希望杯第十三届初中一年级第一试试题

合集下载

最新历届(1-24)希望杯数学竞赛初一七年级真题及答案

最新历届(1-24)希望杯数学竞赛初一七年级真题及答案

“希望杯”全国数学竞赛(第1-24届)初一年级/七年级第一/二试题目录1.希望杯第一届(1990年)初中一年级第一试试题............................................. 003-0052.希望杯第一届(1990年)初中一年级第二试试题............................................. 010-0123.希望杯第二届(1991年)初中一年级第一试试题............................................. 015-0204.希望杯第二届(1991年)初中一年级第二试试题............................................. 021-0265.希望杯第三届(1992年)初中一年级第一试试题............................................. 028-0326.希望杯第三届(1992年)初中一年级第二试试题............................................. 033-0407.希望杯第四届(1993年)初中一年级第一试试题............................................. 042-0508.希望杯第四届(1993年)初中一年级第二试试题............................................. 049-0589.希望杯第五届(1994年)初中一年级第一试试题............................................. 056-06610.希望杯第五届(1994年)初中一年级第二试试题 .......................................... 062-07311.希望杯第六届(1995年)初中一年级第一试试题 ........................................... 069-08012希望杯第六届(1995年)初中一年级第二试试题........................................... 076-08713.希望杯第七届(1996年)初中一年级第一试试题........................................... 085-09814.希望杯第七届(1996年)初中一年级第二试试题............................................. 90-10515.希望杯第八届(1997年)初中一年级第一试试题............................................. 98-11316.希望杯第八届(1997年)初中一年级第二试试题........................................... 105-12017.希望杯第九届(1998年)初中一年级第一试试题........................................... 113-12918.希望杯第九届(1998年)初中一年级第二试试题........................................... 122-13819.希望杯第十届(1999年)初中一年级第二试试题........................................... 129-14720.希望杯第十届(1999年)初中一年级第一试试题........................................... 148-15121.希望杯第十一届(2000年)初中一年级第一试试题....................................... 142-16122.希望杯第十一届(2000年)初中一年级第二试试题....................................... 149-16923.希望杯第十二届(2001年)初中一年级第一试试题....................................... 153-17424.希望杯第十二届(2001年)初中一年级第二试试题....................................... 157-17825.希望杯第十三届(2002年)初中一年级第一试试题....................................... 163-18426.希望杯第十三届(2001年)初中一年级第二试试题....................................... 167-18927.希望杯第十四届(2003年)初中一年级第一试试题....................................... 174-19628.希望杯第十四届(2003年)初中一年级第二试试题....................................... 178-20029.希望杯第十五届(2004年)初中一年级第一试试题 (182)30.希望杯第十五届(2004年)初中一年级第二试试题 (183)31.希望杯第十六届(2005年)初中一年级第一试试题....................................... 213-21832.希望杯第十六届(2005年)初中一年级第二试试题 (183)33.希望杯第十七届(2006年)初中一年级第一试试题....................................... 228-23334.希望杯第十七届(2006年)初中一年级第二试试题....................................... 234-23835.希望杯第十八届(2007年)初中一年级第一试试题....................................... 242-246 26.希望杯第十八届(2007年)初中一年级第二试试题....................................... 248-25137.希望杯第十九届(2008年)初中一年级第一试试题....................................... 252-25638.希望杯第十九届(2008年)初中一年级第二试试题....................................... 257-26239.希望杯第二十届(2009年)初中一年级第一试试题....................................... 263-26620.希望杯第二十届(2009年)初中一年级第二试试题....................................... 267-27121.希望杯第二十一届(2010年)初中一年级第一试试题 ................................... 274-27622.希望杯第二十二届(2011年)初中一年级第二试试题 ................................... 270-27323.希望杯第二十三届(2012年)初中一年级第二试试题 ................................... 270-273 23.希望杯第二十四届(2013年)初中一年级第二试试题 ................................... 274-281 23.希望杯第二十四届(2013年)初中一年级第二试试题 ................................... 274-281希望杯第一届(1990年)初中一年级第1试试题一、选择题(每题1分,共10分)1.如果a ,b 都代表有理数,并且a +b=0,那么 ( )A .a ,b 都是0.B .a ,b 之一是0.C .a ,b 互为相反数.D .a ,b 互为倒数.2.下面的说法中正确的是 ( )A .单项式与单项式的和是单项式.B .单项式与单项式的和是多项式.C .多项式与多项式的和是多项式.D .整式与整式的和是整式.3.下面说法中不正确的是 ( )A. 有最小的自然数. B .没有最小的正有理数.C .没有最大的负整数.D .没有最大的非负数.4.如果a ,b 代表有理数,并且a +b 的值大于a -b 的值,那么( ) A .a ,b 同号. B .a ,b 异号.C .a >0. D .b >0.5.大于-π并且不是自然数的整数有( ) A .2个. B .3个.C .4个. D .无数个.6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身.这四种说法中,不正确的说法的个数是 ( )A .0个.B .1个.C .2个.D .3个.7.a 代表有理数,那么,a 和-a 的大小关系是 ( )A .a 大于-a .B .a 小于-a .C .a 大于-a 或a 小于-a .D .a 不一定大于-a .8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( )A .乘以同一个数.B .乘以同一个整式.C .加上同一个代数式.D .都加上1.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( )A .一样多.B .多了.C .少了.D .多少都可能.10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( )A .增多.B .减少.C .不变.D .增多、减少都有可能.二、填空题(每题1分,共10分)1. 21115160.01253(87.5)(2)4571615⨯-⨯-÷⨯+--= ______. 2.198919902-198919892=______.3.2481632(21)(21)(21)(21)(21)21+++++-=________. 4. 关于x 的方程12148x x +--=的解是_________. 5.1-2+3-4+5-6+7-8+…+4999-5000=______.6.当x=-24125时,代数式(3x 3-5x 2+6x -1)-(x 3-2x 2+x -2)+(-2x 3+3x 2+1)的值是____. 7.当a=-0.2,b=0.04时,代数式272711()(0.16)()73724a b b a a b --++-+的值是______.8.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克.9.制造一批零件,按计划18天可以完成它的13.如果工作4天后,工作效率提高了15,那么完成这批零件的一半,一共需要______天.10.现在4点5分,再过______分钟,分针和时针第一次重合.答案与提示一、选择题1.C 2.D 3.C 4.D 5.C 6.B 7.D 8.D 9.C 10.A提示:1.令a=2,b=-2,满足2+(-2)=0,由此2.x2,2x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A.两个单项式x2,2x2之和为3x2是单项式,排除B.两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D.3.1是最小的自然数,A正确.可以找到正所以C“没有最大的负整数”的说法不正确.写出扩大自然数列,0,1,2,3,…,n,…,易知无最大非负数,D正确.所以不正确的说法应选C.5.在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C.6.由12=1,13=1可知甲、乙两种说法是正确的.由(-1)3=-1,可知丁也是正确的说法.而负数的平方均为正数,即负数的平方一定大于它本身,所以“负数平方不一定大于它本身”的说法不正确.即丙不正确.在甲、乙、丙、丁四个说法中,只有丙1个说法不正确.所以选B.7.令a=0,马上可以排除A、B、C,应选D.8.对方程同解变形,要求方程两边同乘不等于0的数.所以排除A.我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x -2)=0,其根为x=1及x=2,不与原方程同解,排除B.若在方程x-2=0两边加上同一个代数式去了原方程x=2的根.所以应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.9.设杯中原有水量为a,依题意可得,第二天杯中水量为a×(1-10%)=0.9a;第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a;第三天杯中水量与第一天杯中水量之比为所以第三天杯中水量比第一天杯中水量少了,选C.10.设两码头之间距离为s,船在静水中速度为a,水速为v0,则往返一次所用时间为设河水速度增大后为v,(v>v0)则往返一次所用时间为由于v-v0>0,a+v0>a-v0,a+v>a-v所以(a+v0)(a+v)>(a-v0)(a-v)∴t0-t<0,即t0<t.因此河水速增大所用时间将增多,选A.二、填空题提示:2.198919902-198919892=(19891990+19891989)×(19891990-19891989)=(19891990+19891989)×1=39783979.3.由于(2+1)(22+1)(24+1)(28+1)(216+1)=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22-1)(22+1)(24+1)(28+1)(216+1)=(24-1)(24+1)(28+1)(216+1)=(28-1)(28+1)(216+1)=(216-1)(216+1)=232-1.2(1+x)-(x-2)=8,2+2x-x+2=8解得;x=45.1-2+3-4+5-6+7-8+…+4999-5000=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)=-2500.6.(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)=5x+27.注意到:当a=-0.2,b=0.04时,a2-b=(-0.2)2-0.04=0,b+a+0.16=0.04-0.2+0.16=0.8.食盐30%的盐水60千克中含盐60×30%(千克)设蒸发变成含盐为40%的水重x克,即0.001x千克,此时,60×30%=(0.001x)×40%解得:x=45000(克).10.在4时整,时针与分针针夹角为120°即希望杯第一届(1990年)初中一年级第2试试题一、选择题(每题1分,共5分)以下每个题目里给出的A,B,C,D四个结论中有且仅有一个是正确的.请你在括号填上你认为是正确的那个结论的英文字母代号.1.某工厂去年的生产总值比前年增长a%,则前年比去年少的百分数是( )A.a%.B.(1+a)%. C.1100aa+D.100aa+2.甲杯中盛有2m毫升红墨水,乙杯中盛有m毫升蓝墨水,从甲杯倒出a毫升到乙杯里, 0<a<m,搅匀后,又从乙杯倒出a毫升到甲杯里,则这时( )A.甲杯中混入的蓝墨水比乙杯中混入的红墨水少.B.甲杯中混入的蓝墨水比乙杯中混入的红墨水多.C.甲杯中混入的蓝墨水和乙杯中混入的红墨水相同.D.甲杯中混入的蓝墨水与乙杯中混入的红墨水多少关系不定.3.已知数x=100,则( )A.x是完全平方数.B.(x-50)是完全平方数.C.(x-25)是完全平方数.D.(x+50)是完全平方数.4.观察图1中的数轴:用字母a,b,c依次表示点A,B,C对应的数,则111,,ab b a c-的大小关系是( )A.111ab b a c<<-; B.1b a-<1ab<1c; C.1c<1b a-<1ab; D.1c<1ab<1b a-.5.x=9,y=-4是二元二次方程2x2+5xy+3y2=30的一组整数解,这个方程的不同的整数解共有( )A.2组.B.6组.C.12组.D.16组.二、填空题(每题1分,共5分)1.方程|1990x-1990|=1990的根是______.2.对于任意有理数x,y,定义一种运算*,规定x*y=ax+by-cxy,其中的a,b,c表示已知数,等式右边是通常的加、减、乘运算.又知道1*2=3,2*3=4,x*m=x(m≠0),则m 的数值是______.3.新上任的宿舍管理员拿到20把钥匙去开20个房间的门,他知道每把钥匙只能开其中的一个门,但不知道每把钥匙是开哪一个门的钥匙,现在要打开所有关闭着的20个房间,他最多要试开______次.4.当m=______时,二元二次六项式6x2+mxy-4y2-x+17y-15可以分解为两个关于x,y 的二元一次三项式的乘积.5.三个连续自然数的平方和(填“是”或“不是”或“可能是”)______某个自然数的平方.三、解答题(写出推理、运算的过程及最后结果.每题5分,共15分)1.两辆汽车从同一地点同时出发,沿同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油.为了使其中一辆车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里的地方返回?离出发地点最远的那辆车一共行驶了多少公里?2.如图2,纸上画了四个大小一样的圆,圆心分别是A,B,C,D,直线m通过A,B,直线n通过C,D,用S表示一个圆的面积,如果四个圆在纸上盖住的总面积是5(S-1),直线m,n之间被圆盖住的面积是8,阴影部分的面积S1,S2,S3满足关系式S3=13S1=13S2,求S.3.求方程11156x y z++=的正整数解.答案与提示一、选择题1.D 2.C 3.C 4.C 5.D提示:1.设前年的生产总值是m,则去年的生产总值是前年比去年少这个产值差占去年的应选D.2.从甲杯倒出a毫升红墨水到乙杯中以后:再从乙杯倒出a毫升混合墨水到甲杯中以后:乙杯中含有的红墨水的数量是①乙杯中减少的蓝墨水的数量是②∵①=②∴选C.∴x-25=(10n+2+5)2可知应当选C.4.由所给出的数轴表示(如图3):可以看出∴①<②<③,∴选C.5.方程2x2+5xy+3y2=30可以变形为(2x+3y)(x+y)=1·2·3·5∵x,y是整数,∴2x+3y,x+y也是整数.由下面的表可以知道共有16个二元一次方程组,每组的解都是整数,所以有16组整数组,应选D.二、填空题提示:1.原方程可以变形为|x-1|=1,即x-1=1或-1,∴x=2或0.2.由题设的等式x*y=ax+by-cxy及x*m=x(m≠0)得a·0+bm-c·0·m=0,∴bm=0.∵m≠0,∴b=0.∴等式改为x*y=ax-cxy.∵1*2=3,2*3=4,解得a=5,c=1.∴题设的等式即x*y=5x-xy.在这个等式中,令x=1,y=m,得5-m=1,∴m=4.3.∵打开所有关闭着的20个房间,∴最多要试开4.利用“十字相乘法”分解二次三项式的知识,可以判定给出的二元二次六项式6x2+mxy-4y2-x+17y-15中划波浪线的三项应当这样分解:3x -52x +3现在要考虑y,只须先改写作然后根据-4y2,17y这两项式,即可断定是:由于(3x+4y-5)(2x-y+3)=6x2+5xy-4y2-x+17y-15就是原六项式,所以m=5.5.设三个连续自然数是a-1,a,a+1,则它们的平方和是(a-1)2+a2+(a+1)2=3a2+2,显然,这个和被3除时必得余数2.另一方面,自然数被3除时,余数只能是0或1或2,于是它们可以表示成3b,3b+1,3b+2(b是自然数)中的一个,但是它们的平方(3b)2=9b2(3b+1)2=9b2+6b+1,(3b+2)2=9b2+12b+4=(9b2+12b+3)+1被3除时,余数要么是0,要么是1,不能是2,所以三个连续自然数平方和不是某个自然数的平方.三、解答题1.设两辆汽车一为甲一为乙,并且甲用了x升汽油时即回返,留下返程需的x桶汽油,将多余的(24-2x)桶汽油给乙.让乙继续前行,这时,乙有(24-2x)+(24-x)=48-3x桶汽油,依题意,应当有48-3x≤24,∴x≥8.甲、乙分手后,乙继续前行的路程是这个结果中的代数式30(48-4x)表明,当x的值愈小时,代数式的值愈大,因为x≥8,所以当x=8时,得最大值30(48-4·8)=480(公里),因此,乙车行驶的路程一共是2(60·8+480)=1920(公里).2.由题设可得即2S-5S3=8……②∴x,y,z都>1,因此,当1<x≤y≤z时,解(x,y,z)共(2,4,12),(2,6,6),(3,3,6),(3,4,4)四组.由于x,y,z在方程中地位平等.所以可得如下表所列的15组解.希望杯第二届(1991年)初中一年级第1试试题一、选择题(每题1分,共15分)以下每个题目的A,B,C,D四个结论中,仅有一个是正确的,请在括号内填上正确的那个结论的英文字母代号.1.数1是( )A.最小整数.B.最小正数.C.最小自然数.D.最小有理数.2.若a>b,则( )A.11a b; B.-a<-b.C.|a|>|b|.D.a2>b2.3.a为有理数,则一定成立的关系式是( )A.7a>a.B.7+a>a.C.7+a>7.D.|a|≥7.4.图中表示阴影部分面积的代数式是( )A.ad+bc.B.c(b-d)+d(a-c).C.ad+c(b-d).D.ab-cd.5.以下的运算的结果中,最大的一个数是( )A.(-13579)+0.2468; B.(-13579)+1 2468;C.(-13579)×12468; D.(-13579)÷124686.3.1416×7.5944+3.1416×(-5.5944)的值是( ) A.6.1632. B.6.2832.C.6.5132.D.5.3692.7.如果四个数的和的14是8,其中三个数分别是-6,11,12,则笫四个数是( )A.16. B.15. C.14. D.13.8.下列分数中,大于-13且小于-14的是( )A.-1120; B.-413; C.-316; D.-617.9.方程甲:34(x-4)=3x与方程乙:x-4=4x同解,其根据是( )A.甲方程的两边都加上了同一个整式x.B.甲方程的两边都乘以43x;C. 甲方程的两边都乘以43; D. 甲方程的两边都乘以34.10.如图: ,数轴上标出了有理数a,b,c的位置,其中O是原点,则111,,a b c的大小关系是( ) A.111a b c>>; B.1b >1c >1a ; C. 1b >1a >1c ; D. 1c >1a >1b .11.方程522.2 3.7x =的根是( ) A .27. B .28. C .29. D .30. 12.当x=12,y=-2时,代数式42x y xy -的值是( )A .-6.B .-2.C .2.D .6.13.在-4,-1,-2.5,-0.01与-15这五个数中,最大的数与绝对值最大的那个数的乘积是( )A .225.B .0.15.C .0.0001.D .1.14.不等式124816x x x xx ++++>的解集是( ) A .x <16. B .x >16.C .x <1. D.x>-116. 15.浓度为p%的盐水m 公斤与浓度为q%的盐水n 公斤混合后的溶液浓度是 ( ) A.%2p q +; B.()%mp nq +; C.()%mp nq p q ++;D.()%mp nq m n++.二、填空题(每题1分,共15分)1. 计算:(-1)+(-1)-(-1)×(-1)÷(-1)=______. 2. 计算:-32÷6×16=_______. 3. 计算:(63)36162-⨯=__________.4. 求值:(-1991)-|3-|-31||=______. 5. 计算:1111112612203042-----=_________. 6.n 为正整数,1990n -1991的末四位数字由千位、百位、十位、个位、依次排列组成的四位数是8009.则n 的最小值等于______.7. 计算:19191919199191919191⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=_______.8. 计算:15[(-1989)+(-1990)+(-1991)+(-1992)+(-1993)]=________.9.在(-2)5,(-3)5,512⎛⎫-⎪⎝⎭,513⎛⎫-⎪⎝⎭中,最大的那个数是________.10.不超过(-1.7)2的最大整数是______.11.解方程21101211,_____. 3124x x xx-++-=-=12.求值:355355113113355113⎛⎫---⎪⎝⎭⎛⎫- ⎪⎝⎭=_________.13.一个质数是两位数,它的个位数字与十位数字的差是7,则这个质数是______.14.一个数的相反数的负倒数是119,则这个数是_______.15.如图11,a,b,c,d,e,f均为有理数.图中各行,各列、两条对角线上三个数之和都相等,则ab cd efa b c d e f+++++++=____.答案与提示一、选择题1.C 2.B 3.B 4.C 5.C 6.B 7.B 8.B 9.C 10.B 11.D 12.A 13.B 1 4.A 15.D提示:1.整数无最小数,排除A;正数无最小数,排除B;有理数无最小数,排除D.1是最小自然数.选C.有|2|<|-3|,排除C;若2>-3有22<(-3)2,排除D;事实上,a>b必有-a<-b.选B.3.若a=0,7×0=0排除A;7+0=7排除C|0|<7排除D,事实上因为7>0,必有7+a>0+a=a.选B.4.把图形补成一个大矩形,则阴影部分面积等于ab-(a-c)(b-d)=ab-[ab-ad-c(b-d)]=ab-ab+ad+c(b-d)=ad+c(b-d).选C.5.运算结果对负数来说绝对值越小其值越大。

希望杯第十三届(2001年)初中一年级第二试试题

希望杯第十三届(2001年)初中一年级第二试试题

希望杯第十三届(2001年)初中一年级第二试试题一、选择题.(每小题5分,共50分)1.2002+(-2002)-2002 ×(-2002)÷2002=( ). A .-4004 B -2002 C .2002 D .6006. 2.下列四个命题:①如果两个角是对顶角,则这两个角相等. ②如果两个角相等,则这两个角是对顶角. ③如果两个角不是对顶角,则这两个角不相等. ④如果两个角不相等,则这两个角不是对顶角. 其中正确的命题有( ).A .1个B .2个C .3个D .4个3.爸爸给女儿园园买了一个(圆柱形的)生日蛋糕,园园想把蛋糕切成大小不一定相等的若干块(不少于10块),分给1 O 个小朋友,若沿竖直方向切分这块蛋糕,至少需要切( )刀.A .3B .4C .6D .94.当x 取1到10之间的质数时,四个整式:x 2+2,x 2+4,x 2+6和x 2+8的值中,共有质数( )个.A .6B .9C .12D .165.1f a is an odd nurnber ,then there must exist an integer n such that a 2—l =( ). (英汉小字典:odd number 奇数;there must exist 一定存在;such that 使得) A .3n B .5n C .8n D .16n6.如图,直线上有三个不同的点A 、B 、C ,且AB≠BC.那么,到A 、B 、C 三点距离的和最小的点( ).A .是B 点 B .是线段AC 的中点 C 是线段AC 外的一点D .有无穷多个 7.下面四个命题中一定不正确的命题是( ).A .3a 2b 7和7b 7a 2是同类项 B .3x -1=O 和3+1-x 2=0是同解方程C .a -3和3-a 互为倒数D .x 3-6和-x 3—6互为相反数8.如图,O 为直线AB 上的一点,OM 平分∠AOC ,0N 平分∠BOC ,则图中互余的角有( ).A .1对B .2对C .3对D .4对9.如图3,点A 、B 对应的数是a 、b ,点A 在一3、-2对应的两点(包括这两点)之间移动,点B 在-1、0对应的两点(包括这两点)之间移动,则以下四式的值,可能比2008大的是( ).A .b -aB .ab 1- C .b1a1-D .(a -b)2l O .Let a be the average0f aIl odd prime numbers less than50.The integer , most close to a is( ).(英汉小字典:average 平均值;odd prime number 奇质数.) A .23 B24 C .25 D .26 二、填空题(每小题5分,共50分)11.2002年8月,在北京召开国际数学家大会.大会会标如图4所示.它是由4个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积是13,小正方形的面积是1.则每个直角三角形的两条直角边的立方和等于 .12.数学小组中男孩子人数大于小组总人数的40 %且小于50%,则这个数学小组的成员至少有 人.13.甲、乙两同学从400 m 环形跑道上的某一点背向出发,分别以每秒2 m 和每秒3 m 的速度慢跑.6 s 后,一只小狗从甲处以每秒6 m 的速度向乙跑,遇到乙后,又从乙处以每秒6 m 的速度向甲跑,如此往返直至甲、乙第一次相遇.那么小狗共跑了 m .14.小红的妈妈将一笔奖金存入银行,一年定期,按照银行利率牌显示:定期储蓄一年的年利率是2.25%,利息税是20%,经计算,小红的妈妈可在一年后得到税后利息108元,那么小红的妈妈存入的奖金是 元. 15.如图所示,边长为3cm 与5 cm 的两个正方形并排放在一起.在大正方形中画一段以它的一个顶点为圆心,边长为半径的圆弧.则阴影部分的面积是 cm 2(π取3).16.一辆新型家庭轿车油箱的容积为50 L ,加满油由北京出发前往相距2300 km 的第九届全国运动会举办地广州,已知汽车行驶100 km 耗油8 L ,为保证行车安全,油箱内至少应存油6 L ,则在去广州的途中至少需要加油 次.17.如图所示的是蜂巢的一部分.从中间阴影算起,有27层,每个正六边形的小室中放进一个幼蜂,那么这个蜂巢总计可以放 只幼蜂. 18.已知x=2,y=-1,z=-3是三元一次方程组⎪⎩⎪⎨⎧=++==k z y x 52mz -3y -2nx 7z -ny -mx .的解,则m 2—7n+3k= . 19.5位数2X9Y1是某个自然数的平方,则3X+7Y= .20.研究发现,某种感冒药含有使人感到困倦的物质,如果成年人按规定剂量服用,服药后3 h 时血液中这种物质的含量最高(每毫升血液中含6微克,l 微克=10-6克),随后逐步减少,在9 h 的时候,血液中这种物质的含量降到每毫升3微克,当每毫升血液中该物质的含量不少于4微克时,人会有困倦感,那么服用这种药后人会有困倦感的时间会持续 小时(设人体对该药物的吸收与释放是均匀的). 三、解答题(21、22题各15分,23题20分,共5O 分)21.为鼓励居民用电,某市电力公司规定了如下电费计算方法: 每月用电不超过100度,按每度电O .50元计费;每月用电超过100度,超出部分按每度电0.40元计费.(1)若某用电户2002年1月交电费68.00元,那么该用户1月份用电多少度?(2)若某用电户2002年2月平均每度电费0.48元,那么该用户2月份用电多少度?应交电费多少元?22.△ABC 的面积是1 cm 2.如图所示,AD=DE= EC ,BG=GF=FC ,求阴影四边形的面积.23.我国除了用公历纪年法外,在很多场合还采用干支纪年法表示年代.例如:公历2002年,干支纪年为壬午.天干有10个:甲、乙、丙、丁、戊、己、庚、辛、壬、癸;地支有12个:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥. 将天干的10个汉字与地支的12个汉字对应排列成如下两行: ……甲乙丙丁戊己庚辛壬癸甲乙丙丁戊己庚辛壬癸……,……子丑寅卯辰已午未申酉戌亥子丑寅卯辰巳午未申酉戌亥……. 同一列上下对应的两个字就是一个于支年年号. 请你阅读下面的故事:我国著名的数学家苏步青在1983年讲过一个学文史的也要学点数学的故事:“我有一个学生研究古典文学,送我好几本研究苏东坡的文集,我翻看了一篇《赤壁赋》,《赤壁赋》是苏东坡哪一年写的?书上印的是1080年,苏东坡生于1037年,活了64岁.《赤壁赋》开头几句就是:壬戌之秋,七月既望.大家知道1982年是干支纪年法的壬戌年.我一看苏东坡写《赤壁赋》的年代是1080年,就知道一定是错的."请说明苏步青是通过怎样的“神机妙算"得出这个结论的?并推算苏东坡是哪一年写的《赤壁赋》?答案一、选择题21、(1)100度电的电费为0.50×100=50(元) 又 68>50所以该用户1月份的电量超过了100度,超出部分为4540.05068=-(度)该用户1月份共用电100+45=145(度)(2)设该用户2月份用电x 度,则应交电费0.48x 元. 因为 2月份平均每度电交0.48元电费 所以 2月份用电量超过100度 根据题意列方程 得0.50×100+0.40(x -100)=0.48x 整理 得 50+0.40x -400.48x 即 (0.48-0.40)x =50-40 解得 x =125(度)0.48x =0.48×125=60.00(元)答:该用户1月份用电145度;2月份用电125度,应交电费60.00元22、解:如图7,设AG 与BE 交于N ,AF 与BE 交于P , 连接NC ,ND ,PC ,PD设△NGB 的面积为x ,△NGE 的面积为y ,则有△NCG 的面积为2x ,△NEA 的面积为2y因为 △ABC 的面积是1平方厘米 且AD=DE=EC ,BG=GF=FC所以 △BCE ,△ACF 的面积是31平方厘米△ACG 的面积是32平方厘米所以 ⎪⎪⎩⎪⎪⎨⎧=+=+3232313y x y x 解得 ⎪⎪⎩⎪⎪⎨⎧==214211y x所以△NGB 的面积是211平方厘米设△PCF 的面积为u ,△PCE 的面积为v ,则有⎪⎪⎩⎪⎪⎨⎧=+=+313313v u v u 所以 3244=+v u 即 61=+v u即 四边形PECF 的面积是61平方厘米所以 阴影四边形的面积=4256121131=--(平方厘米)23、(1)理由如下:因为 12与10的最小公倍数是60, 所以 干支纪年法每60年为一个循环因为 1982年壬戌年,而1982-1080 = 902 而 902显然不是60的倍数所以 1908年秋天不可能是“壬戌之秋”所以 苏步青一看苏轼(苏东坡)写《赤壁赋》的时间是1080年,就知道一定是错的(2)因为 1982-1080 = 900是60的倍数又 1982年是壬戌年,所以 1082年也是壬戌年 故 1082年之前的壬戌年是1082-60 = 10221082年之后的壬戌年是1082+60 = 1142又 苏轼(苏东坡)生于1037年,活了64岁,而1037>1022,且1143>1037+64所以 可由《赤壁赋》中的“壬戌之秋”推测,苏东坡写《赤壁赋》的时间是1082BCE D A 图7NM P Q年。

2013年希望杯初一1试答案详解

2013年希望杯初一1试答案详解

11、1581046.9365246060103⨯=⨯⨯⨯⨯⨯12、本题考查数的整除、容斥原理67132013=⎥⎦⎤⎢⎣⎡,28772013=⎥⎦⎤⎢⎣⎡,95212013=⎥⎦⎤⎢⎣⎡()1150952876712013=-+-13、本题通过对未知数x,y 数值的分段划分,分四种情况讨论,有可能是多解题。

⑴⎩⎨⎧-=-=⎩⎨⎧=+-=-≥≥不符合假设,舍去因为解之得时当023223720,0 y x y x y x y x⑵ ⎩⎨⎧⎩⎨⎧=-==+-=+≤≥不符合假设条件,舍去解之得时当211423720,0y x y x y x y x⑶不符合假设条件,舍去解之得时当⎩⎨⎧-=-=⎩⎨⎧=+--=-≥≤2114023720,0y x y x y x y x⑷ ⎩⎨⎧⎩⎨⎧-=-==+--=+≤≤符合题意解之得时当3223720,0y x y x y x y x63,2=-=-=xy y x 带入原式得把14、过点E 作线段CD 延长线的垂线EH,交于点H 。

可以证明HDE ADG ∆≅∆,HE AG = 根据勾股定理291322=-=-=ADDGAG所以2=HE321=∙=∆HE CD CDE S15、汉语翻译大致为“一个六位数的各个数字的乘积是1296,在这个六位数中,最小的是多少?”998232129644⨯⨯⨯=⨯=六位数最小,从低位到高位依次为9,9,8,2,用1,1补最前面的两位,所以结果为11289916、设∠EOF=α,则∠FOD=3α,3α=24°,α=8°,∠AOB=8°×8=64°HG EF DCB A17、这道题关键是通过判断弟弟九年前还没出生,先求出弟弟今年年龄8271099,10377729,23436,3649,346599=--=+=-=-=⨯=-岁,,说明小弟今年运用和差知识求大数(),432482=÷+ 18、35=17+1835=5×7 2+5+7=1419、这道题需要用整体带入求解,首先化简8423=+-+c b a化简后23=-+c b a ①14152-=--+c b a 化简后12=-+c b a ②②×(-2)-①的6455-=+--c b a ③把③带入原式得201320196=+-20、解:设最末一位上的数字为x ,则倒数第二位是1+x ,由题意可列方程为()()()()()x x x x x x x ++++++++=++12344110 88887654844,4,所以这个数是=+=x22、通过判断可知和为37的四个质数有5组分别是 2572337+++=① 23131937+++=② 25111937+++=③ 25131737+++=④ 27111737+++=⑤通过比较乘积最大的一组是⑤组2618,乘积最小的一组是第②组1482 23、ABAB BD 923132=⨯=,AB AB CD 9492311=⎪⎭⎫ ⎝⎛--=31=+++++BD CB CD AB AD AC797,9,31931====AB AD AB AB 24、CB利用平行线的性质,先给图形进行等面积分割,结果为2552=则每个小三角形的面积为S251,所以()S Ss 5273251=+=阴影()S SS 2565125131=+=+25、本题是由两个方程组成的三元二次方程组,常规的消元、降次等方法无法解出。

(整理)历届1 24希望杯数学竞赛初一七年级真题及答案

(整理)历届1 24希望杯数学竞赛初一七年级真题及答案
.................
.................
17.希望杯第九届(1998 年)初中一年级第一试试题 ........................................... 113-129 18.希望杯第九届(1998 年)初中一年级第二试试题 ...........................................122-138 19.希望杯第十届(1999 年)初中一年级第二试试题 ...........................................129-147 20.希望杯第十届(1999 年)初中一年级第一试试题 ...........................................148-151 21.希望杯第十一届(2000 年)初中一年级第一试试题 .......................................142-161 22.希望杯第十一届(2000 年)初中一年级第二试试题 .......................................149-169 23.希望杯第十二届(2001 年)初中一年级第一试试题 .......................................153-174 24.希望杯第十二届(2001 年)初中一年级第二试试题 .......................................157-178 25.希望杯第十三届(2002 年)初中一年级第一试试题 .......................................163-184 26.希望杯第十三届(2001 年)初中一年级第二试试题 .......................................167-189 27.希望杯第十四届(2003 年)初中一年级第一试试题 .......................................174-196 28.希望杯第十四届(2003 年)初中一年级第二试试题 .......................................178-200 29.希望杯第十五届(2004 年)初中一年级第一试试题 .............................................. 182 30.希望杯第十五届(2004 年)初中一年级第二试试题 .............................................. 183 31.希望杯第十六届(2005 年)初中一年级第一试试题 .......................................213-218 32.希望杯第十六届(2005 年)初中一年级第二试试题 .............................................. 183 33.希望杯第十七届(2006 年)初中一年级第一试试题 .......................................228-233 34.希望杯第十七届(2006 年)初中一年级第二试试题 .......................................234-238 35.希望杯第十八届(2007 年)初中一年级第一试试题 .......................................242-246 26.希望杯第十八届(2007 年)初中一年级第二试试题 .......................................248-251 37.希望杯第十九届(2008 年)初中一年级第一试试题 .......................................252-256 38.希望杯第十九届(2008 年)初中一年级第二试试题 .......................................257-262 39.希望杯第二十届(2009 年)初中一年级第一试试题 .......................................263-266 20.希望杯第二十届(2009 年)初中一年级第二试试题 .......................................267-271 21.希望杯第二十一届(2010 年)初中一年级第一试试题 ...................................274-276 22.希望杯第二十二届(2011 年)初中一年级第二试试题 ...................................270-273 23.希望杯第二十三届(2012 年)初中一年级第二试试题 ...................................270-273 23.希望杯第二十四届(2013 年)初中一年级第二试试题 ...................................274-281 23.希望杯第二十四届(2013 年)初中一年级第二试试题 ...................................

1-27届希望杯数学竞赛初一试题及答案

1-27届希望杯数学竞赛初一试题及答案
7.令a=0,马上可以排除A、B、C,应选D.
8.对方程同解变形,要求方程两边同乘不等于0的数.所以排除A.
我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x-2)=0,其根为x=1及x=2,不与原方程同解,排除B.若在方程x-2=0两边加上同一个代数式 去了原方程x=2的根.所以应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.
“希望杯”全国数学竞赛
(第1-27届)
初一年级/七年级
第一/二试题
29.希望杯第十五届(2004年)初中一年级第一试试题201-204
32.希望杯第十六届(2005年)初中一年级第二试试题219-225
一、选择题(每题1分,共10分)
1.如果a,b都代表有理数,并且a+b=0,那么( )
A.a,b都是0.B.a,b之一是0.C.a,b互为相反数.D.a,b互为倒数.
10.在4时整,时针与分针针夹角为120°即
一、选择题(每题1分,共5分)
以下每个题目里给出的A,B,C,D四个结论中有且仅有一个是正确的.请你在括号填上你认为是正确的那个结论的英文字母代号.
1.某工厂去年的生产总值比前年增长a%,则前年比去年少的百分数是( )
A.a%.B.(1+a)%. C. D.
9.设杯中原有水量为a,依题意可得,
第二天杯中水量为a×(1-10%)=0.9a;
第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a;
第三天杯中水量与第一天杯中水量之比为
所以第三天杯中水量比第一天杯中水量少了,选C.
10.设两码头之间距离为s,船在静水中速度为a,水速为v0,则往返一次所用时间为

3希望杯初一年级第1试

3希望杯初一年级第1试

4 1 与 的差是( ) 5 3 4 1 4 1 A. x x ; B. x ; 5 3 5 3 4 1 5 C. ( x ) ; D. x 3 . 5 3 4
6. x的 7. n是整数, 那么被3整除并且商恰为n的那个数是( A. )
n ; 3
B.n+3;
C.3n;
D.n . )
3
4.
3 1 4 1 5 1 6 1 7 1 8 1 4 5 5 6 6 7 7 8 8 9 9 10
=( ) A.5.5 B.5.65. C.6.05 2 2 5.-4×3 -(-4×3) =( ) A.0 B.72. C.180 D.5.85 D.108
3.
1 9 9 4
1 9 9 4 1 3 A.4 ; B.; 3 13
的值的负倒数是( C.1; D.-1.
) 三、B组填空题(每题4分,共40分) 1.已知a,b是互为相反数,c,d是互为负倒数,x的绝对 3 值等于它的相反数的2倍,则x +abcdx+a-bcd的值是___. 2.1992×19941994-1994×19931993=___.
x 2y 的值是_____________. x y
7.120的所有是合数但不是奇数的正约数的和等于 _____. 8.如图6给出的乘法竖式中,四个方块盖住的四个 数字之和的最大值是_____.
2
1
学习改变命运
思考成就未来
竞赛题
课后作业
一、选择题: 1.有理数-
95 的值一定不是[ a 19
] D.1. 6.计算:
A.19. B.-19.C.0. 2.方程1-19x=1/19的根是[ ] A.0; B.

希望杯第十三届(2002年)初中一年级第一试试题

希望杯第十三届(2002年)初中一年级第一试试题

希望杯第十三届(2002年)初中一年级第一试试题一、选择题(每小题5分,共50分)1.(-1)·2002-(-1)13=( ).A .-2001B .-1989C .2D .-20152.a1是有理数,则它的相反数是( ). A .a B .-a C .-a 1 D .a13.如果(a+b)2001=-1,(a -b)2002=1,则a 2003+b 2003的值是( ).A .2B .1C .0D .-1 4.下面四个命题中,正确的是( ). A 一切有理数的倒数还是有理数B .一切正有理数的相反数必是负有理数C .一切有理数的绝对值必是正有理数D .一切有理数的平方是正有理数5.如果x=-1是方程x 2+mx+n=O 的一个根,那么m ,n 的大小关系是 ( ). A m>n B .m=n C. m<n D .不确定的6.某品牌的VCD 机成本价是每台500元,3月份的销售价为每台625元.经市场预测,该商品销售价在4月份将降低20%,而后在5月份再提高8 %.那么在5月份销售该品牌的VCD 机可获利( ).A25% B .20% C .8% D .12 %7.If ax m y p and bx n y qare similar terms ,then we must have( ). A .a=b B .mn=pq C .m+n=p+q D .m=n 且p=q (英汉小字典:similar terms :同类项) 8.如果2a+b=O ,则|2b|a |||1|a |a |-+-等于( ). A .2 B .3 C .4 D .59.当x 取1到l0的整数时.整式x 2+x+11所对应的数值中质数的个数是 ( ). A .1 O B.9 C .8 D .7lO .某学生骑自行车上学,开始以某一速度匀速行进,中途由于自行车发生故障,停下修车耽误了几分钟.为了按时到校,他加快了速度,但仍然保持匀速行进,结果准时到校.他骑自行车行进的路程s 与行进的时间t 的关系有如下4种示意图,其中正确的是( ).A .B .C .D .二、A 组填空题(每小题5分,共50分)11.下表是我国北方某城市2001年各月的平均气温表:这个城市2001年全年的月平均气温是 ℃. 12.如图是一个三棱柱,在它的五个面内的18个角中,直角最多可达到 个.13.某种电器产品,每件若以原定价的95折销售,可获利150元,若以原定价的75折销售,则亏损50元.该种商品每件的进价为 元. 14.2002的约数有 个.15.The radius of the four circles is one in the Fig .2,then the area of the shade part is .(英汉小字典:radius :半径;shade :阴影)16.一轮船从甲地到乙地顺流行驶需4 h ,从乙地到甲地逆流行驶需6 h ,有一木筏由甲地漂流至乙地,需 h. 17.甲乙两市相距55 km .王鸣同学从甲市出发去乙市,先步行了25 km ,接着改骑自行车,速度提高了1倍,到达乙市后,他发现行程中步行所用的时间比骑自行车所用的时间多l h ,则王鸣同学步行的速度是 km /m18.红、黄、蓝三个小精灵,在同一时间、同一地点按顺时针方向沿一条圆形跑道匀速行进.当绕行一周时,红精灵用12 s ,黄精灵用8 s ,蓝精灵用9 s .那么在l h 内红、黄、蓝三个小精灵共相遇 次.(起始的状态也记为1次)19.C 是线路AB 的中点,D 是线段CB 上的一点,如图3所示,若所有线段的长度都是正整数,且线段AB 的所有可能的长度数的乘积等于140,则线段AB 的所有可能的长度数的和等于 .20.对于整式6x 5+5x 4+4x 3+3x 2+2x+2002,给定x 的一个数值后,如果李平按四则运算的规则计算该整式的值.需算15次乘法和5次加法.小梅同学说:“有另外一种算法,只要适当添加括号,可以做到加法次数不变,而乘法只算5次.”小梅同学的说法是 的(填“对"或“错").三、B 组填空题(每小题10分,共50分) 21.已知aa 1+=-2,则441a a += 441a a -=22.若一个正整数a 被2,3,…,9这八个自然数除,所得的余数都为1,则a 的最小值是 .a 的一般表达式为 .23.已知m 是整数且-60<m<-30,关于x ,y 的二元一次方程组⎩⎨⎧==m 7y -3x --53y -2x有整数解,则m= x 2+y= .24.小燕同学对某地区1998年至2001年快递公司的发展情况作了调查,制成了快递公司个数情况的条形图(如图1)和快递公司快件传递的年平均数情况条形图(如图2).那么,利用图1、图2共同提供的信息可知,2001年该地区邮递快件共 万件;这四年中该地区年均邮递快件数为 万件.25.计算机中的最小存储单位是“位”,位有0与1两个状态.一个字节由8个“位"构成.利用固定位数的存储空间每位不同的状态可以记忆数字.如果用两个字节共16位记忆不小于O且不大于N的整数,那么N最大可以是.现在用两个字节记忆不小于m且不大于M 的整数,如果M+m=-1,m<M,那么m最小可以是.参考答案三、B组填空题。

希望杯一年级奥数竞赛试题

希望杯一年级奥数竞赛试题

希望杯一年级奥数竞赛试题希望杯奥数竞赛是一项旨在激发学生数学兴趣和提高数学思维能力的竞赛活动。

以下是一份模拟的一年级奥数竞赛试题,供学生练习和参考:一、填空题(每题2分,共10分)1. 数字1到5的和是____。

2. 如果我有3个苹果,再给你2个,那么我还有____个苹果。

3. 1个正方形有4个角,那么3个正方形一共有____个角。

4. 把6个草莓平均分给2个人,每人可以得到____个草莓。

5. 时钟的时针从1走到4,走过了____个大格。

二、选择题(每题2分,共10分)1. 下列哪个数字比10小2?- A. 8- B. 12- C. 14- D. 62. 如果一个班级有20个学生,每个学生有2本书,那么这个班级一共有多少本书?- A. 30- B. 40- C. 50- D. 603. 下列哪个图形不是圆形?- A. 太阳- B. 月亮- C. 球- D. 车轮4. 一个数加上5等于10,这个数是几?- A. 5- B. 6- C. 7- D. 85. 一个长方形的长是6厘米,宽是3厘米,它的周长是多少?- A. 12厘米- B. 15厘米- C. 18厘米- D. 20厘米三、计算题(每题3分,共15分)1. 计算下列各题的结果:- 7 + 8 = ____- 15 - 9 = ____- 6 × 3 = ____2. 一个数的3倍是18,这个数是多少?3. 如果一个篮子里有8个鸡蛋,每个鸡蛋的重量是50克,那么这些鸡蛋总共有多重?四、应用题(每题5分,共20分)1. 小明有5支铅笔,小红有3支铅笔,如果他们把铅笔平均分给3个同学,每个同学可以得到多少支铅笔?2. 一个班级有24个学生,如果每个学生分到2个苹果,那么这个班级一共需要多少个苹果?3. 一个长方形的长是10厘米,宽是5厘米,如果把这个长方形的长和宽都增加2厘米,新的长方形的面积是多少?4. 一个水果店有4箱苹果,每箱有20个苹果,如果每个苹果卖2元,那么这些苹果一共可以卖多少钱?请注意,以上试题仅供练习使用,实际的希望杯奥数竞赛试题可能会有所不同。

历届1-15希望杯数学竞赛初一整理

历届1-15希望杯数学竞赛初一整理

希望杯第一届(1990年)初中一年级第一试试题 (1)希望杯第一届(1990年)初中一年级第二试试题 (8)希望杯第二届(1991年)初中一年级第一试试题 (15)希望杯第二届(1991年)初中一年级第二试试题 (21)希望杯第三届(1992年)初中一年级第一试试题 (27)希望杯第三届(1992年)初中一年级第二试试题 (31)希望杯第四届(1993年)初中一年级第一试试题 (42)希望杯第四届(1993年)初中一年级第二试试题 (49)希望杯第五届(1994年)初中一年级第一试试题 (57)希望杯第五届(1994年)初中一年级第二试试题 (63)希望杯第六届(1995年)初中一年级第一试试题 (69)希望杯第六届(1995年)初中一年级第二试试题 (75)希望杯第七届(1996年)初中一年级第一试试题 (85)希望杯第七届(1996年)初中一年级第二试试题 (91)希望杯第八届(1997年)初中一年级第一试试题 (99)希望杯第八届(1997年)初中一年级第二试试题 (106)希望杯第九届(1998年)初中一年级第一试试题 (115)希望杯第九届(1998年)初中一年级第二试试题 (123)希望杯第十届(1999年)初中一年级第二试试题 (131)希望杯第十届(1999年)初中一年级第一试试题 (138)希望杯第十一届(2000年)初中一年级第一试试题 (142)希望杯第十一届(2000年)初中一年级第二试试题 (148)希望杯第十二届(2001年)初中一年级第一试试题 (151)希望杯第十二届(2001年)初中一年级第二试试题 (154)希望杯第十三届(2002年)初中一年级第一试试题 (158)希望杯第十三届(2001年)初中一年级第二试试题 (161)希望杯第十四届(2003年)初中一年级第一试试题 (166)希望杯第十四届(2003年)初中一年级第二试试题 (169)希望杯第十五届(2004年)初中一年级第一试试题 (173)希望杯第十五届(2004年)初中一年级第二试试题 (176)希望杯第一届(1990年)初中一年级第一试试题一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么( )A.a,b都是0.B.a,b之一是0.C.a,b互为相反数.D.a,b互为倒数.2.下面的说法中正确的是( )A.单项式与单项式的和是单项式.B.单项式与单项式的和是多项式.C.多项式与多项式的和是多项式.D.整式与整式的和是整式.3.下面说法中不正确的是( )A. 有最小的自然数.B.没有最小的正有理数.C.没有最大的负整数.D.没有最大的非负数.4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么( )A.a,b同号.B.a,b异号.C.a>0.D.b>0.5.大于-π并且不是自然数的整数有( )A.2个.B.3个.C.4个.D.无数个.6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身.这四种说法中,不正确的说法的个数是( )A.0个.B.1个.C.2个.D.3个.7.a代表有理数,那么,a和-a的大小关系是( )A.a大于-a.B.a小于-a.C.a大于-a或a小于-a.D.a不一定大于-a.8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) A.乘以同一个数.B.乘以同一个整式.C.加上同一个代数式.D.都加上1.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( )A.一样多.B.多了.C.少了.D.多少都可能.10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( )A .增多.B .减少.C .不变.D .增多、减少都有可能.二、填空题(每题1分,共10分)1. 21115160.01253(87.5)(2)4571615⨯-⨯-÷⨯+--= ______. 2.198919902-198919892=______. 3.2481632(21)(21)(21)(21)(21)21+++++-=________. 4. 关于x 的方程12148x x +--=的解是_________. 5.1-2+3-4+5-6+7-8+…+4999-5000=______.6.当x=-24125时,代数式(3x 3-5x 2+6x -1)-(x 3-2x 2+x -2)+(-2x 3+3x 2+1)的值是____. 7.当a=-0.2,b=0.04时,代数式272711()(0.16)()73724a b b a a b --++-+的值是______.8.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克.9.制造一批零件,按计划18天可以完成它的13.如果工作4天后,工作效率提高了15,那么完成这批零件的一半,一共需要______天.10.现在4点5分,再过______分钟,分针和时针第一次重合.答案与提示一、选择题1.C 2.D 3.C 4.D 5.C 6.B 7.D 8.D 9.C 10.A提示:1.令a=2,b=-2,满足2+(-2)=0,由此2.x 2,2x 2,x 3都是单项式.两个单项式x 3,x 2之和为x 3+x 2是多项式,排除A .两个单项式x 2,2x 2之和为3x 2是单项式,排除B .两个多项式x 3+x 2与x 3-x 2之和为2x 3是个单项式,排除C,因此选D.3.1是最小的自然数,A正确.可以找到正所以C“没有最大的负整数”的说法不正确.写出扩大自然数列,0,1,2,3,…,n,…,易知无最大非负数,D正确.所以不正确的说法应选C.5.在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C.6.由12=1,13=1可知甲、乙两种说法是正确的.由(-1)3=-1,可知丁也是正确的说法.而负数的平方均为正数,即负数的平方一定大于它本身,所以“负数平方不一定大于它本身”的说法不正确.即丙不正确.在甲、乙、丙、丁四个说法中,只有丙1个说法不正确.所以选B.7.令a=0,马上可以排除A、B、C,应选D.8.对方程同解变形,要求方程两边同乘不等于0的数.所以排除A.我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x-2)=0,其根为x=1及x=2,不与原方程同解,排除B.若在方程x-2=0两边加上同一个代数式去了原方程x=2的根.所以应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.9.设杯中原有水量为a,依题意可得,第二天杯中水量为a³(1-10%)=0.9a;第三天杯中水量为(0.9a)³(1+10%)=0.9³1.1³a;第三天杯中水量与第一天杯中水量之比为所以第三天杯中水量比第一天杯中水量少了,选C.10.设两码头之间距离为s,船在静水中速度为a,水速为v0,则往返一次所用时间为设河水速度增大后为v,(v>v0)则往返一次所用时间为由于v-v0>0,a+v0>a-v0,a+v>a-v所以(a+v0)(a+v)>(a-v0)(a-v)∴t0-t<0,即t0<t.因此河水速增大所用时间将增多,选A.二、填空题提示:2.198919902-198919892=(19891990+19891989)³(19891990-19891989) =(19891990+19891989)³1=39783979.3.由于(2+1)(22+1)(24+1)(28+1)(216+1)=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22-1)(22+1)(24+1)(28+1)(216+1)=(24-1)(24+1)(28+1)(216+1)=(28-1)(28+1)(216+1)=(216-1)(216+1)=232-1.2(1+x)-(x-2)=8,2+2x-x+2=8解得;x=45.1-2+3-4+5-6+7-8+…+4999-5000=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)=-2500.6.(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)=5x+27.注意到:当a=-0.2,b=0.04时,a2-b=(-0.2)2-0.04=0,b+a+0.16=0.04-0.2+0.16=0.8.食盐30%的盐水60千克中含盐60³30%(千克)设蒸发变成含盐为40%的水重x克,即0.001x千克,此时,60³30%=(0.001x)³40%解得:x=45000(克).10.在4时整,时针与分针针夹角为120°即希望杯第一届(1990年)初中一年级第二试试题一、选择题(每题1分,共5分)以下每个题目里给出的A,B,C,D四个结论中有且仅有一个是正确的.请你在括号填上你认为是正确的那个结论的英文字母代号.1.某工厂去年的生产总值比前年增长a%,则前年比去年少的百分数是( )A.a%.B.(1+a)%. C.1100aa+D.100aa+2.甲杯中盛有2m毫升红墨水,乙杯中盛有m毫升蓝墨水,从甲杯倒出a毫升到乙杯里, 0<a<m,搅匀后,又从乙杯倒出a毫升到甲杯里,则这时( )A.甲杯中混入的蓝墨水比乙杯中混入的红墨水少.B.甲杯中混入的蓝墨水比乙杯中混入的红墨水多.C.甲杯中混入的蓝墨水和乙杯中混入的红墨水相同.D.甲杯中混入的蓝墨水与乙杯中混入的红墨水多少关系不定.3.已知数x=100,则( )A.x是完全平方数.B.(x-50)是完全平方数.C.(x-25)是完全平方数.D.(x+50)是完全平方数.4.观察图1中的数轴:用字母a,b,c依次表示点A,B,C对应的数,则111,,ab b a c-的大小关系是( )A.111ab b a c<<-; B.1b a-<1ab<1c; C.1c<1b a-<1ab; D.1c<1ab<1b a-.5.x=9,y=-4是二元二次方程2x2+5xy+3y2=30的一组整数解,这个方程的不同的整数解共有( )A.2组.B.6组.C.12组.D.16组.二、填空题(每题1分,共5分)1.方程|1990x-1990|=1990的根是______.2.对于任意有理数x,y,定义一种运算*,规定x*y=ax+by-cxy,其中的a,b,c表示已知数,等式右边是通常的加、减、乘运算.又知道1*2=3,2*3=4,x*m=x(m≠0),则m的数值是______.3.新上任的宿舍管理员拿到20把钥匙去开20个房间的门,他知道每把钥匙只能开其中的一个门,但不知道每把钥匙是开哪一个门的钥匙,现在要打开所有关闭着的20个房间,他最多要试开______次.4.当m=______时,二元二次六项式6x2+mxy-4y2-x+17y-15可以分解为两个关于x,y的二元一次三项式的乘积.5.三个连续自然数的平方和(填“是”或“不是”或“可能是”)______某个自然数的平方.三、解答题(写出推理、运算的过程及最后结果.每题5分,共15分)1.两辆汽车从同一地点同时出发,沿同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油.为了使其中一辆车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里的地方返回?离出发地点最远的那辆车一共行驶了多少公里?2.如图2,纸上画了四个大小一样的圆,圆心分别是A,B,C,D,直线m通过A,B,直线n通过C,D,用S表示一个圆的面积,如果四个圆在纸上盖住的总面积是5(S-1),直线m,n之间被圆盖住的面积是8,阴影部分的面积S1,S2,S3满足关系式S3=13S1=13S2,求S.3.求方程11156x y z++=的正整数解.答案与提示一、选择题1.D 2.C 3.C 4.C 5.D提示:1.设前年的生产总值是m,则去年的生产总值是前年比去年少这个产值差占去年的应选D.2.从甲杯倒出a毫升红墨水到乙杯中以后:再从乙杯倒出a毫升混合墨水到甲杯中以后:乙杯中含有的红墨水的数量是①乙杯中减少的蓝墨水的数量是②∵①=②∴选C.∴x-25=(10n+2+5)2可知应当选C.4.由所给出的数轴表示(如图3):可以看出∴①<②<③,∴选C.5.方程2x2+5xy+3y2=30可以变形为(2x+3y)(x+y)=1²2²3²5 ∵x,y是整数,∴2x+3y,x+y也是整数.由下面的表可以知道共有16个二元一次方程组,每组的解都是整数,所以有16组整数组,应选D.二、填空题提示:1.原方程可以变形为|x-1|=1,即x-1=1或-1,∴x=2或0.2.由题设的等式x*y=ax+by-cxy及x*m=x(m≠0)得a²0+bm-c²0²m=0,∴bm=0.∵m≠0,∴b=0.∴等式改为x*y=ax-cxy.∵1*2=3,2*3=4,解得a=5,c=1.∴题设的等式即x*y=5x-xy.在这个等式中,令x=1,y=m,得5-m=1,∴m=4.3.∵打开所有关闭着的20个房间,∴最多要试开4.利用“十字相乘法”分解二次三项式的知识,可以判定给出的二元二次六项式6x2+mxy-4y2-x+17y-15中划波浪线的三项应当这样分解:3x -52x +3现在要考虑y,只须先改写作然后根据-4y2,17y这两项式,即可断定是:由于(3x+4y-5)(2x-y+3)=6x2+5xy-4y2-x+17y-15就是原六项式,所以m=5.5.设三个连续自然数是a-1,a,a+1,则它们的平方和是(a-1)2+a2+(a+1)2=3a2+2,显然,这个和被3除时必得余数2.另一方面,自然数被3除时,余数只能是0或1或2,于是它们可以表示成3b,3b+1,3b+2(b是自然数)中的一个,但是它们的平方(3b)2=9b2(3b+1)2=9b2+6b+1,(3b+2)2=9b2+12b+4=(9b2+12b+3)+1被3除时,余数要么是0,要么是1,不能是2,所以三个连续自然数平方和不是某个自然数的平方.三、解答题1.设两辆汽车一为甲一为乙,并且甲用了x升汽油时即回返,留下返程需的x桶汽油,将多余的(24-2x)桶汽油给乙.让乙继续前行,这时,乙有(24-2x)+(24-x)=48-3x桶汽油,依题意,应当有48-3x≤24,∴x≥8.甲、乙分手后,乙继续前行的路程是这个结果中的代数式30(48-4x)表明,当x的值愈小时,代数式的值愈大,因为x≥8,所以当x=8时,得最大值30(48-4²8)=480(公里),因此,乙车行驶的路程一共是2(60²8+480)=1920(公里).2.由题设可得即2S-5S3=8……②∴x,y,z都>1,因此,当1<x≤y≤z时,解(x,y,z)共(2,4,12),(2,6,6),(3,3,6),(3,4,4)四组.由于x,y,z在方程中地位平等.所以可得如下表所列的15组解.希望杯第二届(1991年)初中一年级第一试试题一、选择题(每题1分,共15分)以下每个题目的A,B,C,D四个结论中,仅有一个是正确的,请在括号内填上正确的那个结论的英文字母代号.1.数1是( )A.最小整数.B.最小正数.C.最小自然数.D.最小有理数.2.若a>b,则( )A.11a b; B.-a<-b.C.|a|>|b|.D.a2>b2.3.a为有理数,则一定成立的关系式是( )A.7a>a.B.7+a>a.C.7+a>7.D.|a|≥7.4.图中表示阴影部分面积的代数式是( )A.ad+bc.B.c(b-d)+d(a-c).C.ad+c(b-d).D.ab-cd.5.以下的运算的结果中,最大的一个数是( )A.(-13579)+0.2468; B.(-13579)+1 2468;C.(-13579)³12468; D.(-13579)÷124686.3.1416³7.5944+3.1416³(-5.5944)的值是( ) A.6.1632. B.6.2832.C.6.5132.D.5.3692.7.如果四个数的和的14是8,其中三个数分别是-6,11,12,则笫四个数是( )A.16. B.15. C.14. D.13.8.下列分数中,大于-13且小于-14的是( ) A.-1120; B.-413; C.-316; D.-617. 9.方程甲:34(x-4)=3x 与方程乙:x-4=4x 同解,其根据是( )A.甲方程的两边都加上了同一个整式x .B.甲方程的两边都乘以43x; C. 甲方程的两边都乘以43; D. 甲方程的两边都乘以34. 10.如图: ,数轴上标出了有理数a ,b ,c 的位置,其中O 是原点,则111,,a b c 的大小关系是( ) A.111a b c >>; B.1b >1c >1a ; C. 1b >1a >1c ; D. 1c >1a >1b.11.方程522.2 3.7x =的根是( ) A .27. B .28. C .29. D .30. 12.当x=12,y=-2时,代数式42x y xy -的值是( )A .-6.B .-2.C .2.D .6.13.在-4,-1,-2.5,-0.01与-15这五个数中,最大的数与绝对值最大的那个数的乘积是( )A .225.B .0.15.C .0.0001.D .1.14.不等式124816x x x xx ++++>的解集是( ) A .x <16. B .x >16.C .x <1. D.x>-116.15.浓度为p%的盐水m 公斤与浓度为q%的盐水n 公斤混合后的溶液浓度是 ( )A.%2p q +;B.()%mp nq +;C.()%mp nq p q ++;D.()%mp nq m n++. 二、填空题(每题1分,共15分)1. 计算:(-1)+(-1)-(-1)³(-1)÷(-1)=______.2.计算:-32÷6³16=_______.3.计算:(63)36162-⨯=__________.4.求值:(-1991)-|3-|-31||=______.5.计算:111111 2612203042-----=_________.6.n为正整数,1990n-1991的末四位数字由千位、百位、十位、个位、依次排列组成的四位数是8009.则n的最小值等于______.7. 计算:19191919199191919191⎛⎫⎛⎫---⎪ ⎪⎝⎭⎝⎭=_______.8. 计算:15[(-1989)+(-1990)+(-1991)+(-1992)+(-1993)]=________.9.在(-2)5,(-3)5,512⎛⎫-⎪⎝⎭,513⎛⎫-⎪⎝⎭中,最大的那个数是________.10.不超过(-1.7)2的最大整数是______.11.解方程21101211,_____. 3124x x xx-++-=-=12.求值:355355113113355113⎛⎫---⎪⎝⎭⎛⎫- ⎪⎝⎭=_________.13.一个质数是两位数,它的个位数字与十位数字的差是7,则这个质数是______.14.一个数的相反数的负倒数是119,则这个数是_______.15.如图11,a,b,c,d,e,f均为有理数.图中各行,各列、两条对角线上三个数之和都相等,则ab cd efa b c d e f+++++++=____.答案与提示一、选择题1.C 2.B 3.B 4.C 5.C 6.B 7.B 8.B 9.C 10.B 11.D 12.A 13.B1 4.A 15.D提示:1.整数无最小数,排除A;正数无最小数,排除B;有理数无最小数,排除D.1是最小自然数.选C.有|2|<|-3|,排除C;若2>-3有22<(-3)2,排除D;事实上,a>b必有-a<-b.选B.3.若a=0,7³0=0排除A;7+0=7排除C|0|<7排除D,事实上因为7>0,必有7+a>0+a=a.选B.4.把图形补成一个大矩形,则阴影部分面积等于ab-(a-c)(b-d)=ab-[ab-ad-c(b-d)]=ab-ab+ad+c(b-d)=ad+c(b-d).选C.5.运算结果对负数来说绝对值越小其值越大。

2024年希望杯一年级培训题-——学生版

2024年希望杯一年级培训题-——学生版

2024 IHC 1 培训题1. 计算:11 + 13 + 15 + 17 + 19 = 。

2.数数下面图形各有多少个小方块?()个()个()个3.爷爷的生日蛋糕上用蜡烛代表爷爷的年龄,一根长蜡烛代表10 岁,一根短蜡烛代表1 岁,爷爷多大了?()A. 65B. 66C. 76D. 77E. 784.在数字中间填上“+”、“-”符号,使等式成立。

1 2 3 4 5 = 115.找规律填数:8、8、10、6、12、4、14、。

6. ☆+☆=12,☆–△=6,△= 。

7. 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19= 。

8.下面竖式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字,“同”= 。

9.试一试,每个算式移动一根火柴棍,使下面的算式正确。

10.小马虎在做一道减法题时,错把被减数的个位数字2 看成了8,算出的结果是27,正确的结果是。

11.把1、2、3、4、5 填入中,使每个图中的横行、竖行3 个数的和相等。

①和是8。

②和是9。

② 和是10。

13.已知在下面的算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字,那么“大”= ;“白”= ;“胖”=。

14.在下面算式的“□”中填入合适的“+”或“-”符号,使得结果尽可能大,那么结果最大是。

12-(4□3)□(2□1)15.观察下面的算式:= 。

16.把3、4、5、6 这四个数分别填入里(每个数只能用一次),使等式成立。

18.从1,2,3,…,10 中选出9 个数填在里,组成3 个算式,每个数只能用1 次。

19.19.20.在下面的中填入“+”号和“-”号,使等号成立。

21.请把数字1,2,3,4,6,7,8,9填入下图的圆圈中(数字不能重复,其中4 已经填好),使得任意两个有线段直接相连的圆圈内的数字之差都大于2。

22.17 个小朋友排成一排从1 开始报数,报单数的小朋友去打乒乓球,队伍里留下人。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

希望杯第十三届(2002年)初中一年级第一试试题
一、选择题(每小题5分,共50分)
1.(-1)·2002-(-1)13=( ).
A .-2001
B .-1989
C .2
D .-2015
2.a 1
是有理数,则它的相反数是( ).
A .a
B .-a
C .-
a 1
D .a 1 3.如果(a+b)2001=-1,(a -b)2002=1,则a
2003+b 2003的值是( ).
A .2
B .1
C .0
D .-1 4.下面四个命题中,正确的是( ).
A 一切有理数的倒数还是有理数
B .一切正有理数的相反数必是负有理数
C .一切有理数的绝对值必是正有理数
D .一切有理数的平方是正有理数
5.如果x=-1是方程x 2
+mx+n=O 的一个根,那么m ,n 的大小关系是 ( ).
A m>n
B .m=n C. m<n D .不确定的
6.某品牌的VCD 机成本价是每台500元,3月份的销售价为每台625元.经市场预测,该商品销售价在4月份将降低20%,而后在5月份再提高8 %.那么在5月份销售该品牌的VCD 机可获利( ).
A25% B .20% C .8% D .12 %
7.If ax m y p and bx n y q are similar terms ,then we must have( ).
A .a=b
B .mn=pq
C .m+n=p+q
D .m=n 且p=q
(英汉小字典:similar terms :同类项)
8.如果2a+b=O ,则|2b |
a |||1|a |a
|-+-等于( ). A .2 B .3 C .4 D .5
9.当x 取1到l0的整数时.整式x 2+x+11所对应的数值中质数的个数是 ( ).
A .1 O B.9 C .8 D .7
lO .某学生骑自行车上学,开始以某一速度匀速行进,中途由于自行车发生故障,停下修车耽误了几分钟.为了按时到校,他加快了速度,但仍然保持匀速行进,结果准时到校.他骑自行车行进的路程s 与行进的时间t 的关系有如下4种示意图,其中正确的是( ).
A .
B .
C .
D .
二、A 组填空题(每小题5分,共50分)
11.下表是我国北方某城市2001年各月的平均气温表:
年全年的月平均气温是 ℃.12.如图是一个三棱柱,在它的五个面内的18个角中,直角最多可达到 个.
13.某种电器产品,每件若以原定价的95折销售,可获利150元,若以原定价的75折销售,则亏损50元.该种商品每件的进价为 元.
14.2002的约数有 个.
15.The radius of the four circles is one in the Fig .2,then the area of the shade part is .
(英汉小字典:radius :半径;shade :阴影)16.一轮船从甲地到乙地顺流行驶需4 h ,从乙地到甲地逆流行驶需6 h ,有一木筏由甲地漂流至乙地,需 h.
17.甲乙两市相距55 km .王鸣同学从甲市出发去乙市,先步行了25 km ,
接着改骑自行车,速度提高了1倍,到达乙市后,他发现行程中步行所用的
时间比骑自行车所用的时间多l h ,则王鸣同学步行的速度是 km /
m
18.红、黄、蓝三个小精灵,在同一时间、同一地点按顺时针方向沿一条圆
形跑道匀速行进.当绕行一周时,红精灵用12 s ,黄精灵用8 s ,蓝精灵用9 s .那么在l h 内红、黄、蓝三个小精灵共相遇 次.(起始的状态也记为1次)
19.C 是线路AB 的中点,D 是线段CB 上的一点,如图3所示,若所有线段的长度都是正整数,且线段AB 的所有可能的长度数的乘积等于140,则线段AB 的所有可能的长度数的和等于 .
20.对于整式6x 5+5x 4+4x 3+3x 2+2x+2002,给定x 的一个数值后,如果李平按四则运算的规则计算该整式的值.需算15次乘法和5次加法.小梅同学说:“有另外一种算法,只要适当添加括号,可以做到加法次数不变,而乘法只算5次.”小梅同学的说法是 的(填“对"或“错").
三、B 组填空题(每小题10分,共50分)
21.已知a a 1
+=-2,则441
a a += 441a a -=
22.若一个正整数a 被2,3,…,9这八个自然数除,所得的余数都为1,则a 的最小值是 .a 的一般表达式为 .
23.已知m 是整数且-60<m<-30,关于x ,y 的二元一次方程组⎩⎨
⎧==m 7y -3x --53y -2x
有整数解,则m= x 2+y= .
24.小燕同学对某地区1998年至2001年快递公司的发展情况作了调查,制成了快递公司个数情况的条形图(如图1)和快递公司快件传递的年平均数情况条形图(如图2).那么,利用
图1、图2共同提供的信息可知,2001年该地区邮递快件共万件;这四年中该地区年均邮递快件数为万件.
25.计算机中的最小存储单位是“位”,位有0与1两个状态.一个字节由8个“位"构成.利用固定位数的存储空间每位不同的状态可以记忆数字.如果用两个字节共16位记忆不小于O且不大于N的整数,那么N最大可以是.现在用两个字节记忆不小于m且不大于M 的整数,如果M+m=-1,m<M,那么m最小可以是.。

相关文档
最新文档