成教Ch5_1定积分的概念
定积分的概念 课件
a
f(x)dx等于由直线x=a,x=b,y=0与
曲线y=f(x)围成曲边梯形的面积,这是定积分的几何意义.
b
(2)计算
a
f(x)dx时,先明确积分区间[a,b],从而确定曲
边梯形的三条直边x=a,x=b,y=0,再明确被积函数f(x),
从而确定曲边梯形的曲边,这样就可以通过求曲边梯形的面积
S而得到定积分的值:
c
f(x)dx
(其中a<c<b).
[点睛] 性质(1)的等式左边是一个定积分,等式右边是常数与 一个定积分的乘积. 性质(2)对于有限个函数(两个以上)也成立. 性质(3)对于把区间[a,b]分成有限个(两个以上)区间也 成立.
利用定义求定积分
3
[典例] 利用定义求定积分0x2dx. [解] 令f(x)=x2,
n
(3)求和:
i=1Leabharlann f(ξi)·b-n a;
b
(4)取极限:a
n
f(x)=lim n i=1
b-a f(ξi)· n .
用定积分的性质求定积分
[典例]
(1)f(x)=x2+ x2,1,1≤0≤x≤x<21.,
2
则
f(x)dx=(
0
)
2
A. (x+1)dx 0
2
B. 2x2dx 0
1
2
C. (x+1)dx+ 2x2dx
(1)如果被积函数是几个简单函数的和的形式,利用定 积分的线性性质进行计算,可以简化计算.
(2)如果被积函数含有绝对值或被积函数为分段函数, 一般利用积分区间的连续可加性计算.
用定积分的几何意义求定积分
[典例] 根据定积分的几何意义,求下列定积分的值.
定积分的概念和性质
1、定积分基本概念 2、定积分的性质
定积分概念
一、定积分问题举例 1、求曲边梯形的面积
y
y=f(x)
0
a
bx
思想方法
(1)分割:将曲边梯形分成许多细长条
在区间[a,b]中任取若干分点: a x0 x1 x2 xi1 xi xn1 xn b
是时间间隔 [T1,T2 ] 上t的连续函数,v(t) 0
且
,计算在此段时间内物体经过的
路程。 思想方法
(1)分割:
在区间 [T1,T2 ]中任取若干分点:
T1 t0 t1 ti1 ti tn1 tn T2
把 [T1 ,T2 ] 分成n个小区间 : [ti1,ti ]
a
性质7 (定积分中值定理)如果函数f (x)在闭区
间[a, b]上连续,则在[a, b]上至少存在一点
,使
b
a f (x)dx f ( )(b a) (a b)
这个公式叫积分中值公式。
证 由性质6,有
b
m(b a) a f (x)dx M (b a)
即有 m 1
I
,如果
取极限
存在,且极限值I不依赖于 i 的选取,也不依
赖于[a,b]的分法,则称I为f(x)在[a,b]上
的定积分(简称积分),记作
b
n
b
a
f
(x)dx
I f (x)dx lim
a
0
其中:f(x)叫做被积函数;
i 1
f (i )xi
,即
f(x)dx叫做被积表达式;
性质1 函数的和(差)的定积分等于它们的定
掌握定积分概念及基本性质
供需关系研究
通过定积分,可以研究市 场供需关系的变化。
投资回报分析
在金融领域,定积分可以 用来分析投资回报率的变 化。
05
掌握定积分的重要性
在数学中的地位
连接微积分两大核心概念
定积分与微积分息息相关,是微积分理论体系的重要组成部分, 掌握了定积分,就等于掌握了微积分的一半。
深化对极限概念的理解
定积分与极限概念紧密相连,掌握定积分有助于更深入地理解极限 的内涵和应用。
详细描述
牛顿-莱布尼兹公式是计算定积分的核心公式,它表示为∫baf(t)dt=F(b)-F(a),其中∫baf(t)dt表示函数f(t) 在区间[a, b]上的定积分,F(x)表示f(t)的原函数,即满足F'(x)=f(x)的函数。该公式通过选取合适的分割和 近似方式,将定积分转化为一系列小矩形面积之和,最后求和得到定积分的值。
为后续课程奠定基础
定积分是学习复变函数、实变函数等后续课程的基础,对于数学专 业的学生来说至关重要。
在其他学科中的应用价值
物理学中的应用
在物理学中,定积分常用于计算 面积分,例如在计算电磁场、引
力场等物理量的分布时。
工程学科中的应用
在工程学科中,定积分常用于解 决与几何形状、物理量分布等有 关的实际问题,如机械工程、土
定积分的几何意义
定积分的几何意义是函数图像与x轴所夹的面积。具体来说,将定积分表示的函 数图像与x轴围成的面积,即为定积分的值。
定积分的几何意义还可以理解为曲线与x轴所夹的“曲边梯形”的面积。这个曲 边梯形的高就是函数值,底就是x轴上的区间。
定积分的物理意义
定积分的物理意义是表示某个物理量在某个时间段或某个 区间内的累积效应。例如,物体的质量分布不均匀,其质 心位置可以通过对质量分布函数进行定积分来求解。
定积分的自我见解和认识
定积分的自我见解和认识
定积分是微积分中的一个重要概念,用于计算曲线下的面积或者
描述物理现象的量。
它在数学、物理、工程等领域都有广泛的应用。
我个人对定积分的理解是,它是通过对一个函数在某个区间上的
各个小矩形面积的无限累加,来计算曲线下面积的方法。
通常我们将
这个区间分成无穷多个小区间,并在每个小区间内选择一个点代表该
区间内的函数值,然后将这些小矩形的面积相加,最后得到的就是曲
线下的面积。
定积分有着严格的数学定义和计算公式,但它的本质是在数轴上
进行积分运算,将一个函数映射到一段区间上的数值。
在计算定积分时,可以使用不同的方法,如基本公式、换元积分法、分部积分法等。
除了计算曲线下的面积,定积分还可以用于求函数的平均值、质量、重心等物理量,以及求解一些实际问题,如定积分可以用于计算
物体的体积、电荷的总量等。
总的来说,定积分是一种强大的数学工具,通过将曲线下的面积
划分为无数个小矩形,可以精确地计算出数学模型或物理现象中的量。
通过学习和理解定积分的概念和方法,我们可以更好地理解和应用微
积分在各个领域中的作用。
定积分公式大全
定积分公式大全定积分是微积分中的重要概念,它在数学和物理学中都有着广泛的应用。
本文将介绍定积分的基本概念和常见的定积分公式,帮助读者更好地理解和运用定积分。
1. 定积分的基本概念。
定积分是微积分中的一个重要概念,它可以用来计算曲线下面的面积、求解曲线的弧长、计算物体的质量和质心等。
在几何学中,定积分可以用来计算曲线与坐标轴之间的面积;在物理学中,定积分可以用来描述物体的质量、质心和转动惯量等。
2. 定积分的基本性质。
定积分具有一些基本的性质,包括线性性、区间可加性和保号性等。
其中,线性性是指定积分对于常数的线性性质,即∫[a, b] (cf(x) + g(x))dx = c∫[a, b] f(x)dx + ∫[a, b] g(x)dx;区间可加性是指定积分在区间上的可加性质,即∫[a, b] f(x)dx + ∫[b, c] f(x)dx = ∫[a, c] f(x)dx;保号性是指定积分的结果与被积函数的正负性有关,即若f(x)在[a, b]上非负,则∫[a, b] f(x)dx ≥ 0。
3. 定积分的常见公式。
在定积分的计算中,有一些常见的定积分公式可以帮助我们简化计算过程,如换元积分法、分部积分法、定积分的性质公式等。
(1)换元积分法。
换元积分法是定积分中常用的一种积分方法,它通过引入新的变量来简化被积函数的形式,从而使积分计算更加容易。
换元积分法的基本思想是利用复合函数的求导和积分的性质,通过代换变量来简化被积函数的形式,然后进行积分计算。
(2)分部积分法。
分部积分法是定积分中另一种常用的积分方法,它通过对被积函数进行分解,然后利用积分的性质进行计算。
分部积分法的基本思想是利用积分的乘积法则,将被积函数进行分解,然后利用分部积分公式进行积分计算。
(3)定积分的性质公式。
定积分具有一些常见的性质公式,如定积分的线性性质、定积分的区间可加性和保号性等。
这些性质公式在定积分的计算中经常被使用,可以帮助我们简化积分的计算过程,提高计算的效率。
定积分的知识点总结
定积分的知识点总结一、定积分的基本概念定积分是微积分学中的重要概念,可以用来计算曲线下的面积,曲线的弧长,质心等物理量。
定积分的基本思想是将曲线下的面积划分为无穷多个微小的矩形,然后求和得到整体的面积。
定积分的符号表示为∫。
对于一个函数f(x),在区间[a, b]上的定积分表示为:∫[a, b]f(x)dx其中,a和b为区间的端点,f(x)为函数在该区间上的取值。
定积分表示在区间[a, b]上的函数f(x)所确定的曲线下的面积。
二、定积分的计算方法1. 黎曼和定积分的计算基本思想是将曲线下的面积划分为很多个小矩形,然后对这些小矩形的面积求和。
这就是定积分的计算方法。
在实际计算中,根据黎曼和的定义,我们可以将区间[a, b]等分为n个小区间,每个小区间长度为Δx=(b-a)/n,然后在每个小区间上取一个样本点xi,计算f(xi)Δx的和:∑[i=1,n]f(xi)Δx当n趋近于无穷大时,这个和就可以逼近定积分的值。
这就是黎曼和的基本思想。
2. 定积分的几何意义定积分可以用来计算曲线下的面积,也可以用来计算曲线的弧长。
对于一个函数f(x),其在区间[a, b]上的定积分表示的是曲线y=f(x)和x轴之间的面积。
这个面积就是曲线下的面积。
如果函数f(x)在区间[a, b]上非负且连续,那么函数y=f(x)、直线x=a、x=b以及x轴所围成的区域的面积就是∫[a, b]f(x)dx。
3. 定积分的物理意义定积分还可以用来计算物理量,比如质量、质心等。
在物理学中,可以用定积分来计算物体的质量、质心等物理量。
对于一个连续的物体,将其质量密度函数表示为ρ(x),则物体的质量可以表示为定积分:M=∫[a, b]ρ(x)dx三、定积分的性质1. 线性性定积分具有线性性质,即∫[a, b](c1f1(x)+c2f2(x))dx=c1∫[a, b]f1(x)dx+c2∫[a, b]f2(x)dx。
其中c1、c2为常数,f1(x)、f2(x)为函数。
高等数学第五章定积分总结
高等数学第五章定积分总结定积分作为微积分的重要概念,是无穷积分的一种形式,并在多个领域中有着广泛的应用。
本章主要介绍了定积分的定义和性质,以及定积分的计算方法和应用。
首先,本章介绍了定积分的概念和定义。
定积分是一个数值,表示在给定的区间上,函数曲线与x轴之间的面积。
定积分可以分为两个部分:积分号和被积函数。
积分号表示积分的区间,被积函数表示要求积分的函数。
定积分的计算可以通过数值方法或解析方法进行,具体方法和结论有不少。
其次,本章介绍了定积分的性质。
定积分具有线性性、区间可加性和保号性等性质。
线性性质表示定积分可以进行加减运算,并且可以乘以一个常数。
区间可加性是指定积分的区间可以分为多个子区间,进行分段积分。
保号性表示如果被积函数在一些区间上恒大于等于0,那么该区间上的定积分也大于等于0。
这些性质为定积分的计算和应用提供了更多的方便性。
然后,本章介绍了定积分的计算方法。
定积分的计算可以通过不定积分和定积分的关系来进行。
通过求解原函数,并利用牛顿-莱布尼茨公式,可以简化计算过程。
本章还介绍了定积分的几何意义,即定积分表示函数曲线与x轴围成的面积,也可以表示其中一种物理量在一定时间或一定空间内的累积变化量。
最后,本章介绍了定积分的应用。
定积分在几何学、物理学、经济学等多个领域中有着广泛的应用。
例如,通过定积分可以计算曲线的弧长、曲线围成的面积、质心的坐标等几何问题;通过定积分可以计算物体的质量、重心、转动惯量等物理问题;通过定积分可以计算收益、成本、利润等经济问题。
这些应用都是建立在定积分的几何意义和计算方法的基础之上,对于深入理解和运用定积分具有重要意义。
总之,定积分是微积分中的重要概念,不仅具有丰富的理论性质,还有着广泛的应用价值。
通过学习定积分的定义、性质、计算方法和应用,可以帮助学生更好地理解和掌握微积分的知识,为解决实际问题提供更有效的数学工具。
定积分的基本概念
定积分的基本概念
一、定积分的基本概念
1.定积分的定义
定积分是指在区间[a,b]中,用函数f(x)的值在x处取的积分,其中x取值于a到b之间的某个点,f(x)的积分称为定积分。
也可以表示为
∫a, bf(x)dx=∫f(x)dx
即:将函数f(x)从x=a到x=b的定积分。
2.定积分的性质
(1)定积分是一种积分的形式,它是在定的一段区间内对某个函数f(x)求积分的形式。
(2)定积分可以表示为:∫f(x)dx=F(b)-F(a),其中F(x)是f(x)的积分函数。
(3)定积分可以表示为:∫a, bf(x)dx=∑[f(x1)+f(x2)+…
+f(xn)],其中x1,x2,…,xn为积分区间[a, b]的各个各点。
(4)定积分是一种表示曲线与坐标轴围成的面积的一种数学工具。
二、定积分的计算
1.定积分的数值计算
数值计算定积分,即把范围[a,b]离散成一定的小段,在每个小段上求f(x)的值,再用这些值进行总和,来求出定积分的近似值。
2.定积分的解析计算
解析计算此类定积分,即首先求出f(x)的积分方程,在范围[a,b]内,求得它的解后,再把范围[a,b]的定积分解析成积分函数F(x)的量对应的差值F(b)-F(a)。
三、定积分的应用
定积分的应用主要是用于求出曲线与坐标轴围成的面积,也可以用于求求解线性微分方程,求解有关动力学问题的时候,还有一些物理的和化学的问题,这些问题用的都是定积分的知识。
定积分的概念及性质课件
06
定积分的进一步应用
积分变换
积分变换的定义
积分变换是一种将函数在某一区间内的行为转化为另一种函数的方法,常见的积分变换包括傅里叶变换和拉普拉斯变 换等。
积分变换的性质
积分变换具有一些重要的性质,例如线性性质、时间平移性质和微分性质等,这些性质在解决实际问题中具有广泛的 应用。
积分变换的应用
积分变换在信号处理、图像处理和控制系统等领域有着广泛的应用,通过积分变换可以将复杂的信号或 系统转换为易于分析和处理的函数形式。
傅里叶变换
傅里叶变换的定义
傅里叶变换是一种将时间域函数转换为频域函数的方法, 它可以将一个时间函数分解成一系列不同频率的正弦和余 弦函数的线性组合。
傅里叶变换的性质
傅里叶变换具有一些重要的性质,例如线性性质、对称性 质和微分性质等,这些性质在解决实际问题中具有广泛的 应用。
傅里叶变换的应用
傅里叶变换在信号处理、图像处理和控制系统等领域有着 广泛的应用,通过傅里叶变换可以将复杂的信号或系统转 换为易于分析和处理的频域函数形式。
反常积分
反常积分的定义
反常积分是一种在无穷区间上定 义的积分,它通常用于处理一些 在无穷远处收敛的函数。
符号的意义
定积分的符号表示一个函 数在一个区间上的总值, 其中“∫”表示积分号。
计算公式
定积分可以通过一个公式
来计算x,其中a和b
是区间的端点。
02
定积分的性质
连续函数的积分性质
积分区间可加性
对于任意两个不相交的区间[a,b]和[b,c],有$\int_{a}^{c}f(x)dx = \int_{a}^{b}f(x)dx + \int_{b}^{c}f(x)dx$。
定积分的概念与性质
29
定积分的概念与性质
例3. 试证:
证:
设
f (x)
sin x
x
,
则在
(0 ,
π 2
)上,
有
f
(x)
x cos
x x2
sin
x
cos x x2
(x
tan
x)
0
f(
π 2
)
f
(x)
f
(0 )
即
2 f (x) 1, π
x
(0,
π 2
)
故
π 2 0
2
dx
π 2
0
f (x)dx
π
2 1dx
x
b
a n
,
取 i
xi1, 有
b
f ( x)dx
a
n
lim 0 i1
f (i )xi
lim
n
n i 1
f
(
xi
1
)
b
n
a
lim b a n n
n i 1
f ( xi1 )
对任一确定的自然数 n,
b f ( x)dx
a
ba n
n i 1
f ( xi1 )
18
定积分的概念与性质
取 i
a
a
b
c
b
a f ( x)dx c f ( x)dx
(定积分对于积分区间具有可加性)
23
定积分的概念与性质
性质4
b
b
1 dx dx b a
a
a
性质5 如果在区间 [a,b]上 f ( x) 0,
则
b
高等数学教案ch-5-定积分
第五章定积分教学目的:1、理解定积分的概念。
2、掌握定积分的性质及定积分中值定理,掌握定积分的换元积分法与分部积分法。
3、理解变上限定积分定义的函数,及其求导数定理,掌握牛顿一莱布尼茨公式。
4、了解广义积分的概念并会计算广义积分。
教学重点:1、定积分的性质及定积分中值定理2、定积分的换元积分法与分部积分法。
3、牛顿一莱布尼茨公式。
教学难点:1、定积分的概念2、积分中值定理3、定积分的换元积分法分部积分法。
4、变上限函数的导数。
§5, 1定积分概念与性质一、定积分问题举例1 .曲边梯形的面积曲边梯形:设函数y=f(x)在区间[a . b]上非负、连续,由直线x=a、x=b、y=0及曲线y=f (x)所围成的图形称为曲边梯形.其中曲线弧称为曲边.求曲边梯形的面积的近似值:将曲边梯形分割成一些小的曲边梯形.每个小曲边梯形都用一个等宽的小矩形代替.每个小曲边梯形的面积都近似地等于小矩形的面积.则所有小矩形面积的和就是曲边梯形面积的近似值.具体方法是:在区间[a b]中任意插入若干个分点a=X0 :::X i :::x2 :::…r:Xn 4 :::X n =b把[a b]分成n个小区间[x o .x i] . [x i .x2] . [x2 .X3]Jx nd .X n ].它们的长度依次为二X i = X i-X o -X2= X2% X n = Xn ~Xn 4 .经过每一个分点作平行于y轴的直线段.把曲边梯形分成n个窄曲边梯形•在每个小区间[Xi4.Xi]上任取一点匕.以[Xi4.Xi]为底、f (©)为高的窄矩形近似替代第i个窄曲边梯形(=1. 2.•…‘n).把这样得到的n个窄矩阵形面积之和作为所求曲边梯形面积A的近似值.即nA s f (巴1)&1 +f (巴2) &2+* …+f ('n )A x n =迟f GQx -im求曲边梯形的面积的精确值:显然.分点越多、每个小曲边梯形越窄.所求得的曲边梯形面积A的近似值就越接近曲边梯形面积A的精确值.因此.要求曲边梯形面积A的精确值.只需无限地增加分点.使每个小曲边梯形的宽度趋于零•记-二max{ .lx i . .-xn}.于是.上述增加分点.使每个小曲边梯形的宽度趋于零.相当于令0,所以曲边梯形的面积为nA = lim ' f ( J. :X i一-0y '2.变速直线运动的路程设物体作直线运动.已知速度v印(t)是时间间隔[T i T 2]上t的连续函数.且v(t)_O.计算在这段时间内物体所经过的路程S .求近似路程:我们把时间间隔[T i .T 2]分成n个小的时间间隔.址i .在每个小的时间间隔At i内.物体运动看成是均速的.其速度近似为物体在时间间隔.先内某点i的速度V(.i).物体在时间间隔.址i内运动的距离近似为AS= v(苗)孩.把物体在每一小的时间间隔i ti内运动的距离加起来作为物体在时间间隔[T i T 2]内所经过的路程S的近似值,具体做法是:在时间间隔[T i .T 2]内任意插入若干个分点T 1 =t 0 :::t i :::t 2 …t n」t n =T 2 .把[T i T 2]分成n个小段[t 0 .t i] . [t i .t 2]. ' ' '.[t n」.t n].各小段时间的长依次为L t i =t i -t 0 L t 2 ~t 2 -t i ….■:t n "t n —t n」相应地.在各段时间内物体经过的路程依次为L S i L S2 L S n .在时间间隔[t i」.t i]上任取一个时刻.i(t i J:: j::t i).以.i时刻的速度v(,i)来代替[t i/.t i]上各个时刻的速度.得到部分路程「S i的近似值.即心Si= v(E i) 0i (i=1 . 2 .…,n),于是这n段部分路程的近似值之和就是所求变速直线运动路程S的近似值.即nS・:二v( i). :t ii A求精确值:记•二max{ 't 1 ,t 2 t n}.当.-0时.取上述和式的极限.即得变速直线运动的路程nS =lim、v(.j) :tj ,0 i d设函数y斗(x)在区间[a b]上非负、连续,求直线x=a、x=b、y=0及曲线y寸(x)所围成的曲边梯形的面积.(1) 用分点a次o ::xi :::x2 :::…• ::xn ,::xn =b把区间[a b]分成n个小区间[x o .x i] . [x i .x2] .[x2 决3],….[x n4 .X n ]'记血mn (i =1 . 2 厂…* n).(2) 任取i [X i 4 X i]以[X i 4刈为底的小曲边梯形的面积可近似为f (£)细(i=. 2 •…,n) 所求曲边梯形面积A的近似值为nA 八f ( i) :X i .(3)记■ -max{二x i二X2 二x n}.所以曲边梯形面积的精确值为nA=lim「f ( ) x ,FT y设物体作直线运动.已知速度v二v(t)是时间间隔[T 1 T 2]上t的连续函数. 且v(t) _0 .计算在这段时间内物体所经过的路程S .(1)用分点T i4o::tv::t^ ■ ::tnd ::t^T2把时间间隔[T 1 T 2]分成n个小时间段[t o .t l]」t l 问,…F[t n」.t n].记A t i =t i—t i_J (i=1 . 2 * n).⑵任取.i [t iJ t i]在时间段[t i」t i]内物体所经过的路程可近似为v( .i)-:t i(iH . 2、…、n) 所求路程S的近似值为nS 八v( i) :t ii生(3)记-=max{.毛..屯,人t n}.所求路程的精确值为nS =li叫' v( J :t i ,二、定积分定义抛开上述问题的具体意义.抓住它们在数量关系上共同的本质与特性加以概括.就抽象出下述定积分的定义,定义设函数f(x)在[a b]上有界.在[a b]中任意插入若干个分点a 之0 :::X1 :::x2 :::•…:::X n 4 :::X n =b把区间[a b]分成n个小区间[X0.X1] .[X1 .x2].….[X n J .X n].各小段区间的长依次为L X1 次1—X o =X2%—X1 L X n * —X nM .在每个小区间[X i J X i]上任取一个点i (X iJ< i ::: X i).作函数值f ( 1)与小区间长度.乂的乘积f (匕)& (i= . 2y n).并作出和ns,f( i/'Xi .i d记,=max{ ■:X^ . :X2 ■x n}.如果不论对[a b]怎样分法.也不论在小区间[X iT .X i]上点i怎样取法.只要当■》0时.和S总趋于确定的极限I .这时我们称这个极限I为函数f (X)在区间[a . b]上的定积分.记作j f(x)dx .即jf(x)dx =lim 瓦 f (耳)纠,■■■ —0 i 4其中f (x)叫做被积函数 f (x)dx叫做被积表达式x叫做积分变量a叫做积分下限b叫做积分上限.[a b]叫做积分区间,定义设函数f(x)在[a b]上有界.用分点aa o:::x i :::X2:::x n_j :::x n=b把[a.b]分成n个小区间[x0 .X i] .[X i 凶].….[X n」.X n].记&i 承i—X i」(i=1 . 2 ,n).任:[X i」.X i] (i=1 . 2n) 作和nf( i,Xi .i 4记--max^x i L X2 L X n}.如果当,j 0时上述和式的极限存在且极限值与区间[a b]的分法和1的取法无关b则称这个极限为函数f(x)在区间[a b]上的定积分.记作f(x)dx .nbf(x)dx = lim 'a J—0 i 吕根据定积分的定义.曲边梯形的面积为A=a f(x)dx .变速直线运动的路程为S二;2v(t)dt .T1说明(1) 定积分的值只与被积函数及积分区间有关.而与积分变量的记法无关.即:f(x)dx 二:f(t)dt 二:f(u)du,n(2) 和‘二f ( i)「:X i通常称为f (x)的积分和.⑶如果函数f (x)在[a b]上的定积分存在.我们就说f (x)在区间[a b]上可积函数f(x)在[a b]上满足什么条件时 f (x)在[a b]上可积呢?定理1 设f (x)在区间[a b]上连续.则f (x)在[a b]上可积定理2 设f (x)在区间[a b]上有界.且只有有限个间断点.则f (x)在[a b]上可积定积分的几何意义:在区间[a b]上.当f(x)_0时.积分:f(x)dx在几何上表示由曲线y=f (x)、两条直线x=a、x=b与X轴所围成的曲边梯形的面积-当f(x) J0时.由曲线y =f (x)、两条直线x=a、x=b与x轴所围成的曲边梯形位于x轴的下方•定义分在几何上表示上述曲边梯形面积的负值n nf (x)dx =lim ' f ( J X - -lim 7 [ - f ( J] =x =J0i 1■ 9 #-:[-f (x)]dx当f (x)既取得正值又取得负值时.函数f(x)的图形某些部分在X轴的上方.而其它部分在X轴的下方,如果我们对面积赋以正负号 .在x 轴上方的图形面积赋以正号 .在x 轴下方的图形面积 赋以负号.则在一般情形下.定积分[b f (x)dx 的几何意义为:它是介于x 轴、函数f(x)的图形及两 条直线X£、x=b 之间的各部分面积的代数和, 用定积分的定义计算定积分例1.利用定义计算定积分0x 2dx ,解 把区间[0 .1]分成n 等份.分点为和小区间长度为 x =^(^1 .2*…,n —1). »=1(i=1. 2,…,n).取4 =討=1 . 2 .…,n).作积分和因为’计0x 2dx TimJ f ( i ) % =li利定积分的几何意义求积分 例2 •用定积分的几何意义求(1 -x)dx ,解:函数y=1v 在区间[0 . 1]上的定积分是以y=1-X 为曲边.以区间[0 . 1]为底的曲边梯形的面 积,因为以y=1 为曲边.以区间[0 . 1]为底的曲边梯形是一直角三角形 .其底边长及高均为1 .所以0(1-x)d^lxV<^l2 ,三、定积分的性质 两点规定:(1)当 a =b 时.f f (x)dx =0 . ⑵当 a 法时.f f (x)dx =-( f (x)dx .性质1函数的和(差)的定积分等于它们的定积分的和(差)即f [f (x) _g(x)]dx 二 f f(x)dx —f g(x)dx .n n n瓦«)纠咗¥纠迈G )21i 1i =1』nn讣]2活1 n(n 1)(2n 14(1n)(24).nimi (1 i )(2 存1.bn 证明:a [f (x)-g(x)]dx r lim j [f( J_g( i )],x/. J ° i 4n n=lim '•二 f ( J L X 二lim '•二 g( d^x jD i 4: •■- —0 i A二:f(x)dx_ :g(x)dx .性质2被积函数的常数因子可以提到积分号外面b b[kf(x)dx=k J f(x)dx .这是因为 f kf (x)dx =ljm 瓦 kf (U )^x i =k[im 》f G)Ax i =k [f (x)dx “ 性质' 如果将积分区间分成两部分 则在整个区间上的定积分等于这两部分区间上定积分之和即:f(x)dx 二:f(x)dx :f(x)dx .这个性质表明定积分对于积分区间具有可加性•值得注意的是不论 a b c 的相对位置如何总有等式:f(x)dx = a f(x)dx :f(x)dx成立,例如.当a<b<c 时.由于a f(x)dx = :f(x)dx :f(x)dx .于是有£ f (x)dx = a f (x)dx —j f (x)dx = f f (x)dx + f f (x)dx ,4如果在区间[a b]上f (x)三1则 fldx = f dx =b -a ,f(x)dx _0(a :b).1 如果在区间[a .b]上f (x) _g(x)则:f(x)dx E :g(x)dx(a ::b).这是因为g (x) -f (x) _0 .从而:g(x)dx-:f(x)dx =〕g(x)-f(x)]dx_O .性质性质 5 如果在区间[a b ]上f (x) -0 .则 推论b ba f(x)dx z a g(x)dx ,推论 2 | :f(x)dx|/|f(x)|dx(a :::b), 这是因为 _|f (x)| <f (x) < |f (x)| .所以—j|f(x)|dxwff(x)dx 訂|f(x)|dx . bb|a f(x)dx^ a |f(x)|dx| .性质6设M 及m 分别是函数f(x)在区间[a b ]上的最大值及最小值.则m(b —a)乞 a f (x)dx 兰M (b —a) (a<b),证明 因为m_f (x)_M .所以 ,mdx 兰 j f (x)dx 兰 fM d x. 从而m(b -a)兰 f f (x)dx EM (b —a),性质7 (定积分中值定理)如果函数f(x)在闭区间[a b ]上连续.则在积分区间[a.b ]上至少 存在一个点'.使下式成立::f(x)dx =f( )(b-a).这个公式叫做积分中值公式证明由性质6各项除以b£得m 兰-^ f f(x)dxEM . b -a a再由连续函数的介值定理 .在[a b ]上至少存在一点•.使 f ( )— ?f(x)dx . b —a a于是两端乘以b£得中值公式积分中值公式的几何解释 :应注意:不论a<b 还是a>b .积分中值公式都成立所以 m(b -a门:f(x)dxEM (b -a).§5 2微积分基本公式一、变速直线运动中位置函数与速度函数之间的联系设物体从某定点开始作直线运动.在t时刻所经过的路程为S(t).速度为v=v(t)=S(t)(v(t)_O).则在时间间隔[「T2]内物体所经过的路程S可表示为S(T2) -S(T I)及;2v(t)dt .即Jv(t)dt =S(T2)-S(T I).T1上式表明.速度函数v(t)在区间[T1 T2]上的定积分等于v(t)的原函数S(t)在区间[T i T2]上的增量,这个特殊问题中得出的关系是否具有普遍意义呢?二、积分上限函数及其导数设函数f(x)在区间[a.b]上连续.并且设x为[a . b]上的一点■我们把函数f(x)在部分区间[a.x]上的定积分:f(x)dx称为积分上限的函数,它是区间[a b]上的函数.记为G(x)二:f (x)dx . 或:」(x)=:f(t)dt .定理1如果函数f(x)在区间[a b]上连续.则函数G(x) = :f(x)dx在[a b]上具有导数.并且它的导数为①(x)=亠f f (t)dt =f (x)(a致<b).dx a简要证明若x:=(a .b).取L X使x7x:=(a.b),=(x±ix) -(x) = f 址f (t)dt -ff (t)dt=ff (t)dt +『也f (t)dt _『f(t)dtx f(t)dt =f( ).x应用积分中值定理.有f()「x其中在x与x:=x之间..x—0时―x,于是)"(x),⑴巳叫亍二叭"T m x f(若x=a .取二x>0 .则同理可证「(x)=f(a) •若x=b .取匚x<0 .则同理可证_(x) = f(b),定理2如果函数f(x)在区间[a b]上连续.则函数"(X)=:f(x)dx就是f (x)在[a b]上的一个原函数,定理的重要意义:一方面肯定了连续函数的原函数是存在的.另一方面初步地揭示了积分学中的定积分与原函数之间的联系.三、牛顿--莱布尼茨公式定理3如果函数F (x)是连续函数f(x)在区间[a b]上的一个原函数.则:f(x)dx=F(b)-F (a).此公式称为牛顿--莱布尼茨公式.也称为微积分基本公式,这是因为F(x)和①(x)=『f(t)dt都是f(x)的原函数.所以存在常数C .使F(x) -::(x) V (C 为某一常数).由F(a)-「(a)=C 及::平a)=0 .得C=F(a) F(x)—G(x)二F(a).由F(b)—「(b)二F(a).得::」(b)丰(b)—F(a).即f(x)dx=F(b)-F(a),证明:已知函数F(x)是连续函数f(x)的一个原函数.又根据定理2 .积分上限函数G(x) = :f(t)dt也是f(x)的一个原函数,于是有一常数 C.使F(x) -::(x)£ (a^xJD).当x=a 时.有F(a)_G(a)=C. 而:」(a)=0 .所以C=F(a) .当x=b 时.F(b)_G(b) =F(a). 所以:•:」(b)扌(b)_F(a).即:f(x)dx=F(b)-F (a).为了方便起见.可把F(b) -F(a)记成[F(x)]b .于是:f(x)dx=[F(x)]b,=F(b)-F(a).进一步揭示了定积分与被积函数的原函数或不定积分之间的联系例1.计算0x2dx .解:由于1x3是x2的一个原函数.所以3fx2dx =[-x3]0=113-103=-,0 3 0 3 3 3#3 dx例2计算.d -d?,解由于arctan x是的一个原函数.所以% =[arctanx]< =arctani 3—arctan(-1) =-3 -(例3.计算gdx .解:1dx =[ln | x|] :2 斗n 1 Tn 2 =Tn 2 .■^x例4.计算正弦曲线y=sin x在[0 .二]上与x轴所围成的平面图形的面积解:这图形是曲边梯形的一个特例,它的面积A = 0 sin xdx =[ -cosx]旷亠(一1) -(一1) =2 “例5.汽车以每小时36km速度行驶.到某处需要减速停车设汽车以等加速度a=-5m/s2刹车问从开始刹车到停车.汽车走了多少距离?解从开始刹车到停车所需的时间:1当t=0时.汽车速度v o -36km/h m/s=10m/s , 3600刹车后t 时刻汽车的速度为v(t)二v o at =10-5t .当汽车停止时.速度v(t) =0 .从v(t)二10-5t £得.t =2(s),于是从开始刹车到停车汽车所走过的距离为s 二:v(t)dt = :(10 -5t)dt 半0t -5 lt 2]0=10(m).即在刹车后.汽车需走过10m 才能停住.例6.设f(x)在[0,-:)内连续且f(x)>0,证明函数F(x)二 在(0 .;)内为单调增加函数证明:dx 0X tf(t)dt =xf(x )堆 0X f(t)dt =f(x ).故, xf(x )0 f(t)dt —f(x )0tf(t)dt f(x )0(x —t)f(t)dt F (x)=按假设.当 0do 时 f(t)>0.(x-t)f (t)>0 .所以;f(t)dt 0 • ;(x —t)f(t)dt 0 .从而F (x)>0 (x>0).这就证明了 F (x)在(0 .::)内为单调增加函数叢广丹琵%0sx)吧①(u)裳4 (-si nx)7nx":tf (t)dt :f(t)dt (0x f(t)dt)2 (: f(t)dt)2 例7.求lime x "dt osx解:这是一个零比零型未定式 由罗必达法则.lim x )0 dt os ^ lim x 2 x 「0 cosx 2 2 -1 e dt sin xe "os x —1 ----------- =lim x 0 x 2 2x _2e提示 设①(x)=fe*dt 则①(cosx)=『^e 4-2 dt§5,3定积分的换元法和分部积分法一、换元积分法定理假设函数f(x)在区间[a b]上连续.函数x=「(t)满足条件:⑴(:)a .(2) :(t)在[:•.-](或[「:])上具有连续导数.且其值域不越出[a b].则有:f(x)dx 二「f[「⑴]:(t)dt .这个公式叫做定积分的换元公式,证明由假设知f(x)在区间[a b]上是连续.因而是可积的f [「⑴]「(t)在区间[:•「](或「.:])上也是连续的.因而是可积的.假设F(x)是f (x)的一个原函数.则:f(x)dx 二F(b)-F(a).另-方面.因为{F[ (t)]}丰[(t)] (t)二 f [ (t)] (t).所以F[ (t)]是 f [ :(t)] (t)的一个原函数.一从而...f[ (t)b (t)dt =F[ f-)] -F[ G )]二F(b)-F(a).因此:f(x)dx=「f[ (t)]「(t)dt .例 1 计算l^a2-x2dx (a>0),解0、a2 _x2dx " ”叭 jacost acostdt二a202 cos2tdt =号02(1 cos2t)dta2“ 1 2 1 2^[t in 2t]o =4「a提示、、a2 _x2 = , a2 _a2sin2t =acost dx=a cos t 当x=0 时t=0当x=a时例 2 计算02 cos5xsinxdx ,解令t =cos x .则2 5252 cos5 xsin xdx - - 02 cos5 xd cosx令cosxzz t提示或当xn时t"当x=2时H5 52 cos5xsin xdx 2 cos5 xd cosx--[—cos6x]|? - -Icos6-cos6^-,6 0 6 2 6 6例 3 计算0 lsin3x -sin5xdx ,3T f ------------------------解0in3x -sin5 xdx =3'sin2 x|cosx|dx •二 3 -■ 3=02 sin2 xcosxdx - .二sin2 xcosxdx2二2 sin2 xdsin x- -sin2 xd sinx22 5' 2 5-n 2二[fsin2x]0 卡sin2x]?£*-(-2)5 0 5 2 5 5提示、、sin3x -sin5x psin3x(1 -sin2 x)二sin。
定积分知识点总结大一
定积分知识点总结大一定积分知识点总结定积分是微积分中的重要概念,它在数学、物理等各个领域中具有广泛的应用。
在大学一年级的学习中,我们需要掌握定积分的基本性质、计算方法和应用等方面的知识。
本文将对定积分的相关知识点进行总结和介绍。
一、定积分的基本性质1. 定积分的定义:设函数f(x)在区间[a, b]上有界,将[a, b]划分成n个小区间,每个小区间的长度为Δx,任取xi*在第i个小区间中值,如果极限存在且与划分方式无关,那么该极限值称为函数f(x)在区间[a,b]上的定积分,记作∫(a到b)f(x)dx。
2. 定积分的几何意义:定积分表示曲线f(x)和x轴之间的有向面积。
3. 定积分的性质:a. 线性性质:∫(a到b)[k*f(x)+g(x)]dx = k*∫(a到b)f(x)dx + ∫(a 到b)g(x)dx,其中k为常数。
b. 区间可加性:∫(a到b)f(x)dx = ∫(a到c)f(x)dx + ∫(c到b)f(x)dx,对于[a, c, b]上的任意点c成立。
c. 保号性:若对于[a, b]上的任意点x,有f(x) ≥ 0,则∫(a到b)f(x)dx ≥ 0。
d. 平均值定理:若函数f(x)在区间[a, b]上连续,则存在ξ∈(a, b),使得∫(a到b)f(x)dx = f(ξ)(b-a)。
e. 积分中值定理:若函数f(x)在区间[a, b]上连续且非负,则存在ξ∈(a, b),使得∫(a到b)f(x)dx = f(ξ)(b-a),其中ξ为[a, b]上的某点。
二、定积分的计算方法1. 利用基本积分表:根据不同的函数形式,可以利用基本积分表中给出的积分公式快速计算定积分。
2. 分部积分法:将不定积分中的积分符号拆分成被积分函数和微分函数两部分,并运用分部积分公式进行计算。
3. 换元积分法:通过变量代换,将被积函数转化为简化形式的积分,然后进行计算。
4. 几何意义法:利用定积分的几何意义,可以通过几何图形的面积或曲线的长度等来计算定积分。
5-1定积分的概念
a x 0 x1 x 2 x n 1 x n b
n 个小区间,各小区间的长度依次为 把区间[a , b] 分成
x i x i x i 1 ,( i 1,2,) ,在各小区间上任取
一点 i ( i xi ),作乘积 f ( i )x i ( i 1,2,)
1 sin xdx. 0
i x i
练习题
一、填空题: 1 、函数 f ( x ) 在 a , b 上的定积分是积分和的极限, 即 f ( x )dx _________________ .
a b
2 、定 积 分 的 值 只 与 ______ 及 _______ 有 关 , 而 与 _________的记法无关 . 3 、定积分的几何意义是_______________________ . 4 、区间 a , b 长度的定积分表示是_____________ .
二、利用定积分的定义计算由抛物线 y x 2 1 , 两直线 x a , x b ( b a ) 及横轴所围成的图形的面积 . 三、利用定积分的定义计算积分 xdx ,( a b ) .
a b
四、利用定积分的几何意义,说明下列等式: 1、 2、
0
1
2 2
1 x dx ; 4
积分上限
f ( i )x i a f ( x )dx I lim 0 i 1
被 积 函 数
被 积 表 达 式
b
n
积分和
积分下限
积 分 变 量
[a , b] 积分区间
注意:
(1) 积分值仅与被积函数及积分区间有关,
而与积分变量的字母无关.
定积分的定义和性质
性质:区间可加性是定积分的一个重要性质,它表明定积分具有线性性质,可以像加法一样进行区间上的运算。
单击此处添加标题
积分中值定理
定理定义:若函数f在闭区间[a,b]上连续,则在开区间(a,b)上至少存在一点ξ,使得f(ξ)=(b-a)∫f(x)dx
定理证明:通过构造辅助函数和运用中值定理证明
方法步骤:选择适当的中间变量,进行变量替换,化简积分
适用范围:被积函数或积分区间具有特定形式时
分部积分法
定义:将两个函数的乘积进行积分的一种方法
注意事项:选择合适的u和v,以便简化计算过程
应用:解决某些复杂的不定积分问题
公式:∫udv=∫vdu+∫u'vdx
有理函数的积分法
计算步骤:首先将有理函数分解为简单分式之和或差,然后分别求各简单分式的积分,最后合并各简单分式的积分结果。
,a click to unlimited possibilities
定积分的定义和性质
目录
01
单击添加目录标题
02
定积分的定义
03
定积分的性质
04
定积分的计算方法
01
添加章节标题
02
定积分的定义
积分上限函数
积分上限函数的定义:定积分被定义为积分上限函数在某区间上的值。
积分上限函数的性质:积分上限函数在区间上单调递增或递减,取决于被积函数在区间上的符号。
应用场景:在求解定积分时,可以利用微积分基本定理将复杂的积分转化为简单的积分,从而简化计算过程。
定理证明:可以通过牛顿-莱布尼茨公式进行证明,该公式将定积分与不定积分联系起来。
04
定积分的计算方法
微积分基本定理的应用
定积分的概念 课件
,求下列定积分的值:
① 0e(2x+x2)dx;
② 0e(2x2-x+1)dx.
【解题探究】1.题(1)中求
2
0
f(x)dx时需分几段?
2.在题(2)中
2
0
[f(x)-2x]dx与
02f(x)dx,02(-2x)dx有何等量关
系?
3.在题(3)②中如何用已知定积分来表示所求积分值?
【探究提示】1.需分两段求解,一是 (0x1 +1)dx,另一个是
知识点1 定积分的概念与几何意义 1.对定积分概念与几何意义的三点说明 (1)定积分的概念是对“分割、近似代替、求和、取极限”这 四个步骤的高度概括,其中包含着重要的数学思想方法—— “以直代曲”,只有理解了定积分的定义过程,才能掌握定积 分的计算与应用.
(2)定积分
b
a
f(x)dx
是一个常数——实数,一般情况下,被积
因 为n13 Δin1xi=2 12,当16 (n1→ n1∞)(时2 ,n1 Δ) x2→. 0,
n
所以
(1x2+2)dx=lim
0
n
n i1
f
i
x
lim[1 (1 1 )(2 1 ) 2] 1 2 7 .
n 6
n
n
33
【延伸探究】若题(2)的积分区间变为[-1,1],其余不变,
a g(x)dx= a
2 0ag(x)dx.
【微思考】
(1)定积分
02(x2+x+1)dx与
2
0
x2dx,
2
0
(x+1)dx有什么关系?
提示:02(x2+x+1)dx=02
高等数学教材定积分
高等数学教材定积分在高等数学学科中,定积分是一个重要的概念和工具,它在许多领域中都发挥着关键的作用。
本文将对高等数学教材中定积分的基本概念、性质和应用进行探讨。
一、定积分的基本概念定积分是微积分学中的一个重要概念,它是指在一个给定的区间上,对被积函数求极限的过程。
具体而言,如果函数f(x)在区间[a,b]上连续,那么定积分∫[a,b] f(x)dx表示在以[a,b]为区间的曲线下方所围成的面积。
定积分可以看作是微分的逆运算,它可以用于解决一些与变化率和累积量相关的问题。
通过定积分,我们可以计算出曲线下的面积、质量、体积等重要的物理量。
二、定积分的性质定积分具有一些重要的性质,这些性质使得我们能够更加灵活地应用定积分来解决各种问题。
1. 可加性:定积分具有可加性,即∫[a,b] f(x)dx + ∫[b,c] f(x)dx =∫[a,c] f(x)dx。
这个性质使得我们可以将一个区间上的定积分分割成若干小区间上的定积分进行计算。
2. 伸缩性:定积分具有伸缩性,即对于任意常数k,有∫[a,b]kf(x)dx = k ∫[a,b] f(x)dx。
这个性质使得我们可以对被积函数进行放大或缩小的操作。
3. 线性性:定积分具有线性性,即对于任意两个函数f(x)和g(x),以及任意常数a和b,有∫[a,b] (af(x) + bg(x))dx = a∫[a,b] f(x)dx + b∫[a,b] g(x)dx。
这个性质使得我们可以将一个复杂的函数拆解成多个简单的函数进行计算。
三、定积分的应用定积分在各个领域中都有着广泛的应用,下面我们将介绍一些常见的应用场景。
1. 几何应用:通过定积分,我们可以计算平面图形和空间图形的面积、体积等物理量。
例如,通过定积分可以计算出一个曲线所围成的面积,或者一个曲线绕某个轴旋转所围成的体积。
2. 物理应用:定积分在物理学中有着重要的应用。
例如,通过定积分可以计算质量分布情况下的质心位置,可以计算物体的密度分布情况下的质量等。
第五章定积分的概念97953共44页
四、定积分的几何意义
b
f(x)0, a f(x)dxA
曲边梯形的面积
f(x)0,
b
a f(x)dxA
曲边梯形的面积 的负值
A1 A2
A3
A4
a bf(x )d x A 1 A 2 A 3 A 4
几何意义:
它是介x于轴、函数 f(x)的图形及两条 直线xa, xb之间的各部分面数 积和 的. 代 在x轴上方的面积取在 正x号轴;下方的面 积取负号.
求面积问题由来已久,对于由直线所围成的
平面图形的面积我们已经会求,下图所示的图形
如何求面积
ym
将其置于直角
坐标系下考察 A
B
问题归结为AmBbaA与AnBbaA
n
的面积之差 曲边梯形
oa
bx
曲 边 梯 形 由 连 续 曲 线
y
yf(x)(f(x)0)、
yf(x)
x轴 与 两 条 直 线 xa、
A?
二、定积分的定义
定义 设 函 数 f(x )在 [a ,b ]上 有 界 , 在 [a ,b ]中 任 意 插 入
若干个分点 a x x x x x b
012
n 1 n
把 区 间 [ a , b ] 分 成 n 个 小 区 间 , 各 小 区 间 的 长 度 依 次 为
x i x i x i 1 , ( i 1 , 2 , ) , 在 各 小 区 间 上 任 取
基本要求
①正确理解定积分的概念及其实际背景 ②记住定积分的性质并能正确地运用 ③掌握变上限定积分概念,微积分基本定理,
并会用N-L公式计算定积分, ④能正确熟练地运用换元法和分部积分法
计 算定积分 ⑤正确理解两类广义积分概念,
[整理]5-1定积分的概念
(2)任取i[xi1xi]以[xi1xi]为底的小曲边梯形的面积可近似为
(i12n)所求曲边梯形面积A的近似值为
(3)记max{t1t2tn}所求路程的精确值为
教
学
基
本
内
容
纲
要
抛开上述问题的具体意义抓住它们在数量关系上共同的本质与特性加以概括就抽象出下述定积分的定义
(三)环境影响评价的原则记max{x1x2xn}如果不论对[ab]怎样分法也不论在小区间[xi1xi]上点i怎样取法只要当0时和S总趋于确定的极限I这时我们称这个极限I为函数f(x)在区间[ab]上的定积分记作
即
其中f(x)叫做被积函数f(x)dx叫做被积表达式x叫做积分变量a叫做积分下限b叫做积分上限[ab]叫做积分区间
定义设函数f(x)在[ab]上有界在[ab]中任意插入若干个分点
ax0x1x2xn1xnb把区间[ab]分成n个小区间[x0x1][x1x2][xn1xn]各小段区间的长依次为x1x1x0x2x2x1xnxnxn1
在每个小区间[xi1xi]上任取一个点i(xi1ixi)作函数值f(i)与小区间长度xi的乘积f(i)xi(i12n)并作出和
在区间[ab]上当f(x)0时积分 在几何上表示由曲线yf(x)、两条直线xa、xb与x轴所围成的曲边梯形的面积当f(x)0时由曲线yf(x)、两条直线xa、xb与x轴所围成的曲边梯形位于x轴的下方定义分在几何上表示上述曲边梯形面积的负值
(1)建设项目概况。
当f(x)既取得正值又取得负值时函数f(x)的图形某些部分在x轴的上方而其它部分在x轴的下方如果我们对面积赋以正负号在x轴上方的图形面积赋以正号在x轴下方的图形面积赋以负号则在一般情形下定积分 的几何意义为它是介于x轴、函数f(x)的图形及两条直线xa、xb之间的各部分面积的代数和
定积分知识点总结专科
定积分知识点总结专科一、定积分的基本概念1. 定积分的引入定积分是对曲线下面积的求解方法。
在平面直角坐标系中,给定曲线的函数关系y=f(x),我们希望计算在区间[a, b]上曲线与x轴之间的面积。
为了简化计算,我们将区间[a, b]分成无穷小的小区间,然后计算每个小区间中与x轴之间的面积,再把所有小区间的面积相加起来,就得到了曲线在区间[a, b]上的面积。
这种方法就是定积分的基本思想。
2. 定积分的定义设函数y=f(x)在区间[a, b]上有定义,且区间[a, b]上的分割为[a=x0, x1, x2, ..., xn-1, xn=b],则对应的小区间为[x0, x1], [x1, x2], ..., [xn-1, xn],每个小区间的长度为Δxi=xi-xi-1。
在每个小区间上取任意点ξi,用函数值f(ξi)乘以小区间长度Δxi,再把所有小区间的面积相加,得到Σf(ξi)Δxi。
当Δxi→0时,如果极限存在,就称曲线在区间[a, b]上的面积为定积分,用符号∫abf(x)dx表示,即∫abf(x)dx=lim(Δxi→0)Σf(ξi)Δxi。
其中f(x)是被积函数,x是积分变量,a、b是积分上下限,ξi是小区间[i-1, i]上的任意点。
3. 定积分的几何意义定积分的几何意义是曲线与x轴之间的面积,例如,对于非负函数y=f(x)在区间[a, b]上的定积分∫abf(x)dx表示曲线y=f(x)与x轴以及直线x=a、x=b所包围的平面图形的面积。
4. 定积分的物理意义定积分的物理意义通常是表示物体的质量、体积或者其它物理量,例如,对于密度为ρ(x)的连续介质在区间[a, b]上的定积分∫abρ(x)dx表示介质在区间[a, b]上的质量。
5. 定积分的符号定积分的符号是∫,这个符号来源于拉丁字母"summa"的缩写,表示对函数在一定区间内的求和。
6. 定积分的性质- 定积分的存在性只有当函数y=f(x)在区间[a, b]上是有界的(即不是无穷大)时,定积分才有意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n
S = ∫ [− f ( x)]dx
a
=− lim ∑ f (ξ i )∆xi
λ →0
b
n
O
a
b
x
i =1
∫a f ( x)dx =− S
y = f(x)
华东理工大学数学系
17/21
b
=− ∫ f ( x)dx .
a
《经济数学》教案
我们对面积赋以正负号:在x轴上方的图形面积赋以正号,在 x 轴下方的图形面积赋以负号. 在一般情形下,定积分 ∫ f ( x)dx 的几何意义为:
《经济数学》教案 华东理工大学数学系
7/21
•在 [a, b]中任意插 入 n −1个分点. •得n个小区间: [xi−1 , xi ] (i=1, 2 , · · ·, n). •区间[xi−1 , xi ]的长 度∆xi= xi −xi−1 .
y = f(x) y f(ξ2) f(ξ1) f(ξi)∆xi f(ξi)
11/21
二、定积分的定义
设函数f(x)在[a,b]上有界,在[a,b]中任意插入n-1个分点 a =x0<x1<x2< ··· <xn−1<xn=b, 把区间[a,b]分成n个小区间 [x0,x1],[x1,x2],··· ,[xn−1,xn] , 各小段区间的长依次为 ∆x1=x1−x0,∆x2=x2−x1,··· ,∆xn =xn −xn−1. 任取ξi ∈[xi−1,xi] ,作函数值 f (ξi)与小区间长度∆xi的乘积 f (ξi) ∆xi (i=1,2,··· ,n) , 并作出和 S=
0
∑
∑
∑
∑
∫
1
0
x 2 dx = lim
λ →0
∑
i =1
n
f(ξ i ) ∆x i = lim 1 (1+ 1 )(2+ 1 ) = 1 . n →∞ n n 3 6
华东理工大学数学系
19/21
《经济数学》教案
利用几何意义求定积分
求积分
∫0 (1 − x)dx
1
.
解 以y=1−x为曲边,以区间[0, 1]为底的曲边梯形为一直角 三角形, 所以
•在 [a, b]中任意插 入 n −1个分点. •得n个小区间: [xi−1 , xi ] (i=1, 2 , · · ·, n). •区间[xi−1 , xi ]的长 度∆xi= xi −xi−1 .
y = f(x) y f(ξ2) f(ξ1) f(ξi)∆xi f(ξi)
O
a ξ 1 x1 ξ 2 x2
《经济数学》教案
华东理工大学数学系
15/21
定积分的几何意义
在区间[a,b]上,当f(x)≥0时,积分
∫a f ( x)dx
曲边梯形的面积; y
b
,
在几何上表示由曲线y=f (x)、两条直线x=a、x=b 与x 轴所围成的
y = f(x)
∫a f ( x)dx
O a
《经济数学》教案
b
,
b x
16/21
∫a f ( x)dx
T2
1
b
,
S=
注:
∫T v(t )dt .
(1)定积分的值只与被积函数及积分区间有关,而与积分变 量的记法无关,即
b b b
∫a f ( x)dx = ∫a f (t )dt = ∫a f (u )du .
(2)和 ∑ f (ξ i )∆xi 通常称为f (x)的积分和.
i =1 n
[a,b]上的定积分,记作
∫a f ( x)dx
积分上限
b
,
积分和
即
积分
∫a f ( x )dx = I = lim ∑ f (ξ i )∆xi λ → 0 i =1
限
b
n
被 积 函 数
被 积 表 达 式
积 分 变 量
[a , b] 积分区间
《经济数学》教案
华东理工大学数学系
13/21
根据定积分的定义,曲边梯形的面积为 A= 变速直线运动的路程为
a b
它是介于x 轴、函数 f(x)的图形及两条直线 x=a、x=b之间的各部 分面积的代数和. y y = f(x) + a O − + b x
《经济数学》教案
华东理工大学数学系
18/21
利用定义计算定积分
例 利用定义计算定积分 x 2 dx .
∫
1
i 解 把区间[0, 1]分成 n 等份, 分点为x i = , i=1, 2, ··· , n−1 ; n 1 每个小区间[xi−1,xi]的长度∆xi= ,i=1,2,··· ,n ; n i 取ξi =xi = , i=1,2,··· ,n . 作和 n n n n i 2 1 1 n 2 f(ξ i) ∆x i = ( ) · = 3 i ξ i 2 ∆x i = n n i =1 n i =1 i =1 i =1 1 1 1 1 1 (1+ )(2+ ). = 3 n (n+1)(2n+1) = n n 6 n 6 当λ→0时,n →∞.
∑ f (ξi )∆xi .
i =1
n
《经济数学》教案
华东理工大学数学系
12/21
记λ = max{∆x 1, ∆x 2 ,··· , ∆x n}, 如果不论对[a, b]怎样分法, 也不论在小区间[x i−1, x i]上点ξ i 怎样取法, 只要当λ→0时,和 S 总趋于确定的极限I, 这时我们称这个极限 I 为函数 f (x)在区间
《经济数学》教案
华东理工大学数学系
14/21
定积分的可积性问题
如果f(x)在[a, b]上的定积分存在,我们就说f(x)在[a, b]上可 积. 定理1 设f (x)在区间[a,b]上连续,则f (x) 在[a,b]上可积. 定理2 设f (x)在区间[a,b]上有界,且只有有限个间断点,则 f (x) 在[a,b]上可积.
1 (1 − x)dx = . ∫0 2
1
1 其面积为 . 2
1
y
y=1-x
O
《经济数学》教案
1
x
20/21
华东理工大学数学系
作业:P185(习题5.1 )
1(2),2(1),3(1)(2)
《经济数学》教案
华东理工大学数学系
21/21
华东理工大学数学系
当f(x)≤0时,由曲线y =f (x)、两条直线x=a、x=b 与x 轴所围 成的曲边梯形位于x 轴的下方, 定积分在几何上表示上述曲线 边梯形面积的负值: S = ∫ [− f ( x)]dx
a b b
y
y = − f(x)
= lim ∑ [− f (ξ i )]∆xi
λ →0
O
a ξ 1 x1 ξ 2 x2
xi-1 ξi xi
xn-1 b x
•把曲边梯形分成 n 个窄曲边梯形. •任取ξi ∈[xi−1,xi ] ,以f (ξ i) ∆xi近似代替第i个窄曲边梯形的面 积. •曲边梯形的面积近似为:A≈
《经济数学》教案
∑ f (ξ )∆x
i =1 i
n
i
.
8/21
华东理工大学数学系
i =1 n
《经济数学》教案
华东理工大学数学系
10/21
所求变速直线运动路程S 的近似值为 S ≈ ∑ v(τ i )∆ti .
i =1
n
记λ= max{∆t1,∆t2,··· ,∆tn}.则变速直线运动的路程为: S
=
λ →0
lim ∑ v(τ i )∆ti .
i =1
n
《经济数学》教案
华东理工大学数学系
第五章 积分
• 定积分的概念 • 定积分的性质 • 微积分基本定理
《经济数学》教案
华东理工大学数学系
1/21
§5.1 定积分概念
一、定积分问题的产生
曲边梯形、曲边梯形的面积 变速直线运动的路程
二、定积分定义
定积分的定义、可积性问题 定积分的几何意义 利用定义计算定积分 利用几何意义求定积分
《经济数学》教案
华东理工大学数学系
2/21
一、定积分问题的引入
1.曲边梯形的面积 曲边梯形: 设函数y=f(x)在区间[a,b]上非负、连续.由直线x=a、x=b、 y=0及曲线y=f (x)所围成的图形称为曲边梯形,其中曲线弧称为 曲边. y y = f(x)
x=a O a
《经济数学》教案
x=b b
华东理工大学数学系
9/21
2.变速直线运动的路程 设物体作直线运动, 已知速度v=v(t)是时间间隔[T1 , T2]上 t 的连续函数, 且v(t)≥0, 计算在这段时间内物体所经过的路程S . 在时间间隔[T1 , T2]内任意插入n−1个分点 T1=t0<t1<t2< · · · <tn−1<tn=T2 , 把[T 1 , T 2]分成n个小段 [t0, t1], [t1, t2], · · · , [tn−1, tn] , 各小段时间的长依次为 ∆t1=t1−t0, ∆t2=t2−t1, · · · , ∆tn =tn − tn−1. 任取τi∈[ti−1, ti] , 在时间间隔[ti−1, ti]内物体所经过的路程近 似为∆S ≈ v(τi) ∆t i (i=1, 2 , · · · , n). 所求变速直线运动路程S 的近似值为 S ≈ ∑ v(τ i )∆ti .
5/21
y = f(x) y
A1 O a
A2
A3
A4 b x
用四个矩形的面积 近似代替曲边梯形的面积A, 得 A ≈ A1+ A2+ A3+ A4