章平 面向量 数量积 的坐标 表示课 件【精 品】
人 教 A 版 高中 数学必 修4第 二章平 面向量 数量积 的坐标 表示课 件【精 品】
向量夹角和垂直问题 [例 3] 设平面上向量 a =(cos α,sin α)(0°≤α≤90°),b =-12, 23. (1)求 a 与 b 的夹角 θ. (2)求证:a +b 与 a -b 垂直.
人教新课标A版高中数学必修四 平面向量的数量积 第2课时 平面向量数量积的坐标表示、模、夹角
设i、j 为x轴、 y轴上的单位向量,即i =(1,0) ,j =(0,1) ,
且a、b为两个非零向量,a=(x1,y1),b=(x2,y2),则i·i= 1 , j·j = 1 , i·j = j·i = 0 ,∴ a·b = (x1i + y1j)·(x2i + y2j) = x1x2i2+(x1y2+x2y1)i·j+y1y2j2=x1x2+y1y2.
a与b的夹角θ.
[解析]
a· b=3×1+(-1)×(-2)=5,
|a|= 32+(-1)2= 10, |b|= 12+(-2)2= 5, a· b 5 2 cosθ=|a|· |b|= 10× 5= 2 , π ∵0≤θ≤π,∴θ= . 4
人 教 A 版 数 学
第二章
平面向量
人 教 A 版 数 学
且|b|=3 ,则b等于 ( A.(-3,6) C.(6,-3) B.(3,-6) D.(-6,3) )
人 教 A 版 数 学
[答案] A
第二章
平面向量
[ 解析 ]
a· b = |a||b|cos180° =- 12+(-2)2 ×3 5 =-
15,设 b=(x2,y2),则 a· b=1· x2+(-2)· y2=x2-2y2=-15, 所以选项 A 中(-3,6)满足 x2-2y2=-15,即(-3,6)=(x2, y2),故选 A.
第二章
平面向量
人 教 A 版 数 学
第二章
平面向量
[例1] 已知向量a=(3,4),b=(2,-1),如果向量a+ λb与向量-b互相垂直,则实数λ的值为 ( )
人 教 A 版 数 学
[分析] 利用向量线性运算和垂直的坐标表示求解.
人教A版高中数学必修四第二章2.6.2平面向量的数量积坐标表示课件
| b |2
0Байду номын сангаас
(a b) (a b)
(2)证明 | a b |
(a b)2
2
2
a 2a • b b
a b, a • b 0
| a b | | a |2 | b |2
同理 | a b |
(a b)2
2
a
2a
•b
2
b
| a |2 | b |2
| a b || a b |
| a || b |
cos
x1x2 y1 y2
x12 y12 x22 y22
例2,a (5, 7), b (6, 4) (1)求 | a |,| b |, (2)a与b是否垂直?若不垂直,求cos< a,b (3)(2a kb) (ka b),求k的值.
小结
• 1.利用向量方法解决几何问题步骤
2
a
|
a
|2
(4) cos a • b
| a || b |
长度问题 角度问题
例1、(1)非零向量a, b满足 | a || b |, 证明(a b) (a b)
(2)非零向量a, b满足a b, 证明 | a b || a b |
(1)证明 (a b) • (a
b)
2
a
2
b
|
a |2
平面向量数量积的应用的坐标表示:
已知 a (x1 ,y1)
b (x2 ,y2) ,则
(2) | a || b | a • b | a || b |
即 | a • b || a || b | | x1x2 y1 y2 | x12 y12 x22 y22
(4) cos a • b
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修4:第二章 平面向量导学案 2.4.2平面向量的数量积的坐标表
示 模 夹角
【学习目标】
1. 在坐标形式下,掌握平面向量数量积的运算公式及其变式(夹角公式);
2. 理解模长公式与解析几何中两点之间距离公式的一致性.
【学习过程】
一、自主学习 (一)知识链接:复习:1.向量a 与b 的数量积a b ⋅ = . 2.设a 、b 是非零向量,e 是与b 方向相同的单位向量,θ是a 与b 的夹角,则 ①a b a b ⊥⇔⋅= ;②a = ;③cos θ= .
(二)自主探究:(预习教材P106—P108) 探究:平面向量数量积的坐标表示 问题1:已知两个非零向量()()1122,,,a x y b x y == ,怎样用a 与b 的坐标表示a b ⋅ 呢?
1. 平面向量数量积的坐标表示
已知两个非零向量()()1122a=x y ,b=x y ,a b=⋅⋅⋅ (坐标形式)。
这就是说:(文字语言)两个向量的数量积等于 。
问题2:如何求向量(),a x y = 和两点()11,A x y ,()22,B x y 间的距离?
2.平面内两点间的距离公式 (1)设a=(x,y), 则2a = ________________或a ________________。
(2)若()11,A x y ,()22,B x y ,=___________________(平面内两点间的距离公式)。
问题3:如何求()()1122,,,a x y b x y == 的夹角θ和判断两个向量垂直?
3.两向量夹角的余弦:设θ是a 与b 的夹角,则cos θ=_________=_______________
向量垂直的判定:设()()1122a=x ,y ,b=x ,y , 则⇔⊥b a _________________
二、合作探究
1、已知()()(),4,1,2,3,1,2-C B A
(1)试判断ABC ∆的形状,并给出证明. (2)若ABDC 是矩形,求D 点的坐标。
2、已知()()
1,3,3,1==,求a 与b 的夹角θ.
变式:已知a=(3,0),b=(k,5)a b 且与的夹角为3,k=4
π则______________.
三、交流展示 1、若()4,3a =- ,()5,6b = ,则234a a b -⋅ = 2、已知()3,2a =-- ,
()4,b k =- ,若()()5355a b b a -⋅-=- ,试求k 的值.
3、已知,(1,2),(3,2)a b ==-
,当k 为何值时, (1)3ka b a b +- 与垂直?(2)3ka b a b +-
与平行吗?它们是同向还是反向?
四、达标检测(A 组必做,B 组选做) A 组:1. 已知()3,4a =- ,()5,2b = ,则a b ⋅ 等于( )
A.23
B.7
C.23-
D.7- 2. 若()3,4a =- ,()5,12b = ,则a 与b 夹角的余弦为( ) A.6365 B.3365 C.3365- D.6365- 3. ()2,3a = ,()2,4b =- ,则()()
a b a b +⋅- = ,
4.已知向量()1,2OA =- ,()3,OB m = ,若OA AB ⊥ ,则m = 。
5.已知四点()1,3A -,()1,1B ,()4,4C ,()3,5D 求证:四边形ABCD 是直角梯形.
B 组:1. 已知()3,4a =- ,()2,b x = ,()2,c y = ,且//a b ,a c ⊥ ,求: (1)b c ⋅ ; (2)b 、c 的夹角.
2. 已知点()1,2A 和()4,1B -,问能否在y 轴上找到一点C ,使90ACB ∠= ,若不能,说明理由;若能,求C 点坐标.
3. 已知=(3,-1),=⎝ ⎛⎭
⎪⎫12,32. (1)求证:⊥; (2)若存在不同时为0的实数k 和t ,使=+(t -3) ,=-k +t ,且⊥,试求函数关系式k =f (t );
(3)求函数k =f (t )的最小值.。