高中数学第三讲柯西不等式与排序不等式一二维形式的柯西不等式教案(含解析)新人教A版选修4_5

合集下载

高中数学第三讲柯西不等式与排序不等式二一般形式的柯西不等式学案新人教

高中数学第三讲柯西不等式与排序不等式二一般形式的柯西不等式学案新人教

二 一般形式的柯西不等式1.理解三维形式的柯西不等式,在此基础上,过渡到柯西不等式的一般形式. 2.会用三维形式及一般形式的柯西不等式证明有关不等式和求函数的最值等问题., [学生用书P43])1.三维形式的柯西不等式设a 1,a 2,a 3,b 1,b 2,b 3是实数,则(a 21+a 22+a 23)(b 21+b 22+b 23)≥(a 1b 1+a 2b 2+a 3b 3)2,当且仅当b i =0(i =1,2,3)或存在一个数k ,使得a i =kb i (i =1,2,3)时,等号成立.2.一般形式的柯西不等式设a 1,a 2,a 3,…,a n ,b 1,b 2,b 3,…,b n 是实数,则(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2,当且仅当b i =0(i =1,2,…,n )或存在一个数k ,使得a i =kb i (i =1,2,…,n )时,等号成立.1.判断(正确的打“√”,错误的打“×”)(1)二维形式的柯西不等式是一般形式的柯西不等式的特殊情况.( ) (2)三维形式的柯西不等式可以由空间向量的几何意义推导出来.( )(3)柯西不等式中的字母a ,b ,c ,…具有轮换对称性,按照一定顺序轮换,式子不变.( )(4)在应用柯西不等式时,不需要验证等号成立的条件.( ) 答案:(1)√ (2)√ (3)√ (4)×2.已知x ,y ,z >0,且x +y +z =1,则x 2+y 2+z 2的最小值是( ) A .1 B .13 C .12 D .3答案:B3.设a ,b ,c >0,且a +b +c =1,则a +b +c 的最大值是( ) A .1B . 3C .3D .9答案:B4.已知a ,b ,c ∈R ,a +2b +3c =6,则a 2+4b 2+9c 2的最小值为________. 解析:由柯西不等式,得(12+12+12)(a 2+4b 2+9c 2)≥(a +2b +3c )2,即a 2+4b 2+9c 2≥12,当a =2b =3c =2时,等号成立,所以a 2+4b 2+9c 2的最小值为12.答案:12利用柯西不等式证明不等式[学生用书P44](1)设a ,b ,c 为正数,求证a 2b +b 2c +c 2a≥a +b +c .(2)设a 1,a 2,…,a n 为实数,b 1,b 2,…,b n 为正实数,求证:a 21b 1+a 22b 2+…+a 2n b n ≥(a 1+a 2+…+a n )2b 1+b 2+…+b n. 【证明】 (1)⎝ ⎛⎭⎪⎫a 2b +b 2c +c 2a (a +b +c )=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a b 2+⎝ ⎛⎭⎪⎫b c 2+⎝ ⎛⎭⎪⎫c a 2[(b )2+(c )2+(a )2] ≥⎝ ⎛⎭⎪⎫a b ·b +b c ·c +c a ·a 2=(a +b +c )2,即⎝ ⎛⎭⎪⎫a 2b +b 2c +c 2a (a +b +c )≥(a +b +c )2. 因为a ,b ,c ∈R +,所以a +b +c >0,所以a 2b +b 2c +c 2a≥a +b +c .(2)⎝ ⎛⎭⎪⎫a 21b 1+a 22b 2+…+a 2n b n (b 1+b 2+…+b n )≥⎝ ⎛⎭⎪⎫a 1b 1·b 1+a 2b 2·b 2+…+a n b n ·b n 2=(a 1+a 2+…+a n )2.因为b 1,b 2,…,b n 为正实数, 所以b 1+b 2+…+b n >0.所以a 21b 1+a 22b 2+…+a 2nb n ≥(a 1+a 2+…+a n )2b 1+b 2+…+b n.当且仅当a 1b 1=a 2b 2=…=a n b n时,等号成立.利用柯西不等式证明不等式时常用的技巧(1)构造符合柯西不等式的形式及条件,可以巧拆常数. (2)构造符合柯西不等式的形式及条件,可以重新安排各项的次序.(3)构造符合柯西不等式的形式及条件,可以改变式子的结构,从而达到使用柯西不等式的目的.(4)构造符合柯西不等式的形式及条件,可以添项.1.已知正数a ,b ,c ,求证:b 2c 2+c 2a 2+a 2b 2a +b +c≥abc .证明:构造两组数ab ,bc ,ca ;ca ,ab ,bc , 则由柯西不等式得a 2b 2+b 2c 2+c 2a 2·c 2a 2+a 2b 2+b 2c 2≥ab ·ca +bc ·ab +ca ·bc , 即b 2c 2+c 2a 2+a 2b 2≥abc (a +b +c ).于是b 2c 2+c 2a 2+a 2b 2a +b +c≥abc .2.已知a ,b ,c ∈R ,a 2+b 2+c 2=1. 求证:|a +b +c |≤ 3. 证明:由柯西不等式,得(a +b +c )2≤(12+12+12)(a 2+b 2+c 2)=3. 所以-3≤a +b +c ≤3, 所以|a +b +c |≤ 3.用三维形式柯西不等式求最值[学生用书P44]设a ,b ,c 为正数,且a +2b +3c =13,求3a +2b +c 的最大值.【解】 因为(a +2b +3c )⎣⎢⎡⎦⎥⎤(3)2+12+⎝ ⎛⎭⎪⎫132≥⎝⎛⎭⎪⎫a ×3+2b ×1+3c ×132=(3a +2b +c )2,所以(3a +2b +c )2≤13×⎝⎛⎭⎪⎫3+1+13=1323.所以3a +2b +c ≤1333,当且仅当a3=2b 1=3c 13时,等号成立. 又a +2b +3c =13,所以当a =9,b =32,c =13时,(3a +2b+c )max =1333.利用柯西不等式求最值的方法技巧利用柯西不等式可求某些含有约束条件的多变量函数的最值问题,其关键是对原目标函数通过巧变结构、巧拆常数、巧换位置、巧添项等技巧以保证柯西不等式的结构特征且出现常数结果,同时要注意等号成立的条件.设2x +3y +5z =29,求函数μ=2x +1+3y +4+5z +6的最大值.解:根据柯西不等式,有(2x +1·1+3y +4·1+5z +6·1)2≤[(2x +1)+(3y +4)+(5z +6)]·(1+1+1) =3×(2x +3y +5z +11) =3×40 =120.故2x +1+3y +4+5z +6≤230, 当且仅当2x +1=3y +4=5z +6, 即x =376,y =289,z =2215时等号成立.此时μmax=230.1.对柯西不等式一般形式的说明一般形式的柯西不等式是二维形式 、三维形式、四维形式的柯西不等式的归纳与推广,其特点可类比二维形式的柯西不等式来总结,左边是平方和的积,右边是积的和的平方.运用时的关键是构造出符合柯西不等式的结构形式.2.一般形式柯西不等式成立的条件由柯西不等式的证明过程可知Δ=0⇔f (x )min =0⇔a 1x -b 1=a 2x -b 2=…=a n x -b n =0⇔b 1=b 2=…=b n =0,或a 1b 1=a 2b 2=…=a n b n.【规范解答】 构造三维柯西不等式求最值(本题满分7分)已知a >0,b >0,c >0,函数f (x )=|x +a |+|x -b |+c 的最小值为4.(1)求a +b +c 的值; (2)求14a 2+19b 2+c 2的最小值.【解】 (1)因为f (x )=|x +a |+|x -b |+c ≥|(x +a )-(x -b )|+c =|a +b |+c , 当且仅当-a ≤x ≤b 时,等号成立. 又a >0,b >0,所以|a +b |=a +b , 所以f (x )的最小值为a +b +c .又已知f (x )的最小值为4,所以a +b +c =4.(3分) (2)由(1)知a +b +c =4,由柯西不等式,得(14a 2+19b 2+c 2)(4+9+1)≥(a 2×2+b 3×3+c ×1)2=(a +b +c )2=16,即14a 2+19b 2+c 2≥87. (5分)当且仅当12a 2=13b 3=c 1,即a =87,b =187,c =27时等号成立,故14a 2+19b 2+c 2的最小值是87.(7分)(1)结合本题特征,用绝对值三角不等式求函数f (x )=|x +a |+|x -b |+c 的最小值简单快捷非常方便,此外本题也可作出函数f (x )的图象,利用数形结合思想方法求解.(2)本题第(2)问的求解显然需要构造三维形式柯西不等式的条件及结构特点,因为现有的两组数为⎝ ⎛⎭⎪⎫14a 2,19b 2,c 2和(a ,b ,c ),因此需构造一组常数(4,9,1)才能符合三维柯西不等式的条件.1.若x ,y ,z ∈R ,x 2+y 2+z 2=1,求m =2x +2y +5z 的最大值.解:由柯西不等式得(x 2+y 2+z 2)[(2)2+(2)2+(5)2]≥(2x +2y +5z )2, 当且仅当x2=y2=z5时,等号成立,所以-3≤2x +2y +5z ≤3,因此m 的最大值为3.2.已知α1,α2,…,αn 是平面凸n 边形的内角的弧度数,求证:1α1+1α2+…+1αn≥n 2(n -2)π.证明:由柯西不等式,得(α1+α2+…+αn )(1α1+1α2+…+1αn)≥(α1·1α1+α2·1α2+…+αn ·1αn)2=n 2. 因为α1+α2+…+αn =(n -2)π, 所以1α1+1α2+…+1αn ≥n 2(n -2)π,当且仅当α1=α2=…=αn =n -2nπ时,等号成立.精美句子1、善思则能“从无字句处读书”。

新人教A版高中数学第三讲柯西不等式与排序不等式一般形式的柯西不等式教案选修

新人教A版高中数学第三讲柯西不等式与排序不等式一般形式的柯西不等式教案选修

一、教学目标1.掌握三维形式和多维形式的柯西不等式.2.会利用一般形式的柯西不等式解决简单问题.二、课时安排1课时三、教学重点1.掌握三维形式和多维形式的柯西不等式.2.会利用一般形式的柯西不等式解决简单问题.四、教学难点1.掌握三维形式和多维形式的柯西不等式.2.会利用一般形式的柯西不等式解决简单问题.五、教学过程(一)导入新课已知实数x,y,z满足x+2y+z=1,求t=x2+4y2+z2的最小值.【解】由柯西不等式得(x2+4y2+z2)(1+1+1)≥(x+2y+z)2.∵x+2y+z=1,∴3(x2+4y2+z2)≥1,即x2+4y2+z2≥错误!.当且仅当x=2y=z=错误!,即x=错误!,y=错误!,z=错误!时等号成立.故x2+4y2+z2的最小值为错误!.(二)讲授新课教材整理1三维形式的柯西不等式设a1,a2,a3,b1,b2,b3∈R,则(a错误!+a错误!+a错误!)·(b错误!+b错误!+b错误!)≥.当且仅当或存在一个数k,使得a i=kb i(i=1,2,3)时,等号成立.我们把该不等式称为三维形式的柯西不等式.教材整理2一般形式的柯西不等式设a1,a2,a3,…,a n,b1,b2,b3,…,b n是实数,则(a错误!+a错误!+…+a错误!)(b错误!+b错误!+…+b错误!)≥ .当且仅当b i=0(i=1,2,…,n)或存在一个数k,使得a i=(i=1,2,…,n)时,等号成立.(三)重难点精讲题型一、利用柯西不等式求最值例1已知a,b,c∈(0,+∞),错误!+错误!+错误!=2,求a+2b+3c的最小值及取得最小值时a,b,c的值.【精彩点拨】由于错误!+错误!+错误!=2,可考虑把已知条件与待求式子结合起来,利用柯西不等式求解.【自主解答】∵a,b,c∈(0,+∞),∴错误!·(a+2b+3c)=[错误!错误!+错误!错误!+错误!错误!][(错误!)2+(错误!)2+(错误!)2]≥错误!错误!=(1+2+3)2=36.又错误!+错误!+错误!=2,∴a+2b+3c≥18,当且仅当a=b=c=3时等号成立,综上,当a=b=c=3时,a+2b+3c取得最小值18.规律总结:利用柯西不等式求最值时,关键是对原目标函数进行配凑,以保证出现常数结果.同时,要注意等号成立的条件.[再练一题]1.已知x+4y+9z=1,求x2+y2+z2的最小值.【解】由柯西不等式,知(x+4y+9z)2≤(12+42+92)(x2+y2+z2)=98(x2+y2+z2).又x+4y+9z=1,∴x2+y2+z2≥错误!,(*)当且仅当x=错误!=错误!时,等号成立,∴x=错误!,y=错误!,z=错误!时,(*)取等号.因此,x2+y2+z2的最小值为错误!.题型二、运用柯西不等式求参数的取值范围例2已知正数x,y,z满足x+y+z=xyz,且不等式错误!+错误!+错误!≤λ恒成立,求λ的取值范围.【精彩点拨】“恒成立”问题需求错误!+错误!+错误!的最大值,设法应用柯西不等式求最值.【自主解答】∵x>0,y>0,z>0.且x+y+z=xyz.∴错误!+错误!+错误!=1.又错误!+错误!+错误!≤错误!错误!=错误!错误!≤错误!当且仅当x=y=z,即x=y=z=错误!时等号成立.∴错误!+错误!+错误!的最大值为错误!.故错误!+错误!+错误!≤λ恒成立时,应有λ≥错误!.因此λ的取值范围是错误!.规律总结:应用柯西不等式,首先要对不等式形式、条件熟练掌握,然后根据题目的特点“创造性”应用定理.[再练一题]2.已知实数a,b,c,d满足a+b+c+d=3,a2+2b2+3c2+6d2=5,试求a的取值范围.【解】由a+b+c+d=3,得b+c+d=3—a,由a2+2b2+3c2+6d2=5,得2b2+3c2+6d2=5—a2,(2b2+3c2+6d2)错误!≥(b+c+d)2,即2b2+3c2+6d2≥(b+c+d)2.由条件可得,5—a2≥(3—a)2,解得1≤a≤2,所以实数a的取值范围是[1,2].题型三、利用柯西不等式证明不等式例3已知a,b,c∈R+,求证:错误!错误!+错误!+错误!≥9.【精彩点拨】对应三维形式的柯西不等式,a1=错误!,a2=错误!,a3=错误!,b1=错误!,b2=错误!,b3=错误!,而a1b1=a2b2=a3b3=1,因而得证.【自主解答】∵a,b,c∈R+,由柯西不等式,知错误!错误!=[错误!错误!+错误!错误!+错误!错误!]×[错误!错误!+错误!错误!+错误!错误!]≥错误!错误!=(1+1+1)2=9,∴错误!错误!≥9.规律总结:1.当a i,b i是正数时,柯西不等式变形为(a1+a2+…+a n)(b1+b2+…+b n)≥(错误!+错误!+…+错误!)2.2.本题证明的关键在于构造两组数,创造使用柯西不等式的条件.在运用柯西不等式时,要善于从整体上把握柯西不等式的结构特征,正确配凑出公式两侧的数组.[再练一题]3.已知函数f(x)=m—|x—2|,m∈R,且f(x+2)≥0的解集为[—1,1].(1)求m的值;(2)若a,b,c∈R+,且错误!+错误!+错误!=m,求证:a+2b+3c≥9.【解】(1)因为f(x+2)=m—|x|,f(x+2)≥0等价于|x|≤m.由|x|≤m有解,得m≥0,且其解集为{x|—m≤x≤m}.又f(x+2)≥0的解集为[—1,1],故m=1.(2)证明:由(1)知错误!+错误!+错误!=1.又a,b,c∈R+,由柯西不等式得a+2b+3c =(a+2b+3c)错误!≥错误!错误!=9.(四)归纳小结一般形式的柯西不等式—错误!(五)随堂检测1.设a=(—2,1,2),|b|=6,则a·b的最小值为()A.18 B.6 C.—18 D.12【解析】|a·b|≤|a||b|,∴|a·b|≤18.∴—18≤a·b≤18,当a,b反向时,a·b最小,最小值为—18.【答案】C2.若a错误!+a错误!+…+a错误!=1,b错误!+b错误!+…+b错误!=4,则a1b1+a2b2+…+a n b n的取值范围是()A.(—∞,2)B.[—2,2] C.(—∞,2] D.[—1,1]【解析】∵(a错误!+a错误!+…+a错误!)(b错误!+b错误!+…+b错误!)≥(a1b1+a2b2+…+a n b n)2,∴(a1b1+a2b2+…+a n b n)2≤4,∴|a1b1+a2b2+…+a n b n|≤2,即—2≤a1b1+a2b2+…+a n b n≤2,当且仅当a i=错误!b i(i=1,2,…,n)时,右边等号成立;当且仅当a i=—错误!b i(i=1,2,…,n)时,左边等号成立,故选B.【答案】B3.设a,b,m,n∈R,且a2+b2=5,ma+nb=5,则错误!的最小值为________.【解析】根据柯西不等式(ma+nb)2≤(a2+b2)(m2+n2),得25≤5(m2+n2),m2+n2≥5,错误!的最小值为错误!.【答案】错误!六、板书设计3.2一般形式的柯西不等式七、作业布置同步练习:3.2一般形式的柯西不等式八、教学反思。

高中数学 第三讲《柯西不等式与排序不等式》教案(1) 新人教版选修4-5

高中数学 第三讲《柯西不等式与排序不等式》教案(1) 新人教版选修4-5

第一课时 3.1 二维形式的柯西不等式(一)教学要求:认识二维柯西不等式的几种形式,理解它们的几何意义, 并会证明二维柯西不等式及向量形式.教学重点:会证明二维柯西不等式及三角不等式. 教学难点:理解几何意义.教学过程:一、复习准备:1. 提问: 二元均值不等式有哪几种形式?答案:(0,0)2a ba b +≥>>及几种变式. 2. 练习:已知a 、b 、c 、d 为实数,求证22222()()()a b c d ac bd ++≥+证法:(比较法)22222()()()a b c d ac bd ++-+=….=2()0ad bc -≥二、讲授新课:1. 教学柯西不等式:① 提出定理1:若a 、b 、c 、d 为实数,则22222()()()a b c d ac bd ++≥+. → 即二维形式的柯西不等式 → 什么时候取等号? ② 讨论:二维形式的柯西不等式的其它证明方法? 证法二:(综合法)222222222222()()a b c d a c a d b c b d ++=+++222()()()ac bd ad bc ac bd =++-≥+. (要点:展开→配方)证法三:(向量法)设向量(,)m a b =,(,)n c d =,则22||m a b =+,2||n c d =+∵m n ac bd •=+,且||||cos ,m n m n m n =<>,则||||||m n m n ≤. ∴….. 证法四:(函数法)设22222()()2()f x a b x ac bd x c d =+-+++,则22()()()f x ax c bx d =-+-≥0恒成立.∴22222[2()]4()()ac bd a b c d ∆=-+-++≤0,即….. ③ 讨论:二维形式的柯西不等式的一些变式? 222||c d ac bd +≥+ 或222||||c d ac bd +≥+222c d ac bd +≥+.④ 提出定理2:设,αβ是两个向量,则||||||αβαβ≤. 即柯西不等式的向量形式(由向量法提出 )→ 讨论:上面时候等号成立?(β是零向量,或者,αβ共线)⑤ 练习:已知a 、b 、c 、d . 证法:(分析法)平方 → 应用柯西不等式 → 讨论:其几何意义?(构造三角形) 2. 教学三角不等式:① 出示定理3:设1122,,,x y x y R ∈分析其几何意义 → 如何利用柯西不等式证明→ 变式:若112233,,,,,x y x y x y R ∈,则结合以上几何意义,可得到怎样的三角不等式? 3. 小结:二维柯西不等式的代数形式、向量形式;三角不等式的两种形式(两点、三点)三、巩固练习:1. 练习:试写出三维形式的柯西不等式和三角不等式2. 作业:教材P 37 4、5题.第二课时 3.1 二维形式的柯西不等式(二)教学要求:会利用二维柯西不等式及三角不等式解决问题,体会运用经典不等式的一般方法——发现具体问题与经典不等式之间的关系,经过适当变形,依据经典不等式得到不等关系. 教学重点:利用二维柯西不等式解决问题. 教学难点:如何变形,套用已知不等式的形式.教学过程:一、复习准备:1. 提问:二维形式的柯西不等式、三角不等式? 几何意义?答案:22222()()()a b c d ac bd ++≥+2. 讨论:如何将二维形式的柯西不等式、三角不等式,拓广到三维、四维?3. 如何利用二维柯西不等式求函数y =? 要点:利用变式222||ac bd c d +≤+.二、讲授新课:1. 教学最大(小)值:① 出示例1:求函数y =分析:如何变形? → 构造柯西不等式的形式 → 板演→ 变式:y =→ 推广:,,,,,)y a b c d e f R +=∈ ② 练习:已知321x y +=,求22x y +的最小值.解答要点:(凑配法)2222222111()(32)(32)131313x y x y x y +=++≥+=. 讨论:其它方法 (数形结合法) 2. 教学不等式的证明:① 出示例2:若,x y R +∈,2x y +=,求证:112x y+≥.分析:如何变形后利用柯西不等式? (注意对比 → 构造)要点:2222111111()()]22x y x y x y +=++=++≥… 讨论:其它证法(利用基本不等式)② 练习:已知a 、b R +∈,求证:11()()4a b a b++≥.3. 练习:① 已知,,,x y a b R +∈,且1a bx y+=,则x y +的最小值.要点:()()a bx y x y x y+=++=…. → 其它证法② 若,,x y z R +∈,且1x y z ++=,求222x y z ++的最小值. (要点:利用三维柯西不等式)变式:若,,x y z R +∈,且1x y z ++=.3. 小结:比较柯西不等式的形式,将目标式进行变形,注意凑配、构造等技巧.三、巩固练习:1. 练习:教材P 37 8、9题2. 作业:教材P 37 1、6、7题第三课时 3.2 一般形式的柯西不等式教学要求:认识一般形式的柯西不等式,会用函数思想方法证明一般形式的柯西不等式,并应用其解决一些不等式的问题.教学重点:会证明一般形式的柯西不等式,并能应用. 教学难点:理解证明中的函数思想.教学过程:一、复习准备: 1. 练习:2. 提问:二维形式的柯西不等式?如何将二维形式的柯西不等式拓广到三维?答案:22222()()()a b c d ac bd ++≥+;2222222()()()a b c d e f ad be cf ++++≥++二、讲授新课:1. 教学一般形式的柯西不等式:① 提问:由平面向量的柯西不等式||||||αβαβ≤,如果得到空间向量的柯西不等式及代数形式?② 猜想:n 维向量的坐标?n 维向量的柯西不等式及代数形式? 结论:设1212,,,,,,,n n a a a b b b R ∈,则222222212121122()()()n n n n a a a b b b a b a b a b +++++≥+++讨论:什么时候取等号?(当且仅当1212n na a ab b b ===时取等号,假设0i b ≠)联想:设1122n n B a b a b a b =+++,22212n A a a a =++,22212n C b b b =+++,则有20B AC -≥,可联想到一些什么?③ 讨论:如何构造二次函数证明n 维形式的柯西不等式? (注意分类)要点:令2222121122)2()n n n f x a a a x a b a b a b x =++⋅⋅⋅++++⋅⋅⋅+()(22212()n b b b +++⋅⋅⋅+ ,则 2221122()()())0n n f x a x b a x b a x b =++++⋅⋅⋅+≥+(.又222120n a a a ++⋅⋅⋅+>,从而结合二次函数的图像可知,[]22221122122()4()n n n a b a b a b a a a ∆=+++-++22212()n b b b +++≤0即有要证明的结论成立. (注意:分析什么时候等号成立.)④ 变式:222212121()n n a a a a a a n++≥++⋅⋅⋅+. (讨论如何证明)2. 教学柯西不等式的应用:① 出示例1:已知321x y z ++=,求222x y z ++的最小值.分析:如何变形后构造柯西不等式? → 板演 → 变式:② 练习:若,,x y z R +∈,且1111x y z ++=,求23y zx ++的最小值.③ 出示例2:若a >b >c ,求证:ca cb b a -≥-+-411. 要点:21111()()[()()]()(11)4a c a b b c a b b c a b b c-+=-+-+≥+=---- 3. 小结:柯西不等式的一般形式及应用;等号成立的条件;根据结构特点构造证明.三、巩固练习:1. 练习:教材P 41 4题2. 作业:教材P 41 5、6题第四课时 3.3 排序不等式教学要求:了解排序不等式的基本形式,会运用排序不等式分析解决一些简单问题,体会运用经典不等式的一般方法.教学重点:应用排序不等式证明不等式. 教学难点:排序不等式的证明思路.教学过程:一、复习准备:1. 提问: 前面所学习的一些经典不等式? (柯西不等式、三角不等式)2. 举例:说说两类经典不等式的应用实例. 二、讲授新课:1. 教学排序不等式: ① 看书:P 42~P 44.② 提出排序不等式(即排序原理): 设有两个有序实数组:12a a ≤≤···n a ≤;12b b ≤≤···n b ≤.12,,c c ···n c 是12,b b ,···,n b 的任一排列,则有1122a b a b ++···+n n a b (同序和) 1122a c a c ≥++···+n n a c (乱序和) 121n n a b a b -≥++···+1n a b (反序和) 当且仅当12a a ==···=n a 或12b b ==···=n b 时,反序和等于同序和. (要点:理解其思想,记住其形式) 2. 教学排序不等式的应用:① 出示例1:设12,,,n a a a ⋅⋅⋅是n 个互不相同的正整数,求证:32122211112323n a a a a n n +++⋅⋅⋅+≤+++⋅⋅⋅+. 分析:如何构造有序排列? 如何运用套用排序不等式? 证明过程:设12,,,n b b b ⋅⋅⋅是12,,,n a a a ⋅⋅⋅的一个排列,且12n b b b <<⋅⋅⋅<,则121,2,,n b b b n ≥≥⋅⋅⋅≥.又222111123n>>>⋅⋅⋅>,由排序不等式,得3322112222222323n n a a b b a b a b n n +++⋅⋅⋅+≥+++⋅⋅⋅+≥… 小结:分析目标,构造有序排列. ② 练习:已知,,a b c 为正数,求证:3332222()()()()a b c a b c b a c c a b ++≥+++++. 解答要点:由对称性,假设a b c ≤≤,则222a b c ≤≤,于是 222222a a b b c c a c b a c b ++≥++,222222a a b b c c a b b c c a ++≥++, 两式相加即得.3. 小结:排序不等式的基本形式.三、巩固练习:1. 练习:教材P 45 1题2. 作业:教材P 45 3、4题。

人教版高中选修4-5第三讲柯西不等式与排序不等式课程设计

人教版高中选修4-5第三讲柯西不等式与排序不等式课程设计

人教版高中选修4-5第三讲柯西不等式与排序不等式课程设计
一、课程目标
1.1 掌握柯西不等式的概念及其意义;
1.2 学会在实际问题中应用柯西不等式;
1.3 掌握排序不等式的概念及应用;
1.4 学会在实际问题中应用排序不等式。

二、教学内容
2.1 柯西不等式的概念与应用;
2.2 排序不等式的概念与应用;
2.3 利用柯西不等式、排序不等式解决实际问题。

三、教学重点与难点
3.1 教学重点:柯西不等式、排序不等式的概念及应用。

3.2 教学难点:如何在实际问题中应用柯西不等式、排序不等式。

四、教学过程设计
教学环节教学内容教学目标与要

教师活动与学生活动
1。

5.4柯西不等式与排序不等式 课件(人教A版选修4-5)

5.4柯西不等式与排序不等式 课件(人教A版选修4-5)
(a b) (c d ) ( ac bd ) 2 (a, b, c, d为非负实数)。
向量形式: m (a, b), n (c, d ) m n | m | | n | cos m n ac bd 2 2 | m | a b 2 2 | n | c d | m n || m | | n | | cos || m | | n |
2 1 2 2 2 n 1 2 n
y
P1(x1,y1)
y P1(x1,y1) 0
0
P2(x2,y2) x
x P2(x2,y2)
根据两点间距离公式以及三角形的 边长关系:
x y x y ( x1 x2 ) ( y1 y2 )
2 1 2 1 2 2 2 2 2
2
定理3(二维形式的三角不等式) 设 x , y , x , y R ,那么 1 2 1 2
即可
三 排序不等式
定理(排序不等式,又称排序定理) 设a1 a2 ... an,b1 b2 ... bn为两组 实数c1 , c2 是b1 , b2 ...bn的任一排列, 那么: a1bn a2bn 1 ... anb1 a1c1 a2 c2 ... an cn a1b1 a2b2 ... anb.n 当且仅当a1 a2 ... an或b1 b2 ... bn时, 反序和等于顺序和。
练习
1.设a1 , a2 ,..., an为实数,证明: a1c1 a2c2 ... an cn a a ... a ,
2 1 2 2 2 n
其中c1 , c2 ,..., cn是a1 , a2 ,..., an的任一排列。

高中数学第三讲柯西不等式与排序不等式3.3排序不等式教案新人教A版选修4_5

高中数学第三讲柯西不等式与排序不等式3.3排序不等式教案新人教A版选修4_5

3.3排序不等式一、教学目标1.了解排序不等式的数学思想和背景.2.理解排序不等式的结构与基本原理,会用排序不等式解决简单的不等式问题.二、课时安排1课时三、教学重点1.了解排序不等式的数学思想和背景.2.理解排序不等式的结构与基本原理,会用排序不等式解决简单的不等式问题.四、教学难点1.了解排序不等式的数学思想和背景.2.理解排序不等式的结构与基本原理,会用排序不等式解决简单的不等式问题.五、教学过程(一)导入新课某班学生要开联欢会,需要买价格不同的礼品4件,5件和2件.现在选择商店中单价分别为3元,2元和1元的礼品,则至少要花________元,最多要花________元.【解析】取两组实数(2,4,5)和(1,2,3),则顺序和为2×1+4×2+5×3=25,反序和为2×3+4×2+5×1=19.所以最少花费为19元,最多花费为25元.【答案】19 25(二)讲授新课教材整理1 顺序和、乱序和、反序和的概念设a1≤a2≤a3≤…≤a n,b1≤b2≤b3≤…≤b n为两组实数,c1,c2,…,c n是b1,b2,…,b n的任一排列,则称a i与b i(i=1,2,…,n)的相同顺序相乘所得积的和为顺序和,和为乱序和,相反顺序相乘所得积的和称为反序和.教材整理2 排序不等式设a1≤a2≤…≤a n,b1≤b2≤…≤b n为两组实数,c1,c2,…,c n是b1,b2,…,b n的任一排列,则≤≤,当且仅当a1=a2=…=a n或b1=b2=…=b n时,反序和等于顺序和,此不等式简记为≤≤顺序和.(三)重难点精讲题型一、用排序不等式证明不等式(字母大小已定) 例1已知a ,b ,c 为正数,a ≥b ≥c ,求证: (1)1bc ≥1ca ≥1ab;(2)a 2b 2c 2+b 2c 2a 2+c 2a 2b 2≥1a 2+1b 2+1c2. 【精彩点拨】 由于题目条件中已明确a ≥b ≥c ,故可以直接构造两个数组. 【自主解答】 (1)∵a ≥b >0,于是1a ≤1b.又c >0,∴1c >0,从而1bc ≥1ca ,同理,∵b ≥c >0,于是1b ≤1c, ∴a >0,∴1a >0,于是得1ca ≥1ab,从而1bc ≥1ca ≥1ab.(2)由(1)知1bc ≥1ca ≥1ab>0且a ≥b ≥c >0,∴1b 2c2≥1c 2a2≥1a 2b2,a 2≥b 2≥c 2.由排序不等式,顺序和≥乱序和得a 2b 2c 2+b 2c 2a 2+c 2a 2b 2≥b 2b 2c 2+c 2c 2a 2+a 2a 2b 2=1c 2+1a 2+1b 2=1a 2+1b 2+1c 2, 故a 2b 2c 2+b 2c 2a 2+c 2a 2b 2≥1a 2+1b 2+1c2. 规律总结:利用排序不等式证明不等式的技巧在于仔细观察、分析所要证明的式子的结构,从而正确地构造出不等式中所需要的带有大小顺序的两个数组.[再练一题]1.本例题中条件不变,求证:a 5b 3c 3+b 5c 3a 3+c 5a 3b 3≥c 2a 3+a 2b 3+b 2c3.【证明】 ∵a ≥b ≥c ≥0, ∴a 5≥b 5≥c 5, 1c ≥1b ≥1a>0.∴1bc ≥1ac ≥1ba,∴1b 3c3≥1a 3c3≥1b 3a 3,由顺序和≥乱序和得a 5b 3c 3+b 5a 3c 3+c 5b 3a 3≥b 5b 3c 3+c 5a 3c 3+a 5b 3a 3 =b 2c 3+c 2a 3+a 2b3, ∴a 5b 3c 3+b 5a 3c 3+c 5b 3a 3≥c 2a 3+a 2b 3+b 2c3. 题型二、字母大小顺序不定的不等式证明例2设a ,b ,c 为正数,求证:a 2+b 22c +b 2+c 22a +c 2+a 22b ≤a 3bc +b 3ca +c 3ab.【精彩点拨】 (1)题目涉及到与排序有关的不等式;(2)题目中没有给出a ,b ,c 的大小顺序.解答本题时不妨先设定a ≤b ≤c ,再利用排序不等式加以证明.【自主解答】 不妨设0<a ≤b ≤c ,则a 3≤b 3≤c 3, 0<1bc ≤1ca ≤1ab,由排序原理:乱序和≤顺序和,得a 3·1ca +b 3·1ab +c 3·1bc ≤a 3·1bc +b 3·1ca +c 3·1ab ,a 3·1ab +b 3·1bc +c 3·1ca ≤a 3·1bc +b 3·1ca +c 3·1ab. 将上面两式相加得a 2+b 2c +b 2+c 2a +c 2+a 2b ≤2⎝ ⎛⎭⎪⎫a 3bc +b 3ca +c 3ab , 将不等式两边除以2,得a 2+b 22c +b 2+c 22a +c 2+a 22b ≤a 3bc +b 3ca +c 3ab.规律总结:在排序不等式的条件中需要限定各数值的大小关系,对于没有给出大小关系的情况:(1)要根据各字母在不等式中地位的对称性,限定一种大小关系.(2)若给出的字母不具有对称性,一定不能直接限定字母的大小顺序,而要根据具体环境分类讨论.[再练一题]2.设a 1,a 2,…,a n 为正数,求证:a 21a 2+a 22a 3+…+a 2n -1a n +a 2na 1≥a 1+a 2+…+a n .【证明】 不妨设0<a 1≤a 2≤…≤a n ,则a 21≤a 22≤…≤a 2n ,1a 1≥1a 2≥…≥1a n.由排序不等式知,乱序和不小于反序和,所以a 21a 2+a 22a 3+…+a 2n -1a n +a 2n a 1≥a 21·1a 1+a 22·1a 2+…+a 2n ·1a n ,即 a 21a 2+a 22a 3+…+a 2n -1a n +a 2n a 1≥a 1+a 2+…+a n . 题型三、利用排序不等式求最值例3 设A ,B ,C 表示△ABC 的三个内角,a ,b ,c 表示其对边,求aA +bB +cCa +b +c的最小值(A ,B ,C 用弧度制表示).【精彩点拨】 不妨设a ≥b ≥c >0,设法构造数组,利用排序不等式求解. 【自主解答】 不妨设a ≥b ≥c , 则A ≥B ≥C . 由排序不等式,得aA +bB +cC =aA +bB +cC , aA +bB +cC ≥bA +cB +aC , aA +bB +cC ≥cA +aB +bC ,将以上三式相加,得3(aA +bB +cC )≥(a +b +c )·(A +B +C )=π(a +b +c ), 当且仅当A =B =C =π3时,等号成立.∴aA +bB +cC a +b +c ≥π3,即aA +bB +cC a +b +c 的最小值为π3.规律总结:1.分析待求函数的结构特征,构造两个有序数组.2.运用排序原理求最值时,一定要验证等号是否成立,若等号不成立,则取不到最值. [再练一题]3.已知x ,y ,z 是正数,且x +y +z =1,求t =x 2y +y 2z +z 2x的最小值.【解】 不妨设x ≥y ≥z >0,则x 2≥y 2≥z 2,1z ≥1y ≥1x.由排序不等式,乱序和≥反序和.x 2y +y 2z +z 2x≥x 2·1x +y 2·1y +z 2·1z=x +y +z .又x +y +z =1,x 2y +y 2z +z 2x≥1,当且仅当x =y =z =13时,等号成立.故t =x 2y +y 2z +z 2x的最小值为1.题型四、利用排序不等式求解简单的实际问题例4 若某网吧的3台电脑同时出现了故障,对其维修分别需要45 min,25 min 和30 min ,每台电脑耽误1 min ,网吧就会损失0.05元.在只能逐台维修的条件下,按怎样的顺序维修,才能使经济损失降到最小?【精彩点拨】 这是一个实际问题,需要转化为数学问题.要使经济损失降到最小,即三台电脑维修的时间与等候的总时间之和最小,又知道若维修第一台用时间t 1 min 时,三台电脑等候维修的总时间为3t 1 min ,依此类推,等候的总时间为3t 1+2t 2+t 3 min ,求其最小值即可.【自主解答】 设t 1,t 2,t 3为25,30,45的任一排列, 由排序原理知3t 1+2t 2+t 3≥3×25+2×30+45=180(min), 所以按照维修时间由小到大的顺序维修,可使经济损失降到最小. 规律总结:1.首先理解题意,实际问题数学化,建立恰当模型.2.三台电脑的维修时间3t 1+2t 2+t 3就是问题的数学模型,从而转化为求最小值(运用排序原理).[再练一题]4.有5个人各拿一只水桶到水龙头接水,如果水龙头注满这5个人的水桶需要时间分别是4 min,8 min,6 min,10 min,5 min ,那么如何安排这5个人接水的顺序,才能使他们等待的总时间最少?【解】 根据排序不等式的反序和最小,可得最少时间为4×5+5×4+6×3+8×2+10×1=84(min).即按注满时间为4 min,5 min,6 min,8 min,10 min 依次等水,等待的总时间最少. (四)归纳小结排序不等式—⎪⎪⎪—反序和、乱序和、顺序和—排序原理—排序原理的应用(五)随堂检测1.已知x≥y,M=x4+y4,N=x3y+y3x,则M与N的大小关系是( )A.M>N B.M≥N C.M<N D.M≤N【解析】由排序不等式,知M≥N.【答案】 B2.设a,b,c为正数,P=a3+b3+c3,Q=a2b+b2c+c2a,则P与Q的大小关系是( ) A.P>Q B.P≥Q C.P<Q D.P≤Q【答案】 B3.已知两组数1,2,3和4,5,6,若c1,c2,c3是4,5,6的一个排列,则c1+2c2+3c3的最大值是________,最小值是________.【解析】由排序不等式,顺序和最大,反序和最小,∴最大值为1×4+2×5+3×6=32,最小值为1×6+2×5+3×4=28.【答案】32 28六、板书设计七、作业布置八、教学反思。

第三讲柯西不等式的基本方法与排序不等式(柯西不等式的一般形式)

第三讲柯西不等式的基本方法与排序不等式(柯西不等式的一般形式)

作业:P41
2、 4、 5、 6
问题:已知A、B都是锐角, 且cosA+cosB-cos(A+B)=
2 3
,
求A、B的值
当且仅当bi=0(i=1 ,2 ,3 , …,n)或
bi≠0(i=1 ,2 ,3 , … ,n)时,
等号成立.
a1 a 2 = = b1 b2
an = bb

问题:已知a1 ,a 2 , a n ∈ R +,求证 n 1 1 + + a1 a 2 a1 + a 2 + ≤ 1 n + an + an
使得ai=kbi(i=1 ,2 ,3 , … ,n)时,等号成立.
注:简记;积和方不大于方和积
定理:设a1,a2 ,a3 , … ,an ,b1 ,b2 ,b3 , …,bn 是实数,则
2 2 2 2 2 3 2 2 (a1 +a2 +a + +a )(b + b + b + + b ) (a b +a b + +a b ) 2 3 n 1 2 3 n 1 1 2 2 n n
定理:设a1,a2 ,a3 , … ,an ,b1 ,b2 ,b3 , …,bn 是实数,则
2 2 2 2 2 3 2 2 (a1 +a2 +a + +a )(b + b + b + + b ) (a b +a b + +a b ) 2 3 n 1 2 3 n 1 1 2 2 n n
当且仅当bi=0(i=1 ,2 ,3 , …,n)或存在一个数k
+a

高中数学 第三讲 柯西不等式与排序不等式 3.1 二维形式的柯西不等式 3.2 一般形式的柯西不等式素材1 新人教

高中数学 第三讲 柯西不等式与排序不等式 3.1 二维形式的柯西不等式 3.2 一般形式的柯西不等式素材1 新人教

二 一般形式的柯西不等式庖丁巧解牛知识·巧学一、二维形式的柯西不等式定理1 (二维形式的柯西不等式)已知a 1,a 2,b 1,b 2∈R ,则(a 1b 1+a 2b 2)2≤(a 12+a 22)2(b 12+b 22)2,当且仅当a 1b 2-a 2b 1=0时取等号.由二维形式的柯西不等式推导出两个非常有用的不等式: 对于任何实数a 1,a 2,b 1,b 2,以下不等式成立:22212221b b a a +•+≥|a 1b 1+a 2b 2|; 22212221b b a a +•+≥|a 1b 1|+|a 2b 2|.联想发散不等式中等号成立⇔a 1b 2-a 2b 1=0.这时我们称(a 1,a 2),(b 1,b 2)成比例,如果b 1≠0,b 2≠0,那么a 1b 2-a 2b 1=0⇔2211b a b a =.若b 1·b 2=0,我们分情况说明:①b 1=b 2=0,则原不等式两边都是0,自然成立;②b 1=0,b 2≠0,原不等式化为(a 12+a 22)b 22≥a 22b 22,也是自然成立的;③b 1≠0,b 2=0,原不等式和②的道理一样,自然成立.正是因为b 1·b 2=0时,不等式恒成立,因此我们研究柯西不等式时,总是假定b 1b 2≠0,等号成立的条件可以写成2211b a b a =,这种写法在表示一般形式(n 维)的柯西不等式等号成立的条件时更是方便、简洁的.定理2 (柯西不等式的向量形式)设α,β是两个向量,则|α·β|≤|α||β|,当且仅当β是零向量,或存在实数k ,使α=k β时,等号成立. 学法一得定理2 中等号成立的充分必要条件是向量α和β平行(如α,β为非零向量,则定理2中等号成立的充分必要条件为向量α与β的夹角为0或π,即α与β对应的坐标分量成比例),从而可以推知定理1中等号成立的充分必要条件为2211b a b a =(b i 为零时,a i 为零,i=1,2).定理 3 (二维形式的三角不等式)设x 1,x 2,y 1,y 2∈R ,那么22122122222121)()(y y x x y x y x -+-≥+++.二维形式的三角不等式的变式:用x 1-x 3代替x 1,用y 1-y 3代替y 1,用x 2-x 3代替x 2,用y 2-y 3代替y 2,代入定理3,得232231231231)()()()(y y x x y y x x -+-+-+-221221)()(y y x x -+-≥二、一般形式的柯西不等式 定理 设a i ,b i ∈R (i=1,2, …,n),则(∑∑∑===≤ni ini ini ii ba b a 121212)(.当数组a 1,a 2,…,a n ,b 1,b 2,…,b n 不全为0时,等号成立当且仅当b i =λa i (1≤i≤n).即(a 1b 1+a 2b 2+…+a n b n )2≤(a 12+a 22+…+a n 2)2(b 12+b 22+…+b n 2)2(a i ,b i ∈R ,i=1,2,…,n )中等号成立的条件是2211b a b a ==…=nn b a. 记忆要诀这个式子在竞赛中极为常用,只需简记为“积和方小于和方积”.等号成立的条件比较特殊,要牢记.此外应注意在这个式子里不要求各项均是正数,因此应用范围较广. 一般形式的柯西不等式有两个很好的变式:变式 1 设a i ∈R ,bc>0(i=1,2, …,n),则∑∑∑≥=ii ni i ib a b a 212)(,等号成立当且仅当b i =λa i (1≤i≤n).变式2 设a i ,b i 同号且不为0(i=1,2,…,n ),则∑∑∑≥=i i i ni iib a a b a 212)(,等号成立当且仅当b 1=b 2=…=b n .深化升华要求a i ,b i 均为正数.当然,这两个式子虽常用,但是记不记住并不太重要,只要将柯西不等式原始的式子记得很熟,这两个式子其实是一眼就能看出来的,这就要求我们对柯西不等式要做到活学活用.柯西不等式经常用到的几个特例(下面出现的a 1, …,a n ;b 1, …,b n 都表示实数)是:(1)a 12+a 22+…+a n 2=1,b 12+b 22+…+b n 2=1,则|a 1b 1+a 2b 2+…+a n b n |≤1;(2)a 1a 2+a 2a 3+a 3a 1≤a 12+a 22+a 32;(3)(a 1+a 2+…+a n )2≤n(a 12+a 22+…+a n 2);(4)(a+b)(a 1+b1)≥4=(1+1)2,其中a 、b∈R +; (5)(a+b+c)(a 1+b 1+c1)≥9=(1+1+1)2,其中a 、b 、c∈R +.柯西不等式是一个重要的不等式,有许多应用和推广,与柯西不等式有关的竞赛题也频频出现,这充分显示了它的独特地位. 典题·热题知识点一: 用柯西不等式证明不等式 例1 设a 1>a 2>…>a n >a n+1,求证:11132211111a a a a a a a a n n n -+-++-=-++Λ>0.思路分析:这道题初看起来似乎无法使用柯西不等式,但改变其结构就可以使用了,我们不妨改为证: (a 1-a n+1)·[13221111+-++-+-n n a a a a a a Λ]>1.证明:为了运用柯西不等式,我们将a 1-a n+1写成a 1-a n+1=(a 1-a 2)+(a 2-a 3)+ …+(a n -a n+1),于是[(a 1-a 2)+(a 2-a 3)+…+(a n -a n+1)]·(13221111+-++-+-n n a a a a a a Λ)≥n 2>1.即(a 1-a n+1)·(13221111+-++-+-n n a a a a a a Λ)>1,∴11132211111++->-++-+-n n n a a a a a a a a Λ,故11132211111a a a a a a a a n n n -+-++-+-++Λ>0.方法归纳我们进一步观察柯西不等式,可以发现其特点是:不等式左边是两个因式之和,其中每一个因式都是项平方和,右边是左边中对立的两两乘积之和的平方,证题时,只要能将原题凑成此种形式,就可以引用柯西不等式来证明. 知识点二: 用柯西不等式证明条件不等式 例2 (经典回放)设x 1,x 2, …,x n ∈R +,求证:123221x x x x x x x x nn ++++Λ≥x 1+x 2+…+x n . 思路分析:在不等式的左端嵌乘以因式(x 2+x 3+…+x n +x 1),也即嵌以因式(x 1+x 2+…+x n ),由柯西不等式即可得证.证明:(123221x x x x x x x x nn ++++Λ)·(x 2+x 3+…+x n +x 1) =[(21x x )2+(22x x )2+…+(nn x x 1-)2+(1x x n )2] [(2x )2+(3x )2+…+(n x )2+(1x )2]≥(21x x ·2x +22x x ·3x +…+nn x x 1-·n x +1x x n ·1x ) =(x 1+x 2+…+x n )2,于是123221x x x x x x x x nn ++++Λ≥x 1+x 2+…+x n . 巧解提示柯西不等式中有三个因式∑∑∑===ni ii ni ini iba b a 11212,,,而一般题目中只有一个或两个因式,为了运用柯西不等式,我们需要设法嵌入一个因式(嵌入的因式之和往往是定值),这也是利用柯西不等式的技巧之一.知识点三: 用柯西不等式求函数的极值例3 已知实数a,b,c,d 满足a+b+c+d=3,a 2+2b 2+3c 2+6d 2=5,试求a 的最值. 思路分析:本题求极值问题从表面上看不能利用柯西不等式,但只要适当添加上常数项或和为常数的各项,就可以应用柯西不等式来解. 解:由柯西不等式得,有 (2b 2+3c 2+6d 2)(613121++)≥(b+c+d)2, 即2b 2+3c 2+6d 2≥(b+c+d)2.由条件可得,5-a 2≥(3-a)2. 解得,1≤a≤2,当且仅当6/163/132/12dc b ==时等号成立. 代入b=1,c=31,d=61时,a max =2; b=1,c=32,d=31时,a min =1.巧妙变式为了给运用柯西不等式创造条件,经常引进一些待定的参数,其值的确定由题设或者由等号成立的充要条件共同确定,也有一些三角极值问题我们可以反复运用柯西不等式进行解决.而有些极值问题的解决需要反复利用柯西不等式才能达到目的,但在运用过程中,每运用一次前后等号成立的条件必须一致,不能自相矛盾,否则就会出现错误.这多次反复运用柯西不等式的方法也是常用技巧之一. 如:已知a,b 为正常数,且0<x<2π,求y=x b x a cos sin +的最小值. 解:利用柯西不等式,得)(32323232b a b a +=+(sin 2x+cos 2x)≥(3a sinx+3b cosx)2.当且仅当33cos sin bxax=时等号成立.于是33232a b a ≥+sinx+3b cosx.再由柯西不等式,得3232b a +(xb x a cos sin +) ≥(3a sinx+3b cosx)(xb x a cos sin +) ≥(x b x b x a x a cos cos sin sin 66+)2=(a 32+b 32)2. 当且仅当33cos sin bxax=时等号成立.从而y=x bx a cos sin +≥(a 32+b 32)32. 于是y=xbx a cos sin +的最小值是(a 32+b 32)32. 问题·探究 思想方法探究问题 试探究用柯西不等式导出重要公式.如n 个实数平方平均数不小于这n 个数的算术平均数,即若a 1,a 2,…,a n ∈R ,则na a a n a a a nn2222121+++≤+++ΛΛ.探究过程:由柯西不等式可知(a 1+a 2+…+a n )2≤(a 1·1+a 2·1+…+a n ·1)2≤(a 12+a 22+…+a n 2)·(12+12+…+12)=(a 12+a 22+…+a n 2)·n,所以na a a n 221)(+++Λ≤a 12+a 22+…+a n 2,故na a a n a a a nn2222121+++≤+++ΛΛ.不等式na a a na a a nn2222121+++≤+++ΛΛ,把中学教材中仅有关于两个正数的“算术平均”,“几何平均”问题拓广到了“二次幂平均”问题,即nn a a a Λ21≤na a a n a a a nn2222121+++≤+++ΛΛ,这不仅拓宽了中学生的眼界,而且为解决许多不等式的问题开辟了一条新路.探究结论:柯西不等式不仅在高等数学中是一个十分重要的不等式,而且它对初等数学也有很好的指导作用,利用它能方便地解决一些中学数学中的有关问题. 交流讨论探究问题 柯西不等式在求某些函数最值中和证明某些不等式时是经常使用的理论根据,试交流讨论使用柯西不等式的技巧,试举例归纳.探究过程:人物甲:构造符合柯西不等式的形式及条件可以巧拆常数,如:设a 、b 、c 为正数且各不相等.求证cb a ac c b b a ++>+++++9222.我们可以如此分析:∵a、b 、c 均为正,∴为证结论正确只需证2(a+b+c)[ac c b b a +++++111]>9.而2(a+b+d)=(a+b)+(b+c)+(c+a),又9=(1+1+1)2.人物乙:构造符合柯西不等式的形式及条件可以重新安排某些项的次序,如:a 、b 为非负数,a+b=1,x 1,x 2∈R +,求证(ax 1+bx 2)(bx 1+ax 2)≥x 1x 2.我们可以如此分析:不等号左边为两个二项式积,a,b∈R -,x 1,x 2∈R +,直接用柯西不等式做得不到预想结论,当把第二个小括号的两项前后调换一下位置,就能证明结论了.人物丙:构造符合柯西不等式的形式及条件可以改变结构,从而能够使用柯西不等式,如:若a>b>c ,求证c b b a -+-11≥ca -4.我们可以如此分析:初式并不能使用柯西不等式,改造结构后便可使用柯西不等式了.∵a -c=(a-b)+(b-c),a>c,∴a -c>0,∴结论改为(a-c)(cb b a -+-11)≥4. 人物丁:构造符合柯西不等式的形式及条件可以添项,如:若a,b,c∈R +,求证b ac a c b c b a +++++≥23.我们可以如此分析:左端变形c b a ++1+ac b++1+b a c ++1=(a+b+c)(b a a c c b +++++111),∴只需证此式≥29即可. 探究结论:使用柯西不等式的技巧主要就是使用一些方法(巧拆常数、重新安排某些项的次序、添项等)构造符合柯西不等式的形式及条件.。

人教版高中数学选修4-5《第三讲柯西不等式与排序不等式一般形式的柯西不等式》

人教版高中数学选修4-5《第三讲柯西不等式与排序不等式一般形式的柯西不等式》
2 2 2 2
3 3 =3 ( x 0)
6
复习引入
设<m, n , 则m n | m | | n | cos | m n || m | | n | | cos || m | | n | | m n || m | | n | 当且仅当m // n时,等号成立. m (a, b, c), n (d , e, f ) m n ad be cf
2 2
1 1 2 (1 x 2 y ) 5 5
1 2 (当 x , y ) 5 5
4
复习引入 下面我们来做几个巩固练习: 1 2 3.设 x, y R ,且 x+2y=36,求 的最小值. x y
1 2 1 1 2 ( )( x 2 y) x y 36 x y 1 2 y 2x (1 4 ) 36 x y 1 2 y 2x (5 2 ) 36 x y
(a b c d ) (a b c d )(b c d a )
2 2 2 2 2 2 2 2 2 2 2 2
(ab bc cd da )
2 2 2 2
2
(ab bc cd da )
即 a b c d ab bc cd da
同样这个不等式也有着向量(n维向量)及几何背景, 其应用广泛。
9
一般形式的柯西不等式示例源自例 1 已知 a1 , a2 , , an 都是实数,求证: 1 2 2 2 2 (a1 a2 an ) ≤ a1 a2 an n 1 1 2 2 ( a a a ) (1 a 1 a 1 a ) 证明: 1 2 n 1 2 n n n 1 2 2 2 2 2 (1 1 12 )(a1 a2 an ) n

第三讲.柯西不等式与排序不等式

第三讲.柯西不等式与排序不等式
m n || m | | n | |
2 2 2
ac bd a b c d
2
定理2: (柯西不等式的向量形式)
| || | | |
设α,β是两个向量,则 当且仅当β是零向量,或存在实数k, 使α=kβ时,等号成立.
观 察
, Bn .选取某个点Ai i 1,2, n 与
O

A 1 A 2 Ai An
A
得到n个三角形.显然, 搭配的方法
图3.3 1
不同, 得到的Ai OB j 不同,因而三角形面积也可能不同. 问 : OA边上的点与OB边上的点如何一一搭配 才能使 , 得到的n个三角形面积之和最大? 如何一一搭配, 才能 使得到的n个三角形的面积之和最小?
(a b) (c d ) ( ac bd ) (a, b, c, d为非负实数)。
2
向量形式: m (a, b), n (c, d ) m n | m | | n | cos m n ac bd 2 2 | m | a b 2 2 | n | c d | m n || m | | n | | cos || m | | n |
1 2 2 2 2 (a1 a2 ... an ) a1 a证明:
a b c d >ab+bc+cd+da.
2 2 2 2
例3 已知x+2y+3z=1,求 的最小值。
x y z
2 2
2
例4:设a、b、c为正数且各不相等。 求证: 2 2 2 9 ab bc ca abc 1 1 1 证明: 2(a b c)( ) ab bc ca 1 1 1 [(a b) (b c) (c a)]( ) ab bc ca

高中数学第三讲柯西不等式与排序不等式三排序不等式学案新人教

高中数学第三讲柯西不等式与排序不等式三排序不等式学案新人教

三 排序不等式学习目标 1.了解反序和、乱序和、顺序和等有关概念.2.了解排序不等式及其证明的几何意义与背景.3.掌握排序不等式的结构形式,并能简单应用.知识点 排序不等式思考1 某班学生要开联欢会,需要买价格不同的礼品4件、5件及2件,现在选择商店中单价为3元、2元和1元的礼品,问有多少种不同的购买方案?在这些方案中哪种花钱最少?哪种花钱最多?答案 (1)共有3×2×1=6(种)不同的购买方案. (2)5×3+4×2+2×1=25(元),这种方案花钱最多; 5×1+4×2+2×3=19(元),这种方案花钱最少. 思考 2 如图,∠POQ =60°,比较112233A OB A OB A OB S SS++与132231A OB A OB A OB SSS++的大小.答案 112233132231.A OB A OB A OB A OB A OB A OB SSSSSS++>++梳理 (1)顺序和、乱序和、反序和的概念设有两个有序实数组:a 1≤a 2≤…≤a n ;b 1≤b 2≤…≤b n ,c 1,c 2,…,c n 是b 1,b 2,…,b n 的任意一个排列.①乱序和:S =a 1c 1+a 2c 2+…+a n c n . ②反序和:S 1=a 1b n +a 2b n -1+…+a n b 1. ③顺序和:S 2=a 1b 1+a 2b 2+…+a n b n . (2)排序不等式(排序原理)设a 1≤a 2≤…≤a n ,b 1≤b 2≤…≤b n 为两组实数,c 1,c 2,…,c n 是b 1,b 2,…,b n 的任一排列,则a 1b n +a 2b n -1+…+a n b 1≤a 1c 1+a 2c 2+…+a n c n ≤a 1b 1+a 2b 2+…+a n b n ,当且仅当a 1=a 2=…=a n 或b 1=b 2=…=b n 时,反序和等于顺序和.类型一 利用排序不等式证明不等式 命题角度1 字母已定序问题例1 已知a ,b ,c 为正数,且a ≥b ≥c ,求证:a 5b 3c 3+b 5c 3a 3+c 5a 3b 3≥1a +1b +1c.证明 ∵a ≥b >0,于是1a ≤1b,又c >0,从而1bc ≥1ca,同理1ca ≥1ab ,从而1bc ≥1ca ≥1ab.又顺序和不小于乱序和,故可得a 5b 3c 3+b 5c 3a 3+c 5a 3b 3≥b 5b 3c 3+c 5c 3a 3+a 5a 3b 3=b 2c 3+c 2a 3+a 2b 3⎝ ⎛⎭⎪⎫∵a 2≥b 2≥c 2,1c 3≥1b 3≥1a 3≥c 2c 3+a 2a 3+b 2b3 =1c +1a +1b =1a +1b +1c.∴原不等式成立.反思与感悟 利用排序不等式证明不等式的技巧在于仔细观察、分析所要证明的式子的结构,从而正确地构造出不等式中所需要的带有大小顺序的两个数组. 跟踪训练1 已知0<a ≤b ≤c ,求证:c 2a +b +b 2a +c +a 2b +c ≥a 2a +b +b 2b +c +c 2c +a.证明 因为0<a ≤b ≤c ,所以0<a +b ≤c +a ≤b +c , 所以1a +b ≥1c +a ≥1b +c>0, 又0<a 2≤b 2≤c 2, 所以c 2a +b +b 2a +c +a 2b +c是顺序和,a 2a +b +b 2b +c +c 2c +a是乱序和,由排序不等式可知顺序和大于等于乱序和,即不等式c 2a +b +b 2a +c +a 2b +c ≥a 2a +b +b 2b +c +c 2c +a成立.命题角度2 字母大小顺序不定问题 例2 已知a ,b ,c 均为正数,求证:a 2b +c +b 2c +a +c 2a +b ≥12(a +b +c ).证明 由不等式的对称性,不妨设a ≥b ≥c >0, 所以a 2≥b 2≥c 2,1b +c ≥1c +a ≥1a +b. 由顺序和≥乱序和得到两个不等式:a 2b +c +b 2c +a +c 2a +b ≥a 2c +a +b 2a +b +c 2b +c , a 2b +c +b 2c +a +c 2a +b ≥a 2a +b +b 2b +c +c 2c +a.两式相加,得2⎝ ⎛⎭⎪⎫a 2b +c +b 2c +a +c 2a +b ≥b 2+c 2b +c +c 2+a 2c +a +a 2+b 2a +b, 注意到b 2+c 2b +c ≥12(b +c ),c 2+a 2c +a ≥12(c +a ),a 2+b 2a +b ≥12(a +b ), 所以2⎝ ⎛⎭⎪⎫a 2b +c +b 2c +a +c 2a +b ≥12(b +c )+12(c +a )+12(a +b ) =a +b +c . 故a 2b +c +b 2c +a +c 2a +b ≥12(a +b +c ).反思与感悟 对于排序不等式,其核心是必须有两组完全确定的数据,所以解题的关键是构造出这样的两组数据.跟踪训练2 设a ,b ,c ∈R +,利用排序不等式证明:a 3+b 3+c 3≤b 5+c 52a 2+c 5+a 52b 2+a 5+b 52c2.证明 不妨设0<a ≤b ≤c , 则a 5≤b 5≤c 5,1c 2≤1b 2≤1a2,所以由排序不等式可得a 3+b 3+c 3=a 5a 2+b 5b 2+c 5c 2≤a 5c 2+b 5a 2+c 5b2,a 3+b 3+c 3=a 5a 2+b 5b 2+c 5c 2≤a 5b 2+b 5c 2+c 5a2,所以a 3+b 3+c 3≤b 5+c 52a 2+c 5+a 52b 2+a 5+b 52c2.类型二 利用排序不等式求最值 例3 设a ,b ,c 为任意正数,求ab +c +bc +a +ca +b的最小值.解 由于a ,b ,c 的对称性,不妨设a ≥b ≥c >0, 则a +b ≥a +c ≥b +c , 1b +c ≥1c +a ≥1a +b , 由排序不等式,得a b +c +b c +a +c a +b ≥b b +c +c c +a +a a +b , ab +c +bc +a +ca +b ≥cb +c +ac +a +ba +b,上述两式相加,得2⎝ ⎛⎭⎪⎫a b +c +b c +a +c a +b ≥3,即a b +c +b c +a +ca +b ≥32.当且仅当a =b =c 时,a b +c +b c +a +ca +b 取最小值32.反思与感悟 求最小(大)值,往往所给式子是顺(反)序和式.然后利用顺(反)序和不小(大)于乱序和的原理构造出一个或二个适当的乱序和,从而求出其最小(大)值. 跟踪训练3 设0<a ≤b ≤c 且abc =1.试求1a 3(b +c )+1b 3(a +c )+1c 3(a +b )的最小值.解 令S =1a 3(b +c )+1b 3(a +c )+1c 3(a +b ),则S =(abc )2a 3(b +c )+(abc )2b 3(a +c )+(abc )2c 3(a +b )=bc a (b +c )·bc +ac b (a +c )·ac +abc (a +b )·ab .由已知可得1a (b +c )≥1b (a +c )≥1c (a +b ),ab ≤ac ≤bc .∴S ≥bc a (b +c )·ac +ac b (a +c )·ab +abc (a +b )·bc=c a (b +c )+a b (a +c )+bc (a +b ).又S ≥bc a (b +c )·ab +ac b (a +c )·bc +abc (a +b )·ac=b a (b +c )+c b (a +c )+a c (a +b ),两式相加,得2S ≥1a +1b +1c ≥3·31abc=3.∴S ≥32,即1a 3(b +c )+1b 3(a +c )+1c 3(a +b )的最小值为32.1.设a ,b ,c 均为正数,且P =a 3+b 3+c 3,Q =a 2b +b 2c +c 2a ,则P 与Q 的大小关系是( ) A .P >Q B .P ≥Q C .P <Q D .P ≤Q 答案 B解析 不妨设a ≥b ≥c >0,则a 2≥b 2≥c 2>0.由排序不等式,得a 2a +b 2b +c 2c ≥a 2b +b 2c +c 2a ,当且仅当a =b =c 时,等号成立,所以P ≥Q .2.已知a 1=2,a 2=7,a 3=8,a 4=9,a 5=12,b 1=3,b 2=4,b 3=6,b 4=10,b 5=11.将b i (i =1,2,3,4,5)重新排列记为c 1,c 2,c 3,c 4,c 5,则a 1c 1+a 2c 2+…+a 5c 5的最大值是( ) A .324 B .314 C .304 D .212答案 C解析 a 1c 1+a 2c 2+…+a 5c 5≤a 1b 1+a 2b 2+a 3b 3+a 4b 4+a 5b 5 =2×3+7×4+8×6+9×10+12×11=304.3.n 个正数与这n 个正数的倒数的乘积的和的最小值为________. 答案 n解析 设0<a 1≤a 2≤a 3≤…≤a n , 则0<a -1n ≤a -1n -1≤…≤a -11,则由排序不等式得,反序和≤乱序和≤顺序和. 故最小值为反序和a 1·a -11+a 2·a -12+…+a n ·a -1n =n .4.设a ,b 都是正数,求证:⎝ ⎛⎭⎪⎫a b 2+⎝ ⎛⎭⎪⎫b a 2≥a b +b a.证明 由题意不妨设a ≥b >0. 则a 2≥b 2,1b ≥1a ,所以a 2b ≥b2a.根据排序不等式知,a 2b ·1b +b 2a ·1a≥a 2b ·1a +b 2a ·1b, 即⎝ ⎛⎭⎪⎫a b 2+⎝ ⎛⎭⎪⎫b a 2≥a b +b a.1.对排序不等式的理解排序原理是对不同的两个数组来研究不同的乘积和的问题,能构造的和按数组中的某种“搭配”的顺序被分为三种形式:顺序和、反序和、乱序和,对这三种不同的搭配形式只需注意是怎样的“次序”,两种较为简单的是“顺与反”,而乱序和也就是不按“常理”的顺序了. 2.排序不等式的本质两实数序列同方向单调(同时增或同时减)时所得两两乘积之和最大,反方向单调(一增一减)时所得两两乘积之和最小. 3.排序不等式取等号的条件等号成立的条件是其中一序列为常数序列,即a 1=a 2=…=a n 或b 1=b 2=b 3=…=b n . 4.排序原理的思想在解答数学问题时,常常涉及一些可以比较大小的量,它们之间并没有预先规定大小顺序,那么在解答问题时,我们可以利用排序原理的思想方法,将它们按一定顺序排列起来,继而利用不等关系来解题.因此,对于排序原理,我们记住的是处理问题的这种思想及方法,同时要学会善于利用这种比较经典的结论来处理实际问题.一、选择题1.有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:m 2)分别为x ,y ,z ,且x <y <z ,三种颜色涂料的粉刷费用(单位:元/m 2)分别为a ,b ,c ,且a <b <c .在不同的方案中,最低的总费用(单位:元)是( ) A .ax +by +cz B .az +by +cx C .ay +bz +cx D .ay +bx +cz答案 B解析 根据排序原理,反序和最小,即az +by +cx 最小.2.已知a ,b ,c >0,则a 2(a 2-bc )+b 2(b 2-ac )+c 2(c 2-ab )的正负情况是( ) A .大于零B .大于零或等于零C .小于零D .小于零或等于零答案 B解析 当a =b =c =1时,a 2(a 2-bc )+b 2(b 2-ac )+c 2(c 2-ab )=0,当a =1,b =2,c =3时,a 2(a 2-bc )+b 2(b 2-ac )+c 2(c 2-ab )=62.3.设a ,b ,c 都是正数,则式子M =a 5+b 5+c 5-a 3bc -b 3ac -c 3ab 与0的大小关系是( ) A .M ≥0 B .M ≤0C .M 与0的大小关系与a ,b ,c 的大小有关D .不能确定 答案 A解析 不妨设a ≥b ≥c >0, 则a 3≥b 3≥c 3,且a 4≥b 4≥c 4, 则a 5+b 5+c 5=a ·a 4+b ·b 4+c ·c 4≥a ·c 4+b ·a 4+c ·b 4. ∵a 3≥b 3≥c 3, 且ab ≥ac ≥bc ,∴a 4b +b 4c +c 4a =a 3·ab +b 3·bc +c 3·ca ≥a 3bc +b 3ac +c 3ab .∴a 5+b 5+c 5≥a 3bc +b 3ac +c 3ab . ∴M ≥0.4.在锐角三角形ABC 中,设P =a +b +c2,Q =a cos C +b cos B +c cos A ,则P ,Q 的大小关系为( ) A .P ≥Q B .P =Q C .P ≤Q D .不能确定答案 C解析 不妨设A ≥B ≥C , 则a ≥b ≥c ,cos A ≤cos B ≤cos C , 则由排序不等式有Q =a cos C +b cos B +c cos A ≥a cos B +b cos C +c cos A=R (2sin A cos B +2sin B cos C +2sin C cos A ),Q =a cos C +b cos B +c cos A ≥b cos A +c cos B +a cos C=R (2sin B cos A +2sin C cos B +2sin A cos C ), 上面两式相加,得Q =a cos C +b cos B +c cos A ≥12R (2sin A cos B +2sin B cos A +2sin B cos C +2sin C cos B +2sin C cos A +2sin A cos C ) =R [sin(A +B )+sin(B +C )+sin(A +C )] =R (sin C +sin A +sin B )=P =a +b +c2.5.设a 1,a 2,a 3为正数,E =a 1a 2a 3+a 2a 3a 1+a 3a 1a 2,F =a 1+a 2+a 3,则E ,F 的大小关系是( ) A .E <F B .E ≥F C .E =F D .E ≤F 答案 B解析 不妨设a 1≥a 2≥a 3>0, 则1a 1≤1a 2≤1a 3且a 2a 3≤a 3a 1≤a 1a 2,∴a 1a 2a 3+a 1a 3a 2+a 2a 3a 1≥1a 1·a 1a 2+1a 2·a 2a 3+1a 3·a 3a 1 =a 1+a 2+a 3. ∴E ≥F .6.已知x ≥y ,M =x 4+y 4,N =x 3y +xy 3,则M 与N 的大小关系是( ) A .M >N B .M ≥N C .M <N D .M ≤N 答案 B 解析 ∵x ≥y , ∴x 3≥y 3.∴M =x ·x 3+y ·y 3≥x 3·y +y 3·x =x 3y +y 3x =N . 二、填空题7.已知两组数1,2,3和4,5,6,若c 1,c 2,c 3是4,5,6的一个排列,则1c 1+2c 2+3c 3的最大值是________,最小值是________. 答案 32 28解析 由反序和≤乱序和≤顺序和知,顺序和最大,反序和最小,故最大值为32,最小值为28.8.5个人各拿一只水桶到水龙头接水,如果水龙头注满这5个人的水桶需要的时间分别是4min,8min,6min ,10min ,5min ,统筹安排这5个人接水的顺序,则他们等待的总时间最少为________min. 答案 84解析 5个人按接水时间为4 min,5 min,6 min,8 min ,10 min 的顺序进行接水时等待的总时间最少,为4×5+5×4+6×3+8×2+10×1=84(min).9.在Rt△ABC 中,∠C 为直角,A ,B 所对的边分别为a ,b ,则aA +bB 与π4(a +b )的大小关系为________. 答案 aA +bB ≥π4(a +b )解析 不妨设a ≥b >0, 则A ≥B >0,由排序不等式⎭⎪⎬⎪⎫aA +bB ≥aB +bA aA +bB =aA +bB ⇒2(aA +bB )≥a (A +B )+b (A +B )=π2(a +b ), ∴aA +bB ≥π4(a +b ).10.设a 1,a 2,…,a n 为正数,且a 1+a 2+…+a n =5,则a 21a 2+a 22a 3+…+a 2n -1a n +a 2na 1的最小值为________. 答案 5解析 由所求代数式的对称性, 不妨设0<a 1≤a 2≤…≤a n , 所以a 21≤a 22≤…≤a 2n , 1a 1≥1a 2≥…≥1a n,而1a 2,1a 3,…,1a n ,1a 1为1a 1,1a 2,1a 3,…,1a n 的一个排列,由乱序和≥反序和,得a 21·1a 2+a 22·1a 3+…+a 2n -1·1a n +a 2n ·1a 1≥a 21·1a 1+a 22·1a 2+…+a 2n ·1a n ,即a 21a 2+a 22a 3+…+a 2n -1a n +a 2na 1≥a 1+a 2+…+a n =5.三、解答题11.设a ,b ,c ∈(0,+∞),利用排序不等式证明:a 2a b 2b c 2c≥a b +c b c +a c a +b.证明 不妨设a ≥b ≥c >0,则lg a ≥lg b ≥lg c , 所以a lg a +b lg b +c lg c ≥b lg a +c lg b +a lg c ,a lg a +b lg b +c lg c ≥c lg a +a lg b +b lg c ,所以2a lg a +2b lg b +2c lg c ≥(b +c )lg a +(a +c )lg b +(a +b )lg c , 所以lg(a 2a·b 2b·c 2c)≥lg(ab +c·ba +c·ca +b),故a 2a b 2b c 2c ≥ab +c b c +a c a +b.12.设a 1,a 2,…,a n 是n 个互不相等的正整数,求证: 1+12+13+…+1n ≤a 1+a 222+a 332+…+a n n2. 证明 设b 1,b 2,…,b n 是a 1,a 2,…,a n 的一个排列,且满足b 1<b 2<…<b n . 因为b 1,b 2,…,b n 是互不相等的正整数, 故b 1≥1,b 2≥2,…,b n ≥n . 又因为1>122>132>…>1n 2,故由排序不等式,得a 1+a 222+a 332+…+a n n 2≥b 1+b 222+b 332+…+b nn2≥1×1+2×122+3×132+…+n ·1n 2=1+12+13+…+1n.13.已知0<α<β<γ<π2,求证:sin αcos β+sin βcos γ+sin γcos α>12(sin2α+sin2β+sin2γ).证明 ∵0<α<β<γ<π2,且y =sin x 在⎝ ⎛⎭⎪⎫0,π2上为增函数,y =cos x 在⎝ ⎛⎭⎪⎫0,π2为减函数,∴0<sin α<sin β<sin γ,cos α>cos β>cos γ>0.∴sin αcos β+sin βcos γ+sin γcos α>sin αcos α+sin βcos β+sin γcos γ=12(sin2α+sin2β+sin2γ). 四、探究与拓展14.设x ,y ,z 为正数,求证:x +y +z ≤x 2+y 22z +y 2+z 22x +z 2+x 22y.证明 由于不等式关于x ,y ,z 对称, 不妨设0<x ≤y ≤z , 于是x 2≤y 2≤z 2,1z ≤1y ≤1x,由反序和≤乱序和,得x 2·1x +y 2·1y +z 2·1z ≤x 2·1z +y 2·1x +z 2·1y,x 2·1x +y 2·1y +z 2·1z ≤x 2·1y +y 2·1z +z 2·1x, 将上面两式相加得 2(x +y +z )≤x 2+y 2z +y 2+z 2x +z 2+x 2y, 于是x +y +z ≤x 2+y 22z +y 2+z 22x +z 2+x 22y. 15.设x >0,求证:1+x +x 2+…+x 2n ≥(2n +1)x n .证明 (1)当x ≥1时,1≤x ≤x 2≤…≤x n .由排序原理知,1·1+x ·x +x 2·x 2+…+x n ·x n ≥x n ·1+xn -1·x +…+1·x n , 所以1+x 2+x 4+…+x 2n ≥(n +1)x n .① 又因为x ,x 2,…,x n,1为1,x ,x 2,…,x n 的一个排序,于是由排序原理得1·x +x ·x2+…+x n -1·x n +x n ·1≥1·x n +x ·xn -1+…+x n -1·x +x n ·1, 所以x +x 3+…+x2n -1≥nx n .② ①+②,得 1+x +x 2+…+x 2n ≥(2n +1)x n .(2)当0<x <1时,1>x >x 2>…>x n ,同理可得结论.综合(1)与(2)可知,当x >0时,1+x +x 2+…+x 2n ≥(2n +1)x n. 精美句子1、善思则能“从无字句处读书”。

2020版高中数学第三讲柯西不等式与排序不等式3.1二维形式的柯西不等式练习(含解析)新人教A版选修4_5

2020版高中数学第三讲柯西不等式与排序不等式3.1二维形式的柯西不等式练习(含解析)新人教A版选修4_5

一二维形式的柯西不等式基础巩固1已知a≥0,b≥0,且a+b=2,则()A.ab≤C.a2+b2≥D.a2+b2≤3(12+12)(a2+b2)≥(a+b)2=4,∴a2+b2≥ .故选C.2已知0则的最小值是A()()3得x+y≥33当且仅当3即x=5,y时,等号成立.3已知x+y=1,则2x2+3y2的最小值是()3A3x2+3y2=[33当且仅当2x=3y,即x3时,等号成立.4函数y=--3的最大值是A.3 B3 32--3≤ 2+(-)-3=63当且仅当-3-时,等号成立.故y的最大值为3即x35已知x>0,y>0,且xy=1,则的最小值为A.4B.2C.1 D≥当且仅当x=y=1时,等号成立.6设x,y∈R+,则(x+y)3的最小值是+7已知a,b∈R+,且a+b=1,则的最小值是a,b∈R+,且a+b=1,所以由柯西不等式得3当且仅当时,等号成立,此时a8函数y=3sin x+ ( )的最大值是3sin x+ ( ) 3 x+≤(3)( )当且仅当3|cos x|=4sin x时,等号成立.9已知a2+b2=1,x2+y2=1,求证:|ax+by|≤ .,得|ax+by|≤当且仅当ay=bx时,等号成立.10已知a>b>c,求证---(a-c--≥ .又a-c=(a-b)+(b-c),利用柯西不等式证明即可.a-c--=[(a-b)+(b-c)--=[----≥----当且仅当----即a-b=b-c时,等号成立.故原不等式成立.能力提升1已知2x2+y2=1,则2x+y的最大值是()A 3 3x+y≤( )()33当且仅当即x=y33时,等号成立.故2x+y的最大值是32若x2+y2=8,则2x+y的最大值为()A.8B.4C. 0(x2+y2)(4+ )≥( x+y)2,∴(2x+y)2≤8×5=40,当且仅当x=2y时,等号成立,即(2x+y)max= 03若a+b=1,则的最小值为A.1B.2 C∵a+b=1,∴a2+b2(1+ )≥8以上两个不等式都是当且仅当a=b时,等号成立,又8()8当且仅当a=b时,等号成立.4已知正数a,b满足a+b=2,则 的最大值为A 3C3a,b满足a+b=2,则a+b+1=3,则(1 ≤( 2+12)[故故选C.5设xy>0,则的最小值为≥当且仅当xy 时,等号成立.故所求最小值为9.6设实数x,y满足3x2+2y2≤ ,则2x+y的最大值为.(2x+y)2≤ 33≤=(3x2+2y2)3当且仅当3x=4y,即x,等号成立.因此2x+y的最大值为7函数f(x)-8 0- 0的最大值为(x)-8 0- 0( )(3)(3) ( ) (3)≤(- )当且仅当x=2时,等号成立.8已知θ为锐角,a,b>0,求证:(a+b)2≤m,n=(cosθ,sinθ),则|a+b|m n|≤|m||n|当且仅当a=k cos2θ,b=k sin2θ,k∈R时,等号成立.故(a+b)2≤★9在半径为R的圆内,求周长最大的内接长方形.,设内接长方形ABCD的长为x,则宽为-于是长方形ABCD的周长l=2(x--由柯西不等式得l≤ x2+- )2R=-当且仅当即x时,等号成立.此时--()即长方形ABCD为正方形.故周长最大的内接长方形为正方形,其周长为。

5.4柯西不等式与排序不等式 课件(人教A版选修4-5)

5.4柯西不等式与排序不等式 课件(人教A版选修4-5)
3 3 3 2 2 2
练习
3.设a1 , a2 ,..., an为正数,求证 a1a2 a2 a3 a3 a1 a1 a2 a3 . a3 a1 a2
练习
4.设a1 , a2 ,..., an为正数,试分别用柯西 不等式与排序不等式证明 a a a a ... a1 a2 ... an . a2 a3 an a1
又因
1 1 1 1 ... 2 2 2 3 n2
由排序不等式,得:
an bn a2 a3 b2 b3 a1 2 2 ... 2 b1 2 2 ... 2 2 3 n 2 3 n 1 1 1 1 1 1 11 2 2 3 2 ... n 2 1 ... 2 3 n 2 3 n
例2 已知a,b,c,d是不全相等的正数,证明:
a b c d >ab+bc+cd+da.
2 2 2 2
例3 已知x+2y+3z=1,求 的最小值。
x y z
2 2
2
例4:设a、b、c为正数且各不相等。 求证: 2 2 2 9 ab bc ca abc 1 1 1 证明: 2(a b c)( ) ab bc ca 1 1 1 [(a b) (b c) (c a)]( ) ab bc ca
1 1 4 a b
注意应用公式: 1 1 ( a b )( ) 4 a b
练习:
1.已知2x 3 y 6,
2 2
求证x 2 y 11 2.已知a b 1,
2 2
求证|a cos b sin | 1
作业

高中数学第三讲柯西不等式与排序不等式三排序不等式教案(含解析)新人教A版选修4_5

高中数学第三讲柯西不等式与排序不等式三排序不等式教案(含解析)新人教A版选修4_5

三 排序不等式1.顺序和、乱序和、反序和设a 1≤a 2≤…≤a n ,b 1≤b 2≤…≤b n 为两组实数,c 1,c 2,…,c n 为b 1,b 2,…,b n 的任一排列,称a 1b 1+a 2b 2+…+a n b n 为这两个实数组的顺序积之和(简称顺序和),称a 1b n +a 2b n -1+…+a n b 1为这两个实数组的反序积之和(简称反序和).称a 1c 1+a 2c 2+…+a n c n 为这两个实数组的乱序积之和(简称乱序和).2.排序不等式(排序原理)定理:(排序原理,又称为排序不等式) 设a 1≤a 2≤…≤a n ,b 1≤b 2≤…≤b n 为两组实数,c 1,c 2,…,c n 为b 1,b 2,…,b n 的任一排列,则有a 1b n +a 2b n -1+…+a n b 1≤a 1c 1+a 2c 2+…+a n c n ≤a 1b 1+a 2b 2+…+a n b n ,等号成立(反序和等于顺序和)⇔a 1=a 2=…=a n 或b 1=b 2=…=b n .排序原理可简记作:反序和≤乱序和≤顺序和.[点睛] 排序不等式也可以理解为两实数序列同向单调时,所得两两乘积之和最大;反向单调(一增一减)时,所得两两乘积之和最小.用排序不等式证明不等式(所证不等式)中字母大小顺序已确定[例a 5b 3c 3+b 5c 3a 3+c 5a 3b 3≥1a +1b +1c. [思路点拨] 分析题目中已明确a ≥b ≥c ,所以解答本题时可直接构造两个数组,再用排序不等式证明即可.[证明] ∵a ≥b >0,于是1a ≤1b,又c >0,从而1bc ≥1ca,同理1ca ≥1ab ,从而1bc ≥1ca ≥1ab.又由于顺序和不小于乱序和,故可得a 5b 3c 3+b 5c 3a 3+c 5a 3b 3≥b 5b 3c 3+c 5c 3a 3+a 5a 3b 3=b 2c 3+c 2a 3+a 2b 3⎝⎛⎭⎪⎫∵a 2≥b 2≥c 2,1c 3≥1b 3≥1a 3≥c2c3+a2a3+b 2b3=1c+1a+1b=1a+1b+1c.∴原不等式成立.利用排序不等式证明不等式的技巧在于仔细观察、分析所要证明的式子的结构,从而正确地构造出不等式中所需要的带有大小顺序的两个数组.1.已知0<α<β<γ<π2,求证:sin αcos β+sin βcos γ+sin γ·cos α>12(sin 2α+sin 2β+sin 2γ).证明:∵0<α<β<γ<π2,且y=sin x在⎝⎛⎭⎪⎫0,π2为增函数,y=cos x在⎝⎛⎭⎪⎫0,π2为减函数,∴0<sin α<sin β<sin γ,cos α>cos β>cos γ>0.∴sin αcos β+sin βcos γ+sin γcos α>sin αcos α+sin βcos β+sin γcos γ=12(sin 2α+sin 2β+sin 2γ).2.设x≥1,求证:1+x+x2+…+x2n≥(2n+1)x n.证明:∵x≥1,∴1≤x≤x2≤…≤x n.由排序原理得12+x2+x4+ (x2)≥1·x n+x·x n-1+…+x n-1·x+x n·1即1+x2+x4+…+x2n≥(n+1)x n.①又因为x,x2,…,x n,1为1,x,x2,…,x n的一个排列,由排序原理得1·x+x·x2+…+x n-1·x n+x n·1≥1·x n+x·x n-1+…+x n-1·x+x n·1,即x+x3+…+x2n-1+x n≥(n+1)x n.②将①②相加得1+x+x2+…+x2n≥(2n+1)x n.用排序不等式证明不等式(对所证不等式中的字母大小顺序作出假设)a12bc+b12ca+c12ab≥a10+b10+c10.[思路点拨] 本题考查排序不等式的应用,解答本题需要搞清:题目中没有给出a ,b ,c 三个数的大小顺序,且a ,b ,c 在不等式中的“地位”是对等的,故可以设a ≥b ≥c ,再利用排序不等式加以证明.[证明] 由对称性,不妨设 a ≥b ≥c ,于是a 12≥b 12≥c 12,1bc ≥1ca ≥1ab,故由排序不等式:顺序和≥乱序和,得a 12bc +b 12ca +c 12ab ≥a 12ab +b 12bc +c 12ca =a 11b +b 11c +c 11a.① 又因为a 11≥b 11≥c 11,1a ≤1b ≤1c.再次由排序不等式:反序和≤乱序和,得a 11a +b 11b +c 11c ≤a 11b +b 11c +c 11a.② 所以由①②得a 12bc +b 12ca +c 12ab≥a 10+b 10+c 10.在排序不等式的条件中需要限定各数值的大小关系,对于没有给出大小关系的情况,要根据各字母在不等式中地位的对称性,限定一种大小关系.3.设a ,b ,c 都是正数,求证:bc a +ca b +abc≥a +b +c .证明:由题意不妨设a ≥b ≥c >0,由不等式的单调性,知ab ≥ac ≥bc ,1c ≥1b ≥1a .由排序不等式,知ab ×1c +ac ×1b+bc ×1a≥ab ×1b +ac ×1a +bc ×1c=a +c +b ,即bc a +ca b +abc≥a +b +c .4.设a 1,a 2,a 3为正数,求证:a 1a 2a 3+a 2a 3a 1+a 3a 1a 2≥a 1+a 2+a 3. 证明:不妨设 a 1≥a 2≥a 3>0,于是 1a 1≤1a 2≤1a 3,a 2a 3≤a 3a 1≤a 1a 2,由排序不等式:顺序和≥乱序和得a 1a 2a 3+a 3a 1a 2+a 2a 3a 1≥1a 2·a 2a 3+1a 3·a 3a 1+1a 1·a 1a 2 =a 3+a 1+a 2. 即a 1a 2a 3+a 2a 3a 1+a 3a 1a 2≥a 1+a 2+a 3.1.有两组数:1,2,3与10,15,20,它们的顺序和、反序和分别是( ) A .100,85 B .100,80 C .95,80D .95,85解析:选B 由顺序和与反序和的定义可知顺序和为100,反序和为80. 2.若0<a 1<a 2,0<b 1<b 2,且a 1+a 2=b 1+b 2=1,则下列代数式中值最大的是( ) A .a 1b 1+a 2b 2 B .a 1a 2+b 1b 2C .a 1b 2+a 2b 1 D.12解析:选A 因为0<a 1<a 2,0<b 1<b 2,所以由排序不等式可知a 1b 1+a 2b 2最大. 3.锐角三角形中,设P =a +b +c2,Q =a cos C +b cos B +c cos A ,则P ,Q 的大小关系为( )A .P ≥QB .P =QC .P ≤QD .不能确定 解析:选C 不妨设A ≥B ≥C ,则a ≥b ≥c ,cos A ≤cos B ≤cos C ,则由排序不等式有Q =a cos C +b cos B +c cos A ≥a cos B +b cos C +c cos A=R (2sin A cos B +2sin B cos C +2sin C cos A ) =R [sin(A +B )+sin(B +C )+sin(A +C )] =R (sin C +sin A +sin B )=P =a +b +c2.4.儿子过生日要老爸买价格不同的礼品1件、2件及3件,现在选择商店中单价为13元、20元和10元的礼品,至少要花( )A .76元B .20元C .84元D .96元解析:选A 设a 1=1(件),a 2=2(件),a 3=3(件),b 1=10(元),b 2=13(元),b 3=20(元),则由排序原理反序和最小知至少要花a 1b 3+a 2b 2+a 3b 1=1×20+2×13+3×10=76(元).5.已知两组数1,2,3和4,5,6,若c 1,c 2,c 3是4,5,6的一个排列,则1c 1+2c 2+3c 3的最大值是________,最小值是________.解析:由反序和≤乱序和≤顺序和知,顺序和最大,反序和最小,故最大值为32,最小值为28.答案:32 286.设正实数a 1,a 2,…,a n 的任一排列为 a 1′,a 2′,…,a n ′,则a 1a 1′+a 2a 2′+…+a na n ′的最小值为________.解析:不妨设0<a 1≤a 2≤a 3…≤a n , 则1a 1≥1a 2≥…≥1a n.其反序和为a 1a 1+a 2a 2+…+a n a n=n , 则由乱序和不小于反序和知a 1a 1′+a 2a 2′+…+a n a n ′≥a 1a 1+a 2a 2+…+a na n=n , ∴a 1a 1′+a 2a 2′+…+a na n ′的最小值为n . 答案:n7.设a 1,a 2,a 3,a 4是1,2,3,4的一个排序,则a 1+2a 2+3a 3+4a 4的取值范围是________. 解析:a 1+2a 2+3a 3+4a 4的最大值为12+22+32+42=30,最小值为1×4+2×3+3×2+4×1=20,∴a 1+2a 2+3a 3+4a 4的取值范围是[20,30]. 答案:[20,30]8.设a ,b ,c 是正实数,用排序不等式证明a a b b c c≥(abc )a +b +c3.证明:由所证不等式的对称性,不妨设a ≥b ≥c >0, 则lg a ≥lg b ≥lg c ,据排序不等式有:a lg a +b lg b +c lg c ≥b lg a +c lg b +a lg c , a lg a +b lg b +c lg c ≥c lg a +a lg b +b lg c ,以上两式相加,再两边同加a lg a +b lg b +c lg c ,整理得 3(a lg a +b lg b +c lg c )≥(a +b +c )(lg a +lg b +lg c ), 即lg(a a b b c c)≥a +b +c3·lg(abc ), 故a a b b c c≥(abc )a +b +c3.9.某学校举行投篮比赛,按规则每个班级派三人参赛,第一人投m 分钟,第二人投n 分钟,第三人投p 分钟,某班级三名运动员A ,B ,C 每分钟能投进的次数分别为a ,b ,c ,已知m >n >p ,a >b >c ,如何派三人上场能取得最佳成绩?解:∵m >n >p ,a >b >c , 且由排序不等式知顺序和为最大值, ∴最大值为ma +nb +pc ,此时分数最高, ∴三人上场顺序是A 第一,B 第二,C 第三. 10.已知0<a ≤b ≤c ,求证:c 2a +b +b 2a +c +a 2b +c ≥a 2a +b +b 2b +c +c 2c +a.证明:因为0<a ≤b ≤c ,所以0<a +b ≤c +a ≤b +c , 所以1a +b ≥1c +a ≥1b +c>0, 又0<a 2≤b 2≤c 2, 所以c 2a +b +b 2a +c +a 2b +c是顺序和,a 2a +b +b 2b +c +c 2c +a是乱序和,由排序不等式可知顺序和大于等于乱序和, 即不等式c 2a +b +b 2a +c +a 2b +c ≥a 2a +b +b 2b +c +c 2c +a成立.。

讲柯西不等式与排序不等式二维形式的柯西不等式

讲柯西不等式与排序不等式二维形式的柯西不等式

讲柯西不等式与排序不等式二维形式的柯西不等式汇报人:2023-12-02目录•引言•柯西不等式•排序不等式•二维形式的柯西不等式•案例分析•结论与展望CONTENTSCHAPTER01引言柯西不等式是数学中的一个基本不等式,它提供了一个在特定条件下,实数的平方和与乘积之间的关系。

排序不等式是另一个重要的不等式,它描述了当一组实数被排序后,它们的和与积之间的关系。

二维形式的柯西不等式结合了柯西不等式和排序不等式的思想,进一步探讨了向量模长的平方和与它们之间的角度余弦乘积之间的关系。

背景介绍数学模型与定义柯西不等式01对于任意实数a,b,c,d,有(ac+bd)^2 ≤ (a^2+b^2)(c^2+d^2)。

当且仅当ad=bc时,等号成立。

排序不等式02对于一组实数x1,x2,...,xn,若它们按升序排列,即x1≤x2≤...≤xn,则有∑xi^2 ≤ (x1+x2+...+xn)^2 / n,等号在所有数都相等时成立。

二维形式的柯西不等式03对于两个非零向量A=(x1,y1),B=(x2,y2),有|A|^2*|B|^2 ≥ (A·B)^2,等号在A和B共线时成立。

其中|A|表示向量A的模长,A·B表示两个向量的点积。

CHAPTER02柯西不等式•利用数学归纳法证明:通过数学归纳法,证明对于任何一组实数a_1, a_2, ..., a_n和b_1, b_2, ..., b n,都有∑{i=1}^{n}a_ib i≤∑{i=1}^{n}a i^2/∑{i=1}^{n}b_i^2利用排序不等式,可以证明一些优化问题的最优解,如线性规划、二次规划等排序不等式可以用于证明大数定理和强大数定理等概率论中的重要结论在概率论中的应用在最优化中的应用与其他数学知识的联系二维形式的排序不等式即为柯西不等式,两者是等价的与范德蒙公式的关系范德蒙公式是排序不等式的推广,适用于更广泛的情况CHAPTER03排序不等式对于任意实数 $x_1, x_2, \ldots, x_n$ 和 $y_1, y_2, \ldots, y_n$,有$\sum_{i=1}^{n}x_i^2 \cdot\sum_{i=1}^{n}y_i^2 \geq\left(\sum_{i=1}^{n}x_iy_i\right)^2$。

高中数学第三讲柯西不等式与排序不等式3.1二维形式的柯西不等式3.2一般形式的柯西不等式

高中数学第三讲柯西不等式与排序不等式3.1二维形式的柯西不等式3.2一般形式的柯西不等式

故( -3t+12+ t)max=4.(10分)
归纳升华 根据题设条件的结构特点,恰当选择柯西不等式的 某个形式,获得某个最值,再结合其他数学知识,解决 参数的范围、不等式恒成立等综合问题.
[类题尝试] 把一根长为12 m的细绳截成三段,各

围成三个正方形.问:怎样截法,才能使围成的三个正
方形面积之和S最小,并求此最小值.
小,最小面积为3 m2.
1.理解并记忆三种形式取“=”的条件. (1)代数形式中当且仅当ad=bc时取等号. (2)向量形式中当α=kβ或β=0时取等号. (3)三角形式中当P1(x1,y1),P2(x2,y2),O(0,0)三 点共线且P1,P2在原点O两旁时取等号.
2.二维形式的柯西不等式的变式. (1) a2+b2· c2+d2≥|ac+bd|. (2) a2+b2· c2+d2≥|ac|+|bd|. (3) a2+b2· c2+d2≥ac+bd. 3.对柯西不等式一般形式的说明. 一般形式的柯西不等式是二维形式、三维形式的柯西 不等式的归纳与推广,其特点可类比二维形式的柯西不等 式来总结,左边是平方和的积,右边是积的和的平方.运 用时的关键是构造出符合柯西不等式的结构形式.
即x=
37 6
,y=
28 9
,z=
22 15
时等号成立,此时umax=
2 30.
归纳升华 1.先变形凑成柯西不等式的结构特征,是利用柯 西不等式求解的先决条件; 2.常用的配凑的技巧有:①巧拆常数;②重新安 排某些项的次序;③适当添项;④适当改变结构,从而 达到运用柯西不等式求最值的目的. 3.有些最值问题的解决需要反复利用柯西不等式才 能达到目的,但在运用过程中,每运用一次前后等号成立 的条件必须一致,不能自相矛盾,否则就会出现错误.多 次反复运用柯西不等式的方法也是常用技巧之一.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一 二维形式的柯西不等式1.二维形式的柯西不等式(1)定理1:若a ,b ,c ,d 都是实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时,等号成立.(2)二维形式的柯西不等式的推论:(a +b )(c +d )≥(ac +bd )2(a ,b ,c ,d 为非负实数);a 2+b 2·c 2+d 2≥|ac +bd |(a ,b ,c ,d ∈R); a 2+b 2·c 2+d 2≥|ac |+|bd |(a ,b ,c ,d ∈R).2.柯西不等式的向量形式定理2:设α,β是两个向量,则|α·β|≤|α|·|β|,当且仅当β是零向量,或存在实数k ,使α=kβ时,等号成立.[注意] 柯西不等式的向量形式中α·β≤|α||β|,取等号“=”的条件是β=0或存在实数k ,使α=kβ.3.二维形式的三角不等式(1)定理3:x 21+y 21+x 22+y 22≥(x 1-x 2)2+(y 1-y 2)2(x 1,y 1,x 2,y 2∈R). 当且仅当三点P 1,P 2与O 共线,并且P 1,P 2点在原点O 异侧时,等号成立. (2)推论:对于任意的x 1,x 2,x 3,y 1,y 2,y 3∈R ,有 (x 1-x 3)2+(y 1-y 3)2+(x 2-x 3)2+(y 2-y 3)2≥(x 1-x 2)2+(y 1-y 2)2.事实上,在平面直角坐标系中,设点P 1,P 2,P 3的坐标分别为(x 1,y 1),(x 2,y 2),(x 3,y 3),根据△P 1P 2P 3的边长关系有|P 1P 3|+|P 2P 3|≥|P 1P 2|,当且仅当三点P 1,P 2,P 3共线,并且点P 1,P 2在P 3点的异侧时,等号成立.利用柯西不等式证明不等式[例1] 已知θ为锐角,a ,b ∈R +,求证:cos 2θ+sin 2θ≥(a +b )2. [思路点拨] 可结合柯西不等式,将左侧构造成乘积形式,利用“1=sin 2θ+cos 2θ”,然后用柯西不等式证明.[证明] ∵a 2cos 2θ+b 2sin 2θ=⎝ ⎛⎭⎪⎫a 2cos 2θ+b 2sin 2θ(cos 2θ+sin 2θ) ≥⎝⎛⎭⎪⎫a cos θ·cos θ+b sin θ·sin θ2=(a +b )2,∴(a +b )2≤a 2cos 2θ+b 2sin 2θ.利用柯西不等式证明不等式的关键在于利用已知条件和所证不等式,把已知条件利用添项、拆项、分解、组合、配方、变量代换等,将条件构造成柯西不等式的基本形式,从而利用柯西不等式证明,但应注意等号成立的条件.1.已知a 1,a 2,b 1,b 2为正实数.求证:(a 1b 1+a 2b 2)⎝⎛⎭⎪⎫a 1b 1+a 2b2≥(a 1+a 2)2.证明:∵(a 1b 1+a 2b 2)⎝ ⎛⎭⎪⎫a 1b 1+a 2b 2=[(a 1b 1)2+(a 2b 2)2]⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a 1b 12+⎝ ⎛⎭⎪⎫a 2b 22 ≥⎝⎛⎭⎪⎫a 1b 1·a 1b 1+a 2b 2·a 2b 22=(a 1+a 2)2. ∴原不等式成立. 2.设a ,b ,c 为正数,求证:a 2+b 2+b 2+c 2+a 2+c 2≥ 2(a +b +c ). 证明:由柯西不等式, 得 a 2+b 2·12+12≥a +b , 即2·a 2+b 2≥a +b . 同理:2·b 2+c 2≥b +c , 2·a 2+c 2≥a +c ,将上面三个同向不等式相加得:2()a 2+b 2+ b 2+c 2+ a 2+c 2≥2(a +b +c ) ∴ a 2+b 2+ b 2+c 2+a 2+c 2≥ 2(a +b +c ). 3.设a ,b ∈R +,且a +b =2.求证:a 22-a +b 22-b≥2.证明:根据柯西不等式,有[(2-a )+(2-b )]⎝ ⎛⎭⎪⎫a 22-a +b 22-b=[(2-a )2+(2-b )2]⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a 2-a 2+⎝ ⎛⎭⎪⎫b 2-b 2≥⎝⎛⎭⎪⎫2-a ·a2-a+2-b ·b2-b 2 =(a +b )2=4. ∴a 22-a +b 22-b ≥4(2-a )+(2-b )=2. ∴原不等式成立.利用二维形式的柯西不等式求最值[例2] [思路点拨] 函数的解析式是两部分的和,若能化为ac +bd 的形式就能用柯西不等式求其最大值.[解] 由柯西不等式得(3sin α+4cos α)2≤(32+42)(sin 2α+cos 2α)=25, ∴3sin α+4cos α≤5.当且仅当sin α3=cos α4>0即sin α=35,cos α=45时取等号,即函数的最大值为5.利用柯西不等式求最值的注意点(1)变形凑成柯西不等式的结构特征,是利用柯西不等式求解的先决条件;(2)有些最值问题从表面上看不能利用柯西不等式,但只要适当添加上常数项或和为常数的各项,就可以利用柯西不等式来解,这也是运用柯西不等式解题的技巧;(3)有些最值问题的解决需要反复利用柯西不等式才能达到目的,但在运用过程中,每运用一次前后等号成立的条件必须一致,不能自相矛盾,否则就会出现错误.多次反复运用柯西不等式的方法也是常用技巧之一.4.已知2x 2+y 2=1,求2x +y 的最大值.解:∵2x +y =2×2x +1×y ≤(2)2+12×(2x )2+y 2=3×2x 2+y 2=3, 当且仅当x =y =33时取等号. ∴2x +y 的最大值为 3.5.求函数y =x 2-2x +3+x 2-6x +14的最小值. 解:y =(x -1)2+2+(3-x )2+5,y 2=(x -1)2+2+(3-x )2+5+2×[(x -1)2+2][(3-x )2+5]≥(x -1)2+2+(3-x )2+5+2×[(x -1)(3-x )+10]=[(x -1)+(3-x )]2+(7+210)=11+210.当且仅当x -13-x =25,即x =32+52+5时等号成立.此时y min =11+210=10+1.1.已知a ,b ∈R +且a +b =1,则P =(ax +by )2与Q =ax 2+by 2的大小关系是( ) A .P ≤Q B .P <Q C .P ≥QD .P >Q解析:选A 设m =(ax ,by ),n =(a ,b ), 则|ax +by |=|m·n |≤|m ||n |=(ax )2+(by )2·(a )2+(b )2=ax 2+by 2·a +b = ax 2+by 2,∴(ax +by )2≤ax 2+by 2,即P ≤Q .2.若a ,b ∈R ,且a 2+b 2=10,则a -b 的取值范围是( ) A .[-25,2 5 ] B .[-210,210 ] C .[-10,10 ] D .(-5,5)解析:选A (a 2+b 2)[12+(-1)2]≥(a -b )2, ∵a 2+b 2=10, ∴(a -b )2≤20. ∴-25≤a -b ≤2 5.3.已知x +y =1,那么2x 2+3y 2的最小值是( ) A.56 B.65 C.2536D.3625解析:选B (2x 2+3y 2)[(3)2+(2)2]≥(6x +6y )2=[6(x +y )]2=6,当且仅当x =35,y =25时取等号,即2x 2+3y 2≥65.故2x 2+3y 2的最小值为65.4.函数y =x -5+26-x 的最大值是( ) A. 3 B. 5 C .3D .5解析:选B 根据柯西不等式,知y =1×x -5+2×6-x ≤12+22×(x -5)2+(6-x )2=5,当且仅当x =265时取等号.5.设xy >0,则⎝⎛⎭⎪⎫x 2+4y 2⎝⎛⎭⎪⎫y 2+1x 2的最小值为________.解析:原式=⎣⎢⎡⎦⎥⎤x 2+⎝ ⎛⎭⎪⎫2y 2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1x2+y 2≥x ·1x +2y·y 2=9,当且仅当xy =2时取等号.答案:96.设a =(-2,1,2),|b |=6,则a ·b 的最小值为________,此时b =________. 解析:根据柯西不等式的向量形式,有|a ·b |≤|a |·|b |, ∴|a ·b |≤(-2)2+12+22×6=18, 当且仅当存在实数k , 使a =kb 时,等号成立. ∴-18≤a ·b ≤18, ∴a ·b 的最小值为-18, 此时b =-2a =(4,-2,-4). 答案:-18 (4,-2,-4)7.设实数x ,y 满足3x 2+2y 2≤6,则P =2x +y 的最大值为________. 解析:由柯西不等式得(2x +y )2≤[(3x )2+(2y )2]·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫232+⎝ ⎛⎭⎪⎫122=(3x 2+2y 2)·⎝ ⎛⎭⎪⎫43+12≤6×116=11,当且仅当x =411,y =311时取等号,故P =2x +y 的最大值为11. 答案:118.已知x ,y ∈R +,且x +y =2.求证:1x +1y≥2.证明:1x +1y =12(x +y )⎝ ⎛⎭⎪⎫1x +1y =12[ (x )2+(y )2]⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1x 2+⎝ ⎛⎭⎪⎫1y 2 ≥12⎝ ⎛⎭⎪⎫x · 1x +y ·1y 2=2, 当且仅当⎩⎪⎨⎪⎧xy=y x ,x +y =2时等号成立,此时x =1,y =1.所以1x +1y≥2.9.若x 2+4y 2=5,求x +y 的最大值及此时x ,y 的值. 解:由柯西不等式得[x 2+(2y )2]⎣⎢⎡⎦⎥⎤12+⎝ ⎛⎭⎪⎫122≥(x +y )2,即(x +y )2≤5×54=254,x +y ≤52.当且仅当x 1=2y12,即x =4y 时取等号.由⎩⎪⎨⎪⎧x 2+4y 2=5,x =4y ,得⎩⎪⎨⎪⎧x =2,y =12或⎩⎪⎨⎪⎧x =-2,y =-12(舍去).∴x +y 的最大值为52,此时x =2,y =12.10.求函数f (x )=3cos x +4 1+sin 2x 的最大值,并求出相应的x 的值. 解:设m =(3,4),n =(cos x ,1+sin 2x ), 则f (x )=3cos x +4 1+sin 2x =|m ·n |≤|m |·|n |=cos 2x +1+sin 2x ·32+42 =52,当且仅当m ∥n 时,上式取“=”. 此时,3 1+sin 2x -4cos x =0.解得sin x=75,cos x=325.故当sin x=75,cos x=325时.f(x)=3cos x+4 1+sin2x取最大值5 2.。

相关文档
最新文档